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IITTRCDUCTIOTJ

At-stract metric spaces were introduced by K. Frechet in 1906. The study

of such spaces furnishes a coinnon idealization of a large number of rnather.mt-

ical;, physical, and other scientific constructs in uhich the idea of "distance"

appears. The objects under coxnsideration in such a space j-iay be quite arbi-

trary^, but are general^ called "points" for suggestiveness. The objective

is to associate a non-negative real nxiiiiber \jith each pair of points of the

given set in such a \-irxy that the nunfoers associate with pairs of triples of

points satisfy certain conditions. The association of a single real non-nega-

tive nui-riber xjith the pairs is an over idealized situation. In practice the

distance betxireen tiro points is not given by a single raeasureracnt but instesjd

is taken as the average of the distances obtained from several measurements.

Thus, in a metric space, the distance concept defined by Frechet -r^^cy be con-

sidered as statistical instead of determinate. In place of associating a sin-

gle nuiT±)er d(p,q), uhich is read the distance from p to q, v;ith every pair of

elements, one inay associate a distribution fiinction F_ . For every positive

number ::, interpret Fpq(x) as the probability that the distance from p to q

is less than x. Upon associating a distribution function with ever>^ pair of

elements p and q, a generalization of the concept of a metric space is obtained.

This generalization vjas introduced by K. Menger and is referred to as a sta-

tistical metric space.

In the original paper K. Henger p.]] presented four postulates, using

distribution fvinctions, which are comparable to the four postulates for a

metric space given by Frechet. At this time K. Menger also discussed the

theory of betv;eenness in a space S and possible fields of application.



Sliortly after Henger's paper^ A. Maid published a paper in which he criti-

cised Kenger's generalized triangular inequality and proposed a substitute.

Using this new postulate, Wald was able to construct a theory of betweenness

having certain advantages over I-Ienger's theor)^.

The nejct extensive v/ork p\±ilished on the subject was by B. Schweizer and

A. Sklar [f]. In this paper they e>sinined the spaces defined hy Henger and

I-Jald and presented necessary conditions for the equivalence of the tvxo spaces.

The remainder of the paper vxas devoted to the study of specific spaces and the

topological properties of a statistical metric space.

In 1961, E. Thorp published a paper in Xirhich he discussed the properties

of the t-functions defined by Monger. At this time Thorp was able to prove

that given a t-function there is a space for which it is the strongest. He

also XiTorked on the problem, given a statistical metric space can a strongest

t-function be found?

This paper will be divided into the following three sections.

(I) The study of the axioms for a statistical metric space, with
particular emphasis on the triangle inequality.

(II) Study of particular spaces.

(Ill) Topological properties of a statistical metric space and the
continuity properties of the distance distribution function.

DEFIMITIOWS AI© PROPERTIES

^' Statistical Metric Space . The distributions used here will have the usual

properties. A distribution function is any real valued function which is de-

fined on the real line, is left continuous, is non-decreasing, and has great-

est lower bound zero and least upper bound one. One particular distribution

function will be of interest throughout the paper. It is the ftinction H de-

fined by



x<0
K(x) =

1 x>0.

A distribution ftmction F hi 11 adhere to the convention that for any x,

lira F(::) = F(+oo ) = l

and

lira F(x) = F(-co ) =0.
X->-cc

In order to conpare the definition of a statistical metric space vith

the definition of a metric space, the postulates due to Frechet are listed

here. A netric space (M-space) is an abstract set S of elements called"points"

and a inapping d of sXs into the non-negative real numbers. The liiapping d has

the following properties:

i. If p and q are elements of S, then d(p,q) = if and only if

p = q; (Identity)

ii. If p and q are elements of S and p / q, then d(p,q)>Oj (Positive)

iii. If p and q are elements of S, then d(p,q) = d(q,p); (S>ymrrietry)

iv. If p, q, and r are elements of S, then d(p,r) <d(p,q) + d(q,r).
(Triangle inequality)

Definition 1. A statistical metric space (an SI^I-space) is an ordered

pair (S,F) where S is an abstract set (whose elements will be called points)

and F is a mapping of S)( S into a set of distribution functions; therefore,

F associates a distribution function F(p,q) with ever^/ pair (p,q) of points

in S. Denote the distribution function ¥{p,q) by F . Hence ? (x) denotes

the value of F for the real argument x. The fiinctions F^q. are assumed to

satisfy the following conditions:

I. Fpq(x) = 1 for all x> if and only if p = q.

II. Fpq(O) =



IV. If Fpq(x) = 1 and r^(y) = 1, then Fp^(x + y) = i.

The following e>caraple shous that eveiy metric space EHy be regarded as

an SI'i-space of a special kind.

Example 1. Set F (x) = K(x - d(p,q)) for ever}' pair of points (p,q)

in an K-spacc.

1. Fpq(x) = K(x - d(p,q)) = K(x) = 1 for x>0 and p = q, hence F^q(x) = 1

for all X and p = q.

2. Fp^(O) = H(-d(p,q)) = 0, since d(p,q) > 0; hence Fpq(O) = 0.

3. Fpq(x) = H(x - d(p,q)) = K(x - d(q,p)) = F^ix) ; hence Fpq(x) = Fqp(y.).

li. If Fq^(y) = 1, then H(y - d(q,r)) = 1; therefore, y >d(q,r).

If Fpq(x) - 1, then H(x - d(p,q)) = 1; therefore, x > d(p,q).

Fpr(>^ + y) = H(x + y - d(p,r)),

d(p,q) + d(q,r)>d(p,r),

x+y>d(p,r),

K(x+ y _ d(p,r)) = 1; .

hence Fp^^Cx + y) = 1.

From the interpretation of Fpq(x) as the probability that the distance

between p and q is less than x, one can see that conditions I, II, and III

are generalizations of conditions i, ii, and iii; while IV is the minimi

generalization of iv.

In the SI'I-spaces in which the equality F (x) = 1 does not hold for any

finite x, IV is satisfied only by the null set. It is, therefore, of interest

to have a stronger generalization of the triangular inequality. Before dis-

cussing tvjo stronger substitutes for postulate IV, it is convenient to malce

the folloxjing definition.



Definition 2. A triangle inequality is said to hold universally in an

SI4-spacc if and only if it holds for all triples of points, distinct or not,

in tliat space.

