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Abstract

Zero-Inflated Poisson (ZIP) models are often used to analyze the count data with excess

zeros. In the ZIP model, the Poisson mean and the mixing weight are often assumed to

depend on covariates through regression technique. In other words, the effect of covariates

on Poisson mean or the mixing weight is specified using a proper link function coupled with

a linear predictor which is simply a linear combination of unknown regression coefficients

and covariates. However, in practice, this predictor may not be linear in regression pa-

rameters but curvilinear or nonlinear. Under such situation, a more general and flexible

approach should be considered. One popular method in the literature is Zero-Inflated Gen-

eralized Additive Models (ZIGAM) which extends the zero-inflated models to incorporate

the use of Generalized Additive Models (GAM). These models can accommodate the non-

linear predictor in the link function. For ZIGAM, it is also of interest to conduct inferences

for the mixing weight, particularly evaluating whether the mixing weight equals to zero.

Many methodologies have been proposed to examine this question, but all of them are de-

veloped under classical zero-inflated models rather than ZIGAM. In this report, we propose

a generalized score test to evaluate whether the mixing weight is equal to zero under the

framework of ZIGAM with Poisson model. Technically, the proposed score test is developed

based on a novel transformation for the mixing weight coupled with proportional constraints

on ZIGAM, where it assumes that the smooth components of covariates in both the Pois-

son mean and the mixing weight have proportional relationships. An intensive simulation

study indicates that the proposed score test outperforms the other existing tests when the

mixing weight and the Poisson mean truly involve a nonlinear predictor. The recreational

fisheries data from the Marine Recreational Information Program (MRIP) survey conducted



by National Oceanic and Atmospheric Administration (NOAA) are used to illustrate the

proposed methodology.
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Chapter 1

Introduction

The Zero-Inflated Poisson (ZIP) regression model is a simple two-component mixture

model that is often used for count data containing many zeros. In the ZIP model, one

component occurring with the probability ω is a degenerate distribution with mass one at

zero, while the other component occurring with the probability (1−ω) is a standard Poisson

distribution with the mean µ (see, for example, Lambert, 1992).

Under this classical ZIP model, the effect of covariates on the Poisson mean and the mix-

ing weight is specified by a proper link function (such as log link; logit link function) coupled

with a linear predictor which is simply a linear combination of unknown regression coeffi-

cients and covariates. However, in practice, this predictor may not be linear in regression

parameters but curvilinear or nonlinear. In other words, the observed features of the data

may not be consistent with the ZIP model. For example, in the paper of Lam et al (2006),

they found that age had a nonlinear effect on the outcome variable, the number of days of

missed primary activities in a given period. In the paper of Liu and Chan (2011), they found

that sampling (Julian) day had a nonlinear effect on the outcome variable, jellyfish catch per

unit. For such a problem where the predictor is not linear, one popular method called Zero-

Inflated Generalized Additive Models (ZIGAM) which extended the zero-inflated models to

incorporate the use of Generalized Additive Models (GAM) has been discussed widely (See,
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for example, Barry and Welsh, 2002; Ma et al., 2010). These models can accommodate the

nonlinear predictor in the link function.

As a goodness-of-fit test, it is also of interest to evaluate whether the mixing weight in

the ZIGAM equals to zero. But the revelent methodologies are all developed under classical

ZIP models rather than ZIGAM (see, for example, Jansakul and Hinde, 2002; Todem et al.,

2012). To our knowledge, there is no test for homogeneity under the framework of ZIGAM.

In this report, we propose a generalized score test to evaluate whether the mixing weight

equals to zero under the frame work of ZIGAM, focusing on the Poisson model. Technically,

the proposed approach is developed based on the novel transformation proposed by Todem

et al. (2012) and an assumption used by Ma et al. (2010). Their assumption assumes

that the smooth components of covariates in the Poisson mean and the mixing weight

have proportional relationships. In fact, ZIGAM coupled with this assumption is called

Constrained Zero-Inflated Generalized Additive Models (COZIGAM) (Liu and Chan, 2011).

In sum, the proposed test is developed under the framework of COZIGAM. A resam-

pling approach proposed by Lin et al. (1994) is adopted to characterize the null limiting

distribution of our test statistic.

This report is organized as follows. In chapter 2, we briefly introduce the ZIP model and

the COZIGAM. In chapter 3, the proposed score test based on the approach of Todem et al.

(2012) is discussed here as well as the resampling skill. In chapter 4, the performances of the

proposed score test are compared to those of the existing score tests (Jansakul and Hinde,

2002 and Todem et al. 2012). Also, a recreational fisheries data set is used to illustrate the

proposed methodology. Finally, some conclusions are provided in chapter 5.
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Chapter 2

Costrained Zero-Inflated Generalized

Additive Models

2.1 Zero-inflated Poisson Model

Assume that yi, i = 1, · · · , n, are counts from a ZIP model and xi = (xi1, xi2, · · · , xip)
′

is the corresponding p×1 vector of covariates. The probability mass function of the mixture

model is

Pr(Yi = yi) =

 ωi + (1− ωi) exp{−µi}, if yi=0,

(1− ωi) exp{−µi}µ
yi
i

yi!
, if yi > 0.

, (2.1)

where µi is the mean of the standard Poisson distribution and ωi is known as the mixing

weight. In the ZIP model, the zeros are generated from two different components: a de-

generate distribution with mass one at zero and a standard Poisson distribution with mean

µi. The first component occurs with the probability ωi and produces only zeros, while the

second component occurs with the probability (1−ωi) (Jansakul and Hinde, 2002). Lambert

(1992) used two link functions for the Poisson mean µi and the mixing weight ωi. The link
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functions are, respectively,

log µi = x
′

iβ and log
ωi

1− ωi
= g

′

iγ,

where xi and gi are covariate vectors and β, γ are t × 1 and r × 1 vectors of unknown

parameters. In equation(2.1), generally the mixing weights ωi are constrained in an interval,

− exp{−µi}/(1− exp{−µi}) 6 ωi 6 1, i=1,...,n. (2.2)

Since the mixing weight ωi can be either negative, zero or positive, the corresponding models

are Zero-Deflected Poisson, standard Poisson and Zero-Inflated Poisson, respectively (Dietz

and Böhning, 2000).

2.2 Constrained Zero-inflated Generalized Additive Mod-

els

Generalized Additive Models (Hastie and Tibshirani, 1990; Wood, 2006) have been used

widely in the literature to incorporate nonlinear predictors in Zero-Inflated models (See, for

example, Barry and Welsh, 2002; Ma et al., 2010). It is more flexible to use GAM in a

formal analysis due to the smooth terms.

