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Abstract 

To derive more consistent measurements through the course of a wheat growing 

season, this thesis conceives and designs an autonomous robotic platform that perform collision 

avoidance and disease detection in crops using spatial artificial intelligence (AI). This thesis 

demonstrates the working of the proposed robotic platform on wheat crop. The main constraint the 

agronomists have in breeding trials is to not run over the wheat while driving. This limits the 

freedom of the robot to freely navigate through the wheat field. To overcome this hurdle, we have 

trained a spatial deep learning model that help navigate the robot freely in the field while avoiding 

collisions with wheat. To train this model, we have used publicly available databases of prelabeled 

images of wheat along with the images of wheat that we have collected in the field. We have 

used YOLO (You Only Look Once) as our deep learning model to detect wheat. Faster R-CNN 

(Faster-Region-based Convolutional Neural Network) with ResNet-50-FPN (Residual Neural 

Network-50 Feature Pyramid Network) as backbone is also used to compare the accuracy of 

YOLO. This allowed 1-3 frames per second (fps) vision for wheat detection in the field. With the 

robot driving between 2-5 miles per hour in the field, this frame rate of 1-3 fps would only allow 

the robot to detect its surroundings once every foot or so. To increase the frame rate for real-time 

robot response to field environments the previous images were used to train the MobileNet single 

shot detector (SSD) and a new camera, the Luxonis Depth AI Camera, was used for inference in 

the field. Together the newly trained model and camera could achieve a frame rate of 18-23 fps, 

fast enough for the robot to sense its surroundings once every 2-3 inches of driving.  

Following the discussion of sensing, the autonomous navigation of the robot is next 

addressed. The new camera allows the robot to determine the distance to sensed objects by using 



  

a stereo camera also embedded with the main AI camera. The stereo camera allows the model to 

determine the distance of the robot from a particular object. By knowing appropriate distances an 

algorithm can be written to have the robot maneuver more precisely within its surroundings in the 

field. When it detects an object in the field the MobileNet SSD sends a binary thresholded distance 

signal to the robot motion controller.    The motion controller can then use this information to make 

decisions, such as continuing motion, steering, or stopping. With an intention to improve the range 

of potential robot applications, a classification model is also installed on the robot to locate two of 

the most common diseases in wheat namely, stem rust and wheat rust. Making it more reasonable 

for agronomists to find these diseases in a large field.   
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Preface 

The basis of this research stemmed from my passion for developing better computer vision 

models for high precision robots used in the Department of Biological and Agricultural 

Engineering of Kansas State University. As the world is developing more and more machine-

oriented, there will be greater demand for autonomous robots, and artificial intelligence.  

From the discussion of this thesis, I believe that readers will better understand the various 

terms in deep learning and methods we used for data collection along with our less than successful 

attempts that we surmounted while achieving the accuracy and speed the application required.  
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Chapter 1 - Introduction 

Wheat (Triticum) is one of the most important staple foods in the temperate world and with the 

United States producing 8% of the world’s total production [1][2][3]. So, there is an absolute need 

to conduct research on growth of wheat, the properties of the soil in which it is grown, as well as 

any diseases present. This will give agronomists better ways to predict wheat traits based on its 

genetics, and help farmers to plan the planting dates. One of the most important parts of wheat 

research in the state of Kansas is to get soil properties of fields where research wheat is grown. 

These soil properties are obtained by a Gem 2 electromagnetic induction, EMI, Sensor weighing 

over 15 lbs., which typically needs to be carried by a human. Ideally, fields should be scanned with 

such sensors multiple times per week but this is infeasible using human effort alone, A field of 

size of 50m x 75m would need an effort of 4 hours per day to get the soil properties at specific 

intervals of time. To overcome this problem, sensor robots are being developed to carry the sensor 

through a field either operated by a human via a remote control or, ultimately, in a fully 

autonomous mode. A remote-controlled robot saves the time and energy of agronomists who are 

trying to obtain the soil properties. Though it seems quite easy to control the robot, one of the most 

important rules in any wheat plot research is not to damage the crop while operating the robot. As 

the field size increases, it becomes harder for a human to control it from afar and there is an 

unacceptable possibility that robot might run over the wheat. One intelligent approach to make 

these robots not to run over the wheat is to make the robot recognize and stop when it is unable to 

turn its wheels in time. If the robot detects wheat head far from its location, it is not necessary to 

stop the robot; instead the robot’s wheels can be realigned to steer the robot and avoid a collision 

(autonomous navigation).   Here, the use of spatial AI comes into picture, spatial AI is an ability 

of an AI system to reason based on not just what it is looking at but also how far away things are 
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located. When the distance of the detected wheat is lower than the permitted distance, the robot 

makes an informed decision and makes its velocity equal to 0. Later, the operator can align its 

wheels in whichever way necessary and continue to perform the research (getting soil properties 

in this case).   

