LABOR INPUT REQUIRENENTS AND EFFICIENCI OF A MULTI-PRODUCT

 dAIRY PROCESSING PLANT AS DETERYINED GY A RATIO-DELAY ANALYSIS byTHOMAS WILLETT TOWHSIND
B. S., Kansas State University of Agriculture and Applied Science, 1958

A THESIS
submitted in partial fulfillment of the

```
requirements for the degree
```


MASTER OF SGTENCE

Department of Tconomics and Sociolory

KANSAS STATE UNIVERSITY
OF AGRTCTLTURE AND APPLTED SCIENCE

1959
LD2668
T4
1959
T68
TALLE OE CONTENTS
Page
INTRODUCTION 1
Backeround. 1
Types of Surplus. 1
SETTIN 2
OBJECTIVES 5
SCOPE OF STUUT 6
MODEL. 7
METHODOLOCI. 9
General Description of the RationDelay Technique 9
Determining Utility Requirements. 15
EmpIRICAL IMVESTICATION. 16
Plant Selection 16
Sampling Procedure Within Plant A 17
Method of Deternining Labor Requirements for Plant A 32
description and labor regutremeris or process aialysis 34
Process I. Roceiving Can Milk. 34
Process II. Receiving Bulk Milk. 35
Process III. Keceiving Can Cream 36
Process IV. Separating Grade C Milk. 37
Process V. Condensing Operation. 38
Process V. Condensing Transfers 38
Process VII. Selling Condensed Milk. 39
Process VIII. Spray-Drying Oparation 40
Process Ix. Packaging Dry Milk 41
Process X. Storing Dry Milk 42
Process II. Shipping Dry Milk 43
Process XII. Processing and Storing Route Cream 4
Process XIII. Selling Pasteumized Cream 4
Process IIV. Buttermaking 45
Process IV. Selling Bulk Butter 46
Process XVI. Printing and Wrapping Butter in Individual Quarters-one Brand Only. 47
Process XVII. Printing and Wrapping Butter-Exclusive of Special Brand of Process XVI. 48
Process XVIII. Processing Cottage Cheese. 49
Process XIX. Packaging Cottage Cheese 50
Process XX. Processing Ice Cream Products 51
Process XXI. Packaging and Storing Ice Cream Products 52
Process XXII. Selling Ice Cream 53
Process XXIII. Selling Raw Milk-wrade A or Grade C 54
Process XXIV. Processing and Storing Grade A Products 54
Process XXV. Processing Dairy Mizos 55
Process XXVI. Processing Specialty Products 57
Process XXVII. Proparing, Filling, and Storing Five- Gallon Dispenser Cans 57
Process XXVLII. Bottling Milk in Class Bottles. 58
Process XXIX. Bottling Orange and Grape Drink in Glass Bottles 59
Process XXX. Packaging Milk in Half-Gallon Paper Cartons. 60
Process XXXI. Packaging Milk Products in Quart or Smaller Size Paper Cartons. 61
Process KxXII . Handling North Cold Room Products. 62
Process XXXIII. Receiving Empty Bottles anci Cases 63
Process XXXIV. Handling Returned Products 64
Process XXXV. Checking and Stacking Braty Botties and Cases 64
Process XXXVI. Washing Bottles. 65
Process XXXVII. Washing Cases 66
LABOR EFPICIENCI ANALISIS 67
Process I. Receiving Can Milk 68
Process II. Receiving Dulk Milk 69
Process III. Receiving Can Cream. 70
Process IV. Separating Orade C Milk 70
Process V. Condensing Operation 71
Process VI. Condensing Transfers. 72
Process VII. Selling Condensed Milk 72
Process VIII. Spray-Drying Operation. 72
Process IX. Packaging Dry Milk. 73
Process X. Storing Dry Milk 73
Process XI. Shipping Dry Milk 74
Process XII. Processing and Storing Route Cream 74
Process XIII. Selling Pasteurized Gream 75
Process XIV. Buttermaking 75
Process XV. Selling Bulk Butter 76
Process XVI. Printing and Wrapping Butter in Individual Quarters--One Brand Only. 77
Process XVII. Printing and Wrapping Dutter-Exclusive of Special Brand of Process XVI. 77
Process IVIII. Processing Cottage Cheese. 78
Process XIX. Packaging Cottage Cheese 78
Frocess XX. Processing Ice Cream Products 79
Process XXI. Packaging Ice Grean Products 79
Process XXII. Selling Ice Cream 79
Process XXIII. Selling Raw Milk--Grade A or Grade C 80
Process KXIV, Processing and Storing Grade A Products 80
Process XXY. Processing Dairy Mixes 81
Process XXVI. Processing Specialty Products 81
Process XXVII. Preparing, Filling, and Storing Five- Caillon Dispenser Cans 81
Process XXVIII. Botting Milk in Glass Bottles. 82
Process xXIX . Bottling Orange and Grape Drink in Class Bottles 82
Process XXX. Packaging Milk in Half-Gallon Paper Cartons. 83
Process XXXI. Packaging R11k Products in Quart or Smaller Size Paper Cartons. 83
Process XXXII. Handling North Cold Room Products. 84
Process XXXIII. Receiving Empty Bottles and Cases 85
Process XXXIV. Handuing Returned Products 85
Process XXXV. Checking and Stacking Bmpty Bottles and Cases 86
Process XXXVI. Washing Bottles. 86
Process XXXVII. Washing Cases 87
Sumary of Labor Efflciency Analysis 87
LIMITATIONS AND RECOMNEMATIONS FOR FUTURE STUDIES. 88
SUMPARI AND COMCLTSSIOIS 91
ACKNONLEDCMTNTS 95
LITERATURE CITED. 96
APPENDIX I--Detailed Process Descriptions and Utility Requirements 97
APPENDIX II--Tables 196
APPENDIX III--Sarmle Survey Forms 251
APPETDIX IV--Cold Room Refrigeration Raquirements 255

Background

Fluid milk markets seldom receive the exact quantities of milk needed for bottling uses. 1 This situation arises because of the dififculty of equating daily, seasonal, or yearly production with consumer demand for bottled milk products. In order to cover bottling needs in the periods of smallest producer output, surpluses tend to be produced in other periods. 2

Historically, surpluses rather than shortages have dominated milk markets of the Midwest. This problem has become more important nationally with the increasing importance of fluid milk markets under Federal Milk Marketing Orders. Accoraing to Williams,

In 22 North Central markets that had been regulated by Federal Orders since 1950 or before, only 63 per cent of the milk received from producers was used in bottled milk products in 1955. Utilization in bottled products in 1955 was two percentage points above the average for the preceding five years. A 1954 study in the Northeast showed 65 per cent of the inspected milk produced in that region used in bottled milk and cream (12).

As these markets further develop, the magnitude of surplus milk promises to continually grow with them. Accordingly, this will lead to serious problems in the marketing of fluid milk.

Types of Surplus
There are several types of filuid milk surplus. Day-to-day surpluses
$l_{\text {Fluid milk is milk that is procuced under health regulations winich will }}$ allow it to be used in bottled milk products.
${ }^{2}$ In a general way, surplus milk is defined as that part of the fluid milk supply not consumed as fluidmilk. This milk is diverted into the production of other dairy procucts such as ice cream, butter, cheese, evaporated milk and dry milk (6). Although it is of the same quality, surplus milk does not come under the same health regulations for processing as does fluid milk.
have developed in recent years due to every-other-day delivery and day-to-day variation in sales through stores. Supermarket sales vary a great deal, especially just before a weekend when consumer sales are particularly heavy. The problem of day-to-day surpluses are met in part by carrying producers ${ }^{\text {t }}$ milk over from light to heavy bottling days. This practice is limited by holding capacity, quality considerations, and health regulations.

Seasonal surplus results from a rather wido variation in milk production from season to season. Typically milk production is highest in the spring, tapers off during the summer until a low is reached in early winter, then increases until the high is again reached in the spring. In contrast, sales of fluid milk are rather constant over the year. The extra milk received from producers during the spring and sumer months above the fluf needs plus an "operating reserve" is referred to as seasonal surplus. I

Periodic surplus is the surplus in a market in a given month, which varies from year to year. This amount is the surplus which can not be explained by day-to-day or seasonal variations in supply.

SETTING

After World War II, many procucers' associations found they no longer could control the entry of producers into a market area. Even though the narket wes adequately supplied with fluid milk, dealere would by-pass the producers' association to obtain more fluid milk by adding new producers without the consent of the producers' association. Generally, this milk went into surplus uses which resulted in a reduction in the blend price of milk and

Operating ressrve is the supply of fluid milk necessary to meet day-today fluctuations in demand for fluid milk.
a decline in the bargaining power of producers' associations. In the Hidwest, this additional milik was primarily diverted into the productson of hich quality ice crean products which were normally manufactured from lower çuality manfacturing milk. As a result, deslers supplying this better quality product were in a favorable position to compete with dealers in othcr aress who were unable to obtain the necessary quantities of fluid milk, at comparable prices, for this product. This tended to destroy the merketing structure of the existing markets in scme areas.

梠放 the bargaining power of the procucers' associations reduced, further downard pressure on milk prices developed and market stability was decreased. Due to this situation, producers and other interested parties in the South Central section of the United States requested the United States Department of Agriculture to investigate the price deternining procedures and the problems associated with the hencling of surplus milk in their area. As a result of this request, the Department of Agriculture is currently studying the over-all problem of surplus milk pricing and handling in this area. A continuation and expansion of this study is now underway in the North Central Region under the direction of representatives of the NGM- 12 Technical Comittee on Dairy Marketing Research.

One method that coulo be used to provide somo insight into the problems associated with the marketing of surplus milk would be to construct synthetic models of different marketing structures. The effects of a reat number of changes in the market institutions of a particular market could then be analyzed and evaluated with the assumed goal of society to be profit maximization and econoric efficiency.

As implied eariler, the two dominant power groups most often found in
surplus milk market areas are the dealers and the producers' marketing associations. The first power group to be considered is the producers' marketing associotion. It consists of a number of producers cooperatively banded tocether to market their milk. ${ }^{l}$ The extent of producer participation in ths association influencss its bargaining power. If all projucers are members of an association, the association may have a dominant role in setting price and dstermining how much milk sach dealer will receive. This is espocially true if the producers' association has facilities for handing surpluses, or if it has an agreement with one dsaler for handling all of its surplus.

The other power group nomally present is either one dominant dealer or a group of dealers acting under a tacit agreement regarding price and market sharing. This arrangement can be particularly harmiul to producers if there is a definite lack of cooperation among producers.

There can be all kinds of market agreements and degrees of influencing power by producers and dealers in a market. The powers or effects of these power groups and their rsiative importancs in synthetic models leads to an income distribution or welfare problem. Becauss of ths value fudgements explicit in this type of analysis and the lack of economic tools and models necessary for proper evaluation, this stady will not attempt to prssent the proper balancs of powers necessary for the most efflcisnt method of handling surplus milk under any market structurs or group of market structurss.

With the assumptions of continuing supply of surplus milk, it seems dssirabls to empirically identify and stucty the institutions in several market

[^0]areas in a Iramework of economic efficiency. A study of this hind would atterpt to deternine the effect of changes in the alternativs methoc's of hending varinus volumes of surplus milk with a given set of institutions. It would also provide some insight into ths most efficient method of handing surpluses under a given market structure. This synthesis would then yield information as to the most efficient system of hancling surpluses under different market structures.

Even with ths most efficient system of handling surpluses under different market structures, thers is no assurancs that savings would bs passed on to consumers. This is true because of ths monopoly elements present in some institutions within certain market structures. Howsver, this information would bs very desirable in making policy decisions affecting procucers, dealers, and consumers. It is within this iramework that this study is confinad. liajor omphasis in this study will be directed towards providing "building block" data on costs for the typss of symthetic analysis diacusssd above.

OBJECTIVRS

The major objective of this study was to provide fixed and variable labor requirements, by skill categories, for basic processes and products of a large multi-procuct dairy processing plant, handing the largest portion of surplus mlk from a large Feceral Order market.

The second objectivs was to provide estimates of the electrical, steam, and refrigeration requirements by processes and procucts for each major piece of ecuipment used in this plant.

Ths third objactive was to briefly analyzs tha labor efficiency by basic processes and by individual workers within each basic process.

The fourth objective was to adequately describe each basic process as to the work elements required and equipruent used.

The flfth objective was to evaluate the use of ratio-delay methodology in a flexible milk processing plant.

SCOPE OF STUDY

As a part of the No-th Central Regional study, the Department of Agricultural Economics at Kansas State University selected for study, one partioular market structure handing surplus wilk. Within the market structure, the exieting market institutions wers defined. Alnost all institutions, such as the Federal Milk Narketing Order, existing health regulations, the producers" association, bargaining arrangements, etc., were held conetant. All other processing plants and the existing degree of technology were also held constant. Wifthin thils structure, the one selected milk proceseing plant, handing the largest share of surplus milk under the existing market structure, was analyzed by a detailed cost of production etudy. 1 A major objective of the broader study is to determine the most efficient method of marketing surplus milk in the market previously mentioned. Although knowledge of the cost structure of the plant is not a sufficient condition for evaluating economic efficiency, it is a necessary one. This thesis is a part of the cost of production study.

The most significant single item of cost in a dairy processing plant is labor. It has been estinated that 60 par cent of the total cost in a milk processing and bottling plant could be attributed to labor (2). In 1957, labor in plant A accounted for approximately 40 per cent of the total operating cost.

[^1]While major emphasis of this study will be placej on labor, other components of cost such as electricity, steam, and refrigeration will be discussed. In this analysis, it seemed desirable to present these inputs in physical terms, whenever possible, for each major plece of equipment or bastc process in plant A. A basic process was defined as a complete operation on a product, from the time a decision whe made to perform this operation, until the oparation was completed and the product in such a state that it could have had alternative uses in its present form.

From the input requirements of each piece of equipment or basic process, unit product requirements can be calculated for basic procssses. A aynthesis of these requirenents will jield the total input requirements per unf.t of product produced in plant A.

The methodology used to gather information for determining labor input requirements was also used to analyze the general labor afficiency of plant A. The labor efficiency analysis vas confined to the relative labor efficiency by basic processes and individual workers within basic processes. By definition, the labor efficiency analysis is relevant only to plant A, but the methodology used in deternining the relative labor efficiency can be adapted to fit the needs of many other jobs and industries.

MODEL

A general deseription of the sconomic model as to the independent and dependent variables within the given market structure was outlined in the scope of the study. As explained earlier, this study is a detailed cost of production analysis of a large multri-product daify processing plant.

For most economic azalysis of this kind, it is convenient to divide physical inputs into $f 1 x e d$ and variable categories. For this analysis, flxed
inputs wers defined to be constant for a production run. Here a production run was dsfined as a complets procsssing cycle involving setting up equipment, prooessing, disassembling, and clsaning equipment. Iimits were set to the length of a production run by restraints such as length of work day, market rsquirements, and technical considerations. Technical restraints such as ths nsed for periodic cleaning and maintenance of equipment, quality considerations, equipment capacities, technical supervision, and the existing dsgrse of technology were considered limiting. The output of a production run varied widely from a minimum practical level to the lind imposed by the restraints previously mentioned.

The general form of the functional rslationship expressing inputs in physical terms for a particular process is given as follows:
$I_{i j}=a_{i j}+b_{i j} X_{j}$,
and
$1=$ factor 1 through factor n,
$j=$ process 1 throug procsss 37,
where
$Y_{i j}=$ total input of factor i in physical terms for process j and output X_{j} for a particular procuction run,
$a_{i j}=$ physical inputs of flxed factor i for process 4 for a production run,
by = physical inputs of variabls factor 1 for process 3 per unit of output X_{j},
$X_{4}=$ units of output of product in physical units for process j for a particular production run.

Assuming constant variable requirements over ths output range possible for a particular production run, this general equation will sxpress ths physical fixsd and variabls inputs required for a production run for any process in plant A.

METHODOLOGY

General Description of the Ratio-Delay Techniqus

The ratio-delay techniqus was originated and developed by L. H. C. Tippett, a statistician, in the British tsxtils industry in 1935.1 Tppett concluded that if randon observations were taken on a worker, the numbsr of observations falling into various work classifications would be in proportion to the amount of time expended on each of these work classifications (10).

This techniqus was virtually ignored until some years later when Robert R. Morrow applied it in ths United States under ths name of ratio-delay. Morrow further developed the technique and proved it a highly practical statistical technigus for obtaining the percentage of time machinss or workers were in operation or productivs (7). Using ratio-delay, he dstermined the area of gross inefficiency in thres different industriss.

Sincs Morrow's adaptation, the ratio-delay method has steadily grown in popularity in this country. It is now used in a great variety of jobs and industries. It appears to the author that ths present refinements of ratio-delay will enable its erowth in popularity to continue to encompass an even larger portion of labor-efficiency studies.

The advantages of a ratio-delay study are numerous, some of which ars (5):

1. It gives a maximum of information in a minimum of time. It generally costs from 33 to 80 per cent less than traditional stopwatch timestudies (I) and (3).

[^2]2. One can study any section or part of an operation or plant desired.
3. It doesn't interfere as much with normal plant operations as do the typical time-study or production-study techniques.
4. It can show the variability win a job or process by observing the activities over a period of time.
5. It allows supervisors to dsfine and evaluate speciflc jobs and to participate in the study.
6. It is accepted by most labor unions.

There are some linitations to a rationdelay study which should be presented, such as (5) and (11):

1. It can not be used for micro levels of behavior.
2. It does not show employee efficiency, that is, the rate or speed at which a worker works.
3. It is subject to "observer effect" when a worker is influenced by the presence of the observer.

Performing a ratio-delay study is similar to many other problems in that one starts by stating the objectives of the study, then planning the study, making the study, and flnally evaluating and presenting the results of the study.

Objectives of the Study. The primary objective of most ratio-delay studies is to reduce the amount of non-productive labor and increase the productive. A secondary objective right te to determine speciflc labor requirements of jobs or machines.

Planning the Study. A ratio-delay study involves everyone in the plant from top management who makes the decision to have the study, to supervisors and observers who make the study, to the worlding personnel being studied. Everyons must be informed of the study to mitigate any ill feelings that might develop due to insufficient knowledge.

Once the decision has been made to make the study, specific job or work classifications must be precisely defined, a plant layout drawn, the necessary forms prepared, and the observers trained (8). It is best if these jobs are performed by line supervisors in cooperation with the study director. Supervisors are in the best position to know their respective areas of work, and they can evaluate the work being done ae they take the observations. They may also take stepe to elfminate obvious diseconomies of operation (5). The next step is for the observere to use the plant layout to determine observation points and to become thoroughly familiar with the route, the obeervation pointe, and the workere normally stationed in each work area.

The recording forms are a neceesary part of the prelimfnary work. They must be of sufficient sizs to define the work categoriee with precision, provide enough space to record one day's observatione, and give the time for etarting each round of observations as predetermined by a random sampling scheme. It is essential that observatione be taken at random to eliminate systematic errors. 1 The number of observations necessary each day will depend on the information desired, the nature of the operation, and the time allocated for the study.

Making the Study. It is extremely important for the observer to record exactly what he eees upon reaching an observation point. He must not anticipate what the worker will be doing or what he has been doing. The observer should not always follow the same route, as thie leads to "conditioning" the workers to look busy when the observer entere the area. If the sampling plan has been

[^3]randorized properly, the proportion of the spent in each work category can be estimated.

A pilot stuay ia cesirable to familiarize the observere and workers with the atudy. With around 400 observations the pilot study can give a good overall index of performance which might allow for groeely inefficient work areas to be corrected before the study is continued. It will aleo allow the recordIng forms to be adjusted as necessary to become more functional.

After all necessary adjustments are completed, the study proceeds with observers taling obeervations at predetermined timee.

Evaluating tine Study. In evaluating the data, there are two important criteria-validity and reliability. Validity means being able to justify the results by eupportable evidence; here there is no eubstitute for precision in setting up the study and gathering the data. Reliability ie the confidence that can be placed on the results. In the case of ratio-delay, it is primarily governed by the number of observations and the probabilities of different work classifications as they spmroach either 0.0 or 1.0 from 0.5 according to the binomial frequency distribution. 1

In the case of ratio-delay, the estimate of the ratio of time spent in one work category to the time spent in all work categories is taken by a ratio of observations. Thie involves a sampling process, and as such, the estimates of the true ratios are subject to ampling error. For a large sample, the magnitude of the sampling error can bs measured as follows:

$$
\sigma_{\hat{p}}=\sqrt{\frac{\hat{p}\left(\frac{1-\hat{p})}{n}\right.}{n}},
$$

[^4]where
$\sigma_{\hat{\hat{p}}}=$ standard error of \hat{p},
$n=$ total number of observations, and
$\hat{p}=$ estimate of the probability ratio of one event.
For large sample, it is assumed that \hat{p} is approximately normally distributed. With a one in 20 chance of error, it can be expected that the true ratio of the number of observations taken in any one work classification will be whthin $2 \sqrt{\hat{p}}$ unite of \hat{p}. Therefore, the per cent error can be calculated by the following formula:

where
e = the error given in per cent,
$\hat{p}=$ estinate of the probability ratio of the event, and
$n=$ total number of observations.
Using the orror formla given above, the number of observations necessary to be within a fiven sampling error can be deternined as follows:

For example, workers in a certain labor classiflcation are observed productive 70 per cent of the time and idle 30 per cent of the time. Assuming 95 per cent confidence limits, the number of observations neceseary to be assured that the true population percentage is within \pm flve per cent of the sample estimate of the population percentage would be as lollows:

$$
n=\frac{4(.30)}{\left(\frac{5}{100}\right)^{2}(.70)}=686 .
$$

This is the number of observations nccessary for the 95 per cent confidence limits given above.

After tho sample size is determined for a particular confidence level, the degree of confidence to bs attained can be determined by equating the value of the additional information received with the cost of gathering additional information (4). Fiere again, the objectives of the study play a dominant role. After the desired confidence icvel is reached, the results of the study can be presented in a variety of ways dependine on what decisions are to be made and who will make them. The most commonly used methods of presentation are tables; charts, and various kinds of eraphs.

On the basis of the study, mamagenent may decide to make some changes in order to reducs the areas of gross inefficiency. After the desired changes are effectuated, a continuation of the study may be in oroer to appraise the effects of the changes. The new probability (\hat{y}) is calculated and tested for significance against the old probabilltw ($\hat{\mathrm{p}}$) for the same process or job. The test for significance could be one of many non-parametric tests such as the chi-square or analysis of variance teste. ${ }^{1}$

The relationship of the time spent in various categories can be used to estimate the total labor requirements thereof. Ths total labor requirements of a particular process can then be cilvided by the total production for a given period to give the estinated labor requirements for some standard unit of product. This is a very desirable and inexpsnsive method of determining unit costs. There are a number of other uses for a ratiomelay study such as determining the efficiency of workers or machines in different work categories, and determining

[^5]the exact flow of products through a plant. The possibilities are only limited by the disadvantages given oarlier.

Determining Utility Requirements 1

After the basic procesees in plant A were defined, operating information wes obtained for each piece of equipment used in each process. The name, mamufacturer, model, serial number, capacity, and utility requirements (whenever possible) were obtained for each piece of equipment by inspecting the manufacturer's plate on each piece of equipment, by examining equipment inventory cards from the plant's files, and by direct correspondence with equipment manufacturers. After the equipment information was assembled, utility requirements were calculated by two Mechanical Ingineering otudents under the direction of members of the Mechanical and Agriculture Engineering Departments of Kansas State University.

Steam and refrigeration requirements were calculated on a unzt of output basis wherever possible. If not on a unft of output basis, these requirements were calculated for a particular process as one unit. Steam and refrigeration requirements are given in Btu's per unit. Electrical requirements were calculated for each motor at a given level of efficiency from engineering handbooks. Mlectrical requirements are given in kilowatts per hour of machine running time. ${ }^{2}$ It was assumed that the utility requirements per unit of operating time were constant at some given level of efficiency for the output range possible for a

[^6]production run in any particular process in plant A. The specific utility rew quirements for each plece of equipment, by processes in plant A, are given in Appendix I, Tables 39 through 68.

EVPIRICAL INVESTIGATION

Plant Selection

The general background for this study was given in the scope of the study. The particular market structure selected for study was determined on the basis of a judgement sample. The reasons for selecting this particular market strucm ture were: -l- It was a relatively large Federal Order market in the Midwest, -2- It was a fairly "tight" or compact market, -3- it was of such a nature that one milk processing plant handled most of the eurplus milk, ali- it had a well organized producere' association, -5 - it was a well organized market, 6 . inetitutions within the market had been very cooperative in previous etudies, and -7- thie particular market structure was better identified and understood due to the factore mentioned above.

Selection of the one dairy processing plant within the eelected market structure was aleo cone by a judgement sample. Due to the institutional arrangements of the dairy processing plante in the market, it seemed best not to select the plant at random.

Once the market structure and the dairy proceesing plant within this market were selected, the plant'e management was consulted. The management was very recoptive to a study of this type; therefore, the cost of production study of plant A พะง Inaugurated.

Sampling Procedure Within Plant A

Before undertaling the actual ratio-delay study, it was necessary to become familiar with the physical layout of plant A. The first step undertaken was to determine the physical flow of product inputs through each piece of equipment to final products. The flow of products through plant A is given in Plats I; and the Identification of the equipment, plant areas, and products illustrated in Plate I, are enmmerated in Table I.

The second step was to decide the scope of this phase of the study. Due to practical limitations, it was decided to include only the physical cost of producing products by basic processes in plant A from the time inputs entered the plant until final products were in trucks ready for shipment. ${ }^{1}$ The costs of assembling the inputs, distributing final products to wholesalers or retailers, and general control are included in another phase of the general study.

The next step was to precisely define each work element within each process. As given earlier the definition of a basic process was a complete operation on a product, from the tims a decision was made to perform this operation, until ths operation was completed and the product in such a state that it could havs had alternativs uses in 1 ts present form. An exauple might be the process of receiving can nilk. Once the milk entered the plant, it was pumped to storage tanks. Management here had the choice of either selling the raw milk or further procsssing it in the plant.

The advantages of defining basic processes as a complete and separate
$1_{\text {This }}$ study did not include any functions performed by truck operators, but it did include all shipping functions performed by reguiarly employed plant personnel.
EXPLANATION OR PLATE I

Teble la. Identification and description of equipment, areas, and Isnal products presented in Plate I, plent A.

Code	Item	Capacity	: Electricity:	Steam : Refrigeration*
1	Milk pump	$3 \mathrm{~h} . \mathrm{p}$.	X	
2	Pressure filt			
3	Plate heat exchanger	21 plates		I
4	Milk cen washer	13 cans/min.	X	X
5	Milk intake pan	100 gal.		
6	Storage tank	5,000 gal.	X	
7	Storage tank	5,000 gal.	π	
8	Milk puap	$\begin{aligned} & 20,000 \\ & 1 \mathrm{bs} . / \mathrm{hr} . \end{aligned}$	X	
9	Plate heat exchanger	$\begin{aligned} & 20,000 \\ & 1 \mathrm{bs} . / \mathrm{hr} . \end{aligned}$		X
10	Storage tank	3,000 gal.	I	
11	Storage tank	2,000 gal.	X	
12	Cream pump	咅 h.p.	X	
13	Duap tank	100 gal .		
14	Twin-coll pasteurizer	500 gal .	Z	$X \quad \mathrm{X}$
15	Twin-coil pasteurizer	500 gal .	I	X X
16	Twin-coil pasteurizer	500 gal .	\pm	X X
17	Cream can washer	$3 \mathrm{cans} / \mathrm{min}$.	X	π
18	Milk pump	$3 \mathrm{hop}$.	z	

Table la (cont.) Identifleation and deseription of equipment, areas, and final products preeented in Plate I, plant A.

Code	:	:	: Electricity:	Steam	3
	Item	: Capacity			: Refrigeration
19	Plate heat exchanger	17 plates		I	
20	Milk pump	7 \% h.p.	I		
21	Pressure filt				
22	Separator	$\begin{aligned} & 10,000 \\ & 1 \mathrm{br} . / \mathrm{hr} . \end{aligned}$	X		
23	Separator	$\begin{aligned} & 10.000 \\ & 1 \mathrm{bs} . / \mathrm{hr} . \end{aligned}$	I		
24	Separator	$\begin{aligned} & 10.000 \\ & \text { 1bs./hr. } \end{aligned}$	X		
25	Milk purap	5 h.p.	x		
26	Bleeder heate				
27	Tubular heater	$\begin{aligned} & 20,000 \\ & 1 \mathrm{bs} . / \mathrm{hr} . \end{aligned}$		I	
28	Hot well	1,000 gal.			
29	Hot well	1,000 gal.			
30	Two stage evaporator	$\begin{aligned} & 18,000 \\ & 1 \mathrm{bs} . / \mathrm{hr} . \end{aligned}$	X	X	
31	carton machine	$35 \text { exrtons/ }$	X	I	X
32	Storage vat	550 gal .	Z		$\underline{1}$
33	Storage tank	2,000 gal.	Z		X
34	Plate heat exchanger	$\begin{aligned} & 20,000 \\ & 1 \mathrm{bs} . / \mathrm{hr} . \end{aligned}$		X	X
35	Homogenizer	15 h.p.	X		
36	Spray drier	$\begin{aligned} & 1,200 \\ & 1 \mathrm{bs} . / \mathrm{hr} . \end{aligned}$	x	Z	

> Table la (cont.) Identification and description of equipment, areas, and final products presented in Plate I, plant A.

	:	,				
Code	:	Item :	Capacity	: Blactricity:	Steam	: Refriceration
37		Cyclocentric screen and bagger		\mathbf{z}		
38		Electric hoist		I		
39		Milk pump	$1 \mathrm{~h} . \mathrm{p}$.	\%		
40		Churn	4,200 lbs.	I		
41		Vane churn	5,200 1bs.	\mathbf{Y}		
42		Milk pump	$3 \mathrm{~h} \cdot \mathrm{p}$.	I		
43		Storage tank	1,500 gal.	x		
44		Storage tank	1,000 gal.	I		I
45		Storage tank	1,000 gal.	X		X
46		Cheese vat	10,400 lbs.	X	x	
47		Chease vat	10,400 1bs.	X	\underline{x}	
48		Case washar	10 cases/min.	X	\pm	
49		Mixing vat	30 gal .			
50		Mixing vat	50 gal .	z		
51		Continuous fraazar	$80 \mathrm{gal} . / \mathrm{hr}$.	X		I
52		Weighing tank	1,000 ibs.			
53		Vacuumizer and pump	$3 \frac{1}{2} \mathrm{~h} . \mathrm{p}$.	\underline{z}		
54		Milk pump	$1 \mathrm{hop}$.	I		
55		Tubular heater	8,000 $\mathrm{lbs} . / \mathrm{hr}$.		X	
56		Pressure Pilter				

Table la (cont.) Identification and deacription of equipment, areas, and final products presented in Plate I, plant A.

Code	\%	:	: 2		
	Item	: Capacity :	Electricity	Steam	: Refrigeration
57	Milk pump	$2 \mathrm{~h} . \mathrm{p}$.	x		
58	Standardizer clarifier	$\begin{aligned} & 1,000 \\ & \text { gal./hr. } \end{aligned}$	X		
59	Short-time pasteurizer	$\begin{aligned} & 1,000 \\ & \text { gal./hr. } \end{aligned}$		X	X
60	Homogenizer	$25 \mathrm{~h} \cdot \mathrm{p}$.	X		
61	Vitamin dispenser		X		
62	Storage tank	2,000 gal.	X		X
63	Vacuumizer and pump	$3 \mathrm{~h} . \mathrm{p}$.	\mathbf{X}		
64	Separator	300 gal . $/ \mathrm{hr}$.	Z		
65	Processing vat	300 gal .	z	X	X
66	Processing vat	300 gal .	X	X	X
67	Seal-on machine	32-50 bottles/ min.	X		
68	Carton machine	25 cartons/min.	. X	X	X
69	Bottle washer	24 bottles/min.	. X	z	
70	Procesing vat	100 gal .	X	X	
71	Processing vat	200 gal.	X	X	
72	Butter printing machine	1,000 lbs. $/ \mathrm{hr}$.	X		

Table la (cont.) Identification and description of equipment, areas,
and final products presented in Plate I, plant A.

Code	:		* ${ }^{\text {a }}$	
	Item :	Capacity :	: Electricity:	Steam : Refrigeration
73	Butter wrapping machine	$\begin{aligned} & 1,200 \\ & 1 \mathrm{bs} . / \mathrm{hr} . \end{aligned}$	X	
74	Roller drier		I	
75	Pulverizer		X	
76	Weigh tank and milk intake pan	1,000 1bs.		
77	Vacuum sampler and pump	$\frac{1}{4} \mathrm{~h} . \mathrm{p} \text {. }$	\mathbf{X}	
78	Milk pump	$3 \mathrm{nop}$.	I	
79	Pressure filter			
80	Storage tank	5,000 gal.	X	
81	Storage tank	4,000 gal.	z	
82	Cream pump	1交 h.p.	X	
83	Pressure Pilter			
84	Seving machine		X	
85	Storage vat	550 gal 。	X	X
86	Milk pump	2 h .p.	I	
87	Bagger			
88	Filler and capper	$35-45 \text { bottles/ }$ min.	I	
89	Chees. mixer		I	

Table la (concl.) Identification and description of equiprent, areas, and final products presented in Plate I, plant A.