In general, the Poisson means and the mixing weights in the ZIP model have the following

structures,

gµ(µi) = x
′

iβ and gω(ωi) = g
′

iγ,

where µi is the Poisson mean; ωi is the proportion of the extra zeros; the gµ(·) and gω(·) are

link functions for the Poisson mean and mixing weight, which are often assumed to be log

and logit link functions, respectively, under ZIP.

4



Under the framework of Zero-Inflated Generalized Additive Models, the more general

structures for the Poisson means and the mixing weights can be assumed as,

gµ(µi) = β0 +

p∑
j=1

sj(xij), and gω(ωi) = α0 +

p∑
j=1

hj(xij),

where β0 and α0 are unknown parameters; sj(·) and hj(·) are smooth functions which can be

estimated by the penalized likelihood approach (See, for example, Green Peter J., 1987; Liu

et al. 2012). Actually, the penalized likelihood estimator of sj generally equals to Q linear

combination of certain basis functions. In other words, the smooth function evaluated at

xi could be expressed as Diξ, where Di is the ith row of the design matrix D of the basis

functions, and ξ is the parameter vector to be estimated.

Here we also assume that some covariates affect the mixing weight and the nondegenerate

distribution mean proportionally on the link scales (Liu and Chan, 2011). Under this

assumption, the models have fewer unknown parameters and thus can be more accurately

estimated (Ma et al., 2010). Specially, we assume

hj = δsj.

ZIGAM coupled with this assumption is called Constrained Zero-Inflated Generalized Ad-

ditive Model (COZIGAM) (Liu and Chan, 2011). Under COZIGAM, the structures for the

means of the nondegenerate distribution and the mixing weights become:

gµ(µi) = β0 +

p∑
j=1

sj(xij), and gω(ωi) = α0 + δ

p∑
j=1

sj(xij),

where the unknown parameters of the model are consist of Θ=(β0, α0, ξ).
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Chapter 3

Main framework

3.1 Testing Hypotheses

As a goodness-of-fit test, one is often interested in the two-sided hypotheses,

H0 : ωi = 0, for all i vs. Ha : ωi 6= 0, for some i, (3.1)

where ωi satisfies the constraints in equation (2.2). To test these hypotheses, a suitable

natural transformation (Todem et al., 2012) of ωi that incorporates covariates should be

considered. The natural transformation is then given by,

ωi =
πi − exp{−µi}
1− exp{−µi}

, 0 ≤ πi ≤ 1. (3.2)

where,

πi = exp(− exp(x
′

iγ)) and µi = exp(x
′

iβ).
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Based on the transformation in equation (3.2), the hypotheses (3.1) are formally represented

as,

H0 : πi = exp{−µi}, for all i vs. Ha : πi 6= exp{−µi}, for some i.

If a suitable parameterization of πi is considered, the homogeneity hypothesis above is

reduced to a problem involving a small number of parameters (See, Todem et al., 2012). We

already know that the Poisson means under GAM have the following form,

µi = exp{β0 +

p∑
j=1

sj(xij)}.

Given the natural transformation and the proportional constraints on the GAM with zero-

inflated data, the quantity πi is assumed to be,

πi = exp{− exp{α0 + δ

p∑
j=1

sj(xij)}}.

We assume the following reparameterization, γ=β0 − α0. Then πi = exp{− exp{β0 − γ +

δ
∑p

j=1 sj(xij)}}. After the reparameterization, the new hypotheses are given,

H0 : γ = 0 and δ = 1 vs. Ha : γ 6= 0 or δ 6= 1. (3.3)

3.2 Score test under COZIGAM

In classical parametric estimation, the unknown parameters are commonly estimated

by maximum likelihood. However, for estimating GAMs, penalized likelihood method pro-

vides more powerful tools (Wood, 2000). For observations y1,...,yn, the penalized likelihood

7



function is given by

``(θ(β0, ξ), γ, δ, λ) =`(θ(β0, ξ), γ, δ)−
1

2
λξ

′
Kξ

=
n∑
i=1

{
I(yi = 0) log(πi) + I(yi > 0) log

[
(1− πi) exp{−µi}µyii
(1− exp{−µi})yi!

]}
− 1

2
λξ

′
Kξ,

where K = (K1,K2, . . . ,Kq, . . . ,KQ)
′

is the penalty matrix in which Kq is a 1 × Q

vector; λ is the smoothing parameter corresponding to the penalty term, which controls

the trade-off between the smoothness of the function and goodness-of-fit. The smoothing

parameter can be selected by generalized cross-validation (GCV). Since the score test only

requires the penalized likelihood estimates of the parameters under the null hypothesis, the

general score test only involves fitting the standard Poisson model with GAM for the mean.

Based on the above penalized likelihood function and the link function for Poisson mean µi

and ωi, the score vector is

S(θ(β0, ξ), γ, δ) =


Sθ(θ(β0, ξ), γ, δ)

Sγ(θ(β0, ξ), γ, δ)

Sδ(θ(β0, ξ), γ, δ)

 =


∂``(θ(β0,ξ),γ,δ)

∂θ

∂``(θ(β0,ξ),γ,δ)
∂γ

∂``(θ(β0,ξ),γ,δ)
∂δ

 ,

where

∂``

∂β0
=

n∑
i=1

{
I(yi=0) log(πi) + I(yi>0)

(
−πi log(πi)

1− πi

)
+ I(yi>0)

(
yi − µi −

µi exp (−µi)
1− exp (−µi)

)}
,
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∂``

∂ξq
=

n∑
i=1

{[
I(yi=0) log(πi) + I(yi>0)

(
−πi log(πi)

1− πi

)]
δ

p∑
j=1

sjq(xij)

+

[
I(yi>0)

(
yi − µi −

µi exp (−µi)
1− exp (−µi)

)] p∑
j=1

sjq(xij)

}
− λKqξ

′
,

q = 1, . . . , Q,

∂``

∂γ
=
∂l

∂πi

∂πi
∂γ

=
n∑
i=1

{
− I(yi=0) log(πi) + I(yi>0)

(
πi log(πi)

1− πi

)}
,

∂``

∂δ
=
∂l

∂µi

∂µi
∂δ

=
n∑
i=1

{[
I(yi=0) log(πi)− I(yi>0)

(
πi log(πi)

1− πi

)] p∑
i=1

sj(xij)

}
.

