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I . INTRODUCTION

In many applications, one would like to compute a network

function in symbolic form in order to study the effect of parameter

variations. Topological formulas, for network functions are very

convenient for this purpose [1-15] . They are more efficient than

the classical methods involving calculating the inverse of a

nodal or mesh matrix because the network functions are generated

without handling terms which ultimately cancel. Also, the formu-

las are easily adapted to machine calculations. These formulas

require that one list all trees of a linear graph, and in the

case of networks containing active elements or transformers, com-

pute the algebraic signs associated with certain tree pairs. Many

methods of finding trees and their signs have been developed [7, 8,

10, 12, 13, 15], however there remains an urgent need for more

efficient methods.

In this report, the problem of finding trees and their signs

is approached by means of compound matrices. The principal advan-

tages of the compound method are a compact notation and high de-

gree of organization. In active network problems, the signs of

the appropriate tree-pairs are generated as part of the tree-

finding procedure, a separate calculation being unnecessary.

The compound method organizes the tree-finding problem in such a

manner that one can readily find specified subsets of the set of

trees of a graph. For example, it is quite easy to find the set
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of all trees which contain a given set of edges and do not

contain a given set of edges.

It is well-known that in the f-cut-set matrix, Q f [U Q] ,

the nonzero entries of Q are in one-to-one correspondence with

trees of distance one from the tree t used to determine Q f [13].

Tree t is called the starting tree [13] since all other trees

are found using this tree. The new method shows that the non-

(k)
zero entries of Q , the kth compound of Q, are in one-to-

one correspondence with trees of distance k from the starting

tree. Thus, all the trees of a linear graph can be found by

inspection of Q and a certain number of its compounds. The

information necessary for finding the relative signs of the

trees is also included in the compounds.

The basic compound method is not a particularly efficient

tree-generating procedure; however, some methods for reducing

the number of necessary calculations and their complexity have

been developed. The principle of pivotal condensation can be

used to calculate the mth compound in terms of minors of order 2

of the m-1 compound and pivot elements from the m-2 compound.

This makes it possible to locate all trees of a graph by using

only determinants of order two. The number of calculations can

be reduced by properly choosing the starting tree and by an

inspection of the cotree of the starting tree. Perhaps most

important, methods of reducing the number of calculations in

the compound method are often applicable to the more efficient

tree-finding procedures. That is, the insight and overview



provided by the less-efficient compound method leads to simpli-

fications of the more efficient methods which are not obvious

when these methods are studied alone.
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II. BASIC DEFINITIONS AND THEOREMS

This chapter consists of a list of definitions and theorems.

The items in the graph theory section are all well-known in the

circuit theory literature. This list is limited to those items

which are required for a lucid development of the new concepts

contained in subsequent chapters. Any terms and concepts not

specifically defined here may be found in [9], The items in the

section on compound matrices are relatively new to the circuit

theory literature. All of these may be found in the mathematics

literature, with the exception of Theorem 2-13, which is proved

here for the first time and illustrated by means of an example.

The application of this theorem to network problems is deferred

until Chapter IV. The proofs of all other theorems stated in this

chapter may be found in the references cited.

1. Graph Theory

Definition 2-1 [9] A line segment together with distinct

endpoints is an edge .

Definition 2-2 [9] A vertex is an endpoint of an edge.

Definition 2-3 [9] A vertex and an edge are incident with

each other if the vertex is an endpoint of the edge.

Definition 2-4 [9] The degree of a vertex is the number of

edges incident at the vertex.

Definition 2-5 [9] A path is a sequence of edges of a graph

having exactly two (terminal) vertices of degree one and all

other (internal) vertices of degree two.



Definition 2-6 [9] A graph is connected if for every vertex

pair (v. ,v.) in G, there exists a path in G having v. and v. as

terminal vertices.

Definition 2-7 [9] The length of a path is the number of

edges contained in the path.

Definition 2-8 [9] The distance , d(v.,v.), between vertices

v. and v. of a connected graph is the length of the shortest path

in the graph having v . and v . as endpoints

.

Definition 2-9 [21] For a fixed vertex v of a connected graph

G, the integer

• R(v) = Max d(v,v.

)

v. eG

where . _ denotes maximizing the distance over all vertices of
V. £(j

G, measures the distance from v to the vertex most remote from v.

It is intuitively clear that a vertex is relatively central if R(v)

is relatively small. Then it is natural to call

R - Min R(v)
veG

the radius of G, and to refer to any vertex v
Q

as a center of G if

R(v
Q

) = R
Q

It is well-known that the center of a graph is not unique.

Definition 2-10 [21] The diameter of a connected graph is

the maximum distance between pairs of vertices. That is



Diameter = Max d(v. ,v.)
V^V.eG 1 D

Definition 2-11 [9] An oriented edge is an edge with an

orientation assigned by ordering its vertices.

Definition 2-12 [9] A graph in which every edge has been

assigned an orientation is directed graph .

Definition 2-13 [21] A graph is said to be simple if it con-

tains no parallel edges.

Definition 2-14 [21] A simple graph is said to be complete

if every distinct pair of vertices are joined by an edge. Further-

more, the total number of edges e of a complete graph having v

vertices is given by

v(v-l)
e 2

Definition 2-15 [9] A tree is a connected subgraph of a

connected graph which contains all the vertices of the graph but

does not contain any circuits.

Definition 2-16 [9] The nullity y of a graph with v vertices,

e edges and p maximal connected subgraphs is defined byy=e-v+p.
For a connected graph, p e - v + 1.

Definition 2-17 [9] The rank r of a graph with v vertices

and p maximal connected subgraphs is given by r = v - p. For a

connected graph, r = v - 1.

Theorem 2-1 [9]

A subgraph G of a connected graph G can be made part of
s

tree if and only if G contains no circuits.
s



Definition 2-18 [9] Two trees of a connected graph G having

v vertices are at distance k when there are exactly v - 1 - k

edges of G common to the two trees of G.

Definition 2-19 [9] A cut-set is a set of edges of a connected

graph G such that the removal of these edges from G reduces the

rank of G by one , provided that no proper subset of this reduces

the rank of G by one when it is removed from G.

In discussing cut-sets, it is conceptually convenient to re-

gard an edge as open, that is, as not including its endpoints.

Thus any isolated vertices of a graph are included in the number

of maximal connected subgraphs. This viewpoint applies to all

discussions which follow.

Definition 2-20 [9] The fundament system of cut-sets with

respect to a tree t is the set of v-1 cut-sets, one for each

branch, in which each cut-set includes exactly one branch of t.

Definition 2-21 [9] A graph is planar if it can be mapped

onto a plane such that no two edges have a point in common that

is not a vertex. Otherwise, the graph is nonplanar .

Definition 2-22 [9] Graph G~ is a dual of G, , if there is a

one-to-one correspondence between the edges of the two graphs G,

and G
2

such that if H, is any subgraph of G, and H
2

is the comple-

ment of the corresponding subgraph of G
2 , then

r
2

= R
2

- n
x

where r
2

and R
2

are rank of H~ and Go » respectively and n, is the

nullity of H. .
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Theorem 2-2 [9]

Let G
2

be a dual of G. , then

R. = N
2

and R
2

= N.

where R, and R
2

are ranks of G, and G
2

, respectively, and N. and

N
2

are the nullities of G. and G
2

, respectively.

Theorem 2-3 [9]

A graph has a dual if and only if it is planar.

Let G be a connected graph of v vertices and e edges.

Definition 2-23 [9] The incidence matrix, A = [a. .] of G
a 13

is a matrix of v rows and e columns such that for an undirected

graph

:

a. . = 1, if edge j is incident at vertex i,

a. . = 0, if edge j is not incident at vertex i.

For a directed graph:

a. , = 1, if edge j is incident at vertex i and is

oriented away from vertex i

,

a. . = -1, if edge j is incident at vertex i and is

oriented toward vertex i f

a. . 0, if edge j is not incident at vertex i.

Theorem 2-4 [9]

The rank of the vertex matrix A of G is v - 1.
a

Corollary 2-4 [9]

If any row of the matrix A of G is deleted, the re-
a

suiting matrix A has a rank of v-1. The matrix A is also referred

to as the incidence matrix of G.



Theorem 2-5 [9]

The determinant of every nonsingular submatrix of A is

1 for an undirected graph, + 1 for a directed graph.

Theorem 2-6 [9]

A square submatrix of A of order v-1 is nonsingular if

and only if the elements corresponding to the columns of this

submatrix constitute a tree of G.

Corollary 2-6 [9]

The trees of G are in one-to-one correspondence with the

nonsingular submatrices of order v-1 of A.

Definition 2-24 [9] The cut-set matrix Q = [q. .] has one row
a 13

for each possible cut-set and one column for each edge, and is such

that for an undirected graph:

q. . = 1, if edge j is in cut-set i,

q. . = 0, if edge j is not in cut-set i.

For a directed graph:

q. . 1, if edge j is in cut-set i and the orientations

agree

,

q . . = -1, if edge j is in cut-set i and the orientations

are opposite,

q. . = 0, if edge j is not in cut-set i.

Theorem 2-7 [9]

For every submatrix Q of v-1 rows and e columns and of

rank v-1 selected from a cut-set matrix Q , the nonsingular sub-

matrices of Q of order v-1 are in one-to-one correspondence with

the trees of G.
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Definition 2-25 [9] Let t be a tree of a connected graph G.

The f-cut-set matrix Q f
with respect to t is a cut-set matrix Q

such that each row of Q f
corresponds to the unique cut-set defined

by a branch of t. By ordering the columns according to branches

first and then chords, Q f can always be written in the form

Qf
- [U Q]

where U is a unity matrix of order v-1.