Code	\%	:	-	: ${ }^{\text {2 }}$	
	: Item	: Capacity :	Electricity :	Staam	: Refrigaration
90	Cheese mixer hoist		X		
91	Fruit feeder		I		
92	Mixing vat	50 gal .	I		
93	Milk pump	$\frac{1}{2} \mathrm{~h} . \mathrm{p}$.	x		
94	Milk pump	$\frac{1}{2} \mathrm{~h} \cdot \mathrm{p}$.	I		
95	Bottling machine	$18-24 \mathrm{gal} . / \mathrm{min}$. $33 \frac{1}{2}$ gal. $/ \mathrm{min}$.	- X		
96	Milk pump	$\frac{1}{2} \mathrm{~h} \cdot \mathrm{p}$.	I		
97	Cheese vat agitator	$\frac{1}{2} \mathrm{~h} . \mathrm{p}$.	X		
98	Cheese vat agitator	$\frac{1}{2} \mathrm{~h} \cdot \mathrm{p}$.	x		
99	Mill pump	3/4 h.p.	\bar{X}		
100	Extraction pump	$3 \mathrm{~h} \cdot \mathrm{p}$.	X		
101	Milk pump	$1 \frac{1}{2} \mathrm{~h} \cdot \mathrm{p}$.	X		
102	Milk pump	$\frac{1}{2} \mathrm{~h} \cdot \mathrm{p}$.	x		
103	Milk pump	$3 \mathrm{~h} \cdot \mathrm{p}$.	X		
104	Milk puap	$2 \mathrm{~h} \cdot \mathrm{p}$.	I		
105	Surge tank	20 gal.			
106	Surge tank	40 gal.			
107	Surge tank	40 gal.			
108	Surge tank	40 gal.			
109	Surge tank	30 gal.			

[^7]Tabls 1b. Identification end dascription of aquipmant, sreas, and final products prasented in Plsta I, plant A.

:		Plant Areas
110	Bulk recaiving	
111	Rscsiving glass bottlas and cases	
112	Cold storage*	
313	Ica craam hardening room	
	geration rsquiremants ars give 1c. Idantificstion and descri and final products presen	endix IV. equipment, areas, lata I, plant A.
Coda	Product	Unit size
114	Rav, cooled, Grads A milk	10 gallone
115	Rav, cooled, Grads A cream	10 gallons
116	Pastaurizsd Grads A milk	10 gallons
117	Pasteurizad Grada A cream	10 gall ma
118	Pastsurized Grsds A milk	Five-gsilon dispense
119	Chocolate milk	Fivengallon dispense
120	Ics cream mix, ice milk mix, sharbet mix, chesse dressing	10-gallon cans
121	Whols milk	One-gallon glass jug
122	Whole milk, orange drink, grape drink	Ons-half gallon glas
123	Whola milk	Ons-hslf gallon paps
124	Whole milk, chocolste milk, skim milk, buttermilk, half snd half, whipping crsam	Quarts peper
125	Half and half	Pints paper

Tsble le (concl.) Identificstion snd description of equipment, aress, and Pinal products presented in Plate I, plant A.

Code	Product	
126	Whole milk, chocolate milk	One-third quart paper
127	Whole milk, chocolate milk, whipping cream, half and half	One-hall pint paper
128	Iee cream, ice milk, sherbet	Two-and-one-half gallons, one-half gsllon, pints
129	Cottage cheese curd	10-gall on cans
130	Creamed oottage cheese	Five pounds, two pounds, 12 ounces
131	Condensed whole or skin milk	10-gall on cans
132	Dry whole milk or non-fat dry milk	100-pound bags
133	Dry whole milk or non-fat dry milk	220-pound barrels
134	Pssteurized Grado C cresm	10-gallon cans
135	Bulk butter	64-pound boxes
136	Packaged butter	One-pound cartons, one-pound quarters, one-half pound quarters
137	Dried buttermilk	100-pound begs
138	Dried buttermilk	220-pound barrels

operation on various products seems obvious. On economic grounds, the cefinition used provided decision malding points within plant A and a choics criteria for management to make decisions at these points. It also providsd "building block" material for developing synthetic analyses to be used in this study or other stucies of a similar nature.

Work elements within each process were developed by the study director in cooperation with the plant superintendent and assistant superintendent. Work elements were defined as specific work tasks performed within each process. Work elements were groupsd together within departments according to divisions of labor. Ths divisions of labor were classified as variable, fixed-other than maintenance, fixec-maintenance, and idle time according to the requirements thereof. 1 Departments (an aggregation of divisions of labor) were defined as major operations within each basic procsss. This gave a process labor classification by departments (major operations within a process), divisions of labor (variable, fixed, and icle), and work elements (spscific work tasks). This labor classification is given for each process in ths detailed process descriptions found in Appendix I.

The ratio-delay study of plant A fairly well followed the procedure given in the previous section. In preparation of the ratio-delay study, a layout of equipment and areas of the plant were drawn to detsmine the bsst observation points for each process. In order to ksep the identity of plant A unknown, the layout of plant A is not given in this study. Instead, a layout developed by French of a dairy processing plant showing equipment, areas, and workers is

[^8]glven in Plate II es an example of the type used in this atudy (3). In addition to the above, this layout shown the route followed by the person taking the la-bor-performance observations and the observation points.

Using the plant layout, flow diagram, labor classification data, and detalled process descriptions; recording forms wers developed and the observers trained. The recording forns, examples of which are given in Appendix III, listed each department and work element within each process. The forms provided for classifying each obsarvation taken on a worker as to whether the worker was productive or delayed. Ielay was further categorlzed into avoidable, unavoldabls, and loafine. Avoidable delay was defined as breakdows or work stoppage in the observed procese which could and should have been avoided by proper matntenance and operation of equipment in the observed process. Thavoldable delay was work stoppage in the observed procees due to work stoppage in some prior procses upan which the observed process wes dependent for its product or aupplies. The recording forme were tried in plant A for two days wille the observers were becoming accustomed to the observation route and jobs perfomed by each worker. After the trial period, the observers were able to identify each vorker by an assigned number and were adequately familiar with the plant to formally start the study.

It was decided to take as many observations as possible during the nomal eighthour working diay. It took approximately 17 minutes to complete one round of observations covering $2 l l$ areas of the processing part of the plant. In order to randomize the sample and reduce syetematic errors, numbere from one to five were dram at random to deternine the number of ninutes each observer would wait from the time one round of observetions wes completed until the next round was started. The mute was Prequently reversed during each aample day in order to reduce the obeerver effect which is inherent in this type of
EXPLANATION OF PLATE II
Schematio diagram of a hypothetical milk processing plant layout showing major
equipment, areas, and employees (indicated by oircles). Dash-line shows path
followed by person making labor-performance observations, and X's indicato some
logical observation points.
Sources French, Charles E., "Fast and Simple Sarmpling Mothod for Checking
Labor Performance", Food Engineering, April, 19j\%, p. 64.

study.
With the observers recorcing exactiy what each worker was observed doing upon reaching an observation point, the labor study contfnued for 21 working days during the months of August and Septomber, 1957.

Method of Determining Labor Requiremente for Plant A

After the necessary labor-study tabulations were completed for workers and processes, all workers appearing in each process wore classifled into sldll categories. Skill class I (supervisory labor) could perform any job in the plant. Skill class 2 could perform any task requiring a lower skill class, but not a task which required supervisory decisions. Skill clase 3 could perform taske requiring more than a general knowledge of the particular operation, but not those tasks requiring a higher skill class. Skill class 4 was defined as general labcr, and these workers could do only those jobs wizich did not require special training or knowledge. These skill categorles were determined on the basie of pay schecules established by the plant manager. It was believed this would be the best classification since a worker's ability and experience was generally remunerated accordingly.

Within the labor classiflcation previously given, labor input requirements in minutes were estimated for fixed and variable labor by skill classes within each process. In order to give the fized requirements performed by workers normally assigned to a process, only the fixed-other than maintenance type of labor was included in deriving the fixed coefficients. I Each flxed and variable skill-class coefficient wae calculated by one of the following formulas:

[^9]for variable requirements,
$$
V_{b j}=\frac{\frac{T V_{b j}-I V_{b j}}{T_{b}} \cdot M_{b}}{P_{j}}
$$
and for fixed requirements,

where
$V_{b j}=$ minutes of variable labor required for shill class b in process J per unit of product, 1
$F_{b j}=$ average minutes of fixed labor required for skill class b in process J per production run,
$I V_{\mathrm{bj}}=$ total variable observations in skill class b for process J,
$L V_{\mathrm{bj}}=$ variable loafing observations in skill class b for process j,
$T_{b j}=$ total fixed observations in skill class b for process j ,
LPy = fixed loafing observations in skill class b for process f,
$T_{b}=$ total observations in skill class b for all processes,
$M_{b}=$ total minutes worked for all workers in skill class b for all processes during the sample period,2
$P_{j}=$ total product handled in process j during the sample period, 3
$R_{j}=$ number of production runs for process f during the sample period.

[^10]Labor coefficients derived by the fomulas given above did allow for fatigue and personal allowences since workers wore not observed during their two allowable $15^{\text {minute breaks and wile attending to personal needs. These coefficients }}$ estimate the minutes of fixed and variable labor required for each of the four skill classes in each process of plant A. A summation of the skill class requirements of each process gives the total fixed and variable labor requirements for each process. Assuming constant requirements of the variable labor over the output range possible for a production run, these formulas will express the minutes of labor required for a production run for any process in plant A.

A brlef description of each process and its labor requirements are given in the following section. It is believed that these labor coefficients are applicable to plant A; beyond this no inference is intended. Some coefficients in this stucy are in close agrement with those of cther studies; this is true because many operations in milk processing plants are similar as to volume, layout, and types of equipment used.

DESCRIPIIOM AND LABOR REQUIREMENTS OF PROCESS ANALYSIS

Process I. Recoiving Can Milk

Process I covered receiving, cooling, and storage of all Grade A and Orade C milk entering the plant in 10-gallon cans. Three workers were usually assigned to receive can milk. A total of 2,565 observations were taken on all workers observed in this process.

Variable labor included opening cans with a rubber mallet, grading milk by organoleptic inspection, dumping cans of milk into the dump tank, recording the waight of each producer's milk, sampling each producer's milk, washing milk cans using a mechanical can washer, and making routine checks of the first-
holding tank (Table 2).
Fixed labor included providing supplies to the process as needed, setting up equipment, and cleaning equipment and area surrounding the equipment.

Table 2. ifinutes of labor required per 100 pounds of milk received in cans, plant A, receiving an average of 37,200 pounds of milk each production run, August-September, 1957.1

Skil Class	Fixed labor per production run	$:$
	(minutes)	Variable labor per cwt.
1	-	(minutes)
2	155.3598	0.0029
3	325.5587	0.4300
4	195.0495	0.7424
Total2	675.9680	0.6278

1
Production run was defined as a complete processing cycle including setting up equipment, processing, disassembling, and cleaning equipnent.
${ }^{2}$ Throughout this paper, the totals may not equal the sum of their parts due to rounding.

Process II. Receiving Bulk Milk

Process II included receiving, cooling, and storage of all Grade A or Grade C milk entering the plant by bulk trucks. One worker was usually assigned to receive bulk milk. A total of 54 observations were taken on all workers observed in this process.

Variable labor included hooking up the plant intake milk pipe to the bulk truck, pumping milk from the truck tank to first-holding tanks in the plant, taking a sample of milk, unhooking the milk pipe from the truck tank, and making routine checks of the purping process (Table 3).

Flxed labor in this process included setting up and cleaning the equipment.

Table 3. Minutes of labor required per 100 pounds of milk received in bulk, plant A, receiving an average of 73,009 pounds of milk each production run, August-September, 1957.

| Skill class | Fixed labor per
 production run | Variable labor per cat. |
| :---: | :---: | :---: | :---: |
| | (minutes) | (minutes) |
| 1 | - | 0 |
| 2 | 3.6046 | 0.0167 |
| 3 | 122.2578 | 0.0753 |
| 4 | 61.7522 | 0.0875 |
| Total | 187.6147 | 0.1795 |

Process III. Receiving Can Cream

Process III included recesiving and storage of all routs or station cream entering plant A (all cream entered in 10-gallon cans). Three workers were usually assigned to recelve can cream. A total of 1,954 observations were taken on all workers observed in this process.

Variable labor included opening cans with a rubber mallet, grading cream by organoleptic inspection, dumping cream from cans into the dump vat, recording the weight of each producer's cream, sampling each producer's cream, washing cream cans using a mechanical can washer, stacking empty cream cans, and making observations of the coil vats into which cream was pumped (Table 4). Fixed labor included providing supplies as needed, setting up equipment, and cleaning equipment and area surrounding the equipment.

Table 4. Minutes of labor required per 100 pounds of cream recetved in cans, plant A, receiving an average of 2,885 pounds of cream each production run, August-September, 1957.

Skill class	Flxed labor per procuction run	$:$	Variable labor per cwt.
	(minutes)	(minutes)	
1	28.8702	1.5929	
2	116.8962	10.1319	
3	161.7475	9.4778	
4	307.5138	21.2026	

Process IV. Separating Grade C Milk

Process IV included all separation and processing activities from the time Grade C milk left the first-holding tanks until skim milk was in the separator surge tank and cream was in cream holding tanks. One worker was usually assigned to separate milk. A total of 288 observations were taken on all workers observed in this process.

Variable labor included observing and adjusting equipment in the process as necessary for efficient operation and, occasionally, canning cream in 10-gallon cans as it came from the separators (Table 5).

Fized labor included setting up equipment, hooking up pipe lines to the equipment, and cleaning equipment and area surrounding the equipment.

Table 5. Minutes of labor required per 100 pounds of $\pi i l k$ separated, plant A, separating an average of 48,658 pounds of milk each production run, August-September, 1957.

Skill Class	:	Fixed labor per procuction run	:	Variable labor per cwt.
		(mintes)		(minutes)
1		-		-
2		17.5463		0.0305
3		272.0411		0.9054
4		161.0295		-
Total		450.6169		0.1259

Process V. Condensing Operation

Process V included pre-heating, condensing, cooling, and storage of condensed skim milk or whole milk. If the product was to be oried, it was not cooled but pumped to drier surge tanks. Products included Grade A and Grade C whole milk and Grade C skim milk. One worker was usually assigned to condense milk. A total of 703 observations were taken on all workers observed in this process.

Variable labor included all activities necessary to forewarm the product and those activities necessary to evaporate and store the product (Table 6).

Fixed labor included hooking up pipes and equipment, setting equipment into an operational state of readiness, and cleaning equipment and area surrounding the equipment.

Table 6. Minutes of labor required per 100 pounds of condensed milk, plant A, producing an average of 17,115 pounds of condensed milk each production run, August-September, 1957.

		Fixed labor per
Skill Class	production run	Variable labor per cwt.
	(ndnutes)	(minutes)
1	2.8175	0.1262
2	39.8413	0.1321
3	399079	0.9159
4	169.8435	-
Total	611.3102	

Process VI. Condensing Transfers

Process VI included only those activities necessary to fill 10-gallon cans with condensed milk and to transport filled cans to the south cold room. Two workers were usually assigned to transfer condensed milk. A total of $221 \mathrm{ob}-$ servetions were taken on all workers observed in this process.

Variable labor included transporting empty cans to the condensed storage tank, adjusting condensed milk to tho desirod per cent solids by adding water, filling 10 -gallon cans with condensed milk, and transporting fllled cans of condensed milk to the south cold room (Table 7).

No fixed labor was involved in this process as cleaning the storage tank was assigned to Process V (Condensing Operation).

Table 7. Minutes of labor required per 100 pounds of condensed milk trans. ferred to storage, plant A, transferring an average of 4,325 pounds of condensed milk each production run, August-September, 1957.

Skill class	:	Fixed labor per procuction run	:	Variable labor per cwt.
		(minutes)		(minutes)
1		-		0.0241
2		-		0.9306
3		-		1.6868
4		-		0.3605
Tot2		-		3.0021

Process VII. Selling Condensed Milk

The only labor involved in this process was variable labor needed to transport 10 mallon cans of condensed milk to the conveyor in the south cold room and to place these cans on the conveyor. Loading the truck from the conveyor was performed by the truck operator, and he was not observed in this study (Table 8). Two workers were usually assigned to help load out condensed milk. A total of 52 observations were taken on all workers observed in this process.

No fixed labor was charged to this process.

Table 8. Minutes of labor required for filling and selling a can of condensed milk, plant A, selling an average of 66 cans of condensed milk each production run, August-September, 1957.1

Skill class	$:$	Fixed labor per production run	$:$
	(minute3)	Variable labor per can	
1	-	(minutes)	
2	-	0.0258	
3	-	0.2246	
4	-	0.3603	
Total	-	0.2483	

$I_{\text {A }}$ IO-gallon can was defined to contain 93 pounds of condensed milk.

Process VIII. Spray-Drying Operation

Process VIII included heating condensed milk (either skim or whole), pumping condensed milk to the dryer, and drying. One worker was usually assigned to the drying operation. A total of 1,007 observations were taken on all workers observed in the process.

Variable labor included observing and adjusting the equipment used in this process as necessary for efficient operation (Table 9).

Fixed labor included hooking up pipes and equipment, setting equipment into an operational state of readiness, changing equipment to handle another product, and cleaning equipment and area surrounding the equipment.

Table 9. Minutes of labor required per 100 pounds of spray-dried milk, plant A, drying an average of 6,877 pounds of dry milk each production run, August-September, 1957.1

Shill Class	$:$	Fixed labor per production run
	(minutes)	Variable labor per cwt.
1	-	(minutes)
2	10.3749	0.0217
3	445.6016	2.5929

Table 9 (concl.). Minutes of labor required per 100 pounds of spray-dried milk, plant A, drying an averags of 6,877 pounds of dry milk each production run, August-September, 1957. 1

Shill Gass	!	Fixed labor per production run	$!$	Variable labor per cwt.
		(minutes)		(minutes)
4		924.7026		0.0099
Total		1,380.6791		2.6245

$I_{\text {Dry milk includes both non-fat } d x y m i l k ~ a n d ~ d r y ~ w h o l e ~ m i l k . ~ A l l ~ d r y ~}^{\text {mil }}$ milk is spray-dried.

Process IX. Packaging Dry Milk

Process IX included all activities necessary to package and seal dxy milk (either skim or whole) in 220 pound barrels or 100 pound plastic lined bags and to prepare packages for storage. One worker was usually assigned to package dry milk. A total of 504 observations were taken on all workers observed in this process.

Varlable labor included transporting barrels and bags to the packaging ares; labeling packages as to Pat , solids-not-iat, and weight; adding plastic Ilners to packagss; positioning packages under the filler; filling packages; sampling one package in forty for laboratory use; sealing packages; and proViding other supplies to the procsss as needed (Table 10).

Fixed labor included setting up pipes and equipment, setting equipment into an operational state of readiness, and cleaning equipment and area surrounding the equipment.

Table 10. Kinutes of labor required per 100 pounds of dry milk packaged in 100 pound bags or 220 pound barrels, plant A, packaging an average of 6,877 pounds of dry milk each production run, August-September, 1957.

Skill Class	$:$	Fixed labor per production run
	(minutes)	Variable labor per cwt.
1	-	(minutes)
2	-	0.0217
3	74.5616	2.3805
4	207.2295	1.5170
Total	281.7911	3.9193

Process X. Storing Dry Milk

Process \mathbb{X} included those activities necessary to move barrels and bags of dry milk from the packaging location to the storage area and those activities necessary for stacking. One worker was usually assigned to store dry milk. A total of 181 observations were taken on all workers observed in this process.

Variable labor included transporting barrels and bags of dry milk to storage, stacking, and retuming the empty dolly from the storage area to the packaping area (Table 11).

Fized labor included taking inventory of products in storage and rearranging products in storage as necded for ease of handing or for prevention of falling.

Table 11. Minutes of labor required per 100 pounds of dry milk stored, plant A, storing an average of 6,877 pounds of dry milk each procuction run, August-September, 1957.

Skill Class	\vdots	Fixed labor per procuction run	\vdots

Table 11 (concl.). Minutes of labor required per 100 pounde of dry milk etored, plant A, storing an average of 6,877 pounde of dry milk each production run, August-September, 1957.

Skill Class	$:$	Fixed labor per production run
	(minutes)	Variable labor per cwt.
3	30.8630	(minutes)
4	220.1393	0.5023
Total	255.4821	0.4064

Process XI. Shipping Dry Milk

Process XI included all activitiee necessary to move bage or barrels of dry milk from the etorage area into a truck at the loading dock. Three workere were usually assigned to load out dry milk. A total of 280 observatione were taken on all workers observed in thie process.

Variable labor included preparing the loading dock for loading, preparing the truck for hauling, loading the dolly with product, transporting the loaded dolly into the truck, etacking the product in the truck, and transporting the empty dolly back to the storage area (Table 12).

Fixed labor wae not included in this process.

Table 12. Minutes of labor required per 100 pounds of dry milk shipped, plant A, ehipping an average of 7,718 pounds of dry milk each production run, August-September, 1957.1

Skill Class	$:$	Flxed labor per production run	Varlable labor per cwt.
	(minutee)	(minutes)	
1	-	0.0885	
2	-	0.9265	
3	-	2.9320	
4	-	3.9470	

${ }^{1}$ Iry whole milk and non-fat dry milk in 100 pound bags and 220 pound barrels.

Process XII. Processing and Storing Route Cream

Process XII included activities performed from the time cream entered the coil vats until the cream wae neutralized, pasteurized, vacuumized, cooled, and stored in holding tanke in preparation for churning. One worker wae usually assigned to process route crean. A total of 272 observations were taken on all workers observed in thie procees.

Variable labor included dumping returned botter and cream into the coil vats, testing cream for acidity, adding neutralizer to cream, and observing and adjusting equipment as neceesary for efficient operation (Table 13).

Fixed labor was not recorded for this process. Cleaning of equipment and area eurrounding equipment used in this process was charged to Process XIV (Buttermaling).

Table 13. Minutes of labor required per 100 pounds of 40 per cent cream processed and etored, plant A, processing and storing an average of 7,370 pounds of cream each production run, Auguet-September, 1957.

Skill Class	$:$	Fixed labor per procuction run
	(minutes)	Variable labor per cwt.
1	-	(minutes)
2	-	0.0121
3	-	1.6836
4	-	0.0890
Total	-	0.0299

Process XIII. Selling Pasteurized Gream

Process XIII included activities necessary to flll 10-gallon cans with cream, to transport cane to the south cold room, and to load cans on the conveyor in the south cold room. Two workere were usually aesigned to help load out cream. A total of 104 observatione were taken on all workers observed in
this process.
Variable labor included transporting empty $10-$ gallon cans to cream holding tanks, taking a sample of cream for butterfat tests, filling cans, transporting full cans to the south cold roam, and placing full cans on the conveyor leading to a truck (Table If).

Fired labor was not charged to this process. As the volume of cream sold was insignificant compared to the amount churned, cleaning of equipment used in this process was charged to Process XIV (Buttermaking).

Table 14. Ninutes of labor required for filling and selling a 10 -gallon can of 40 per cent cream, plant A, selling an average of 32 cans of cream each production run, August-September, 1957.1

| Skill Class | Fixed labor per
 production run | Variable labor per crt. |
| :---: | :---: | :---: | :---: |

$I_{\text {A }}$ 10-gallon can was defined to contain 83 pounds of 40 per cent cream.

Process XIV. Buttermaking

Process XIV included activities necessary to churn and store butter. Three workers were usually assigned to butternaking. A total of $1,956 \mathrm{ob}-$ servations were taken on all workers observed in this process.

Variable labor included taking a sample of cream for a butterfat test; fllling the churn; churming; preparing baskets and boxes to receive butter; adding butter color and sale; working butter, testing butter for fat, moisture, and salt content; pulling butter from the churn; weighing and recording the
weight of the butter; fllling baekets or boxee; transporting butter to the south cold room; traneporting empty dolly back to churning area; pumping buttermilk to a storage tank; and proviaing eupplies to the process as necessary (Table 15).

Fixed labor included cleaning equipment and area eurrounding the equipment used in Processee XII, XIII, and XIV; sanitizing churns; and hooking up pipes and equipment used in this process.

Table 15. Minutee of labor required per 100 pounds of butter churned, plant A, churning an average of 2,404 pounds of butter aach production run, AugustmSeptember, 1957.

Skill Claes	$:$	Fixed labor per production run
	(minutes)	Variable labor per cwt.
1	19.7719	(minutes)
2	257.0679	3.8239
3	120.0591	5.3029
4	128.3089	11.7508
Total	525.2077	3.0350

Procees XV. Selling Bulk Butter

Process XV included only variable labor involved in moving 64-pound boxee of butter from stacks in storage onto the conveyor in the couth cold room. The truck operator loaded hie own truck, and he wae not observed in this study (Table 16). Two workere were nsually aesigned to help load out bulk butter. A total of 66 observations were taken on all workere observed in this process.

No fixed labor was assigned to this process.

Table 16. Minutes of labor required per 64-pound box of butter prepared for sale, plant A, selling an averags of 22.5 boxss of butter each production run, August-September, 1957.

Skill Class	\vdots	Fixed labor per production run	Variable labor per box
	(minutes)	(minutes)	
1	-	-	
2	-	0.1817	
3	-	0.8681	
4	-	1.5880	
Total	2.6378		

Procsss XVI. Frinting and Wrapping Dutter in Individual Quarters-Ons Erand Only

Process XVI included all activities necessary to print, wrap, case, and transport to the north cold room individually wrapped quarters of butter in one-half pound or one-pound cartons. Two workers were usually assigned to print and wrap butter. A total of 186 observations were taken on 211 workers observed in this process.

Variabls labor included transporting baskets of butter from the south cold room to the print room, cutting butter into small chunks, operating butter printer, opsrating butter wrapper, packaging butter in one-half or onepound cartons, casing butter, recording the anount of butter cartoned, transporting casss of butter to the north cold room, and providing supplies to the procsss as necessary (Table 17).

Fixed labor included hooking up equipment, taking inventory of butter in the cold room, and cleaning equipment and area surrounding the squipment.

Table 17. Minutes of labor required per 100 pounds of butter packaged in individually wrapped quarters, plant A, packaging an average of 512 pounds of butter in individually wrapped quarters each production run, August-September, 1957.

Skill Class	$:$	Mxad labor per procuction run
	(ninutes)	Variable labor per cwt.
1	-	(minutes)
2	25.4032	
3	2.3483	41.7137
4	27.7516	30.4186
Total	72.1323	

Process XIII. Printing and Wrapping Butter--Erclusive of the Special Brand of Process XVI

Process XVII included all activities necessary to print, wrap, case, and transport to the north cold room all butter except that in Process XVI. Butter was packaged in the following type cartons: -1- onempound parchment wrapped, -2- one-pound parchment wrapped in cartons, -3- one-pound individually wrapped quarters, and -4-one-half pound individually wrapped quarters. Two workers were usually assigned to print and wrap butter. A total of 816 observations were taken on all workers observed in this process.

Vartable labor included transporting baskets of butter from the south cold room to the print room, cutting butter into small chunks, operating butm ter printer, operating butter wrapper, wrapping butter by hand, packaging butter in one-half or one-pound cartons, casing butter, recording the amount of butter cartoned, transporting cases of butter to the north cold room, and providing supplies to the process as necessary (Table 18).

Fixed labor included hooking up equipment, taking inventory of butter in the cold room, and cleaning equipment and area surrounding the equipment.

Table 18. Minutes of labor required per 100 pounds of butter packaged in various size containers, plant A, packaging an averags of 1,356 pounds of butter each procuction run, August-Ssptember, 1957.1

Skill Class	$:$	Fized labor per production run
	(ninutes)	Variable labor per ewt.
1	-	(minutes)
2	-	-
3	46.0586	27.9725
4	7.6046	27.5832
Total	53.6632	55.5557

${ }^{1}$ Container sizes included: -1- one-pound parchment mrapped, -2-onepound parchnent wrapped in cartons, -3 one-pound individually wraoped quarters, and -4- one-half pound individually wrapped quarters.

Process XVIII. Processing Cottage Cheess

Process XVIII included all activities necessary to pasteurize, cool, manufacture, and store cottags cheese by the long-set method. Two workers were usually assigned to make cottags cheese. A total of 844 observations were taken on all workers observsd in this process.

Variable labor included observing the pasteurization and cooling operetions, fllling chssse vats with skim milk, preparing starters, performing various tests on skim milk and curd, cutting curd, cooking curd, draining whey, hauling whsy from procsssing area, filling lo-gailon straight-aided cheese cans with curd, and transporting cans of cottage cheess to the south cold room (Table 19).

Fixed labor included hooking up equipment and pipes, sanitizing squipment, and cleaning equipment and area surrounding ths equipment.

Table 19. Minutes of labor required per 100 pounds of milk procucts used in producing cottage cheese, plant A, processing an average of 10,075 pounds of milk products each production run, August-September, 1957.

Skill Class	Fixed labor per production run	$:$	Variable labor per cwt.
	(minutes)	(minutes)	
1	2.6836	0.0399	
2	129.3617	2.8551	
3	30.399	0.5279	
4	18.4011	0.4383	
Total	180.8372	3.8613	

Process XIX. Packaging Cottage Cheese

Process XIX included the following activitiee: -l-moving cans of cottage cheese to the packaging area, -2- packnging cottage cheeee in ilve, two, or three-fourths pound cartons, and -3- transporting cartons to the north cold room. Two workers were usually assigned to package cottage cheese. A total of 1,859 observations were taken on all workers observed in this process.

Variable labor included transporting cans of cottage cheese to the packaging area, providing supplies and cartons to the process as necessary, dumping cans into the mixing vat, mixing salt and dressing with the curd, packaging creamed cottage cheese, repackaging creamed cottage cheese in different size containers, casing cartons, and transporting cases of cartons to the north cold room where they were ready for sale (Table 20).

The only fixed labor involved wae cleaning the mixing vat and the packaging table. Plant and equipment maintenance were charged to Procese XVIII (Processing Cottage Cheese).

Table 20. Minutes of labor required per 100 pounds of cottage cheese packaged in five, two, or three-fourths pound cartons, plant A, packaging an average of 1,654 pounds of cottage cheese each production run, August-September, 1957.

	$:$	Fixed labor per production run
Skill Class	(mirutes)	Variable labor per cwt.
	-	(minutes)
1	-	0.0568
2	-	6.6775
3	60.8011	1.4974
4	60.8011	53.1170
Total		61.3487

Process XX. Processing Ice Crean Products

Process XX included all activities necessary to make various flavors of ice cream, ice milk, and sherbet from mix stored in the south cold room or in the Orade A handling room. One worker was usually assigned to process ice cream products. A total of 353 observations were taken on all workers observed in this process.

Variable labor included transporting mix to freezer vats, flavoring and coloring the mix, providing supplies as necessary, loading mix into the freezer, operating the continuous freezer, and transporting empty 10-gallon cans to the can washing area (Table 21).

Fixed labor included hooking up pipes and equipment, keeping records of formulas and production data, and cleaning equipment and area surrounding the equipment.

Table 21. Minutes of labor required per gallon of ice cream processed, plant A, processing an average of 364 gallons of ice cream products each production run, August-Septamber, 1957.1

Skill Class	$:$	Fixed labor per production run	$:$
	(minutes)	Variable labor per gallon	
1			(minutes)

Table 21 (concl.). Minutes of labor required per gallon of ice cream proceesed, plant A, processing an average of 354 gallons of ice cream producte each procuction run, August-September, 1957.1

Skill Class	$:$	Flxed labor per production run
	(minutes)	Variable labor per gallon
2	0.7949	(minutee)
3	-	0.0066
4	206.0272	0.054
Total	206.8221	0.3238

$I_{\text {Products include ice crean, }}$ ice milk, and sherbert.

Process XXI. Packaging and Storing Ice Cream Products

Process XXI included all activities necessary to package ice cream, ice milk, or eherbet into $2 \frac{\pi}{2}$ gallon, one-half gallon, pint, cup, or brick containers and to etore full containers in the ice cream hardening room. Two workers were usually assigned to package and store ice cream products. A total of 1,380 obeervations were taken on all workers observed in this procees.

Variable labor included providing supplies ae necessary, assembling cartons, positioning cartons under the outlet nozzle, filling cartons, checking carton weights, closing tops of cartone, placing cartone in paper sacks, cutting or elicing individual slices, stamping or decorating individual slicee, and wrapping or unwrapping individual slices (Table 22).

Fixed labor included changing from one eize container to another, rearranging products in the cooler, taking inventory of the cooler, and cleaning equipment and area eurrounding the equipment.

Table 22. Minutes of labor required per gallon of 1 ce cream products packaged and stored, plant A, packaging and storing an average of 364 gallons of ice cream products each production run, August-September, 1957.1

SkIll Class	:	Fixed labor per production run	:	Variable labor per gallon
		(minutes)		(minutes)
1		-		- ${ }^{-}$
2		2.3839		0.0940
3				
Total		96.7552		3.1270

$1_{\text {Products include ice cream, ice milk, and sherbet. }}$

Process XXII. Selling Ice Crean

Process XXII included only variable labor involved in moving ice cream, ice lilk, or sherbet products from the hardening room onto the conveyor in the south cold room. The truck operator loaded his own truck, and he was not observed in this study (Table 23). A total of 23 observations were taken on the one worker observed in this process.

Fixed labor was not assigred to this process.

Table 23. Minutes of labor required per gallon of ice cream products prepared for sale, plant A, selling an average of 459 gallons of ice cream each production run, August-September, 1957.

Skill Class	$:$	Fixed labor per production rin	$:$
	(minutes)	Variable labor per gallon	
1	-	(minutes)	
2	-	-	
3	-	-	
4	-	0.0671	
Total		0.0671	

Process XXIII. Selling Raw Milk--Grade A or Grade C

Process xXIII included only variable labor involved in transporting empty cans to holding tanks, filling cans with milk, and transporting and loading cans into the buyer's truck. If milk was to be sold in bulk, variable labor Included making the necessary connections and observing the operation until the desired amount of milk was pumped into the truck's tank (Table 24). One worker was usually assigned to help load out raw milk. A total of 32 observations were taken on all workers observed in this process.

Fixed labor was not assigned to this process.

