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Abstract

A well-known problem in current intrusion detection tools is that they create too many

low-level alerts and system administrators find it hard to cope up with the huge volume.

Also, when they have to combine multiple sources of information to confirm an attack, there

is a dramatic increase in the complexity. Attackers use sophisticated techniques to evade

the detection and current system monitoring tools can only observe the symptoms or effects

of malicious activities. When mingled with similar effects from normal or non-malicious

behavior they lead intrusion analysis to conclusions of varying confidence and high false

positive/negative rates.

In this thesis work we present an empirical approach to the problem of modeling un-

certainty where inferred security implications of low-level observations are captured in a

simple logical language augmented with uncertainty tags. We have designed an automated

reasoning process that enables us to combine multiple sources of system monitoring data

and extract highly-confident attack traces from the numerous possible interpretations of

low-level observations. We have developed our model empirically: the starting point was a

true intrusion that happened on a campus network we studied to capture the essence of the

human reasoning process that led to conclusions about the attack. We then used a Datalog-

like language to encode the model and a Prolog system to carry out the reasoning process.

Our model and reasoning system reached the same conclusions as the human administrator

on the question of which machines were certainly compromised. We then automatically

generated the reasoning model needed for handling Snort alerts from the natural-language

descriptions in the Snort rule repository, and developed a Snort add-on to analyze Snort

alerts. Keeping the reasoning model unchanged, we applied our reasoning system to two

third-party data sets and one production network. Our results showed that the reasoning



model is effective on these data sets as well. We believe such an empirical approach has the

potential of codifying the seemingly ad-hoc human reasoning of uncertain events, and can

yield useful tools for automated intrusion analysis.
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Chapter 1

Introduction

1.1 Motivation

Universities, business and government organizations depend on computer networks for most

of their day-to-day activities. Increasingly personal information such as credit card num-

bers, social security numbers, and other sensitive information are stored on computers. This

has resulted in a rise in attempts made to compromise a computer and to gain access to

unauthorized information. An attacker gains access to remote network resources using vul-

nerabilities found in software and protocols or through social engineering. Proper software

maintenance (operating system patches, software updates, etc.) and restricted network ac-

cess using firewalls is no longer a reliable solution to prevent attackers from infiltrating the

network. Also, recent studies show zero-day vulnerabilities are exploited more aggressively

than in the past. In order to identify intrusion of computing resources and have a situa-

tional awareness of the network, system administrators today perform intrusion analysis, a

combination of intrusion detection and computer forensics. This activity is an inexact sci-

ence; system administrators use a combination of intuition, experience, and low-level tools

to create and support positive or negative judgment about a security event.

However, with increase in the number of computing resources in a network, the volume

of the low-level system events collected is too high. This strains the intuitive capacity of the

human analyst. Many intricate attacks common today, make use of multiple vulnerabilities
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in a system. To identify such attacks, system administrators have to look into several places

(network packets, system logs, host configuration, etc.) and confirm an attack. For example,

in most enterprise networks, the web server accessible from the Internet happens to be the

first target. This sets a stage for the attacker to penetrate deeper into the network. What

follows might be a series of host compromise to achieve the attacker’s goal, such as steeling

credit card information from a SQL server. With diverse sources to look for intrusion

evidence, the complexity involved increases dramatically for a system administrator.

Another important problem with the output from low-level tools is that they give a

varying degree of uncertainty about a security event. Some observations 1 give only low

confidence about attacks, and few give a high degree of confidence. The degree of uncertainty

associated with the observations root from many factors. Some of the reasons include the

nature of the attack, effectiveness of the tool, frequency of the attack or how similar the

attack is to a normal activity. An increased network activity during office hours gives low

confidence about an ongoing attack compared to a high network activity around midnight.

Again, both these events could be benign or malignant depending on what caused the

network activity. It either can be an attacker downloading a list of credit card information

or an authorized event like software updates2. Thus, it is hard to rely on a single piece of

evidence to conclude an attack or machine compromise.

While the low-level observations (network packets, server logs, etc.) all have potential

implication for attack possibilities, few, if any of them directly provide a zero/one judgment

at the high-level abstraction (e.g. a machine has been compromised). Nevertheless, in

many remote intrusions a relatively small number of critical observations taken together

are sufficient to show that an attack has certainly happened as well as how it progressed.

The bottleneck emerges from consuming disparate sources of information to infer about a

complex attack.

1Alert and observation are used interchangeably in this text, they both mean the report issued by a tool
on observing a suspicious activity

2Software updates are usually scheduled during off peak hours.
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System administrators are highly time-constrained – an automatic tool that can sift

through the ocean of uncertain data to quickly and accurately locate the problem areas or

reduce the search space will be invaluable in practice. There are several technical challenges

such as combining multiple sources of information and handling uncertainty. The most diffi-

cult of the two is quantifying the degree of certainty in various assertions regarding possible

attack activities, and tracking how the uncertainty changes through correlation. Through

our interaction with highly capable system administrators who face the challenge of un-

certainty every day while protecting enterprise systems, we observed that human analysts

do well without relying on any numerical measures. We illustrate a true-life story in sec-

tion 1.1.1. This example clearly shows progress made by the human analyst for identifying

the intrusion and the various levels of uncertainty associated with each incident.