Theorem 2-8 [9]

If the columns of the matrix A and Q f are arranged in the

order of branches and chords for the tree t for which the funda-

mental systems are formed, and then partitioned as

A = [A
t

A
c

) and Q
f

- [U Q]

then

Q, - A.
" 1 A and Q - A." 1

A,

Theorem 2-9 [13]

If Q f
= [U Q] is an f-cut-set matrix of a connected

graph G with respect to a tree t, then the nonzero entries of Q

are in one-to-one correspondence with the trees of the graph of

distance one from t.

2. Compound Matrices

Definition 2-26 [18] Let M be a matrix of order m x n, and

let l(m, n) denote the smaller of the numbers m and n for m ^ n;

with l(m, n) = n for m = n. Let ( ? ) denote the number of distinct
s
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combinations of p objects taken s at a time. The kth compound of

M, M , 1 < k < Km, n) , is the matrix of order ( ? ) x ( ? )

having all minors of M of order k for elements. All minors formed

from the same group of k rows (columns) of M are placed in the same

(k)
row (column) of M and arranged in lexical order, that is, the

same order in which words are arranged in a dictionary or lexicon.

By definition, M = M. It is easy to prove that for a

matrix M and scalar a,

(aM)
(k) = a

k M (k)
. (2-1)

(k)
Definition 2-27 [18] The kth adjugate compound , adj M, of

a square matrix M of order n is formed by replacing every element

(k)
of M by the algebraic complement associated with that minor in

Laplace's expansion of |M| and by transposing the resulting matrix.

Clearly, adj
(k) M is of order ( ? ) x ( £ ), with adj

(1) M being the

ordinary adjoint matrix.

Theorem 2-10 [18]

If M and N are matrices of order m x n and n x p, re-

spectively, then

( M N )

(k) = M (k)
N

(k)
, 1 < k < Km, n, p) , (2-2)

where Km, n, p) is the smallest of the numbers m, n, and p.

Theorem 2-11 [18]

If M is square of order n, then
,

(adj M)
(k) = (det M)

k_1
adj

(k)
M, 1 < k < n. (2-3)
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This holds even when M singular provided then when k = 1 the inter-

pretation (det M) = 1 is used.

Theorem 2-12 [19]

If M is square of order n, then

[M
(k)

] ii j.1 = (~1)
S

[adj
(n ~k)

M] (2-4)
n
k
-q+l,n

k
-p+l J J

p,q

where the symbolism [N] . . denotes the element in row i and column

j of matrix N, and where n, is a more concise expression for ( . )

.

In (2-4) , the left side is some particular minor of M of order k;

s denotes the sum of the row and column indices of this minor in M .

In Bryant's paper this sign is incorrectly associated with the row

and column indices of the compound element.

The following theorem relates the higher compounds of a non-

singular matrix to the lower compounds of the inverse of the matrix.

Thus the twelfth compound of a matrix M of order thirteen, for

example, can be found from the first compound of M~ , obviating the

need for calculating minors of M of order twelve.

Theorem 2-13

Let two nonsingular square matrices M, and M~ of order

n satisfy M, M~ U, where U denotes a unity matrix. Then

(M{
n"k)

1 = <-l)
s

(det M-)"
1

[M.
(k)

l ., n .. (2-5)
1 p,q 2 2 n

k
-q+l,n

k
~p+l

for 1 <_ k < n-1.

Proof: Since M, M
2

U,

J^ - M^ 1
- (det M^" 1

[adj Mj] . (2-6)
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Taking the (n-k) th compound of both sides of (2-6) gives

M<
n "k)

= (det M
2
)- (n"k)

[adj M
2 ]

(n"k)
. (2-7)

By Theorem 2-11,

M<
n"k)

= (det MJ- (n"k)
(det MJ^"1

[adj
(n-k) Mj

= (det M^ 1
[adj

(n"k)
M
2

] .

2-

(2-8)

Substituting (2-4) into (2-8) gives

= (det M )

_1
(-l)

S
[M

(k)
]2 n, -q+l,n. -p+1

(2-9)

which completes the proof.

In words, M, can be obtained by reversing the order of

both rows and columns of kth compound of the transposed matrix

M
2 , and by then multiplying each element with an appropriate signed

scalar multiplier.

As an example, consider the following two matrices M, and M,

,

which satisfy the relation M
1
M
2

U, with det M
2

= yi- .

M.
(1) _

f g h i j

a [l 3 3 2 1

b 1 4 3 3-1
c 1 3 4 1 1

d 1 1 11-1
e 1 2 -1 2 2

(2-10)
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a' b' c' d' e'

f * 30 -20 -15 25 -5

g' 30 -11 -18 7 -8

4» . l£ h- -30 12 21 -9 6 (2-11)

i' -15 12 6 -9 6

J' 15 -7 -6 -1 -1

According to Theorem 2-13, the thi.rd compound of M can be

found from the second compound of 1^
2 , by the following procedure.

First find the transpose

f

'

g' h' i' J
1

a' 30 30 -30 -15 15
i

b" -20 -11 12 12 -7

MT = (—) c'w
2

v
15 ; C -15 -18 21 6 -6 • (2-12)

d' 25 7 -9 -9 -1

e' -5 -8 6 6 -1

The second compound is then
•

f'g' f'h' f'i' f'j" g'h' g'i' g'j' h'i' h'j 1 i'j'

a'b' 270 -240 60 90 30 195 -45 -180 30 -75"

a'c' -90 180 -45 45 90 -90 90 135 -135

a'd" -540 480 105 -405 -60 -165 -135 135 165 150

a'e' -90 30 105 45 -60 60 90 -90 -60 -75

2
(15)

2 b'd'

195 -240

135 -120

60

-120

15

195

-15

15

150 -60

15 60

-180 75 -30

-75 -75
•

b'e' 105 -60 -60 -15 30 30 -45 30 30

c'd' 345 -390 -15 165 15 150 60 -135 -75 -60

c'e' 30 15 -60 -15 60 -60 -30 90 15 30

d'e' -165 105 105 -30 -30 -30 -15 15 15
4

(2-13)
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Reversing the order of the rows and columns of <«*> 12) gives

,

i'j' h'j' h'i' g'j' g'i' g'h' f'j' f'i' f'h' f'g'

d'e' 15 15 -15 -30 -30 -30 105 105 -165
s

c'e

'

30 15 90 -30 -6 60 -15 -60 15 30

c'd' -60 -75 -135 60 15 15 165 -15 -390 345

b'e' 30 30 -45 30 30 -15 -6 -60 105

c K
(15)'

b'd'

^b'c'

-75

-30

-75

75 -180

60

-60

15

150

15

-15

195

15

-120

60

-120 135

-120 195
•

a'e' -75 -6 -90 90 60 -60 45 105 -240 -90

a'd' 150 165 135 -135 -165 -60 -405 105 30 -540

a'c' -135 135 90 -90 90 45 -45 180 -90

a'b' -75 30 -180 -45 195 30 90 60 -240 270

(21-14)

Multiplying this matrix by (det M^" 1 = 15 , and appropriately

adjusting si.gns gives

i'j' Yi'j' hi'i' g'j' gf'i' g •h' f •j' f •i' f •h' 1
:.
g

,

d'e' 1 -1 -1 2 -2 2 7 -7
>

-11

c'e' -2 1 -6 2 -4 -4 -1 4 1 -2

c'd' -4 5 -9 4 -10 1 •-11 -1 26 23

b'e' 2 -2 -3 -2 2 1 -4 4 7

b'd' 5 -5 -4 1 -1 13 8 -8 -9 . (2 -15)

b'c' -2 -5 -12 -4 10 -1 -1 4 16 13

a'e

'

5 -4 6 -6 4 4 3 -7 2 6

a'd' 10 -11 9 -9 11 -4 27 7 -32 36

a'c' -9 -9 -6 -6 -6 3 3 12 6

a'b'
>

"5 -2 -12 -3 13 2 -6 4 16 18

tJsing t.he definition of the third compound (3)
, M^ is found [ by

direct: calcu lation to be
«
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fgh fgi fgj fhi fhj fij ghi ghj gij hij

abc 1 -1 -1 2 -2 2 7 -7 -11

abd -2 1 -6 2 -4 -4 -1 4 1 -2

abe -4 5 -9 4 -10 1 -11 -1 26 23

acd 2 -2 -3 -2 2 1 -4 4 7

ace 5 -5 -4 1 -1 13 8 -8 -9

ade -2 -5 -12 -4 10 -1 -1 4 16 13

bed 5 -4 6 -6 4 4 3 -7 2 6

bee 10 -11 9 -9 11 -4 27 7 -32 36

bee -9 -9 -6 -6 -6 3 3 12 6

cde -5 -2 -12 -3 13 2 -6 4 16 18

(2-16)

which is exactly the matrix (2-15)

.

At this point, the row and column labeling of the matrices

serves only to relate the elements of the compounds to the appro-

priate minors and to clarify the row and column operations. After

the applications of Theorem 2-13 are developed in Chapter IV, it

will be helpful to review this example and make the following

additional observation. The row (column) label of any entry in

(2-16) may be found by removing the primes from the corresponding

label in (2-15) and by then complementing this result with respect

to the set of row (column) labels of (2-10).
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III. COMPOUND MATRICES APPLIED Tp THE TREE GENERATING PROBLEM

In this chapter, compound matrix theory is applied to the

problem of finding the trees of a connected graph. It is first

proved that there exists a one-to-one correspondence between the

nonzero entries in the kth compound of a certain matrix Q and

the trees of distance k from a known starting tree of the graph.