Table 2h. Minutes of labor required for filling and selling a lo-gallon can of milk, plant A, selling an average of 28 cans of milk each production zin, August-September, 1957.1

Skill Class	\vdots	Fixed labor per production run
	(minutes)	Variable labor per can
1	-	(minutes)
2	-	-
3	-	0.8316
4	-	-
Total	-	1.4665

$I_{\text {A 10-gallon }}$ can was defined to contain 86 pounds of milk containing 3.5 per cent butterfat.

Process XXIV. Processing and Storing Grade A Products

Process XXIV included all activities necessary to standardize, vitamin D fortify, pasteumize, somogenize, cool, and store Grade A milk for bottling; and those activities necessary to separate, standardize, pasteurize, vitamin D fortify, homogenize, cool, and store Grade A skim milk and Orade A cream for
bottilng. ${ }^{1}$ Two workers were usually assigned to process Grade A products. A total of 1,363 observations were taken on all workers observed in this process.

Variable labor included observing and adjusting equipment as necessary for efficient operation, and transporting full and empty 10-gallon cans as needed for handling various products (Table 25).

Fixed labor included providing supplies to the process as necessary, hooking up pipes and equipment, sanitizing all milk contact equipment, changing equipment to handle another product, keeping proper records of all products processed, and cleaning equipment and area surrounding the equipment.

Table 25. Minutes of labor required per 100 pounds of Grade A milk processed and stored, plant A, processing and storing an average of 65,307 pounds of Grade A milk each production run, August-September, 1957.

Skill Class	$:$	Flxed labor per production mun	Varlable labor per cwt.
	(minutes)	(minutes)	
1	15.6526	0.0160	
2	417.3930	0.0791	
3	98.9717	0.0739	
4	321.3154	0.0009	
Total	853.3327	0.1699	

Process XXV. Processing Dairy Mixes

Process XXV included all activities necessary to standardize, pasteurize, and cool cheese dressing, ice cream mix, ice mik mix, and sherbet mix in the

[^11]Grade A handling room. Two workers were usually assigned to process dairy mixes. A total of 238 observations were taken on 211 workere observed in thie process.

Variable labor included traneporting empty 10 -gallon milk cane to processing vats, filling processing vats with raw products, transporting ingreciente into the process as necessary, adding other ingredients to mixes, making various mixes, testing mixes for desired composition, processing mixes, filling cans with various mixes, dageing cans as to product and date, transporting full 10gellon rillk cane of product to the south cold room or to the proper department for uee, washing cane by hand in the procese area, and transporting empty milk cans to the can washing area (Table 26).

Fixed labor was not charged to this process. Cleaning equipment and area surrounding the equipment, and keeping proper records of all products produced was coneidered variable in thie case. Hooking up and sanitizing equipment wae charged to Process XIIV (Proceesing and Storing Grade A Products).

Table 26. Minutes of labor required per 100 pounds of dairy mixes processed, plant A, processing an average of 1,616 pounds of mixes each production run, August-September, 1957.1

Skill Clase	$:$	Fixed labor per production run	Variable labor per cut.
	(minutes)	(minutee)	
1	-	0.4281	
2	-	3.4966	
3	-	2.2581	
4	-	3.3336	
Total	-	9.5164	

$l_{\text {Dairy mixes included cheese dressing, ice cream mix, ice milk mix, and }}$ sherbet mix.

Process XXVI. Processing Specialty Products

Process XXVI included all activities necessary to make buttermilk, chocolate milk, orange drink, and grape drink; and to store these procucts in processing vats until they were ready for bottling. Two workers were usually assigned to process specialty products. A total of 276 observations were taken on all workers observed in this process.

Variable labor included transporting raw products and supplies to processing vats, preparing buttemilk starter, filling processing vats with raw products and other ingredients, making specialty products, and transporting empty cans and raterials from the processing area (Table 27).

Flixed labor included hooking up and sanitizing equipment, keeping proper records of all products produced, and cleaning equipment and area surrounding the equipment.

Table 27. Minutes of labor required per 100 pounds of specialty products prom cessed, plant A, processing an average of 3,255 pounds of products each production run, August-September, 1957.1

Skill Class	$:$	Fixed labor per production run	Variable labor per cut.
	(ninutes)	(minutes)	
1	1.9774	0.1822	
2	47.2835	1.9865	
3	16.0181	1.7087	
4	2.6894	0.0196	
Total	67.9684	3.8970	

$1_{\text {Specialty products included buttermilk, chocolate milk, orange drink, }}$ and grape drink.

Process XXVII. Preparing, Filling, and Storing Five-Gallon
Dispenser Cans

Process XXVII included all activities necessary to fill five-callon
dispenser cans with Grade A processed milk or chocolate milk and to transport these cans to storage. Two workers were usually assigned to fill dispenser cans by hand. A total of 185 observations were taken on all workers observed in this process.

Variable labor included washing dispenser cans by hand, sanitizing cans, placing a hose and metal cap on each can, fliling cans by hand from any convenient outlet, placing a Iid and attaching metal seals on each can, and transporting full five-gallon cans to the north cold room (Table 28).

No fixed labor was charged to this process.

Table 28. Minutes of labor required for filling and sealing by hand fivegallon dispenser cans, plant A, packaging an average of 12 dispenser cans of milk each production run, August-September, 1957.

Skill Class	$:$	Fixed labor per production mun
	(minutes)	Variable labor per can
1	-	(minutes)
2	-	0.6477
3	-	1.6960
4	-	1.7694
Total	-	6.9133

Process XXVIII. Bottling Mik in Class Bottles

Process XXVIII included all activities necessary to bottle milk in onegallon glass bottles. One worker was usually assigned to bottle milk. A total of 522 observations were taken on all workers observed in this process.

Vaxiable labor included providing supplies to the process as necessary, moving cases and bottles to the process, operating bottler, hand filling and capping extra bottles, selecting cases for bottles, casing bottles, and setting full cases on the conveyor leading to the north cold room (Table 29).

Fixed labor included hooking up pipes and equipment, changing from one storage tank to another, taking inventory, keeping production records, and cleaning equipment and area surrounding the equipment.

Table 29. Minutes of labor required per one-gsilion glass bottle of milk bottled, plant A, bottling an average of 2,788 gallons of milk each production run, August-September, 1957.

Skill Class	$:$	Flxed labor per production run
	(minutes)	Variable labor per bottle
1	-	(minutes)
2	9.3714	0.0064
3	31.8930	0.0092
4	43.3025	0.0656
Total	84.5667	0.0812

Procees XXIX. Bottling Orange and Crape Drink in Glass Bottles

Process XXIX included all activities necessary to bottle orange and grape drink in one-half gallon glass bottles. One worker was ueually assigned to botile orange and grape drink. A total of 68 observations were taken on all workers observed in this process.

Variable labor included providing supplies to the process as necessary, moving cases and bottles to the process, operating bottler, hand filling and capping extra bottles, selecting cases for bottles, casing bottles, and transporting cases to the south cold room for storage (Table 30).

Fixed labor included hooking up pipes and equipment, changing from one storage tank to another, taking inventory, keeping production records, and cleaning equipment and area sucrounding the equipment.

Table 30. Minutes of labor required per one-half gallon glass bottle of orange or grape drink bottled, plant A, bottling an average of 535 bottles of orange or grape drink each production run, August-September, 1957.

Skill Class	:	Fixed labor per production run
	(minutes)	Variable labor per bottle
1	0.8795	(ninutes)
2	6.5244	0.0177
3	17.3930	0.0079
4	24.7968	0.1477
Total		0.2522

Process KXX. Packaging Milk in Half-Gallon Paper Cartons

Process XKX included all activities necessary to package milk in halfgallon paper cartons by a Puremak Junior Model "D" machine. Two workers were usually assigned to package milk. A total of 1,248 observations were taken on all workers observed in this process.

Variable labor included providing supplies to the process as necessary, moving cases and cartons to the process, operating carton machine, dumping milk from improperly sealed cartons into 10 -gallon cans, selecting cases for cartons, casing cartons, and setting full cases on the conveyor leading to the north cold room (Table 31).

Fixed labor included hooking up pipes and equipment, changing from one tank to another, taking inventory, keeping production records, and cleaning equipment and area surrounding the equipment.

Table 31. Minutes of labor required for filling and packaging one-half gallon paper cartons, plant A, packaging an average of 6,300 cartons of配lk each procuction run, August-Septamber, 1957.

SLIll Class	Fixed labor per production run	Variable labor per carton
	(minutes)	(roinutes)
1	65.7408	0.0152
2	10.3321	0.0042
3	68.4995	0.0156
4	149.9548	0.0677
Total	294.5273	0.1028

Process XXXI. Packaging Milk Products in Quart or Smaller Size Paper Cartons
 chocolate milk, buttermilk, and cream in quart, pint, or half-pint paper cartons by a Pure-Pak Junior Model "j" machine. Two workers were usually assigned to package milk products. A total of 1,161 observations were taken on all workers observed in this process.

Variable labor included providing supplies to the process as necessary, moving cases and cartons to the process, operating carton machine, dumping milk from improperly sealed cartons into processing vats or 10 -gailon cans, selecting cases for cartons, casing cartons, and setting full cases on the conveyor leading to the north cold room (Table 32).

Fixed labor included hooking up pipes and equipment, changing from one storage tank or product to another, taking inventory, keeping production records, and cleaning equipment and area surrounding the equipment.

Tabls 32. Minutes of labor required for filling and packaging milk products in quart or smaller size paper cartons, plant A, packaging an average of 5,113 cartons of milk products sach production run, AugustSeptember, 1957.

Skill Class	$:$	Fixed labor per production mun
	(minutes)	Variable labor per carton
1	61.2918	(niautes)
2	39.4313	0.0197
3	62.4222	0.0162
4	87.1738	0.0149
Total	250.3790	0.0450

Process XXXII. Handling North Cold Room Procucts

Procsss XXXII included all activities necessary to handle inconing products, to stack cases of products, and to handls outgoing products until they reached the rear of the distrioutor's truck. Four workers wsre usually assigned to the north cold room. A total of 2,420 obssrvations were taken on all workers observed in this process.

Variable labor included handling products coning in on a dolly from the south cold room or some other department, moving cases along incoming conveyor, pulling cases by hand to ths desired location for stacking, stacking products in stacks fivs or six casss high, arranging products in the cold room for easier shipping, making up orders for shipment, loading cases on conveyor for shipment, setting cases in rear of truck, and keeping records of all incoming and outgoing products (Table 33).

Fized labor included cleaning the north cold room and taking inventory of products therein.

Table 33. Minutes of labor required per case of producte handled in north cold room, plant A, handing an average of 1,599 cases each production rum, August-September, 1957.

Skill Class	Flxed labor per		
procuction run		$\quad:$	Variable labor per case
:---:			

Process XXXIII. Receiving Empty Bottles and Cases

Process XXXIII included ail activities necessary to receive and stack empty bottles and cases. One worker was usually assigned to receive empty bottles and cases. A total of 540 observations were taken on all workers observed in this process.

Variable labor included taking cases of bottles from the rear of the truck and placing them inside the plant (Table 34).

Fixed labor included cleaning the loading dock and area immediately inside the plant used to stow incoming bottles and cases.

Table 34. Minutes of labor required per case of empty bottles received and stacked, plant A, receiving and stacking an average of 1,378 cases each production run, August-September, 1957.

Skill Class	\vdots	Fixed labor per production run
(ninutes)	Variable labor per case	
1	$0 . \overline{45} 42$	(minutes)
3	45.2770	-
4	45.7312	0.2177
Total		0.2177

Process XXXIV. HandIIn Returned Products

Process XXXIV included those activities necessary to salvage or dispose of returned products. One worker was usvally assigned to handle returned products. A total of 222 observations were taken on 211 workers observed in this procees.

Varlable labor included crediting the truck driver with his returned products, sorting returne ae to salvable or waste, dumping salvable products into 10-gallon cans, traneporting cans to and from the area, and disposing of waste products by dumping them down a sewer drain or into trash cans (Table 35).

Fixed labor included taking inventory of returned producte, dieposing of waste cartone, and cleaning the area usad for handing returne.

Table 35. Minutes of labor required per unit of product returned from routes, plant A, handling an averace of 335 returned units each production run, August-September, 1957.1

Skill Class	$:$	Fixed labor per production run	Variable labor per unit
	(minutes)	(mimutes)	
1	$-\overline{3622}$	-	
2	0.5132	-	
4	75.9939	0.2260	
Total	77.8694	0.2260	

1
${ }^{\text {Any }}$ size carton or container was definad as one unit. For a list of products returned, see Procees XXXCV in Appendix I.

Process XXXV. Checking and Stacking Empty Bottles and Cases

Process XXXV included all activities necessary to sort, check, and stack near the case and bottle washers all empty bottles and cases receivec. Tro
workers were usually assigned to check and stack empty bottles and casss. A total of 972 observations were taken on all workers obssrved in this process.

Variabls labor included checking and sorting bottlss into two stacks (those belonging to ths plant and those belonging to other dairies), hauling "off brand" bottles to a spscial location from whence they were hauled to the local bottle exchange, moving the plant's bottlss to the bottle washer, and transporting new bottles from the warehouse to the bottls washsr (Table 36).

No fixed labor was charged to this process.

Table 36. Minutes of labor required per case of bottles checked and stacksd, plant A, checking and staciding an average of 1,378 casss each production run, August-September, 1957.

Skill Class	\vdots	Fixed labor per production run	Variable labor psr case
	(xinutes)	(ninutes)	
1	-	0.0173	
2	-	0.0019	
3	-	0.3710	
4		0.3902	
Total			

Process XXXVI. Washing Bottles

Process XXXVI included all activities necessary to wash glass ndlk bottles wfth a mechanical washer. One worker was usually assigned to wash bottles. A total of 621 observations wers taken on all workers obsexved in this process.

Variable labor includsd loacing bottles into ths bottls washsr, inspecting bottles as they came from ths washer, breaking unwashable bottles, and placing clean bottles on a conveyor leading to the bottler (Tabls 37).

Fixed labor included providing supplies to ths washer as necessary, hooking up bottle washer and conveyor, changing bottle washer to handle another
sizs bottle, and cleaning ths bottle washer and area surrounding the bottle washer.

Table 37. Minutes of labor required per bottle washec, plant A, washing an average of 2,877 bottles each production run, Aagust-September, 1957.1
-

	\vdots	Fixsd labor per production run
Skill Class	(minutss)	Variable labor per bottls
	$-\overline{7071}$	(minutes)
2	0.75	
3	$83 . \overline{1536}$	$0 . \overline{0014}$
4	83.8607	$0 . \overline{1012}$
Total		0.1026

${ }^{I}$ Includsd washing one-half gallon and one-gallon glass bottles.

Process XXXVII. Washing Cases

Process XXXVII included all activities necessary to wash empty milk cases with a mechanical case washer. Ons worker was usually assigned to wash casss. A total of 507 observations wers taken on 211 workers observed in this process.

Variabls labor included pulling cases to the case washer, loading cases into the washsr, and directing and obssrving cases as they came from the washer (Table 38).

Fixed labor includsd providing supplies to the washer as necsssary, hooking up case washer and conveyor, disposing of any accumulated waste, and cleasing case washer and area surrounding the case washer.

Table 38. Minutes of labor required per case washed, plant A, washing an average of 3,255 cases each production mun, August-September, 1957.

| Skill Class | Flxed labor per
 procuction run | Variable labor per case |
| :---: | :---: | :---: | :---: |
| | (minutes) | (minutes) |
| 1 | | - |
| 2 | 0.6699 | - |
| 3 | 18.8973 | - |
| 4 | 19.5673 | 0.2811 |
| Total | | 0.2811 |

LABOR GFFICIENCY ANALYSIS

The analysis of relative labor efficiency will be presented in this section by general process efficiency and the efficiency of workers in each process. This analysis is besed on the results of the ratio-delay study, explained earlier, which gave the total number of observations and the percentage of these observations falling into different labor categories (procuctive, avoidable delay, unavoidable delay, and loafing) for individual plant workers and processes, Appencix II, Tables 69, 70, 71, and 72. When taken in their proper setting, these figures will give some idea of the relative efficiency of individual workers and processes within plant A.

No definite statement can be made concerning the general efficiency of a process without first taking into consideration such factors as the nature of the operation, volume handlec, equipment used, condition of equipment, and the position of the process in relation to product flow through the plant.

To analyze tho efficiency by workers within a process, it is necessary to compare each worker's efficiency in all processes with his efficiency in a particular process and to compare the efficiency of all workers in a particular process with the efficiency of each worker within this process.

In interpreting the results of this analysis, it should be remembered that the study took account of fatigue and personal allowances by not observe ing the workers during the two allowable 15 winute breaks and while attending to personal needs. For this reason, the productive percentages given in this section may be hifher than those of other studtes concemed with labor effciency in dairy processing plants.

Process I. Receiving Can Milk

Over-all labor efficiency of receiving can milk was considered substandard. Workers in this process were observed loafing 10.72 per cent of the time and unavoidably delayed 4.13 per cent of the time. The nature of the receiving operation was subject to inefficiency due to sporadic delivery of milk. A productive figure of 84.95 per cent for the process was considerably lower than the total plant figure of 89.27 per cent. Of workers normally assigned to receive can milk, one was productive 92.7 per cent of the time, four were approdmately 80 per cent productive, and one was productive only 73 per cent of the time. Workers not normally assigned to receive can milk were much more productive, approximately 95 per cent. This can be explained in part by the nature of the receiving operation, and the fact that extra workers were used only during peak receiving periods of the day.

It was believed that three workers usually assigned to this process were more than necessary to perform the tasks demanded of them. One of the workers helped receive milk from bulk trucks and was not available at all times for receiving milk in cans. This led to some inefficiency which could have been eliminated by holding milk in the bulk trucks until a break occurred in receiving rilk in cans. Another econony that could have been introduced wes
rearrangement of the recefving equipment slightly cutting the usual work force down to tro men. The unavoidable delay could have been reduced by assigning jobs to the receiving crew such as sorting enpty bottles and perforning preventative maintenance tasks. This also mit have had the effect of recucing the amount of avoidable and unavoidable delay time in other processes.

Process II. Receiving Bulk Milk

In general, receiving milk from bulk trucke was an efficient operation. All workers were observed productive 95.4 per cent of the time, and individual worker productivity was nearly the same with one exception. Worker 54 was less efficient than any other worker normally assigned to this process, but even worker 54 was more productive here (91 per cent) than in the other two processes in which he was normally assigned.

Bulk receiving was performed by one worker taken from the can milk or can cream receiving processes, and the worker was only used when a bulk tank arrived for unloading. The worker would complete the necessary work associated with receiving buik milk and then return to his usual assignment. This arrangement was conducive to the high percentage of time productive in this process.

The only recomendation to increase labor effyciency might have been to assign a worker from a department other than receiving to help unload bulk trucks or to rearrange the route achedule to have bulk trucks unload after all can milk and cream had been received. This could have reduced the labor requirements in the three receiving processes by one or two men.

Process III. Receiving Can Cream

Receiving can cream wae one of the most inefficient proceeses in the plant. All workers combined were observed productive 82.44 per cent of the time and loafling 15.05 per cent of the tira. As in Procees I, cream receive ing was subject to inefficiency due to intermittent receipts of cream from the routee.

Of workers normally assigned to receive cream, all except three were observed productive approximately 85 per cent of the time. These three workere, who were leaet productive of all workers in thie procese, were lees productive in thie procees than in all other plocesses to which they were normally aesigned. Thie ${ }^{\text {gidgh suggeet that they did not prefer to help receive can cream }}$ ae much as other jobs in the plant. If a situation had arisen where a superFisor had the choice of assigning one of these three workere or eome other plant worker to help receive cream, it might have been adrantageoue to assign someone other than one of these three to thie process.

The workers usually assigned to receive can cream were aleo used to receive can milk. Two of these workere were more efficient in cream receiving than in can milk receiving, and two others were more efficient in can milk receiving than in cream receiving. Thie might suggest that it would have been advantageous to place theee workers in the departmente where they apparently worked with a relatively higer degree of efficiency.

Procees IV. Separating Grade C Milk

The nature of the separation procese might tend to lead to inefficiency, but thie was not the case in plant A. A large number of workere (15) were observed in thie procese and this in itself could have led to some inefficiency.

All workers combined were productive 94.44 per cent of the thme; and of the three workers observed nost often, only one worker (worker 56) was productive less than 95 per cent of the time. Worker 56 was productive 86.84 per cent of the time observed, and this was below his average of 91.45 per cent productive for all processes. He wss generally observed cleaning the separators in this process, and possibly he was not very onthusiastic about this job. The only recomendation this author might have made would be to investigate the poscibility of moving worker 56 to concentrate on scme other process in which he was more productive.

Process V. Condensing Operation

As in Frocess IV, the nature of the operation could have led to some loafing or labor inefficiency. Here again this was not the case in plant A as all workers were, on the average, 93.17 per cent productive. Avoidable and unavoidable delay were inslenificant, and loafing accounted for only 6.54 per cent of the time expended.

Most of the workers observed in this process also worked in Process IV. With the exception of the relief man (worker 55), operation of the vacuum pan, laborvise, was almost 100 per cent productive. Worker 55 was observed productive 88.89 per cent of the time while operating the pan and 100 per cent during clean-up. Worker 56, one of the pan operators, seened to have a tendency to be not quite as productive during the cleaning operation. He was observed loafing 10.93 per cent of the time while the equipment was being cleaned. Since worker 56 was apparently in charge of the vacuum pan part of the time, his responsibilities probably more than justified the relatively small degree of inefflciency observed in cleaning the equipment.

Process VI. Condensing Transfers

The process of flliling 10-gallon cans with condensed milk and transporting the filled cans to storage was considered efflcient. One of the factors leading to the high degree of efficiency was that workers were taken from other processes to perform the work in this process; when finished, they returned to their normal work assignments. The only worker not observed to be 100 per cent efflcient was worker 56 , and he was observed prociuctive 96.67 per cent of the time.

Procesa VII. Selling Condensed Milk

This process was similar to process VI in that the workers assigned to transport and place cana of condensed milk on the conveyor in the south cold room were taken from other processes, and they returned to their nomal work assignents after completing the loading out activities. Selling condensed nilk was performed only 13 times curing the sample period and only 52 ob servations were taken on all workers during this time.

The labor efficiency was relatively good. All workers combined were prom ductive 94.23 per cent of the time observed and unavoidably delayed the other 5.77 per cent of the time. Unavoidable delay was usually caused by workers having to wait for cans being filled from a storage vat.

Process VIII. Spray-Drying Operation

Labowlse, this process appeared to be fairly efficient. Workers operating the spray-dryer were observed productive almost 99 per cent of the time. Workers performing maintenance on the dryer were observed productive approxmately 95 per ceat of the time.

Cleaning the spray-dryer seemed to go a little slowly. Workers 56 and 53 were observed loafing 14.81 and 7.99 per cent of the time respactively. Worker 56 appeared to feel that he was of suparvisory capacity (mors than his position justified) and that cleaning equipment should not be his responsibility. Worker 53 was observed mors productive than worker 56, but worker 53 was avoidably and unavoidably delayed more than a normal amount and seemed to move at a rather slow pace. In accordancs with Paridson's Law, these two workers may have bsen trying to fit the job to taks up the remaining part of their working day.

Process IX. Packaging Dry Milk

This process was dominated by worker 53. He was almost always present when dry milk wes bsing packaged. Most of the other worksrs obssrved in the process appeared to be less productivs than worker 53. This mingh be a slight1y deceiving observation because most workers worked at a rate considerably faster than did worker 53. As in process XIII, worker 53 apparently made the cleaning operation fill tho work day fairly well.

Over-all, the dry milk packaging operation was fairly productive. Because of its nature in plant A, this process was sultsd to a moderately slow worker. Not enough milk was dried to keep a fast worksr busy at all times. On the other hand, if a faster working man had been performing ths packaging operation, he might have been able to reduce the labor rsquirements of Proceas X (Storing Dry Milk) by doing mors of the storing himself.

Process X. Storing Dry 随lk

Storing dry milk was usually accomplished with a minimum of idle time
(1.66 per cent). Unavoidable delay in the cleaning operation may have been a little hich (4.55 per cent). Thie wae caused in part by aesigning workere to clean the storage area while etoring was etill in progress, thue clean-up workers had to etand aside while etacking wae being accomplished. All workers combined were observed productive 95.58 per cent of the time.

There were not enough obsarvations taken on individual workers in this process to analyze their efficiency in any detail. It might be well to point out that worker 53 was observed productive 98.8 per cent of the time. This eemed logical when it wae realized that he wae probably hurrying to get back to the packaging operation.

Procese II. Shipping Dry Milk

The procese labor efficiency was not as high ae it might have been expected (90.36 per cent productive) for a procees requiring periodic work. The main job was loading trucke with dry milk as they arrived at the plant. Three workere usually perfomed this work. Almoet all of the usual workere were observed productive about 90 per cent of the time. The relatively high unavoidable delay time of 3.21 per cent was partially caused by waiting for the truck to be properly positioned for loading. The process loafing time of 6.43 per cent might be coasidered a little high for this process. When anam lyzed by individual workers, almost all workere were lese productive in thie process than in any other process in which they worked. In part, thie could have been due to the greater physical activity required in loading dry milk.

Process XII. Proceeeing and Storing Route Cream

Procees labor efficiency was obeerved to be 100 per cent productive. This
process was doninated by worker 30 ，and he was a very conscientious and dill－ gent worker．On an average of all processes in which he appeared，worker 30 พะs observed productive 98.17 per cent of the t⿱⺈⿵⺆⿻二丨⿱刀⿰㇒⿻二丨䒑口，

One reason for the high labor productivity in this process was that the process only required periodic checks to be made on the equipment，and a work－ er could make these checks while performing another job in a different process．

Process XIII．Selling Pasteurized Cream

Workers in this process appeared to be very efficient．The process labor efficiency was observed to be 99.04 per cent productive．Filling and loading cans of cream required the use of workers usually assigned to other processes． The job required the workers to be in a cold room，and apparently they wanted to get the job done in order to return to a more favorable working temperature． The limited number of observations taken of this process made it difficult to evaluate the efficiency of indivicual workers with a reasonable decree of re－ liability．

Process XIV．Buttermaking

Process XIV was a relatively efficient operation considering the nature of the process．All workers combined were observed productive 93.97 per cent of the time，unavoidably delayed 1.18 per cent of the time，and loafing 4.81 per cent of the time．

Variable labor appeared to be quite efficient relative to fixed labor． With the exception of worker 97， 211 workers performing vamiable jobs were productive approximately 98 per cent of the time．Fixed labor was observed productive approximately 90 per cent of the time．Here again，worker 97 was
productive only about 80 per cent of the time.
Unavoidable delay was believed to be a little high in this process. This appeared to be partly due to worker 97's thinking he was delayed when actually there was work that could have been done. Another cause for unavoidable deley was in the nature of the operation which migbt have caused workers to be delayed while the cream was being churned.

The loafing ilgure of 4.81 per cent was high due to the observed inefficiency of worker 97 who was apparently loafing 14.49 per cent of the time. Excluding worker 97, this was a very efficient process relative to all processes combined.

Worker 97 was primarily a clean-up worker assigned to the buttermaking process. He was observed productive 91.13 per cent of the time while operating the churns but only 79.8 per cent productive while doing fixed work sucb as cleaning equipment. Since cleaning was his main job, it might have bean assumed that he did not like this work and a transfer to another process mifht have improved his efficiency. All other workers were as efficient in this process as they were in all other processes in which they were observed working.

Process IV. Selling Bulk Butter

The process labor efficiency of 96.97 per cent observed time productive seemed to be adequate for loading out 64-pound boxes of butter. Any available plant worker was assigned to this process, and there were not enough observations taken on any one worker to permit a reliable analysis by workers. It wes generally believed that working in the cold room wes enough of an incentive to provide for labor efficiency in this process.

Process KVI. Printing and Wrapping Butter in Individual GuartersOne Brand Only

Over-all labor efficiency of 96.24 per cent observed time productive was believed to be adequate for the two workers dominating the butter printing and wrapping operation. This process might be thought of as two distinct operatione. Worker 34, man, procured the butter and printed it into quarter-pound pieces. Worker 35, a woman, took the quarter-pound pieces and wrapped and cartoned them. Worker 35 was dependent on worker 34 for her work; therefore, worker 35 was subject to unavoidable delay caused by the operation performed by worker 34. Worker 34 was observed productive 97.25 per cent of the time, and worker 35 was observed productive 95.95 per cent of the time. Both workers were quite proficient in their respective jobs and no changes were recommended for this process with the existing equipment.

Process XVII. Printing and Wrapping Butter--Exclusive of the Special Brand of Process XVI

The same two workers were dominant in this process as in Process XVI. Labor efficiency in thie process was observed to be 94.49 per cent productive, this wae slightly less than in Process XVI. Worker 34 was observed productive 98.3 per cent of the time, and worker 35 was observed productive 90.4 per cent of the time. Worker 35 was unavoidably delayed 6.31 per cent of the observed time which, in part, might have been explained by the differences in her work requiremente as alternative products were wrapped and cartoned. Under the existing degree of technology, it was believed that this process and individual workers within this process were about as efficient as could be expected.

Process XVIII. Processing Cottage Cheese

The process labor efficiency was considered to be adequate at the observed productive figure of 97.75 per cent. Two workers were usually present In processing cottage cheese and both of them appeared to be highly efficient workers (productive about 98 per cent of the time).

The nature of this process was such that a moderate amount of free time was available between different operations within the process. During this time, workers might have had a tendency to work at a less rapid rate or not work at all for short periods. This was not the case with the two workers most often observed in this process. They usually managed to find enough repair and maintenance work to keep themselves busy during the slack periods.

Process XIX. Packaging Cottage Cheese

Two workers were usually assigned to package cottage cheese, and they were relatively efficient. The process efficiency of 95.64 per cent observed time productive was considered adequate for this operation under the existing degree of technology in plant A. All workers, other than the two nomally assigned to this process, were observed productive approximately 95 per cent of the time. Due to the fact that no previous trafning was necessary for this type of work, a large number of workers were observed in this process from time to time.

Workers 71 and 86 , the two most frequently observed in this process, were observed productive 93.13 and 97.88 per cent of the time respectively. Both workers were considered quite efficient in the packaging operation itself. Worker 86 was also assigned to the laboratory, and she worked in this process only when cottage cheese was being packaged. This wight have explained in part
the higher efficiency of worker 86. Another apparently significant factor in explaining the difference in efficiency between these two workers wes that worker 71 tended to make this process fill the work day; consequently, on days requiring a small amount of cottage cheese to be packaged, worker 71 tended to create apparently unnecessary jobs in order to appear busy.

Process XX. Processing Ice Cream Products

This process was dowinated by workers 77 and 93 , and they were observed productive approximately 95 per cent of the time. Worker 77 was observed loafing 5.36 per cent of the time while worker 93 only 2.56 per cent, but worker 93 was also observed avoidably and unavoidably delayed 1.7 per cent of the time. Wish the existing equipment, this process was considered quite adequately efficient as far as labor was concerned.

Process XXI. Packaging Ice Grean Products

As in Process XX, workers 77 and 93 were dominant in this process. Worker 77 was observed productive 98.54 per cent of the time, and worker 93 was observed productive 96.16 per cent of the time. Doth workers were quite efficient during the actual filling and packaging operations; but during the prepackaging operation (provicing supplies, forming cartons, etc.), worker 93 was observed working most of the time, but at a slower pace. The over-all process efficiency was good. This process was a relatively minor operation in the plant and night have required too much manual labor.

Process XXII. Selling Ice Cream

Only one worker was observed in this process and he was observed pro-
ductive 100 per cent of the time. This process required the worker (worker 77) to work in the ice crean hardening room; and at this low temperature, almost anyone would tend to be quite fast and efficient with his work.

Process XXxIII. Selling Raw Bilk--Grade A or Grade C

This was a relatively minor operation with only a total of 32 observations taken during the sample perioc. Individual workers were not observed enough to show any general labor efficiency trend. The only statement that might be made would be that the process, although appearing to be efficient laborwise, tended to be inefficient due to the layout of equipment.

Process XXIV. Processing and Storing Grade A Products

Process efficiency was observed to be 86.94 per cent productive and 12.4 per cent loafing. Variable labor appeared to be relatively productive as all workers were observed to be productive 98.75 per cent of the time.

Fixed labor of all workers combined was observed productive only 85.44 per cent of the time and loafing 13.81 per cent of the time. Of the five workers most frequently observed in this process, worker 42 was observed loafing 3.16 per cent of the time, workers 41 and 51 approximately 9.1 per cent of the time, worker 44 nearly 16 per cent of the time, and worker 47 about 20 per cent of the time. Worker 42 was the only worker who was considered efficient in the cleaning operation. The other four workers were less efficient in this process than in any other process to which they were normalIy assigned. There did not appear to be any reasonable explanation for the inefficiency observed in this process. It was granted that cleaning processing vats, milk pipe, separators, etc. was not the most desirable job in plant

A; nevertheless, it was an important job from a cost point of view and should not have been taken so lightly by those performing this taek.

Process XXV. Processing Dairy Mixes

This process only included variable labor and was considered efficient. All workers comblned were observed productive 96.64 per cent of the time and no worker was observed productive less than 92.5 per cent of the time. Due to the limited number of observations and the relatively high efficiency, no changee were recommended for this process.

Procees XKVI. Procesaing Specialty Products

This was a minor but relatively efficient process. Over-all labor efficiency w3s observed to be 95.65 per cent productive, and no worker wae obeerved productive less than about 90 per cent of the time. The one item worthy of note wes the flxed labor. Workers performing fixed labor were observed productive 100 per cent of the time. This was very unusual circumetance and could only be expleined by the small nweer of observations taken.