The expected information matrix I(θ(β0, ξ), γ, δ) can be partitioned as

I(θ(β0, ξ), γ, δ) =


Iθ(θ(β0, ξ), γ, δ) Iθγ(θ(β0, ξ), γ, δ) Iθδ(θ(β0, ξ), γ, δ)

Iγθ(θ(β0, ξ), γ, δ) Iγ(θ(β0, ξ), γ, δ) Iγδ(θ(β0, ξ), γ, δ)

Iδθ(θ(β0, ξ), γ, δ) Iδγ(θ(β0, ξ), γ, δ) Iδ(θ(β0, ξ), γ, δ)

 ,

where the elements Iθ, Iθγ=I
′

γθ, Iθδ=I
′

δθ, Iγ, Iγδ=Iδγ and Iδ are, respectively,

−E
[
∂2l(θ(β0,ξ),γ,δ)

∂θ∂θ′

]
, −E

[
∂2l(θ(β0,ξ),γ,δ)

∂θ∂γ′

]
, −E

[
∂2l(θ(β0,ξ),γ,δ)

∂θ∂δ′

]
, −E

[
∂2l(θ(β0,ξ),γ,δ)

∂γ2

]
,

−E
[
∂2l(θ(β0,ξ),γ,δ)

∂γ∂δ′

]
, −E

[
∂2l(θ(β0,ξ),γ,δ)

∂δ2

]
.
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Under the null hypothesis, the general score statistic is then

Sω = S
′

γ,δ(θ̂(β0, ξ), 0, 1)Λ−1Sγ,δ(θ̂(β0, ξ), 0, 1),

where θ̂(β0, ξ) is the maximum penalized likelihood estimator (MPLE) under the null model

and the MPLE has asymptotically normality (see, Liu and Chan, 2011); and

Sγ,δ(θ̂(β0, ξ), 0, 1) =


∑n

i=1

{
I(yi=0)(µ̂i)− I(yi>0)

µ̂i exp (−µ̂i)
1−exp (−µ̂i)

}
∑n

i=1

{[
−I(yi=0)(µ̂i) + I(yi>0)

µ̂i exp (−µ̂i)
1−exp (−µ̂i)

]∑p
j=1 sj(xij)

}
 ,

Λ = I∗γ,δ(θ̂(β0, ξ), 0, 1)− I∗γ,δ,θ(θ̂(β0, ξ), 0, 1)I−1θ (θ̂(β0, ξ), 0, 1)I∗
′

θ,γ,δ(θ̂(β0, ξ), 0, 1),

where

I∗γ,δ(θ̂(β0, ξ), 0, 1) =

 Iγ(θ̂(β0, ξ), 0, 1) Iγδ(θ̂(β0, ξ), 0, 1)

Iδγ(θ̂(β0, ξ), 0, 1) Iδ(θ̂(β0, ξ), 0, 1)

 ,

I∗γ,δ,θ(θ̂(β0, ξ), 0, 1) =

Iγθ(θ̂(β0, ξ), 0, 1)

Iδθ(θ̂(β0, ξ), 0, 1)

 ,
I∗θ,γ,δ(θ̂(β0, ξ), 0, 1) =

[
Iθγ(θ̂(β0, ξ), 0, 1) Iθδ(θ̂(β0, ξ), 0, 1)

]
.

As we mentional in previous chapter, we assume that µi=exp{β0 +
∑p

j=1 sj(xij)} and πi=

exp{− exp{β0 − γ + δ
∑p

j=1 sj(xij)}}. Under the null model, given that γ=0, δ=1 coupled

with θ̂(β0, ξ) which is the estimate of θ(β0, ξ), estimates of entries of the information matrix

are given by,
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Iθγ(θ̂(β0, ξ), 0, 1) =



∑n
i=1

{
−µ̂i2 exp (−µ̂i)
1−exp (−µ̂i)

}
∑n

i=1

{
−µ̂i2 exp (−µ̂i)
1−exp (−µ̂i)

∑p
j=1 sj1(xij)

}
...∑n

i=1

{
−µ̂i2 exp (−µ̂i)
1−exp (−µ̂i)

∑p
j=1 sjQ(xij)

}


,

Iθδ(θ̂(β0, ξ), 0, 1) =



∑n
i=1

{
µ̂i

2 exp (−µ̂i)
1−exp (−µ̂i)

∑p
j=1 sj(xij)

}
∑n

i=1

{
µ̂i

2 exp (−µ̂i)
1−exp (−µ̂i)

∑p
j=1 sj(xij)

∑p
j=1 sj1(xij)

}
...∑n

i=1

{
µ̂i

2 exp (−µ̂i)
1−exp (−µ̂i)

∑p
j=1 sj(xij)

∑p
j=1 sjQ(xij)

}


,

Iγ(θ̂(β0, ξ), 0, 1) =
n∑
i=1

{
µ̂i

2 exp (−µ̂i)
1− exp (−µ̂i)

}
,

Iγδ(θ̂(β0, ξ), 0, 1) =
n∑
i=1

{
− µ̂i

2 exp (−µ̂i)
1− exp (−µ̂i)

p∑
j=1

sj(xij)

}
,

Iδ(θ̂(β0, ξ), 0, 1) =
n∑
i=1

{
µ̂i

2 exp (−µ̂i)
1− exp (−µ̂i)

p∑
j=1

sj(xij)

p∑
j=1

sj(xij)

}
.

This term Iθ(θ̂(β0, ξ), 0, 1) can be obtained by an R program (See detailed information in

Appendix B)

3.3 Resampling method

We’d like to use a resampling approach which applies the idea of Lin et al. (1994) to

approximate the empirical distribution of the proposed score statistic. This resampling

technique has been used widely in the literature (for example, Zhu and Zhang, 2006). In

addition, this resampling approach can save a lot of time, compared with a simple nonpara-
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metric bootstrap (Efron and Tibshirani, 1993).

Before applying the resampling approach, we need to make some basic preparation.

Under the null model, we define ci,

ci = bi(θ̂(β0, ξ), 0, 1)− I∗θγδ ∗ I−1θ ∗ ai(θ̂(β0, ξ), 0, 1).

The function ci can be obtained from a Taylor expansion of bi(θ̂(β0, ξ), 0, 1).

Actually, bi(θ(βo, ξ), γ, δ) and ai(θ(βo, ξ), γ, δ) are the score functions under the null model,

they are, respectively,

bi(θ̂(βo, ξ), 0, 1) = Sγ,δ(θ̂(β0, ξ), 0, 1),

ai(θ̂(βo, ξ), 0, 1) =
∂``(θ̂(β0, ξ), 0, 1)

∂θ
.

