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Chapter I

Introduction

In recent years there has been extensive use of orthogonal
transforms for image and speech compression, pattern recognition, noise
cancellation, and Wiener filtering. This is a tutorial paper on the
Discrete Cosine Transform (DCT), one of the most popular orthogonal
transforms. The DCT was introduced by Ahmed et al. [1] in 1974. Since
the DCT's inception, it has been primarily used for transform coding of
images. Other applications include speech prediction [22-25] and noise
cancellation [27-28]. |

The two-dimensional DCT is used in image transform coding to
decorrelate picture data, and pack the image energy into a few transform
components. For small block sizes, image data is statistically modeled
as a first-order Markov random process. The DCT is used to reduce
redundant information, thus allowing a digital picture to be represented
with fewer bits.

For speech coding, the one-dimensional DCT is used to decorrelate
speech data, and pack the speech signal energy in a few transform
components. Speech data is treated as wide-sense stationary on a short
term basis. The DCT is often combined with an adaptive encoding scheme.
Such methods have made possible hardware implementation of a 9.6 kilo
bits/second speech transmission system [26].

Keshaven [27-28] has used the DCT to assist in implementing a noise
cancellation scheme. Here the DCT is used to cenvert a vector

interpolation scheme into an implementable scalar scheme.



The DCT is derived in Chapter II. Chapter III shows how to
implement the DCT efficiently. Chapter IV shows how the DCT can be used
in image data compression. It also includes a comparison between
the DCT and the newly introduced Symmetric Cosine Transform (SCT) (2],
the Walsh Hadamard Transform (WHT) (3], and the fast Karhunen-Loeve

Transform (DST) [4]. Conclusions are presented in Chapter V.



CHAPTER II

Definitions

The discrete cosine transform (DCT) of an N-point data sequence is

defined as

N-1
F(k) = //% c(k) Z x(m) cos{(zggl) kn} ; 0 <mk <N-1,
m=0

and the inverse discrete cosine transform (IDCT) is defined as

N-1
x(m) = //g kZO c(k) F(k) cos{(zg;l) kw} ; 0 <mk < N-1

1 for k =0

V2
1 for k # 0

where ' c(k) =
It can be easily shown the DCT of an N point data sequence can be
represented in matrix form as

F=24%X

where X is the N x 1 column vector containing the data sequence;'z is a

N x N coefficient matrix whose elements, &, o> are computed as
4 3

P
_ (2m+1) . :
ak+l,m+l = c(k) cost——zﬁ—— kw} ; 0 < mk <N-1
where
_—l k=0
c(k) = 72
1 k #0 H

T is the resulting N x 1 column vector containing the DCT coefficients.



Higher dimensional DCT definitions can be arrived at by extending
‘the one-dimensional DCT definition. For example, the two-dimensional

DCT is defined as

N-1 N-1
F(k,2) = %-c(k) c(2) mZO nzo x(m,n) cos{igggll kﬂ} cos{igggil zn}.

Similiarly the two-dimensional IDCT is defined as

N-1 N-1
x(m,n) = %‘ Y} 1 el e(w) Fik,R) cos{igggil kw} cos{ﬁﬁ%%él gﬁ}
k=0 2=0

where
1 -
/[; b= o

The DCT can be shown to be a separable transform. To illustrate,

let us write the two—dimensional DCT definition as follows:

N-1 N-1
Flk,2) = //% c(k) ] {f/%TC(L) }  x(m,n) cos{gg%§£l kﬂ]}cos[ﬁg§§ll gﬂJ
=() n=0

It can be seen that the term in curly brackets is the one-dimensional
DCT of x(m,n) by columms. If the bracketed term is replaced by X(m,2),
then the resulting expression

N-1 .
F(k,L) = /Z% c(k) z X(m, %) cos{£2%§ll kw]

m=0
is the one-dimensional DCT of x(m,%) by rows. Thus, the two-dimensional
DCT can be computed by taking the one-dimensional DCT by columns and
then taking the one-dimensional DCT of the result by rows. Note that

the order of processing could be changed by first computing the one-



dimensional DCT by rows and then computing the one-dimensional DCT by

colums. In matrix form, separability can be represented as

F=A4AZXA
where F is the N x N matrix containing the DCT coefficients, A is the
N x N coefficient matrix, and X is the N x N data matrix.

The DCT has several interesting properties. Since it is an ortho-

gonal transform, it satisfies the relation

N-1 N=-1

2 Z
I @)= [ (Fo)

m=0 k=0
which is called Parseval's Theorem. Another interesting point is the
fact that the basis vector of the DCT, defined as the N x 1 columm

vector B(k) whose elements are computed as

b111 = /%— c(k) cos[(

are actually the roots of discrete Chebyshev polynomials [l]. The basis

2mtL
) kr] , 0 < k,m < N-1

vector interpretation is similar to a Fourler series expansion. Recall
that any periodic function f(x) can be represented as an infinite sum of
sine and cosine terms. Since the sine and cosine can be written in
terms of complex exponentials we have

[--]

-{nu_t
f(x) Z c 6 e o

==

where { = v-1. Similarly, we can express any finite data sequence as a
finite weighted sum of DCT basis vectors
N-

1
x(m) = § F(k) B(k)
k=0



For example, with N=4 the DCT basis vectors are shown below:

.653 .500 <271

L] —. -.6
5(0) - s = |py| 3@ = Ti5g] 3 < T

-.653 .500 -.271] .

To represent the data sequence X' = [1, 2, 3, 4] as a DCT expansion the
following computation is made:

X = F(0) B(0) + F(1) B(1) + F(2) B(2) + F(3) B(3)

or
1 500 .653 .500 ,271
2 - 0500 .271 —0500 -0653
3] =201 500] = 2+23|-.271| T 00|  500| = 199 653
4 .500 -.653 .500 —.271

Basis planes, sometimes called basis images, are defined as the outer
product of the above basis vectors. This definition is used to form the
two=dimensional DCT basis functions.

It has been observed that the DCT is the best suboptimal first
transform for a first order Markov random process. Ray and Driver [5]
have shown the Karhunen Loeve Transform (KLT), the transform that
minimizes the mean-squared-error, for a first order Markov random
process is given by

N-1

F(k) = mZO a z{m) sin(mm[k -

(N+1)

> ) + (m+l) ] 0 <mk < N-1. (1)

fuE
2
anya normalization constant, is given by

= /2
& =/ NFr
m

where L . 1 - p2

m

1 - 2pcos w + pz
m



Furthermore, {wm} is the set of positive roots of the following transcen-

dental equation: 2
(p° =~ 1) sin w

tan(Nw ) = 4 . (2)

% cos w_ - 2p + p2 cos w

m m

Here p is defined as the statistical correlation between pixels.
Solving (2) as p+l we get
tan(Nmm) =0

or

Substituting this result back into (1) and simplifying we get

N-1

F(k) = ) 2 x(m) cosE%% (2m+1)) .

m=0
The kernal in the above transform is easily recognized as the DCT
kernal. Thus, the DCT is the optimal transform for a first order Markov
process as o=+l [29].