The main contributions of this thesis are:  

• Design of a robotic platform that can navigate in crops while avoiding collisions using 

spatial AI. The platform uses depth/stereo sensing and deep learning models to accomplish 

collision avoidance and crop (wheat) detection.  

• Disease detection and localization in crops (focusing on wheat) using deep learning.    

Collision avoidance is achieved by training neural networks such as YOLO, Faster R-CNN 

with ResNet-50 Feature Pyramid Network (FPN) backbone to detect objects and obtain depth by 

spatial AI devices such as OpenCV AI camera. 

Identifying the diseases present in crops is one of the most important parts of crop research. 

In this thesis, a classification algorithm is also trained, so that the robot identifies whether the 

wheat is a healthy wheat, or it suffers from stem or leaf rust. The performance of wheat detection 

is tested using a few infield images taken by a digital camera. The performance of the disease 

classification model such as precision, recall, and accuracy are tested using the same images which 

were taken to test the wheat detection model.  

While using deep learning models in real-time, speed and/or throughput are 

equally important as accuracy. This work also evaluates the performance of the deep learning 

model on different platforms.  

Furthermore, various evaluation metrics like accuracy, precision, and recall are discussed 

for both deep learning models (i.e., wheat detection models, and disease classification models). 
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This thesis is organized as follows. Chapter 2 summarizes the previous work related to 

object detection and deep learning mainly focusing on convolutional neural networks that are used 

throughout this thesis. Chapter 3 gives various sources of images, augmentation techniques, 

software, and hardware used, how training images on YOLO, Faster R-CNN with ResNet-50-FPN 

backbone is done, and finally a mechanism to stop the robot after estimating depth. Chapter 4 gives 

how a classification model is trained on ResNet-18 and EfficietNet-B4 to classify the images of 

wheat into three classes which are stem rust, wheat rust, and healthy wheat. Chapter 5 gives further 

research directions towards building autonomous navigation. Finally, chapter 6 gives various 

sources of references that are used to obtain information and knowledge.  
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Chapter 2 - Related Work 

Deep learning has played an important role in various fields, such as biology, medicine, 

agriculture, agronomy, etc. This section discusses previous works in the literature related to 

computer vision and agriculture.   

Redmon et al. [4] presented YOLO (You Only Look Once), a new approach in object 

detection. YOLO treats object detection as a regression problem which is the main difference 

between YOLO prior object detection models. YOLO is very fast and processes images at a higher 

rate than other object detection approaches and gives the best performance in real-time object 

detection. As illustrated in Redmon et al. [4], YOLO reasons globally about the image when 

making predictions, and learns generalizable representations of objects. Results in [4] reveal that 

YOLO produces only half the number of background errors as compared to fast R-CNN. These 

reasons attracted us to use YOLO as our deep learning model to detect wheat.   

Inspired by the work of Ren et al. [6], we have also implemented Faster R-CNN with an 

FPN backbone for real-time wheat detection in the field. Faster R-CNN achieved state-of-the-art 

object detection accuracy on the PASCAL VOC 2007, PASCAL VOC 2012 [22], and MS COCO 

[23] datasets with only 300 proposals per image. These exceptional qualities have attracted us to 

use this model in our study. Faster R-CNN and Region Proposal Network (RPN) have been used 

multiple times by entries in image object detection competitions [7]. It has also been observed that 

this method is not only a cost-efficient solution for practical usage but also an effective way of 

improving object detection accuracy. Briefly, Faster R-CNN is composed of two modules. The 

first module is a deep, fully convolutional network that proposes regions, and the second module 

is the fast R-CNN detector that examines the proposed regions [5]. In this thesis, Faster R-CNN 

with ResNet-50-FPN [21] is compared the accuracy of YOLO to decide which is best for use in 
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the final implementation. Both Faster R-CNN and YOLO had almost equal accuracy, but YOLO 

is faster than Faster R-CNN. A more detailed discussion about the accuracies of the two models is 

presented in Chapter 3.  

Liu et al. [8] proposed a new “single shot detector” (SSD) approach, which discretizes the 

output space of bounding boxes into a set of default boxes over different aspect ratios and scales 

per feature map location. They observed that the SSD model is relatively simple to train. The 

SSD model eliminates proposal generation and subsequent pixel or feature resampling stage and 

encapsulates all computations in a single network.   

The work done by He et al. [9] is most relevant to our requirement and study. They have 

presented a residual learning framework to ease the training of networks that are substantially 

deeper than those used in other state-of-the-art models. The extremely deep representations also 

have a good generalization performance on other recognition tasks that led them to win First Place 

in the ImageNet [15] detection and localization, along with the COCO [23] detection competitions. 

This state-of-the-art performance inspired us to adopt ResNet to solve the problem of disease 

detection in wheat fields.   