And I∗θγδ and Iθ can be acquired can be obtained from the fisher information matrix,

I∗γδθ =

Iγθ(θ̂(β0, ξ), 0, 1)

Iδθ(θ̂(β0, ξ), 0, 1)

 =


∑n

i=1

{
−µ̂i2 exp (−µ̂i)
1−exp (−µ̂i)

}
∑n

i=1

{
µ̂i

2 exp (−µ̂i)
1−exp (−µ̂i)

∑p
i=1 sj(xij)

}
 ,

Iθ = Iθ(θ̂(β0, ξ), 0, 1).

Then we randomly generate {ε(b)1 , · · · , ε(b)n } independently from standard normal distribu-

tion, where superscript (b) stands for replications, b=1, · · · , B. Given the realizations of the

data, {yi, xi}ni=1, and values of γ = 0, δ = 1, we calculate the statistic U
(b)
n (θ̂(β0, ξ), 0, 1) =∑n

i=1 ci ∗ ε
(b)
i , where θ̂ is the maximum penalized likelihood estimator of θ under the null

model. Then we calculate the proposed score statistic for artificial observations

S(b)
ωn

= (U (b)
n (θ̂(β0, ξ), 0, 1))

′ ∗ Λ−1 ∗ U (b)
n (θ̂(β0, ξ), 0, 1), (3.4)

12



By repeatedly generating the normal variates {ε1, · · · , εn} for B times, and repeating

the above procedure for each generated sample, we obtain the empirical distribution of S
(b)
ω ,

b=1, · · · , B. The asymptotical p-value of the test is the proportion of times the artificial

score statistics which are greater than or equal to the observed test statistic SO given the

generated data {yi, xi}ni=1. Then p-value=B−1
∑B

b=1 1{S(b)
ω > SO}.
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Chapter 4

Numerical study

4.1 Simulation

The simulation study is aimed to evaluate the empirical performance of the score test

under COZIGAM. We assess the performances of our proposed score test to those of the

score tests proposed by Jansakul and Hinde (2002) and Todem et al. (2012). In our simula-

tions, data are generated from a mixture model with true mixing weights ω∗i and a Poisson

distribution with two different forms of true mean: one depends on covariates through re-

gression technique, µ∗i=exp(0.5− 0.25xi), where xi is a covariate generated from a uniform

distribution on the interval(0,1); the other one depends on smooth functions of covariates,

µ∗i=exp(0.5 − 0.3m(xi)), where m(xi)=(0.2x11i (10(1 − xi))6 + 10(10xi)
3(1 − xi)10)/8. The

score test of Jansakul and Hinde (2002) assumed that ωi=γ0 + γ1xi, and that of Todem et

al. (2012) assumed that ωi=(πi− exp(−µi))(1− exp(−µi))−1 and πi=exp(− exp(γ0 + γ1xi))

under the alternative hypothesis. For our proposed score test under COZIGAM, we assume

that ωi=(πi − exp(−µi))(1 − exp(µi))
−1 under the alternative, where πi=exp{− exp{β0 −

γ + δ
∑p

j=1 sj(xij)}} and µi=exp(β0 +
∑p

j=1 sj(xij)). With the assumption and parameteri-

zations, the null hypotheses to be evaluated are given by: H0: α0=β0 and δ=1 for our test;
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H0: γj=0, j=0, 1, for the test of Jansakul and Hinde (2002); and H0: γj=βj, j=0, 1, for

the test of Todem et al. (2012). For each simulation, we have 1000 replicates for sample

size 50, 100, 200 and 400.
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Table 4.1: Empirical sizes and powers of score test statistics for different forms of ω∗i with Poisson mean µ∗i = exp(0.5−
0.25xi), at 5 % significant level.

n=50 n=100 n=200 n=400
ω∗ JH TH GAM JH TH GAM JH TH GAM JH TH GAM
ω∗=0 0.056 0.056 0.051 0.049 0.050 0.043 0.050 0.054 0.044 0.049 0.051 0.044

ω∗=0.15 0.150 0.152 0.108 0.265 0.273 0.200 0.601 0.559 0.448 0.890 0.889 0.698

ω∗=−0.1 + 0.15xi 0.069 0.071 0.061 0.134 0.123 0.101 0.158 0.152 0.119 0.287 0.273 0.158

ω∗= exp(−2+xi)
1+exp(−2+xi) 0.185 0.185 0.135 0.406 0.416 0.302 0.753 0.754 0.585 0.982 0.981 0.822

ω∗=0.2− 0.25m(xi) 0.079 0.088 0.072 0.151 0.163 0.121 0.276 0.291 0.246 0.526 0.555 0.488

ω∗= exp(−2+1.5m(xi))
1+exp(−2+1.5m(xi))

0.265 0.264 0.204 0.568 0.580 0.476 0.898 0.895 0.741 0.999 0.999 0.905

Note: 1. xi a covariate taking on n uniformly distributed values on (0,1), m(xi)=(0.2x11i (10(1−xi))6+10(10xi)
3(1−xi)10)/8; 2. JH stands

for the score test of Jansakul and Hinde, TH stands for the score test of Todem et al., GAM stands for the score test under COZIGAM; 3.
For each simulation, we have 1000 replicates.
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Table 4.2: Empirical sizes and powers of score test statistics for different forms of ω∗i with Poisson mean µ∗i = exp(0.5−
0.3m(xi)), at 5 % significant level.

n=50 n=100 n=200 n=400
ω∗ JH TH GAM JH TH GAM JH TH GAM JH TH GAM
ω∗=0 0.048 0.053 0.047 0.047 0.043 0.045 0.048 0.049 0.047 0.048 0.046 0.047

ω∗=0.15 0.121 0.125 0.089 0.295 0.302 0.214 0.586 0.586 0.434 0.897 0.902 0.736

ω∗=0.25− 0.1xi 0.229 0.230 0.179 0.475 0.470 0.358 0.816 0.822 0.678 0.987 0.989 0.887

ω∗= exp(−1.5+0.5xi)
1+exp(−1.5+0.5xi)

0.265 0.259 0.176 0.527 0.534 0.410 0.896 0.897 0.720 0.999 0.998 0.866

ω∗=−0.15 + 0.25m(xi) 0.128 0.124 0.137 0.199 0.177 0.222 0.356 0.306 0.467 0.622 0.522 0.810