By looking at the transcendental equation (2) we can see that W is

a function of p. Unfortunately (2) does not yield a simple closed form
solution. However, numerical techniques, such as Newton iteration, can
solve (2) for fixed N. This solution for N=8 is shown in Figure 1.
Observe that W is almost a linear function of p. Therefore, the DCT is
good approximation to the optimum transform for a first order Markov

process for p near 1.
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CHAPTER III

Computational Algorithms

When the DCT was introduced by Ahmed et al. [1] an algorithm to
compute it using a 2N-point fast Fourier transform (FFT) was given.
This algorithm can be derived by examining the definition of the DCT;

i.e.,

N-1
F(k) = /4§ c(k) E x(m) cos {nggél kn}

m=0

Representing the cosine term as a complex expomential results in
5 N-1 -i(g%ﬁia km
F(k) =/; ek) ¥ x(m) Real{e
m=0
Performing some simple algebra gives

o km . 2m
-1 2 N-1 -1 55 kn
F(k) = Real{w/%_c(k) e 2N Y ox(m) e 2N } s

m=0

Now, let x(m) = [x(m) appended with N zeros] so that
ke

i . 2m
- = r2N=1 -t = kT
F(k) = Real{//%—c(k) e N [ Z x(m) e L }} .

m=0

The term in square brackets 1s recognized as the discrete Fourier
transform (DFT) of ;(m). It can be computed via a fast Fourier
transform (FFT) when N is a power of 2. Thus, the DCT can be computed
by multiplying the DFT of ;(m) by a complex number, and then taking the
real part of the result. Although this algorithm's efficiency is better
than computing the DFT by matrix multiplication, it requires 2N complex

storage locations. This storage requirement can be reduced by utilizing
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the fact that the input data sequence to the DFT is real. For a real
input data sequence the resulting DFT is Hermitian. Thus, only N + 1
complex storage locations are needed. Many other methods of computing
the DCT have been published since the DCT's inception. In 1976 Haralick
[6,7] presented a method for computing the DCT using two N-point FFT's.
A year later, an algorithm for computing the DCT was presented by Chen
et al. [8] which yields a computation savings of one half over the
conventional two N-point real FFT method. Chen's method is accomplished
by factoring the DCT into sparse matrices and is amenable to hardware
implementaion. It requires only N real storage locations and does not
use complex arithmetic. Unfortunately, it is difficult to generalize
for different values of N. Chen's algorithm is the most common
algorithm used for hardware implementation of fixed size DCT's.

A method of computing the DCT using a single N-point FFT of a
recorded input sequence was given by Narasimha and Peterson [9] in 1978.
In 1980, Wagh and Ganesh [10] presented a method for computing the DCT
using a matrix partioning approach. This technique shows that the
partioned submatrices are equivalent to group tables of Abelian groups.
Wagh's algorithm has an advantage of working efficiently for an arbit-
rary number of points and, more importantly, when N is prime. Also in
1980, Dyer et al. [1l] presented a technique for implementing the DCT in
hardware via an arcsine transform. Dyer's method requires only
additions and table-lookup operations. A fast algorithm for cowmputing
the two-dimensional DCT was presented by Kiamanger and Rao [12] in 1980.
Makhoul [13] generalized the algorithm developed by Narasimha and
Peterson [9] to work with sequences containing an odd number of points.

He also extended the same to compute the DCT of two-dimensional data.
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The one-dimensional version of this algorithm is as efficient as Chen's
[8] algorithm for values of N that are Integer powers of 2. Finally,
Nussbaumer [14] develoﬁed a method for computing fast multig;nsional
cosine transforms. This method is based on polynomial transforms.

The algorithm presented by Narasimha and Peterson [9] and modified
by Makhoul [13] will be referred to as the fast discrete cosine
transform (FDCT) and is described below.

First, we reorder the sequence x(m) to get the sequence v(m)

according to the following rule:

x(2m) 0 <m< [;—-—l:l
v(m) =
x(2m-1) [% <m < N-1

Taking the DFT of v(m), we obtain V(k). This can be done using an N/2
point complex FFT algorithm. WNext, the resulting V(k)'s are multiplied

by 2 exp(-{mk/2N). The desired DCT coefficients are then obtained as

F(k) = /Z% c(k) Real {V(k)} 1 Pq
& 0 < k & |
F(N-k) = -/%-_ c(k) Imag{V(k) }J -7

where

c(k)s{/-g k=0

1 k#0 .

We note that the above expression gives the value of F(N) = 0 even
though this point is not needed. The above expression can be shown to

be equivalent to a shuffle on the real sequence V(k) formed by

{r(zx) = Real{V(k)}

. 0222 f]
V(2k+1) = -Imag{V(k)} -7
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The shuffle is done as follows:

V(2k) 0 <k < [N..;_l]
F(k) = 1.
V(2N~-2k+1) E‘%ﬂ <

A
=
A
=z
]
—

The FDCT algorithm requires 2N + 2 real storage locations since the
shuffle operations are not pairwise. An in-place shuffle algorithm can
be derived by locking at a method to form bit-reversed sequences.
Recall that for N=2M the bit-reversed sequence can be arrived at in M
operations as shown below for M = 3.

Step 1. Let the N numbers be arranged in index ascending order.

| 0 1 2 3 &4 5 6 7 8
Step 2. Form two sequences by taking alternate elements.
0 2 4 6 1 3 5 7
Step 3. Form four sequences by taking alternate elements of the
two N/2 point sequences.
0 4 2 6 1 5 3 7

This result is the bit-reversed sequence.

It is interesting to note that the sequence resulting in step 2 is
very similar to the shuffle sequence for the DCT, which is

0 2 4 6 7 3 3 1.
Therefore, it appears the DCT shuffle can be done in place as a two step
operation. |
Step 1. BRit reverse the input data
Step 2. Apply a pairwise shuffle

The Step 2 shuffle has not been generalized or proven to be pairwise at
this point. Examples of the inplace shuffles are illustrated in Figure

2 in the form of signal flow graphs.
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Figure 2
Signal flowgraph for inplace FDCT shuffle
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The FDCT algorithm allows one to use existing software to compute

the FFT instead of using a specialized algorithm.

general FDCT routine.

Appendix A contains a

14



Chapter IV

Image Compression Applications

Recently, many orthogonal transforms have been used in applicatiomns
of image data compression, often called image transform coding. The
object of transform coding is to represent a signal with fewer samples.
Many different transforms (Fourier, Walsh, Hadamard, Karhune Loeve,
Haar, Slant, Cosine, Sine, etc.) have been used for transform coding
with varying degrees of success [15~17]. Kekre and Solenki [15]
suggested that the DCT is the best transform for image transform coding.
A typical image compression system is illustrated in Figure 3. The
image is first blocked into N x N sub-blocks where N is typically 8 or
16. A two-dimensional transform is then applied to each sub-block. The
resulting transform data is then quantized and coded. The coded
information is transmitted to a receiver where the inverse process is

performed. For example, consider the 4 x 4 matrix:

83.0 38.0 37.0 31.0
47.0 22.0 13.0 11.0
49.0 11.0 4.0 2.0
37.0 11.0 2.0 0.0

99.5 59.7 30.5 14.8
49.0 3.2 Ford 4.9
20.0 1.1 1.0 2.8
10.0 6.4 6.3 53] s

By retaining only the first row and column of the transformed coeffic-
ients one can try to approximate the original data since the remaining
coefficients are relatively small. Replacing the other points with

zero, a known value which would thus not be transmitted, results in

15
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The nonzero elements would then be quantized typically using Max' [18]
quantizers, coded and finally transmitted. The receiver would decode
the data and, perform an inverse transform. If perfect quant-

izers and coders were used the result would be

84.0 38.1 37.2 31.4
47.0 22.3 13.7 11.0
48.6 11.0 4.0 2.4
36.9 11.4 2:3 -1.3

It is obvious that the above image is a fair approximation to the
original image, yet only one-fourth the information was transmitted.
Typical quantizers and coders do not increase the error significantly,
and they can increase the compressiocn rate. The root-mean-squared error
introduced in the given example is .50. Obviously the error would
change if the data or the transform changed. Thus, different transforms
perform differently for different types of data. As a result, images
are statistically modeled to determine the best transform. It can be
shown that the transform that minimizes the least mean squared error is
the Karhunen Loeve Transform (KLT) [19]. The KLT is the transform that
diagonalizes (perfectly decorrelates) the data domain covariance matrix,
Ez, defined as

C = E{(Z - - E)'}
where E{*} denotes statistical expectation.
Clearly, the KLT is composed of the augmented eigenvectors of the data
domain covariance matrix. For a block size of 16, the covariance matrix
would be 256 x 256. Computing the eigenvectors of such a matrix is

indeed a complex computational task. Also, once the eigenvectors are
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computed, it is doubtful that the resulting transform has a fast com-
putational algorithm. Thus, the KLT has little hope for hardware
implementation. Furthermore, it is not clear that the mean-squared
error is the best measure of visual differences. §Still, the KLT is used
as an optimal reference point for transform consideration since it
yields the smallest mean squared error when the transformed image is
reconstructed.

