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Abstract 

Carotenoids, the carotenes and xanthophyll, are essential components in human nutrition. β, 

β-carotene-9’, 10’-oxygenase 2 (BCO2, also named as BCDO2) catalyzes the asymmetrical 

cleavage of carotenoids, whereas β, β-carotene-15, 15’-monooxygenase (BCMO1) conducts the 

symmetrical cleavage of pro-vitamin A carotenoids into retinoid.  Unlike BCMO1, BCO2 has a 

broader substrate specificity and has been considered as an alternative way for vitamin A 

production. Different from BCMO1, a cytoplasmic protein, BCO2 is located in the inner 

mitochondrial membrane. The difference on the cellular compartmentation may reflect the 

different substrate specificity and physiological functions between BCMO1 and BCO2. The 

mutations of BCO2 gene had been proved to be associated with yellow color of skin and fat 

tissue and milk in livestock. Mutation in intron 2 of BCO2 gene is also supposed to be related to 

the expression of IL-18, a pro-inflammatory cytokine associated with obesity, cardiovascular 

diseases, and type 2 diabetes. Further, BCO2 is also associated with the development of macular 

degeneration, anemia, mitochondrial oxidative stress, and hepatic steatosis. This review of the 

literature will address most recent updates regarding the role of BCO2 in carotenoid metabolism, 

and discuss the potential impacts of BCO2 protein and the mutations in mammalian diseases.  

Keywords: β, β-carotene-9’, 10’-oxygenase 2, carotenoids, hepatic steatosis, interleukin 18, 

macular degeneration, mitochondrial stress  

 

 

 



Introduction  

Carotenoids are 40-carbons lipophilic pigments, which can be synthesized from plants, 

bacteria and fungi [1]. Carotenoids can be classified into two groups: the xanthophyll, which 

contains oxygenated groups and the carotenes, which are only hydrocarbons without oxygenated 

groups and less polar than the xanthophyll [2, 3]. Carotenoids present several important 

functions in human physiology. First, carotenoids, such as zeaxanthin and lutein, are functioned 

as antioxidants and the filters of blue light. These macula pigments decrease chromatic 

aberration to protect retina against light induced oxidative stress [4, 5]. Second, well-known 

provitamin A carotenoids such as β-carotene are the precursors of retinoid, which are important 

for eye function [1].  

For most population of the world, provitamin A carotenoids are the major dietary source of 

vitamin A [6]. The vitamin A deficiency leads children blindness and increases children 

morbidity, especially in developing countries [7]. The amount of vitamin A produced from 

carotenoids is mainly based on the following two factors:  the absorption and metabolism of 

intake carotenoid [8, 9].  The mode of vitamin A production was proposed as the symmetric 

oxidative cleavage of provitamin A carotenoids, such as β-carotene, α-carotene and β-

cryptoxanthin. The gene encoding this symmetric cleavage enzyme β, β-carotene-15, 15’-

monooxygenase (BCMO1) was cloned from several species, including human, mouse, chicken 

and Drosophila [10, 11].  However, recent biochemical studies showed that provitamin A 

carotenoid can also be catalyzed into apocarotenoids, which is different from retinoid. This 

eccentric cleavage, which was conducted by β, β-carotene-9’, 10’-oxygenase 2 (BCO2, also 

named as BCDO2), was considered as an alternative way for vitamin A production [12, 13]. 

Different from BCMO1, BCO2 can also metabolize non-provitamin A carotenoids including 



lutein, xanthophyll [14, 15]. BCMO1 and BCO2 have different intracellular localizations as 

BCMO1 located in the cytoplasm [11], but BCO2 located in the inner mitochondrial membrane 

[16].  The different cellular compartments may reflect the different substrate specificity and 

physiological functions between BCMO1 and BCO2. Therefore, in this review, we will focus on 

the biochemical characterization and protein function of BCO2 in nutrition.   