ω∗=
π∗i−exp (−µ∗i )
1−exp (−µ∗i )

,

π∗i =exp(− exp(1.2− 2m(xi)) 0.300 0.264 0.402 0.590 0.471 0.766 0.886 0.784 0.966 0.995 0.985 1.000

Note: 1. xi a covariate taking on n uniformly distributed values on (0,1), m(xi)=(0.2x11i (10(1 − xi))6 + 10(10xi)
3(1 − xi)10)/8; 2. JH stands for

the score test of Jansakul and Hinde, TH stands for the score test of Todem et al., GAM stands for the score test under COZIGAM; 3. For each
simulation, we have 1000 replicates.
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4.2 Findings from simulation

Firstly, the three tests have controlled type I error rates well (Table 4.1 and Table 4.2). In

Table 4.1, the true Poisson means depend on covariates through regression technique. The

results demonstrate that no matter whether the true mixing weight is constant, a linear form

of covariate, or smooth function of covariate, our proposed score test loses some efficiency,

compared to the other two tests.

However, in Table 4.2, the true Poisson mean depends on smooth functions of covariate.

It is clear that our proposed test outperforms the other two tests when the true mixing

weights are, ω∗i =−0.15 + 0.25m(xi) and ω∗i =
π∗i−exp(−µ∗i )
1−exp(−µ∗i )

, where π∗i =exp(exp(1.2 − 2m(xi)).

This is expected as data were generated under the situation where the ture mixing weights

and the true Poisson means involve smooth functions of covariate.

Finally, incorporating smooth functions can improve the performances of the score test.

Our proposed approach is indeed more powerful in detecting heterogeneity in the population

when nonlinear covariates effects exist in both the Poisson mean and the mixing weight.

Besides, our proposed approach loses some efficiency when the Poisson mean or the mixing

weight truly depends on a linear function of covariates, on the link scales. However, the

true model is always unknown to the analyst, it is a more conservative strategy to use our

proposed score test to conduct inference for the mixing weight.

4.3 Application to Recreational Fisheries data

National Oceanic and Atmospheric Administration (NOAA) have conducted several fish-

ing surveys since 2004. The main goal of these surveys is working with both commercial

and recreational fishermen to count what’s being caught, when, where, and how. They

mainly use the collected information to decide how many fish can be taken recreationally

and commercially without having negative effect on the sustainability of individual fisheries.
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Table 4.3: Observed score test statistics and the associated p-values for heterogeneity in
recreational fisheries data

Response
Methodology test statistic p-vlaue

Test of Jansakul and Hinde 28.6527 0.016
Test of Todem et al. 28.7641 0.017
Test under COZIGAM 22.2899 0.009

The information also ensures appropriate measures are taken to recover fisheries in trouble.

To illustrate our methodology, we used fisheries data collected during July and August

of 2013. The primary count outcome is the number of fish caught per hour per individual

(NFPHPI). Age of the angler is considered as the covariate. After looking at the original

data, we can observe many zeros in the data (see Figure 4.1). This implies that there

may exist extra zeros. We evaluated the homogeneity hypothesis using the proposed score

test under ZIGAM with Poisson, given the evidence from Figure 4.2 that there is nonlinear

relationship between the age of angler (year) and the predictor in the Poisson mean on the log

link scale. The nondegenerate distribution is a standard Poisson regression model with mean

µi=exp(β0 + s(Age)) and the mixing weight ωi is given by equation (3.2) with the quantity

πi=exp(− exp(β0 − γ + δs(Age))). The score test of Jansakul and Hinde (2002) and that

proposed by Todem et al. (2012) were also conducted. With the above parameterizations,

the null hypotheses to be evaluated become: H0: γ=0, and δ=1, for our score test; H0:

γj=0, j=0, 1, for Jansakul and Hinde’s test; H0: γj=βj, j=0, 1, for test of Todem et al.

The first two tests were conducted by replacing the nuisance parameter β by its maximum

likelihood estimate under the null distribution, while our proposed test was conducted by

replacing the nuisance parameter θ by its maximum penalized likelihood estimate under the

null distribution. Results of this analysis are given in Table 4.3.

The results in Table 4.3 show that all the three tests reject the homogeneity hypothesis

at 5 % significance level. But our proposed test is more powerful to detect the heterogeneity
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in the data than the other two tests.
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Figure 4.1: Observed proportion of the number of fish caught per hour per individual.
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Figure 4.2: Plot of the smooth function components of the Poisson mean, on the log scale,
of the fitted ZIGAM with the recreational fisheries data.
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Chapter 5

Discussion

In this report, we proposed a generalized score test to evaluate the mixing weight under

zero-inflated generalized additive models. Simulation studies indicate that our proposed

test loses some efficiency compared with the tests of Jansakul (2002) and Todem et al.

(2012) when the true Poisson mean depends on a linear form of covariates. However, if both

the Poisson mean and the mixing weight truly involve smooth functions of covariates, our

proposed test outperforms the other tests. Because the true model is always unknown to

the analyst, we suggest that it is a conservative strategy to evaluate the mixing weight with

our proposed score test.

It is worth nothing that, Wald test will be a good candidate to evaluate whether the

mixing weight equals to zero under COZIGAM if the alternative model can be fitted in

routine. In the literature, the R package ”COZIGAM” was developed to fit the alternative

model, but it has been removed from the CRAN list in R software due to its non-stability.

Furthermore, it is also worthwhile to extend our approach to analyze the longitudinal/-

correlated data using random effects models or generalized estimating equations approach.

These are actually the subjects of future research.
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Appendix A

Second derivative of the Penalized

likelihood function

∂2l(θ(β0, ξ), γ, δ)

∂θ∂γ′
=



∑n
i=1

{
− I(yi=0) log πi + I(yi>0)

(
πi(log πi)

2+πi log πi−πi2 log πi
(1−πi)2

)}
∑n

i=1

{[
−I(yi=0) log πi + I(yi>0)

(
πi(log πi)

2+πi log πi−πi2 log πi
(1−πi)2

)]∑p
j=1 sj1(xij)

}
...∑n

i=1

{[
−I(yi=0) log πi + I(yi>0)

(
πi(log πi)

2+πi log πi−πi2 log πi
(1−πi)2

)]∑p
j=1 sjQ(xij)

}


,

∂2l(θ(β0, ξ), γ, δ)

∂θ∂δ′
=



∑n
i=1

{[
−I(yi=0) log πi + I(yi>0)

(
πi(log πi)