Amara et al. [11] proposed a deep learning-based approach to automate the process of 

classifying banana leaf diseases. The authors used the LeNet [12] architecture as a deep 

convolutional neural network to classify banana sigatoka and speckle. The results showed an 

accuracy of 98.61% with color images. 
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Chapter 3 - Wheat Detection and Robot Control Using Depth 

Sensing and Deep learning 

This chapter provides a detailed workflow on training deep neural networks to detect objects and 

evaluates their performance on real images from the field and finally, gives a mechanism to 

obtain depth. 

 

 3.1 Data Collection Sites 

The performance of any real-time deep learning model mainly depends on the nature of the dataset, 

which is to say, the quantity and quality of the images. The images for training the deep learning 

model are obtained from sites where the robots are used. The data were collected from the field at 

Ashland Bottoms KSU Agronomy Research Farm (latitude 39.128 to 39.1284; longitude -96.6157 

to -96.6164) in the city of Manhattan, Kansas, United States. 

 

Figure 3.1 Research site (KSU Agronomy farm) in Manhattan Kansas 
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The figure shown above gives a wide view of the agronomy field where wheat is grown for 

research purposes as a part of our EPSCoR project. More details about the collected images are 

discussed in the next section. 

 

3.2 Camera and Data collection, Kaggle Data, and Google Images.  

3.2.1 Images from KSU Agronomy farm: 

Most of the images for training the deep learning model are from the KSU Agronomy Farm with 

a digital camera. The training images were taken so as to be like those images the robot would 

need process. One of the important requirements of the deep learning model is that the image 

recognition must be done in all stages for wheat, that is, the wheat color can be brown or green 

depending on the season or time of operation of the robotic platform. Considering this requirement, 

images of both green and brown wheat were collected.   

 

Figure 3.2 A Sample image from the KSU Agronomy Farm when wheat is in the 
reproductive state 
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Figure 3.3 A sample image from the KSU Agronomy Farm when wheat is in the mature state 

 
Figure 3.1 is one of the training images collected on June 4, 2021. This stage of wheat 

growth is called the reproductive stage. This is the stage where the wheat heads have fully emerged 

from the stem. Pollination is very quick and takes only 3 to 5 days to complete. Thus, the images 

are taken in quick succession forming a data set comprising of 1200 images of pollinated wheat 

with visible heads.   

Figure 3.3 is one of the training images collected on June 22, 2021. This stage of the wheat 

is called “maturity”, or also “hard dough”. In this phase, the plant turns into a straw color and the 

kernel becomes very hard.   

The purpose of collecting these images is so that they can be annotated for training. The 

process of annotation is discussed in the following sections.   
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3.2.2 Google Images 

The Google Images search engine allowed us to get non-copyrighted images of wheat which are 

both green and brown. The images were manually scrutinized and downloaded into a folder for 

model training purposes. The images selected ranged from just a few heads to multiple heads.  

Priority was placed on images with good resolution and high clarity. 

 

3.2.3 Kaggle  

Kaggle, a subsidiary of Google LLC, is an online community of data scientists and machine 

learning practitioners. Kaggle allows users to find and publish data sets, explore, and build models 

in a web-based data-science environment, work with other data scientists and machine learning 

engineers, and enter competitions to solve data science challenges. More than 3000 wheat images 

are taken from Kaggle data to train the deep learning model.  Some of these images were selected 

for and subjected to augmentation prior to their use in training. Augmentation methods are 

discussed below. 

 

3.3 Hardware 

3.3.1 Camera 

The camera used for capturing images in the field is a commonly available digital camera from 

Samsung. The model number is WB35F. 

 

 3.3.2 LattePanda 

 LattePanda Alpha 864s is a high-performance, palm-sized board with low power consumption 

that runs Windows 10. It is widely used in edge computing, vending, advertising machines, and 

https://en.wikipedia.org/wiki/Google_LLC
https://en.wikipedia.org/wiki/Data_science
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
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industrial automation. This palm-sized machine is molded onto the robot, which is used for running 

a deep learning model, communicating with the operator, and communicating with the robot’s 

integral components. Key features of LattePanda Alpha are  

• Intel Core M3-8100Y, Dual-core, 1.1 - 3.4 GHz 

• Intel UHD Graphics 615 

• 8 GB Memory 

• Integrated Arduino coprocessor ATMEL 32U4 

 

 3.3.3 Intel Neural Compute Stick (NCS) 

Intel Neural Compute Stick is an accelerator which can support central processing unit (CPU), 

graphics processing unit (GPU), and a field programmable gate array (FPFA). A neural stick is 

used to accelerate the deep learning by which the model recognizes objects at many frames per 

second. A few key features of neural compute stick are:  

• Software: Intel Distribution of OpenVINO toolkit.  

• Supported operating systems: Windows, Mac, Ubuntu, etc. 