^" ^122255 Spaces . lienger gave as a generalized triangle inequality the

following:

IV^. Fp,,(x + y) > T(Fpq(x), F^^Cy)) for all x,y,

where T is a 2-place function on the unit square satisfying;

(a) < T(a,b) < 1

(b) T(c,d) > T(a,b) for c > a, d > b

(c) T(a,b) = T(b,a)

(d) T(l,l) =1

(e) T(a,l) > for a > 0.
'

Due to the rather generalized nature of T, not too much can be said about

this function. The interpretation of T is made more precise by choosing a

specific function. Some simple examples follow:

T^: T(a,b) = Hax(a + b - 1,0) i.e., T = Max(Sum - 1,0)

Tg: T(a,b) = ab • i.e., T = Product

T^: T(a,b) = Hin(a,b) i.e., T = Kin

T|,: T(a,b) = Kax(a,b) ' i.e., T = I-Iax

T^: T(a,b) =a + b-ab •i.e.,T = Stum - Product

T5: T(a,b) =< Kin(a + b,l) i.e., T = Min(Sum,l)

The six functions are listed in order of increasing strength, where T^^ is

stronger than T^ if Tjj^(a,b) > Tn(a,b) for all (a,b) on the unit square with

strict inequality for at least one pair (a,b) . If IV. holds for any given

T, then it will hold for all weaker T's. For T = Kin (Max), the interpre-

tation is: The probability that the distance from p to r is less than x + y



is not less than the smaller (larger) of the probability that the distance

from p to q is less than x and distance from q to r is less than j. Similar

interpretation can be given to the other choices of T. Nevertheless, as the

following lemmas indicate, the three functions Ty T^, and T^ are actually

too strong for most purposes.

Lemxia 1. If an-SI^'I-space contains two distinct points, then IV--, cannot

hold universally in the space under the choice T = Max.

Proof: Let p and q be elements of S such that p f^ q. Also let x and y

be real arg\ments satisfying <y < x.

Suooose IV is true for every value of x and y vxith T = Ilar-c. Then
m

F_^(x) > IIaJc(F (x - y), F (y)) = 1. Since x can be any positive number,

then by postulate I, p = q. This is a contradiction of the assumption p / q;

hence, it follows that IV cannot hold universally in the space under the

choice T = Max.

Lemma 2. If an SK-space is not an H-space and if IV„ holds universally

in the space for some choice of T satisfying conditions (a) -(e), then the

function T has the property that there exists a number a, < a < 1, such

that T(a,l) > a.

Proof ; If an Sl-I-space is not an I1-space, then there is at least one pair

p,q of distinct points, for which F _ has a. value other than zero or one. F_q.

being left continuous and monotonic implies that there is an open interval

(x,y) on which <F q.<_l. Assvime that for < a< 1, T(a,l) = a + g(a)

where g(a) >_0. Let z be any point in (x,y) and take t > 0. Then

Fp^(z+ t) >T(Fpq(z),Fpp(t))

>T(Fpq,l)



Letting t approach zero through the positive values gives

ThuSj Fpg is discontinuous at a; and therefore, at every point of the open

interval (xjy) . This is a contradiction, since a non-decreasing function can

be discontinuous at only denunerahly many points.

Lemma 3. If IVj^ holds universally in an SI4-space and if T is continuous,

then for any x > 0, T(Fpq(x) ,1) ^ Fpq(x)

.

Proof: Let points p,q in S and a positive ntunber x be given; choose y

such that <_ y < X.

Fpq(x) iLT(Fp^(x - y), Fpp(y)) = T(Fpq(x - y),l).

Letting y approach zero from above gives

Fpq(x) ^ lim T(Fpq(x - y),l).

By the assumed continuity of T,

Fpq(x) > lim T(Fpg(x - y),l) = T(lin Fpq(x - y),l)

y-^O y-^o

while by the left continuity of F ,

Fpq(x) > T(lim Fpq(x - y),l) = T(Fpq(x),l).

y-^o<-

Hence Fp^(x) AT(Fpq(x) ,1)

.

By Lemmas 1, 2, and 3, it follows that T]_, T2, and T3 all satisfy the

condition T(a,l) = aj therefore, properties a, d, and e can be replaced by

. (a') T(a,l) = a, T(0,0) = 0.

Since < a <_ 1 and < b < 1, it follows that

T(a,b) < T(a,l) = a

T(a,b) =. T(b,a) <T(b,l) = h;



hence T(a,b)i. Min(a,b). Using condition (a') T = Hin b8Conies the strongest

universal T. Similarly the weakest possible T satisfying (a'), i^) > ^^ (c)

is the function T^^, which is given by:

\a X = a, y = 1 or y = a, X = 1

T„(x,y) =
j
[0 otherwise.

One more property is now added to (a')j W, aJ^d. (c). This is the asso-

ciativity condition,

(d') T[T(a,b),cJ =T[a,T(b,c)]

which allovjs the extension of VJ^-^ to a polygonal inequality.

Definition 3. A Menger space is an SM-space in which IV-;i holds univer-

sally for some choice of T satisfying conditions (a')j i'l^) , (c), and (d')-

The following lemma shot-;s that only distinct triples need be considered

in determining whether an SM-space is a Kenger space.

Lemma h- If the points p, q, and r are not all distinct, then IVj^ holds

for all triples p, q, and r under the choice T satisfying (a')j (b), (c), and

(d').

Proof ; Choose T = Min.

Case I. If p = r 7>^ q, then Fpj,(x + y) = H; hence, T = Hin. implies

Fpq(x), Fpc(y)

Case II. If p = q 7^ r, then for x,y^

Kin(Fpq(x), F^j^Cy)) = Hin(H(Jc) ,Fq^(y))

< Fqr(y) < ^qA^ ^ y) = ^pr(^ + v) •

A real-valued fxmction T that satisfies conditions (a')j (b), (c), and

(d')^ and whose domain is the set of real number pairs (x,y), such that

<^x,y <^1, is called a t-function.

that Fp^(x + y) > Min



Definition 1|. The t-function T' is stronger than the t-function T",

denoted by T'^ T", if T'(x,y)> T"(x,y) for 0< x,y ^ 1; T' is strictly

stronger than T" if T'"is stronger than T" and there is at least one pair

of ntM3ers (x,y) such that T'(x,y)> T"(>oy)- Correspondingly, T" is a

veaker or strictly •.-/caker than T '

.

In general the stronger the t-function, the more information one has

about the SH-space. It is natural to ask the following question. If given

an Sl-I-space that can be made into a lienger space, is there a strongest t-

function? It is also interesting to determine whether, for a specific t-

function there is a corresponding space for xjhich it is the strongest.

The latter problem can be completely solved by constructing, for a given

t-function, a space such that it is strongest. The general case for vxhich it

is proved will contain an uncountable number of points. Nevertheless, for

some t-functions, it is possible to construct a space v;ith a finite number

of points for which the t-f\inction is the strongest.

Cn the other hand, the problem of finding the strongest possible t-func-

tion for a given SH-space is considerably more complicated, since it often

depends on the particular form of the distribution function F^g. Some general

results along this line are developed at the end of this section. Also, it

is shovm that there are Menger spaces for which there is no strongest t-function.