Carotenoids metabolism by BCMO1 and BCO2 

Carotenoids are natural fat-soluble pigments synthesized in plants, bacteria and fungi, which 

play important role in animal and plant physiology. For carotenoid metabolism, the existence of 

carotenoid cleavage enzymes was discussed as early as 1965, however, the first cleavage enzyme 

VP14 was not identified until 1997 [17]. In animals, there are two carotenoids cleavage enzymes 

that have been identified. The first is BCMO1, which catalyzes the centric cleavage at 15, 15’ 

double bond of β-carotene, forming two molecules of all-trans retinal. These all-trans retinal can 

be irreversibly oxidized into retinoic acid or reversibly reduced into retinol [10, 11] (Fig. 1.). The 

second enzyme is BCO2, which participates in eccentric cleavage of β-carotene at 9’, 10’ and/or 

9, 10 double bond, forming apocarotenoid different from retinoid, including β-apo-10’-carotenal 

and β-ionone (Fig. 2.). Although BCMO1 functions as a major enzyme in vitamin A production, 

BCO2 is considered as an alternative pathway for forming vitamin A [18, 19]. Both BCMO1 and 

BCO2 are family members of nonheme iron oxygenase which are important in many 

physiological processes in animals and plants [20]. Beside BCMO1 and BCO2, the retinal 

pigment epithelium protein of 65 kDa (RPE65) was also included in this nonheme iron 

oxygenase family, which is crucial for vision [21, 22]. 



In recombinant human BCMO1 study, BCMO1 was found to cleave pro-vitamin A 

carotenoids, which contain at least one nonsubstituted β-ionone ring, such as α-carotene, β-

carotene, or β-cryptoxanthin, but fails to catalyze the cleavage of non-pro-vitamin A carotenoids, 

such as zeaxanthin, lutein or lycopene [11]. BCMO1 was found to be present in the intestinal 

mucosa, where it facilitates the cleavage of majority of the carotenoids. BCMO1 was also 

presented in the classical steroidogenic cells, which are sensitive to vitamin A deficiency [23]. In 

this way, BCMO1 was proposed to be present in extra-intestinal tissues as a backup system for 

local synthesis of vitamin A when intake was decreased [24]. In mice, BCMO1 was found to 

play key roles in the retinoid production [25]. In humans, a heterozygotic mutation in BCMO1 

gene led to the increased plasma levels of β-carotene and decreased plasma concentrations of 

retinoid [26].  

 

 

 

 

 

 

Fig. 1. Enzyme reaction mechanisms of BCMO1. BCMO1 catalyzes carotenoids by cleaving double 

bond at position 15, 15’ of carotenoids. BCMO1, β-carotene-15, 15’-monooxygenase. 

 

The expression and activity of BCO2 has been verified in humans [23], cattle [27], sheep [9] 

and chicken [28]. BCO2 is highly expressed in hepatocytes, which are important for uptake and 



processing of retinol [29]. Except β-carotene, lutein, lycopene, β-cryptoxanthin and zeaxanthin 

are all specific substrates for BCO2. For instance, BCO2 could cleave the acyclic carotenoids, 

lycopene. However, only the 13-cis- and 5-cis-isomers of lycopene could be cleaved by BCO2 

[30]. BCO2 was also found to cleave lutein at both 9’, 10’ and 9, 10 double bond, leading to the 

formation of β-ionone, β-apo-10’-carotenal and apo-10, 10’- carotenedialdehyde [31].  

Interestingly, the production of β-apo-10’-carotenal was significantly affected by the 

concentration of Fe2+. When the concentration of Fe2+ decreased from 78% to 67%, the 

formation of β-apo-10’-carotenal was significantly decreased, showing that iron was a necessary 

cofactor for this enzymatic cleavage [19]. Therefore, these researches demonstrate that BCO2 

displays much broader substrate specificity for carotenoids metabolism compared to BCMO1 

[16, 32, 33]. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Enzyme reaction mechanisms of BO2. BCO2, which is located on mitochondrial, catalyzes 

carotenoids by cleaving double bond at position 9, 10 and 9’, 10’ of carotenoids. BCO2, β,β-carotene-9’, 

10’-oxygenase 2. 

 

 



BCO2 genetics  

In the Entire genome of Drosophila, only BCMO1 gene is found, which is encoded by ninaB 

gene. However, in vertebrates, two other genes besides BCMO1, BCO2 and RPE65, are found. 