• Hardware (NCS) 

1. Processor: Intel Movidius Myriad X Vision Processing Unit (VPU) 

2. Supported frameworks: TensorFlow, Caffe, Apache MXNet, Open Neural 

Network Exchange (ONNX), PyTorch, and PaddlePaddle via ONNX 

conversion. 
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3.3.4 GPU 

GPU used for all training purposes in this work is from Google Collaboratory using Colab pro 

subscription. Google Collaboratory provides Nvidia Tesla K80 GPUs that have a dual-GPU design 

with 4992 CUDA core (2496 CUDA cores per GPU). Nvidia Tesla K80 has a 24 GB of GDDR5 

memory and has a PCI Express (PCIe) interface. 

 

3.3.5 OpenCV AI kit  

OpenCV AI Kit with Depth (OAK-D) is a spatial AI powerhouse, capable of simultaneously 

running advanced neural networks while providing depth from two stereo cameras one on the left 

and one on the right, and color information from a single 4K camera in the center.   

Figure 3.4 Stereo/RGB cameras from OpenCV AI kit  
 
The two outer sensors are for the left and right views forming a stereo pair.  The center sensor 

provides the RGB image used for object detection.  

A requirement to use this device is that models must be loaded into it in the form of a blob.  This 

required a formatting conversion step described in Section 3.11.1.  
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3.4 Preprocessing Steps  

3.4.1 Annotations 

Data labeling or annotation is a primary step for training deep learning models. This section 

describes various types of annotations that facilitate deep learning training and provides details on 

annotations for YOLO. 

Bounding Boxes: Bounding boxes are one of the most common annotation techniques used 

by machine learning practitioners. Rectangles are used to determine the location of the object in 

the image.  A rectangle is defined by the (x, y) coordinates of the upper left corner lower-right 

corners that form the diagonal representation of a rectangle.  One other way of representing 

bounding boxes is given an (x, y) on the top left, and height, and width of the bounding box.  

Polygonal Segmentation: Because objects are not always rectangular complex polygons 

can be used to locate the object more precisely.  

Semantic Segmentation: In this type of annotation technique where each pixel of an image 

is given a class, denoting one of the objects that need to be recognized. 3D cuboids: 3D cuboids 

are like bounding boxes, but it gives additional depth information. 3D cuboids can be used to 

determine the position and volume of an object.  

Key-point and Landmark: In this technique detection of small objects is done by creating 

dots across the image.  

Lines and Splines: Lines and splines are mainly used in autonomous vehicle navigation 

where the shoulder line, yellow line, and broken yellow lines are the lines that need to be 

recognized.  

YOLO Format for Bounding boxes: YOLO uses bounding box annotation written on a .txt 

file with text filename same as the image. Each bounding box is defined with an object class 
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number, coordinates of the center, width, and height of the bounding box rectangle. The format of 

YOLO annotations is <object-class> <x><y><width><height>.  The following numbers are the 

annotations for the image in Figure 3.5. 

 

0 0.106445 0.014160 0.212891 0.028320.        
0 0.690430 0.418457 0.138672 0.139648 
0 0.206055 0.397461 0.320312 0.160156 
0 0.346191 0.049316 0.297852 0.098633 
0 0.141113 0.328613 0.282227 0.102539 
0 0.846680 0.155762 0.306641 0.131836 
0 0.904297 0.631836 0.191406 0.166016 
0 0.821289 0.026367 0.154297 0.052734 
0 0.975586 0.833496 0.048828 0.159180 
0 0.759766 0.789551 0.103516 0.112305 
0 0.423340 0.681641 0.379883 0.113281 
0 0.582031 0.086914 0.152344 0.140625 
0 0.804688 0.801270 0.076172 0.122070 
0 0.830566 0.813965 0.083008 0.120117 
0 0.949219 0.851562 0.046875 0.244141 
0 0.067871 0.136719 0.135742 0.080078 
0 0.234375 0.034180 0.232422 0.068359 
0 0.354004 0.054199 0.250977 0.108398 
 

 
 
Figure 3.5 Bounding boxes over the wheat heads 
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 3.4.2 Augmentations 

Image augmentation is the process of taking the images that are already present in the training 

dataset and manipulating them to create many altered versions of the same image. This provides 

more images to train and gives a different viewpoint to the classifier. Different viewpoints can 

represent changes in the saturation, color, crop, and horizontal and vertical flips. The aim of 

augmentation is to introduce variation whose effect will help avoid model over-fitting. To create 

augmented data, a PyTorch orientation module named Albumentations is used. Albumentations is 

a module where all the necessary augmentation steps for augmentations are provided in predefined 

functions. These functions are applied to the image dataset to create manipulated images and then 

used for training the deep learning model. A few examples of augmentations applied 

are SmallestMaxSize: Rescales an image so that the minimum size is equal to the given maximum 

size, keeping the aspect ratio of the initial image. ShiftScaleRotate: Randomly assigns transforms: 

translate, scale, rotate to the input, RandomCrop: Crops a random part of the image, RGBshift: 

Randomly shifts values for each channel of the input RGB image, and RandomBrightnessContrast: 

Randomly changes brightness and contrast of the input image.  

A sample transformation after applying augmentation is shown in Figure 3.6 for an image 

in the training dataset.  
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Figure 3.6 Augmentations applied to training images  
Panel (a) is, for all practical purposes, the original image. 
 