Theorem 1. Let T be a t-function. Then there exists a Henger space for

which T is the strongest t-ftinction satisfying the postulate (SH-IV~i) •

Proof ; One can construct an SM-space such that for every point (a,b)

in the unit square, there are points p,q,r in S and niiriibers x,y, such that

Fpg(x) = a, Fqi.(y) = b and Fp^(x + y) = T(Fpq(x),Fq^(x))

.
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For a fixed (a^b) in the interior of the unit square, choose three points

)P1jP23P3j • The distance distribution functions relating these three points
r

are as follows:

0, X < 1 - ^ ,

F^gC^) =
<|

a, 1 -C < X < 1, F23(x) =

1, 1 <x,

/'O, x< 2 - 2£ ,

Fl3(x) = <T(a,b), 2-2e<x<2-^,

(l, 2 -C < X,

vjhere < C < 1/2

.

Using the results of Lemma h together with <€ ^l/2, it follows that only

the permutations of one triple of distinct points needs to be investigated.

Furthermore, in view of the symmetry of F , there are only three distinct

permutations. Condition (SA-IM^) is automatically satisfied for those values

of X or y making either distribution function on the right 2ero (since

T(0,a) = 0) and for those values of x -if- y making the distribution ftinction

on the left unity (since T(a,b) <. 1). The remaining possibilities need only

to be checked.

Case I. To show Fj_3(x + y)^T(Fi2(x), F23(y)).

(a) Let 1 - € < x < 1 and 1 - € < y j< 1. F]_3(x -i- y) is

at least T(a,b) and T(Fi2(x),F23(y)) is at most T(a,b),

then F^3(x + y) >:T(a,b)^T(.F^2(^)'F23(y)) implies

Fl3(x + y) >.T(Fi2(^0,F23(y)).

(b) For what follows it is iiiiportant to note that equality is

attained for x = y = 1 - ^/2. Let 1 -e < x < 1, 1 < y.



11

or 1 -£ <y<lj 1< -• Then 2 - € < x -5- y, so that

F^^(x + y) = 1; hence, Fi3(x + y) > TCr^gCx) ,F23(y))

.

Case II. To show Fi2(x + y) > T(Fj_3(x) ^Fg^Cy))

.

^12^^ + 3O =0 unless x > 2 - 2£ and y > 1 - £ in which case

F]_2(^ + y) = !•
^ip(^^

"* y) "^ 1^ because x + y > 3 - 3€ or

x+y>3(l-£ ); therefore, Fi2(>^ + y) = 1. On the other

hand F23(x), xjherc x>2-2£j is at most one and F2:)(y)

where y > 1 - € is at most one; hence,

Fi2(x + y) > T(F^3(x) ,F23(y)) .
.

Case III. To show F23(x + y) > T(F2_3(x) ,Fj,2(y))

.

The left member is zero unless x > 2 - 2€ and y > 1 - £,

hence the proof is similar to that of Case II.

Now with every point (a,b) in the interior of the lonit square, a triple

of points in S whose distance distribution functions are defined as above can

be associated. Thus, each (a,b) has a triangle corresponding to it. Define

the distribution function of any pair of points belonging to different tri-

angles to be H(x - 1), where H is the distribution ftinction defined earlier.

The totality of triangles of points so obtained will be the SM-space of the

theorem.

It remains to show that (SFi-lY^) holds for distinct triples involving

points from two or three triangles. If the three triangles are distinct,

SM-IV,^ becomes H(x + y - l) ^ T(K(x - l), H(y - 1)). The right member is

sero unless x and y both exceed one; but then x -a- y > 1, so that H(x + y - 1)

= 1.

If there are two triangles, then one of them will contain e^cactly one

point of the triple, say p. If p appears on the left in (SI-IV^J , then
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." + y > 1 naltes the left meniber one and x + y < 1 makes the right raeiiber

^cro. (Hote: This is vihy one needs to talie £ £.1/2.) If p does not ap-

pear in the left neniber of (SM-IV,^) , then it appears in both distribution

functions on the right. Hence the right rieniber is zero unless :c and y are

greater than 1, but then x + y > 2 and the left member is one.

It has thus been established that the collection of triangles is a Mcnger

space tmder the given T. Furthermore, for this Henger space, the given T is

the strongest possible. It cannot be strengthened at any point (a,b) in the

interior of the square^ for, by construction, the corresponding triangle is

such that for some numbers >:,y (Sl'I-IVrn) holds with equality when the argu-

ment of T is (a,b)

.

Also, it should be noted that since the associativity of t-functions i';as

not used in the proof of the theorem, the results i-fill be true for fianctions

which are not strict t-ftinctions.

In constraining T so that it cannot be strengthened, the construction

in the proof of Theorem 1 used distinct triangles for distinct points in the

dorriain of T. There is, therefore, an uncountable number of points in the re-

sulting Henger space. However, a space viith a countable number of points for

which T is continuous x;ill be sufficient; since it suffices to constrain T

on a countably dense siibset of the unit square, [jl

The question of whether a given Menger space lias a strongest T such that

(SH-IV,^.) holds is the next item to be investigated.

Theorem 2. If (S,F) is a given SM-space and iTj^j, oc in A, is a collec-

tion of functions, each satisfying (a')j (b), (c), and (Sll-IM^) on the space

(S,F), then so does sup T^ .
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Proof: Condition T(0,0) = 0, T(a,l) = T(l,a) = a implies that ^T ^'> is

bounded. The collection \Toi.\ iieing botinded iraplies that sup Toe satisfies

(aO, (b), (c), and (SM-IV^).

Corollat^- For every Menger space there is a unique strongest T satis-

fying all the conditions required of a t-function except possibly the associa-

tivity condition.

Example: Let T2_(x,y) = Max(x + y - 1,0). Let T2(x,y) = 3A if

3A<x,y < 1, T2(a,l) = Tgd^a) = a, and TpCx.y) =

othcnjise. Both T^ and T2 can be shoi-;n to be associative.

HoiiTever, T = I-Iax(Ti,T2) is not associative because

T(T(3A,3A),l/2) = T(3A;l/2) = lA while T(3A,T(3A,lA))= •

T(3A.lA) =0.

This example shows that the supremuni of tiro associative ftmctions need

not be associative and leads at once to the next theorem.

Theorem 3- There is a I-Ienger space for which there is no strongest t-

fxinction.

Proof : Using Theorem 2, the T in example 2 has all the properties of a

t-function except associativity. It ^^ras noted immediately following the proof

of Theorem 1, that the construction in the theorem applies to yield an SM-

space such that this T is the strongest function satisfying (a')> (t>), (c),

and (SM-IVj^). This Sl-I-space is a Menger space rinder T^ and T2. Thus, if

there were a strongest t-fianction, it would be stronger than T. Since this

is impossible, the proof is complete.

At present it is not knoxm vihether the set of allowable t-f\anctions for

a I-Ienger space will have a maximal element. A partial result can be obtained

in this direction.