1.1.1 A true-life incident

Consider the following sequence of events (see figure 1.1) that actually occurred at a uni-

versity campus. The system administrator noticed an abnormally large spike in campus-

network traffic (Observation 1 ). He took the netflow dump for that time period, searched

it for known malicious IP addresses, and identified that four Trend Micro (anti-malware)

servers had initiated IRC connections to some known BotNet controllers (Observation 2 ).

The system administrator suspected that the four Trend Micro servers had been compro-

mised. At the console of one of the servers he dumped the memory, from which he found

what appeared to be malicious code modules (Observation 3 ). He also looked at the open

TCP socket connections and noticed that the server had been connecting to some other

Trend Micro servers on campus through the IRC channel (Observation 4 ). He concluded

that all those servers were compromised with a zero-day vulnerability in the Trend Micro

server software. He did the same for the other identified servers and found even more com-

promised servers. Altogether, the system administrator identified 12 compromised machines

and took them offline. When the administrator first noticed the spike in network traffic,
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Answer: 12 machines have been 
“certainly” compromised 

system 
administrator 

IDS alerts netflow dump memory dump 

1. Abnormally 
high traffic 

Search for 
blacklisted IP 

2. Four 
TrendMicro 
servers 
communicating 
with known 
BotNet 
controllers Examine the 

machines’ 
memory 

3. Found 
seemingly 
malicious code 
modules 

4. Found open 
IRC sockets 
with other 
TrendMicro 
servers 

Query: 
Is my machine  
compromised? 

Figure 1.1: Case Study: A true life incident

the questions facing him were: is the network experiencing an attack and if so, which ma-

chines were compromised. However, none of the low-level observations alone could give him

a definitive answer to these high-level questions. Observation 1 (traffic spike) could indi-

cate a variety of causes, many of which are benign3. Observation 2 (connections to BotNet

controllers) has a higher chance of being an indication of malicious activity and hence a

higher degree of likelihood that the identified hosts are compromised. However, an IRC

connection being made to a “known” BotNet controller does not necessarily mean that the

machine has been taken over (compromised). The list of “known” BotNet controllers may

contain false positives or it could be because somebody was probing BotNet controllers for

3To take an example, the “Microsoft Patch Tuesday” often significantly increases network traffic in an
enterprise network.
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research purposes. (The interviewed system administrator suggested this false positive as

he did this himself on a periodic basis.) Observation 3 (suspicious code in memory) is also

a strong indication that the machine may have been controlled by an attacker. But it is not

always easy to determine whether a suspicious module found in the memory dump is indeed

malicious, especially with zero-day vulnerabilities. So this alert also has some false positive.

Observation 4, like observation 2, cannot definitely prove that the machines observed are

under the control of attackers because IRC channels are occasionally (rarely) used as a com-

munication channel between servers. However, when we put all the four pieces of evidence

together, it seems clear that an attack has certainly happened and succeeded and we can

say that which machines have been almost certainly compromised.

In handling this incident, the system administrator had to admit that the observations

could have multiple interpretations, but he could conclude that one interpretation is most

likely to be the case by linking the semantics of multiple observations. For example, al-

though neither observation 3 nor 4 alone can give us high enough confidence to say that the

host is definitely compromised, by linking their semantics we can dramatically strengthen

our confidence in the assertion, since both 3 and 4 point to the same interpretation. We

observed the same pattern in many other incidents we learned from interviewing system

administrators. It appears that even without quantitative measures on uncertainty, the se-

mantic links among possible evidence can dramatically increase one’s confidence on whether

an attack has actually happened and its consequences. As a result, humans can handle the

uncertainty pretty well by “connecting the dots” among various pieces of evidence. However,

manual analysis alone is not scalable and sustainable in the face of large-scale automated

attacks we face today. In this incident, the human system administrator had all the common

security tools at his disposal but none of the tools could provide the crucial capability of

analysis and the manual analysis took a long time.
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1.2 Empirical approach

As a first step, we intend to design tools that help reduce the amount of time that the system

administrator has to spend in the process to identify an intrusion. For this, we propose an

empirical approach to automate reasoning with uncertainty in intrusion analysis. We design

a reasoning model where human knowledge used to draw conclusions about uncertain events

can be codified and applied mechanically to future incidents. Although reasoning about in-

trusions on different incidents can vary significantly, the basic principles are quite consistent.

We design a reasoning model that captures the essence of the generic reasoning rationale,

not specific features of any particular incident. The model provides a language whereby hu-

man experts can share knowledge useful for intrusion analysis in a machine-readable format,

and an automated reasoning engine can make use of the knowledge, significantly expanding

a human’s capability. Both the model and the reasoning engine are designed empirically

through studying real security incidents.