 3.5 Training YOLO 

The above sections 3.1 to 3.4 described data collection data, annotations, and augmentations. The 

final and the most crucial part of creating a real-time deep learning model is to train the model. 

YOLO performs supervised training for object detection. The training is done in Google 

Collaboratory with backend specs given in section 3.3.4. For every cycle of data collected from 

KSU Agronomy Farm, YOLO is trained on approximately 2000+ images for 7.679 hours of GPU 

time. The training is performed on pretrained weights, and the new images were added to the 

dataset to update the weights. The training and validation splits are given below in percentages. 
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Table 3.1 Partitioning different data sources 

Image Source Training  Validation  Testing 
Kaggle 80 10 10 
Google images 80 10 10 
KSU Agronomy farm 70 10 20 

    

 3.5.1 Training Image Size, Batches, Epochs, Weights 

Training is done by setting image size 1024x1024 and batch size 16 and 100 epochs on publicly 

available weights of large YOLO model.   

 

 3.5.2 Metrics 

The following subsections describe the performance of the model as training progressed through 

multiple epochs. The Y-axis of each graph defines the respective metric and the X-axis of defines 

the epoch number.  

 

3.5.2.1 Mean Average Precision(mAP) 

The mAP for a set of detections is the mean of the interpolated AP for each class [25]. This per-

class AP is given by the area under the precision/recall (PR) curve for the detections. mAP_0.5 

in Figure 3.7 represents mAP at 0.5 IoU (Intersection over Union), mAP_0.5:0.95 represents 

mAP over different IoUs from 0.5 to 0.95 at step of 0.05.  
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3.5.2.2 Precision 

Precision and Recall are measured to evaluate how well the model performs as explained in the 

following.  Precision is the share of issued predictions that are predicted correctly. Precision is 

given by 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝 / (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝 +  𝑓𝑓𝑓𝑓𝑓𝑓𝑝𝑝𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝) where true positives are correct 

predictions and false positives are number of issued predictions that are incorrect.   

 

3.5.2.3 Recall 

Recall is the share of the targets that are predicted correctly. Recall is given by 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝/ (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝 +  𝑓𝑓𝑓𝑓𝑓𝑓𝑝𝑝𝑡𝑡 𝑛𝑛𝑡𝑡𝑛𝑛𝑓𝑓𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝). Where false negatives are the number 

of targets that should have been predicted but were missed. From Figure 3.7 we observe that 

precision, recall increase as the training progresses. 

 

Figure 3.7 Mean average precision, recall, precision 
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3.5.2.4 Training and validation losses 

Box Loss is a loss that measures how tight the predicted bounding boxes are to the ground truth 

object. Object loss is due to wrong-box object IoU prediction. Class loss is a loss that measures 

the correctness of the classification of each predicted bounding box.  

 

Figure 3.8 Losses during training and validation 
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From Figure 3.8, we observe that the training losses decrease as the training progresses, and we 

also observe that there is no increase in validation loss at any point in training which clearly shows 

that the model has not been overfitted.  

 
3.6 Testing YOLO 

To test the performance of YOLO, the model is run on a few images from the dataset. The 

performance of the model is defined by using the formula.  

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 = 𝑵𝑵𝑵𝑵𝑷𝑷𝑵𝑵𝑷𝑷𝑷𝑷 𝑷𝑷𝑷𝑷 𝒘𝒘𝒘𝒘𝑷𝑷𝑷𝑷𝒘𝒘 𝒘𝒘𝑷𝑷𝑷𝑷𝒉𝒉𝒉𝒉 𝒉𝒉𝑷𝑷𝒘𝒘𝑷𝑷𝑷𝑷𝒘𝒘𝑷𝑷𝒉𝒉
𝑻𝑻𝑷𝑷𝒘𝒘𝑷𝑷𝑻𝑻 𝑷𝑷𝑵𝑵𝑷𝑷𝑵𝑵𝑷𝑷𝑷𝑷 𝑷𝑷𝑷𝑷 𝒘𝒘𝒘𝒘𝑷𝑷𝑷𝑷𝒘𝒘 𝒘𝒘𝑷𝑷𝑷𝑷𝒉𝒉𝒉𝒉 𝒑𝒑𝑷𝑷𝑷𝑷𝒉𝒉𝑷𝑷𝑷𝑷𝒘𝒘

    Equation 3.1 

      

The model achieved a performance of 0.93 on the test dataset. The weights of this model are 

saved for future training and inference in the field.   

 

3.7 Training and Testing Faster R-CNN with ResNet-50-FPN 

The speed of a deep learning model is as important as the accuracy of the model. In anticipation 

to achieve faster and accurate results, a Faster R-CNN model with ResNet-50-FPN backbone is 

trained on the collected dataset. This section briefly describes how training and testing of the model 

are performed. 