:i;

Definition h. A two-place function F is left continuous if lin F(x,b) =

X—*a-

F(a,b) and lim F(ajy) = F(a,b) for all (a^b) in the domain of F.
y-^b-

Theorcra k. If (S,F) is an Sl-I-space and G the set of all left-continuous

t-functions T for v;hich (SjF,T) is a Menger space, then G has a maxiiiial element.

Proof ; The set G is partially ordered by tlje relation "stronger than."

Since a partially ordered set contains at least one naxiraal simply ordered

si±)set (Zorn's Lemma), it is sufficient to sho^^r that the supremum of any to-

tally ordered subset of G is again in G. Let|Tj^u oc in A, be such a totally

ordered subset. The order on vT^V induces an order (<) on A, where o^ < G

if and only if T^ < T^ .

Let T = sup T^ . In view of Theorem 2 it suffices to show that T is left

continuous and associative.

Fart I. To shoxv that T is left continuous, let x,y, <x,y < 1, and

£ > be given. Then-there is an ,p^ such that 0<.T(x,y) - T- (x,y) < £/2;

and because of the left-continuity and monotonicity of T^ , there is a ^ >

such that for <x - x' <^ ^,

<T^(x,y) - T^ (x',y)<V2.

Furthermore, from the definition of T,

T^ (>:',y) - T(x',y)< 0.

Combining these three inequalities yields,

T(x,y) - T(xSy) < e,

v;henever < x - x' < £ ; hence, in view of the monotonicity and symmetry, T

is left-continuous.

Part II. To show that T is associative, it s\iffices to show that

T(T(ai,bi)ci) is invariant xinder any permutation of the elements (ai,bi,ci).

Let (a?,b2,C2) be such a permutation and let £ > be oiven. Since ]t -I is
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totally ordered J there is a ^ such that

<T(T(a.,b.),c.) - T^ (T(a.,b.),c.) < ^/2, i = 1,2

and, from the definition of T and the fact that Td is left-continuous, there

is anoi > /5 such that both T(a^/D^) - T^^{zi,hi) and T(a2,b2) " V^^2'^2^

are so srnall that

< T^ (T(ai,bi),c.) - T_^ (V(ai,bi),Ci) < 6/2, i = 1,2.

Since ^>^, it follows that

T^(T^3^(a.,bi),c.) - V(T^(ai,bi),c.) <0, i = 1,2.

Coiriining the inequalities one obtains

0<T(T(a^,b^),cp - Tj..(Ta.(ai,b3_),c^) < £,

and

0<T(T(a2,b2),C2) - V (T^ (a2,b2) ,02) <€.

Eou Ta, is associative and syiranetric, so that.

V(V(a^,bp,c^) = T^(T^(a2,b2),C2).

Consequently,

T(T(a3^,b^),c^) - T(T(a2,b2),C2)<C,•

hence the proof is nov; complete.

3. 'Tald Soace. Txhe other Generalized trianale inequality to be considered

is due to A. Wald. It is

IV,, FpJx)>^q-x-Fj (x), forallx>0, '

where -x- is the convolution defined by

Since F (x - y) = for y > x and F (y) = for y< 0, it follows that
pq 'V



Due to the fact that the convolution of the distribution functions of two in-

dependent random variables gives the distribution of their sura, the interpre-

tation of IV,., is: The probability that the distance from p to r is less than

X is greater than or equal to the probabilities that the distance from p to

q and the distance from q to r is less than x.

Definition _|. A IJald space is an SI-!-space in which IV.,, holds universally.

Theorem 5- A Wald space is a Kenger space under the choice T = Product.

Proof : Choosing a Wald space and for any x,y >.

rx-iy

Fp^(x + y)> ( Fpq(x + y-z)dFq^(z),

x+y ^^*y /•
^*y-^

Fpq(x + y - z)dFq^(z)

^0 '- -^0
-

^^pq(t)dFqr(^)^

^W^) i

'^ ^qr(^)

t,2>

t + z <. X 'i^ y

^W^^V^^^> ^W^^^qr(^)-

t,2 >

t + 2 < X + y

Since the rectangle < (t,z) ; < t < x, < z < y'j is contained

in the rectangle |(t,z) t,z> o]and the F's are non-decreasing



17

Jo Jo

0<z<y

'•X

'0

Hence Fp^Cx -> y) >^Fpq(x)F^^(x) .

Corollary. If the VJald inequality holds, then so does the inequality IV.

Proof ; If F (x) = 1 and Y {y) - 1, then by using the ahove theorem

F ^(x ^ y) > 1; hut Fpj.(x + y) cannot be greater than one by definition, hence

Fpr(>-'^ 30 = 1-

Lenira. ^. If the points p,q,r are not all distinct, then IV;.r holds for

the triple p,q,r.

Case I. If p = r 7^ q,

then Fpj,(x) = 1 for x > and F_3,(x) =^0 for x > C; hence

Fpj.(x) = H and, therefore, Fp^(x) >
(

Fp^Cx - yW^^^^y).

Case II. If p = q 7^ r, then for x = -'O

V^'^'^qr' 'iPqrty) -

I

K{x - y)dF^^(y)

° r
°

Fpp(x - y)dFq^(y) = Fpq(x - y)dFq^(y).

Case III. If p / q = r, then for x >

V^^ "^

V""^ ^
j ^W^^ "( H(x-y)d(Fpq(y))
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r c= Fqq(x - y)d(Fpq(y)) = F^^Cx - y)dFpq(y)

.

Theorea 6. If in an Sli-space IV
ji
holds under T = Max for all triples

of distinct points, then the space is a l-Jald space.

Proof: Let p,q,r be distinct points. Then for any x >;

cFpq(x) >I.to(Fp^CO),F^^(x)) - Fq-(x) -
I dFj,j.(y)

r
/O

Hence IV,, holds for all triples of distinct points in the space. Using the

preceding lemna, IV^j holds autonatically for all triples of non-distinct

points. Consequently, IV holds for all triples of points iii the space.

[;. Equilateral spaces. The siinplest metric spaces are called equilateral

spaces. I'Jhere the distance between p and q is

(a if p ;^ q
d(p,q) =

/ . if p = q

I'.IoH an SH-space is equilateral if for some distribution function G satisfj'-ing

C-(0) =0,

fG(x) if P 7^ q

P? (k(x) if p = q

where H is the distribution function described earlier.

Theoren 7. The means, medians, etc. of the statistical distances in an

equilateral SK-space form an K-space.

Proof ; Any one of the quantities is zero when p = q and a fixed positive

nrmber for any p,q when p 7^ q. Hence they satisfy the postulates for a metric

space

.
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Tncorem 8_. In an equilateral SIi-spacc_, the Hengei" triajinle inequality

lY-j, holds for any triple of distinct points under T = r-Ia:v and holds univer-

sally under T = Hin.