Most images are statistically modeled as a first-order Markov ran-
dom process within a small (N<16) block. As a result the data covari-

ance matrix

1 % : N‘&
N-1
P P ‘
- -
CX = ip p i
—N L] L] - L] l_

is a Toeplitz matrix. Here p is the correlation coefficient between
pixels. The best approximation of the KLT for the first-order Markov
model is one criterion for transform selection. Another transform
selection tool is the variance criterion. The diagonal terms of the
transform domain covariance matrix represent the variance (energy) of
the transformed components. By treating the rows and columns
independently, the statistical model can be reduced from a N2 X Nz

dimension to a N x N dimension. Thus, to approximate the variance of

the N x N block compute the following matrix:

- 2 —
Pag 911959 ' w11
2
93195  Tap . y
2
L(_ZTNNUll . . O'N.N B
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where the cii's are the diagonal terms of the transform domain convar-
iance matrix. To minimize the energy loss, retain the N values withithe
highest variances, The transform that results in a variance distri-
bution that has relatively few large variances, with the remaining
variances very small, will minimize energy loss. It can be shown that
the KLT is also optimal in this sense [20].

Recently, Kitajima t2] introduced the Symmetric Cosine Transform

(SCT) defined in matrix form as A whose elements are given by

841 o " /_ﬁ%_f u(k) u(m) cos (%T—l ™ ,0<km<N-1
4

T
/; k=0, k=N1

1 elsewhere

where
ulk) =

Since the A matrix is symmetrical, the inverse SCT is identical to the
forward transform. Kitajima developed a simple data-dependent windowing

function W defined as

[ 1 1

fl+p2 #l+02

The window function was used to produce a new vector y = Wx. The SCT

W = diag

could then be taken of the y vector. Note, the windowing process is
identical to defining a new orthogonal transform T=AW, where A is the

SCT matrix. The windowed SCT can be shown to perform better than the

DCT and Discrete Sine Transform (DST) for N »>> g%%ﬁ

A simulation was run te compare the DCT, Discrete Sine Transform

(FKLT, DST) [4], SCT and the Walsh Hadamand Transform (WHT) [3].
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The first part consisted of measuring the transform' s decorrelation

properties. An 8 x 8 Toeplitz matrix Cx was transformed in two

dimensions to produce Ez' The residual correlation was then computed as

follows:
N-1
1 1 2
r = YooC (1,8)]
N (N-1) 1=0 §= z
i#3

The value of p was varied from 0 to 1.0. The results are shown in
Figure 4, The result shows that both the DCT and WHT approach perfect
decorrelation as p approaches one. The residual correlation for the SCT
and DST grows rapidly for p>.5. This fact can be explained by examining
the basis planes of the transforms (see Figure 5). Both the DCT and WHT
have a constant (DC) basis plane. As p~+l, the covariance matrix, Ex’
becomes a constant matrix. Then for the Walsh and the DCT, Ez contains
a single nonzero term in the DC position. The DST and SCT do not have
constant basis planes. Thus as p+l several nonzero terms exist in Cz
which results in a large residual correlation. A windowed SCT [2] was
also tested with the results shown in Figure 4. Unfortunately, the
results show that windowing decreased the SCT performance. This is due

to the fact that the condition

p+1

N >> 5l

does not hold for N=8 and 0 < p < 1.0.

The second part of the simulation addressed the question of how the
different transforms perform with actual image data. Several 512 x 512
images quantized to 8 bits were blocked into 8 x 8 blocks. A two
dimensional transform was then applied to each block. The transformed

image was then multiplied point by point by a mask matrix. The mask
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DCT basis planes

DST basis planes

FIGURE 5
Basis Planes

WHT basis planes

SCT basis planes
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23l
matrix contained either O's or 1's. The position of the 1's was
selected using the variance criferion using a Toeplitz model with p=.9.
The positions with the highest M variances are the retained coeffi-
cients. The masked transform matrix was then inverse-transformed to
- recomstruct the data. Values larger than 255 were set to 255 and values
smaller than O were set to 0. All transform calculations were performed

in floating point representation to minimize roundoff errors. The

results, along with the RMS error, computed as

1 N-1 N=1 9
e= =/ 1 I [£&.y) - gx,y)]
N x=0 y=0
where f(x,y) is the original image and g(x,y) is the reconstructed
image, are in Figure 6-10. By looking at the results for M = 16 one can
see the DST and SCT have larger errors.

Tasto and Wintz [21] have suggested that the largest errors in
block coding occur at the boundry. A simulation was used to verify this
suggestion. An 8 x 8 Toeplitz matrix with p = .9 was transformed. The
inverse transform was performed using 16 of the 64 coefficients which
implies a 4:1 compression. The percent error was then calculated on a
point by point basis. This result is shown in Table 1. Clearly the DCT
has the lowest endpoint error (15%). The SCT and the Walsh come next
with a 247 endpoint error. Note, however, that the S5CT endpoint error
is very abrupt, whereas the Walsh endpoint error is gradual. The end-
point effect is visible on the SCT reconstructed picture but not on the
WHT reconstruction as seen in Figure 6 and 7. The endpoint error for
the DST is 46% and 1is clearly visible in Figure 7. The visual endpoint

effect can be reduced for the DST and SCT by subtracting the block mean
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Transformation:

DCT

Coeffiecients retained: 16

18 error: 3.0

Original

Transformation: WHT
Coefficients retained:
RMS error: 3.2

FIGURE 6; 4:1 compressicn.
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Transformation: DST Transformation: DST
Coefficients retained: 16 Coefficients retained: 16 + mean
RMS error: 18.7 RMS error: 3.9

Transformation: SCT Transformation: SCT
Coefficients retained: 16 Coefficients retained: 16 + mean
RMS error: 4.6 RMS error: 3.3

FICURE 73 4:1 compression.
2
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before transforming. The mean can be added back after reconstruction.
Note, that this requires more computation and reduces the compression
rate.

The large endpoint errors for the DST and SCT can be explained by
examining the transformation of a constant matrix. The two dimensional
transformations of an 8 x 8 constant matrix are shown in Table 2. Note
that the DCT and the Walsh transformation consists of a single nonzero
value, whereas the SCT and the DST consist of several nonzero values.
This means that the DCT and the WHT have the single basis plane needed
to reconstruct a constant matrix, whereas the SCT and the DST require a
summation of several basis planes to reconstruct the matrix. When only
the lowest frequency basis planes are used to reconstruct the constant
image, the DCT and WHT can reconstruct it exactly. The SCT and DST can
only approximate the constant plane. By examining the lowest frequency
basis planes (Figure 5) of the DST and the SCT we can see that they
differ significantly from the constant matrix at the endpoints. It is
easily shown that the coefficient for a constant basis plane is the mean
of the image. The SCT and DST are distributing the DC energy throughout
several basis planes. By computing and retaining the mean, we can
reduce the DC energy loss by processing the resulting zerc mean blocks.

In the example of Figure 6 and 7, the relatively small RMS errors
indicate the correlation between adjacent pixels is large; i.e. p>.9.
Input data in which p>.9 result in larger RMS errors. Examples of this-
are shown in Figure 8.