 

3.8 Training Faster R-CNN with ResNet-50-FPN  

The optimizer used in training this model was stochastic gradient descent (SGD). The learning 

rate (LR) scheduler used in training this model was step LR. The loss function used in Faster R-

CNN is binary cross-entropy in the first state of RPN; in the second stage classification the loss 

function is normal cross-entropy [6]. Training is performed in Google Collaboratory. The initial 

training of Faster R-CNN with ResNet-50-FPN took 8 hours of GPU time for 2000+ images. 
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Object loss comparison between YOLO and Faster R-CNN with ResNet-50-FPN while training 

is shown below.  

 

 

Figure 3.9 Object loss for YOLO and Faster R-CNN with ResNet-50-FPN 
 
 

3.9 Faster R-CNN Testing 

Faster R-CNN with ResNet-50-FPN achieved a performance of 0.90 in identifying the wheat 

heads. The performance of YOLO is 3% higher compared to Faster R-CNN with ResNet-50-FPN. 

The metric for performance is given in Equation 3.1. Testing is done on the LattePanda which is 

the actual embedded computing platform used for real-time detection in the field.  
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3.10 Comparing Faster R-CNN with YOLO  

After training all the images on both YOLO and Faster R-CNN with ResNet-50-FPN, Both the 

models have achieved almost similar results in performance. YOLO is three times faster than 

Faster R-CNN with ResNet-50-FPN. Figure 3.10 shows time taken (seconds) by two trained 

deep learning models to perform inference on various numbers of images with image size 640 

x640 

 

Figure 3.10  Timing comparison of YOLO and Faster R-CNN with ResNet-50-FPN on 
LattePanda 

 

3.11 Running Deep Learning Model on Intel Neural Compute Stick  

As described in the above section 3.4, an Intel Neural Compute stick is used to speed up deep 

learning frameworks. The Intel Neural Compute Stick works on the openVINO model, Open 
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VINO is a toolkit that enables running deep learning models on various Intel devices.  The weights 

obtained from training YOLO, Faster R-CNN with ResNet-50-FPN are converted into openVINO 

model using the compilation framework provided by Intel as shown in Figure 3.1. Frames are 

captured from OpenCV video capture and inference is then performed on Intel Neural Compute 

Stick.  The model weights and topology are, respectively, described with .bin and .xml files. (If 

more than one .xml file is required to specify topology a third, .mapping file us used to connect 

them.)  Often inference of deep learning models does not require high-end GPUs and CPUs, and 

can be done on relatively less expensive CPUs, GPUs, or even a USB stick.  However, in this case, 

the speed of the model increased from 20% to 30% for both deep learning models when the Neural 

Compute Stick was used. 

 

3.11.1 Workflow for converting into blob 

As noted above, this step is necessary in order to use the OpenCV AI kit. The compilation steps 

are shown in Figure 3.11.  ONNX (Open Neural Network Exchange) is a standardized format for 

representing the weights and other information used in various machine learning models.  At the 

end of the pipeline a blob (binary large object) is a heterogenous collection of diverse binary data 

stored as a single entity.  Blobs are widely used as interfacing methods.  In this pipeline the 

intermediate representation is an ad hoc extraction of the ONNX information designed to facilitate 

its conversion to the final blob.  The first three steps in this pipeline were coded using open source 

modules available in Python.  The last step (also programmed in Python) was done via an online 

API call to software provided by Luxonis.com [34]. 
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Figure 3.11 Converting into blob 
 
3.12 Depth Sensing 

The above sections have described how the object detection is achieved. But the final decision on 

when to stop the robot is most properly based on the distance between wheat and the robot. Hence, 

the depth information becomes crucial and is obtained using the stereo camera in the OpenCV AI 

kit.   

 

3.13 Moving to MobileNet SSD for Inference while Depth Sensing 

When the robot is running on the wheat field the size of an image and the view area of the robot 

can be varied depending upon the needs. After experimenting with advanced deep learning 

architectures, it is observed that SSD network with MobileNet backbone with an input image size 

300x300 gives a higher performance as compared to YOLO and Faster R-CNN with ResNet-50-

FPN. Hence, the blob which is obtained from MobileNet SSD is used in the field robot. We have 

saved the blob and weights from trained YOLO and Faster R-CNN with ResNet-50-FPN models 

for further research.  

 

Trained model 
weights ONNX format Intermediate 

representation Blob
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3.14 Communicating with the Robot Using PySerial 

To stop the robot when it detects wheat at less than the threshold 

distance, a connection needs to be established between the robot and 

the Latte Panda board. As discussed earlier the LattePanda has a 

USB port, which is connected to the Arduino of the robot. When the 

deep learning model detects wheat, it communicates this fact to the 

Arduino, which then sends a signal to the robot’s speed controller to 

adjust the speed.  A flowchart of this process is shown in Figure 3.12 

and the related code snippet is in Figure 3.13. This code snippet is 

embedded into depth-sensing code for communicating with the 

robot. In the code “conf” represents the confidence of object 

detection which can be varied depending on the performance of the 

model.  