Proof : G(:: + y) > Ka;<G(x) ,G(y)) ^ IIin(G(x) ,C-(y) ) holds uhen all three

points are distinct. l^Jhen all three are not distinct^ the result is.

g
G(x+ y) >I.Iin(G(x),l).

Corollary . An equilateral SM-space is a VJald space.

Proof : By the above theorer^i it should be noted that an equilateral SM-

space is a Ilenger space -.-here T = Kin holds universally. Hence using Theorem 2,

it follows that an equilateral SM-space is also a ¥ald space.

Examples of equilateral SM-spaces in which IVj^j holds for stronger choices

of T follows.

Exanple 1

.

To X <

G(x) =
<| X < x^l

1 l<x

This is a very sinple ton?, of the uniforiii distribution function. It is noted

that for any triple of distinct points in this space IVj,, holds under

T = Min(Sura, 1) , since G(x + 3O > Min(G(x) + G(y),l).

ExaiTiple 2.

^0 X <

G(x) =
f _ ,

(^1 - e ^ x>

For any triple of distinct points in this space, IVj^ holds under T = Sim -

Product. To prove the previous statement, it sxiffices to consider values of

x,y > 0. Thus, the t-function becomes

T(C-(x),G(y)) = 1 - e-^^ + 1 - e-y - 1 + e"- + e'y - e"^^ -" ^^
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Using the above results along with the definition of G(x), it follous that

G(x + y) > Sun - Product.

The above tvjo exangsles shovi that there are equilateral Sl-I-spaces in which

the generalized triangle inequality IVj-, holds under a stronger T than T = Max.

In order to sho^^^ that T = Max is the best possible t-iunction, the following

example will suffice.

Example 3-

^0, X <0

G(x) = \

a, < X < k

b

,

k < x < 3k

^1, 3k < X

where a<.l, 0<a<b<l, and k is any positive nuriber. Then for C<x^k,

k < y <3k, G(x + y) = b = Max(a,b); hence IV^^ cannot hold under a choice of

T T-:hich is stronger than T = Ilax.

5. sinple Spaces . Let (S,d) be an Il-space and G a distribution function,

differing from H, and satisfying G(0) = 0. For each pair of points p,q in S,

define the distribution function Fpq as follows:

5G(x/d(p,q)), p 7^ q

P"^ (hCx) P = q.

Definition 6. An SK-space (S,?) is said to be a simple space if and only

if there exist a metric d on S and a distribution function G satisfying G(0) = 0;

such that, for every pair of points p,q in S, F(p,q) = Fp^ is given by

rG(x/d(p,q)), p 7^ q

P^ (h(x) P = q

Furthermore, (S,F) is called the simple space generated by the M-space {S,d)

and the distribution function G.



Thcorer:! 9- A siiiiplc space is a Jlenger space umder any choice of T sat-

isfying (a'). (i>), (c), and (d')-

Proof ; It is sufficient to shou that IV^v, holds under T = Min since this

is the strongest T possible. Thus, in vicu of Lemua h, it suffices to shoi-i

that for pjq,r distinct

(1) Gi^A4>i:in(G(.Vd.(p,q)),G(y/d(p,r))).

IJote: d(pjr) < d(p,q) -J- d(q,r) implies that 1 >^ 1 ,

d(p,r) — d(.p,q) -5- d(q,r)

hence (2) (x -^ y) ^ _^_JL±JL
d(p,r) — d(p,q) + d(q,r).

Also, since d(p,r) and d(p,q) are positive,

(3) I-Iax(x/d(p,q),y/d(q,r)) >_^ ^i_y

>Kin(x/d(p,q),y/d(q,r))

vjith equality follovxing if and only if x/d(p,q) = y/d(q,r). On coinbining the

inequality (2) and the right-hand inequality in (3), one has

y -^ \^

^^^^~y > Kin(x/d(p,q),y/d(q,r)),

which, since G is non-decreasing, ir.tplies

^^^> Hin G(x/d(p,q)),G(y/d(q,r));

hence the theorem follows.

Corollary . An equilateral M-space generates an equilateral SK-space.

Proof ; IJow

(a if p f q
• d(p,q) =

[P
if P 7^ q.

Then

\G(:</a) = G(X) p ^ cr

P'
'H(x) =H(x) p = q.
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Fron the left-hand neinber of (3) where T = Max for distinct triples of

points p,q,r such that d(p,r) = d(p,q) + d(q,r), it follovjs that IV~^ nay not

hold universally. This leads to the following theorem.

Theorem 10. If (3,6.) is a finite-dincnsional Euclidean space, G is a

continuous distribution function such that G(0) = and < G(;0 < 1 for all

X > 0; then I'in is the strongest T under which IV^^ holds for all triples of

distinct points.

proof: Suppose T is stronger than I-Iin. Then there exists at least one

pair of nuixiers a,b(0 < a,b < l) , such that T(a/D) > I-iin(a,b)

.

Case I. If a = b, choose x = 3^ such that G(x) = a and choose d(p,q) =

d(q,r) = ljd(p,r) = 2. Then since equality is attained in inequality (1),

one cannot have T(a,a) > riin(aja) = a.

Case II. If a 7^ b, one can choose a < b. Let £ = T(a/D) - I':in(ajb)

and let u,v, be such that a = G(u) and b = G(v) . Such nur.ibers u and v clear-

ly exist since G is a continuous distribution function; in addition, u < v.

Moreover, since G is continuous, there exists an h > such that

G(u + h) <G(u) -3- c = a + £ .

Let d(q,r) = t be fixed. Then d(p,q) can be chosen so that

d(p,q) = s such that '^ < ^ }

s + t v - u

d(p,r) = d(p,q) + d(q,r) = s + t,

X = ud(p,q) and y = vd(q,r)

.

Then

Kin [G(:./d(p,q),G(y/d(q,r)j] = Kin [g(u),G(v)] = Hin(a,b) = a;

furthermore,
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This contradicts the h;;,'pothesis

G (j(j^= T(a,b) > I-Iin(a,b) + £ = a -^ 6 .

Up to this point it has been shovm that every VJald space is a Kenger

space tinder T = Product, and also that cvcr;^'- equi lateral space is a l-Jald

space. This is not the case for si:itple spaces as the results of the next

theorem uill indicate.

Txheoren 11 . There exist sintple spaces which are not I'Jald spaces.

Proof : A counter-example will be sufficient.

Example. Let the distribution function be defined by:

(ii) F (x) = 1 - e-yMv,q.).
pq

Nith d(p,q) = R,d(q,r) =* S and d(p,r) =» T, two cases arise.

Case I

.

t

x

F -"- F
pq " qr

(x) =

^0

"pq(^< - y)V^^^ R / S

''0

1 - exp - ('- - y) d( 1 - exp{ -I)

)

R S

X

(1 - exp -l2LZ_yI|exp(-g)dy

i
j

.(e>cp(-|) - exp(-^)exp(-| + |))dy

= i(

/
X /X

exp(-I)dy - exp(-g) exp(-2_J_Sy)dy)
R SR

^ -R-Ts^ ' '^^-^ -S • exp(^)
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Case II.