Process XXVII. Preparing, Filling, and Storing Five-Gallon ILspenser Cans

This process included the variable labor involved in hand filling dispenser cans from any convenient outlet in the Grade A processing room. Although all workers in thie process were observed 96.22 per cent productive, this did not adequately show the proper degree of process efficiency. Preparing dispenser cans wae a minor operation and no special equipment was available for this job. There wae entirely too much human labor involved in
this operation to maks it profitable to the plant even though the efficiency of the workers was bellsvsd to be adequate.

Process XXVIII. Bottiing Milk in Glass Bottles

At first, labor in this process did not seem to be adsquately efficient wh an observed average productive figure of 88.12 per cant. Upon further study it was observed that thers were a few distinguishing characteristics of this process which set it apart from other procssses.

First of all, this procsss was dominated by one worker (worker 46). Worker 46 was observsd productive 86.27 per cent of ths tims, but he was observed loafing 15.62 per cent of the time wile performing fixed labor. In addition, he was observed being avoidably and unavoidably delayed more than the average for all workers or procssses. It appeared to this author that worker 46 did not liks to do cleanmp work and that he quite possibly did not take the best possibls cars of the milk bottling machine.

Ths process labor efficiency was higher for fixsd jobs than for variable jobs. This was largely true bscause of the large amount of unavoidabls delay. Unavoidabls delay in this process was largely caused by an insufficisnt supply of gless botties at all timss to the bottiling machine. This aight suggest an abnormal amount of inefficiency in the bottis washing procsss.

Facluding unavoidable delay and loafing obssrved for worker 46 during clean-up, this process seemed to be fair?y efficient; but, if the unavoidable delay had not been encountered, loafing might havs bsen more prominent.

Frocsss XXIX. Bottling Orange and Grape Drink in Glass Bottles

This was a minor operation and only 66 observations were taken on all
workers observed in the process. The same analysis applied here with respect to unavoidable delay as in Process XXVIII. It might be well to note that worker 46 was the only worker observed loafing in this process; but due to the small number of observations taken, not much significance was attached to this observation.

Process XXX. Packaging Milk in Half-Gallon Paper Cartons

General process efficiency was considered adequate. All workers were observed productive 95.03 per cent of the time and loafing only 3.21 per cent of the time. Some variation in efficiency was observed among the four workers most commonly obeerved working in this process. When milk was being bottled, all workers were productive about 96 per cent of the time. During clean-up, workers 48 and 51 were observed productive 95.15 and 100 per cent of the time respectively while workers 40 and 22 were observed productive only about 85 per cent of the time. Worker 40 was usuelly more than 85 per cent productive, but worker 22 apparently did not like to do clean-up work.

Avoidable and unavoidable delay were considered normal, and the only recommendation that might have been made wold have been to geve worker 22 a slight boost during the cleaning operation.

Process XXXI. Packaging Milk Products in Quart or Smaller Size Paper Certons

Considering the nature of this operation, this process appeared to be adequately efficient. Average labor efficiency was 89.92 per cent productive, 6.8 per cent unavoidably delayed, and 3.01 per cent loafling. The only difference in general efficiency of thi3 process from Process $X X X$ was the amount
of unaroidably delayed time. Unavoidable delay was caused by changing the cartoning machine to handle a different size container, a different product, or a diflerent brand of the same product.

As in Process $X X X$ variable labor was slightly more efficient than ifxed labor. All regular workers were reasonably efficient except worker L7. Worker 47 was productive 85.5 per cent of the time doing variable work and only 60.34 per cent productive doing clean-up work. Most of the worker 47 's delay was considered quasi-unavoidable, because she could have been doing something productive during the change-over operation such as providing supplies, keeping records, or cleaning the process area.

Process XXXII. Handling North Cold Room Products

This process was observed the least productive of all processes in plant A. All workers combined were productive only 75.5 per cent of the time and unavoidably delaged 22.6 per cent of the tine. Loafing and avoidable delay time was considered minor for this process.

Workers performing fixed labor were observed productive about 99 per cent of the time while the five workers most often observed performing variable labor were productive only 73.82 per cent of the time. Almost all of the delay time was classified as unavoidable.

The amount of unavoidable delay time observed for each worker depended on the nature of his job. Worker 85 was unavoidably delayed 26.67 per cent of the time loading out trucks while worker 45 was unavoidably delayed only 15.98 per cent of the time stacking cases.

The inefficiency in the north cold room was largely attributed to the lack of adequate storage space, less than maxdmum efflciency in the scheduling
of production operations in the plant, and sporadic loading requirements. Unavoidable delay might have been reduced considarably by increasing the cold room capacity to eliminate unnecessary movement of products, by installing a floor conveyor to eliminato dragging cases across the floor, and by rescheduling the bottling and loading operations to provide a more uniform work load in the cold room. Had these recommendations been effectuated, they might have rectuced the labor requirements of other processes in the plant as well as those of the cold room, and the rescheduling of operations inght have reduced the power factor requirements of the plant.

Process XXXIII. Receiving Enpty Bottles and Cases

This process was observed almost as unproductive as Process KXII. Overall, workers were observed productive 76.3 per cent of the time, unavoidably delayed 14.63 per cent of the time, and loafing 9.07 per cent of the time.

Fixed labor was observed productive about 91 per cent of the time, but variable was observed productive only 75 per cent of the time.

The incfificiency of both types of delay was largely due to waiting for route trucks to return with empty bottles and cases. This delay might have been reduced considerably by using workers from other processes which were not at a critical point in their respective operations. In plant A, more of the work could have been done by the truck operators, the case washers, and the bottle washers.

Process XXXIV. Handling Returned Products

All workers were considered sufficiently efficient in this process. Handling returns was directly connected whth the receiving of empty bottles
and cases and most workers were observed in both processes. Since handing of returns was dependent on their receipt, the unavoidable time observed was most often charged to Process XXXIII. Worker 92 wes the least productive of the workers most commonly observed in this process, but not snough observations were taken in the work catsgoriss to properly analyze individual workers.

Procese XXXV. Checking and Stacking Empty Bottles and Cases

The ovsr-8il observsd worksr efficiency of 82.92 per cent procuctive was considered to be sub-standard for checking and stacking empty bottles and cases. The workers observed in thie process should not have been fatigued as they apparently had plenty of rest from working in Proceeses XXXIII and XXXIV.

There was no apparent reason for the 13.99 psr cent loafing observed for all workers combined. Of the four workers most often observed, worker 92 was loafing 8.62 per cent of the time, worker 99 approximately 14 per cent of the time, worksr 46 almost 25 per cent of ths time, and worker 100 about 28.5 per cent of the time. Thess figures were entirely too high consicering the nature of ths process, especially since most of the unavoicabls delay was charged to Procsss XXXIII. It appearsd to this author that this whole area of the plant was more or lsss the take-it-easy or dawding area.

Procsss XXXVI. Washing Bottles

The nature of this operation and the equipment involved may have led to some insfficiency in washing bottles. The observed labor efficiency of 81.8 per cent productive for all workers would have normally been considered low, but the observed unavoidable delay of 12.88 per cent was not considered to be high in this case. Unavoidable delay of variable labor was caused by either
a shortage of glass bottles to be washed or, more commonly, by a stoppage in the class bottling operation for soms reason. Either of these causes was not a direct result of the worker operating the bottle washer.

Fixed labor efficiency was considered adequate for workers most often observed cleaning the bottle washer. All things considered, this process was more efficient than was evidenced by only looking at the productive percentage.

Process XXXVII. Washing Cases

This process was similar to Process XXXVI in that it was considered adequately productive. The observed unavoldable delay of 8.68 per cent was not considered high, because the bottling processes did not require a constant flow of cases. With worker 44 dominating the process, over-all labor efficiency was observed to be 85.4 per cent productive.

Mred labor was observed to be highly efficient. This was largely true because worker 44 also worked quite often in Process XXIV, Processing and Storing Grade A Froducts.

Summary of Labor Efficiency Analysis

With the exception of the receiving processes, the north cold room process, and handling of returned cases and bottles, plant A appeared to be reasonably efficient with respect to labor. Combining all processes, workers in plant A were observed productive 89.27 per cent of the time, avoidably delaysd 0.17 per cent of the time, unavoidably delayed 4.55 per cent of the time, and loafing 6.02 per cent of the time. It is again important to point out that workers were not observed during their two allowable 15 minute breaks and while attending to personal needs. This tended to make the productive
figures higher in this study than those of other studies related to dairy processing plants.

As stated in the process analysis, it wes believed that the receiving processes could have eliminated one or two workers; the north cold room could have been expanded and one worker eliminated, and the empty bottles and cases processes either could have eliminated one man or had other plant personnel perform this work.

This analysis also showed that individual workers performed better doing some jobs than others. This suggests that the over-all plant labor efficiency could probably have been improved by transferring workers to jobs where they were more productive. Of course there are some practical limitations to this relocation.

IIIITATIONS AND RECOMMENLATIONS FOR FUTURE STUDIES

In retrospect, limitations to any plece of research work aro obvious. These linitationss some of which can be eliminated, are much more casily seen after the analysis is completed than while gathering the datis. For this reason, the recomendations for future studies given in this section are largely an outgrowth of problems encountered in analyzing the data of this study.

The ratio-delay analysis included 21 working days during August and September. This is normally the period of lowest rew product supply curing the year. For this reason, work requirements for individual omployees might not have been as great during the sample period as during periods of greater product supply. Because it is impractical to hire and fire employees with each variation in supply of raw products, this may have had the effect of
lowering the efficiency of some employees during the sample period. The obvious remedy for thls limitation would be to survey the plant during periods corresponding to variations in supply.

Observations were taken on the workers during the normal ef ght-hour working day. Due to the nature of some operations in plant A, a few emplojees worked before and after the observation period. This led to some value fudgement evaluations concerning these workers when calculating their efficiency during the non-observed period of the day. For this reason, it is recommended that the labor efficiency study be continued for as long as necessary during a day to include all work performed.

Due to the nature of some processes, a limited number of observations were taken on minor processes; and the reliability of the coefficients from these processes was not too high. To improve the reliability, it would have been desirable to observe minor operations more often when they were operative. This leads to another limitation of this study, namely that of statistical analysis. The coefficients given are point estimates. Confidence limits can be placed on each coefficient using the formula given in the methodology section. The confldence limits will be determined for each coefficient, but this was not considered necessary for this phase of the general study.

As stated earlier, workers were not included if they were not observed in any of the predeterrined work processes. It was assumed these workers were attending to personal needs during this time. The validity of this assumption might be questioned on very logical grounds. If a worker was not at one of his assigned stations, he could have been down in the boiler room smoking instead of attending to personal needs as was assumed. This assumption does affect the validity of the labor requirements because the time allocated to each process
was derived by subtracting the loafing observations from the total observations. This figure was then used as part of the numerator in the formula for determining the labor requirements for each skill class in each process.

The observed efficiency of employees does not include the rate or speed at which an employee works. For this reason, one employee observed more productive than another might be less valuable to the process because he worked at a. much slower rate. This limitation is inherent in any ratio-delay study, and any corrective factor would have to be based on value judgements expressed by the observers or study director.

Production records kept by the plant were used in this study. Although good record keeping procedures were used by plant A, it was difficult to adapt their production records to the survey period in some cases. For this reason, it would seem desirable for the study director or some other designated person to keep accurate daily production records for the survey period.

It is recomended that very detailed records be kept on all phases of the study. It is much easier to agregate various records than it is to make them more detailed after the data is gathered.

As stated earlier, it is believed that this analysis is quite applicable to plant A; beyond this no inference is intended. The author does believe that through a synthesis of studies of this nature, standard input requirements can be derived for many operations in dairy processing plants. These standard requirements can then be used as a general guide for evaluating the efficiency of a particular plant which approximately possesses the same physical facilities and state of technology as those plants from which the standard requirements were derived.

SUMMARY AND CONCLUSIOIS

This study was a part of an economic efficiency study of one selected multiproduct dairy processing plant in the Midwest. Within this plant, each basic process (a complete operation on a procuct) wes precisely defined as to equipment used and product flow through the process. Labor requirements within aach process were classified by departments, divisions of labor, and work olements into fixed, variable, and massigned idle time categories.

Since labor is apparently the most significant item of cost in most dairy processing plants, a detailed labor study was undertaken to determine the fixed and variable labor requirements by skill categories for each manor process and each product produced in plant A. The method used to detemine labor requirements was a randorm-observation, time-study technique. This technique, termed ratio-delay, is a relatively new and highly practical statistical technique for determining the percentage of time workers are procuctive or delayed. Random observations were taken on all workers in plant A for a 21 day period during August and September, 1957. The ratios of the number of observations falling into the various labor classifications to the total number of observations in all labor classlfications were assumed to be proportional to the amount of time expended in each of these labor classifications. Under this assumption, fixed and variable labor requirements in minutes per unit of produot were determined by skill classes for each process in plant A.

The most important consideration of this study was determining fixed and variable labor coefficients for each basic process in plant A. These coefficlents were "actual" or "real" requirements and were not developed from a synthetic analysis. It is believed that this study was the first to integrate all operations of a dairy processing plant in one atudy. A synthesis of the process
requircments enables one to determine the unit coet of producing any and all innal products produced in plant A. Although there are some problems or biases implicit in this eynthesie, it is very useful to linear procraming. By computing the physical requirements and costs of all inputs and by assuming given procuct prices, the optimum combination of final outputs can be determined for a given plant and state of technology by equating the marginal rate of substitution between final procucts with the inverse of their price ratio. The analysis may also show that the linear model as eet up micht not be as applicable as the non-linear model, but this question is beyond the scope of thie study.

Although major emphasis of this study was placed on labor, the utility requiremente were also given. To determine the utility requirements for each piece of equipment in plant A, each plece of equipment wes identified as to name, model, eerial number, capacity, and utility requirements (whenever possible) by inspecting the manufacturer's plate on each piece of equipment, by examining plant A's equipment inventory cards, and by direct correspondence with equipment manufacturers. Steam and refrigeration requirements were given in Btu's per unit of product for each process, and the electrical requiremente were given in dilowatts per hour of machine running time. These requirements were calculated at a given level of efficiency for each piece of equipment; therefore, the utility requirements might be considered about "normal" for most operations in plant A.

The ratio-delay analyele was also used to evaluate the relative labor efficiency of workers in each process and the relative efficiency among the various processes. This analysis was again the firet in a series of studies in the Midwest to determine the relative efflciency of all operations in dairy processing plants. The efficiency figures given in this stady are not intended to
be interpreted as standards for the dairy industry. A synthesis of many studies on a varlety of dairy processing plants operating under differsnt market structurss might yield some broad standards of relative efficiency in various operations of dairy procsssing plants. These standards might then be used as a general guide to evaluate the efficiency of various opsrations in a particular dairy processing plant. With a given technology factor, these standards might bs used as a basing point to compare the relative efficiency of various operations in dairy processing plants over various periods of time.

In plant A, a total of all workere in all processes were observed productive almost 90 per cent of the time. Thie figure is apparently higher than those of other studies related to dairy processing plants. This ie largely due to hot observing workers in this study during the two allowabls 15 minute breaks and while they wers attending to personal needs. For this reason, it would be quits difficult to compare the labor efficiency of plant A with other labor efficiency studies.

The three procssses of recelving raw products, the process of handing products in the cold room, and the five processes of handling rsturned cases and bottles were the only processes in plant A that wers considered grossly inefficient with respect to labor. The receiving processes could have eliminated one or two msn without any apparent reduction in receiving capacity. The cold room capacity covld havs been increased, a floor conveyor installed, and one or two worksrs eliminated. Ths labor efficiency of the processes handing retumed cases and bottles could have been improved by eliminating one or two workers and by transferring some of the work requirements of these processes to other plant personnel.

The ratio-delay analysis also showod that indivicual workere were much more
productive when performing certain tasks than when performing others. This suggested that the over-all labor efficiency of plant A probably could have been improved by relocating workers to Jobs where they were apparentiy more efficient.

This study also demonstrated the practicability of a ratio-delay analysis in dairy processing plants. In the first place, it made evident the decision maldng points in the flow of products through the plant. It required management to precisely define each man's job or fobs and become more familiar with each operation. It proved to be a much more accurate method of assigning costs to particular operations than the cost accounting techniques presently used by many plants. The ratio-delay study required a minimum of time and cost, and it produced no apparent 111 effects on the workers or operation of plant A during the study period.

The author wishes to acknowledge his great indebtedness to Dr. Paul L. Kelly, major professor, for providing the basic data for the analysis, the invaluable help given throughout the study, and his ability to provide the proper atrosphere for gaining some insight into research methodology to Shirley S. Townsend for providing much of the needed incentive and proper atmosphere conducive to graduate work; to Mr. Bob F. Jones for helping to gather the data, providing much of the background material, and his helpful suggestions in the preparetion of most of this thesis; to Mrs. Dorothy E. Lilley for many hours of computational work and helpful sugeestion; to members of the Dairy Department for their cooperation whenever needed; to Dr. Ralph G. Nevins and Professor Ralph I. Lipper for their assistance in deriving utility requirements; and to Dr. Arlin M. Feyerherm for his help on statistical matters.

LITERATURE CITED

1. Barnes, Ralph M., Potion and Time Study, John Wiley and Sons, New York, 1949, p. 91.
2. Conner, M. C., L. Spencer, and C. W. Pierce, Specifications and Cost for a Milk Pasteurizing and Bottling Plant, Virginia Agricultural Experiment Station Bulletin $463,2955, \mathrm{pp} .21$ and 27.
3. French, Charles E., "Tast and Simple Sampling Method for Checking Labor Performance", Food Engineering, April, 1957, p. 64.
4. Heady, Earl 0., Economics of Aspicultural Production and Resource Use, Prentice-Hall, Inc., EngIemod CLIfIs, New Jersey, 1952, pp. 98-99.
5. Heiland, Robert E., and Wallace J. fichardson, Work Sampling, McGrawHill Book Company, Inc., New Iork, 1957, pp. 1-138.
6. Hinds, Max K., and William F. Jobnstone, Dairy Economics Handbook, Agriculture Handbook No. 138, United Statee Department of Agriculture, Washington, November 1958 , p. 44.
7. Morrow, Robert I., Time Study and Motion Economy, The Ronald Press Company, New Iork, I946, p. IT6.
8. Sarmet, L. L., and J. B. Hassler, "Use of the Ratio-Delay Method in Processing Plant Operations", Acricultural Economic Research, October, 1954, pp. 124-134.
9. Snedecor, Ceorge W., Statistical Methods, Iowa State College Press, Amee, Iowa, 1956, pp. 18-26, 90-91.
10. Thppett, L. H. C., "A Snap-reading Method of Making Time-studies of Machines and Operators, in Factory Surveys", The Journal of the Textile Institute Transaction, February, 1935, 26:51-55.
11. Willians, J. A. C., "Work Sampling Techniques in Work Study", The Fingineer, February 15, 1957, pp. 245-249.
12. Williams, Sheldon W., Kisposing of Surplus Milk in Midwestern Markets, Unpublished manuscript sent to members of the Horth Central Regional Surplus M1lk Subcomnttee, NCM-12, Urbana, Illinois, March 20, 1959.

APPERDIX I

Detailed Process Descriptions and Utility Requirements

Process Description. All can milk entered the plant at this point. It was either Grade A or Grade C milk. The process included all activities from the time milk entered the plant until it was cooled and ready to leave the storage tank.

This process began when the truck operator removed the cans of milk from his truck at the receiving cock and placed them on the power conveyor which brought cans into the receiving room. Prior to receiving the first can of milk, purps $(1,78)$, filters $(2,79)$, and pipes to the plate heat exchangers $(3,9)$ had been assembled. 1 Cleaning compounds and sanitizing agents had been placed in the can washer (4).

A worker loosened can lids with a rubber mallet and made a quick oreanoleptic inspection of the milk. 陑lk that was rejected on the basis of the organoleptic teat was returned to the producer. The worker may or may not have made a seciment test of the milk as this was not a dafly requirement.

The worker operating the weigh trak (52 or 76), removed the can's lid and placed it in the can washer intake. He then inverted the can filled with milk allowing milk to flow into the weigh tank. After milk had drained from the can, the empty can moved into the can washer. A conveyor moved the can through the washer and returned it outside of the building where it was picked up by the truck operator and returned to the producer. When all of one producer's milk was in the weigh tank, milk was weighed and recorded.

1
Throughout Appendix I, numbers in parenthesis refer to pleces of equipment which are given in numerical order in the table following each process description.

A sample of milk was taken with a vacuum type sampling device (77) for a butterfat, bacteria, or any other milk quality test desired. kilk flowed by gravity into the milk intake pan (5 or 76). Milk retums (Process XXIX) also re-enter the Grade C department at this point. The pumps (I or 78), which started automatically when milk was in the intake pan, pumped the milk through the pressure filter (2 or 79), and then through the plate heat exchanger (3 or 9) where it was cooled to less than 40° F. M M $1 k$ then went to storage tanks $(6,7,10,11,80,81)$, wisich were not refrigerated, but had agitators to keep the milk well míxed.

The process of receiving, cooling and storage of milk ended when milk was ready to leave the storage tanks.

Cleaning activities involved disassembling, cleaning, and rinsing of milk pipes, filters, and heat exchangers; washing the intake pans; cleaning the can washer and floor; and scrubbing the inside of the storage tanks.

At this point in the flow of milk through the plant, decisions were made as to the milk's uitingte use.

Product AIternatives. Milk from storage tanks might have entered any of the following alternative uses:
A. Grade A

1. Sold in 10-gallon cans
2. Sold in bulk
3. In plant transfers
B. Grade C
4. Sold in 10-gallon cans
5. Sold in bulk
6. In plant transfers

Entry into one of these alternative uses constituted the beginning of a new process.

Maintenance. Equipment maintenance included labor required for the care and maintenance of equipment listed in Table 39.

Plant maintenarce included labor required for the care and maintenance of the builcing housing this equipment.

Labor Classification. This process was divided into Iive departments which หere divided into divisions of labor. Divisions of labor were further divided into work elements.

Recoiving -- South Line
Variable:
Opening cans
Grading
Dumping
Recorcing
Sampling
Can washing
Fixed -- other than maintenance:
Supplies
Clean-up
Set-up
Heceiving - South Line -- Maintenance
Pixed-maintenances
plant maintenance
Equipment maintenance
Receiving -- South Line -- Idle Time
Idle time:
Unassigned idle time
First Holding -- Operations
Variable:
Tank operation
Fixed -- other than maintenance:
Set-up
Clean-up
Flrst Holding - Maintenance
Fixed -- maintenance:
Plant maintenance
Equipment maintenance
Table 39. Electrical, steam, and refrigeration requirements and capacity of equipment used in Procesa I, Receiving Can Milx. Code: Item : Mrr. : Capacity : kwo/hr. :
2.2378
0.5599
0.7462
40° 22.1/1b. [ifilk
${ }^{\circ} \mathrm{O}$
8
2,100/can

Code:		:	8	Electricity: Stea		Refrigeration		
	Item :	Mfr.	: Capacity	$\text { kw./hr. } \frac{\text { Temp. (F) }}{\text { In }: O u t}$	b.t.u.	Iem	$\frac{(\bar{F}):}{\text { Out }}$	b.t.u.
1	Milk pump	Century	$3 \mathrm{~h} . \mathrm{p}$.	2.2378				
2	Preasure filter	GherryBurrell						
3	Plate heat exchanger	Creamery Package	21 piates			60°	40°	22.1/1b. mink
4	Milk can washer	Lathrop Paula on	$\begin{aligned} & 13 \text { cana/ } \\ & \text { min. } \end{aligned}$	9.9461	2,100/can			
5	Milk intake pan	Lathrop- Paulson	100 gal .					
6	Storage tank	CherryBurrell	5,000 gal.	0.5599				
7	Storage tank	Heil	5,000 gal.	0.7462				
9	Plate heat exchanger	Creamery Package	$\begin{aligned} & 20,000 \\ & 1 \mathrm{ba} . / \mathrm{hr} . \end{aligned}$			60°		22.1/1b. riluk
10	Storage tank	Cherry Burrell	3,000 gal.	0.5599				
11	Storage tank	Cherry Burrell	2,000 gal.	0.3727				

Table 39 (concl.) Electrical, ateam, and refrigeration requirements and capacity

:		8		SElectricity: Stea			Refrigeration	
Code:	Item	Mfr.	: Capacity	kw./hr.	$\begin{aligned} & \text { Temp. }(F): \\ & \text { In :Out: } \end{aligned}$	b.t.u.	$\begin{aligned} & \text { Temp. (P) } \\ & \text { In :Out } \end{aligned}$	b.t.u.
52	Weighing tank		1,000 1bs.					
76	Weigh tank and milk intake pan	LathropPaulson	1,000 Ibe.					
77	Vacurm sampler and pump	LathropPaulson	th.p.	0.1872				
78	Milk pump		$3 \mathrm{~h} . \mathrm{p}$.	2.2378				
79	Pressure filter	Cherry- Burrell						
80	Storage tank	Sanitank	5,000 gal.	1.1189				
81	Sitorage tank	Creamery Fackage	4,000 gal.	0.7462				

Process II. Recelving Bulk liilk

Process Description. All bulk milk entered the plant at this point. It was efther Grade A from farm sources or other plants or Grade C From other plants. This process included all activities from the time milk entered the plant until it vas cooled and ready to leave the storage tanks.

This process began with raw cooled milk in the buik tank truck parked at the receiving dock. Prior to arrival of the first milk, the pump (8) was assembled. If the milk was to be used in the Grace C department, pipes were connected to the plate heat exchanger (3). From the plate heat exchanger (3), pipes were comected to the storage tanks $(6,7,80,81)$. If milk was to be used in the A department, pipes were connected from the pump (8) to the plate heat exchanger (9). From the plate heat exchanger; milk flowed to storage tanks (10,11).

When a truck loaded with milk arrived at the receiving dock, a worker placed two small wooden ramps in front of the truck's front wheels. The truck was driven up on these ramps so that the front of the truck was elevated about six inches. This facilitated draining the tark. A worker then took a sample of the milk with a long dipper. He sent part of the sample to the laboratory for a butterfat, bacteria, or any other milk quality test desired; and the remainder was used to determine the temperature of the load of hilk.

The intake hose of the pump (8) was connected to the outlet on the truck, and the milk pumped to either of the plate heat exchangers $(3,9)$ in the Grade A or Grade C departments. Milk that was to be processed the eame day it was received was not cooled, but pumped directiy to the storage tanks. When the truck was empty, the hose was disconnected and the truck sent to the service area for washing. Washing the truck was not included in this process. Storage
tanks in both dspartments wers not rsfrigerated, but had agitators to keep the milk well mixed.

Ths procsss of recsiving, cooling and storage of milk snded wen milk was ready to lsave the storags tanks.

Cleaning activities includsd disasssmbling and cleaning of ths milk pump, pipss, and heat sxchangers; scrubbing the inside of storage tanks; and cleaning the floor in this area of the plant.

Product Alternativss. At this point milk from the storage might have entersd any of the following alternative uses:
A. Grade A

1. Sold in 10-gallon cans
2. Sold in buik
3. In plant transfers
B. Grade C
4. Sold in 10-gallon cans
5. Sold in bulk
6. In plant transfers

Entry into ons of ths aitsrnative uses constituted ths bsginning of a new work process.

Maintenance. Equipment maintenance included labor requirsd for ths care and maintenance of equipment listsd in Table 40.

Plant maintenance included labor required for the cars and maintenance of the building housing this equipment.

Labor Classification. This procsss was divided into two departments which were divided into divisions of labor. Diviazons of labor wers furthsr divided into work elements.

Bulk Recsiving -- Operations
Variable:
Hiook-up
Pumping
Unhook
Sampling
Tank operation
Table 40. Electrical, atsam, and refrigeration requirements and capacity

Fixod --. other than maintenance:
Set-up
Clean-ap
bulk Receiving -- Maintenance
Fixed -- maintenance:
Plant maintenance
Equipment maintenance

Process III. Receiving Can Crean

Process Description. All route and station cream entered the plant at this point. This process included all activities from the time cream entered the plant until it was in the thin-coll pastewrizers ready for neutralization.

This process began when the truck operator placed full cans of cream on the power conveyor leading into the croam recsiving room. Prior to receiving cream, pumps (12,82) had been asssmbled, dump tank (13) set up, and pipes connected to the twin-coil pastsurizers ($14,15,16$). Cleaning and sanitizing agents had been added to the can washer (17).

After cans were placed on the conveyor, a worker placed a sample bottle on top of each can. A worker opened ths cans, made an organoleptic inspection, and then took a sample which was placed in ths sample bottle. After the sample was taken, cream was weithed in the can and the weight recorded. The can was then inverted over the dump tank (13) and allowed to drain before moving into the can washer (17). If the cream remaining in the can was unusually thick, the can was sprayed mith hot water to loosen fat sticking to the sides of the can. The can moved through the washer and on out to the ermpty can storage room. Cans were stacked on a rack to be picked up later by the truck operator and returned to producers or cream stations. When the dump tank became full, a pung (82) was started. It pumped cream through a pressure
filter (83) to the surge tank (105). Cream wes then pumped (12) to the twincoll pastewrizers ($14,15,16$). Twin-coil pasteumizers were used only as storage tanks and as a place for neutralization.

Clearing activities inclucted disassembly of pumps, washing dump tanks, dismantling pipes, cleaning the can washer and scrubbing the floor. A receiving crew did the cleaning in this process.

Process III ended with the raw cream in twin-coil pasteurizing vats.
Product Alternatives. At this point, cream entered the pasteurization process only.

Maintenance. Equipment maintenance inciuded labor required for the care and maintenance of equipment listed in Table 41.

Plant maintenance included labor required for the care and maintenance of the building housing this equipment.

Labor Clessification. This process was divided into four departments which were divided into divisions of labor. Divisions of labor were further dirlded into work elements.

Receiving -- North line
Variable:
Opening cans
Grading
Dumpine
Recording
Samoline
Can weshing Stacicing cans
Fixed -- other than maintenance:
Supplies
Clean-ip
Set-up
Receiving -- North Line -- Naintenance
Fixed -- maintenance:
Plant maintenance
Equipment maintenance
Table 41. Electrical, steam, and rafrigeration requirements and capacity of equipment used in Process III, Receiving Can Craam.

:		\%		:		Elactricit			Refri	tion
Code:	Item	:	Mfr.	$:$	Capacity	: kw./hr.	: Temp.(F) ${ }^{\text {In }: \text { Out }}$	b.t.u.	$=\frac{\text { Temp. (F) }}{\text { In } \mathrm{O} \text { : }}$	b.t.u.

0.3727

2.2378
2.2378
2.2378
3.8229
4,500/can

```
Receiving -- North Line -- Idle Time
    Idle time:
        Unassigned idle time
First Holding -- Can Cream
    Variable:
            Tank operation
    Fixed -- other than maintenance:
        Set-up
        Clean-lup
```

Process IV. Separating Grade C Milk

Process Description. This process began with cooled milk in storage tanks $(6,7,80,81)$. After all pipe connections were made and the separators $(22,23,24)$ assembled, milk was pumped (18) from storage tanks into the plate heat exchanger (19) where it was heated to 900 F . If the vacuum pan was operating, milk was pumped from the storage tanks to the bleeder heater (26) in order to utilize this heat. Milk flowed back to the surge tank (106) where it mixed with milk from the plate heat exchanger (19). From the plate heat exchanger, milk went to a surge tank (106). Milk was then pumped (20) through a pressure filter (21). From the filter, milk went to the separators.

The cream was then vacuumized (53), pasteurized (55), cooled (3), and stored in storage tanks (44,45) as in Process XII (Processing and Storing Route Cream).

This process ended when skim milk left the surge tank (107) at the separator location, and cream was in storage tanks ready for selling or churning.

Cleaning activities included disassembly and cleaning of separators and plate heat exchanger (pre-heater), dismantling of pipes, and cleaning of surge tanks. Most of the cleaning was performed by a night crew.

Product Alternatives. At this point skim milk from surge tanks and cream in storage might have entered any of the following alternative uses:
A. Skim milk

1. Sold in 10-gallon cans
2. In plant transfers
B. Cream
3. Sold in 10-gallon cans
4. In plant transfers

Maintenance. Equipment maintenance included labor required for the care of equipment listed in Table 42.

Plant maintenance included labor required for the care and maintenance of the building housing this equipment.

Labor Classification. This process was divided into two departments which were divided into divisions of labor. The divisions of labor were further divided into work elements.

Separation
Variable:
Processing
Holding
Canning cream
Fixed -- other than maintenance:
Hook-up
Machine set-up
Clean-up
Separation -- Maintenance
Fixed -- maintenance:
Plant maintenance
Equiprent maintenance

Process V. Condensing Operation

Process Description for Skim Milk. This process included all activities from the time skim milk left the surge tank at the separators until cooled condensed skim milk entered the storage tank or warm condensed skim milk entered the drying process.
Tabla 42. Flectrical, steam, and rafrigeration aquipment and capacity

Table 42 (concl.) Electrical, steaa, and refrigeration equipment and capacity

The process began with skim milk in the surge tank (107) at the separator location. Milk was pumped (25) to the bleeder heater (26) on the evapooator (30) for pre-heating. From the bleeder heater, milk flowed to the tubular heater (27) where it was heated to $180^{\circ} \mathrm{F}$. There were two ways of handling the milk here. It may have been handled as described above or it may have been pumped directly from the surge tank to the tubular heater. The first method increaeed the capacity of the tubular heater.

From the tubular heater, milk went to the two hot welle $(28,29)$. Milk was drawn from the hot wells to the first and second stage evaporator (30) where it was condensed to a ratio of $4: 1$. From the eecond stage evaporator, condensed milk was pumped (100) to the plate heat exchanger (34) and then to a etorage tank (33) or storage vats $(32,85)$. If condensed milk wae to be dried, it did not flow through the plato cooler, but entered storage vate (32,85) which were actually ueed as a surge tank for the drying process.