 

Figure 3.12 
Communicating depth 
information 
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Figure 3.13 Code snippet to perform collision avoidance 
 
 
3.15 Results 

The performance of object detection and depth-sensing was tested in the KSU Agronomy Farm 

where the robot is deployed. The results of object detection are shown in Figure 3.14 and Figure 

3.15. The effectiveness of the recognition can be increased by varying the threshold/confidence 

level of the model.  
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Figure 3.14 Real-time detections of wheat heads in the field  
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The depth map of the wheat field from the point of view of the robot is shown in Figure 3.15 

below.  

 

Figure 3.15 Real-time depth sensing of wheat in the field.  
For speed the image resolution was set to 300 x 300.  The frame rate (upper left in green) is 18.5 
fps.  
 
 
 3.16 Benchmarking on LattePanda 

The below Figure 3.16 shows the number of images versus time taken in seconds to perform 

inference. We observe that MobileNet SSD on the OpenCV AI kit at an image size 300x300 has 

achieved the lowest inference time while Faster R-CNN with ResNet-50-FPN at an image size 

640x640 has the highest inference time.  
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Figure 3.16 Time taken to perform wheat detection on various platforms 
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Chapter 4 - Disease Detection in Crops Using Deep learning 

This chapter provides a detailed workflow on training train deep neural networks to classify 

images and evaluates their performance on images collected in the field.   

 

4.1 Data Collection 

The wheat leaf images were taken with a commonly available camera from mobile devices at the 

same experimental fields mentioned in Section 3.1. The dataset consists of images of entire leaves 

and stems. As the data from KSU Agronomy Farm is insufficient to produce an effective deep 

learning model dataset, different sources of images like Kaggle, and Google images are used to 

prepare the training data set. Images from Kaggle include three different images of wheat namely, 

1) healthy wheat 2) leaf rust and (Puccinia triticina) 3) stem rust (Puccinia graminis).  

 

4.2 Workflow 

Our aim here is to classify if wheat leaf/stem rust is present and if there exists any disease, then, 

record the location (GPS coordinates) of the robot. The workflow of disease classification is like 

that for wheat detection with subtle changes. This section elaborates the detection workflow and 

how the robot uses this detection algorithm to localize the disease by noting down the GPS 

coordinates.  Figure 4.1 depicts the workflow to detect wheat diseases. 
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Figure 4.1 Workflow for disease detection 
 
4.3 Approach 

To classify an image the training images are labeled with their respective classes that is., 0 for 

healthy wheat, 1 for images with leaf rust, and 2 for images with stem rust. A csv file containing 

image_ids and labels is obtained.  

image_id  label 

03TD19.jpg 0 

0LBIWV.jpg 2 

0O5BON.jpg 1 

The distribution of images in the training set in percentages is 16% healthy wheat, 41% leaf rust, 

and 43% stem rust. The training dataset is obtained from The Consultative Group on International 

Agricultural Research (CGIAR) computer vision for Crop Diseases which contains images 

collected in-field by International Maize and Wheat Improvement Center (CIMMYT) and its 

partners in Ethiopia and Tanzania.   

Data collection

Assigning labels

Augmentations steps

Training the model

Testing the model
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Figure 4.2 Distribution of CGIAR dataset. 
 
 

 
Figure 4.3 Sample images for each class in the CGIAR dataset.  
 
The training images are treated with different types of Augmentation techniques like 

Coursedropout: Removes rectangles randomly from training images, Resize: Resizes the input 

image to the given height and width. 
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Figure 4.4 Augmentation for an image.  
 
 
4.4 Training 

A convolutional neural network Architecture with a pretrained ResNet-18 backbone is used to 

train the model. This section describes how the training and testing of the wheat disease 

classification model are done and explains the type of optimizer, scheduler used, and type of loss 

used during training of the neural network. 

 

4.4.1 Optimizer 

The role of the optimizer is to iteratively change the neural network weights until a set is found 

that maximizes the inference capability.  There are two prominent optimizers available 1) Adaptive 

moment estimation (ADAM), and 2) stochastic gradient descent (SGD). In training this model, the 

ADAM optimizer was used. It is a method of stochastic optimization that implements an adaptive 

learning rate. In normal SGD, the learning rate operates in a common fashion across all of the 

parameters/weights of the model. ADAM selects a separate learning rate for each parameter. 

Hence, ADAM was preferred over SGD in training this disease classification model. 
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4.4.2 Loss 

Neural networks training requires a loss function to measure improvements during successive 

epochs. In the context of deep learning, we seek to minimize the loss function. The loss function 

used in the optimized disease detection model is cross-entropy provided by PyTorch's nn (i.e., 

neural network) module. Cross-entropy combines both Log SoftMax loss and negative log-

likelihood loss. 