L pq q^:"
(x) =

pq
(x - y)dF„^(y) R = S

1 - c:<p(- (^ -y) )d(l - 8xp(-I))
R R

(e:q)(-I) - exp(-5)dy
H

Jq
R

1 - e>:p(-|) - i • expi--)^

= 1 - (1 + Be5<p(-g)

The above results can be stated briefly as:

pq " qr (x) =

jl -^-r§- (^ • exp(-|)) R /S

1 - (1 + |) . eM-q)
R R

R = S.

In order that the VJald inequality IV^.r be satisfied, it nust be true that

(6) Fpq(x)> Fpq -;;- FqJ (x) for every X > 0.

Suppose H ^ S, say R > S. Then keeping x fixed and applying the r.ean value

theorem to the second tern of

' i\
' pq " ' qr (x) = 1 - ^J~ (R • exT(-^) - S • e>:p(-|)),

K ~ o i\ o

for R 7^ S it follows that

(7) ^pq
''"

^^qr

x
(x) = 1 - (1 -J- T)exp(-25)), where S < t < R.

Furthermore, if R = S, it follows on comparing (7) with (i;) that (?) holds

when t = R. Thus, in both cases in order that (6) holds, it is necessary that

(14- |)exp(-^) > e>g3(-£:) for all x > 0;
t T
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that is

1 + J > exiD(x(i - 1) for all x> 0.t— -^ ^t T

This is true if and only if (-r - ^) <^ 0; therefore, T < t. In particular it

is necessar;^'- that T < R. This neans that the side of the triangle pqr uhose

length is T certainly cannot be the longest side of the triangle. Thus, it

nust be concluded:' If d(p,r) > Max(d(p,q,d(q,r)) , then the I-Jald inequality

will fail to hold for sufficiently large x.

TOPOLOGY, COl'JVERGaJCS, COKTIIIUIIY

In order to discuss the topology of an I-I-space, the definition of a

neighborhood is needed.

Definition . A set U in a topological space (,X,S) is a neighborhood

(x7—neighborhood) of a point x if and only if U contains an open set to which

X belongs.

A similar definition for a neighborhood in an SM-space is needed before

one can examine the topologv,' of an SM-space. There are several non-equivalent

definitions for a neighborhood in an SM-space. The one defined here most

closely reserribles the classical neighborhood on an M-space.

Definition ?• Let p be a point in the SM-space (S,F) . 3;/ an £ , A

-

neighJ:>orhood of p, £ > 0, A > is meant the set of all points q in S in

which F_q( £ ) > 1 - A . Thus,

lJp(€,A) = [qjFp^(£)> 1 - a].

The interpretation is: l]^{£ ,a) is the set of all points q in S for

which the probability of the distance from p to q being less than € is greater

fnan 1 - A • Observe that the above definition shows that the neighborhood

of a point in an Sl-I-space depends on two parameters.



Thcorer: 12. In a siraple space, Kp( £ ,^) is an ordinary spherical neigh-

borhood of p in the generating I-I-spacc.

Proof : For an^' p,q it follows that

Fpq(e) = G(£/d(p,q)),

which will be greater than 1 - A provided only that d(p,q) is stifficiently

snail.

Le^ma $. If 61 ^ € 2 ^^^ ^i < X2' ^^^'^ ^^p^ ^ I' '' i^ '^ 'T^ ^ ^' '^ 2) •

Proof : S-appose q cKp( C^^, \{) , so that ^-pqi ^ {) > 1 - ^i* "hen

F ( e 2^ — ^pq^ e]_)>l-^i>l-X2' ^^'^^^^ ^y definition q e IIp( £ 9^ ^ 2) •

Theoren 13. If (S,F) is a Menger space and T is continuous, then (S,T)

is a Hausdorff space in the topology induced by the family of €,A- neighbor-

hoods )W-o I
•

Proof: In order to prove the above theoreiTi, the following four condi-

tions nust be satisfied.

(a) For every p in S, there exists at least one neighborhood, il^ of p

and every neighborhood of p contains p.

(B) If 11^ and Up are neighborhoods of p, then there exists a neighbor-

hood of p, lj3 such that lU c N,p • K^. (Ilote: id • l'l| is used to

represent the intersection of the two neighborhoods.)

(C) If Ep is a neighborhood of p and q e Wp, then there exists a neigh-

borhood of q, Wct, such that N CIL.
H q p

(D) If p f^ q, then there exist disjoint neigliborhoods TI^-, and IJ_; such

that p is an element of Up and q is an element of ITg.

Proof:

(A) For every e > and every A > 0, p is an element of IJ ( £ , A ) since
P

Fpp( € ) = 1 for any <? > .
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(3) Let

Kl(ci,>l) = [q;Fpq(€i)>l - A.

and

|(e2. '^2) = [^^Vi^^'2^> 1-^2)

be the given neighborhoods of p, and consider

*pq

Clearly p is an element of IJ^; and since Min( ^
]_>

<^ p) <1 €•[_ and

Min( Xi,X 2):^ \i> ^y Lemma $, K^ d Np. Similarly N^ CKp, hence

Ti^ci^^ • k|-

(C) Let Up =
j 3rjF"pi:-( £i)> ^ - -^

i''
^^^ the given neighborhood of p.

Since q C IJ

Kovj F^-, is left continuous at <S^. Hence, there exist an £^ < €.
pq -- V i

and a Xq < Ai such that

Fp^(eo)> 1 - A-o> 1 - A^.

Let Kq = [r;Fp^( Q^^y 1 - ^^, where 0<e^< £^ - ^^ and >
^

is chosen such that

T(l - Aq,1 - A2)> 1 - A^. ,

Such a X2 exists since by hypothesis T is continuous;, T(a,I) = a,

and 1 - Xq> 1 - A]_. rJovj suppose s e W^ so that

Fq3( C2) > 1 - A^.

.Then

Fp3(e^)> T(Fpq(eo),Fq3( £1 - eo))>T(Fpq(eo)>?qs(e2))>

T(l - Aq^I - A2) > 1 - ^1-
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This means s is an element of IJ ; hence. IJ^ is contained in K^.

(D) Let p / q. Then there exist real nuiriiers x and a, x > 0, O^a <1,

such that Fp^Cx) = a. Let

Kp = [r;Fp^(x/2) > bj and \ = [r;Fg,,(x/2) > bj ,

vThcre b is chosen so that < b < i and T(b,b) > a. Such a number

b exists, since T is continuous and T(l,l) = 1. ?Jow suppose there

• is a point s in Np • Wq so that Fps(x/2) > b and Fqs(x/2) > b. Then

a = Fpq(x)> T(Fps(x/2),Fq3(x/2)) > T(b/o) > a

which is a contradiction. Thus, K^ and 11 are disjoint.