Thie process ended with cooled condensed ekim milk in the storage tank or warim condensed skim uilk at $130^{\circ} \mathrm{F}$. as it entered the drying procees.

Process Description for Whole Milk. This process included all activities from the time whole milk was in the storage tank until cooled condensed whole milk entered the storage vat or warm condensed whole milk entered the drying process.

Thie process began with whole milk in storage tanks $(6,7,80,81)$. Grean was transported in lo-gallon cans to the storage tanks and added to the whole milk. Cream was added in order to increase the fat content to the speciflcations of 26 per cent butterfat for dry whole milk. The enriched milk was pumped (18) to the bleeder heater (26) on the evaporator or directly to the tubular heater (27) as described in the ekin milk process. The remainder of
the process is identical to the process for evaporation of skin milk with the exception that whole milk was condensed to a ratio of $3: 1$.

The process ended with cooled condensed whole milk in the storage tank or warm condensed whole milk as it entered the drying process.

Cleaning activities included cleaning all equipment listed in Table 43.
Product Alternatives. Condensed milk from the condensing operation might have entered any of the following alternative uses:
A. Condensed skim milk

1. Sold in 10-gallon cans
2. Sold in bulk
3. In plant transfers
B. Condensed whole milk
4. Sold in 10 -gallon cans
5. Sold in bulk
6. In plant transfers

Maintenance. Equipment maintenance included labor required for the care and maintenance of equipment listed in rable 43.

Plant maintenance included labor required for the care and maintenance of the building housing this equipment.

Labor Classification. This process was divided into three departments which were divided into divisions of labor. Divisions of labor were further divided into work elements.

Vacuum Pan -- Operations
Variable:
Forewarming Processing
Fixed -- other than maintenance:
Hook-up
Machine set-up
Clean-up
Vacuum Pan -- Maintenance
Fixed -- maintenance:
Plant maintenance
Equipment maintenance
Table 43. Electrical, steam, and refrigeration requirements and capacity of equipment used in Process V, condensing operation.

Table 43 (concl.) Electrical, ateam, and refrigeration requiremente and capacity of equipment used in Process V, Condensing Operation. 3

Vacuun Pan -- Idle Time
 Idle tine:
 Unassigned idle time

Process VI. Condensing Transfers

Process Description. This process began with cooled condensed milk in storage vats $(32,85)$. Cans ware transported to the vats on a dolly where they were gravity filled with condensed milk. If the order called for a lower per cent of solids-not-fat than the condensed milk contained, water was added to obtain the desired per cent of solids. After lo-gallon cans were filled, they were transported to the south cold room. This process ended with full cans of condensed skim nilk in the south cold room.

Product Alternatives. Condensed milk in 10 -gallon cans might have entered elther of the following alternative uses:
A. Sold in 10-gallon cans
B. In plant transfers

Maintenance. No plant or equipment maintenance wes charged to this process. Care of storage vats (Table 4h) was charged to Process V (Condensing Operation).

Labor Classification. This process was divided into two departments which were divided into divisions of labor. Divistons of labor were further divided into work elements.

Vacuum Pan -- Operations
Variable:
Transfer to next dept -- canning Transfer empty cans

South Cold Room -- Operations
Variable:
Product in -- plant
Table 44. Electrical, steam, and refrigeration requirementa and capacity of equipment used in Process VI, Condensing Trsnsfers.

Code:	Item	:	Mrr.	:	Capacity	:Electricity: : kw. hr .		Steam		Refrigeration	
								Temp.(F):	b.t.lu.	$\frac{\text { Temp. (F) }}{\operatorname{In}: \text { Out }}$	b.t.u.
32	Storage vat		Cherry- Burrell		550 gaz.		for identif	fication only			
85	Storage vat		Cherry- Burrell		550 gal .		for identif	rication only			

Process VII. Selling Condensed Rilk

Process Description. This process included labor required for loadng 10 -gallon cans of condensed milk for shipment. The process began with cans of condensed milk in the south cold room. When a truck arrived for loadne, a worker transported cans of condensed milk to the gravity conveyor with a two-wheeled dolly and set the cans on the conveyor. This process ended with cans on the conveyor outside the building ready to be loaded into the truck by the truck driver. The truck driver was not observed in this study.

Equipment Used. The only equipment used was a two-wheeled dolly and the Eravity conveyor.

Procuct Alternatives. This was a final procuct.
Maintenance. No cleaning or maintenartce was observed in this process.
Labor Classification. This process included one department, one division of labor, and one work element.

South Cold Room -- Operations Veriable: Product out - ship

Process VIII. Spray-Drying Operation

Process Descriotion. This process included all activities from the time condensed milk (either non-fat or whole) left the storage tanks until it was dried and reached the bagger.

This process begen with cooled condensed milk in the storage tanks (32, 33,85) or warm condensed mik at the evaporator (30). Condensed milk was pumped (86) to the plate heat exchanger (34) where it was heated to $160-170^{\circ} \mathrm{F}$. From the plate heat exchanger, mik went to the homogenizer (35), which was
used as a purp to put the milk into the dryer (36).
Dry milk left the dryer by an auger and the force of gravity. This process ended when dry milk entered the cyclocentric screen and bagger.

Cleaning of the dryer is a major item of work as the walls, ceiling, and floor were brushod and washed. Jets were also dismantled and cleaned daily or after each production run.

Product Alternatives. The only alternative was to package the dry milk.
Maintenance. Equipment maintenance included labor required for the care and maintenance of equipment listed in Table 45.

Plant maintenance included labor required for the care and maintenance of the building housing this equipment.

Labor Classification. This process was divided into two departments which were divided into divisions of labor. IAvisions of labor were further divided into work elements.

Spray Drying -- Processiag -- Operations
Variable:
Processing operation
Fixed - other than maintenance:
Set-up
Change over
Clean-up
Spray Drying -- Processing -- Maintenance
Eixed -- maintenance:
Plant maintenance
Equipment maintenance

Process IX. Packaging Lry Milk

Process Description. This process included all activitios from the time dry milk left the dryer until it was in sealed packages ready for storage.

This process began when dry milk entered the cyclocentric screen and bagger (37). If the product was dry whole milk, the dry milk did not pass
Table 45. Electrical, steam and refrigeration requirements and capacity of equipment used in Process VIII, Spray-Drying Operation. -

over the screen, but fell directly into a 100 pound bag or 220 pound barrel. Dry whole milk did not pass over the cyclocentric screen. Breaking up powder flakes would destroy the equlsion of fat in milk solids and result in flavor deteriorating reactions. If the product was non-fat dry milk, it passed over the screen to break up milk particles providing a more soluble product. Prior to filling the first containers, bags or barrels were transported from the warehouse to the bagging area and laboled as to fat content, solids-not-fat content and welght. After a bag was filled, it was sealed and the top closed with a special sewing machine (84). After a barrel was filled, the plastic liner was sealed and a metal top clamped on. one out of every forty containers was set back for laboratory personnel to sample.

This process anded with dry milk in the sealed container at the bagger location.

Cleaning activitles included cleaning the bagger, the screen, and the entire floor of the packaging room.

Product Alternatives. Dry mik was packaged in the following size containers:
A. Non-fat dry milk

1. 100 -pound bege
a. U.S. Extra Grade
b. U.S. Standard Grade
2. 220 pound barrels
a. U.S. Extra Grade
b. J.S. Standard Orade
B. Dry whole milk
3. 100 pound bags
a. U.S. Extra Grade
b. U.S. Standard Grade
4. 220 pound barrels
a. U.S. Extra Grade
b. U.S. Standard Orade

Kalntenance. Equipment maintenance included labor required for the care and maintonance of equipment listed in Table 46.
Table 46. Electrical, steam, and refrigeration requirements and capacity

Code:	Item :	Mrr.	Capacity	Electricity $\mathrm{kw} . / \mathrm{hr}$. \qquad \qquad In :Out: b.t.u.		Refriceration	
						Temp.(F)	b.t.u.
37	Cyclocentric screen snd bagger	Patterson	1 h.p.	0.7462			
84	Sewing machine		$\frac{1}{4} \mathrm{~h} . \mathrm{p}$.	0.1872			

Plant maintenance included labor required for the care and maintenance of the building housing this equipment.

Labor Classification. This process was divided into two departments which were divided into divisions of labor. Divisions of labor were further divided into work elements.

```
Spray Drying -- Packaging -- Operations
    Variable:
            Transport packages from storage to packaging area
            Position package
            Filling
            Sampling one container in 40
            Sealing package
            Labeling
            Supplied
            Package preparation
        Fixed -- other than majntenance:
            Set-ap
            Machine set-up
            Clean-up
Spray Drying -- Packaping -- Maintenance
    F1xed -- maintenance
        Plant maintenance
        Equipment maintenance
```

Process X. Storing Dry Milk

Process Description. This process included all hauling of the sealed dry milk containers from the time they were moved from the packaging area until they were in place on a stack in storage.

This process began with the filled bag or barrel at the bagger location. The container was placed on a two-wheel dolly and transported to the stack. The container was removed from the dolly and placed on the hoist (38). The hoist elevated the container to the top of the pile were a worker removed the container and positioned it on the stack. The dolly was then transported back to the packaging area.

This process ended with the bag or barrel in place on the etack. Product Alternatives. Dry milk might have entered either of following alternative uses:
A. Sold as dry milk.
B. In plant transfers.

Maintenance. No equipment or plant maintenance was observed in this process. The only equipment used was an electric hoist (Table 47) and a twowheel dolly.

Labor Classification. This process included one department which was divided into divisions of labor. Divisions of labor were further divided in to work elements.

```
Spray Drying -- Packaging -- Operationa
    Variable:
            Transport to storage
            Stacking
            Transport empty dolly
    Fixed -m other than maintenance:
        Inventory
        Storage rearrangenent
```


Process XI. Shipping Dry Hilk

Process Description. This process began with full bags or barrels of dry milk on the stack in the storage area. Electric hoist (38) was used to lower the top bags or barrels from the pile. Containers were then placed on a two wheel dolly and transported to the truck. Containers were stacked in the truck after cardboard or paper was placed on the truck lloor. It was frequently necessary to prepare an elevated ramp for the truck if the truck was too high for the loading dock.

This process ended with bags or barrels in place in the truck ready for sinpment.

Product Alternatives. There were no alternate uses for this product as dry milk ras now an end product.

Maintenance. No equipment or plant maintenance was observed in this process. The only equipment used was an electric hoist (Table 48) and a twowheel dolly.

Labor Classification. This process included one department and one division of labor. The division of labor was divided into work elements.

Spray Drying Packaging -- Operations
Variable:
Load out dolly for shipping
Transport to truck
Stacking in truck
Transport empty dolly to storage
Preparing loading dock
Preparing truck for hauling

Process XII. Processing and Storing Route Gream

Process Description. This process included all activities from the time cream was stored in twin-coil pasteurizers until it left holding tanks for sales or churning.

The process began with raw route cream in twin-coil pasteurizers (14,15, 16). Some returned cream and butter were added to route crean, but this was small in comparison to the amount received from the route. The acidity of the cream was taken, and the cream heated. Upon reaching $145^{\circ} \mathrm{F} .$, the proper amount of neutralizer was added to the warm cream. The twin-coil pasteurizers were actually used as holding tanks rather than pasteurizers. From the twincoil pasteurizers, cream was pumped (99) to a surge tank (108) and then pulled through the vacuumizer (53). From the vacuumizer, cream was pumped by a timing punm (54) through three-fourths of the tubular heater (55). Cream then went through the pressure strainer (56), the remaining one-fourth of the
Table 48. Electrical, steam, and refrigeration requirements and eapacity

:		:	:		EElectricity:			Refrigeration	
Code:	Item	: Mfr.	:	Capacity	\% kw./hr.	: Temp. (F)	b.t.u.	$\frac{\text { Temp. (F) }}{\text { In : Out }}$	b.t.u.
38	Electric holst	Star		$1 \frac{1}{2} \mathrm{~h} . \mathrm{p}$.	1.1189				

tubular heater, held at 190° F. for fifteen seconds in the holding tube for pasteurization, and then cooled to 400 F . in the plate hest exchanger (3). From the beat exchanger, cream went to storage tanks (44,45) which were refrigerated.

Some route cream was run through the vacuumizer and tubular heater twice. This was the case because there was a three-way valve just before the holding tube which allowed cream to flow back, by means of a circulation line, to the surge tank in order to maintain a constant level of cream in the surge tank. This was a self adjusting process, so, the rate of pasteurization was dependent upon the rate of flow of incoming cream from the twin-coil pasteurizers.

This process ended with cooled, pasteurized cream in storage tanks ready to be sold or churned.

Cleaning activities included cleaning of equipment histed in Table 49 and the floor area around this equipment. This labor was included in Process $2 I V$ (Buttermaking).

Product Alternatives. Cream from storage tanks might have entered either of the following altemative uses:
A. Sold in 10-galion cans
B. In plant transfers

Entry into one of these alternative uses constituted the beginning of a new process.

Maintenance. Maintenance for this process wa. included in Process XIV (Buttermaking).

Labor Clessification. This process included one department and one division of labor. The division of labor was divided into two work elenents.

Butter Kaking -- Operations Dariable:

Pre-churn operation -- pasteurlzation and neutralization Dumping cream in pasteurizer -- returns
Table 49. Electrical, steam, and refrigeration requirements and capacity of equipment used in Process XII, Processing and Storing
Route Gream.

:	Item :		Capacity	:Electricity:		Steam	Refrigeration		
Code:		Mfr.		$\mathrm{kw} / \mathrm{hr} .$	I In In (F)	b.t.u.	Tem	(F):	b.t.u.
3	Plate heat exchanger	Creamery Package	21 plates				190°	40°	148/1b. creal
14	Twin-coil pasteurizer	Cherry- Burrell	500 gaz .	2.2378	$40^{\circ} 145^{\circ}$	105/1b. cream			
15	Twin-coil pasteurizer	Cherry- Burrell	$500 \mathrm{gal}$.	2.2378	$40^{\circ} 145^{\circ}$	105/1b. cream			
16	Twinccoil pasteurizer	Cherry- Burrell	500 gal .	2.2378	$40^{\circ} 145^{\circ}$	105/1b, cream			
44	Storage tank	Cherry Burrell	1,000 gal.	0.3727			40°	40°	642.35/hr.
45	Storage tank	CherryBurrell	1,000 gal.	0.3727			40°	40°	642.35/hr.
53	Vacumizer and pump	Chester- Jensen	3 $\frac{1}{2} \mathrm{~h} . \mathrm{p}$.	2.6105					
54	Mı1k pump	Waukesha	$1 \mathrm{k} . \mathrm{p}$.	0.7462					
55	Tubular heater	Chester- Jensen	$\begin{aligned} & 8,000 \\ & \text { lbs./hr. } \end{aligned}$		$145^{\circ} 190^{\circ}$	44.1/1b. cream			

Table 49 (concl.) Electrical, steam, and refrigeration requirements and capacity Route Cream.

Codes:	Item	Mfr.	: Capacity	:Electricitys Steam			Refrigeration	
				: kv./hr.	Temp. (F)	b.t.u.	$\frac{\text { Temp. (f) }}{\text { In } 10 u t}$	b.t.u.
56	Pressure filter	Stamsvik						
99	Milk pump	Waukesha	3/4 h.p.	0.5599				
108	Surge tank		40 gaz.					

Process XIII. Selling Pasteurized Cream

Process Description. This process included all activities from the time cream left the storage tanks until it left the south cold room for shipment.

This process began with cooled, pasteurized, sweet cream or route cream in storage tanks (44, 45). A sample of cream was taken, and a butterfat test performed to determine the per cent butterfat. This was essential to determine price. Ten-gallon cans were transported to the storage tank area on a dolly. Cans were filled from the tanks by gravity flow. Full cans were tagqed as to date and per cent butterfat and transported to the south cold room. Cans were then placed on the gravity conveyor. This process ended with full cans of cream on the conveyor ready to be loaded into a truck.

Procuct Alternatives. This was an end product, cream would not be removed from the storage tanks in cans unless it was to be sold.

Maintenance. The only equipment used in this process were storage tanks (Table 50). Maintenance for this process was charged to Process XXIV (Buttermaking).

Labor Classification. This process was divided into two departments which trere divided into divisions of labor. The divisions of labor were further divided into work elements.

Butter Making - Operations Variable:

Transport cans of cream to cooler Filling cans

South Cold Room -- Operations

 Variable: Products in -- plant Products out -- shipTable 50. Electrical, steam, and refrigeration requirements and capacity

:		\%	:		:Electricity: Steam			Refrigaration	
Code:	Iter	: Mrr.	:	Capacity	\% $\mathrm{kw} . / \mathrm{hr}$: $\frac{\text { Temp. (F) }}{\text { In } 0^{\text {Out }}}$	b.t.u.	$\frac{\text { Tomp. (F) }}{\text { In }: \text { Out }}$	b.t.u.
44	Storage tank	Cherry- Burrell		1,000 gaz.	for ide	tification on			
45	Storage tank	Cherry- Burrell		1,000 gal.	for 1 de	tification on			

Process XIV. Buttermaking

Process Description. This process included all activities from the time cooled, pasteurized cream left storage tanks until it was stored as butter in the south cold room.

This process began with cooled, pasteurized cream in storage tanks (44, 45). This could have been either sweet cream for making 92 score butter or route cream for making 90 score butter. Each grade of cream was churned separately. The butterfat content of the cream was derived and an expected yield calculated. After the churn had been sanitized, cream was pumped (39) from storage tanks to the chums (40,47). Colorlag material was added to the cream when necessary. While the cream was churning, workers prepared baskets or boxes for storing butter. Containers were lined with wet parchment paper. When the butter was churned and the buttermilk drained, the butter was washed and sal.ted. Salt was then worked into the butter and a test mun to determine the butterfat, moisture, salt, and acid content of the butter. Proper adjustments were made in the moisture and salt content, and the butter reworked until the desired consistency was obteined. Butter wes removed from the churn, weighed, and placed in 64 -pound boxes or 62 -pound baskets (boxes if it was to be sold in bulk and baskets if it was to be printed in the plant). Boxes or baskets were then sealed and labeled before being transported on a dolly to the south cold room. As the buttermilk drained, it was pumped (42) to a storage tank (43). This process ended with butter in the south cold room and buttermilk in the storage tank.

Cleaning activities for this process included dismantling pipes to the storage tanks and cleaning equipment listed in Tables 49, 50, 51.

Product Alternatives. Butter and buttermilk might have entered any of
Table 51. Electrical, staam, and refrigeration requirements and capacity of equipment used in Process XIV, Buttermaking.

the following alternate uses:
A. Ninety-two score butter

1. Sold in 64-pound boxes
2. Printed
3. In plant transfers
B. Ninety score butter
4. Sold in 64-pound boxes
5. Printed
6. In plant transfers
C. Buttermilk
7. In plant transfers

Maintenance. Equipment maintenance included labor required for the care and maintenance of equipment listod in Tables 49,50, and 51.

Plant maintenance included labor required for the care and maintenance of the area housing this equipment.

```
Labor Classification. This process was divided into three departments which were divided into divisions of labor. Divisions of labor were further divided into work elements.
Butter Naking - Operations
Variable:
Filling churn
Churning
Testing
Pulling
Basket preparation
Filling baskets or boxes
Transport product to cooler
Transport empty dolly back
.ecercing
Pumping buttermilk
Supplies
Fixed -- other than maintenance:
Sanitize
Hook-up
Clean-up
```

Butter Making -- Maintenance
Fixed -- maintenance:
Plant maintenance
Equipment maintenance

```
South Cold Room -- Operations
    Variable:
        Product in -- plant
```

 Process XV. Selling Bulk Butter
 Process Description. The process began when a truck operator arrived for a loac of butter. Bulk butter in 64 -pound boxes was placed on a dolly and moved to the gravity conveyor in the south cold room. Boxes were placed on the conveyor. The truck operator removed the boxes from the conveyor and loaded his truck. This process ended wh th butter on the conveyor ready to be loaded into the truck. Truck operators were not observed in this study.

Equipment Used. A dolly and the conveyor were the only pieces of equipment used in this process.

Product Alternatives, This was a final product.
Maintenance. Maintenance was not included in this process.
Labor Classification. This process included one department, one division of labor, and one work element.

South Cold Room -- Operations
Variable:
Products out -- ship

Process XVI. Printing and Wrapping Butter in Individual Quarters -- One Brand only

Process Description. This process included all activities from the time butter was received in the printing room until it was printed, wrapped, cased, and moved into the north cold room. This process included only one brand name so that exact production figures could be used.

This process began with bulk butter in the south cold room. Bulk butter
was transported to the printing room in 62-pound baskets. After bulk butter was in the printing room and other supplies provided as necessary, butter was cut into smaller chunks with a wire cutter. Chunks of butter were placed into the printer (72) which molded butter into one-fourth pound pieces.

One-fourth pound pieces of butter were moved by hand to the wrapping machine (73). This machine wrapped the quasters, and a worker moved thera to the packaging table. Wrapped quarters were placed in cartons by hand, cartons placed in cases, and the number of cartons filled recorded on a production sheet. Cases of butter were moved on a dolly into the north cold room where this process ended.

Cleaning activities for this process incluced cleaning of the wrapping tables and machines.

Procact Alternatives. Ninety-two score butter was packaged in the following slze cartons:
A. One-pound individually wrapped quarters
B. One-half pound individually wrapped quarters

Maintenance. Equipment maintenance included labor required for the care and maintenance of equipment listed in Table 52.

Plant maintenance included labor required for the care and maintenance of the butter printing room.

Labor Classiflcation. This process was divided into three departments which were divided into divisions of labor. Divisions of labor were further divided Into work elements.

Butter Printing -- Printer Variable:
Table 52. Electrical, stean, and refrigeration requirements and capacity
 in Individual Quarters - One Brand Only. -

;		8	3		Electricitys Stears				Refrigeration	
$\begin{gathered} \text { Code: } \\ \hline \end{gathered}$	Item	Mir.	2	Capacity	8	kw,/hr.	$\begin{gathered} \text { Temp. }(F) \\ \text { In } \text { :Out } \\ \hline \end{gathered}$	b.t.u.	$\frac{\text { Iemp. (F) }}{\text { In } 80 u t}$	b.t.u.
72	Butter printing machine	Doering		$\begin{aligned} & 1,000 \\ & 1 \mathrm{bs} . / \mathrm{hr} . \end{aligned}$		1.1189				
73	Butter wrapping machine	Lynch		$\begin{aligned} & 1,200 \\ & 1 \mathrm{bs} . / \mathrm{hr} . \end{aligned}$		0.3727				

```
    Fized -m other than majntenance:
        Hook-up
    Clean-up
Eutter Printing -o Wrapplng
    Variable:
    Supplies
    Operation
    Packagine
    Casing in
    Product out
    Recording
    Fixed -- other than maintenance:
    Clean-up
    Inventory
Buttar Printing -- Maintenance
    Fixed -- malntenance:
        Mant maintenance
        Equipment maintenance
```

 Process XVII. Printing and Wrapping Butter -- Other
 Than the Special Brand of Process XVI
 Process Description. This process included all activities from the time bulk butter was received in the printing room until it was printed, wrapped, cased, and transported Into the north cold room.

This process began with bulk butter in the south cold room. Bulk butter wae transported to the printing roon in 62-pound baskets. After bulk butter was brought into the printing roon and other supplies provided as necessary, butter was cut into smaller chunks with a wire cutter. Chunks of butter were placed into the printer (72) which molded butter into one-fourth pound pieces.

Butter that was to be individually guarter-wrapped was moved by hand to wrapping machine (73). A worker moved machine-wrapped butter to the packaging table. Wrapped quarters were placed in cartons by hand, and the cartons placed in cases. The number of cartons filled were recorded on a production sheet.

Butter that was not individual quarter-wrapped was wrapped by hand in one pound packages after it came out of the printer. The amount was recorded on a production sheet. Some wrapped butter was placed in cartons before casing and some of it was not. Cases of butter were then moved into the north cold room on a dolly where this process ended.

Cleaning activities included cleaning the wrapping tables and machines.
Product Alternatives. Ninety-score butter was packaged in the following type cartons:
A. One-pound parchment wrapped
B. One-pound parchment wrapped in cartons
C. One-pound of individually wrapped quarters
D. One-half pound of individually wrapped quarters.

Maintenance. Equipment maintenance included labor required for the care and madntenance of equipment listed in Table 53.

Plant maintenance included labor required for the care and maintenance of the butter printing room.

Labor Classification. This process was divided into three departments which were divided into divisions of labor. Divisions of labor were further divided into work elements.

Butter Printing -- Printer
Variable:
Supplies
Product in Operation
Fixed -- other than maintenance: Hook-up Clean-up

Butter Printing -- Wrapping Variable: Supplies Operation Hand wrap
Table 53. Electrical, team, and refrigeration requirements and capacity

Code:	Item	Mrr.	$\begin{aligned} & \vdots \\ & \vdots \\ & \hline \end{aligned}$	Capacity	EIectricity: Steara				Refrigeration	
$\begin{gathered} \text { Code: } \\ \hline \end{gathered}$:	kw./hr.	$\begin{aligned} & \text { Temp.(F) } \\ & \text { In :Out: } \end{aligned}$	b.t.u.	$\text { Temp. }(F)$	b.t.u.
72	Butter printing machine	Doering		$\begin{aligned} & 1,000 \\ & 1 \mathrm{bs} . / \mathrm{hr} . \end{aligned}$		1.1189				
73	Butter wrapping machine	Lymeh		$\begin{aligned} & 1,200 \\ & 1 \mathrm{br} . / \mathrm{hr} . \end{aligned}$		0.3727				

Packaging
Casing in
Product out
Recording
Fixed -m other than maintenance:
Clean-up
Inventory
Butter Printing -- Maintenance
Fixed -- maintonance:
Plant maintenance
Equipment maintenance

Process XVIII. Processing Cottage Cheese

Process Description. This process began with skin milk in the surce tank (107) near the separators $(22,23,24)$. Skim milk was pumped (25) from the surge tank through the tubular heater (27) and through the plate heat exchanger (34) to the cheese vats $(46,47)$. After all milk was in the vats, starter, which had been previously prepared from skim milk in the Grade A department, was added. The tempereture of the milk was ralsed, and the milk set overnight at $70^{\circ} \mathrm{F}$. In the vats. The following morning tests were run to determine the proper time for cutting the curd. When the curd had devsloped properly for cutting, it was cut with wire cutters by hand; and the temperature raised for cooking. While the cheese was cooking, it was stirred with mechanical agitators (97,98); however, some hand stirring was necessary in addition to the agitators in order to free the curd that had been caught in the comers of the vats. After the necessary time for cooling (about two hours) the whey was drainedf and the curd washed and drained with water two or three times. Drained curd was then placed in plastic-lined, ten-gallon, straight-sided cheese cans which, when full, contained 70 pounds of curd. Canned curd was moved on two-wheel dollies to the south cold room for temporary storage. Whey was drained into a tank and later hauled off and dumped.

This process ended with cottage cheese curd in special cheese cans in the south cold room.

Cleaning activities for this process included cleaning the plate heat exchanger, cheese vats, and the floor of the cheese processing area.

Product Alternatives. Special cans of cottage cheese might have entered either of the following uses:
A. Sold as non-creamed cottage cheese in 10-gallon cans
B. Stored to be packaged

Maintenance. Equipment maintenance included labor required for the care and maintenance of equipment listed in table 54.

Plant maintenance included labor required for the care and maintenance of the area housing this equipment.

Labor Classjification. This process was divided into three departments which were divided into divisions of labor. Divisions of labor were further divided into work elements.

Cottage Cheese
Variable:
Filling vats
Testing
Cutting
Cooking
Draining
Temporery storage -- in plant
Preparing starters
Hauling whey
Fixed -- other than maintenance:
Hook-up
Sanitizing
Clear-up
Cottage Cheese -- Maintenance
Fixed -- maintenance Plant maintenance Equipment maintenance

South Cold Room -- Operations
Variable:
Product in -- plant
Table 54. Electricel, steam, and refrigeration requirements end capacity
of equipment used in Process XVIII, Processing Cottage Cheese.

Process XIX. Packaging Cottage Cheess

Process Description. This process included all activities from the time cottage cheese curd left the south cold room until it was packaged and moved to the north cold room ready to be placed in stacks.

This process began with cottage cheese curd in special cheese cans in the south cold room. Cans of curd were moved on a two-wheel dolly to the packaging area. Prior to packaging, chsese cartons and cases had been moved to the packaging area. Cans of cheese were dumped into a mixing vat (49). Salted cheese dressing was mixed into the curd by hand with a cottage cheese fork. 1 Cartons were then hand filled with creamed cottage cheese, capped, and placed in cases. It was sometimes necessary to dump packages of cottage cheese back into the mixing vat and repackage the cottags chsese in different sizs containers. Cases were moved on a two-wheel dolly to the north cold room. This process ended with creamed cottage chsese in ristail size cartons in the north cold room. Stacking of cases of cottage cheese was not included in this process, but it was included in Process XXXII (Handling North Cold Room Products).

Cleaning activities for this procsss included cleaning ths maxing vat, packaging table, and area surrounding this equipment.

Product Alternatives. Creamed cottage cheese was packaged in the following size containers:
$I_{\text {Salted }}$ cheess oressing was chsese dressing that had been prepared in the Grade A department. It contained approximately six per cent butterfat. Salt was added to the cheese dressing at a rate of one per cent of the dry curd weight. Salt was dissolved in the dressing before the dressing was applied to the dry curd.
A. Fivs-pound cartons
B. Two-pound cartons
C. Twelve-ounce cartons

Maintenance. No maintenance wae charged to this process. The maintenance observed was included in Process XVIII (Processing Cottage Cheese). Thie was a small item as the only equipment used was a mixing vat and a cottage cheeee fork (Table 55).

Labor Claesification. This procees was divided into two dspartments which were divided into divisions of labor. Divisions of labor were further divided into work elements.

Cottage Cheese
Variable:
Salt and dressing
Supplies and cans
Temporary storage -- out
Packaging
Product out
Prepackage
South Cold Room -- Operations
Variable:
Product out -- plant

Process XX. Processing Ice Cream Products

Process Description. This process began with ice cream, ice milk, or sherbst mix in the couth cold room or the Orade A handling room. Mix was transported to the processing area on a dolly in 10-gallon cans, and other eupplies were brought in as necessary. After all necessary connections of the pipes and equipment was completed, mix was poured into the mixing vate (50, 92). Mavoring and coloring were added to the mix, and nuts or fruit were placed in the fruit and nut feeder (91) on the freezer. from the mixing vats, mix wae run through the continuoue freezer (51). If more than one flavor of
Table 55. Electrical, stean, and refrigeration requirements and capacity

product or products were produced during one production run, it was usually necessary to shut down briefly to provide additional supplies to the process. Production records and per cent overrun were kept on all products produced. This process ended with partially frozen product coming from the freezer ready to be packaged.

Cleaning activities for this process included cleaning mixing vats, the continuous freezer, and the area surrounding this equipment.

Product Alternatives. During this process, these alternative products míght have been made:
A. Ice cream flavors

1. Vanilla
2. Chocolate
3. Strawberry
4. Cherry nut
5. Chip chocolate
6. Butter brickle
7. Pecan tafíy
8. Chocolate revel
9. Black cherry
10. Lemon chiffon
11. Butter pecan
12. Butterscotch revel
13. Whitchouse cherry
14. Pecan crunch
15. Butterscotch filbert
16. Country cousin
17. Black walnut
B. Ice milk flavors
18. Vanilla
19. Chocolate
20. Strawberry
C. Sherbet
21. Lime
22. Orange
23. Lemon
24. Pineapple
25. Raspberey
26. Watermelon

Maintenance. Equipnent maintanance included labor required for the care and maintenence of equipment listed in Table 56.

Plant maintenance included labor required for the care and maintenance of the area imediately surrounding the ice cream processing equipment.

Labor Classification. This process was divided into three departments which were diviced into divisions of labor. Divisions of labor were further divided into work elements.

Ice Cream -- Frocessing
Variable:
Transporting míx
Flavor and color
Load in mix
Operation
Supplies
Tranaport empty cans
Fixed - other than maintenance:
Hook-up
Clean-up
Records and formula
Ice Cream -- Maintenance
Fixed -- maintenance:
Plant maintenance
Equipment maintenance
South Cold Room -- Operations
Variable:
Products out -- plant

Process XXI. Packaging and Storing Ice Crean Products

Process Description. This process began with ice cream, ice milk, or sherbet as it left the continuous freezer (51). Cartons and other supplies for the proulucts had been transported to the packaging area, assembled by hand, and skamped with product name prior to starting the filling operation, A worker positioned a carton under the outlet nozzle and filled the carton, he then handed the full carton to another worker who closed the top of each
Table 56. Electrical, steam, and refrigeration requirements and capacity

carton by hand. The second worker also checked carton weights frequentiy to determine per cent overmu. If overrun was not eomewhat near 100 per cent, the first worker woula adjust the continuous freezer accordingly. After a certain number oi cartons were filled, the second worker placed a group of cartons in a paper sacis. He waited until a few sacks of cartons had accumulated, and then he placed these sacks in the hardening room. Two and onehalf gallon cartons were not placed in eacks but were put directly into the hardening room.

If slices of ice cream were to be produced, the ice cream was placed in brick containers as it came from the continuous freezer. Bricks were frozen In the hardening room, then they were sliced and wrapped by hand into either 24 or 32 slices per brick. Slices were occasionally stamped or stenciled depending on the individual order.

Ice cream, ice milk, and sherbet were arranged and rearranged in the hardening room according to age. An inventory wes taken of theee products weekly. Cleaning activities included cleaning the area around the packaging table.