Based on the deduced amino acid sequence, BCMO1, BCO2 and RPE65 share approximately 

40% overall sequence identity [34]. Additionally, there are 4 histidine residues within the amino 

acid sequence, conserved in their positions the same as several highly conserved regions which 

can be viewed as protein family motifs [35]. According to functional assays in vitro, two tyrosine 

residues, Y326 and Y235, are reported to be important for the activity of mouse BCMO1. Y235 

is completely conserved in BCMO1, BCO2 and RPE65. However, Y326 is well conserved in all 

BCMO1 homologues and changed to tryptophan and glutamine in all RPE65 and most BCO2, 

respectively [36]. In human, BCO2 genomically map to chromosomal position 11q23.1. So far 

19 different splice variants of human BCO2 have been identified, 9 of which are protein coding 

(http: //www. ensemble.org). Among all of the 11 identified exonic SNPs in the open reading 

frame of human BCO2, only rs17113607 and rs10891338 have minor allele frequencies over 5% 

according to HapMap (http: //hapmap.ncbi.nlm.nih.gov). This indicates that splice variants could 

be important in introducing large inter-individual differences in BCO2 activity. For example, the 

intronic SNP rs2115753 at the locus of BCO2 was correlated with IL-18 concentrations [37].  

The overall span of human BCO2 gene spans 11 exons across 42.5 kilobases (kb) on 

chromosomal 11q23.1 (Fig. 3.). The coding sequence is 1424 bases (Accession Number is 

NM_001256400). According to the genetic analysis of the 5’ UTR domain of BCO2, several 

regulatory transcription factor binding sites are found in the BCO2 gene promoter section, 

including TATA-binding protein (TBP), activator protein family (AP), and signal transducer and 

activator of transcription family (STAT) family (Fig. 4.). AP is a family of transcription factors, 



composed of proteins including c-Jun, c-Fos, JDP and ATF. Regulation of the human BCO2 

gene expression by AP in response to a variety of stimuli, including growth factors, cytokines, 

stress, and viral and bacterial infections. AP also participates in several cellular processes, such 

as proliferation, differentiation, and apoptosis [38, 39]. These characteristics in human BCO2 

gene promotor region indicate that the human BCO2 gene may be a stress responsive gene and 

participate in several important cellular processes.  

 

Fig. 3. Human BCO2 gene (NM_001256400) structure. Exon-intron structure drawn based on 

approximate scale. Exon 2 (light blue) contains the translation start codon. Exon 11 (dark blue) contains 

the stop code and sequence tagged site (STS).  

 

Fig. 4. Regulatory transcription factor binding sites in the human BCO2 gene promoter. The human 

BCO2 gene is on chromosomal 11q23.1. Scale bar at top indicates 10 kb. Assessed from 

http://genome.ucsc.edu/.  

Compared with mouse BCO2 gene, in exon 3, there is an insertion of GGT AAA GCT GCA 

in the human BCO2 gene. This insertion DNA sequence is coding sequence, which codes amino 

acid sequence in human BCO2 protein. In this way, the major difference between human BCO2 

http://genome.ucsc.edu/


enzyme and mouse BCO2 enzyme is the existence of 4 amino acid residues GKAA in human 

BCO2. This specific insertion of GKAA is unique to primates and is absent in sheep, rats, mice, 

cows and ferrets according to the NCBI protein database search.  This GKAA sequence is also 

absent in mouse and human RPE65, which can cleave all-trans-retinyl esters [40].    

The effects of BCO2 gene mutation in animals 

The deficiency of BCO2 was found to be associated with carotenoids accumulating in the 

adipose tissues, such as subcutaneous adipose tissue [41], which leads to occurrence of yellow 

fat in sheep [42], cow [27] and chicken [28]. In the yellow fat experimental sheep, the BCO2 

coding region was sequenced and the nonsense mutation of BCO2 was found in nucleotide 

position 196 (c.196C>T). This nonsense mutation introduced a stop codon in position 66 of 

amino acid, while the full-length protein BCO2 in sheep contains 575 amino acids. It was 

hypothesized that the mutant in BCO2 gene forms a non-functional enzyme [43].  

In cows, BCO2 was associated with the yellow color of the adipose tissue and milk, which 

was mainly caused by deposition of carotenoids [27]. Association analysis showed that there 

were significant differences among cattle with different BCO2 genotypes in concentration of β-

carotene and color of subcutaneous fat. Compared with genotypes of BCO2 AA, GA and GG, the 

animals with AA had a higher concentration of β-carotene and more yellow fat than those 

animals with GG or GA genotype. The A allele which is in bovine BCO2 exon 3 is a nonsense 

mutation. As the full length of BCO2 protein in cattle is 530 amino acids, the change in this 

allele results in a different polypeptide with presumably a lost in BCO2 enzyme function 

presumably [44]. The data showed that there is a strong link between this BCO2 SNP and fat 

color in cattle. 