The concept of being a Hausdorff space in the topology/ induced by the

fanily of c , X -neighborhood p' [ will be investigated further; but first,

continuity properties in an SH-space will be considered.

In an li-space the notion of convergence of a sequence of points /p r

to a point p is introduced by using the concept of neighborhoods. A distance

fvinction d is continuous on S if Pn—> P and q^—>q, implies a(x>^,q^)—>d(p,q).

Using the definition of neighborhood in an SM-space, one finds that a

significant difference arises, for there are tv;o distinct types of questions

regarding convergence and continuity to be investigated, namely,

(a) Those relating to the distance function F(x) considered d as a f-onc-

tion on SXS—either for a fixed value of x or for a range of values.

• (b) Those relating to the individual distribution functions F-t—either

for a fixed pair of points (p,q) or for a set of pairs of points.

As was to be expected, these questions are not independent.

Definition 8. A sequence of points ^pj^^ in an SM-space is said to con-

ygrge to a point p in S (denoted by p^ > p) if and only if for every ;^ >

and every € > 0, there exists an integer M^ ^ , such that p^ is an element

o^ J^'p( £ jA ); therefore, F (x) = 1 - A whenever n > M^ ^_ .
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Le^a 6. If p^—^ p, then F^^^ > ?^^ = H.

proof: (a) if x > 0, then for every A > there exists an integer

IC, X such that F-^p (::) > 1 - A whenever n > I-I,,;, x .

This neans that lim F_„ (x) = 1 = F_^(x)

.

(b) If x = 0^ then for ever/ n, F (0) = 0-, and hence,
?Pn

liru F^„ (0) = = F^„(0).

If F > F , then for every £ > and every A> there exists an

integer H ^ , x such that p is an element of i\J^( £ jX ) ; hence b3^ definition

P —b P-
•^n ^ ^

Corollary . The convergence is uniform on any closed interval [a, b] such

that a > 0; therefore, ¥yj \ is independent of x for a ^ x<.b, a > 0.

Proof ; For any x, a^ x< b, (a > 0) F^p (x) > Fpp (a).

Theorem lU- If (S,F) is a Menger space and T is continuous, then the

statistical distance fimction, F, is a loiJer semi -continuous function of

points; therefore, for every fixed x, if q^^—> p and p^^—) p, then

Proof: If X = 0, then for everj^ n, F_ ^ (0) = = F^^(O). Suppose then
'^n^n P^

that X > 0, and let £ > be given. Since F is left-continuous at x, there

is an h, < 2h < x, such that

Set F (x - 2h) = a. Since T is continuous and T(a,l) = a, there is a nuriber

t, < t < 1, such that

T(a,t)> a - G/3

and

.T(a - G/3, t)> a - 2^/3.



Since q ^q and pj^—> p by Leima o, there exists an integer 11;^^^

that F^^ (h) > t and F__ (h) > t, whenever n > I-L ^.

Uov;

Wn^^^^^'^^W^^-^^'W^^^^
and.

Fp^,(x-h)>T(Fp,(=.-2h),F.j,^(h)).

Thus on coiiibining the various inequalities^ it folloxjs that

F (x - h) ^T(a,t)> a - e/3.

30

such

Kence,

F„ „ (x) > T(a - c/3,t) > a - 2 €/3 > F (x) - e .

Pn^n ^^

Corollary 1. Let p be a fixed point and suppose q^—> q. Then

lininf F (X) =F (X).

n—> CO "^'•

Corollar;/ 2. If (S,F) is a I-Jald space, then F is a lower senicontinuous

function of points.

Proof; oi/ Theorem ^, the I'cnger inequality holds in a Hald space under

the continuous ftinction T = Product.

Theorem 15- Let (S,F) be a Kengcr space. Let T be continuous and at

least as strong as I-]ax(Sun - 1;,0). Let p^^—>. p, q^ *q and assuaie that F

is continuous at x. Then F^ ^ (x)—> F„-(x) , Therefore, the distance func-
Pn-n Po-

tion F is a continuous function of points at (p,q,x), or expressed in another

way, the sequence of functions JF ( converges weakly to F .

^ Pn^n-^ ^ '

Proof: Using Theorem lU, it is sufficient to prove that F_ g is upper

semicontinuous; that is for e > and n sufficiently large.
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S'appose then that £ > is given. Since F^^ is continuous at y., there exists

an h > 0, such that

F (:c+ 2h) - F„ (x)<^/3.

By Leiima 6, there is an integer M such that the conditions,

F^^(h) > 1 - dy3,

are simultaneously satisfied for all n > M. From IV^^j

F (:c ^ 2h)^T(F (x + h),F (h))
pq P4n q^n

Kot; by the hypotheses, T is at least as strong as Ka:c(Sum - 1,0), so that

by corJDining the inequalities, it follows that

also

Fp^(x . 2h)^ Fp^^Oc - h) ^ F^^^(h) - 1 >Fp^a^(x) - 2 €/3.

Upon co.iibining this last inequality uith

Fpg(x*2h) -Fpq(x)<e/3,

This cor^letes the proof.

Corollar^r \. . Under the hypotheses of Theorem 15, if q >q, then

Corollary'- 2. If the functions F-^ are each continuous functions for all

p,q, in S, then F is a continuous function of points.
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Corollar/ 3. If {S,F) is a IJald space and if the functions ?pq are each

continuous, then r is a continuous function of points. There are several ex-

araples uhich shov; that, given a topological space S, it is not true that one

can always define a metric for S xjhich v;ill induce the given topology of S.

Kaking S into a metric set is a simple matter; for exai;rple,a metric can be

defined for S by

d(p.q) =1 ii P r q,

d(p,q) =0 if p = q.

Obtaining a metric for S that will induce the original topology of S is a far

deeper problem. Such a metric rray be obtained only if the given space S is

vjhat is i-jiown as a metrizable space.

Definition 9. Let S be a topological space with topology,' / . Then S

is said to be metrizable if and only if it is possible to define a metric for

S v/hich will induce the topologi^ T , In particular, a metric space is a me-

trizable space for uhich a metric has been specified.

It has been shown that a large ntimber of SK-spaces are Hausdorff spaces.

As an immediate consequence of a generalization of Theorem. 13, one can prove

that a large number of SM-spaces are metrizable. Therefore, in niimerous in-

stances the existence of a statistical metric implies the existence of an or-

dinary metric.