Product Alternatives. Ice cream products might have been packaged in the following eize cartons:
A. Two and onewhall gallon cartons
B. One-half gallon cartons
c. Pint cartons
D. Cups
E. Bricks for slicing
F. Individual slices

Maintenance. No maintenance wae charged to thie process. The only equip-
ment listed in this process was the continuous freezer (Table 57), and maintenance for it was charged to Process XX (Processing Ice Oream Products). Labor Classification. This process vas divided into two departments which were divided into divisions of labor. Divisions of labor were further divided into work elements.

```
Ice Cream -- Processing
```

 Variable:
 Lozd in cooler
 Fixed -- other than maintenance:
 Rearrange cooler
 Inventory
 Ice Cream -- Filling
Variablo:
Supplies
Position package
Weight test
Filling
Sacking
Capping
Cutting and slicing
wrepping
Unmrapping
Stamping
Decorating individual slices
Fixed -- other than maintenance
Change-over
Clean-up

Process XXII. Selling Ice Cream

Process Description. This process included all activities from the time packaged ice cream products left the hardaning room until they were in the truck for shipment.

The process began with packaged ice cream products in the hardening room. When a truck driver arrived with an order for ice cream, a worker used dolly to transport ice crean from the hardening room to the conveyor in the south cold room. The worker placed the products on the gravity conveyor. The process ended with ice cream products ready to be loaded into the truck. The
Table 57. Flectrical, stean, and refrigeration requirements and capacity

truck operator was not observed in this study.
Equipment Used. The only equipment used in this process was a two-wheel dolly and the gravity conveyor.

Product Alternatives. There were no product alternatives as this was a final product.

Maintenance. No plant or equipment maintenance was observed in this process.

Labor Glassification. This process was divided into two departments which were divided into divisions of labor. Divisions of labor were further divided into work elements.

Ice Crean -. Processing
Variable:
Load out -- cooler
South cold Room -- Operations Variable:

Product in -- ship

Process XXIII. Selling Raw Milk -- Crade A or Grade C

Process Description. This process began with cooled raw milk in the storage tanks $(6,7,10,11)$. Empty 10-gallon cans were transported to the storage tank area by the purchaser and a plant worker. Cans were filled by gravity flow from the storage tanks. Full cans were transported on a dolly to the buyer's truck. When selling bulk milk, the plant worker connected Lines from the storage tanks $(10,11,6,7)$ to the bulk truck. A punp was started and the desired quantity of milk pumped from the storage tanks to the bulk truck. This process ended with full cans of raw milk in the buyer's truck or the buyer's buik truck filled with the desired quantity of milk.

Product Alternatives. There were no product alternatives for this process.

Maintenance. Cleaning and maintenance were not observed for this process. Four storage tanks were the only pieces of equipment used (Table 58) and their maintenance was charged to Process I (Receiving Can Milk).

Labor Classification. This process was divided into two departments which were divided into divisions of labor. Divisions of labor were further divided into work elements.

Handling A -- Milk
Variable:
Filling cans Loading cans in truck

First Holding -- Operations
Variables
Filling cans to ship out

Process XXIV. Processing and Storing Grade A Products

Process Description. This process included all activities from the time cooled Grade A whole milk left the storage tanks until it was processed and ready to be bottled as whole milk, skim milk, or cream. This process ended with milk as it left the final holding tank or as skim milk or cream as they left the processing vats.

This process began with raw cooled milk in storage tanks $(10,11)$. After the equipment had been connected and sanitized, milk was prunped (57) to the standardizer (58) if the milk was to be bottled as whole milk. Vitamins were added to the milk by the vitamin dispenser (61) while the milk was in the surge tank (109). After vitanins were added, the milk went to the regeneration section of the short-time pasteurizer (59). From the pasteurizer, milk was pumped (103) to the vacumizer (63). Mik was then pumped by the timing pump (101) to the homogenizer (60) and returned to the pasteurization section of the pasteurizer. It was then heated to $170^{\circ} \mathrm{F}$. and held for 15 seconds in the
holding tube of the pasteurizer, yun back through the regeneration eection of the pasteurizer, then cooled to 400 F . In the cooling section of the pasteurizer. After cooling, milk went to the storage tank (62).

Milk that was to be separated for bottled skimmilk and cream did not go to the standardizer but was pumped (104) to the eeparator (64). From the separator, cream 土lowed to processing vats $(65,66,70,71)$ or was canned directIf in 10 -gallon cans if ueed to enrich whole milk powder, and skim milk flowed to the eurge tank (109) at the pasteurizer (59). Gream that was to be sold as whipping cream was paeteurized at 1550 F . for 30 minutes in the proceesing vat $(65,66,70$, or 71$)$. It was then cooled to lees than 400 F . in the eame vat. Cream that was to be eold as half and half was standardized in the processing vat and purmed (104) to the surge tank (109) at the short-time pasteurizer location. It followed the same route as whole milk and was returned cooled to a processing vat $(65,66,70,71)$. The processing vat served as a holding tank until the cream was bottled.

After ekim milk entered the short-time paeteurizer (59) it followed the same route as whole milk. After it wae cooled, skim milk was returned to a processing vat $(65,66,70,71)$ which eerved ae a holding tank until it was bottled. In order to get enough cream for bottling, more ekim milk was usually produced than was desired for bottling. This surplus ekim milk was pumped (102) to the Grade C department where it was mixed with Grade C skim milk.

This process ended with whole milk, ekim milk, or cream as they left the etorage tank or proceesing vats to be bottled or packaged. In this prom cess, saw cooled rilk had been standardized, clarified, pasteurized, vacuumized, vitamin D fortified, and homogenized to be bottled ae whole milk. Milk that was not sold ae whole rilk in bottlee or cans was eeparated, paeteurized, and cooled to be sold as bottled skim milk or cream. Of course proper records
were kept of all products produced in this cepartment.
Cleaning activities for this process involved disassembly and cleaning of all equipment and area surrouncing the equipment listed in Table 59. Most of the cleaning was done by one man at night.

Product Alternatives. Whole milk, cream, and skim milk might have entered any of the following alternative uses:
A. Whole milk

1. Sold in 10-gallon cans
2. Sold in five-galion dspenser cans
3. Packaged in the plant
B. Cream
4. Sold in 10-gallon cans
5. Packaged in the plant
C. Skim milk
6. Sold in 10-gallon cans
7. Packaged in the plant
8. In plant transfers

Maintenance. Equipment maintenance included labor required for the care and maintenance of equipment listed in Table 59.

Plant maintenance included labor required for the care and maintenance of the area housing this equipment.

Labor Classification. This process was divided into two departments which were divided into divisions of labor. Dirisions of labor were further divided into work elements.

Handling A =- Milk
Variable:
Processing -- separation, homogenization and pasteurization Fixed -- other than maintenance:

Sanitizing
Hook-up
Supplies
Clean-up
Change-over
Records
Handling A -- Idle Time
Table 59. Electrical, steam, and refrigeretion requirements and capacity of

Table 59 (cont.) Electrical, steam, and refrigeration requirementa and capacity of

Code:	Item	Mr.	Capacity	2Electricity: Staam			Refrigeration	
				${ }_{3} \mathrm{kw} . / \mathrm{hr}$	${ }^{3}$ Temp. (F)	b.t.11.	$\frac{\text { Texp. }(F)}{\operatorname{In}: 0 u t}$	b.t.iz.
64	Separator	Dalaval	$300 \mathrm{gal} / \mathrm{hr}$.	- 2.2378				
65	Processing vat	Creamery Package	300 gal .	0.3727	$90^{\circ} \quad 155^{\circ}$	60.6/1b. whipping cream	$\begin{array}{rr} 40^{\circ} & 40^{\circ} \\ 155^{\circ} & 40^{\circ} \end{array}$	411.8/hr. $97.75 / 1 \mathrm{~b}$. whipping cream
66	Processing vat	Creamery Fackage	300 gal .	0.3727	$90^{\circ} \quad 155^{\circ}$	60.6/1b. whipping cream	$\begin{array}{rr} 40^{\circ} & 40^{\circ} \\ 155^{\circ} & 40^{\circ} \end{array}$	411.8/hr. 97.75/1b. whipping cream
70	Processing vat	Creanery Package	100 gal .	0.1872	$90^{\circ} \quad 155^{\circ}$	60.6/1b. whipping cream	$\begin{aligned} 40^{\circ} & 40^{\circ} \\ 155^{\circ} & 40^{\circ} \end{aligned}$	$\begin{aligned} & 211.7 / \mathrm{hr} . \\ & 97.75 / \mathrm{Ib} \text {. } \\ & \text { whipping } \\ & \text { cream } \end{aligned}$
71	Processing vat	Creamery Package	200 gal .	0.2479	$90^{\circ} 155^{\circ}$	60.6/1b. whipping orear	$\begin{array}{rr} 40^{\circ} & 40^{\circ} \\ 155^{\circ} & 40^{\circ} \end{array}$	294.2/hr. 97.75/1b. whipping cream
101	Milk pump	Waukeaha	$1 \frac{1}{2} \mathrm{~h} \cdot \mathrm{p}$ 。	1.1189				
102	Milk pump	Cherry- Burrell	$\frac{1}{2} \mathrm{~h} . \mathrm{p}$.	0.3727				

Table 59 (concl.) Electrical, steam, and refrigeration requirements and capacity of equipment used in Process XXIV, Processing and Storing Grade A Produots.

Code:	Item	mer.	Capacity	:Tlectricity: Steam			Refrigeration	
				: kno/hr.	$\frac{\text { Tomp. }(\mathrm{F})}{\mathrm{In}: \text { out }}$	b.t.u.		b.t.u.
103	milk pump	CherryBurrell	$3 \mathrm{~h} . \mathrm{p}$.	2.2378				
104	milk pump	Waukesha	$2 \mathrm{h.p}$.	1.4924				
109	Surge tank		30 gel .					

Inle time:
Unassigned idls time

Process EXV. Processing Dairy Mixes

Process Description. This process included all activities for processing cheese dressing, ice cream mix, ice milk mix, and sherbet mix. All activities from the time ingredients left the storage tanks until finished products were in the south cold room or the arsas for further processing were included in this process.

The process for cheese dressing began with processed whole milk in the storage tank (62). After the pipes and equipment had been connscted and sanitized, milk was pumped (94) to processing vats $(65,66,70,71)$ where cream and condensod milk were added to make cheese dressing. Dressing was pumped (104) to the surge tank (109) where it followed the same route as whole milk for pasteumization (59), homogenization, and vacuumization. Dressing was pumped (94) into 10 -sallon cans after cooling and transported to the south cold room for storage.

The process for ice cream nix and ics milk mix began with raw whole milk in storage tanks $(6,7,80,81)$. Milk was transported in 10 -gallon cans to the procsssing vats $(65,66,70,71)$ where cream, condensed milk, stabilizer, and sugar were added (mixes vary as to composition). Mix was pumped (104) to the surge tank (109) whers it followed the same route as whole milk except that soms mixes were not homogenized. After cooling, mix was pumped into $10-\mathrm{gall}$ on cans and transported to the south cold room for aging.

The process for sherbet mix began with skimmilk as it came from the separator (64). From the separator, skim milk flowed to procsssing vats (65, 66,70 , or 71). Stabilizer and sugar were added to the skim milk, and the mix
was pumped (104) to the surge tank (109) where it followed the same route as ice craam mixes, Arter cooling, mix was put into lo-gallon cans and transportsd to the south cold room for aging.

All of these products required a certain amount of supplles to be provided, and they all ended with the mixes in the south cold room or in the cottage chcess area for use in other prooesses. The formulas for the mixes and other record kesping was done as time permitted while ths products were being processed.

Cleaning activities for this process included cleaning processing vats and pipes from the holding tanks to the vats. Most of the cleaning was done by one worker on the night shift.

Product Alternatives. Mixes might havs entered the following alternative uses:
A. Cheese mix

1. Sold in 10-gallon cans
2. In plant transfers
B. Ice cream mix
3. Sold in 10-gallon cans
4. In plant transfers
C. Ice milk mix
5. Sold in 10-gallon cans
6. In plant transfers
D. Sherbet mix
7. Sold in 10-gallon cans
8. In plant transfers
fintry into one of these alternative usss constituted the beginning of a new process.

Maintenance. Ho equipment or plant maintenance was charged to this process. The products in this process were usually produced after the equipment (Table 60) and area surrounding the equipment had already been used in Process
Table 60. Electrical, steam, and refrigeration requirements and cepacity of equipment used in Proceee XXV, Proceesing Deiry Mixes.

Table 60 (concl.) Electrical, steam, and refrigeration requirements and capacity of equipment used in Process XXV, Processing Dairy Mixes.

:		:	$:$: Rlectricity: Staam			Refrigeration	
$\begin{gathered} \text { Code: } \\ \hline \end{gathered}$	Item	Mfr.	: Capacity	$\mathrm{s}^{8} \mathrm{kw} / \mathrm{hr}$.	: Temp.(F) ${ }^{\text {In }}$: ${ }^{\text {at }}$	b.t.u.	$\frac{\text { Temp. }(\mathrm{F})}{\text { In :Out }}$	b.t.u.
81	Storage tank	Creamery Package	4,000 gal.	for 1dent	fification only			
94	Milk punep	CherryBurrell	$\frac{1}{2} \mathrm{~h} \cdot \mathrm{p}$.	0.3727				
104	Milk pump	Waukesha	$2 \mathrm{~h} \cdot \mathrm{p}$.	1.4924				
109	Surge tank		$30 \mathrm{gal}$.					

XXIV (Processing and Storing Grade A Products).
Labor Classification. This process was divided into four departments which were divided into diviaious of labor. Divisions of labor were further divided into work clements.

Handling A - - Mx
Variable:
Making mix
Transport cans -- clean
Transport cans - Iull
Can return
Testing
Filling cans
Filling vat
Transporting ingredients in
Wasbing cans
Transporting cheese dressing Adding ingredients

Handling $A=-$ By-Procuct
Variable:
Fllling cans
Transporting cans - - full
Can tags
Receiving -- North Line
Variable:
Transport cans in
Transport cans out
South Cold Room -- Operations
Variable:
Products in -- plant
Products out -- plant

Process XXVI. Processing Specialty Products

Process Description. This process Included all activities involved in processing buttermilk, chocolate $m i l k$, orange drink, snd grape drink.

The process for chocolate milk began when milk was pumped (94) to the processing vats $(65,66,70,71)$ from the storage tank (62), this was bottling grade milk. Chocolate flavoring and sugar were brought into the area and
were added to the milk. This mixture was peeteurized at 1550 F . for $30 \mathrm{~min}-$ utes in the processing vat. After peeteurization, chocolate milk was cooled to leee than 400 F . in the vat prior to bottiing.

The process for buttermilk began when Grade A skim milk was pumped (104) From the eeparator (64), to one of the proceseing vats $(65,66,70$, or 71$)$. It wae pasteurized at 1850 F . for one hour in the processing vat then cooled to 700 F . in the vat and set with one per cent starter mother culture. The starter mother culture had been prepared in the laboratory using sterile skim milk and a powdered pure culture supplied by one of the good culture supply companies. The buttermilk was allowed to set over night. When it had developed the desired acidity, it wae cooled to less than $40^{\circ} \mathrm{F}$. before bottling. Orange or grape drink wae made by ruming tap water into one of the processing vats $(65,66,70$, or 71) and adding coloring, flavoring, and sugar as recommended by the flavoring manufacturere. The mixture was cooled to less than 400 F . in the vat before bottling.

The process ended when the producte left the processing vats to be botiled. The formulas for the products and other record keeping was done as time permitted while the producte were being processed.

Cleaning activities included cleaning the pipes, the equipment listed in Table 61, and the area surrounding this equipment.

Product Alternatives. Chocolate milk, buttermilk, grape drink, and orange drink may have entered any of the following usee:
A. Chocolate milk

1. Sold in five-gallon dispenser cane
2. Packaged in the plant
B. Buttermilk
3. Packaged in the plant
4. In plant transfers

	Iters	Mrs.	Capacity	2Elactricity: $2 \mathrm{kw} . / \mathrm{hr}$.		Steam		Refrigaration	
						: In : Out :	b.t.u.	$\begin{aligned} & \text { Tomp. (P) } \\ & \text { In }: \text { Out } \end{aligned}$	b.t.u.
62	Storage tank	Creamery Packaga	2,000 gal.		for ident	ifleation on			
64	Separator	Delaval	$300 \mathrm{gal} . / \mathrm{hr}$		for idant	ification on			
65	Processing vat	Creamery Package	300 gal .		0.3727	$\begin{array}{ll} 40^{\circ} & 155^{\circ} \\ 40^{\circ} & 185^{\circ} \end{array}$	127/1b. choc. milk 160/1b. butteriallk	$\begin{array}{rr} 40^{\circ} & 40^{\circ} \\ 155^{\circ} & 40^{\circ} \\ 185^{\circ} & 40^{\circ} \\ 60^{\circ} & 40^{\circ} \end{array}$	$411.8 / \mathrm{hr}$. 127.2/1b. choc. milk 160.5/1b. buttermilk 23.55/1b. orange and grape drink
66	Processing vat	Creamery Package	300 gal .		0.3727	$\begin{array}{ll} 40^{\circ} & 155^{\circ} \\ 40^{\circ} & 185^{\circ} \end{array}$	127/1b. choc. milk 160/1b. buttermilk	$\begin{array}{rr} 40^{\circ} & 40^{\circ} \\ 155^{\circ} & 40^{\circ} \\ 185^{\circ} & 40^{\circ} \\ 60^{\circ} & 40^{\circ} \end{array}$	411.8/hr 127.2/1b. choc. milk 160.5/1b. buttermilk 23.55/1b. orange and grape drink

Table 61 (concl.) Electrical, ateam, and refrigeration requirements and capacity

Code:	Item	Mrr.	: Capacity	2Electricity:		Stoam	Refrigeration	
				$8 \mathrm{kw} / \mathrm{hr}$.		b.t.u.	$\frac{\text { Temp. }(\mathrm{F})}{\text { In }: 0 u t:}$	b.t.u.
70	Processing vat	Creamery Package	100 gal 。	0.1872	$\begin{array}{ll} 40^{\circ} & 155^{\circ} \\ 40^{\circ} & 185^{\circ} \end{array}$	127/1b. choc. milk 160/1b. buttermilk	$\begin{array}{rr} 40^{\circ} & 40^{\circ} \\ 155^{\circ} & 40^{\circ} \\ 185^{\circ} & 40^{\circ} \\ 60^{\circ} & 40^{\circ} \end{array}$	$\begin{aligned} & 211.7 / \mathrm{hr} . \\ & 127.2 / 1 \mathrm{~b} \end{aligned}$ choc. milk 160.5/1b. buttermilk 23.55/1b. orange and grape drink
71	Processing vat	Creamery Package	200 gal .	0.2479	$\begin{array}{ll} 40^{\circ} & 155^{\circ} \\ 40^{\circ} & 185^{\circ} \end{array}$	127/1b. choc. milk 160/1b. buttermilk	$\begin{array}{rr} 40^{\circ} & 40^{\circ} \\ 155^{\circ} & 40^{\circ} \\ 185^{\circ} & 40^{\circ} \\ 60^{\circ} & 40^{\circ} \end{array}$	294.2/hx. 127.2/1b. choc. milk 160.5/1b. buttermilk $23.55 / 1 \mathrm{~b}$. orange and grape drink
94	Milk pump	CherryBurrell	$\frac{1}{8} \mathrm{n}$.p.	0.3727				
104	Milk pump	Waukesha	$2 \mathrm{~h} . \mathrm{p}$.	1.4924				

C. Orange drink and grape drink

1. Bottled in the plant
2. In plant transfers

Maintenance. Equipment maintenance included labor required for the care and maintenance of equipment listed in Table 61.

Plant maintenance incluced labor required for the care and maintenance of the area housing this equipment.

Labor Classification. This process was divided into two departments which were divided into divisions of labor. Divisions of labor were further divided into work elements.

Handling $A=-$ By-Product
Variable:
Processing
Flavors
Fixed -- other than malintenance:
Hook-up
Clean-up
South Cold Room -- Operations
Variable:
Products out - plant

Process XXVII. Preparing, Filling, and Storing Five-Gallon

Dispenser Cans

Process Description. This process included all activities from the time milk left the Inal holding tank untill it was in dispenser cans in the north cold room.

The process began with processed, cooled, milk in the storage tank (62). Dispenser cans were washed by hand and sanitized. A new hose was placed on the outlet and a metal cap placed over the outlet. Dispenser cans were filled wh milk pumped (94) from the storage tank through any convenient outlet in the Grade A processing room. This may have been through the bottling machine
(95) or the carton machines $(31,68)$. A lid was placed on the full can, and a wire seal attached to the lid. Full five-gallon dispenser cans were then transported to the north cold room for storage until shipment.

Product Alternatives. There were no product alternatives as milk was packaged in five-gallon dispenser cans only.

Maintenance. No observations of cleaning or maintenance were made in this process. The maintenance of equipment used in this process was assigned to other processes (Table 62).

Labor Classification. This process was divided into four departments which were divided into divisions of labor. Divisions of labor were further divided into work elements.

Handling A .-. Milk
Variable:
Preparing dispenser cans
Bottling Glass -- Casing In
Variable:
Filling dispenser cans
Bottling Pure-Pak -- Junior Model "J" -- Casing In Variable:

Dispenser
Bottling Pure-Pak -- Junior Model "D" -- Casing In Variable:

Dispenser

Process XXVIII. Bottling Milk in Glass Bottles

Process Description. This process included all activities from the time milk left the final holding tank until it was bottled and moving on the conveyor to the north cold room.

This process began with cooled, processed whole milk in the storage tank (62). Prior to bottiling, the seal-on-machine (67) was loaded with caps and
Table 62. Electrical, steam, and refrigeretion requirementa and capacity

Code ${ }^{\text {a }}$	Item	Mfr.	$\begin{aligned} & 2 \\ & 2 \\ & 3 \end{aligned}$	Capacity	Electricity:			Stesm	Refrigerntion	
						kw./hr	Temp.(F):	b.t.u.	$\begin{aligned} & \text { Temp. (F) } \\ & \text { In sout: } \end{aligned}$	b.t.u.
31	Carton machine	Ex-cello		$35 \text { cartons/ }$ min.		for identi	ification on			
62	Storage tank	Creamery Peckage		2,000 gal.		for 1denti	fification on			
68	Certon machine	Ex-cello		$\begin{aligned} & 25 \text { cartons/ } \\ & \text { mifn. } \end{aligned}$		for Identi	Ification on			
94	M13k pump	CherryBurrell		$\frac{1}{2} \mathrm{~h} \cdot \mathrm{p}$.		0.3727				
95	Bottling machine	Pederal		```18-24 gal./ min. 33 t min.```		for 1denti	ciecation on			

hoods, and other supplies were provided as necessary. Clean bottles and cases moved to the bottling machine (95) on power conveyors, and milk was purped (9L) to the bottling machine. After the operation had started, the operator "picked" full bottles off the small holding area at the bottler and placed them in cases which had been selected from those on the conveyor. Occasionally the bottler would fail to properly cap or hood a bottle or bottles. In this case, a worker capped these bottles by hand and placed the bottles back into the bottler for sealing the hoods. Full cases were then placed back on the conveyor; and as they moved toward the north cold room, they were sprayed with water to remove any milk that happened to be on the outside of the bottles.

Production records and an inventory of supplies were kept daily on this process as applicable. The process ended with full cases on their way to the north cold room.

Gleaning activities required cleaning the pipes, the equipment listed in Table 63, and the area surrounding this equipment. Cleaning time was allocated on a volume basis between this process and Process XXIX (Bottling Orange and Grape Drink in Class Bottles).

Product Alternatives. There were no product alternatives as milk was bottled in one-gallon glass jugs only.

Maintenance. Equipment maintenance included labor required for the care and maintenance of equipment listed in Table 63.

Plant maintenance included labor required in tho care and maintenance of the area housing this equipment.

Labor Classification. This process was divided into three departments which were divided into divisions of labor. Divisions of labor were further divided into work elements.
Table 63. Electrical, steam, and refrigeration requirements and capacity of

Code:	Itom	Mfr.	Capacity	Slectricity: Ste			Refrigeration	
				: kv./hr.	$\frac{\text { Temp. }(F)}{\mathrm{In}: O u t:}$	b.t.u.	$=\frac{\text { Temp. (P) }}{\text { In }: \text { Out }}:$	b.t.u.
62	Storage tank	$\begin{aligned} & \text { Creamery } \\ & \text { Packaga } \end{aligned}$	2,000 gal.	for 1dent	Pication onl.			
67	Seal-on machine	Sealright	$\begin{aligned} & 32-50 \text { bot- } \\ & \text { ties/min. } \end{aligned}$	2.5000				
94	Milk purip	Burrell Cherry-	$\frac{1}{2} \mathrm{hop}$.	0.3727				
95	Bottling machine	Foderal		0.2479				

```
Bottling Class -- Operations
    Variable:
                        Supplies
                    Operation
                            Hand filling
    Fixed -- other than maintenance:
            Hook-up
            Change-over
            Inventory
Bottling Glass -- Casing In
    Variable:
            Picking
            Case selection
    Fixed -- other than maintenence:
            Change-over
            Inventory
Bottling Glass - Maintenance
    Flxed -- maintenance:
        Plant maintenance
            Equipment maintenance
```

 Process XXIX. Bottling Orange and Grape Drink
 in Class Bottles
 Process Description. This process included all activities from the time orange or grape drink left the processing vats until they were stored in cases in the south cold room.

This process began with cooled orange or grape drink in the processing vats $(65,66,70$, or 71$)$. After caps and hoods had been placed in the seal-onmachine (67) and other supplies provided as necessary, the drink was pumped (93) to the bottier (95). Cases and bottles entered the bottling area on power conveyors. After the bottler had filled, capped, and hooded the bottles; the operator "picked" the bottles off the holding area and placed them in cases which had been selected from thase on the conveyor. Occasionally the bottler would fail to properly cap or hood a bottle or bottles. In this case, a worker capped these botties by hand and placed the bottile back into the
bottler for sealing the hoods. The cases were then placed on a two-wheel dolly and transported to the south cold room. (They were transported and not conveyed, because they were stored in the south cold room, and the conveyor from the bottler runs to the north cold room only.)

Production records and an Inventory of supplies were kept daily in the process as applicable. The process ended with filled cases in the south cold room ready for shipment.

Cleaning activities required cleaning pipes, equipment listed in Table 64, and the area surrounding this equipment. Cleaning time was allocated on a volume basis between this process and Process XXVIII (Bottling Milk in Glass Bottles).

Product Alternatives. There were no product alternatives as orange and grape drink were only bottled in one-half gallon elass bottles.

Maintenance. Equipment maintenance included labor required for the care and maintenance of equipment listed in Table 64.

Plant maintenance included labor required in the care and maintenance. of the area housing this equipment.

Labor Classification. This process was divided into four departments which were divided into divisions of labor. Livisions of labor were further divided into work elements.

Bottling Glass - Operations
Variable:
Supolies Operations
Fixed -- other than maintenance:
Hock-up
Change-over Inventory
Bottling Glass -- Casing In
Variable:
Table 64. Electrical, steem, and refrigeration requirementa and capacity Drink in Glass Botties.

Coder		Mfr.	Capacity			Refrigeration	
					b.t.u.		b.t.u.
65	Processing vst	Creamery Package	300 gal .	for sdentification only			
66	Processing vat	Creamery Packege	300 gal.	for identification only			
67	Seal-on	Sealright	$\begin{aligned} & \text { 32-50 bot } \\ & \text { tles/min. } \end{aligned}$	2.5000			
70	Proceasing vst	Creamery Package	100 gal .	for sdentification only			
71	Processing vat	$\begin{aligned} & \text { Creamery } \\ & \text { Package } \end{aligned}$	200 gal.	for 1dentification only			
93	M11k pump	Cherry- Burrell	$\frac{1}{2} \mathrm{hop}$.	0.3727			
95	Bottling machine	Federal		0.2479			

Picling
Case selection
Transporting products to cooler
Fixec -- other than maintenance:
Change-over
Inventory
Bottling Glass -- Maintenance
Pixed - maintenance:
Plant maintenance Equipment rointenance
South Cold Roon - Cperetiona
Variable:
Products in - plant

Process XXX. Fackaging Milk in Half-Gallon Paper Cartons

Process Description. This process began with cooled, pasteurized milk in the storage tank (62). Supplies consisting of cartons, wax, and wire for staples were loaded into tho carton machine. Prior to starling the bottling operation, milk was pumped (94) to the carton machine (68). The carton machine automatically formed, glued, coated with wax, filled, closed, stapled, coded, and placed cartons on a mall table at the end of the machine. Cases were moved to the carton machine by a power conveyor where a worker selected a case and "picked" the cartons from the table and placed them in cases. This process continued with product being pumped to the carton machine and supplies being furnished as needed during the botting operation. When a case was full, it was set on the power conveyor. The conveyor moved the foll cases to the north cold room.

Sometimes the carton filler did not form, seal, or staple a carton correctiy. In this case, a. worker (the one filling the cases) would at the improperly formed carton aside to be opened a short time later. ine contents were poured into a lo-gallon can.

This process snded with full cases on the convsyor on their way to the north cold room. Cleaning activities for this process involved disassembling and cleaning the carton machine and pipes lsading to the carton machines.

Product Alternatives. In this process, milk was packaged in one-half gallon paper cartons only.

Maintenance. Equipment maintenance included labor required in the care and maintenance of equipment listed in Table 65.

Plant maintenance included labor required in the care and maintenance of the building housing this equipment.

Labor Classification. This process was divided into three departments which were divided into divisions of labor. Divisions of labor were further divided into work elements.

Bottling Pure-Pak -- Junior Model ${ }^{\text {DD }}$ " - Operation Variable:

Supplies
Operation
Fixed -- other than maintenances
Hook-up
Change-over
Clean-up
Bottiling Pure-Pak -- Junior Model "D" -- Casing In
Variable:
Picking
Case selection
Fixed -- other than maintenance:
Change-over
Clean-up
Inventory
Bottling Pure-Pak -- Junior Model mpn -- Maintenance
Fixed -- maintenance:
Plant maintenance
Equipment maintenance

,		\%		lectricitr: Steam		Refrigeration	
$\begin{array}{r} \text { Code: } \\ \hline \end{array}$	Iterm	Mr.	Capacity	kw./hr. $\frac{\text { Temp. (F) }}{\text { In }}$ Out	b.t.u.	$\frac{\text { Tomp. }(\mathrm{F})}{\text { In }: 0 u t}$	b.t.u.
62	Storage tank	Creamery Package	2,000 gal.	for identification only			
68	Carton machine	Ex-cello	$\begin{aligned} & 25 \text { cartons/ } \\ & \text { min. } \end{aligned}$	3.9000	37/carton		48/2 tal .
94	Milk pump	CherryBurrell	$\frac{1}{2} \mathrm{~h} . \mathrm{p}$.	0.3727			

Process KXXI. Packaging Milk Products in Quart or Smaller Size Paper Cartons

Process Description. This process included all activities from the time one of the milk products left the storage tank or the processing vets until it was packaged and on the conveyor moving to the north cold room.

The process began with processed whole milk in the storage tank (62) or cream, chocolate milk, buttermilk, or skim milk in the processing vats $(65,66$, 70, or 71). Supplies consisting of cartons, wax, and wire for staples were loaded into the carton machine (31). Prior to starting the bottling operation, milk was pumped (94) from the storage tank, and the other products were pumped (93) from processing vats to the carton machines. The carton machine automatically formed, glued, coated with wax, filled, closed, stapled, coded and placed the cartons on a small table at the end of the machine. Cases were moved to the carton machine by a power conveyor where a worker "picked" the cartons from the table and placed them in cases. This process continued with product being pumped to the carton machine and supplias being furnished as needed during the bottling operation.

Since different size containers were used in this process, it wes necessary to adjust the carton machine each time a different size carton was used. Sometimes the carton filler did not form, seal, or staple a carton correctly. In this case, a worker (the one filling the cases) would set the improperly formed carton aside to be opened a short time later. The contents were poured back into the processing vats $(65,66,70,71)$.

This process ended with full cases on the conveyor as they entared the north cold room. Cleaning activities for this process included disassembling
the carton machine, cleaning its parts and cleaning the pipes leading to the carton machine.

Product Alternatives. The products might have entered any of the following alternative uses:
A. Whole milk

1. Quart paper cartons
2. Pint paper cartons
3. Half-pint paper cartons
B. Cream
4. Whipping cream
a. Guart paper cartons
b. Half-pint peper cartuns
5. Half and half
a. Quart paper cartons
b. Pint paper cartons
C. Skim milk
6. Quart paper cartons
7. Pint paper cartons
D. Chocolate milk
8. Quart paper cartons
9. Half-pint paper cartons
E. Buttermilk
10. Quart paper cartons
11. Pint paper cartons

Maintenance. Equipment maintenance included labor required in the care and maintenance of equipment listed in Table 66.

Plant maintenance included labor required in the care and maintenance of the building housing this equipment.

Labor Classification. This process was divided into three departments which were divided into divisions of labor. Divisions of labor were further divided into work elements.

```
Bottling Pure-Pak -- Junior Model "J" -- Operation
    Variable:
            Supplies
            Operation
```

Table 66.