Higher compression rates are easily obtainable_ if larger errors are
acceptable. Simulation results with M=8 are shown in Figure 9. The

mean information was retained in the SCT and DCT processing.
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Transformation: DCT Transformation: WHT
Coefficients retained: 16 Coefficients retained:
PRMS 2ryor: 15,4 RMS error: 17.7

FIGURE 8; 4:1 compression,

16
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Original

Transformation: DST Transformation: SCT
Coefficients retained: 16 + mean Coefficients retained: 16 + mean
RMS error: 16.4 RMS error: 17.4

FIGURE 8 continued; 4:1 compression.
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Transformation: DCT Transformation: WHT
Coefficients retained: 8 Coefficients retained: 8
RMS error: 4.5 RMS error: 6.0

Transformation: DST Transformation: SCT
Coefficients retained: 8 + mean Coefficients retained: 8 + mean
RMS error: 5.9 RMS error: 4.7

FIGURE 9; 8:1 compression.
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Original

Transformation: DCT Transformation: WHT
Coefficients retained: & Coefficients retained: 8
RMS error: 26.0 RMS error: 28.2

FIGURE 9 continued; 8:1 compression.
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Original

Trans formation: DST Transformation: SCT
Coefficients retained: 8 + mean Coefficients retained: & + mean
RMS error: 28.4 BMS error: 26.3

FIGURE 9 continued; 8:1 compression,.
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Chapter V

Conclusions

Recently, there has been extensive use of orthogonal transforms for
many signal processing applications. This is a tutorial paper on the
. Discrete Cosine Transform [l1]. Many of published uses of the DCT are
presented. Different algorithms for computing the DCT have been
examined. A comparison of different orthogonal transformations when
used for image compression shows the DCT to perform better than the
Discrete Sine Transform [4], the Symmetric Cosine Transform [2], and the
Walsh Hadamard Transform. This result, along with the comparison
conducted by Kerke and Solenki [15], suggest that the DCT is currently

the best fast transform for the transform coding of images.
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FAST DISCRETE COSINE TRANSFORMATION
[G FORTRAN 5 SOURCE FILENANME: FIOCT.FR

DEFARTMENT OF ELECTRICAL EMNGINEERING KANSAS STATE UMIVERSITY

REVISION DATE FROGRAMMER
00.0 MAY 07, 1981 MYRON FLICKMER
01.0 NOY 06s 1981 MYRON FLICKNER

AR OO OO ORI R OO OO R ROk R

CALLING SERUENCE

CALL FDCT ¢ X » Ny INV )

FURPOSE

THE ROUTINE IMPLEMENTS A FAST DICRETE COSINE
TRANSFORMATION USING AN ALGORITHM DEFINED BY
JOHN MAKHOUL IN THE FEERUARY 1980 ASSP TRANSACTION

ROUTINE(S) CALLED BY THIS ROUTINE

FFS = IEEE SIGNAL FROCESSING ROUTINE
FFA - IEEE SIGNAL PROCESSING ROUTINE

ARGUMENT(S) REQUIRED FROM THE CALLING ROUTINE

X - VECTOR TO BE TRANSFORMEL
N NUMBER OF ELEMENTS TO BE TRANSFORMED
(FOWER OF 2)

ARGUMENT (S) SUFFLIED TO THE CALLING ROUTINE

X o TRANSFORMED VECTOR

REERRRKRRRRRRRRR KRR KRR RO OO O R R ROk

NOTE 1! This subroutine makes no checks on the validity
of the data surrlied Dw the calling routine.

The subroutine FFS5 and FFA sre subrodtines from
the Frodrams for Didital Sidnel FProcessings New York:
IEEE Fress,

KUAROOERR ER RO OO R R O O O OO R OOk KX

SUBROUTINE FUCTC( X» My IMV

REAL X(M)y VUR{2030), PIy FIZs RNy THETA
COMFLEX We1025)s TEMPL, TEMF2y W

EQUIVALENEE ( VWR(1)r V(1)

NaTa PIAZ.141392634/ PI2/6.283185307/

IF¢ N +GT. 2048 ) STOP * N TD LARGE FOR FDCT
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RN = FLOATS N )

N2 = HN/2

M4 = N/4

I =1

K = K

IF{ TNV JMNE, O ) GO TO 30
I = SART( 2,0/RN )

FEORDER DATA

DO 10 K=1,N2
UR(K) = X(I)
URCKENZ) = X(H)
I =142

M= -2
CONTINUE

00 M FOINT REAL FFT USING N/2 FOINT COMFLEX FFT
THIS IS DONE BY FFA. FFA IS IN THE IEEE FROGRAMS FOR DIGITAL
SIGNAL PROCESSING.

CALL FFAC ¥y N
NOW FFT IS DONE. NOTE WE ONLY CALULATED THE FIRST N2+1
FOINTS, THE DFT OF A REAL SEQUENCE IS HERMITIAN S0 WE DO NOT
NEED THE OTHER FOINTS,
NOW GET THE DCT COEFFICIENTS
X(1) = VYR(1)/SART( RN }
DO 20 K=1,N2
W = CEXP( CMPLX( 0,0y -FLOAT(K)IXFLI/(2,0%RN) ) )
VEK+1) = VIK+1) ¥
X(K+1) = CXREAL{ W(K+1) )

YIN=-K+1) = -CXAIMAG( V(K+1) )
CONTINUE

RETURN
CONTINUE
[0 THE INVERSE ICT

€ = 1,0/8QRTC 2.0/RN ) ;
V(1) = CHFLX( X(1)Y¥SQRT(RN)» 0.0 )

D0 35 K=1,N2
W = CEXP( CHFLX( 0.0, FLOAT(RKIXFI/(2.0%XRN) ) )
VIK+1) = WXCMFLX(C CXX(K+1)s -CHXIN-K+1) )

CONTIMUE

USE N/2+1 FOINT COMFLEX IFFT TO GET N FOINT REAL
IFFT. THIS IS5 DONE IN FFS, FFS IS ALSO A IEEE PROGRAM.

CaLl. FFSO Vs N )
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L

REORDER DATA

RETUEN
END

B0 AS K=1yN2
X(I) = UR(K)
XOH) = URCKEND)
I =142

o= M- 2
CONTINUE

I~

g
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OCT MATRIX GENERATION

G FORTRAN 5 SOURCE FILENAME! DCTHMAT.FR

DEPARTHMENT OF ELECTRICAL ENGINEERING KANSAS STQTE UNIVERSITY
REVISION DATE FROGRAMMER

00.0 JAN 20, 1982 ‘ HYRON FLICKNER

L2222 3223332232223 2802 000000008200 0000000 b eR R s R eSS

,FURPOSE

THE ROUTINE GENERATES AN N X N DCT MATRIX
ROUTINE(S) CALLED' BY THIS ROUTINE
WRITR

CHECK
OFENUW

b PP F P22 ER 2220225800002 0000000338200 00000232 0088

use this srace for added information uniaue to this routine

PRSPPSO SOt et PRt 00 3020003802002 20080 020322200228 20922 345

DOUBLE PRECISION A» THETA, FI» TEMFP
REAL X(44s44)
ACCEFT / ENTER VALUE OF N 7 “» N

"CALL OPENW( 0» ‘ OUTPUT FILENAME ? ‘/y Nk4y F )

A = DSART( 1.0/0FLOATC N ) )
FI = DATAN(1.0)%4,0

00 30 J=1N

N0 20 I=1,N

THETA = DFLOAT( PI/DFLOAT(2XN)X
DFLOAT(J=-1)XDFLOAT(2¥(I-1)+1) )
TEMP = AXDCOS(THETA)

X(IsJ) = SNGL( TEMP )

CONTINUE

A = DSART( 2,0/DFLOATC N ) )