It is also proved that inspecting all of the defined compounds of

Q is sufficient for finding all trees of the graph. Since finding

trees by this method involves calculating minors of Q, an upper

limit on the number of calculations necessary to find all of the

trees is derived. Finally, expressions are given for the number

of elements contained in certain subsets of the set of all trees

of a graph.

1. Finding Trees By The Compound Method

Let G be a connected linear graph of rank r and nullity y

,

and let t be a tree of G. The r rowed incidence matrix of G may

be written in the partitioned form,

A = [A
t
A
c ] (3-1)

where the columns of A. correspond to branches of t.

The f-cut-set matrix with respect to t is then,

Qf
= [U Q] = [U A*

1 A
c ] (3-2)

where Q is of order r x p.

Theorem 3-1

All trees of G can be found without duplication by inspec-

tion of the nonzero elements in compounds one through l(r,u) of Q.



18

Proof:

Using (3-2) and Theorem 2-10,

(k)q<*> - K1 V
= (det A

t
)"k (adj A

t )

(k) A
c
(k)

. (3-3)

Using Theorems 2-5 and 2-11, (3-3) becomes

Q
(]C)

= (det A
t

) (adj
(k)

A
t

) A
c
(k)

. (3-4)

(k) (k)Now examine element [Q ].. of Q in (3-4). By Definition

(k)2-27, the elements of the ith row of (adj x A ) are the algebraic

complements of the minors of order k formed from the ith set of

k columns of A., the minors being arranged in lexical order.

(k)By Definition 2-26, the elements in the jth column of A

are the minors of order k formed from the jth set of k columns of

A , the minors again being arranged in lexical order. Thus,

(k)
[Q L is (det A.) times the determinant of that matrix, A ,

formed by replacing a certain k columns of A by a certain k

columns of A . By Theorem 2-6, A is nonsingular if and only if

its columns correspond to a tree of G. Furthermore if the columns

of A correspond to a tree of G, t is of distance k from t. Thus,

there is a one-to-one correspondence between the nonzero elements

(k)
in Q and the trees of G of distance k from t. Because

of this correspondence, all trees of distance k can be found

without duplication. To see that all trees of G may be

found from compounds one through l(r,y) of G, first consider

the case r <_ y, where l(r,vi) = r. A tree of greatest possible

distance from t is found by replacing all r branches of t by chords,
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Thus, the greatest possible distance is r. Now consider the case

r > y, where l(r,u) - u. Since t has only u chords, every other

tree of G must contain r-y branches of t. Thus, the greatest

possible distance of a tree from t is y. This completes the proof,

The preceding derivation holds for matrices defined over

either the field of real numbers or the field modulo 2. In

passive network problems it is convenient to deal with undirected

graphs using modulo 2 algebra. In active network problems, the

algebra of real numbers must be used. The following examples

illustrate how trees are found for both undirected and directed

graphs.

Example 3-1. Consider the graph of Figure 3-1. Let the starting

tree be t = abe. Then

(1)

Q

Q

(2) _

(3)

c d f

a 1 1

b 1 1 1

e
La

1 1

cd cf df

ab 1 1

ae 1 1 1

be
m
1 1

cdf

abe [ 1 ]

(3-5)

(3-6)

(3-7)

The algebra of the field modulo 2 was used to find the

entries of compounds Q
( and Q

(3)
. A nonzero entry such as the
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(b,c) entry of Q corresponds to the tree ace of distance one

from t which is obtaine by replacing branch b of t by edge c

of the cotree. Using t. is procedure, the other six trees of

distance one from t ar found to be

:

abc, dbe, ade, fbe, afe, and abf.

(2)Similarly, from Q the seven trees of distance two from t are

found to be

:

cde, cbd, acd, cfe, cbf, dbf, and adf.

.(3)From Q
w cdf is found to be a tree of distance three from t.

Therefore the complete set of trees of the graph are the sixteen

trees listed above including the starting tree t.

Example 3-2. Consider the directed graph of Figure 3-2. Let

adegh be the starting tree t. Then

(1)

b c f i j

a I" 0-1-1
d 110-1-1
e -1 -1 1

g 1-1-1
h 0-100

(3-8)
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be bf bi bj cf ci cj fi fj ij

ad 1 10 1 1 o o
v

ae 0-1-1 0-1 -1110
ag 110
ah 110

Q
(2) m de 0.1-1-1 1-1 -1110

(3-9)

dg 1-1-1 1-1 -1110
dh 0-1 0-1 110
eg 0-1 1 1-1 1 1-1-1
eh 1 1

gh 0-1-1

bdf bci bej bfi bf

j

bij cfi cf j cij fij

ade 0-1-1 0-1-1 >

adg 0-1-1 0-1-1
adh 11 110
aeg 11 110

Q
(3) m aeh 0-1-1 0-1-1

(3-10)

agh

deg

deh 0-1-1 0-1-1
dgh 0-1-1 -1 -1

egh 1 1 110
i

(2)In Q , the nonzero element in position (ae, bi) denotes the

tree formed by replacing branches a and e of t by chord s b and i;

that is, tree bdigh which is of distance two from t. In this

manner, all trees of G may be found.
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2. Upper Limit On Number of Minors

It was shown in the last section that all of the trees of

a graph can be found from a starting tree t by calculating com-

pounds one through l(r,y) of Q. Assuming Q is given, an upper

limit on the number of determinants which must be calculated

to find all of the trees is found by calculating the number, n,

of elements contained in compounds two through l(r,y) of Q. By

the definition of the kth compound,

Kr,u)
(3-11)I (>) <£> .

k=2

By the Binomial Theorem, the sum of the products may be found

as follows. Assume that r < p. Then, for a pair of parameters

a and b,

(a + b)
r+lJ

- (a + b)
r

(a + b) M
(3-12)

which gives

T <T> aV- . I
(J,
.V* I (», aV-y . (3 .13)x~ u k=0 y=o y

From both sides of (3-13), select the term involving a
z
br+v

~ z

Note that this implies z = k+y on the right side of (3-13) . Then

Thus
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l*t*) = I <£> ( z!k ) • (3-15)
Z

k=Q
K Z K

For the case that r > y, the symbols for r and y are inter-

changed and the derivation is repeated. Using these results and

letting z=r or z=y gives

(
r+W) m

(

r+y
}

m
1(r '* }

(

r
} (

y
} # (3 „16)

y r
k=0

K K

Therefore, we have

n - (

r+ w
) -

(J) (J)
-

(J) (J)
. (3-17)

The term (

r y
) in (3-17) is the number of majors which may

be formed from the incidence matrix A of the graph. This is

diminished by (q) (q) 1 calculation which is needed to find the

determinant of the incidence matrix of the starting tree and by

(f) (q) ry calculations which is the number of minors needed in

order to find Q in the special case r=y. The point is that the

total number of minors which are required in calculating Q and

all of its compounds is not necessarily less than the number of

minors of A which must be calculated in an exhaustive trial of

all sets of r edges of G. It should be noted, however, that

only when r < \t is it necessary to calculate minors of order r;

and even then only (
w

) minors of this order are required. All

other minors are of order lower than r in the compound method.

Some methods for reducing the number of calculations are discussed

in the following chapter. In particular, it will be shown that
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although l(r,y) compounds are sufficient for finding all of the

trees, a smaller number will often do if the starting tree is

.properly selected.

3. Number Trees of Distance k From the Starting Tree of a Graph
In a new and more general set of active network topological

formulas recently derived [24] , efficient calculation of network

functions requires that sets of trees containing certain speci-

fied groups of edges be located. If such tree sets are to be

located by digital computer, an a-priori knowledge of the number
of trees in a given set makes it possible to improve the efficiency
of calculations by eliminating the possibility of searching for

additional members of an already completed set. The .following

theorem, applicable only to directed graphs, is expected to be

very useful in such applications.

Theorem 3-2.

The number of distinct trees which can be obtained by re-

placing the ith set of k branches of the starting tree by sets

of k chords is given by

[(QQT
>

(k,
li,i • (3-18)

The number of distinct trees which can be obtained by replacing
sets of k branches of the starting tree by the ith set of k chords
is given by

[ (Q
T

0)
(k)

lnw u; jil .
(3 _19)

Proof: From Theorem 2-10,

«oVk|
= « IQ '«)' .

(3.20
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(k)
As shown previously, every row of Q corresponds to a certain

set of k branches of the starting tree. Row i corresponds to

the ith set of k branches. By the derivation in previous section,

(k)
the number of nonzero entries of row i of Q exactly equals

the number of trees which can be formed by replacing the ith

set of k branches by chords. By the proof of Theorem 2-5, every

nonzero entry of this row is either +1 or -1. Since the ith

column of (Q ) contains the same entries as the ith row of

f]r)

Q , the first part of the theorem follows. The proof of the

second part of the theorem is obtained by a similar argument.

Since every tree of distance k from the starting tree involves

the replacement of a set of k branches, and since every possible

(k)replacement is represented by a row of Q , the following

corollary is obvious.

Corollary 3-2

The number of trees of distance k from the starting tree of a

T (k)graph is given by the trace of [Q Q ] .

It should be noted that the same result is obtained by using

T (k) Tthe trace of [Q Q] . Since Q Q is a square matrix of order

T
r and since Q Q is a square matrix of order y, the trace of the

smaller matrix may be used in a given problem.