Code:			:		:Electricity: Steam		Refrigeration	
		Mfr.		\qquad	$\mathrm{kw} / \mathrm{hr} \cdot \frac{\text { Temp. (F) }}{\text { In:Out }}$	b.t.u.		b.t.u.
31	Carton machine	Ex-cello		$\begin{aligned} & 35 \text { cartons/ } \\ & \text { min. } \end{aligned}$	3.6003	18.6/cartion		28.6/qt. $19.12 / \mathrm{pt}$. 13.71/ $\frac{1}{8} \mathrm{pt}$.
62	Starage tank	Creemery Package		2,000 gal.	for identification only			
65	Processing vat	Greamery Package		300 gal .	for identification only			
66	Proceesing vat	Creamery Package		300 gal .	for identificetion oniy			
70	Processing vat	Creamery Package		100 gal .	for identification only			
71	Processing vat	Creamery Package		200 gal .	for identification only			
93	Milk pump	CherryBurrell		$\frac{1}{2} \mathrm{~h} . \mathrm{p}$.	0.3727			
94	Milk pump	Cherry- Burrell		$\frac{1}{2} \mathrm{~h} . \mathrm{p}$.	0.3727			

```
    Flzed -- other than maintenance:
    Hook-up
    Change-over
    Clean-up
    Inventory
Bottling Pure-Pak -- Junior Model "J" -- Casing In
    Variable:
        Picking
        Case selection
        Dumoing
    Fixed -- other than maintenance:
        Change-over
        Clean-up
        Inventory
Bottling Pure-Fak -- Junior Mocel MJ" -- Maintenance
    Fixed -- maintenance:
        Plant maintenance
        Equipment maintenance
```

Process XXXII, Kandling North Cold Room Products

Process Description. This process included all activities from the time filled cases of bottled products and cases or cartons of non-bottled products entered the north cold room until these same products were in the delivery trucks for wholesale distribution,

The process began as bottled products entered the north cold room on the gravity conveyor; and as cottage cheese, butter, orange drink, and grape drink entered the north cold room on a two-wheel dolly. When cases entered on the gravity conveyor, they were pushed to the desired location and set off on the floor. They were then stacked five or $s i x$ cases high and pulled to the desired floor locstion with a metal hook. It was sometimes necessary to steck cases more than six high due to the limited cold storage area. Products brought in on a dolly were wheeled to the desired floor location and stacked the desired height to minimize space requirements.

As orders for products came in, products were formulated in the desired
quantities and pulled to the out roing gravity conveyor in the north cold room. Caees were then placed on the conveyor, and they rolled to the rear of the trucks. A plant worker lifted the cases from the conveyor and set them into the trucks. The truck operators loaded their own trucke, and they were not observed in the study. Detailed records and inventories were kept daily of all incoming and outgoing products in the north cold room. The procees ended with cases of products in the rear of the delivery trucks.

Cleaning activitiea involved cleaning the north cold room. Moet of the cleaning involved cleaning milk from paper carton "leakers".

Equipment Used. The only equipment included in thie process was a twowheel dolly and the two gravity conveyors.

Product Alternatives. There were no product alternatives as theee were all final products.

Maintenance. Equipment maintenance included labor required in the care and maintenance of the two gravity conveyore.

Plant maintenance included labor required in the care and maintenance of the north cold room.

Labor Classification. Thie process wae divided into four departments which were divided into divisions of labor. IIvisions of labor were further divided into work elemonts.

South Cold Roor -- Operations
Variable:
Product in - - plant
Product out -- plant
Product out -- ship
North Cold Room -- Load In
Variable:
Move cases Stacking Nonubottled products handling Non-bottled producte atacking

```
    Fixed -- other than maintenance:
    Clean-up
    Inventory
North Cold Room -- Load Out
    Variable:
        Arrangement
        Load Out
        Records
        Orders
    Fixed -- other than maintenance:
            Clean out
North Cold Room -- Naintenance
    Fixed -- maintenance:
        Plant maintenance
        Equipment maintenance
```

Process XXXIII. Receiving Empty Bottles and Cases

Process Description. This process began when the truck operators retumed from their routes with empty bottles and cases. Drivers placed cases of bottles in the rear of their trucks where plant workers picked them up and placed them inside the empty bottle room. Bottle trippage was estimated by plant personnel at 23 trips per bottle.

This process did not include any of the activities involved with the sorting of bottles or the care of returns. The process ended with empty bottles stacked on the floor in the receiving room.

Cleaning activities involved cleaning the loading dock and area immediately inside the plant used to stow incoming bottles and cases.

Equipment Used. No equipment was used in this process.
Froduct Alternatives. There were no products in this process.
Maintenance. No equipment maintenance was charged to this process. Plant maintenance included labor required for the care and maintenance of the empty bottle receiving room.

Labor Classification. This process was divided into three departments which were difided into divisions of labor. Divisions of labor were further divided into work elements.

Empty Bottles, Cases, and Returns -- Receiving Variables

Receiving
Fixed -- other than maintenance:
Clean-up
Bmpty Bottles, Cases, Returns -- Maintenance
Flxed -- maintenances
Plant maintenance
Equipment maintenance
Empty Bottles, Cases, and Returns -- Iole Time
Idle time:
Unassigned iole time

Process XXXIV. Handling Returned Products

Process Description. This process began when returns were received in the empty bottle receiving room. A worker checked the returns and credited the driver with them. After the returns were checked they were transported to the south cold room and sorted into salvable or non-salvable products. Cottage cheese, chocolste drink, buttermilk, orange drink, and grape orink were all durped as waste down a sewer drain or into trash cans. Bottled milk was dumped into cans and returned to the receiving room to be reprocessed in the Grade C department. Cream and butter were returned to the route cream prom cessing department to start reprocessing. This process ended with all returns either dumped as waste or started in the reprocessing routes.

Gleaning activities involved cleaning the floor area used for handing returns and cans used for dumping.

Equipment Used. A dolly and 10 -gallon cans were the only equipment used in this process.

Product Alternatives. Returns entered the following processes:
A. Milk was returned to Process I (Receiving Can Wilk).
P. Cream and butter wers returned to Procsss XII (Pasteurizing and Storing Route Cream).

Maintenancs. No maintenance was observed in this process.
Labor Classification. This process was divided into two departments which were divided into divisions of labor. Divisions of labor were further dividsd into work elements.

Empty Bottles, Cases, and Returns -- Receiving
Variable:
Returns
Fixed -- other than maintenance:
Waste disposal
South Cold Room - Operations
Variable:
Returns -- transport smpty cans
Returns -- dumping
Fixsd -- other than maintenancs:
Returns -- clean-up
Returns -m inventory

Process IXXV. Checking and Stacking Empty Bottles and Cases

Process Description. This process began with botties just inside ths door of the empty bottle receiving room. Cases of bottles were sorted and those bottles belonging to other dairies were stacked in a separats area. The plant's bottles were moved to the case and bottle weshing area. When a load of "off brand" bottlss had accumulated, they wers hauled to the local bottle exchange. When the supply of returned bottles was not adoquate for current bottling needs, new bottles were transported from the warehouse to the bottle washing area.

This process endsd with sorted bottles and cases in position to be run
through the washing processes. This process did not include any cleaning activities or handling of returns as both of these activities were included in Process XXXIV (Handing Returned Products).

Equipment Used. No equipment was used in this process.
Product Alternatives. There were no products in this process.
Kaintenance. No maintenance was observed in this process.
Labor Classiflcation. This process was divided into two departments which were divided into ditisions of labor. Divisions of labor were further divided into work elements.

Smpty Bottles, Cases, and Returns -= Receiving Variable:

Checking and stacking
Hauling "off brand" bottles out
Eurpty Bottles, Cases and Returns -- Washing Bottles Variable:

Receiving new jugs, bottles, and cases Warehouse for new bottles

Process XXXVI. Washing Bottles

Process Description. This process began with cases of empty bottles in stacks at the bottle washer location. Prior to starting the washer, cleaning compounds were brought into the area and placed in the bottle washer (69). The washer was than filled with water and the power conveyor leading to the bottling machine (95) started. A worker removed bottles from the cases and placed them in individual slots in the bottle washer. The worker inspected clean bottles as they came from the machine; and if they were not clean, he ran them through the bottle washer again or broke those that seened impossible to wash. The worker placed clean bottles on the power bottle conveyor. It was necessary for the worker to adjust the machine when changing from one gize
bottle to another. This process ended with clean bottles on the power conveyor that led to the bottling machine.

Cleaning activities for this process included cleaning the bottle washer and area surrounding this machine (Table 67).

Product Alternatives. Clean bottles were used for:
A. Gallon class milk
B. Half-gallon glass orange drink
C. Half-gallon glass grape drink

Maintenance. There was no maintenance observed in this process.
Labor Classification. This process was divided into two departments which were divided into divisions of labor. Divisions of labor wers further divided into work elements.

Erpty Bottles, Cases and Retums -- Washing Bottles Variable:

Loading machine Fixed -- other than maintenance:

Supplies
Hook-up
Clean-up
Change-over
Enpty Bottles, Cases, and Returns =- Washing Bottles -- Maintenance Fixed -- maintenance:

Plant maintenance Equipment maintenance

Process XXXVII. Washing Cases

Process Description. This process began with empty cases at the bottle washer (69). Cases were pulled to case washer (48) by hand. Prior to starting the washer, a worker loaded the washer with water and washing compounds. After starting the machine, the worker placed empty cases on the conveyor leading into the machine. Pulling cases to the machine, loading the on the incoming
Table 67. Flectrical, steam, and refrigeration requirements and cspacity

1		:	:	Slectricity: Steam		Refrigeration	
$\begin{array}{r} \text { Code: } \\ \hline \end{array}$	Item	Mir.	: Capacity	: kw./hr. ${ }^{\text {\% }}$: $\frac{\text { Temp. (} \mathrm{F})}{\text { In }}$	b.t.u.	Tomp.(F):	b.t.u.
69	Bottle washer	Lsdewig	24 bottles/ min.	2.9840	140/bottle		
95	Bottling machine	Fedaral	$\begin{aligned} & 18-24 \mathrm{gal} . / \\ & \text { min. } \\ & 33 \frac{1}{2} \mathrm{gal} . / \\ & \text { min. } \end{aligned}$	for identification only			

conveyor, and dirscting the cases onto ths proper power conveyor as they came out of the case washer were the oniy steps in operating this machine. Any waste that had accurnlated in the area was disposed of by the operator of the case washer. The process ended with clean cases coming out of the washer on the power conveyor leading to bottling maciine (95) or the carton machines $(31,63)$.

Cleaning activitiss includsd clsaning the cass washer and area surrounding this machins.

Product Alternatives. Cases might have entered any of the following altemative uses:
A. Cottage cheeso packaging
B. Nilk packaging in paper cartons - all sizes
C. Cream packaging in paper cartons - all sizss
D. Chocolate milk packaging in paper cartons - all sizes
E. Buttermilk packaging in paper cartons - all sizes
F. Skim tilk packaging in paper cartons - $2 l l$ sizes
G. All bottling in glass bottles - both sizes

Naintenance. Equipinent maintenance included labor required for ths care and maintenance of the case washer listed in Tabls 68.

Plant maintenance included labor required for ths care and maintenance of the area housing the case washer.

Labor Classification. This procsss was dividsd into two departments wilich were divided into divisions of labor. Divisions of labor were further divided into work elements.

Enuty Bottios, Cases, and Returns -- Washing Cases Variabls:

Lotding
Table 68. Electrical, steam, and refrigeration requirements and cspacity

8	:			Slectricitr: Steam	\% Refrigeration
Codes 8	Item :	Mfr.	- Capacity 1	$\text { kw./bs. } \frac{\text { Temp.(F) }}{\operatorname{In} \text { Out }} \text { b.t.u. }$	$\frac{\text { Iemp. }(P)}{\text { In Out : b.t.u. }}$
31	Carton machine	Ex-ce110	35 cartons/ min.	for identification only	
48	Case washer	Girton	10 cases/ min.	6.7150 350/case	
68	Carton machine	Ex-ce110	25 cartons/ min.	For identifloation only	
69	Bottle washer	Ladewlg	24 bottles/ min.	for identiflcation only	
95	Bottling machine	Federal	$\begin{aligned} & 18-24 \text { gal./ } \\ & \text { min. } \\ & 33 \text { gal./ } \\ & \text { min. } \end{aligned}$	for identification only	

```
    Fixed -- other than maintenance:
    Supplies
    Hook-up
    Waste disposul
    Clean-up
Eroty Bottles, Cases, and Returns - Washing Gases - Maintenance
    Plxed -- maintenance:
        Plant maintenance
        Equipment malztenance
```

APPENDIX II

Table 69. Classification of work and delay by proceaaes, plant A, Augustmeptember, 1957.

Process	Total sbservations	oduct	: Delay		
		Productive	: Avoidable:	navoidable	Loaline
		\%	\%	$\%$	\%
1	2,565	84.95	0.19	4.13	10.72
2	544	95.40	0.18	0.92	3.49
3	1,953	82.44	0.26	2.25	15.05
4	288	94.44	0.35	0.69	4.51
5	703	93.17	0.14	0.14	6.54
6	221	98.64			1.36
7	52	94.23		5.77	
8	1,007	91.86	0.50	0.79	6.85
9	504	93.85		0.79	5.36
10	181	95.58		2.76	1.66
11	280	90.36		3.21	6.43
12	272	100.00			
13	104	99.04			0.96
14	1,956	93.97	0.05	1.18	4.81
15	66	96.97		1.52	1.52
16	186	96.24		1.61	2.15
17	816	94.49		3.06	2.45
18	844	97.75		0.12	2.13
19	1,859	95.64	0.22	0.32	3.82
20	353	94.90	0.28	0.57	4.25
21	1,380	97.46		1.23	1.30
22	23	100.00			
23	32	84.38		12.50	3.12
24	1,363	86.94	0.15	0.51	12.40
25	238	96.64		0.42	2.94
26	276	95.65	0.36	0.36	3.62
27	185	96.22			3.78
28	522	88.12	1.15	7.09	3.64
29	68	83.82		14.71	1.47
30	1,248	95.03	0.08	1.68	3.21
31	1,161	89.92	0.26	6.80	3.01
32	2,420	75.50	0.17	22.60	1.74
33	540	76.30		14.63	9.07
34	222	94.14		0.90	4.95
35	972	82.92	0.10	2.98	13.99
36	621	81.80	0.16	12.88	5.15
37	507	85.40	0.20	8.68	5.72
Total	26,532	89.27	0.17	4.55	6.02

*Throughout Appendix II, Arabic numerala inatead of Roman numerals will be used to designate basic procesaes.

Tsble 70. Classificstion of work and delay by type of lsbor within workers and by workers within a process for all processes, plant A, August-Septeaber, 1957.

Frocess 1

101	0	289	85.81	0.35	12.80	1.04
$10 \quad 2$	0	335	92.24		2.39	5.37
102	1	73	94.52			5.48
103	0	58				100.00
Horker Totsl		755	82.91	0.13	5.\%	10.99
111	0	80	96.25		2.50	1.25
112	0	79	93.67		1.27	5.06
112	1	7	85.71			14.29
113	0	33		3.03		96.97
Worker Total		199	78.89	0.50	1.51	19.10
121	0	330	96.06		3.64	0.30
$12 \quad 2$	0	364	96.58		1.10	1.92
12 2	1	60	96.67			3.33
123	0	31		3.23		96.77
Worker Total		785	92.74	0.13	2.04	5.10
17 1	0	58	93.10		6.90	
17 2	0	56	85.71		3.57	10.71
17 2	1	6	66.67			33.33
17 3	0	15		13.33	6.67	80.00
Worker Total		135	78.52	1.48	5.19	14.81
301	0	1	100.00			
Worker Total		1	100.00			
401	0	1	100.00			
Norker Total		1	100.00			
411	0	1	100.00			
412	0	7	100.00			
Worker Total		8	100.00			
431	0	3	100.00			
432	0	20	100.00			
$43 \quad 2$	1	1	100.00			
Wosker Total		24	100.00			

Table 70 (cont.) Classification of work and delay by type of labor within workers and by workers within a process for all processes, plant A, August-September, 1957.

Table 70 (cont.) Claesification of work and delay by type of labor within workers end by workers within a procase for all proceees, plant A, August-Saptembar, 1957.

:Troe of labor			Total	sProductive:	Delay		
Worker	: div.	.	oservat		1dabl	voids	Loaring
				\%	\%	\%	\%
62	2	0	2				100.00
Workar	Total		2				100.00
63	2	0	2	50.00			50.00
Worker	rotal		2	50.00			50.00
83	2	0	1	100.00			
Worker	Totel		1	100.00			
88	1	0	34	94.12		5.88	
88	2	0	15	93.33			6.67
88	2	1	5	80.00			20.00
88	3	0	1				100.00
Workar	Total		55	90.91		3.64	5.45
99	1	0	16	93.75		6.25	
99	2	0	16	75.00			25.00
99	3	0	5				100.00
Worker	Totel		37	72.97		2.70	24.32
101	1	0	2	100.00			
101	2	0	4	100.00			
Workar	Total		6	100.00			
Totel Pr	rocees		2.565	84.95	0.19	4.13	10.72

Procese 2

Table 70 (cont.) Classification of work and delay by type of labor within workers and by workers within a process for sill processes, plant A, August-September, 1957.

Process 3

10	1	0	105	94.29	0.95	1.90	2.86
10	2	0	66	95.45			4.54
10	2	1	31	93.55			6.45
10	3	0	26			100.00	
Worker rots1		228	83.77	0.44	0.88	14.91	

Table 70 (cont.) Classification of work and deley by type of labor within workers and by workers within a process for 11 processes, plant A, Auguet-Septembor, 1957.

Table 70 (cont.) Classification of work and delay by type of labor within workers and by workers within a process for all processes, plant A, August-Septemher, 1957.

Process 4

$13 \quad 2$	0	15	100.00		
Worker Total		15	100.00		
$17 \quad 2$	0	1	100.00		
Worker Total		1	100.00		
301	0	4	100.00		
$30 \quad 2$	0	2	50.00		50.00
Worker Total		6	83.33		16.67
431	0	22	95.45	4.54	
$43 \quad 2$	0	67	38.51		1.49
Worker Total		89	97.75	1.12	1.12
51.2	0	3	100.00		
Worker Total		3	100.00		
521	0	25	100.00		
$52 \quad 2$	0	33	06.97		3.03
$52 \quad 2$	1	1	100.00		
Worker Total		59	98.30		1.69

Table 70 (cont.) Clasaification of work and delay by type of labor within workers and by workers within a process for all processes, plant A, August-September, 1957.

Process 5

17	2	0	8	100.00		
Worker Total		8	100.00			
40	1	0				
40	2	0	4	50.00		25.00
Worker Total		27	92.00	25.00	3.70	

Table 70 (cont.) Classification of work and delay by typa of labor within workers and by workers within a procass for all procasses, plant A, August-Saptember, 1957.

Pryoe of labor				: Productive	Delay		
Worker number	: div.	.	ervat				
				$\%$	\%	\%	\%
41	2	0	1	100.00			
Workar	Total		1	100.00			
43	1	0	8	100.00			
43	2	0	71	98.59			1.41
Workar	Total		79	98.73			1.26
52	1	0	24	100.00			
52	2	0	63	100.00			
52	2	1	1	100.00			
Worker	Total		88	100.00			
53	2	0	1	100.00			
Worker	Total		1	100.00			
54	2	0	1	100.00			
Worker	Totel		1	100.00			
55	1	0	45	88.89			11.11
55	2	0	15	100.00			
55	3	0	1				100.00
Worker	Total		61	90.16			9.84
56	1	0	171	91.81			8.19
56	2	0	183	88.52		0.55	10.93
56	2	1	15	100.00			
56	3	0	1				100.00
Worker	Total		370	90.27		0.27	9.46
58	2	0	1	100.00			
Worker	Total		1	100.00			
60	2	0	8	100.00			
Worker	Total		8	100.00			
61	2	0	7	100.00			
Workar	Total		7	100.00			
62	2	0	8	100.00			
Worker 2	Total		8	100.00			

Table 70 (cont.) Classificetion of work and delay by type of labor with1n workere and by workers within a procese for all proceeeee, plent A, August-September, 2957.

Process 6

301	0	1	100.00	
Worker Totel		1	100.00	
401	0	1	100.00	
Worker Totel		1	100.00	
431	0	18	100.00	
Worker Total		18	100.00	
521	0	50	100.00	
Worker Total		50	100.00	
531	0	12	100.00	
Worker Total		12	100.00	
541	0	3	100.00	
Worker Total		3	100.00	
551	0	1	100.00	
Worker Total		1	100.00	
561	0	90	96.67	3.33
Worker Total		90	96.67	3.33
$77 \quad 1$	0	5	100.00	
Worker Totel		5	100.00	
$88 \quad 1$	0	5	100.00	
Worker Total		5	100.00	

Table 70 (cont.) Classification of work and delsy by type of labor within workers and by workers within a process for all processes, plant A, August-Septerber, 1957.

Process 7

151	0	4	100.00	
Worker Total		4	100.00	
311	0	1	100.00	
Worker Total		1	100.00	
401	0	1	100.00	
Worker Total		1	100.00	
431	0	5	100.00	
Worker Totsl		5	100.00	
501	0	3	100.00	
Worker Total		3	100.00	
521	0	8	100.00	
Worker Total		8	100.00	
531	0	4	100.00	
Worker Total		4	100.00	
56 I	0	14	92.86	7.14
Worker Total		14	92.86	7.14
97 I	0	2	100.00	
Worker Total		2	100,00	

Tabla 70 (cont.) Classification of work and dalay by type of labor within workars and by workers within a process for all procassas, plant A, August-Saptamber, 1957.

Process 8

13	2	0	44	93.18			6.82
Worker Total			44	93.18			6.82
15	2	0	8	100.00			
Worker Total			8	100,00			
43	1	0	6	100.00			
43	2	0	18	100.00			
Worker Total			24	100.00			
51	2	0	2	100,00			
51	2	1	19	94.74		5.26	
Worker Total			21	95.24		4.76	
52	1	0	2	100.00			
52	2	0	9	88.89			11.11
52	2	1	10	90,00		10.00	
Workar Total			21	90.48		4.76	4.76
53	1	0	1	100.00			
53	2	0	363	89.87	1.10	1.10	7.99
53	2	1	246	93.09	0.41	0.81	5.69
Worker Total			610	91.15	0.82	0.98	7.05
55	1	0	17	94.12			5.88
55	2	0	2	50.00			50.00
55	2	1	2	100.00			
Worker	Total		21	90.48			9.52

Table 70 (cont.) Claaaification of work and delay by type of labor within vorkers and by workers within a procesa for all procesaes, plent A, August-September, 1957.

Table 70 (cont.) Classification of work and delay by type of labor within workers and by workers within a proceas for all proceases, plant A, August-September, 1957.

Erocess 9

Table 70 (cont.) Classification of work and delay by typa of labor within workers and by workers within a process for all processes, plant A, August-September, 1957.

Process 10

131	0	1	100.00	
Worker Total		1	100,00	
$15 \quad 2$	0	1	100.00	
Worker Total		1	100.00	
431	0	3	100.00	
Worker Total		3	100.00	
521	0	2	100.00	
$52 \quad 2$	0	6	100,00	
Worker Total		8	100.00	
531	0	43	97.67	2.33
$53-2$	0	40	100.00	
Worker Total		83	98.80	1.20

Table 70 (cont.) Claasification of work and delay by type of labor within workers and by workers within a proceaa for all proceaaea, plant A, August-September, 1957.

Procesa 11
$\left.\begin{array}{lllrl}13 & 1 & 0 & 11 & 90.91 \\ \text { Worker Total } & & 11 & 90.91 & 9.09 \\ & & & 9.09\end{array}\right]$

Table 70 (cont.) Classification of work and delay by type of labor within workers and by workers within a process for all processes, plant A, August-Septomber, 1957.

Process 12

30		1	0	256	100.00
Worker Total				256	100.00
31		1	0	4	100.00
Worker Total				4	100.00
40		1	0	1	100.00
Worker Total				1	100.00
43		1	0	7	100.00
Worker Total				7	100.00
97		1	0	4	100.00
Worker Total				4	100.00
Total	Proces	812		272	100.00

Table 70 (cont.) Classification of work and delay by type of labor within workers and by workers within a process for all processes, plant A, August-September, 1957.

Process 13

17 I	0	2	100.00	
Worker Total		2	100.00	
301	0	26	100.00	
Worker Total		26	100.00	
31.1	0	4	100.00	
Worker Totel		4	100.00	
401	0	6	100.00	
Worker Total		6	100.00	
431	0	18	100.00	
Worker Total		18	100.00	
$50 \quad 1$	0	3	100.00	
Worker Total		3	100.00	
521	0	5	100.00	
Worker Total		5	100.00	
53 1	0	1	100.00	
Worker Total		1	100.00	
541	0	1	100.00	
Worker Total		1	100.00	
561	0	7	100.00	
Worker Total		7	100.00	
$77 \quad 1$	0	1	100.00	
Worker Total		1	100.00	
881	0	1	100.00	
Worker Total		1	100.00	
971	0	17	94.12	5.88
Worker Total		17	94.12	5.88

Table 70 (cont.) Classificstion of work and delsy by type of labor within workers and by workers within a process for all processes, plant A, August-Septeraber, 1957.

Process $1 / 4$

102	0	1	100.00			
Worker motal		1	100.00			
$12 \quad 2$	0	1	100.00			
Worker Total		1	100.00			
301	0	240	98.33		0.83	0.83
30 2	0	487	97.54		0.62	1.85
$30 \quad 2$	1	22	90.91			9.09
Worker Total		749	97.60		0.67	1.74
311	0	332	97.29		1.51	1.20
$31 \quad 2$	0	89	89.89	1.12	1.12	7.87
Worker Total		421	95.72	0.24	1.43	2.61
341	0	2	100.00			
Worker Total		2	100.00			
401	0	93	98.92		1.08	
402	0	22	90.91			9.09
Worker Totsl		115	97.39		0.87	1.74
41.2	1	2	100.00			
Worker Total		2	100.00			
431	0	120	99.17			0.83
43 2	0	104	94.23		0.96	4.81
43 2	1	16	93.75			6.25
Worker Total		240	96.67		0.42	2.92

```
Tabla 70 (cont.) Classification of work and delay by typa of labor within
    workers and by workers within a process for all processas,
    plant A, August--Septamber, 1957.
```


Procaas 15

8	0	5	100.00
Worker Total		5	100.00
13	0	5	100.00
Workar rotal		5	100.00
15	0	2	100.00
Worker Total		2	100.00
43	0	6	100.00
Worker Total		6	100.00
50	0	1	100.00
Workar Total		1	100.00
53	0	5	100.00
Worker Total		5	200.00
56	0	14	100.00
Worker Total		14	100.00
82	0	2	100.00
Workar Total		2	100.00

Tabla 70 (cont.) Clasaification of work and delay by type of labor within workers and by workers within a process for all procesaes, plant A, August-Saptember, 1957.

Procaaa 16

Procese 17
$\left.\begin{array}{cccc}8 & 1 & 0 & 1\end{array}\right] 100.000$

Procesa 18

131	0	8	100.00	
Worker Total		8	100,00	
$17 \quad 2$	0	1	100.00	
Worker Total		1	100.00	
401	0	4	75.00	25.00
$40 \quad 2$	0	2	100.00	
Worker Total		6	83.33	16.67
$42 \quad 2$	1	8	87.50	12.50
Worker Total		8	87.50	12.50

Table 70 (cont.) Glassification of work and delay by type of labor within workera and by workers within a process for all processes, plant A, August-September, 1957.

Worker	:Trpe of lebor:		3 :		Delay		
number : div. : aggr. : observations:					ids	oid	oafing
				\%	8	\%	8
43	1	0	30	100.00			
43	2	0	30	98.60			3.33
Warker	Total		60	98.33			1.67
45	1	0	1	100.00			
Worker	Total		1	100.00			
50	1	0	12	100.00			
Worker	Total		12	100.00			
51	1	0	1	100.00			
Worker	Total		1	100.00			
52	1	0	199	97.97			2.01
52	2	0	50	100.00			
Worker	Total		249	98.39			1.61
55	1	0	4	75.00			25.00
55	2	0	3	100.00			
Worker	Cotal		7	85.71			14.28
56	1	0	30	96.67		-	3.33
56	2	0	2	50.00			50.00
Worker	Cotel		32	93.75			6.25
58	1	0	11	100.00			
58	2	0	15	100.00			
Worker	Total		26	100.00			
71	1	0	6	100.00			
71	2	0	2	1.00 .00			
71	2	1	3	100.00			
Worker	Cotal		11	100.00			
82	1	0	4	100.00			
Worker	Total		4	100.00			
86	1	0	4	100.00			
86	2	0	2	100.00			
86	2	λ	23	100.00			
Worker	Total		29	100.60			

Table 70 (cont.) Classification of work and dalay by type of labor within workers and by workers within a process for all procasses, plant A, August-Septenber, 1.957.

Procebs 19

131	0	78	98.72	1.28
13 2	0	3	100.00	
Worker Total		81	98.77	1.23
$40 \quad 1$	0	1	100.00	
Workar Total		1	100.00	
431	0	20	95.00	5.00
Worker Total		20	95.00	5.00

441	0	1	100.00
Worker Total		1	100.00
451	0	2	200.00
Worker Total		2	100.00
521	0	38	100.00
Worker Total		38	100.00
531	0	2	100.00
Worker Total		2	100.00
54.1	0	2	100.00
Worker Total		2	100.00
561	0	17	100.00
Worker Total		17	100.00

```
Table 70 (cont.) Classification of work and delay by type of labor within
    workers and by workers within a process for all processes,
    plant A, Auguct-September, 1957.
```


Table 70 (cont.) Classification of work and delay by type of labor within workers and by workers within a process for all processea, plant A, August-September, 1957.

Process 20

Process 21

Table 70 (cont.) Classification of work and delay by type of labor within workers and by workers within a process for all processes, plant A, August-September, 1957.

Process 22

77	1	0	23
Worker Total		23	100.00
Total Process 22		23	100.00

Process 23

41	1	0	4	200.00	
Worker Total		4	100.00		
51	1	0	4	100.00	
Worker Total		4	200.00		
52	1	0	6	100.00	
Worker Total		6	100.00		
56		10	70.00	20.00	10.00
Worker Total	0	10	70.00	20.00	10.00

Table 70 (cont.) Classification of work and dalay by typa of labor within workars and by workers within a process for all processes, plant A, August-Septemher: 1957.

Process 24

12.2	0	1	100.00			
Workar Total		1	100.00			
22.2	0	29	51.72			48.28
Worker Total		29	51.72			48.28
401	0	11	90.91			9.09
$40 \quad 2$	0	18	83.33			16.67
403	0	1				100.00
Worker Total		30	83.33			16.67
411	0	74	98.65			1.35
41.2	0	212	89.15	0.47	0.47	9.91
Worker Totsl		286	91.61	0.35	0.35	7.69
$42 \quad 2$	0	158	96.20	0.63		3.16
Worker Total		158	96.20	0.63		3.16
441	0	1	100.00			
44.2	0	281	83.63		0.36	16.01
Worker Total		282	83.69		0.35	15.96
$45 \quad 2$	0	14	78.57		14.28	7.14
Worker Total		14	78.57		14.28	7.14
$46 \quad 2$	0	17	88.24			11.76
Worker Total		17	88.24			11.76
47 2	0	299	79.60		0.33	20.07
Worker Total		299	79.60		0.33	20.07
$48 \quad 2$	0	14	92.86			7.14
Worker Total		14	92.86			7.14

Table 70 (cont.) Classification of work and delay by type of labor within workers and by workers within a process for all processes, plant A, August-September, 1957.

Table 70 (cont.) Classification of work and delay by type of labor within workers and by workers within a process for all processes, plant A, August-september, 1957.

Process 26

Table 70 (cont.) Classification of work and delay by type of labor within workers and by workers within a process for all processes, plant A, August-Septomber, 1957.

Process 27

22	1	0	2	100.00
Worker			2	100.00
40	1	0	7	100.00
Worker			7	100.00

> Table 70 (cont.) Classification of work and delay by type of labor within workers snd by workers within a process for all processes, plant A, August-September, 1957.

Process 28

401	0	18	88.89		5.56	5.56
402	1	1	100.00			
Worker Total		19	89.47		5.26	5.26
411	0	1	100.00			
412	1	9	100.00			
Worker Totsl		10	100.00			
441	0	3	100.00			
$44 \quad 2$	0	3	100.00			
Worker Totel		6	100.00			
$45 \quad 2$	0	54	98.15			1.85
$45 \quad 2$	1	1	100.00			
Worker Total		55	98.18			1.82
461	0	289	86.51	2.08	9.00	2.42
46	0	64	84.38			15.62
46 2	1	4	100.00			
Worker Total		357	86.27	1.68	7.28	4.76
471	0	4	100.00			
47 2	0	1	100.00			
Worker Totel		5	100.00			
$51 \quad 2$	0	1	100.00			
Worker Total		1	100.00			
921	0	2	100.00			
Worker Total		2	100.00			
$99 \quad 2$	0	7	100.00			
Worker Total		7	100.00			
1002	0	1	100.00			,
Worker Total		1	100.00			

Table 70 (cont.) Clasaification of work and delay by type of labor within workers and by workera within a procesa for all proceaaes, plant A, Aurruat-Septemher, 1957.

Procesa 29

Table 70 (cont.) Classification of work and delay by type of labor within workers and by workers within a process for all processes, plant A, August-September, 1957.

Process 30

Table 70 (cont.) Classification of worix and delay by type of labor within workers and by workers within a process for all processes, plant A, August-September, 1057.

Process 31

$22 \quad 1$	0	1	100.00			
22.2	0	53	86.79			13.21
Worker Total		54	87.04			12.96
401	0	105	93.33		3.81	2.86
$40 \quad 2$	0	64	96.88			3.12
$40 \quad 2$	1	37	100.00			
Worker Total		206	95.63		1.94	2.43
411	0	37	100.00			
41.2	0	14	92.86			7.14
41.2	1	27	100.00			
Worker Total		78	98.72			1.28
421	0	33	81.82		9.09	9.09
$42 \quad 2$	0	18	94.44			5.56
$42 \quad 2$	1	23	100.00			
Worker Total		74	90.54		4.05	5.41
441	0	7	100.00			
44.2	0	5	60.00		20.00	20.00
Worker Total		12	83.33		8.33	8.33
461	0	3	100.00			
$46 \quad 2$	0	3	100.00			
$46 \quad 2$	1	2	100.00			
Worker Total		8	100.00			
471	0	393	85.50	0.51	12.98	1.02
$47 \quad 2$	0	58	60.34	1.72	31.03	6.90
$47 \quad 2$	1	2	50.00			50.00
Worker Total		453	82.12	0.66	15.23	1.29

Table 70 (cont.) Classification of work and delay by type of labor within workers and by workers within a process for all processes, plant A, Ausust-September, 1957.