CALL WRITR¢ Os Jy XC144)» 1 IERR )
CALL CHECK( IERR ) :
COMTINUE

STNF
END



CX****X**%***********IX*******X*X***************X*******#********t*t****45
ENDPOINT ERROR SIMULATIDN
DG FORTRAN 5 SOURCE FILEMNAME! ENIFOINT.FR
DEFARTMENT OF ELECTRICAL ENGINEERING KAMSAS STATE UNIVERSITY
REVISION DATE FROGRAMMER
00,0 JAN 28, 1982 HYRON FLICKNER
EXERERERRE KRR KRR OO R R KRR RO R KRR XX
FPURFOSE
THE ROUTINE COMPUTES THE PERCENT ENDFOINT
ERROR FOR ATRANSFORM. INFUTS ARE THE MASK FILE,
ANDI THE FARAMETER RHO FOR THE TOEPLIZT MODEL.
RQUTINE(S) CALLED BY THIS ROUTINE
ASK
OFENR
READR
TRLZNAT
T88
RESET
S350 18382282 bttt ettt st eetessssessstsioteteettoisiscietesesets s

yse this srace for added information unigue to this routine

32 eS2838 282 P PSR IRTEICIEIEE ST TR IRILEL RSO 2 202242200

[ B o T o T e S I e K e O o T o O e O o O v O < IO o Y o O v e I I o I o O e A o I O o R e S o W v I e O o e T o M |

REAL X(8s8)s Y(Bs8): DIFF(8), HASK(8+8)y T(8+8)
LOGICAL YESNO

9 CONTINUE
' ITTI = 11
LFT = 10
ITT0 = 10

CALL ASK( / OUTPUT TO LINE FRINTER 7 ‘» YESNO )
IF( YESNO ) LPT = 12

CALL READT( Qs T» 8 )
CALL OPENR( 0r ' MASK FILENAME ? 'y 2565 F )

CALL READRC¢ 0s 1s MASKy 1, ICNT» IERR )

ACCEFT * ENTER THE VALUE OF RHO 7 "»RHO
CALL TPLZHMAT( Xr RHOy 3 )

CALL TPLZWAT( Y» RHO» 8 )

CALL T8B¢ X» Ty 0

0g 15 I1=1,8

pg 1S J=1.8

X(JsI) = X(JyI)XHASK(J,T)
13 CONTINUE

-



ra
<

Lo B o
a

CaLL 788 X» T» 1 )

D0 25 1=18

DO 20 J=1,8 _

DIFF() = ¢ Y(JsI) = X(Jr D) D /Y(de D)
CONTINUE ,

WRITE( LFTy 1 ) ( DIFF(J)y J=1,8 )
FORMAT(’ *48F9.2 )

CONTINUE

CALL RESET
CALL ASK( ' RE-EXECUTE ? ‘»YESNO )
IF( YESNO } GO TO 3

§TOF
END

46 .,
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CHRRRRR KRR OO0 OO0 RO R RO R R R KRR XXX

OO0 GOOOOOOQOO0O0 0000000000000 OoO0O0000oOOo00O00000Oo0oE

READl IN AN N X N TRANSFORM MATRIX FILE

DG FORTRAN S SOURCE FILENAME! READT.FR

DEFARTHENT OF ELECTRICAL ENGIMEERING RANSAS STATE UNIVERSITY
REVISION DATE FROGRAMMER

00,0 JAN 28, 1982 MYRON FLICKNER

P2 8203022282333 2 2333822200000 000022230 ¢ o0t P e e ettt

CALLING SEQUENCE
CALL READT( ICHAN: T» M)
FURFOSE

THE ROUTINE OPENS AND READS IN AN N X N
TRANSFORM MATRIX FILE.

ROUTINE(S) CALLED BY THIS ROUTINE
OFENER
READR
CHECK

ARGUMENT (S) REQUIRED FROM THE CALLING ROUTINE

ICHAN = UNUSEL LOGICAL CHANNEL
N - SIZE OF TRANSFORM

ARGUMENT(S) SUFFLIED TO THE CALLING ROUTINE

T g THE N X N TRAMSFORM HATRIX

L2330 3808383820388 03 3503032020000 ¢00¢00 0282020000003 3 03330203 00¢5028 1

NOTE 1! This subroutine makes no checks on the validity
of the data suprlied by the callind routine.

NOTE 2! Ardument(s) surerlied by the calling routine are
not modified by this subroutine.

EXEXEKERKRKKERRRKERKRARKER IR KRR ARRREEF R RKEAXKERERRRERRAKRRE RN

SUBROUTINE READT( ICHAN» T» N )
REAL TONsN)

CALL OFEMR( ICHAN» ’/ TRANSFORM MATRIX FILENAME 7 ‘» NXNX4y F )
CALL READR( ICHANys 1s Tr 1y ICNT, IERR )

CALL CHECK( IERR ) :

CLOSE ICHAN

RETURN

END



' 48
BT F SR E PS¢ 2 TP PSP T ¢ 2233252228328 3828202888282¢382233282822882238

OO0 0O0O0O0000O00O00OO0o0Oon

OO0 OO0 o0 0oO0on

COMPUTE
DG FORTR
DEFARTME

REVISION

FREXERXEXREKRE K

FURFOSE

ROUTINEC

bSO SE PSS 8T S ¢
use this
ERERREEERRREK RN

FARAMETE
REAL X(N
DOUBLE F

CALL REA
ACCEFT
ACCEFT
ACCEFT -
CALL OFE
CALL OFE

CALL RUN
DELTA =
RHO = RH

THE RESIDUAL CORRELATION AND ENTROFY
AN 5 SOURCE FILENAME! RESID.FR
NT OF ELECTRICAL ENGINEERING KANSAS STATE UNIVERSITY

DATE FROGRAHMER

JAN 28, 1982 MYRON FLICKNER

L2322 F 2332232008000 0022ttt oR ettt oot

THE ROUTINE COMPUTES THE RESIDUAL CORRELATION
ANl ENTROPY FOR A TODEFLIZT MATRIX FOR A GIVEN
COMFRESSION RATE., THE FARAMETER RHO IS SHWEFT
THOUGH A RANGE OF VALUES SFECIFIED BY THE USER.

S) CALLED RY THIS ROUTINE

READT
OFENW
RUNTIME
TRPLZIMAT
88
WRITR

b0 PP S 3083538982888 83238 F 283303023020 53¢39328388905¢:
srpace for added information uwnique to this routine
E PSP SO e PE PSP TS FE PP IR SOOI PP ERe 0 ¢228¢ £ 8¢

R N=23
sN)s T{NsN)
RECISION SUMy ENTROPY

DT¢ 0 Ts N )

STARTING RHO ? ‘»RHO1

ENDIMNG RHO 7 ‘y RHO2

NUMBER OF POINTS 7 7 /NPTS
HW( 1s 7 RESILUAL FILEMNAWME 7 ‘s 4y F )
NW( 25 7 ENTROPY FILENAME 7 7y 4y F )

TIME
(RHO2 - RHO1)/ FLOAT(MFTS)
01

IO 40 I1=1,)NPTS

CALL TPLZMAT( X» RHOs N )
CALL TBB( X» T» 0 )

SUM = 0.0 :

00 20 J=1,N



10

20

00 10 I=1sN
IF(I.EQ.J) GO TO 10

SUM
CON

CONTINUE

SUM = SUM/(FLOAT(N)XFLDAT(N
ENTROPY = 0.0

DO 30 I=1,N

ENTROFY = ENTROFY + ALOG( X(I.I)

CONTINUE

CALL WRITR( 1s I1l,» SUH» 1.