2+πi log πi−πi2 log πi
(1−πi)2

)]∑p
j=1 sj(xij)

}
∑n

i=1

{[
−I(yi=0) log πi + I(yi>0)

(
πi(log πi)

2+πi log πi−πi2 log πi
(1−πi)2

)]∑p
j=1 sj(xij)

∑p
j=1 sj1(xij)

}
...∑n

i=1

{[
−I(yi=0) log πi + I(yi>0)

(
πi(log πi)

2+πi log πi−πi2 log πi
(1−πi)2

)]∑p
j=1 sj(xij)

∑p
j=1 sjQ(xij)

}


,

∂2l(θ(β0, ξ), γ, δ)

∂γ∂γ′
=

n∑
i=1

{
I(yi=0) log πi − I(yi>0)

(
πi(log πi)

2 + πi log πi − πi2 log πi
(1− πi)2

)}
,
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∂2l(θ(β0, ξ), γ, δ)

∂γ∂δ′
=

n∑
i=1

{[
−I(yi=0) log πi + I(yi>0)

(
πi(log πi)

2 + πi log πi − πi2 log πi
(1− πi)2

)] p∑
j=1

sj(xij)

}
,

∂2l(θ(β0, ξ), γ, δ)

∂δ∂δ′
=

n∑
i=1

{[
I(yi=0) log πi − I(yi>0)

(
πi(log πi)

2 + πi log πi − πi2 log πi
(1− πi)2

)]( p∑
j=1

sj(xij)

)2}
.
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Appendix B

Code

rm( l i s t=l s ( a l l=TRUE) ) ; l ibrary (mgcv ) ; l ibrary ( boot ) ;

###########################################################

N1=1000; ## MC samples

N2=1000; ## resampl ing samples

a0=0.5 ; a1=−0.25; ## true parameters o f Poisson mean depending on x3

#a0=0.5; a1=−0.3; ## true parameters o f Poisson mean depending on s1

i t e r a t i o n =100; ## show the progres s every xxx i n t e r a t i o n s .

###########################################################

for (n in c (400 ,200 ,100 ,50) ){

ptm=Sys . time ( ) ;

S1=numeric (0 )

S2=numeric (0 )

S3=numeric (0 )

for (mc in 1 :N1)

{

###########################################################

##Generating Poisson data ( sample s i z e n)

i=1

seq0=numeric (0 )

while ( i<=n)

{

j=0

seq01=numeric (0 )
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x3=runif ( 1 , 0 , 1 )

s1 =(0.2∗x3ˆ11∗(10∗(1−x3 ))ˆ6+10∗(10∗x3 )ˆ3∗(1−x3 )ˆ10)/8

u=exp( a0+a1∗x3 ) ;#u=exp ( a0+a1∗s1 ) ;

p=0

x=runif ( 1 , 0 , 1 )

cp=p+(1−p)∗exp(−u)∗ (u ˆ (0 ) )/ ( f a c t o r i a l ( 0 ) )

while ( cp<=x)

{

py=(1−p)∗exp(−u)∗ (uˆ( j +1))/ ( f a c t o r i a l ( j +1))

cp=cp+py

j=j+1

}

seq01=c ( seq01 , j , u , x3 , i )

z=c ( seq01 )

seq0=c ( seq0 , z )

i=i+1

mat=matrix ( seq0 , 4 )

mat=t (mat)

}##end of genera t ing Poisson data

y=mat [ , 1 ]

x3=mat [ , 3 ]

mmat=data . frame (y , x3 ) ;

####################################################

#score t e s t f o r GAM

f i t 1=gam(y˜s ( x3 ) , family=”po i s son ” )

x1=predict ( f i t 1 , type=”terms” )

s s=predict ( f i t 1 , type=” lpmatr ix ” )

lambdahat=( f i t 1 $sp ) ˆ 2 ;

S=f i t 1 $sm [ [ 1 ] ] [ 1 2 ] [ [ 1 ] ] [ [ 1 ] ]

coefnew1=matrix (c ( f i t 1 $coef [ 1 ] , 1 ) ,nrow=2,ncol=1)

X1=matrix (c (matrix (1 , n , 1 ) , x1 ) ,nrow=n , ncol=2)

muhat1=exp(X1%∗%coefnew1 )

#score t e s t s t a t i s t i c

I00=as .matrix ( vcov ( f i t 1 ) )

I01=sum(−muhat1ˆ2∗exp(−muhat1 )/(1−exp(−muhat1 ) ) )

I02=sum(muhat1ˆ2∗exp(−muhat1 )/(1−exp(−muhat1 ) )∗x1 )

I11=sum(−muhat1ˆ2∗exp(−muhat1 )/(1−exp(−muhat1 ) )∗ s s [ , 2 ] )
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I12=sum(muhat1ˆ2∗exp(−muhat1 )/(1−exp(−muhat1 ) )∗ ( s s [ , 2 ] ∗x1 ) )

I21=sum(−muhat1ˆ2∗exp(−muhat1 )/(1−exp(−muhat1 ) )∗ s s [ , 3 ] )

I22=sum(muhat1ˆ2∗exp(−muhat1 )/(1−exp(−muhat1 ) )∗ ( s s [ , 3 ] ∗x1 ) )

I31=sum(−muhat1ˆ2∗exp(−muhat1 )/(1−exp(−muhat1 ) )∗ s s [ , 4 ] )

I32=sum(muhat1ˆ2∗exp(−muhat1 )/(1−exp(−muhat1 ) )∗ ( s s [ , 4 ] ∗x1 ) )

I41=sum(−muhat1ˆ2∗exp(−muhat1 )/(1−exp(−muhat1 ) )∗ s s [ , 5 ] )

I42=sum(muhat1ˆ2∗exp(−muhat1 )/(1−exp(−muhat1 ) )∗ ( s s [ , 5 ] ∗x1 ) )

I51=sum(−muhat1ˆ2∗exp(−muhat1 )/(1−exp(−muhat1 ) )∗ s s [ , 6 ] )

I52=sum(muhat1ˆ2∗exp(−muhat1 )/(1−exp(−muhat1 ) )∗ ( s s [ , 6 ] ∗x1 ) )

I61=sum(−muhat1ˆ2∗exp(−muhat1 )/(1−exp(−muhat1 ) )∗ s s [ , 7 ] )

I62=sum(muhat1ˆ2∗exp(−muhat1 )/(1−exp(−muhat1 ) )∗ ( s s [ , 7 ] ∗x1 ) )