Process 32

81	0	485	61.65	0.41	35.88	2.06
8 2	0	2	100.00			
Worker Total		487	61.81	0.41	35.73	2.05
131	0	22	95.45		4.55	
Worker Total		22.	95.45		4.55	
151	0	11	63.64		36.36	
Worker Total		11	63.64		36.36	
431	0	6	100.00			
Worker Total		6	100.00			
451	0	732	82.65		15.98	1.37
$45 \quad 2$	0	80	98.75		1.25	
$45 \quad 2$	1	1	100.00			
Worker Totsl		813	84.26		14.51	1.23

Table 70 (cont.) Clasaification of work and delay by type of labor within workers and by workers uithin a proceas for all processes, plant A, August-September, 1957.

	:Type of labor				:			
Worker	: Labor: Maint.			Total	Productive:			
number : dive : agEx. :observations: 3						voidabl	2voide	Loafing
					\%	8	\%	$\%$
46		1	0	1	100.00			
Worker	Total			1	100.00			
47	2	2	0	2	100.00			
Worker	Total			2	100.00			
51			0	14	71.43		14.29	14.29
51			0	1	100.00			
Worker	Total			15	73.33		13.33	13.33
77	1	1	0	5	100.00			
Worker	Total			5	100.00			
82	1		0	225	75.11		22.67	2.22
Worker	Total			225	75.11		22.67	2.22
84			0	289	75.43		22.49	2.08
84			0	2	100.00			
Worker	Total			291	75.60		22.34	2.06
85	1		0	435	70.80	0.46	26.67	2.07
85	2		0	1	100.00			
Worker	Total			436	70.87	0.46	26.61	2.06
86	1		0	2	100.00			
Worker	Total			2	100.00			
92	1		0	49	89.80		10.20	
92	2		0	3	100.00			
Worker	Totel			52	90.38		9.62	
97	1		0	51	78.43		21.57	
Worker	Total			51	78.43		21.57	
101	1		0	1	100.00			
Worker	Total			1	100.00			
Total P	rocess	32		2,420	75.50	0.17	22.60	1.74

Table 70 (cont.) Classificstion of work snd delsy by type of labor within workers and by workers within 8 process for $s 11$ processes, plant A, August-September, 1957.

Process 33

Table 70 (cont.) Classification of work and delay by type of labor within workers and by workers within a process for all processes, plant A, August-September, 1957.

Process 34

81	0	61	98.36		1.64
82	0	22	95.45		4.55
Worker Total		83	97.59		2.41
421	0	1			100.00
Worker Total		1			100.00
$45 \quad 2$	0	1	100.00		
Worker Total		1	100.00		
821	0	1			100.00
$82 \quad 2$	0	1	100.00		
Worker Total		2	50.00		50.00
841	0	8	100.00		
842	0	13	100.00		
Worker Total		21	100.00		
851	0	22	90.91	4.55	4.55
$85 \quad 2$	0	19	100.00		
Worker Total		41	95.12	2.44	2.44

Table 70 (cont.) Classification of work and delay by type of labor within workers and by workers within a process for all processes, plant A, August-September, 1957.

Procese 35

8 I	0	49	87.76	6.12	6.12
Worker Total		49	87.76	6.12	6.12
151	0	7	85.71	14.29	
Worker Total		7	85.71	14.29	
42 I	0	3	100.00		
Worker Total		3	100.00		
441	0	6	83.33		16.67
Worker Total		6	83.33		16.67
$45 \quad 1$	0	6	66.67	16.67	16.67
Worker Total		6	66.67	16.67	16.67
46 1	0	190	74.74	0.53	24.74
Worker Total		190	74.74	0.53	24.74
47 I	0	18	83.33	5.56	11.11
Worker Total		18	83.33	5.56	11.11
82 1	0	22	90.91	4.55	4.55
Worker Total		22	90.91	4.55	4.55

Table 70 (cont.) Classification of work and delay by type of labor within workers and by workera within a proceas for all processes, plant A, August-September, 1957.

Procesa 36

81	0	5	80.00	20.00
82	0	3	100.00	
Worker Totel		8	87.50	12.50
$15 \quad 1$	0	1	100.00	
Worker Total		1	100.00	
$40 \quad 2$	1	1	100.00	
Worker Total		1	100,00	

Table 70 (cont.) Clasaification of work and dalay by type of labor within
workars and by workera within a proceas for all procasasa,
plant A, AugustaSoptamber, 1957.

Table 70 (concl.) Classification of work and delay by type of labor within workers and by workers within a proceas for all proceasea, plant A, August-September, 1957.

Proceaa 37

$40 \quad 2$	1	1	100.00			
Worker Total		1	100.00			
$41 \quad 2$	0	1	100.00			
Worker Total		1	100.00			
44.1	0	457	84.03	0.22	9.63	6.13
44.2	0	34	97.06			2.94
442	1	8	100.00			
Worker Total		499	85.17	0.20	8.82	5.81
471	0	3	100.00			
Worker Iotal		3	100.00			
$51 \quad 2$	1	2	100.00			
Worker Total		2	100.00			
71.1	0	1	100.00			
Worker Total		1	100.00			
Totel Proceas 37		507	85.40	0.20	8.68	5.72

[^12]Table 71. Classification of work and delay by workers, plant A, AugustSeptember, 1957.

Worker number	$\begin{aligned} & \text { Total : } \\ & \text { : observations } \end{aligned}$	Productive	: Delay		
			: Avoldable	- Unavoide	2 Loafing
		$\%$	\%	\%	\%
8	692	68.64	0.29	27.31	3.76
10	1,022	83.56	0.20	4.60	11.64
11	774	85.01	0.39	1.68	12.92
12	1,032	92.15	0.29	1.84	5.72
13	266	96.99		0.75	2.26
15	50	86.00		12.00	2.00
17	559	88.73	0.36	1.79	9.12
21	2	100.00			
22	492	90.65		1.22	8.13
30	1,040	98.17		0.48	1.35
31	430	95.81	0.23	1.40	2.56
34	523	98.09			1.91
35	470	91.28		5.96	2.77
40	618	94.34	0.32	1.46	3.88
41	655	93.74	0.15	0.31	5.80
42	272	94.49	0.37	1.10	4.04
43	621	97.58		0.48	1.93
44	878	85.54	0.11	5.35	9.00
45	925	84.97		13.41	1.62
46	702	83.33	0.85	5.13	10.68
47	846	82.27	0.35	8.51	8.87
48	401	95.01		3.24	1.75
50	674	80.86		4.90	14.24
51	988	95.55		0.91	3.54
52	558	98.75		0.18	1.08
53	1,117	93.29	0.45	0.81	5.46
54	620	78.71		2.42	18.87
55	114	90.35			9.65
56	842	91.45	0.12	0.95	7.48
57	7	85.71		14.29	
58	96	97.92		1.04	1.04
59	- 5	100.00			
60	20	95.00			5.00
61	32	100.00			
62	22	86.36			13.64
63	2	50.00			50.00
71	966	93.58	0.10	0.62	5.69
77	826	97.46		0.36	2.18
82	355	79.72		16.62	3.66
83	34	82.35			17.65
84	487	76.39		18.89	4.72

Table 71 (concl.) Classification of work and delay by workers, plant A, August-September, 1957.

$\begin{aligned} & \text { Worker } \\ & \text { number } \\ & \hline \end{aligned}$: Total	: Productive	- Delar		
	: observations	: Prometivo	Avoideble:	Unavoidable	L Loafing
		\%	\%	\%	\%
85	620	75.32	0.32	20.81	3.55
86	535	97.76	0.37	0.19	1.68
88	186	86.56		2.69	10.75
91	177	89.27		1.69	9.04
92	790	88.35	0.13	5.44	6.08
93	768	96.09	0.13	1.95	1.82
97	519	83.82		4.05	12.14
99	809	81.46	0.25	8.90	9.39
100	189	78.31		12.70	8.99
101	904	96.24	0.22	1.77	1.77
Total	26,532	89.27	0.17	4.55	6.02

Tabla 72. Classification of work and dalay by procassaa for a worker over all workers, plant A, August-Saptember, 1957.

Process:	Tatel observations	Productiva		: Dalay		
			\%	$\%$	\%	\%
			Worker 8			
15	5		100.00			
17	1		100.00			
32	487		61.81	0.41	35.73	2.05
33	59		62.71		18.64	18.64
34	83		97.59			2.41
35	49		87.76		6.12	6.12
36	8		87.50		12.50	
Worker Total	-692		68.64	0.29	27.31	3.76

Workar 10

1	755	82.91	0.13	5.96	10.99
2	38	94.74			5.26
3	228	83.77	0.44	0.88	14.91
Worker Total	1.022	83.56	$\underline{0.20}$	$\underline{4.60}$	$\underline{11.64}$

Worker 11

1	199	78.89	0.50	1.51	19.10
2	116	97.41		0.86	1.72
3	458	84.50	0.44	1.96	13.10
25	1	100.00			
Workar Total	774	85.01	$\underline{0.39}$	$\underline{1.68}$	12.92

Worker 12

1	785	92.74	0.13	2.64	5.10
2	61	98.36			1.64
3	184	87.50	1.09	1.63	9.78
14	1	100.00			
24	1	100.00			
Worker Total	1.032	92.15	0.29	1.84	5.72

Table 72 (cont.) Classification of work and delay by processes for a worker over all workera, plant A, August-September, 1957.

Worker 15

7	4	100.00		
8	8	100.00		
9	3	66.67		33.33
10	1	100.00		
11	9	2.00 .00		
15	2	100.00		
32	11	63.64	36.36	
33	4	75.00	25.00	
35	7	85.71	14.29	
36	1	300.00		
Worker Total	50	86.00	12.00	2.00

Worker 17

1	135	78.52	1.48	5.19	14.81
2	101	98.02		0.99	0.99
3	304	89.80		0.66	9.54
4	1	100.00			
5	8	100.00			

Table 72 (cont.) Classification of work and delay by processes for worker over all workers, plant A, August-September, 1957.

Worker 21

3	2	100.00
Horker Total	2	100.00

Worker 22

3	4	100.00		48.28	
24	29	51.72		7.14	
25	14	92.86		4.63	
27	2	100.00	1.54	12.96	
30	389	93.83		1.22	8.13
31	54	87.04			
Worker Total	492	90.65			

Worker 30

1	1	100.00			
3	1	100.00			
4	6	83.33			
6	1	100.00			
12	256	100.00	0		
13	26	100.00	0.67	1.74	
14	749	97.60	0.48	1.35	
Worker Total 1.040	98.17				

Table 72 (cont.) Clsssificstion of work snd delsy by processes for s worker over sll vorkers, plant A, August-September, 1957.

Worker 34

14	2	100.00		
16	109	97.25		2.75
17	412	98.30		1.70
Worker Total	523	88.09		1.21
		Worker 35		
16	74	95.95	4.05	
17	396	90.40	6.31	3.28
Worker Totel	470	21.28	5.96	2.77

Worker 40

1	1	100.00			
5	27	92.59	3.70		
6	1	100.00			
7	1	100.00			
11	4	100.00		0.87	1.74
12	1	100.00			16.67
13	115	100.00			
14	6	97.39		16.67	
18	1	83.33			
19	30	100.00			
24	7	100.33			
25					

Table 72 (cont.) Classification of work and delay by procesaes for a worker over all vorkers, plant A, August-Saptember, 1957.

Worker 41

1	8	100.00			
5	1	100.00			
14	2	100.00			
23	4	100.00			
24	286	91.61	0.35	0.35	7.69
25	80	92.50		1.25	6.25
26	120	96.67			3.33
27	15	93.33			6.67
28	10	100.00			
29	1	100.00			
30	41	90.24			9.76
31	78	98.72			1.28
36	8	87.50			12.50
37	1	100.00			
Worker Motel	655	93.74	0.15	0.31	5.80

Worker 42

18	8	87.50		12.50
24	158	96.20	0.63	3.16
25	1	100.00		
26	19	100.00		
27	5	100.00		
29	2	100.00		
30	1	100.00		

Table 72 (cont.) Clessification of work and delay by procesaes for a worker over all workers, plan' A, August-September, 1957.

Worker 43

1	24	100.00		
4	89	97.75	1.12	1.12
5	79	98.73		
6	18	100.00		
7	5	100.00		
8	24	100.00		
9	5	100.00		
10	3	100.00		
11	14	85.71		
12	7	100.00	0.42	2.92
13	18	100.00		
14	240	96.67		1.67
15	6	100.00		
18	60	98.33		
19	20	95.00		
20	1	100.00	0.48	1.93
25	2	100.00		
32	6	100.00		

Worker 44

2	2	100.00			
19	1	100.00			
24	282	83.69		15.96	
25	31	96.77		3.23	
26	1	100.00		3.23	
27	31	96.77			
28	1	100.00			
30	12	100.00	8.33	8.33	
31	2	83.33	50.00	50.00	

sable 72 (cant.) Classification of work and delay by procesacs for a worker over all workers, plant A, Angust-September, 1957.

Worker 45

17	1	100.00		
18	1	100.00		
19	2	100.00		
24	14	78.57	14.28	7.14
25	1	100.00		
26	1	100.00		
27	7	71.43		28.57
28	55	98.18		1.82
29	23	86.96	13.04	
32	813	84.26	14.51	1.23
34	1	100.00		
35	6	66.67	16.67	16.67
Worker Total	225	84.97	13.41	1.62

Woricer 46

24	17	88.24			11.76
25	3	100.00			
26	2	100.00			
27	26	96.15			3.85
28	357	86.27	1.68	7.28	4.76
29	21	85.71		9.52	4.76
30	5	100.00			
31	8	100.00			
32	1	100.00			
33	13	84.62			15.38
35	190	74.14		0.53	24.74
36	59	79.66		11.86	8.47
Worker Total	702	83.33	0,85	5.13	10,68

Table 72. (cort.) Classification of work and deley by processes for a worker over all vorkers, plant A, dugust-September, 1957.

Worker 47

24	299	79.60		0.33	20.07
25	4	100.00			
27	27	96.30			3.70
28	5	100.00			
29	3	100.00			
30	17	88.24		5.88	5.88
31	453	82.12	0.66	15.23	1.99
32	2	20C.00			
33	1	100.00			
35	18	83.33		5.56	11.11
36	14	85.71			14.29
37	3	100.00			
Worker Istal	846	82927	0.35	8.51	8.87

Worker 48

24	14	92.86		7.14
25	9	100.00		
27	4	100:00		
29	8	62.50	37.50	
30	338	96.15	2.37	1.48
31	18	88.89	11.11	
36	10	90.00		10.00
Worker ${ }^{\text {cotal }}$	401	25.01	3.24	1.75

Worker 50

1	333	79.28	8.11	12.61
2	42	95.24	4.76	
3	264	78.41	1.52	20.08
7	3	100.00		
13	3	100.00		
15	1	100.00		
18	12	100.00		6.67
25	1	100.00		
36	15	93.33	4.50	14.34
Worker Totel	574	$\underline{80.86}$		

Table 72 (cont.) Classification of work and delay by processea for a worker over all workers, plant A, August-September, 1957.

Process :	Total observations	: Productive : Delay		
		\%	\% \%	\%
		Worker 51		
1	8	100.00		
3	2	100.00		
4	3	100.00		
8	21	95.24	4.76	
18	1	100.00		
23	4	100.00		
24	227	92.95	0.88	6.17
25	52	100.00		
26	123	94.21	0.83	4.96
27	27	96.30		3.70
28	1	100.00		
30	262	97.71	1.14	1.14
31	241	96.68		3.32
32	15	73.33	13.33	13.33
36	1			100.00
37	2	100.00		
Worker Total	- 288	25.55	0.91	3.54

Worker 52

1	22	100.00			
4	59	98.30		1.70	
5	88	100.00			
6	50	100.00		4.76	4.76
7	8	100.00			
8	21	90.48			
9	3	100.00		1.61	
10	8	100.00			
13	5	100.00			
18	249	98.39			
19	38	100.00			
23	6	100.00			
26	1	100.00	0.18	1.08	

Table 72 (cont.) Clessification of work end delay by processes for a worker over all workers, plent A, August-September, 1957.

Worker 53

1	1	100.00			
4	4	100.00			
5	1	100.00			
6	12	100.00			
7	4	100.00			
8	610	91.15	0.82	0.98	7.05
9	344	95.64		0.58	3.78
10	83	98.80			1.20
11	50	90.00		2.00	8.00
13	1	100.00			
15	5	100.00			
19	2	100.00			
Worker Total	1,117	93.29	0.45	0.81	5.46

Wurker 54

1	141	73.05	3.55	23.40
2	157	91.08	0.64	8.28
3	307	74.27	2.93	22.80
5	1	100.00		
6	3	100.00		14.29
9	7	85.71		
13	1	100.00		
19	2	100.00		
25	1	100.00		
Worker Total	620	78.71		18.87

Worker 55

1	8	87.50	12.50
4	15	93.33	6.67
5	61	90.16	9.84
6	1	100.00	
8	21	90.48	9.52
14	1	100.00	14.29
18	7	85.71	$\underline{9.65}$

Table 72 (cont.) Claseiflcetion of work and delay by processes for a worker over ell workere, plant A, Auguctmeptember, 1957.

Worker 57

8	3	100.00	
9	3	66.67	33.33
10	1	100.00	
Worker Total	7	85.71	$\mathbf{1 4 . 2 9}$

Worker 58

1	2	100.00			
4	1	100.00			
5	1	100.00			
8	16	93.75			
9	38	97.37			
10	8	100.00			
11	3	100.00			
18	26	100.00			
19	1	100.00	2.04	1.04	
Worker Totel	26	97.92			

Table 72 (cont.) Claseification of work and delay by processes for a worker over all workers, plsnt A, Auguat-September, 1957.

Frocess: Total : observations : Productive: $\frac{\text { Delay }}{\%}$
$\%$

Worker 59

8	1	100.00
9	4	100.00
Worker Total	5	100.00

Worker 60

1	6	83.33	16.67
4	4	100.00	
5	8	100.00	
14	2	100.00	
Worker Total	20	25.00	5.00

Worker 61

1	1	100.00
4	1	100.00
5	7	100.00
8	22	100.00
10	1	100.00
Worker Total	32	100.00

Worker 62

1	2		100.00
4	2	100.00	
5	8	100.00	11.11
8	9	88.89	
9	1	100.00	13.64
Worker Total	22	86.36	

Table 72 (cont.) Classification of work and delay by processes for a worker over all workers, plant A, August-September, 1957.

Worker 77

6	5	100.00			
8	1	100.00			
13	1	100.00	0.45	5.36	
19	4	200.00	0.36	1.09	
20	224	94.20			
21	548	98.54			
22	23	100.00			
25	10	100.00			
27	5	100.00	0.36	$\underline{2.18}$	
32	5	100.00			
Worker rotal	826	97.46			

Worker 82

15	2	100.00	
16	1	100.00	
18	4	100.00	3.33
19	60	96.67	

Table 72 (cont.) Classification of work and delay by processes for worker over all vorkers, Dlant A, August-September, 1957.

Worker 83

1	1	100.00	25.00
4	4	75.00	100.00
5	2		14.29
9	7	85.71	10.00
11	20	90.00	17.65
Worker rotal	34	$\underline{82.35}$	

Worker 84

17	1	100.00		4.00
19	25	96.00		22.34
32	291	75.60	23.08	10.26
33	117	66.67		
34	21	100.00		12.50
35	32	87.50		18.89
Worker Total	487	76.39		4.72

Worker 85

15	12	91.67			8.33
16	2	50.00			50.00
17	4	100.00			4.35
19	23	95.65			26.61
32	436	70.87	0.46	2.06	
33	60	73.33		26.67	10.00
34	42	95.12		2.44	2.44
35	62.10		4.76	7.14	
Worker Total	620	75.32	0.32	20.81	3.55

Table 72 (cont.) Clasaification of work and delay by proceases for a worker over all workers, plant A, Augustmeptember, 1957.

Worker 88

1	55	90.91	3.64	5.45	
2	17	100.00		2.86	16.19
3	105	80.95			
6	5	100.00			
13	1	100.00			
33	1	100.00			
34	2	100.00	2.69	10.75	
Worker Total	186	86.56			

Worker 91

8	36	86.11		13.89
9	23	91.30	8.70	
10	39	92.31	5.13	2.56
11	53	92.45		7.55
18	6	83.33		16.67
19	5	100.00		
35	8	75.00		
36	7	71.43	14.28	14.28
Worker Total	177	89.27	1.69	9.04

Table 72 (cont.) Classification of work and delay by processes for a worker over all workers, plant A, August-September, 1957.

Process : Total	Productive	3 Delay
Process : observations	: Productive	: Avoidable : Unavoldable : Loaling
	8	\% \% \%

Worker 92

6	9	100.00			
8	19	89.47			10.53
9	21	85.71			34.29
10	26	92.31		3.85	3.85
11	62	90.32		1.61	8.06
24	1	100.00			
25	7	100.00			
28	2	100.00			
31	2	100.00			
32	52	90.38		9.62	
33	222	87.39		9.01	3.60
34	61	91.80		1.64	6.56
35	290	86.55	0.34	4.48	8.62
36	16	87.50		12.50	
Worker Total	790	88.35	0.13	5.44	6.08

Worker 93

20	117	95.73	0.85	0.85	2.56
21	651	96.16		2.15	1.69
Worker Total	768	96.09	$\underline{0.13}$	$\underline{1.95}$	1.82

Worker 97

3	13	92.31		7.69
6	2	100.00		
7	2	100.00		
12	4	100.00		
13	17	94.12		5.88
14	421	83.14	2.38	14.49
15	1	100.00		
19	6	100.00		
32	51	78.43	21.57	
36	2	100.00		
Worker Total	519	83.82	4.05	12.14

Table 72 (cont.) Classifioation of work and dalay by proceases for a worker over all workers, plant A, August-September, 1957.

Process : Total : Pbservationa: Productive: $\frac{\text { Delay }}{}$
$\%$

Worker 99

1	37	72.97		2.70	24.32
2	10	90.00	10.00		
3	81	70.37		14.81	14.81
7	1				100,00
8	2	50.00			50.00
9	9	77.78			22.22
10	7	71.43		28.57	
11	36	91.67		5.56	2.78
13	4	100.00			
15	7	100.00			
19	1	100.00			
24	1	100.00			
25	1	100.00			
26	1	100.00			
27	17	100.00			
28	7	100.00			
29	9	77.78		22.22	
33	21	76.19		9.52	14.29
34	7	71.43			28.57
35	197	84.26		2.03	13.71
36	353	81.30	0.28	13.03	5.38
Worker Total	809	81.46	0.25	8.90	9.39

Worker 100

24	1	100.00		
25	2	100.00		
27	12	100.00		
28	1	100.00	1.79	28.57
35	56	69.64	19.66	0.85
36	117	79.49	12.70	$\underline{8.99}$
Worker Total	189	18.31		

Table 72 (Concl.) Classification of work and delay by processes for a worker over all workers, plant A, Auguat-September, 1957.

APPENDIX III
Sample Survey Forms

1

North Line:

1. Opening Cans	2	\%	2	2	2
	1	8	1	\%	:
	2	2	2	,	1
2. Grading	:	2	1	:	:
	1	2	3	:	2
3. Dumping	2	\pm	\pm	2	2
	2	2	:	2	2
4. Recording	2	!	2	5	$!$
	2	:	2	-	2
5. Sampling	8	2	8	2	8
	2	:	2	2	2
6. Can Wash	2	8	2	2	:
	2	3	8	2	2
7. Supplies	8	:	!	2	:
	8	8	4	2	!
8. Clean-up	8	2	3	!	8
	8	2	2	2	:
9. Set-up	8	:	3	\pm	2

Operation:	8	8	:	1	8
	2	8	8	1	2
	\%	8	3	8	8
1. Supplies	-	$\underline{1}$	8	2	8
	8	3	:	1	1
2. Hook-up	8 - 8	3	:	8	2
	\%	8	1	\%	:
3. Change Over	-	2	2	1	2
	5	2	8	2	$\stackrel{1}{1}$
	8	8	8	\%	8
4. Operation:	8	8	1	1	8
	8	2	1	1	8
5. Clean-12p	:	1	:	8	8
	\%	8	1	8	8
	\%	8	1	\pm	1
Casing In:	8	8	\%	8	8
	8 [-	8	$\stackrel{1}{2}$	8	3
	!	8	\%	8	8
1. Picking	\%	8	1	8	1
	8	2	1	1	8
2. Case	:	8	\%	8	2
	2-	\%	8	1	3
	:	8	1	1	8
3. Change Over	:	1	2	8	1
	\%	3	:	\%	8
	\%	3	8	8	\pm
4. Clean-lap	8	8	1	\%	4
	-	8	1	\%	:

APPFNLIX IV

Cold Room Refrigeration Requirements

The total refrigeration requirements of the two cold rooms and the ice cream hardening room were calculated from standard engineering data using standard heat loss allowances. Both cold rooms assumed an outside terperature of 800 F . and an inside temperature of $35^{\circ} \mathrm{F}$. The ice crean hardening room assumed an outside temperature of $80^{\circ} \mathrm{F}$. and an inside tomperature of -200 F .

North Cold Room. The north cold room had a floor area of 830 square feet and a totel surface area of 2,730 square feet. The total refrigeration requirement was 9,850 Btu. per hour, and the requirement per case of products handled was estimated at 189 Btu. per case.

South Cold Room. The south cold room had a floor area of 1,075 square feet and a total surface area of 3,640 square feet. The total refrigeration requirement was $13,100 \mathrm{Btu}$. per hour, and the requirement per unit of product handled was estimated at 164 Btu. per unit. ${ }^{1}$

Ice Gream Hardening Rooin. The ice cream hardening room had a floor area of 215 square feet, and a total surface area of 980 square feet. The heat lost required a total of $4,900 \mathrm{Btu}$. per hour or 26.3 Btu. per gallon of ice cream stored when the hardening room was filled to capacity. The hardening of ice creara from an incoming temperature of $24^{\circ} \mathrm{F}$. to $-20^{\circ} \mathrm{F}$. required an estimated 425 Btu. per gallon of ice cream.

[^13]LABOR INPUT REQUIREMENTS AND EFFICIENCY OF A MULTI-PROCUCT DAIRY PROCESSING PLANT AS DETERMINED BY A RATIO-DELAY ANALYSIS
by

THONAS WILLETT TOWNSEND
 B. S., Kansas State University of Agriculture and Applied Science, 1958

AN ABSTRACT OF A THESIS
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIEWCE

Department of Econemics and Sociology

KANSAS STATE UNIVERSITY
OF AGRICULTURE AND APPLIED SCIENGE

Historically, surpluses rather than shortages hnve dominated milk markets in the united states, I As these mariets continue to prov, it appenss that the volums of susplus milk will grow fich them, tima cauging many proBiens in the marketing of surplus maik. As a reant of these probloms, a Morth Centrel Regional Cowndtee on Lairy Mariketing Research hes undertaken a atudy to deternise the most efficient method of handing eurplus milk under different razket structures. As a part of this general study; the Cepartment Of Agricultural Ecomorics of the Kansas Agricultural Brperiment Station selected one largo multi-procuct diniry processing plant (plart A) handing the largest portion of surplus milk under a large Pederal Order narket for a datailed cost of production study. As a part of the cost of production atady, this theals vas primarily concemed with the labor input requirements of plant A.

The most adgnilicant contribution of this study was the dexivation of fixed and veriable labor coefficients for all operations in plant A. It is bolieved that this study was the first to combine all operations of a gultiproduct dairy processing plant. As a part of a linoar prosraventne problem, these coefflclants can be used as data to help deterntre the optivan combination of products to produce in plant A.

The nethodology used to deternine the labor input requirements wes a ram-dom-observation, time-stucy technique. This technique, termed rationdealy, is a relatively new and highly practical otatiotical technique for detemening the percentage of time vorikers are productive or delayed. The ratio of the number of obsarvations failing into particular labor claspifications to the total namber of observations taken in all Izbor classifications was assumed to
${ }^{\text {In }}$ In a general way, surplus mik ia ceflined as that part of the flud mik supply not consumed as muid ndik.
be proportional to the amount of time expended in each of these labor classifications. Under this assumption, fixed and variable labor requirements in minutes per unft of product were deternined by skill classes for each process in plant $A{ }^{2}{ }^{2}$

Although major emphasis of this stady was placed on labor, the utility requirements were also given. Each plece of equipment in each process was identifled as to name, model, serial number, capacity, and utility requirements (whenever possible) by inspecting the mamufacturer's plate on each piece of equipment, by examining plant Λ^{\prime} s equipment cards, and by direct correpondence with the manfacturers. Steam and refrigeration requirements were Eiven in Btu's per unit of product for each process, and the electrical requirements were given in kilowatts per hour of machine running time. These requirements were calculated at a given lavel of officiency for each piece of equipment; therefore, the requirements might be considered about nhormaln for most operations in plant A.

The ratio-delay analysis was also used to provide information to evaluato the relative labor efficiency of workers in each process and the relative labor efficiency among the various processes. The over-all labor efficiency of plant A was considered adequate. A total of all workers in all processes were observed productive approximately 90 per cent of the time. This figure is apparently higher than those of other studiss related to dairy processing plants because workers in this study wero not observed during the two allowable 15 minute breaks and while attending to personal neods.

[^14]Receiving rar products, handing products in the cold room, and handing retumed cases and bottles were the only processes in plant A that were considered grossly ineficient with respect to labor. The rationdelay analysis also showed that individual workers were much more productive when performing certain tasks than when performing others. This suggested that the over-all labor efficiency of plant a probably could have been improved by relocating workers to jobs where they were apparently more officient.

The labor requirements and efficiency analysis were considered applicable for plant A; beyond this, no inference is intended. It is believed that through a synthesis of many studies of this gature, standard input requirements and operating efflciency can bo determined for most operations in dairy processing plants. Those standards might then be used as a general guide to evaluste the efficiency of various operations in a particular datry processing plant. The standards might also be used as a basing point to compare the relative labor efficiency of various operations in deiry processing plants over various periods in time.

This study also demonstrated the practicabillty of a rationdelay analysis in dairy processing plants. In the f4rst place, it made evident the decision making points in the flow of products through the plant. It required management to precisely define each man's job or jobs and to become more familiar with each operation. It proved to be a much more accurate method of assigning costs to particular operations than the cost accounting techniques used by many plants. The study reguired a minimum of time and cost, and it produced no apparent ill effects on the workers or operation of plant A during the study period.

[^0]: ${ }^{1}$ Producers' associations often carry on other activities for their members, such as checking weights and performing butterfat tests. Some producer groups also have facilities for processing their own surplus milk.

[^1]: $l_{\text {The one eelected multi-product dairy proceseing plant will hereafter be }}$ referred to as plant A.

[^2]: $1_{\text {Ratio-delay }}$ is a random-observation, time-study technique. It is also called snap-reading, activity analysis, activity sampling, work-sampling, and when photographic equipment is used, memomotion or memomotion analysis.

[^3]: $1_{\text {Systematic emors are those arising from taking observations on a regular }}$ schedule and having a worker or machins on the eame operating cycle or schedule.

[^4]: $1_{\text {For }}$ a complete description of the binomial theorem as applied to ratiodelay see reference (5), chapters 6, 7, and 8.

[^5]: $I_{\text {For a }}$ description of the chf-square and analysis of variance tests for signiflcance see reference (9), pages 18-26 and 90-91.

[^6]: $l_{\text {Utility }}$ requirements covered in this study include electricity, steam, and refrigeration.
 ${ }^{2}$ The method of calculating unit costs for steam, refrigeration, and electricity ie available upon requeet from the Agricultural Economics Department, Kansas State University, Manhattan, Kansas.

[^7]: "Specific requirements are given in Appendix I, Tables 39 through 68.

[^8]: $1_{\text {Fixed-mmintenance was work done for the care and maintenance of the }}$ equipmsnt and area surrounding the equipment in each process whils fixed-other than maintenance was work such as hooking up or clsaning equipment winich was fixed for a production run.

[^9]: Fixed--maintenance was usually performed by workers assigned to the maintenance department. It was not always required for each production run.

[^10]: $1_{\text {The unit of procuct varies from one process to another according to what }}$ was believed to be the most commonly used unit in the dairy industry.
 ${ }^{2}$ Total minutes worked for all workers during the sample period were obtained from time cards kept by plant A.
 ${ }^{3}$ Total product handle\& in each process was obtained from plant A's production records.

[^11]: $I_{\text {The author has given two different meanings to the word standardize. In }}$ the latter case, the author means adjusting the composition of the product to the desired composition of fat and solids-not-fat by the addition of some concentrated product; while in the forepart of the sentence, standardize refers to the adjusting of raw milk to at least the legal per cent fat by removing cream from the milk using a centrifugal standardizer.

[^12]: *Type of labor was categorized aa follows: diviaion of labor, -l- variable, -2- Ilxed, and -3- idle or loafing; maintenance aggregation, -0- other than maintenance work and -l- maintenance work.

[^13]: 1
 One unit was defined as one-balf of a 62-pound basket or 64 -pound box of butter, one-half case of orange or grape drink, one 10 -gallon can of ice crear mix, one 10 -gallon can of cottage cheese, and five gallons of condensed milk.

[^14]: 2
 Processes were defined as a complete oparation performed on a product, and omployees were classified into four skill classes according to their ability and experience.