CALL WRITR( 2r 11,
RHO = RHO + DELTA

CONTINUE

CALL RUNTIME
STOF
EMT

= SUN + X(I,DXX(IsJ)

TINUE

-1) )

ENTROFYry 19

IERR )

LERR )
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SCT MATRIX GEMERATION

G FORTRAN 5 SOURCE FILEMAME! SCTHMAT .FR

DEFARTHMENT OF ELECTRICAL ENGINEERING KANSAS STATE UNIVERSITY
REVISION DATE FROGRAMMER

e - —— - - - —

00.0 JAN 20y 1982 MYRON FLICKNER

R KRR R KRR R KRR KKK KR LRIREERKKKK LKL RERRKKKRKAK KR K

PURFPOSE

THE ROUTINE GENERATES AN N X N 3CT MATRIX
ROUTINE(S) CALLEH BY THIS ROUTINE

WRITR

CHECK
~ OPENU

PEP P E TS F TSP ETEE I PSS 0403000002 0002200200002 008 220008201

use this srace for added informatiom unicue to this routine

X*X*******X*#*X**t#t*****X#***X*#*!**t**X#X**#***********!*!*#X**#*****

[QUBLE PRECISION A» THETAs FI, TEHP
REAL X{44r64)
ACCEFT * ENTER VALUE OF N 7 'y N

"CALL OPENW( Oy ‘ OUTPUT FILENAME 7 ‘»r NX4, F )

A = OSART( 2,0/DFLOATC N-1 ) )
FI = DATAN(L.0)%4.0

00 30 J=14N

[0 20 I=1isN

THETA = DFLOAT( (I-1)%(J-1) )XPI/DFLOAT(N-1)
TEMP = AXDCOS(THETA)

IF( J +EG. ! (OR. J +EQ+ N ) TEMP
IFC I +EQ. 1 +OR+ T +EQ, N > TEMP
X(IsJ) = SNGL( TEMF )

CONTINUE

TEMPXDSQRT(.3)
TEMPXDSQRT(.3)

non

CALL WRITRC 0y J» X(1sJd)» 1» IEKR )
CALL CHECK{ IERR )
CONTINUE

STOF
EMD
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COMPUTE THE TRANSFORM OF AN B FOINT OATA VECTOR

IG FORTRAM 5 SOURCE FILENAME! T8.FK

DEPARTMENT OF ELECTRICAL ENGINEERING KANSAS STATE UNIVERSITY
REVISIDN IATE FROGRAMMER

—— s - 0 8

20.0 JAN 28, 1982 HYROMN FLICKNER

KRR R RO OO O R RO O R R R R R R R Rk ke X

CALLING SEQUENCE
CALL T8¢ Xs» T» INV )

FURFOSE

THE ROQUTINE COMPUTE THE TRANSFORM T OF THE
8 FOINT DATA VECTOR X. IF INV IS 0 THE
FORWARDY TRANSFORM IS COMFUTED, OTHERWISE
THE INVERSE TRANSFORM IS COMPUTED,

ROUTIMNE(S) CALLED BY THIS ROUTINE
NONE

ARGUMENT (S) REQUIRED FROM THE CALLING ROUTINE

X - THE 8 FOINT VECTOR TO BE TRANSFORMED
T - THE 8 X 8 ORTHOGONAL TRANSFORM HATRIX
INV - FORMARD OR INVERSE FLAG

INV JEQ. O - FORWARD TRANFORM
INV JNE, & -» INVERSE TRANSFORM

ARGUMENT(S) SUPPLIED TO THE CALLIMG ROUTINE

X = THE 8 FOINT TRANSFORMED VECTOR

KREKERKERERRREERKER KRR R KRR LR R KRR AR R R XIRRRRERERRRK KRR XK

NOTE 1! This subroutine makes no checks on the validits
of the data suerlied by the czllind routine,

232222 et eeseeeets et P esssessessteeststobesietseiszeaasieat ottt

SUBRBUTINE T8( X T» INV }
REAL X(8)s Y(8}s T{(5:8)

IF¢ INV ME, 0 ) GO TO 30
camriyte forward transform

DO 20 i=1,8



SUM=0.0

po 10 J=1.8
SUM=X(J)¥T(J,I)+SUN
CONTINUE

Y(I)=8UHN
CONTINUE

GO TO &0

comrute inverce transform

CONTINUE

Do 50 I=1.8
SUM=0.0

DO 40 J=1,8
SUR=X(JYXT(I,J)+SUN
CONTINUE

Y(I)=5UN
CONTINUE

CONTINUE
ng 70 1=1,8
X(Dy=Y(I)
CONTINUE

RETURN
END

52
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TWO-DIMENSIONAL TRANSFORMATIONS OF AN 8 X B8 MATRIX

G FORTRAN 5 SOURCE FILENAME! T88.FR

DEFARTMENT OF ELECTRICAL EMGINEERING KANSAS STATE UNIVERSITY
REVISION DATE FROGRAMMER

00.0 JAN 28, 1982 HYRON FLICKNER

b3 022222 PSSP RT PSR EE SR EIR ISP EE P ER PSS FIVIEOEITI ISP EOIEL SIS

CALLING SEQUENCE
CALL T8B8( X» Ts INV )
FURFOSE

THE ROUTINE COMPUTES THE 2-DIMENSIONAL
TRANSFORMATION T OF AN 8 X 8 MATRIX

ROUTINE(S) CALLED BY THIS ROUTINE
T8

ARGUMENT(5) REQUIRED FROM THE CALLING ROUTINE

X & THE DATA MATRIX TO BE TRANSFORMED
T = THE TRANSFORMATION MATRIX
INY - FORWARDI INVERSE FLAG

INV LEQ, 0 -> FORWARD TRANSFORHM
INV JNE. 0 -> INVERSE TRANSFORM

ARGUMENT (S) SUPFLIED 7TO THE CALLING ROUTINE

X = THE TRANSFORMED MATRIX

bEEE P4 EI OIS0 PEI LIPS ST L LR PR3 23 35503300 E PP Rt E OS]

NOTE 1! This subroutine makes no checks on the validity
of the data suerrlied by the callindg routine,

BRSSP TE PSR IS5 6 9055303000820 C TSR0t e iso e P ee ot

SUBROUTINE T88( X» T» INV )
REAL X(8:8)s T(8s8)r Y(8)

do tranform b9 image rows
ng 10 1=1,8
CALL TB( X{(1:I)sy Ts» INV )
CONTINUE

do transform by imade columns
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D0 40 I=1.8
oo 20 J=1,8

Y(Jr = X(IsJ)
CONTINUE

CALL T8¢ Yy Ts INV )
po 30 J=1.,8
A(IrdY = YOI
CONTINUE
CONTINUE

RETURN
END

54
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TOEFLIZT MODEL VARIANCE CRITERIA

G FORTRAN 5 SOURCE FILENAME: TOEFLIZT.FR

DEFPARTMENT OF ELECTRICAL ENGINEERING KANSAS STATE UNIVERSITY
REVISION DATE PROGRAMMER

- vy o - — - — e

00.0 JAN 28y 1982 MYRON FLICKNER

PP ES SO P TP PP EF LI CEOP ¢ 032233223220 004822232 8800082335320 00000080

FPURFOSE

THE ROUTINE ALLOWS FOR THE CACULATION OF THE
MATRIX POSITIONS TO SAVE FOR A GIVEN NUMBER OF
‘RETAINED COEFFICIENTS,

ROUTINE(S) CALLED BY THIS ROUTINE

REALDT
TPLZINAT
OFENW
WRITR
RESET
ASK

P T PR E RIS LERTELL eSO ITIEFE o300S0 3052030302200 020230800

use this srace for azdded information unieue to this routine

xtt*xfixxx*x**xx*x*x;xxxxzxxxt*xx*xxxxxxxxxz***xxx**x**xtx*xxxxxxx*xtxx

PARAMETER LPT=12,ITTI=11,I7T70=10
REAL X(3s8)s Y(B:8)y T(8,8}
INTEGER ROW(64)s COLUMMN(&4)
LOGICAL YESHWO

CONTINUE

CALL READT( 0» T» 8 )

ACCEPT * ENTER THE VALUE OF RHOC 7 'sRHO

CALL TPLZMAT( X+ RHO» 8 )

WRITE(LPT»3) -
FORMAT(////71°1"+ TS50, "THE TOEPLIZT MATRIX":///)

pg 1020 J=1,8

WRITE(LPT,1) (X(JsK) K=1:8)
FORMAT(" *,B(G15.7))
CONTINUE

CALL TB8¢ Xs T» 0 )
WRITE(LPT:4) .
FORMAT (/7777777 77y" "+sT50:"THE TRANSFORMED MATRIX *///)