I71=sum(−muhat1ˆ2∗exp(−muhat1 )/(1−exp(−muhat1 ) )∗ s s [ , 8 ] )

I72=sum(muhat1ˆ2∗exp(−muhat1 )/(1−exp(−muhat1 ) )∗ ( s s [ , 8 ] ∗x1 ) )

I81=sum(−muhat1ˆ2∗exp(−muhat1 )/(1−exp(−muhat1 ) )∗ s s [ , 9 ] )

I82=sum(muhat1ˆ2∗exp(−muhat1 )/(1−exp(−muhat1 ) )∗ ( s s [ , 9 ] ∗x1 ) )

I91=sum(−muhat1ˆ2∗exp(−muhat1 )/(1−exp(−muhat1 ) )∗ s s [ , 1 0 ] )

I92=sum(muhat1ˆ2∗exp(−muhat1 )/(1−exp(−muhat1 ) )∗ ( s s [ , 1 0 ] ∗x1 ) )

I222=sum(muhat1ˆ2∗exp(−muhat1 )/(1−exp(−muhat1 ) ) )

I232=sum(−muhat1ˆ2∗exp(−muhat1 )/(1−exp(−muhat1 ) )∗x1 )

I322=t ( I232 )

I332=sum(muhat1ˆ2∗exp(−muhat1 )/(1−exp(−muhat1 ) )∗x1∗x1 )

sgama1=sum(muhat1∗ ( ( y==0)∗1)−((y>0)∗1)∗ (muhat1∗exp(−muhat1 )/(1−exp(−muhat1 ) ) ) )

sd e l t a 1=sum((−muhat1∗ ( ( y==0)∗1)+((y>0)∗1)∗ (muhat1∗exp(−muhat1 )/(1−exp(−muhat1 ) ) ) ) ∗x1 )

Score1=matrix (c ( sgama1 , sd e l t a 1 ) ,nrow=2,ncol=1)

C11=matrix (c ( I222 , I232 , I322 , I332 ) ,nrow=2,ncol=2)

C12=matrix (c ( I01 , I02 , I11 , I12 , I21 , I22 , I31 , I32 , I41 , I42 , I51 , I52 , I61 , I62 , I71 , I72 , I81 , I82 , I91 , I92 ) ,

nrow=2,ncol=10)

C13=t (C12)

C1=C11−C12%∗%I00%∗%C13

s t s 1=t ( Score1 )%∗%solve (C1)%∗%Score1

s t s 1=c ( s t s 1 )

##s t s1 i s the observed score s t a t i s t i c f o r Gam.

#############################################################################

##Resampling f o r GAM

#resampl ing s e t up

scorea10=−muhat1+y

scorea11=(−muhat1+y)∗ s s [ ,2 ]−matrix ( lambdahat∗S [ 1 , ]%∗%t ( t ( f i t 1 $coef [ 2 : 1 0 ] ) ) , n , 1 )
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scorea12=(−muhat1+y)∗ s s [ ,3 ]−matrix ( lambdahat∗S [ 2 , ]%∗%t ( t ( f i t 1 $coef [ 2 : 1 0 ] ) ) , n , 1 )

scorea13=(−muhat1+y)∗ s s [ ,4 ]−matrix ( lambdahat∗S [ 3 , ]%∗%t ( t ( f i t 1 $coef [ 2 : 1 0 ] ) ) , n , 1 )

scorea14=(−muhat1+y)∗ s s [ ,5 ]−matrix ( lambdahat∗S [ 4 , ]%∗%t ( t ( f i t 1 $coef [ 2 : 1 0 ] ) ) , n , 1 )

scorea15=(−muhat1+y)∗ s s [ ,6 ]−matrix ( lambdahat∗S [ 5 , ]%∗%t ( t ( f i t 1 $coef [ 2 : 1 0 ] ) ) , n , 1 )

scorea16=(−muhat1+y)∗ s s [ ,7 ]−matrix ( lambdahat∗S [ 6 , ]%∗%t ( t ( f i t 1 $coef [ 2 : 1 0 ] ) ) , n , 1 )

scorea17=(−muhat1+y)∗ s s [ ,8 ]−matrix ( lambdahat∗S [ 7 , ]%∗%t ( t ( f i t 1 $coef [ 2 : 1 0 ] ) ) , n , 1 )

scorea18=(−muhat1+y)∗ s s [ ,9 ]−matrix ( lambdahat∗S [ 8 , ]%∗%t ( t ( f i t 1 $coef [ 2 : 1 0 ] ) ) , n , 1 )

scorea19=(−muhat1+y)∗ s s [ ,10 ]−matrix ( lambdahat∗S [ 9 , ]%∗%t ( t ( f i t 1 $coef [ 2 : 1 0 ] ) ) , n , 1 )

s co rea1=cbind ( scorea10 , scorea11 , scorea12 , scorea13 , scorea14 , scorea15 , scorea16 , scorea17 ,

scorea18 , s corea19 )

s c o r e a l=t ( s co rea1 )

scorew1=cbind (X1 [ , 1 ] ∗ ( ( ( y==0)∗1)∗muhat1−((y>0)∗1)∗ ( (muhat1∗exp(−muhat1 ) )/(1−exp(−muhat1 ) ) ) ) ,

X1 [ , 2 ] ∗(−((y==0)∗1)∗muhat1+((y>0)∗1)∗ ( (muhat1∗exp(−muhat1 ) )/(1−exp(−muhat1 ) ) ) ) )

scorew1=t ( scorew1 )

Iwa1=C12

Ia1=I00

c i 1=scorew1−Iwa1%∗%Ia1%∗%t ( s co rea1 )

##resampl ing

seq1=matrix ( , 1 ,N2)

for ( k in 1 :N2)

{

e1=matrix (rnorm(n , 0 , 1 ) , n , 1 )

u1=c i 1%∗%e1

sb1=t ( u1 )%∗%solve (C1)%∗%u1

sb1=c ( sb1 )

seq1 [ 1 , k]=sb1

}

p1=mean( ( seq1>s t s 1 )∗1)

E1=(p1<0.05)∗1

S1=c ( S1 , E1)

##end of resampl ing f o r GAM and S1 are the resampl ing score s t a t i s t c s f o r Gam

#######################################################

#score t e s t s t a t i s t i c o f JH

#f ind the MLE of be ta under standard poisson .

f i t 2=glm( y˜x3 , family=”po i s son ” ) ;

coe f 2=f i t 2 $coef ;