The following example illustrates Theorem 3-2 and its

corollary. Example 3-3. For the graph of Figure 3-2, using

adegh as the starting tree, Q is given by (3-8) . Then
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(Q Q
T

)

(1> -

a d e g h

a 2 2 2

d 2 4 2 2

e 2 3 1 1

g 2 2 1 3 1

h 1 1 1

(3-21)

<Q QV 2 '

ad

ae

ag

ah

de

dg

dh

eg

eh

gh

ad

2 2

2 4

ae

2

3

ag

2 2

2 3

ah de dg dh

2

1

eg eh gh

4 2

2 3

4 2

2 3

4

1

3 1
1 3

3 1
1 1

(3-22)

3 1

1 1

or
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ad

ad ae ag ah de dg dh eg eh qY

4

i

ae 6

ag 2

ah 2

(Q Q
T

)

(2)
=

de 8
. (3-23)

dg 8

dh 4

eg 8

eh 2

gh' 2
,

and

ade adg adh aeg aeh agh deg deh dgh egh
ade 4

adg 4

adh 4

aeg 4

(Q Q
T

)
<3 > . aeh

agh

4

. (3-24)

deg

deh 4

dgh 4

egh
4

r
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Therefore, the number of trees of distance 2 which may be ob-

tained from (3-22) by replacing branches eg of t is given by

det
3 1

1 3

= 8

The number of trees of distance 2 from t is given by

Trace (Q Q
T

)

(2) = 46

Also, the number of trees of distance one from t is found to be

Trace (Q Q
T

)

(1) = 13 ,

and the number of trees of distance 3 from t is

Trace (Q Q
T

)

(3) = 32

These results can be verified by counting the nonzero elements in

the compounds of Example 3-2.

Also,

b c f i j

b '

2 2-1-1-1
c 2 2-1-1-1

Q
T

Q = f -1 -1 3-1 -1

i -1 -1 -1 3 3

j -1 -1 -1 3 3

(3-25)
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The number of trees which may be obtained from adegh by

replacing pairs of branches of t by the chord pair ci is given

by

det
2 -1

-1 3
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IV. SOME SIMPLIFICATIONS OF CALCULATIONS

When a graph has a rather large number of edges and vertices

,

the labor involved in finding the trees by the compound method

can be prohibitively large. In this chapter, a number of methods

for reducing this labor are explored. It will be clear

that some of these methods are mutually exclusive, while others

can be used jointly. Some apply only to the compound method,

while others can be applied to more classical tree-generating

procedures. This chapter thus contains a collection of ideas

relevant to the labor-reducing problem, rather than a descrip-

tion of a single optimizing procedure.

1. Inspecting the Cotree for Circuits

In this section it is shown that it is often possible to

find entire columns of zeros in the compounds by searching the

cotree of the starting tree for circuits. Thus, many of the

calculations required when a compound is generated directly

from its definition are unnecessary.

First of all, suppose there is a pair of parallel edges

in the cotree of a starting tree t of a graph G having rank r and

nullity p. It follows from (3-2) that the entries of the two

columns of Q corresponding to these two edges are identical.

Thus, this pair of columns will result in a column of zeros in

(2)
Q . Furthermore, any minors of order three of Q formed from a

set of columns containing these two columns of Q as a subset must

(3)be zero. Thus, in Q
l there will be (u-2) columns of zeros.

By the same argument the kth compound will have ClT£) columns
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of zeros. Thus, if the cotree of t contains a pair of parallel

edges, large numbers of entries in the compounds are known to

be zero and need not be calculated. This can be seen by reviewing

a previous example.

In Example 3-2, the compound method was illustrated for the

graph of Figure 3-2 using adegh as the starting tree. The

cotree of adegh, bcfij, contains the parallel edge pairs be and ij

.

In the second compound given by (3-9) , columns be and ij contain

only zeros. In (3-10), Q has all zeros in every column which

contains either be or ij in its column label. Thus, in this
«

case 8 entries in the last two nonzero compounds are easily

found without calculations.

When there are more than two edges incident at the same

^ ' +-VIQT-Q Ml 1 1 K^ f^'pair of vertices, say q edges, then in Q
l

' there will be (|)

columns of zeros, and in Q
u

' there will be (|)+(^)(
y
~q

) . In

general, in Q
(

, there will be f (?) (£
-(

?) columns of zeros
i=2 x jc

~ 1

for k < q and V (?) (£-?) for k > q.
i=2 x K~x

Next, more generally, consider searching for circuits in

the cotree. Let p chords constitute a circuit in the cotree,

where p < l(r,y). Then in the pth compound, a set of minors

which corresponds to this set of chords will produce a column

of zeros. By the reasoning used above, there will be (J
J-p

)k-p

columns of zeros in the kth compound, where k > p.

2. Two Starting Trees

In this section a method is developed for finding the trees

of a graph using two starting trees rather than one. The method

applies only to certain of the graphs having the property p=r.
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When the method is applicable, many of the required minors

are of lower order than those needec I when one tree is used,

making the total labor less.

Consider the special case of a
4

graph G such that y=r,

t, is a tree of G and the cotree of t, , ty is also a tree of G.

The incidence matrix for G may be partitioned in the form

A = [A. A. ]r
l

c
2

(4-1)

where the columns of A (A ) correspond to the branches of
t
l

z
2

t, (t~). Using (3-2), the f-cut-set matrix relative to t. may

be written in the form

Q f = [U Q,] = [U
r
l

x
A"

1
A. ] . (4-2)

^1 r
2

Also, the f-cut-set matrix relative to t
2

is

Q € = [U Q9 ] = [U
r
2 *

A"
1

A. ] , (4-3)
z
2 2

Thus Q, and Q« are related by Q, Q 2
= U. From Theorem 2-13,

it follows that

[Ql
(r"k)]

n a = (
"1)S

<
det Q^" 1

[Q
2

(k>
^ n

k
-g+l, n

k
-P+ l ' ^" 4 >

By Theorem 2-5, det Q2
= + 1. Then, (-l)

s
(det Q 2 )

_1
in (4-4)

is merely a sign factor. Therefore, the higher order compounds

of Q, can be found from lower order compound of Q 2
. Hence,

some of the calculations for finding the compounds involve

determinants of lower order than would be the case if one tree

were used.

Next, it is necessary to determ ine how many compounds of
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Q
1

and Q
2
must be calculated so that no trees are located twice.

When r is odd, -j- is even. Then compounds one through r ~ 1

of Q
1
serve to locate one group of trees. Instead of calculating

r-1compounds (-y- + 1) through r of Q
1

to find the remaining trees,

com] r-1pounds one through ~- of Q
2

are used. Therefore, compounds

one through £=- of both Q
±

and Q
2
will find all trees of G.

Trees t
1

and t
2

, of course, must be included in the tree set.

When r is even, the |th compound of Q±
and the |th compound of

Q
2
are identical. Therefore, one of these compounds can be

neglected. Otherwise, the procedure is the same as when r is odd

It is worthwhile to mention that when the field modulo 2

is used for undirected graphs, (4-4) reduces to the simple form:

[0
(r"k)

l = ro (k)
l

1 J

P,q
lU

2
J n,-q+l, n.-p+l (4-5)

The procedure of finding the trees of a graph from two

starting trees is illustrated by the following example.

Example 4-1. Consider the graph shown in Figure 4-1. Let

a starting tree be t^ = bcdgh. The complement of t, , aefij - t

is also a tree. Then

(1)

a e f i j

b 1 1 1 1

c 1 1 1

d 1 1

g 1 1 1 1

h 1 1 1

and
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(1) _

b c d g h

a
f

1 1

e 1 1 l 1

f l 1

i 1 l

J 1
<

1 1

Since the rank of G is five, compounds one through five of Q,

would be required to find all of the trees by the basic compound

method. However, using (4-5) , all trees other than t, and t~

can be found using compounds one and —Z— = 2 of Q, and Q 2
. The

second compounds are

(2)

ae af ai aj ef ei ej fi fj ij

be 1 1 1

bd 1 1 1

bg 1 1 1 1 1 1 1

bh 1 1 1 1 1 1 1 1

cd 1 1 1 1

eg 1 1 1

ch 1 1 1 1 1

dg 1 1 1 1 1 1 1

dh 1 1 1 1 1

gh 1 1 1
/

and
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be bd bg bh cd eg ch dg dh gh

ae 1 1 1 1 1 1 1
>

af 1 1 1 1

ai 1 1 1

aj 1 1

Q2
< 2 >= ef 1 1 1 1 •

ei 1 1 1 1 1 1 1

ej 1 1 1 1 1 1 1 1

fi 1 1 1

fj 1 1 1 1 1 1

ij 1 1 1 1 1

As this ex;imple illustrate s , the 1 argest determinants which must

be calculat:ed are of only the second order This saves much labor.

The ajjplication o £ Theorem 2- 13 to graph theory problems is

• particular^ .y power•ful !aince it is relatively easy to calculate the

inverses oi: the matrices which are encountered by machine. The

idea of usi.ng two starting trees also greatly reduces the number

calculationls in the efficient Mayeda-Seshu tree-finding procedure

,

because th€ ; trees more distant from the starting tree tend to be more

difficult t:o find in terms of this procedure

.

3. Pivotal . Condensation •

Pivotcil condensation is a well-known method of reducing a

determinant . of nth order to one of the (n- L)th order [22]. Its

primary app•lication is in making it possible to evaluate a given
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determinant of any order by computation of only second order

determinants. The method can be formulated in the following way.

Choose any nonzero element m. . in the determinant I M I as1 1,3 ' n'

the pivot term. Select any element m. , which is in the same row
1 ,K

as m. .. any element m which is in the same column as m. . and

the element m , which is the intersection of row q and column k.
q,K

The elements m. . , m. , , m and hi , are then used to form a
i,3' i,k' q,u q,k

second order determinant, with m. . in the (1, 1) position and the

others kept in their proper order. Form all such possible second

order determinants with the pivot term as one of the elements.

The original determinant | M
j
can then be expressed as an n-lth

order determinant, |M , |
, using the second order minors of | M

|

as elements, and (-1) -ym. • as a signed multiplying factor.