IL-18, found in Kupffer cells and macrophages, is an important pro-inflammatory cytokine 

which pays key roles in innate and acquired immunities. It has been shown that the plasma 

concentration of IL-18 is associated with different diseases, including atherosclerosis, 

cardiovascular diseases and type 2 diabetes [37, 45, 46]. In humans, variants at the BCO2 locus 

were associated with IL-18 levels, but not carotenoid levels in either plasma or macula [37]. A 2-

stage genome-wide association study among women of Women’s Genome Health Study 

(WGHS) and European ancestry from the Nurses’ Health Study (NHS) was performed to test this 

association between BCO2 and IL-18. In the stage of discovery, 7 SNPs located at the IL18-

BCO2 locus were significantly related with concentrations of IL-18. According to these 

combined analyses, SNPs rs2115763, rs7106524 and rs1834481 were found to show significant 

association between the BCO2 and IL-18 gene. SNP rs2115763 was found to be the strongest 

among these three SNPs. Further selection analysis showed that SNPs rs1834481 and rs2115763 

were associated with IL-18 levels independently. Variation of 2.9% plasma levels of IL-18 could 

be explained together by these 2 SNPs. SNP rs2115763, which presents the strongest association, 

is located in intron 2 of the BCO2 gene and also in the same location of the IL-18 gene [37]. It is 

reported that IL-18 level was significantly lower in the BCO2 knockout mice [30]. However, the 

underlying mechanism between the IL-18 level and SNP rs2115763 in the BCO2 gene is 

unknown. SNP rs2115763 might regulate transcription of IL-18 gene directly, as the BCO2 gene 

is upstream of the IL18 gene. Another possibility is that SNP rs2115763 is an indicator of IL-18 

gene functional mutation, affecting plasma levels of IL-18 [45, 46]. 

The function of BCO2 in Nutrition 

Genetic studies in sheep, cows and chickens revealed that BCO2 gene mutations could alter 

homeostasis of carotenoid metabolism. This was also confirmed in a mouse model. In 



accordance with the subcellular location of BCO2 (in the inner mitochondrial membrane), 

carotenoids were found to be accumulated in mitochondria and impair respiration [16]. This 

process leads to cellular oxidative stress and alteration of signaling pathways related to cell 

proliferation and survival. Therefore, BCO2 functions as a key regulator of preventing the 

adverse effect caused by excess carotenoids. However, we are still at the early stage of 

understanding the importance of BCO2 in health and disease. The advanced knowledge of BCO2 

function might help us to better understand the biochemical, developmental, and physiological 

roles of carotenoids. 

Function of BCO2 on eye 

Carotenoids, such as lutein and zeaxanthin, accumulated in the retina and circulating system, 

were supposed to be associated with common eye diseases, such as diabetic retinopathy, age-

related macular degeneration (AMD) and so on [9, 47, 48].  The researchers tested in various 

genes related to zeaxanthin and lutein status for association with AMD in Age-Related Eye 

Disease Study (CAREDS). 424 SNPs from 24 candidate genes were genotyped in 1663 of 2005 

CAREDS participants. After adjusting for ancestry and age, 24 variants from five genes 

(BCMO1, BCO2, NPCL1L1, ABCG8 and FADS2) were related to AMD independently. SNP 

rs2250417 in BCO2 is one of the strongest statistical significance for carotenoid-candidate genes 

association with AMD. The two minor alleles for SNP rs2250417 in BCO2 were accounted for 

almost increasing 50% risk for AMD. Carotenoids with hydroxylated β-ionone ring including 

cryptoxanthin and lutein and zeaxanthin are substrates for BCO2, which is located in 

mitochondrial. As discussed above, mutations of BCO2 might cause accumulation of zeaxanthin 

and lutein in skin of livestock to form yellow fat. However, in this present study, the variants of 

BCO2 were not related to concentrations of lutein and zeaxanthin in the macular pigment and 



blood. This finding suggested that BCO2 mutations had tissue specific influences. What’s more, 

the demonstrated function of BCO2 in inhibiting oxidative stress indicated that BCO2 could be 

associated with the lower damage and oxidative stress to mitochondrial in retinal pigment 

epithelium [49]. Variants of BCO2 might also be associated with AMD through mechanisms 

involving an impact on the activity of the enzymes involving in inflammation and lipid 

homeostasis [50, 51]. One of these common variants, rs2115763 in BCO2, is weak linked with 

rs2250417, which was also reported to relate with AMD in this study [34, 52]. However, these 

researches were still at their early stage. 