DO 1030 J=1,8
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) en

1040

1030
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WRITE(LPTr1) (X(J:K) K=1:8) >

CONTINUE

WRITE(LFT»3)
FORMATC/ /7777777779 TS0 *THE VARIANCE MATRIX */7//)

DO 1040 J=1,8

D0 1040 K=1,8
YCJrK)=X(Js JIRX(K:K)
CONTINUE

0o 1050 J=1.8

WRITE(LFT,1) (Y(JrK) K=1,8)
CONTINUE

CALL OPENW( 1, 7 DUTPUT MASK FILE 7 'y 256s F )
ACCEPT ’ NUMBER OF COEFFICIENT TO RETAIN ? ‘, NUMBER

sort the variances

0 70 K=1sNUMBER
YHAX = 0.0

Do 60 J=1,8

DO 40 I=1.8

IF(C YMAX .GT. Y(IsdJ) ) GO TO 355
YMAX = Y(I»J)

ROWCK) = 1

COLUNNAK)Y = J

CONTINUE

CONTINUE

Y{ ROW(K)s COLUMN(K) ) = 0,0
CONTINUE '

Lo 80 J=1.8
00 80 I1=t.8
T(IvJ) = 0.0
LCONTINUE

gave the lazrdgest ‘NUMBER’ of variances

00 90 K=1,NUMEER
Y{ ROW(K)s COLUMNCK) ) = 1.0

CONTINUE

CALL WRITR? .1: 1, Y» 1, IERR )

CALL RESET

CALL ASK( * RE-EXECUTE TOEFLIZT 7 “» YESNO )
IF¢ YESNO ) GO TO 100

ETOP

EMD
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GENERATE A TOEFLIZT MATRIX

DG FORTRAN 5 SOURCE FILE&AHE: TPLZIMAT.FR

DEFARTHENT OF ELECTRICAL ENGIMNEERING KANSAS STATE UNIVERSITY
REVISION DATE PROGRAMMER

- . ——— ——— ——— - —

00,0 JAN 28, 1982 MYRON FLICKMER

AEEEERRRER R KRR IR EE RO RO RO R AR IR KRR R KRR XKARX

CALLING SEQUENCE
CALL TPLZMAT( X» RHOy L )

PURFOSE
THE ROUTINE GEMERATES A FIRST-ORDER MARKOV
COVARIANCE MATRIX OF SIZE L X L AND PARAMETER
RHO.

ROUTINE(S) CALLED BY THIS ROUTINE
NONE

ARGUMENT (S) REQUIKED FROM THE CALLING ROUTINE

RHO - PARAMETER OF GENERATION
L = SIZE OF MATRIX

"ARGUMENT(S) SUFPLIED TO THE CALLING ROUTINE

X = GENERATED HATRIX

ARERKREEREKRRRRERER RO X KRR RN KRR R KRR RER KK

NOTE 1! This subroutine makes no checks on the validity
of the data suprlied bw the calling routine,

NOTE 21 -Argument(s) suprlied by the calling rnutxne are
not modified by this subroutine. .

FERRERERRRKRKIEKEFREERREXRREKRAERXRKRRRRKREXEXRRRERRRLERORAKREERRR KR RXR

SUBROUTINE TELIMAT( Xy RHOs L )
REAL X(L,L)» RHO

0o 20 J=1.L

N=1-~J
00 10 K=1.,L
X(JyK)=RHOXXABS(N)
N=N+1
CONTINUE
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RETURMN
END

CONTINUE
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AR RO RO OO R OCER R RO KE R KX

c

C IMAGE COMFRESSION TRANFORMATIONS

c

C G FORTRAN S SOURCE FILENAME! TRANSFORM.FR

c

C DEFARTMENT OF ELECTRICAL ENGINEERING KANSAS STATE UNIVERSITY
c

C REVISION DATE , FROGRAMMER

C ________ ———— e e ————

c 00.0 DEC 12, 1980 MYRON FLICKNER
c 01.0 JAN 38, 1982 MYRON FLICKNER
c

c

C

FURFOSE

THE ROUTINE COMPUTES THE 2-DIMENSIONAL TRANSFORMATION

OF THE 8 X 8 BLOCKS OF AN IMAGE. THE RESULTING TRANSFORM
COEFFIENTS ARE THEN MASKED RY A MASK MATRIX. THE INVERSE
TRANSFORM IS THEN COMPUTED TO RECONSTRUCT THE DATA.

THIS IS FOR A DATA COMFRESSION STUDY, THE TRANSFORM
MATRIX FILENAME IS READ FROM DISK.

ROUTINE(S) CALLEI' BY THIS ROUTINE

OFEMNR
OFENUW
READR
RUNTIME
READT
T88

T8
WRITR
RESET

FRRR KRR RO RO OO OO R RO KRR AR XXX KX

use this seace for added information unicue to this routine

FREXEEKKK KRR KOO R OO O KR RO RN EX

OGO OO0O0O0 0000 O0C 000 0N0O0CO0O0O000O0O;m

FARAMETER ITTO0=10,ITTI=11
INTEGER IDATA(254:8) ;
REAL RMASK(64): ELOCK(64): T(8:8)

CALL READTC 0, T» 8 )

CALL OPENR(Q,* INFUT FILENAME ? "»512.FSIZE)

CALL OPENW(1," DUTPUT FILENAME ? *»312,FSIZE)

CALL OFENR(2,* MATRIX MASK INPUT FILENAME 7 "r256+FSIZE)
CALL READR(2s1,RMASKs1,ICNT,IERR)

CLOSE(2)

CALL RUNTIME

U0 40 I=1,512,8
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CALL READR(O»I+IDATA:B8sICNTyIERR)

TYFE * CHUNK STARTING AT RECORD “+I¢’ HAS BEEN READ

10 30 N=1,256+4
NI=N+t3
=1

0o 10 J=1,8

0 10 K=NsN3

ELOCK(L) = FLOAT( BYTE(IDATA(KsJ)y1) )
BLOCK(L+1) = FLOATC BYTE(IDATA(K»J)»2) )
L=L+2

CONTINUE

CALL T788( BLOCK: T» 0

D0 15 L=1+644
BLOCK(L) = RMASK(L)¥BLOCK(L)
CONTINUE

CALL TBB( BLOCK, T» 1)

00 20 L=1+44

IF(BLOCK{LY +LT. 0.0 ) BLOCK(L) = 0.0
IF(BLOCK(LY .GT. 255.0 ) BLOCK(L) = 283.0
CONTINUE

L=1

Do 2% J=1.8

N0 25 K=H:NI

RYTE( IDATA(K:J)»1 ) = IFIX( BLOCK(L) + .3 )
BYTE( IDATACK,J) 2 ) = IFIX{ BLOCK(L+1) + .3 )
L=L+2
CONTINUE

CONTINUE

CALL WRITR(L,I»IDIATA.B8yIERR)
COMTINUE

CALL RESET
CALL RUNTIME
STOF

END
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FURPOSE

ROUTINE(

MFRESSION TRANFORMATIONS

AN 5 SOURCE FILENAME: TRANSZMEAN,FR

NT OF ELECTRICAL EMGIMEERING KANSAS STATE UMIVERSITY
DATE PROGRAMMER
EC 12, 1980 AYRON FLICKNER
JAN 28, 1982 MYRON FLICKNER

E$ 500082082058 00 800080003008 0¢02000 0002020020000 002 0020030050000 020028001

THE ROUTINE COMPUTES THE 2-DIMENSIONAL TRANSFORMATION
OF THE 8 X 8 BLOCKS OF AN IMAGE. THE RESULTING TRANSFORM

COEFFIENTS ARE THEM MASKED BY A& MASK MATRIX. THE INVERSE
TRANSFORM 15 THE COMFUTED TO RECOMNSTRUCT -THE DATA.