By repeating this procedure, the value of a determinant of higher

order can be computed by successively reducing the order of the

determinant by one.

Consider the following fourth order determinant |M. for

example. Let element, m-
3

, be the pivot term. Then

M,

m
l,l m

l,2
m
l f 3

m
l,4

m
2,l

m
2,2

m
2,3

m
2,4

m , m., n m,, mo,i o ,z j,j 3 4

m
4,l

m
4,2

m
4,3

m
4,4

(4-6)

and
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M, _ (-D
2+3

mI4^2T
2,3

'1,1 "1,2 "1,3

>2,1 b
2,2

b
2,3

J

3,l
b
3,2

b
3,3

(4-7)

in (4-7) , where

bi,:
=

m
2,3

m
2,j

mi,3 m
i,j

,

b.
1/3

2,3 2,3

1+1,3 i+l rj

, for i = 1, and j * 1,2

, for i = 2,3 and j = 1,2

(4-8)

(4-9)

b. .
- 2,3 2,j+l

1,3 1,3+1

, for i = 1 , and j = 3 , (4-10)

and

i/D

m
2,3

m
2,j+l

1+1,3 1+1,3+1

, for i = 2,3, and j = 3 (4-11)

If b^
2

is chosen as the pivot term for further reduction, then

M,
HI) (-1)

1+2

m
2,3

b
l,2

C
l,l C

l,2

C2,l C
2,2

(4-12)
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'k,l
1,2 "1,1

bk+l,2
bk+l,l

, for k = 1,2, and 1=1, (4-13)

and

'k,l

°1,2 "1,1+1

b
k+l,2

bk+l,l+l

, for k = 1,2, and 1 = 2 . (4-14)

From (4-12) the value of the determinant |M
4

|
can be obtained

easily:

M,
(-1)

m
2,3

b
l,2

1,1

l

l,l

m
2,3

b
l,2

where

(4-15)

1,1

cl,l Cl,2

C2,l
C
2,2

An element from the determinant on the right side of (4-12)

say c- , , can be expressed in terms of the elements of (4-6) as

follows. From (4-13)

'2,1

b
l,2

b
l,l

b
3,2

b
3,l

(4-16)

Substituting the proper expressions for b
i

. from (4-8) and (4-9)

gives
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m

'2,1

m

m

m

2,3

1,3

2,3

4,3

m

m

m

m

2,2

1,2

2,2

4,2

m

m

m

m

2,3

1,3

2,3

4,3

m

m

m

m

2,1

1,1

2,1.

4,1

= m
2,3

m
2,3

m
2,2

m
2,l

*1,3 m
l,2

m
l,l

m
4,3

m
4,2

m
4,l

(-1) m
2,3

ml,l m
l,2

m
l,3

m
2,l

m
2,2

m
2,3

m
4,l

m
4,2

m
4,3

(4-17)

Now, this method is applied to the problem of calculating the

compounds of a matrix M. Since the third compound contains all

possible third order minors of M, an element of the third compound

can be expressed in terms of minors of order two from the second

compound and a nonzero pivot term from the first compound. In

general, the elements of the (n-1) th compound can be found from

second minors of the nth compound and a nonzero pivot term from

the (n-l)th compound.

Let X
u
l'

v
l

denote a general element of M , and let Y

(2)denote a general element of M which, by definition, is a

determinant of second order of M . That is

U
1
U2

'

V
1
V
2
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U
1
U2' V1

V
2

\' V
1

Xu
l'

V
2

X
U2' vl

X
U2' V2

(4-18)

(3)
Now, consider calculating a general element of M , denoted

as Z
u
1
u
2
u
3
,v

1
v
2
v
3

by pivotal condensation. Since Z
U
1
U
2
U3' V1

V
2
V
3

(1)
is merely a minor of order three of M , by definition

U
1
U
2
U3' V1

V
2
V
3

X
U1' V1

X
U1'V2

X
U1' V3

X. X
U2' V1

U2' V2
X.
U2' V3

X
U3' V1

U3' V2
X.
U3'V3

(4-19)

Now if elements X , X , and X
U1'V u

l'
v
2

u
l'

v
3

are all zero, Z
U
1
U
2
U 3

'

V
1
V
2
V
3

evidently has the value zero and no calculations are necessary,

Thus, without loss of generality, select the first row subscript of

(3)
the element of M and search for a nonzero element among the

elements of M having this row subscript and one of the column

(3)subscripts of the element of M to use as a pivot term. If

X of (4-19) is nonzero, for example, then by the pivotal con-
U
l'
v
3

densation procedure

,

X

(-1)
1+3

u
1
u
2
u
3
,v

1
v
2
v
3

X
U1' V3

U1'V3

X
U1'V1

X
u
2
,v

3

X
U2'V1

X
U1' V3

X.
U1' V2

X
u
2
,v

3

X.
u
2
,v

2

X.
U1' V3

u
3
,v

3

X
U1' V1

X
U3' V1

X
U1'V 3

X
U1' V2

X
u
3
,v

3

X
u
3
,v

2

(4-20)
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V'v
3

Xu
l'

v
l

U2' V3

X.
U2' V1

\> v
l \'v

3

\,v
±

X
u
2
,v

3

- - Y'

U
1
U2'V1V3 '

and

x
U1' V3

U1' V2

X
U 3' V3

U 3' V2

\,v
2

\,V
3

X
u
3
,v

2

X
u
3
,v

3

= - y
u
1
u
3
,v

1
v
3

and similarly for the other terms. Thus (4-20) becomes

_ (-l)
1+3

(-l)
2

U
1
U
2
U3' V1

V
2
V
3

X
U1'V3

U
1
U2' V1

V
3

'

U
1
U3' V1

V
3

u
1
u
2
,v

2
v
3

U
1
U3' V2V3

, (4-21)

(3)
where (4-21) expresses a general element of M in terms of a

minor of order two from M and a pivot element from M . The

sign, (-l)
1+3

(-l)
2 = (-1)

6 = 1 , in (4-21) which comes from the

choice of the pivot term X is positive. Further thought re-
U
l
/V

3

veals that when any element in the first row of (4-19) is chosen

as the pivot term, say X , then the sign in (4-21) will be
1* i

(-1) (-1) = (-1) . That is the sign is always positive.

Therefore, the element Z
U
1
U
2
U3' V1

V
2
V
3

(3)of M can be found by

(1)picking any nonzero element from the row u, of M as the pivot

term and by calculating the corresponding second order determinant

(2)of M . The sign is always positive.
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Next, consider a general element W

By definition,
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(1)Pick any nonzero element in row u, of M as a pivot term, say
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The same argument for the sign in (4-21) holds for the sign of (4-24)

That is, the sign is positive for any choice of pivot element. Now,

(4-24) is reduced to a third order determinant, repeating the pro-

cedure (4-19) through (4-21). If Y is nonzero, for exam-
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By (4-21) and by the fact that

45

Yu
l
u2' v2

V
4

YW V
1
V
2

Yu
l
u 3' V2V4 \U3' V1

V
2

'

U
1
U2' V1

V
2

U
1
U2' V2V4

"

U
1
U3' V1

V
2 W V

2
V
4

= (-l)
1*2

!-!)
1

u
l'
v
2

U
1
U
2
U 3' V1

V
2
V
4

(4-25) becomes

w
(-l)

1+3
(-l)

1+2
(-l)

u
1
u
2
u
3
u4/ v1

v
2
v
3
v
4

Y
ulU2/ v2v4

Z
u
1
u
2
u3/ v1v2v 4

U
1
U
2
U3' V2V 3

V
4

U
1
U
2
U4' V1V2V4

u
1
u
2
u
4
,v

2
v
3
v
4

(4-26)

which is the desired result.

1 i-j 1+2 8
The argument concerning the sign (-1) (-1) (-1) = (-1)

1 of (4-26) is the same as discussed previously. Thus, the element

w
(4)

of M can be found by choosing a nonzero element in
U
1
U
2
U
3
U4' V1

V
2
V
3
V
4
( 2)

the u,u
2

row of M as the pivot term and by then calculating the

(3)appropriate second order minor of M

The procedure holds for finding an element of M VJV
'

, in general,

(k-2)

00

from a nonzero element of M

minor from M

and the corresponding second order
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Since a nonzero entry of Q as well as its compounds is either

(k-2)
+1 or -1 , a selected pivot term in Q merely affects the sign

(k)
of the corresponding element of Q . It is noted that when the

field modulo 2 is used, the pivot term is always 1.

4. The Central Tree

Deo recently introduced the concept of a central tree and

demonstrated its usefulness in reducing the labor involved in

listing the trees of a connected graph [16]. Deo's definition of

the central tree is stated as follows.

A central tree is a tree t in G such that the rank r of its
o

complement t is a minimum. That is, rank (t
Q

) <_ rank (t^J , for

every tree t. belonging to G.

Here the central tree is viewed in a new context which suggests

an additional reduction in labor.

Let

Q
f

= [U Q] (4-27)

be the f-cut-set matrix of a connected graph G of rank r and

nullity u with respect to a starting tree t. It was shown in the

preceding chapter that there exists a one-to-one correspondence

between the trees of distance k from t and the nonzero elements of

fir)

Q ; and that all trees of G may be found from compounds one

through l(r, u) of Q. Now if Q is of rank p, it follows from the

definition of rank that

Q
(P+W) = (4-28)
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for all integers w > 0. Thus if t is chosen such that Q is of

minimum possible rank, p , then no tree is of distance greater

than p from t. Such a starting tree satisfies Deo's definition

of a central tree because Q is related by a nonsingular transforma-

tion to the reduced incidence matrix of the complement of t as

shown in (3-2) .