Knock Down of BCO2 Causes Anemia and Apoptosis of Blood Cells 

To further understand the importance of BCO2 in development, mRNA was used to knock 

down BCO2 gene in zebrafish [53]. No defects in growth pattern or obvious malformations of 

organ systems, such as eyes and brain, were observed in BCO2 knock down (BCO2 -/-) 

morphants [14]. However, the red blood cells in BCO2 -/- morphants were no longer red and the 

blood filling rate of heart was also reduced in BCO2 -/- morphants compared with wild type 

groups. All these results showed that knock down of BCO2 caused anemia. Although the 

primitive erythropoiesis was not affected in BCO2 -/- morphants, the expression of a later 

erythrocyte differentiation marker, embryonic α-globin (hbae3), was increased. During the same 

time, fragmented nuclei were also presented in erythrocytes of BCO2 -/- morphants, indicating 

that occurrence of apoptosis of red blood cells [54, 55]. It was also reported that the 

differentiating blood cells were more sensitive to apoptosis when BCO2 was deficient. Thus, 

BCO2 is associated with the development of red blood cells [14].   

 



BCO2 Is Related to Carotenoid-induced Oxidative Stress  

Lobo GP and his colleagues showed that the protection of cells against apoptosis induced by 

carotenoid is strictly dependent on BCO2 enzymatic function [56]. After transfecting with 

murine BCO2 gene, transfected cells could transiently express BCO2. Compared to control cells, 

the mitochondrial membrane was more polarized in transfected cells. Intrinsic apoptotic markers 

were assessed in these transfected cells after treatment with carotenoid. Activated caspase-3, 

which is a mediator of intrinsic apoptosis, was not changed in the transfected cells compared to 

control cells. Conversely, knock down of BCO2 in cells caused increased ROS production when 

cells were treated with carotenoids. More importantly, these BCO2 -/- cells showed initiation of 

apoptosis after incubation with carotenoid for 2 hours [56, 57]. Thus, BCO2 expression is 

associated with cellular oxidative stress (Fig. 5.). 

 

Fig. 5. The Role of Mitochondrial BCO2 in Cells. In cells that express endogenous BCO2, carotenoids 

can be degraded into apocarotenoids by BCO2. The apocarotenoids can then be metabolized by RDH13 

into corresponding apocarotenols. These apocarotenols might then be metabolized by peroxisomal α-

oxidation into all-trans-retinal or apocarotenyl esters. In cells without expression of BCO2, carotenoids 

could accumulate in the mitochondria. This kind of accumulation would interfere with respiration and 

produce ROS. These changes could cause cytochrome C release and then activate the caspase and 

eventually lead to cell apoptosis.  



BCO2 Is Important in Prevention of Hepatic Steatosis  

A high fat diet induces hepatic steatosis in mice through a possible mechanism of increasing 

ROS levels and suppressing mitophagy and mitochondrial biogenesis. Hepatic concentration of 

zeaxanthin and lutein and expression of BCO2 in hepatic mitochondria were lowered in mice fed 

with a high fat diet. These results suggested that BCO2 might be a stress responsive gene in mice 

[58]. BCO2 knockout mice also showed lipid accumulation in liver [14]. However, elevated 

expression of BCO2 attenuated the hepatic steatosis. All these results indicated that BCO2 

protein is important in prevention of hepatic steatosis. Knockout of BCO2 might cause 

mitochondrial dysfunction in the liver and increased hepatic cell susceptibility to oxidative stress 

[59-61]. 