X2=matrix (c (matrix (1 , n , 1 ) , x3 ) ,nrow=n , ncol=2);
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G2=matrix (c (matrix (1 , n , 1 ) , x3 ) ,nrow=n , ncol=2);

muhat2=exp(X2%∗%coe f 2 ) ;

D2=diag (c (muhat2 ) ) ;

#score t e s t s t a t i s t i c

s co r e2=t (G2)%∗%( ( ( y==0)∗1−exp(−muhat2 ) )/exp(−muhat2 ) ) ;

s co re21=t (X2)%∗%(−((y==0)∗1)∗muhat2+((y>0)∗1)∗ (y−muhat2 ) ) ;

f11=t (X2)%∗%D2%∗%X2 ;

f22=t (G2)%∗%diag (c (((1−exp(−muhat2 ) )/exp(−muhat2 ) ) ) )%∗%G2;

f21=t (G2)%∗%diag (c(−muhat2 ) )%∗%X2 ;

f12=t ( f21 ) ;

C2=f22−f 21%∗%solve ( f11 )%∗%f 12 ;

s t s 2=t ( s co r e2 )%∗%solve (C2)%∗%s co r e2 ;

s t s 2=c ( s t s 2 ) ;

##s t s2 i s the observed score s t a t i s t i c f o r JH

#########################################################

#resampl ing f o r Jansakul

#resampl ing s e t up

s co rea2=cbind (X2 [ , 1 ] ∗(−muhat2+((y>0)∗1)∗y ) ,X2 [ , 2 ] ∗(−muhat2+((y>0)∗1)∗y ) )

sco rea2=t ( s co rea2 )

scorew2=cbind (G2 [ , 1 ] ∗ ( ( y==0)∗1−exp(−muhat2 ) )/exp(−muhat2 ) ,

G2 [ , 2 ] ∗ ( ( y==0)∗1−exp(−muhat2 ) )/exp(−muhat2 ) )

scorew2=t ( scorew2 )

Iwa2=t (G2)%∗%diag (c(−muhat2 ) )%∗%X2

Ia2=t (G2)%∗%diag (c (muhat2 ) )%∗%X2

c i 2=scorew2−Iwa2%∗%solve ( Ia2 )%∗%s co rea2

##Resampling

seq2=matrix ( , 1 ,N2)

for (m in 1 :N2)

{

e2=matrix (rnorm(n , 0 , 1 ) , n , 1 )

u2=c i 2%∗%e2

sb2=t ( u2 )%∗%solve (C2)%∗%u2

sb2=c ( sb2 )

seq2 [ 1 ,m]=sb2

}

p2=mean( ( seq2>s t s 2 )∗1)

E2=(p2<0.05)∗1
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S2=c ( S2 , E2)

##########################################################

# TH’ s score t e s t s t a t i s t i c

##f ind the MLE of be ta under standard poisson .

f i t 3=glm( y˜x3 , family=”po i s son ” , data=mmat)

coe f 3=f i t 3 $coef

X3=matrix (c (matrix (1 , n , 1 ) , x3 ) ,nrow=n , ncol=2)

muhat3=exp(X3%∗%coe f 3 )

##score t e s t s t a t i s t i c o f TH

D3=diag (c (muhat3 ) )

s co r e3=t (X3)%∗%(muhat3∗ ( ( ( ( y==0)∗1)−exp(−muhat3 ) )/(1−exp(−muhat3 ) ) ) ) ;

s co re31=t (X3)%∗%(−muhat3+((y>0)∗1)∗y )

H11=t (X3)%∗%D3%∗%X3 ;

H22=t (X3)%∗%diag (c ( ( ( muhat3 )ˆ2)∗exp(−muhat3 )/(1−exp(−muhat3 ) ) ) )%∗%X3 ;

H12=t (X3)%∗%diag (c (−((muhat3 )ˆ2)∗exp(−muhat3 )/(1−exp(−muhat3 ) ) ) )%∗%X3 ;

H21=t (H12 ) ;

C3=H22−H21%∗%solve (H11)%∗%H12 ;

s t s 3=t ( s co r e3 )%∗%solve (C3)%∗%s co r e3 ;

s t s 3=c ( s t s 3 )

##s t s3 i s the observed score s t a t i s t i c f o r TH.

###########################################################

#resampl ing f o r TH

s co rea3=cbind (X3 [ , 1 ] ∗(−muhat3+((y>0)∗1)∗y ) ,X3 [ , 2 ] ∗(−muhat3+((y>0)∗1)∗y ) )

sco rea3=t ( s co rea3 )

scorew3=cbind (X3 [ , 1 ] ∗muhat3∗ ( ( ( ( y==0)∗1)−exp(−muhat3 ) )/(1−exp(−muhat3 ) ) ) ,

X3 [ , 2 ] ∗muhat3∗ ( ( ( ( y==0)∗1)−exp(−muhat3 ) )/(1−exp(−muhat3 ) ) ) )

scorew3=t ( scorew3 )

Iwa3=t (X3)%∗%diag (c(−muhat3ˆ2∗exp(−muhat3 )/(1−exp(−muhat3 ) ) ) )%∗%X3

Ia3=t (X3)%∗%D3%∗%X3

c i 3=scorew3−Iwa3%∗%solve ( Ia3 )%∗%s co rea3

seq3=matrix ( , 1 ,N2)

for ( t in 1 :N2)

{

e3=matrix (rnorm(n , 0 , 1 ) , n , 1 )

u3=c i 3%∗%e3

sb3=t ( u3 )%∗%solve (C3)%∗%u3

sb3=c ( sb3 )
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seq3 [ 1 , t ]=sb3

}

p3=mean( ( seq3>s t s 3 )∗1)

E3=(p3<0.05)∗1

S3=c ( S3 , E3)

i f (mc%%i t e r a t i o n==0){cat ( ” i t e r a t i o n = ” , mc , ” o f ” ,N1 , ”\n” ) } ;

###############################################

}##end of MC

gam r=mean( S1 ) ;

jh r=mean( S2 ) ;

th r=mean( S3 ) ;

durat ion=(Sys . time()−ptm ) ;

cat ( ”######################################” , ”\n” ) ;

cat ( ”Sample s i z e=” ,n , ”\n” ) ;

cat ( ”####### Resampling ######” , ”\n” ) ;

cat ( ”GAM=” ,gam r , ”\n” ) ;

cat ( ”JH=” , jh r , ”\n” ) ;

cat ( ”TH=” , th r , ”\n” ) ;

print ( durat ion ) ;

cat ( ”######################################” , ”\n” ) ;

}
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