Let t be a central tree of G such that Q is of rank p <

l(r, y) . As discussed previously, trees of distance greater than

p are known to be zero; and all trees are located using only the

first p compounds. This type of labor reduction applies not

only to the compound method, but to any method in which the

trees are located recursively in groups according to distance

from the starting tree. Deo has pointed out that considerable labor

is saved by proper choice of the starting tree in a procedure given

by Hakimi [8] . This also applies to the relatively efficient

Mayeda-Seshu procedure [13].

The compound viewpoint reveals an additional computational

advantage of starting with the central tree. By a well-known

theorem of matrix theory (Theorem 5.22.3 by Hohn [23]), all non-

zero rows of Q^m' must have nonzero elements in the same columns.

Thus, if one nonzero row is found, one need only find one nonzero

entry in this row and then search the corresponding column of Q^PnW

for nonzero entries. Whenever a zero is found in a particular row,

the entire row is zero. Whenever a nonzero entry is found, nonzero
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entries necessarily appear in the same columns as in the starting

row. Thus Q Pm is completely determined if one nonzero row is

known by examining (

r
) - l minors of order p of QPm *m

The following example illustrates how this result may be used

in conjunction with the Mayeda-Seshu tree-generating procedure.

Example 4-2 . figure 4-2 shows a graph given by Deo [16] and

the corresponding Q, mod 2, for t = abci j . Since Q is of rank

Pm = 4
i the simplification applies to

Q
(4) _

defg defh degh dfgh efgh

abci 1 1 1

abcj 1 1 1

abij

acij 1 1 1

bcij 1 1 1

(4-29)

in which the row proportionality is obvious. Clearly, one need

only calculate one nonzero row, say row abci, and then calculate

the entries of one column, say defg, in order to completely specify

Q . When high nullity graphs are considered, Q
(4) may have many

columns, and the reduction in labor can be significant.

Suppose that by the Mayeda-Seshu procedure one finds the tree

set

„abci , . . _ . _ _ .

(4-30)T
a C1

= {jdefg, jdfgh, jefgh}

These trees correspond to nonzero elements in columns defg, dfgh,

and efgh of row abci of Q
(4) All other trees of distance four
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. , . mabcj mabi j , mbcij . . ,must be contained in T J
, T J

, and T J
; which correspond to

(4)
the remaining rows of Q . To determine which of these sets are

nonempty, examine idefg, cdefg, bdefg, adefg. All are trees with

exception of cdefg. Or alternatively, calculate the following

minors of Q:

a

b

c

j

d e f g

11
10 11
10 1

10

= 1 ,

a

b

i

j

d e f g

11
10 11
110
10

=

a

c

i

d e f g

11
10 1

110
10

= 1 ,

b

c

i

d e f g

10 11
10 1

110
10

= 1

By either procedure, the conclusion is that

T
abcj m

T
abij m

T
acij m

T
bcij

m

idefg, idfgh, iefgh,

ff

bdefg, bdfgh, befgh,

adefg, adfgh, aefgh,

are the remaining trees of distance four.
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The reduction in labor required to generate the trees of

distance p^ is significant, particularly when there are many trees

of distance p - 1 which must be considered in finding the trees

of distance p by the Mayeda-Seshu procedure.

The principle difficulty with the central tree idea is that

there is no known way of finding the central tree for a general

graph [16]. Some progress toward this goal is, however, reported

in the following paragraphs.

At present, the starting tree is calculated by computer [13]

with no guidelines built into the program to optimize this choice

in any way. Lacking guidelines, the computer may possibly select

a tree such that the rank of the corresponding Q is the maximum

possible rank. The following theorem eliminates this possibility

for simple graphs such that y v r.

Theorem 4-1

Let G be a connected, simple graph of rank r. It is

always possible to find a tree t. such that the complement of t.

is of rank r-1.

Proof: Let v. be any vertex of G. The set of edges incident

at v
i

contains no circuits because G is simple. By Theorem 2-1,

the set of edges incident at v. can be made part of a tree. Let

t^ be any tree of G containing the edges incident at v. in G. Then

the complement of ^ has at most r vertices in a connected part and

therefore has a maximum rank of r-1. This completes the proof.
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Theorem 4-1 at first appears trivial and of limited value,

however further examination reveals that it is quite useful.

When G is such that r _< u, the maximum possible rank of the

appropriate matrix Q is r. Theorem 4-1 ensures that a tree can be

found such that the rank of Q is r-1. Thus the preceding discussion

concerning the proportionality of the rows of a compound and the

(r-1)
resulting reduction of labor applies to Q in this case.

Theorem 4-1 also leads directly to a method for finding the

central tree of a complete graph, as shown in the following theorem.

Theorem 4-2

Let t. be the tree of a complete graph G* consisting of

all of the edges incident at any vertex v. of G*. Then t- is a

central tree of G*.

Proof:

Let t. denote the complement of t. with respect to G*.

Since G* is a complete graph, t. consists of a connected subgraph

containing r of the vertices of G* , plus the isolated vertex v..

Thus t. is of rank r-1. To prove that t. is a central tree it is

necessary to show that there does not exist a tree t of G* such

that the rank of the complement, t, of t is less than r-1. Assume

such a tree t exists. Since t is of rank less than r-1, t consists

of more than two vertex disjoint subgraphs, each of which is itself

connected. First, suppose t consists of the three connected sub-

graphs G* f Gt , and G% as shown in Figure 4-3 (in this case, the

rank of t would be r-2) . Since G* is a complete graph, there
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exists in G* an edge e-j, incident at some vertex v, in G? and some

vertex v„ in G£ . Similary, there exist edges e
2

and e, in G*

incident at vertex pairs (v~ , v
3

) and (v,, v,) respectively, where

v^ is a vertex of Gt. Edges e, , e- , and e~ are not in t, there-

fore they are branches of t. But this is a contradiction, since

t contains no circuit.

For any tree t, such that t contains more than three isolated

subgraphs, the preceding argument applies to any three of the sub-

graphs. Therefore, there is no tree of G* having a complement of

rank less than r-1 , and the theorem is proved.

The following development extends the applicability of

Theorem 4-1 to the case y < r when some additional restrictions

are placed upon the graph.

When a simple graph G is of nullity \i less than the rank r,

the maximum possible rank of the complement of a starting tree

depends upon l(r, u) = v. Thus Theorem 4-1 does not appear to

offer any computational advantage with this kind of graph. How-

ever, when the graph G is planar, by Theorem 2-3 f the dual graph

G 1 of G always exists. In addition to the restrictions of Theorem

4-1, let G contain no series edges
4
Then the dual graph G' con-

tains no parallel edges, and G' is a simple graph. Thus Theorem

4-1 can be applied to G'. The following example illustrates the

usefulness of Theorem 4-1 associated with the duality concept.

Example 4-3. Use Theorem 4-1 to reduce the number of nonzero

compounds of Q to less than the maximum possible number for the

graph G of Figure 4-4 (a).
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For any starting tree, the order of Q is 7 x 5 . Using the

idea of Theorem 4-1, choose t, such that edges afg belong to t,

and vertex 3 is isolated. Then the rank of Q will not exceed

r - 1 = 6. For example, let t, = afgbhjd. For this tree, the

rank of Q is 5, and 5 compounds are needed using this tree. Thus

Theorem 4-1 seems to be of little value in this case. It is

noted that another choice of the starting tree may have a corre-

sponding matrix Q of rank less than 5. However, finding such a

tree requires further labor.

Now, consider the dual graph G' of G as shown in Figure 4-4 (c)

For G', the nullity y' = 7 exceeds the rank r' = 5, and Theorem

4-1 applies directly. Choose ti such that edges d'e'j'k' are

branches of t-j . Then the rank of any matrix Q' does not exceed

r - 1 = 4. If b' is chosen as the other branch of ti, then the

rank of the corresponding Q' is 4. Thus, all trees of G' may be

found using only the first four (not five) compounds of Q' , and

the labor reductions previously mentioned apply. But the cotrees

of G' are in one-to-one correspondence with the trees of G. Thus

the trees of G then can be found using fewer calculations by

working with the dual graph.

It is also possible to use the dual graph G' merely to find

a starting tree of G, and to then calculate the trees of G

directly. As before, Theorem 4-1 is used to find a starting tree

of G', say ti = d'e'j'k'b'. These edges correspond to the cotree

t, = dejkb, of a tree, t, = acfghil , of G. Figure 4-4 (d) shows t.



54

is of rank 4. Thus the trees of G may be found using only the first

four compounds of matrix Q, , which is found from t,

.

According to Deo ' s definition, the problem of finding a

central tree of a general connected graph G amounts to finding a

set of edges such that the complement of these edges with respect

to G contains a maximum number of unconnected pieces. Here, an

isolated vertex is considered an unconnected piece of a graph.

It is useful to restrict the problem of finding the central tree

to simple graphs for two reasons. First, as shown in the proof

of Theorem 4-1, this makes it possible to use Theorem 2-1 as a

powerful mathematical tool which lends a great deal of clarity to

the reasoning. Second, the restricted nature of simple graphs is

more obvious than real. Suppose, for example, it is desired to

find the set of all trees of a graph G containing parallel edges

e, and e~ as illustrated in Figure 4-5 (a). Let e, and e~ be re-

placed by a single equivalent edge, e.,, to form a new graph G , as

shown in Figure 4-5 (b). The set of all trees of G may be divided

into two-mutually-exclusive tree sets: the set of all trees which

contain e,, and the set of all trees which do not contain e~.