THIS IS FOR A DATA COMPRESSION STUDY, THE TRANSFORM

MATRIX FILENAME IS READ FROM DISK.

THE MEAN OF THE BLOCK IS SUBTRACTED OFF BREFORE TRANSFORMATION.
THE MEAN IS ADDED BACK AFTER RECONSTRUCTION.

S) CALLED BY THIS ROUTINE

OFEMR
OFENUW
READR
T3

T88
READT
RUNTIME
WRITR
RESET

LSt ESO LSS T RO 02320 PR o003 08 0003023230000

C
C
C

use this

space for added information unigue to this routine.

B3 2338338385500 0 0282232000092 8323020¢0000008 32322300022 2002020828822322244

c

FARAMETER ITTO0=10,ITTI=11

INTEGER
REAL RMA

CALL REA

CALL OFE
CALL OFE
CALL OPE
CALL REA
CLOSE(2)
CALL RUN

IDATA(256+8)
SK(44)y BLOCK(44), T(BrB8)» AVERAGE

ODTC 0y Ty 8 )

NR(O»* INPUT FILENAME 7 '+512,FSIZE)

NW(1r* QUTPUT FILENAME 7 ',S512,FSIZE)

NR{2s' MATRIX MASK INPUT FILENAME 7 *,236sFSIZE)
DR(2:1+RMASK 1 ICNTs IERR)

TINE



cn

0

o

(o I T I e I 8 |
L=

D0 40 I=1,312,8
CALL READRCO+I»IDATAsB+ICNT:

IERR)
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TYFE * CHUNK STARTING AT RECORD “,I»‘ HAS BEEN READ

00 30 N=1,256+4
N3=Nt+3

L=1

AVERAGE = 0.0

DO 10 J=1.8

DO 10 K=NsN3
= FLOAT( BYTE(IDATA(KsJ)sl) )

BLOCK(L)

BLOCK(L+1) =

L=L+2
CONTINUE

AVERAGE

i

DO 11 J=1,64 .
BLOCK(J) - AVERAGE

BLOCK(J) =
CONTINUE

CALL TB8( BLOCKy T»

DO 15 L=1:64
= RMASK(L)¥BLOCK(L)

BLOCK (L)
CONTINUE

CALL T88( ELOCKs T»

D0 20 L=1,64
BLOCK(L) =
IF{BLOCK (L)
IFCRLOCK (L)
CONTINUE

L=1

Do 25 J=1,8
DD 25 K=NyN3
RYTE( IDATA(
BYTE( IDATA(
L=L+2
CONTINUE

CONTINUE

CALL WRITR(1,IsIDATA:8sIERR)
CONTINUE

CALL RESET
CALL RUNTIME

STOF
END

FLOAT( BYTEC(IDATA(K,J)»2) )
AVERAGE = AVERAGE + BLOCK(L) + BLOCK(Lt1)

AVERAGE/64.0

0

1)

LT
+G6T.

0.0 )

235.0

Keddel )
Ked)e2 )

(T ]

BLOCK(L) + AVERAGE

BLOCK (L)

= 0,0
) BLOCK(L) = 2

99.0

IFIX( BLOCK(L) +
IFIX( BLOCK(L+1) +

3 )

v3 )
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WHT HMATRIX GENERATION

UG FORTRAN 5 SOURCE FILENAME! WHTHAT.FR

DEFARTMENT OF ELECTRICAL ENGINEERING KANSAS STATE UNIVERSITY
REVISION DATE FROGRAMMER

——— - ——— - - - — - ——

0040 JAN 20y 1982 MYRON FLICKNER

b0 825000252300 0080 530000t o oo o023 0 032280008

PURPOSE

THE ROUTINE GENERATES AN N X N WHT MATRIX
ROUTINE(S) CALLED RY THIS ROUTINE
WRITR

CHECK
OFENW

XX KOO R X RO R R KRR X R X EX KX TAERAK KX

THE ROUTINE USES THE SIGN OF THE SCT TO GET THE WALSH
HADAMARD MATRIX

EEXXELORERXREEXRREREXXARREE KR RLEERK AKX RRKE KRR XXX EXRAR KK

DOUBLE PRECISION Ar THETAs PI, TEMP
REAL X(44,64)

"ACCEFT * ENTER VALUE OF N 7 ‘» N

CALL OPENMW( 0r ' OQUTPUT FILENAME ? ‘s NX4y F )
A = DSART( 1.0/DFLOAT( N ) )
FI = DATAN(1.0)%4.0

po 20 J=1.N

D0 20 I=1»N

THETA = DFLOAT( (I-1)%(J-1) JXPI/DFLOAT(N-1)
TEMP = DCOS(THETA)

X{IsJ) = SIGN( A» SNGL( TEMP ) )

CONTINUE

CALL WRITR( 0y Jy X(1sJ)s 1» IERR )
CALL CHECK( IERR )
CONTINUE

STOP
END
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ROOT MEAN SQUARE ERROR
6 FORTRAN 5 SOURCE FILENAME! RMSERROR . FR
DEPARTMENT OF ELECTRICAL ENGINEERING  KANSAS STATE UNIVERSITY
REVISION DATE PROGRAMMER

- ——— —— - - ——

00.0 DEC 12, 1981 MYRON FLICKNER

KREXRXKKR RO RO R KRR RO SRR AR KKK X

FURFOSE

THE ROUTINE CALCULATES THE RMS ERROR RETWEEN
TWO BYTE OR FLOATING FOINT IMAGE FILES.

ROUTINE(S) CALLED BY THIS ROUTIMNE

ASK

bE 3283833333338 333430352 EETILS I E SRS 03 3028808

use this srace for added information unicue to this routine

EREREXRXEEEXRXRERR KL RO KR KRR R IR R RO R KX

DOUBLE FRECISION ERROR» DIFF
LOGICAL FPOINT
REAL LINE1(512)y LINE2(512)

-'CALL ASK(’ FLDATING FOINT IMPUT FILE (YsN=(CR)) ? "»FFOINT)

ACCEPT ’ NUMBER OF ELEMENTS FER LINE =-- ‘sNELEM
ACCEPT ‘ NUMBER OF LINES PER IMAGE --: ’»NLINE
NEYTE = 1

IF( FPOINT ) NBYTE=4

CONTINUE

ERROR = 0,0

CALL DPENR( 1» / INPUT FILE # 1 7 7y NELEMANRYTE, F )
CALL OPENR( 2, ’ INPUT FILE % 2 7 ’'» NELEMXNBYTEs F )

00 25 I=1sNLINE

CALL REAGRC 1, I, LINE1» 1» ICNT» IERR )
CALL READR( 2y Is LINE2, 1y ICNT, IERR )
IFC FFOINT ) GO TO 15 '

D0 10 J=1:MELEM

DIFF = DELE( RYTECLINEL,J) - BYTE(LINEZ2:»J) )
ERROR = DIFF%LIFF + CRROR

CONTINUE

GO TO 25
CONTINUE
0o 20 J=1,MELEM
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n

Oora 0 ra

DIFF = DBLEC LINE1{J) - LINE2(J

ERROR = DIFFXDIFF + CERROR
CONT INUE

CONTINUE

DIFF = DFLOAT( NELEM YXOFLOAT( MLINE )
ERROR = DSORT( ERROR/DIFF )

TYFE * THE RMS ERROR 1S ‘» ERRDR

STOF

END

)
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Abstract

This is a tutorial paper on the Discrete Cosine Transform.
Published uses of the DCT are presented. Different algorithms to
compute the DCT are examined. Finally, a comparison of different
orthogonal transforms used for image transform coding shows the DCT to
perform better than the Discrete Sine Transform (also called the fast
Karhuene Loeve Transform), the newly introduced symmetric Cosine Trans-

form, and the Walsh Hadamard Transform.