Theorem l6. Let {S,F) be a statistical metric space, U the tv:o -parameter

collection of s;±)sets of SXS defined by

U =U(£ ,X)l £> 0,^>0,

".rhere

U(e ,pj =
i (p,q)ip,q in S and Fpq( £ ) > 1 - Aj,

and a tvjo place function T from [o,Tl X [o^lj to [o,Ij satisfying
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T(c,d) > T(a,b) for c :> a, d ^ b, and sup T(:<;,x) = 1. Suppose further that
x< 1

for all p,q,r in S and for all real nup±)ers ;:,y, the ilenger triangle in-

eqvjiality ^

is satisfied. Then U is the basis for a Hausdorff uniforaity on sX S.

Before proving the theorcn, one inust first become fardliar v;ith the con-

cept of diagonal, uniform space, and a basis for a uniform space.

To start with consider subsets of a Cartesian product S X S of a set S

vrith itself. Such a subset is a relation U. A relation is a set of ordered

pairs; and if U is a relation, the inverse reljition U"-^ is the set of all

pairs (x,y) such that (y,x) are elements of U. The operation of talking in-

verses is involutory in the sense that (U"^)~^ is aluaj^s U. If U = U"'^, then

U is called symmetric . If U and V are relations, then the composition U <> V

is the set of all pairs (x,2) such that for some y it is true that (x,y) is

an element of V and (y,z) is an element of U. The set of all pairs (x,x) for

X in X is called the identity relation, or the diagonal and is denoted by A

•

A uniforrdty for a set X is a non -void family Zl of subsets of X X X

such that

(a) each member of U contains the diagonal A J

(b) if U is an element of 2Z, then U"-'- is an element of U;

(c) if U is an element of 7/, then V o v is contained inl<^for some

V in 2^::^;

(d) if U and V are members of 7J , then U n V is an elem.ent of U;

(e) if U is an element of "^ and U c v c xXx, then V is contained

in U .

The pair (X/U) is a uniform space.
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The proof of Theorem 16 is an iirjnediats consequence of the following

theore.^! x;hich is stated without proof.

Theorcn I?. A family ^ of svibsets of x/ X is a base for sone imiforn-

ity for X if and only if

(a) each nernber of ^^ contains the diagonal A ',

(b) if U is an element of fj , then U~ contains a mei-nber of ^ ;

(c) if U is an element of ll , then V o v C U for some V in {» ;

(d) the intersection of tvjo members of (B contains a member of s^ .

Proof of Theorem l6:

(a) Let A =
j (pjp);p ^ Sj and U( f- ,A ) be given. Since for an;/ p

an element of S, F (6 ) = 1, it follov/s that (p,p) is an element

U( € ,A ) . Thus A c U( £ , /- )

.

(b). Since F q.
= F , U( € , X ) is symmetric; hence U( A ,£ ) ~ U~ ( £,A)-

(c) Let U( £ 5X ) he given. One must shoi.-; that there is a U, an ele-

ment of'tC, such that W t-j c u. Choose £' = t/2 and A' so

small that T(l-A',l- A') = l-X. Suppose that (p,q) and

(q,r) belong to I-J( e ', X'), so that Fpq( £») > 1 - X' and

Fq^( e') > 1 - >'. Then

Fp^(x + y)> T(Fp^(>:),Fq^(y))

Fp^(G )^T(Fp(.( £>),Fq^.( £>)) > T(l - X', 1 - X0> 1 - A .

Thus, (p,r) is an element of U( e, }.); this means that l-J
t.j (- y.

(d) The intersection of U( e , A ) and U( £', a') contains a member of 'U ,

nam.ely U(m.in( £, Ci),r.:in( A, X')-

ThuSj X(. is a basis for a uniformity on S Xs.

(e) If p and q are distinct, there exists an .£> 0, such that F ( £ o) =

1 - Aq. Coxisequently, (p,q) is not in U( €q, Aq) ^^d the unifon?.-

ity generated by il is separated and, therefore, Hausdorff.



3^

Mote that the theorem is true iii particular for all I-Ienger spaces in

uhich sup T(x,x) = 1. However, it is true as well for many SM-spaces which

x<l
are not I-Ienger spaces.

Corollary . If (S,F) is an Sl-l-space satisfying the hypotheses of Theo-

rem l6, then the sets of the form K ( 6 ,a) = iq; Fpq > 1 -
/^J

are the

neighborhood basis for a Hausdorff topology on S.

Proof: These sets are a neighborhood basis for the uniform topology on

S derived from U.

Theorem 18. If an SI-!-space satisfies the h;^^otheses of Theorem l6, then

the set determined by the sets lJ_( € ,A ) is metrizable.

Proof ; Let
} ( € n^ \i) \

"^'^ ^ sequence that converges to (0,0). Then

this collection is a countabls base. The metrication theorem found in Ul

states that a uniform space is metrizable if and only if it is Hausdorff and

its uniformity has a countable basis. In the previous work it was noted that

a space satisfying the conditions of Theorem l6 \-;q.s a Hausdorff space. It

was also shown that the space defined in Theorem l6 was a uniformity. Now

using these two results along with the countable basis, the conclusion of

the theorem follows.
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The concept of a statistical metric space uas introduced by Karl Ksnger

in 19li2. In this paper he used distribution functions to define the distance

bctvjeen tuo points. Such a distribution function nay be interpreted as the

probability that the distance between p and q is less than x and is repre-

sented by F (x). The use of distribution functions results from the obser-
•^ pq^ '

vation that tlie distance betvjcen t.jo points is not given by a single measure-

ment but instead is taken as the average of the distance obtained from several

measurements

.

The purpose of this paper is to investigate the properties of spaces de-

fined by distribution functions and the topological properties of such spaces.

A statistical metric space is defined and four conditions are given, which

it must satisfy. Upon examination of these four conditions, they are found to

be similar to the four conditions for a metric space. In fact, it is proved

that a metric space is a special case of a statistical space.

After defining a statistical metric space, the fourth condition (triangle

inequality) is changed so as to define a I-!enger space. The Menger triangle

inequality makes use of a special set of functions called t-functions. These

t-functions are investigated and it is shovm that given a t-function a Menger

space is constructed for which it is the strongest, in a certain sense. Also

for a special case of the t-function, the Menger space is found to be a statis-

tical m.etric space.

Another change in the statistical metric triangle inequality gives a VJald

space. The I-Jald space uses the convolution of two distribution functions to

define the triangle inequality. Under a proper choice of the t-function, it

is proved that a VJald space is equivalent to a Menger space. The VJald space

is also found to be a statistical metric space where the VJald triangle inequal-

ity holds xiniversally. Thus, the Menger and VJald spaces are both special cases

of the statistical metric space.



The topology of a statistical netric space is induced by defining an

C ,}- neighborhood Up = ) pjF (ri ) > 1 - AJ for ever^,^ £ > 0, and A > 0,

The resulting space is found to he a Hausdorff space. By generalizing the

above results, it is proved that a statistical metric space is r.etri'iable.

Therefore, in numerous instances the existence of a statistical metric im-

plies the existence of an ordinary metric.