Clearly, each member of the latter is a tree of G. Also, let the

former be used to generate two new sets : one formed by replacing

e
3

by e, , the other by replacing e~ by e~ • These three tree sets

are then the set of all trees of G. This line of thought is easily

extended to more general cases involving m sets of parallel edges

with varying numbers of edges in each set. The point is that the

trees of a general graph G can be found in a rather straightforward

manner once the trees of a related simple graph G are found.
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In studying many special cases, it has always been found that

the central trees are those trees having complements which contain

a maximum number of isolated vertices. The algorithm which follows

is an attempt to systematically maximize the number of isolated

vertices in the complement. In all special cases examined, this

algorithm has generated the central tree. However, it has not

been possible to either prove or disprove the hypothesis that this

algorithm always results in a central tree. The algorithm is

therefore presented as a systematic method of finding a starting

tree which is obviously preferable to a "random" choice. The

algorithm is restricted to simple graphs.

Algorithm

1. Let v
1

be one of the vertices of lowest degree of G. If

the set, E
x , of edges incident at v

±
constitutes a tree t, , then

t
x

is the desired tree and the procedure terminates. (This occurs

in the special case of a complete graph, for example.)

2. If the set E
1

is not a tree of G, examine the vertices of

the same degree as v
± , or if there are none, the vertices of next

higher degree. In this examination, vertices having edges connected

to v
±

are given precedence. This results in a new vertex v
2
with

a set of edges E
2

incident to it. Let U in this context denote

the set theoretic union. If E
1

U E
2

contains a circuit, then a

new vertex is chosen by the same criteria to replace v~ . If the

union of edges E
±

U E
2

contains no circuit, the edges E, U E
2

can

be made part of the desired tree. A search is then started for a

new vertex v
3 , treating E

±
U E

2
in the same manner as E

±
was treated

in this step.
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3. Continuing this procedure must eventually lead to one of

two possibilities. (a) A tree is found, terminating the procedure,

(b) A point is reached such that the union of the edges incident

at every remaining vertex and the previously found edge set, E, U E-

U ... U E
n , contains circuits. Select the remaining edges to com-

plete the tree, if possible choosing edges such that the complement

of E
1

U E
2

u . . . U E
n

is split into unconnected pieces by removal

of these edges.

The algorithm is illustrated by the following example.

Example 4-4. For the graph of Figure 4-6 (a), vertices 1, 4,

5, and 6 are of degree three, and vertices 2, 3, 7, 8, 9, and 10

are of degree four. Since the graph has ten vertices, every tree

has nine edges. Let vertex 1 be chosen as the starting point.

Set E
x

= abc is not a tree. The edges incident at 6 form a circuit

with E^, so the next vertex must be chosen from (4, 5). Choose

vertex 5, giving E
2

= opq. The set E
±

U E
2

= abcopq is not a tree.

Three more edges are required for a tree. The edges incident at

vertex 4 form a circuit when combined with E., U E Since every

other vertex is of degree four, the situation described in 3(b)

has occured. Figure 4-6 (b) shows the complement of E
±

U E Many

combinations of three edges from this graph can be combined with

E
l

U E
2

to form a tree of the original graph. For example, ( rij )

U E
1

U E
2

is a tree of the graph. However removing ( rij ) from

the graph of Figure 4-6 (b) leaves a connected graph. On the other

hand,
( rih ) U E

1
U E

2
is a tree of the original graph; and re-

moving
( rih ) from the graph of Figure 4-6 (b) leaves two unconnected
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pieces. Thus rihabcopq is the final result. Other results are

also possible. For example, had vertex 4 been chosen rather than

vertex 5, the algorithm would have given the tree abcghilnq. Both

trees have cotrees of rank six.

5. Geometrical Interpretation Using Tree Graph

In this section some of the previous results are given a

geometrical interpretation in terms of Cummins' tree graph [17].

The tree graph is defined as follows.

The tree graph G corresponding to a connected graph G is

such that the vertices of G are in one-to-one correspondence with

the trees of G. An edge is incident at a vertex pair of G if and

only if the corresponding tree pair of G are of distance one.

Let G denote a connected graph of rank r and nullity y , and

let G denote the corresponding tree graph. Symbols v. and t. de-

note a vertex of G and the corresponding tree of G, respectively.

Theorem 4-3

The tree graph G is connected.

Proof: Let v and v, be any two vertices of G. There is

some nonzero distance k between t and t, . Let Q be obtained, asOK '

before, from the f-cut-set matrix of G with respect to t . There
o

exists a nonzero minor M. of Q of order k, with columns (rows)

corresponding to the k branches of t. (t
Q

) not in t (t,) . Since

M^ 7^ , not every minor of order k - 1 contained in M, is zero.

Let M^^ denote such a nonzero minor. Minor M, , corresponds to

a tree t
k_^ of distance k-1 from t . . Furthermore, t. , can be



58

formed by removing some branch of t, not common to t and t, andK ok
by then adding a branch of t which was not a branch of t. . The

column (row) of Mj^ not contained in m. _ corresponds to the re-

moved (added) edge. Since tk-1 and t
k

differ by exactly one branch,

there is an edge in G incident at both v., and v,. Similarly,

there exists a tree t
k_2

of G of distance k-2 from t , and an edge

in G incident at both v
k_2

and vk ,. Continuing this argument

establishes the existence of a path in G (of length k) having v

and v
k

as endpoints. This completes the proof.

Theorem 4-4

The distance between two vertices of G which correspond to a

tree-pair of G of distance k, is k. The distance between two

trees of G corresponding to a vertex pair of G of distance k, is k.

Proof: Let t
Q

and t
k

be trees of G of distance k. From the

proof of Theorem 4-3, there exists a path of length k in G having

v
Q

and v
k

as endpoints. Thus, the distance between v and v. does

not exceed k. Now assume v
Q

and v
k

are of distance d < k. Then,

there exists a path pd
of length d in G having v and v. as end-

points. Since each edge of pd
is incident at a vertex pair repre-

senting a pair of trees, differing by one edge, p. implies that t

and t
k differ by at most d edges, which contradicts the hypothe-

sis.

Let v
Q

and v
k

be a vertex pair of G of distance k. The path

of length k in G with v
q

and v
k

as endpoints ensures that the

distance between t and t. does not exceed k. Now assume t andu i» o
t
k

are of distance d < k. By the proof of Theorem 4-3, there is a
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path of length d in G having v and v, as endpoints , which contra-

dicts the hypothesis. This completes the proof.

The following corollaries follow from Theorem 4-4 and the

relationships established previously.

Corollary 4-4-1 The diameter of G does not exceed l(y, r)

.

Corollary 4-4-2 A tree of G such that the corresponding Q is

of minimum rank corresponds to a center of G. That is, a central

tree of G corresponds to a center vertex of G.

Corollary 4-4-3 The highest compound which must be calcu-

lated in order to find all of the trees of G is k , where
UtClA

k is the radius of G.
max —

Finally, it is noted that the non-uniqueness of the central

tree, as discussed by Deo, could be inferred from the well-known

fact that the center of a graph is not unique [20]

.
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(a) Graph G (b) Graph G
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V. FINDING COMPLETE TREES OF ACTIVE NETWORKS

In this "chapter, the compound method is applied to the

problem of finding the signed complete trees of graph pairs

associated with active networks. Active networks are frequently

analyzed using a graph pair, a voltage graph G and a current

graph G
i , constructed upon identical sets of vertices. Every

passive network element is represented by an edge, called an

ordinary edge, which appears in both graphs incident at corre-

sponding vertex pairs. Every active network element is repre-

sented by a pair of edges called an active edge pair, both

weighted by the mutual admittance of the active element. One

edge of an active edge pair appears only in the voltage graph,

the other only in the current graph; and the edges appear in-

cident at non-corresponding node pairs in the two graphs [5].

A complete tree of a graph pair is a set of r edges which is

a tree of both the voltage graph and the current graph.

Associated with every complete tree t
.

, containing an active

edge, is an algebraic multiplier e. = + 1, called the sign of

t . . The sign associated with every other complete tree is +1.

If Av and A
i

are, respectively, the incidence matrices asso-

ciated with G
v

and G. # having rows and columns in identical

vertex and edge order, then the sign associated with t. is
D

expressed as

e, = (det A ) (det A., ) (5-1)
J vtj itj

where the determinants on the right side of (5-1) are majors
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of A and A. , respectively, with columns corresponding to the

edges of t .

.

Let t be a given complete tree of a graph pair, and let

A = [A . A ]v vt vc

A
i " [A

it
A
ic ]

(5-2)

be the partitioned incidence matrices of the graph pair with

columns corresponding to branches appearing first. These

matrices are written in identical vertex and edge order. Matrices

Q and Q. are the f-cut-set matrices

Qfv
= CU Qv ] = [U A^ Avc ]

and (5-3)

Qfi
= [U Q.] = [U A"i A

ic ]

It is clear that there must be a one-to-one correspondence be-

tween the complete trees of distance k from t and the nonzero

(k) Ck)entries in both Qv
v and Q.

l '
. More specifically, the com-

plete trees of distance k from t are in one-to-one correspondence

with the pairs of nonzero elements which occur in corresponding

(k) (k)positions in Q and Q i . Since corresponding pairs of '

nonzero entries are used to find the complete trees, there are

no complete trees found from the kth compound when either

Qv
(k)

= or Q
j_

(k)
= or Qy

(k)
= Q.

(k) = 0. Therefore, the

highest compound required for finding all of the complete trees
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is l(p, , p 2 ) / where p, is the rank of the cotree of t relative

to G , and p 2
is the rank of the cotree of t relative to G-.