BCO2 Modulates the Impact of Dietary Lycopene on Hepatic Nuclear Receptor-, Stress- and 

Metabolism-related Gene Expression  

Lycopene, mainly found in dietary tomato, is one of the most abundant carotenoids in human 

plasma. Recently, lycopene has attracted more attention because of its impact on a decreased risk 

of certain chronic diseases, including cancers and cardiovascular diseases [62].  Therefore, large 

amounts of work have been expended to study the biological properties of lycopene. Within the 

past few years, apo-lycopenoids, which are the major derivatives of lycopene cleaved by BCO2, 

were found to present several biological benefits [63].  The lycopene induced effects on nuclear 

receptor expression was affected by the BCO2 presence. For instance, the tomato diet-induced 

up-regulation of androgen receptor (Ar) was dependent on the presence of BCO2. Increased 

hepatic expression of Ar has been linked to lower risk of hepatocellular carcinoma [64], 

indicating a role of BCO2-mediated expression of hepatic Ar by dietary tomato. Lycopene-



induced down-regulation of 7 nuclear receptors was also dependent on BCO2 status. The 

impacted nuclear receptors and coactivators play diverse roles, including mitochondrial 

metabolism (Ppargc1b) [65], carcinogenesis (Nr3c1, Esrra) [66], liver metabolic regulation 

(Esrra) [67], inflammation and immunity (Nr3c1) [68], gene transcription silencing by histone 

deacetylation (Hdac3), heme-mediated transcription repression (Nr1d2) [69] and mediated of 

steroid receptor–driven gene transcription (Ncoa2 and Ncoa4). The effect of lycopene diet on 

metabolism- and stress-related genes was also related to BCO2. However, the pattern is not in 

consistent with the nuclear receptor-related genes [30, 70].  

Discussion 

Carotenoids, such as zeaxanthin, lutein and their metabolites, meso-zeaxanthin, are macular 

pigments of human retina, which are known to function as antioxidant and light-screening 

players in nature [71-73]. The chemically and spatially accumulation of high levels of 

xanthophyll in the retina is a specific feature of the primates compared with other mammals, but 

the biochemical mechanism for this unique feature is unclear. [5, 74, 75]. To better understand 

the underlay mechanism, it is hypothesized that none BCO2 expression, or enzyme activity of 

BCO2 is inactive in primates’ retina. However, studies had already shown that BCO2 is 

expressed in both human and mouse retina. Therefore, enzyme activity of human BCO2 was 

investigated by cell-based carotenoid cleavage assay. According to this study, BCO2 was shown 

as an inactive carotenoid cleavage enzyme. Another study showed that xanthophyll carotenoids 

highly uptake by human ARPE-19 cells, however, no cleavage products of xanthophyll were 

found in these cells [76].  Moreover, no eccentric cleavage products were found when human 

subjects were given labeled supplements of β-carotene [77, 78]. No association between human 

BCO2 SNPs and optical density of macular pigment was reported, which also imply that human 



BCO2 cannot catalyze macular pigments.  Moreover, human BCO2 was demonstrated with the 

inability to bind with appropriate carotenoids substrates in the active site. This might be another 

reason that human BCO2 is inactive in human retina. Therefore, consistent expression of BCO2 

in the human retina together with carotenoid cleavage enzyme inactivity indicates that BCO2 

may serve as unknown enzymatic or regulatory function [40].  

We are still at the early start of understanding importance of BCO2 in health and disease. As 

BCO2 located in the inner mitochondrial membrane [16], BCO2 might impact on normal 

mitochondrial function through target on the ETC/OXPHOS, including inhibit the activity of 

different complexes, increase the proton leak or decrease the ATP production efficiency. As 

discussed above, knockout of BCO2 in liver could increase the production of ROS [14]. 

Recently, it has been proposed that mitochondria could prevent the ROS production through 

forming supercomplexes [79]. There is accumulated evidence demonstrating that mitochondrial 

respiratory chain complexes are associated to form different supermoleculars, known as 

supercomplexes [80, 81]. Recent evidence supports the function of these supercomplexes, 

including (1) the formation of mitochondrial respiratory chain supercomplexes could minimize 

the production of ROS which is generated from complex I [79], (2) the mitochondrial respiratory 

chain supercomplexes may intergrate the cytochrome c and coenzyme Q to induce kinetic 

advantage via facilitating efficient transportation of electrons through substrate channeling [82], 

(3) mammalian complex I is assembled in mitochondrial respiratory chain supercomplexes, 

which help to stable the complex I [83, 84]. Thus, it is interested to investigate the association 

between BCO2 and formation of mitochondrial respiratory chain supercomplexes. This might 

give us the reason that BCO2 knockout could cause increasing ROS production.  
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