 

4.4.3 Learning Rate Scheduler 

As the training progresses it is necessary to reduce the learning rate. At a high learning rate, the 

model possesses high kinetic energy, and hence, explores the parameter space more broadly 

without becoming trapped in some possibly suboptimal shallow part of the loss function. Later, 

when the learning rate is made to be slow by lowering the kinetic energy, the parameter vector can 

settle down in deep, narrow parts of the loss function corresponding to high performance. The 

learning rate schedule used in training the ResNet-18 was StepLR which decays the learning rate 

of each parameter group by a given gamma for every given step size.  

 

4.5 Results 

For disease classification, we observe the accuracy is from 80 to 90 percent on various test dataset 

splits. Table 4.1 shows the classification accuracy based on a test split. It should be noted that the 

model performed equally well for images with dominating background, and images with 

extraneous objects like human hands and legs. ResNet-18 is 2% more accurate compared to 

EfficientNet-B4. Table 4.2 gives precision and recall for both classification models. 
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4.5.1 Accuracy 

The metric we have chosen to measure the performance is Accuracy, which is the ratio of the 

number of samples predicted correctly to the total number of samples 

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝒔𝒔𝑨𝑨𝒔𝒔𝑨𝑨𝒔𝒔 = 𝑵𝑵𝑨𝑨𝑵𝑵𝑵𝑵𝒔𝒔𝑨𝑨 𝒔𝒔𝒐𝒐 𝒊𝒊𝑵𝑵𝑨𝑨𝒊𝒊𝒔𝒔𝒔𝒔 𝒑𝒑𝑨𝑨𝒔𝒔𝒑𝒑𝒊𝒊𝑨𝑨𝒑𝒑𝒔𝒔𝒑𝒑 𝑨𝑨𝒔𝒔𝑨𝑨𝑨𝑨𝒔𝒔𝑨𝑨𝒑𝒑𝒄𝒄𝑨𝑨
𝑵𝑵𝑨𝑨𝑵𝑵𝑵𝑵𝒔𝒔𝑨𝑨 𝒔𝒔𝒐𝒐 𝒊𝒊𝑵𝑵𝑨𝑨𝒊𝒊𝒔𝒔𝒔𝒔.

    Equation 4.1  

 
Table 4.1 Accuracy of the disease detection model. 
 

Model Train test split percentage Accuracy 

ResNet-18 80-20 90 

EfficientNet-B4 80-20 92 

 

   
Table 4.2 Total precision and recall of the disease detection model  
 

Model Train test split percentage Precision Recall 

ResNet-18 80 -20 0.91 0.91 

EfficientNet-B4 80-20 0.89 0.89 

 
 

Table 4.3 Class precision and recall for disease detection model.  
 

Model 
Class Precision Class Recall 

0 1 2 0 1 2 

ResNet-18 1.0 0.88 0.87 1 0.88 0.87 

Efficinetnet-B4 1.0 0.85 0.84 1 0.85 0.84 

            
 
4.5.2 Confusion Matrix 

Confusion Matrix The below Figure 4.5 shows the true label and predicted label for the 3 classes. 

True labels on the y-axis and predicted labels on the x-axis.  
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Figure 4.5 Confusion Matrix for ResNet-18. 
 
From the above confusion matrix, it can be understood that the model was very successful in 

classifying disease and non-diseased wheat since no image of healthy wheat is classified as leaf 

rust or stem rust and vice-versa. 

 

 4.6 Disease Localization 

Field robots are equipped with an advanced Global Positioning System (GPS). When disease is 

detected, locating the affected plants in the field is a matter of recording the GPS reading at that 

time point. A topic of current interest to plant pathologists is to reduce the cost of disease control 

by only applying chemical protectants at locations where disease is present.  The developments 

made here are directly supportive of such a strategy. 
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Chapter 5 - Conclusions and Future Research directions 

In this work, a workflow is designed to detect wheat using various state-of-the-art deep learning 

techniques and different methods are explored in improving the accuracy and speed on a relatively 

low-cost device.  Later, the trained models are combined with stereo depth sensing to detect the 

distance from the camera to the object. The later part of the work focuses on identifying diseases 

in wheat crops. The latter work was made easier due to the many learning methods and 

architectures that were evaluated during the wheat detection efforts.   From the broader perspective, 

this work solves two of the most common artificial intelligence problems which are object 

detection and classification.  

Finally, benchmarking is done on LattePanda for YOLO, Faster R-CCN with ResNet-50-

FPN on various platforms like IntelCore-M3, IntelCoreM3 with Intel NCS, and YOLO, MobileNet 

SSD on IntecoreM3 with OpenCV Ai camera.  

The current work includes limitations such as 1) making the robot fully autonomous, and 

2) identifying alleys between individual plots in the field (evident in Figure 3.14). These 

limitations can be eliminated by using segmentation techniques to detect alleys in the field and 

making the robot fully autonomous using path planning algorithms such as the dynamic window 

collision approach. Path planning algorithms can be combined with deep learning models to 

achieve fully autonomous driving. 
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