Now that it has been shown that the complete trees can be

found by the compound method, interest is concentrated on finding

their signs. Consider a pair of nonzero elements corresponding

to a complete tree t. of distance k from t. From (3-4), the

(V)
element in Q is (det A . ) (det A . ) , where A, . is formed

v vt • vt
k

vt
k

by replacing a set of k columns of A by a set of k columns of

(k)A ^ . The corresponding element in Q. is (det A., ) (det A. )

,

where A. is formed by replacing the same k columns of A., by
it

k
it

those columns of A. which correspond to the columns of A „ic c vc

appearing in A . Thus, the product, it., of the corresponding

(k) (k)terms from Q and Q. may be written in the form

». = (det Avt ) (det A
it ) (det A

vt ) (det A
it ) . (5-4)

Matrices A . and A.. differ from matrices A , and A., ofvtk xt
k

vt
j

xt
j

(5-1) , respectively, by at most a column rearrangement. From the

column ordering in (5-2) , the same column rearrangement applies

to both matrices. Thus,

if . = (det Avt ) (det A
±t ) e . . (5-5)

The product of the first two terms of (5-5) is, by definition,

the sign e of the original known complete tree t. Thus

Tj - e
t

c. , (5-6)
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If t contains only ordinary edges, then e = +1, and the

product of the corresponding nonzero entries of Q (k)
and (k)

v **i

gives the correct ign for all complete trees of distance k

from t. If t con j

; .ins active edges, e,. is either +1 or -1.

When e
t

= +1, the products of corresponding elements in all

compounds give the correct signs. When c = -1, all signs

are incorrect, but easily changed. Thus all complete trees of

a graph pair and their signs can be found from the compounds of

Qv and Q
±

. The procedure is demonstrated by the following

example.

Example 5-1. Figures 5-1 (b) and (c) show G and G. for

the network of Figure 5-1 (a). The starting tree t is cfab

which contains only ordinary edges. Omitting all columns of

the compounds which are known to be null or of no use (by in-

spection of the cotrees of t relative to G and G.) gives

(1)

c

f

a

b

;'l}

••'v

o

e

Ti-

ll

o

i

i

m

1

g

l

i)

o

(i)

d e ll m g

c

f •:'i.' 1 •:"i

a :'i'.' 1

b I'- 1
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(2)

de dg eg hm hg mg

cf -1 -1

ca -1 -1

cb -1 -1

fa -1 1 •;-i-

fb
•'A'-

•-'i:- (l; -i

ab (i)

(2)

de dg eg hm hg rag

cf

ca

cb

fa -1 ^1;

fb :..l: :r'i: \-x- -1

ab •T: •-i-

* (columns da, dm, em, eh are deleted, for dh and em of the
voltage graph and dm and eh of the current graph constitute
parallel edges.)
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(3) _
'v

cleg hmg

cfa
r

cfb 1 1

cab 1 1

fab 1: •1:

**

(3)

deg hmg

cfa

cfb

cab

fab :"l: (i)

**

** (For the same reason as *, columns deh, dem, dhm, dhg , dmg

,

ehm, ehg are deleted.)

where the corresponding pairs of nonzero entries in each compound

are circled. The complete trees and their signs are then: cfab+

(the starting tree); cdab+, cgab+, cfdb+, cfae+ (trees of distance

one from cfab) ; cdgb+, cdae+, ceag+, cham-, cfde+, cfhm-, (trees

of distance two from cfab); and cdeg+, chmg- (trees of distance

three from cfab)

.

Many practical active networks give rise to graphs having

many ordinary edges. In such cases a certain inefficiency is

apparent in this tree-finding method. Duplicate columns in the

compound-pairs are generated for complete trees containing only

ordinary edges, even though no column comparison is required.

This is clearly seen in the example above. In Q ^ and Q. ^
v w

i '
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12)the columns labeled d (also e) are identical. In Q and

(2)
Q. , columns de are identical. A modification of the method

which eliminates this difficulty involves defining a matrix Q

for the so-called complete graph. In the complete graph, a

single edge represents each passive element and edge pair repre-

sents each active element. Thus a single graph rather than a

graph pair is used. Figure 5-1 (d) shows the complete graph G

for the network of the preceding example. The starting point is

a complete tree, t, of G containing only ordinary edges. Matrix

Q, as usual, is obtained from the f-cut-set matrix of G with

respect to t. Complete trees containing active edges and their

signs are found by searching for corresponding nonzero entries

in column pairs of each compound. The product of the elements

in each pair gives the correct sign. Trees containing only

passive edges are found by inspecting certain columns in each

compound

.

Since trees containing both voltage and current edges are

inadmissible, only certain columns of each compound need be

calculated. Also, it is useful to rearrange the calculated

columns of the compounds so that columns corresponding to related

voltage and current edges are adjacent. The rearranged kth

compound with columns deleted as explained above is denoted by
- (Jc)
Q . The problem of Example 5-1 is now solved by this modi-

fication using the same starting tree. The matrices are



(1)

d e h h' m m' g g'

c

1

1

1

1

l

f i 1:

a

b ;'i: 1 1
>

de dg dg' eg eg ' hm hm' hg hg ' mg mg

'

Q
(2)

:f
f -1

ca

cb

fa

fb

ab

-1

-1

-1 -1

o -:-i -i;

ooo

o

o

1

-1

-1

i -l :• o

'

-1

•:-i -1:

1 -1

>

5«>

era

cfb

cab

fab

deg deg

'

1

1

i i'

:

hmg h'm'g'

1

1

**
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(Since dh, em, d'm' and e'h» consist of Darallel edges,
columns dh, d'h\ era, e'm', dm, d'm\ eh, and e'h' are
deleted.)

** (For the same reason as *, the columns deh, d'e'h', dem
d em 1

, dhm, d'h'm', dhg , d'h'g', dmg , d'm'g', ehm, e'h'm',ehg and e'h'g' are deleted.)

where the primed column labels denote the current edges. The

circled nonzero entries correspond to the complete trees, with
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circled, pairs indicating complete trees containing active edges.

The product of each pair gives the sign associated with the

complete tree.
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(a) Active Network

1' ,2'

(b) Voltage Graph, G,
v

(c) Current Graph, G.

a 1\

(d) Complete Graph, G.

Fig. 5-1.
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VI. CONCLUSIONS

A new method for generating trees and signed tree pairs

was described which involves searching for nonzero entries in

the various compounds of a matrix Q. This compound method was

shown to be inherently inefficient as a tree-generating pro-

cedure. In attempting to modify the method so as to improve

its efficiency some very interesting new results were discovered.

It was found that the familiar idea of pivotal condensation

can be used to generate the kth compound of a matrix in terms of

minors of order two from the k-1 compound and nonzero elements

from the k-2 compound. Thus, all compounds of a given matrix

can be obtained by calculating only minors of order two. This

result applies to compounds of any matrix of elements defined

over a field, and is particularly simple for the classes of

matrices used in network theory. Since the use of compound

matrices in network theory is quite new, there is a possibility

that this result may be applicable to a variety of new problems.

Deo has recently pointed out that the number of calculations

can be reduced if a particular type of tree, called a central

tree, is used as a starting tree in tree-generating procedures.

The concept of the central tree was derived here using compound

matrix theory. This new derivation leads to further reductions

in calculations made possible by using the central tree, which

were not apparent from Deo ' s approach. These simplifications

result in improvements in relatively efficient tree-generating

procedures given by Hakimi and Mayeda.
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A new theorem was stated and proved which makes it possible

to. easily find a starting tree in certain special cases such

that the labor of finding the other trees is significantly reduced,

Further exploration of this theorem leads to an extension of the

class of cases to which it applies by using a duality argument.

This theorem also leads to a method for finding a central tree

of a complete graph. The results again, can be used to improve

existing tree-generating procedures; and they represent some

initial progress in the general unsolved problem of finding a

central tree for any graph.

The compound method, inefficient in itself as a tree-gen-

erating procedure, presents a new perspective in which to view

the general tree finding problem. The compact notation and

high degree of organization of the compound method lead to im-

provements in existing, more efficient, tree-generating procedures

which were not previously known. The method also makes it

possible to easily visualize and find certain subsets of the set

of all trees; a property which should become increasingly useful

as a better understanding of the structure of active networks

is developed. Finally, many of the concepts arising from studying

the compound method are given a useful geometrical interpretation

in terms of Cummins' tree-graph. In turn, certain properties of

the tree graph can be derived by means of the compound approach.
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A new method, the compound matrix method, is presented

for systematically finding the trees of a graph or the complete

trees of a graph pair without duplication. The signs associated

with active tree pairs are generated during the tree-finding

procedure with negligible additional labor.

It is well-known that the trees of a graph G of distance one

from a starting tree t are in one-to-one correspondence with

the nonzero entries of Q, where Q f
= [U Q] is the f-cut-set matrix

of G relative to t. Here it is proved that the trees of distance

k from t are in one-to-one correspondence with the nonzero

(k)entires in Q , the kth compound of Q. Thus, all trees may be

found by inspection of Q and its nonvanishing compounds.

The complete trees associated with a graph pair may be

found by starting with a given complete tree and searching for

corresponding nonzero entries in compound pairs Q and Q. ,

which are derived from the voltage and current graph, respectively.

If the starting tree pair contains active edges, the product of

corresponding nonzero entries must be multiplied by the sign of

the starting tree pair. When an active network contains a large

number of passive elements, the complete trees and their signs

are more efficiently found by using a single graph containing

designated active edge pairs. A matrix Q is first determined using

a starting tree containing only passive edges. Active tree pairs

are located by inspecting certain column pairs in Q^ for corre-

sponding nonzero entries, with the correct sign being given by

the product of the entries. Trees containing only passive edges



are found by inspecting certain columns in each compound.

A number of methods for reducing the labor in calculations

are explored. Some of these result in improvements in more

classical tree-generating procedures.