This is certainly not the first attempt at automating reasoning about intrusions. Past

work has applied rule-based systems to correlate audit logs and find out attacks [1, 2]. There

is also a large amount of work on IDS alert correlation [3–8]. These previous approaches do

not address the uncertainty problem explicitly, i.e., the reasoning systems do not model when

and how confidence levels on assertions can be strengthened in the correlation process4. An

explicit model for uncertainty in reasoning is crucial to making alert correlation tools useful

in practice. Zhai, et al. [9] has pioneer work in this area by combining alert-correlation and

Bayesian-Network techniques to reason about complementary intrusion evidence from both

IDS alerts and system monitoring logs so that high-confidence traces can be distinguished

from ones that are less certain. Recent years have also seen the application of quantitative

mathematical methods such as Bayesian Network [10, 11] and Dempster Shafer theory [12,

4The DIDS (Distributed Intrusion Detection System) project [2] uses a Rule Value (RV) to represent the
confidence that a rule is useful in detecting intrusions. The RV is trained and adjusted through feedback to
the expert system. While the RV could be thought of as a measure of uncertainty, its use does not lead to
the reduction of uncertainty through connecting the dots in observations. Thus it is more a heuristic-based
optimization than an explicit model of how uncertainty changes in reasoning.
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13] in intrusion detection [14–16]. We have chosen not to start from those mathematical

theories, because to utilize them we need a priori the logical structures among the various

observations and hypotheses. In Bayesian Network, the logical structure is the graphical

model that encodes the causality relation among assertions; in Dempster-Shafer theory,

the logical structure is the “compatibility relation” among assertions. Such mathematical

theories work well when a “good structure” is given and their power lies in the capability

of combining numerical measures (probability or belief functions) over the structure in a

systematic way. For intrusion analysis, identifying the structure of attacks is the biggest

challenge itself, which is intermingled with the challenge caused by uncertainty. Thus, it

is not obvious how the aforementioned mathematical theories can be directly applied to

yield practical tools. Instead of starting from these mathematical theories, we start from

true-life experiences like the one described above, and design a model that systematically

“simulates” what a human can do manually, formulating such empirical experiences such

that the model can be applied mechanically to future incidents. We believe this empirical,

bottom-up approach is an important first step in understanding the nature of reasoning

about uncertainty in cyber security, and gaining experience that may make some quantitative

approaches viable in the future.

1.3 Contributions

In this thesis, I present a method and tool for automated intrusion analysis for combining

alerts tagged with uncertainty and from disparate sources. The following are the original

contributions through this work.

Some materials presented in this thesis were published in the 25th Annual Computer

Security Applications Conference (ACSAC) in 2009 [17].

An empirical model for uncertainty We present a model for capturing the meanings

of low-level system observation data in terms of high-level conditions of interest to intru-
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sion analysis. We adopt an empirical approach where the model and inference process are

based on how human administrators reason about attacks in real security incidents. We

use qualitative rather than quantitative assessment to capture the uncertainty inherent in

such assertions. The qualitative assessment reflects the imprecise nature of the certainty

levels’ semantics and it also makes it easier to understand by humans, enabling discus-

sion/refinement of the reasoning model in an open forum. Such a model can be linked

to existing knowledge bases such as the Snort 5 rule repository. Our model is capable of

expressing logical connections among the high-level conditions (also with qualitative uncer-

tainty assessment) so that it can reason about multi-host, multi-stage intrusions with traces

spread across various types of system monitoring data.

Reasoning methodology We present a reasoning process that can utilize such a model

and existing IDS tools to automatically identify high-confidence attack traces from large

diverse sets of system monitoring data not restricted just to IDS alerts. We also present

within this model a method for strengthening the confidence in an assertion by combining

multiple independent pieces of evidence of low or moderate confidence. Our model of high-

level conditions consists of generic predicates such as “compromised,” “exploit sent,” etc.

that are independent of the scenario at hand. What can change from one scenario to another

are the instantiation of the predicates and the certainty tags associated with them as the

scenario events are processed and the paths that the reasoning process takes through these

conditions. We believe that human administrators similarly have a small set of “target”

conditions in mind when they process intrusion data and there is value in capturing those

target conditions directly in an automated reasoning process. We implemented a prototype

of a reasoning engine using the true-life case study as a guide and showed that the tools

reasoning tracked the system administrator’s reasoning process and achieved the same set

of high-level conclusions with high confidence.

5Snort is an open source network intrusion detection system. http://www.snort.org
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A Snort add-on based on our model and method We automatically generated the

significant part of our reasoning model from the classtype, impact, and ease of exploit

fields associated with Snort rule descriptions and show that the knowledge base needed

by our reasoning engine can be readily created if security monitoring tools use our model

language, instead of natural language, to describe the potential meanings of various types

of security alerts. Based on this automatically-derived knowledge base and the prototype

implementation of our reasoning engine, we provide a Snort add-on, called SnIPS 6, that

analyzes millions of Snort alerts reported from an enterprise network and only report those

with high-confidence evidence associated with them.

Evaluation of the methodology We applied the SnIPS tool to two third-party datasets,

and computer science department network at Kansas State University. The core reasoning

engine and model was kept unchanged in the evaluation. We found remarkably that our tool

discovered interesting scenarios from the three data sets, even though our core reasoning

model was developed from a very simple and completely different incident. The application

of SnIPS also results in dramatic reduction in the amount of data a system administrator

needs to analyze. The false positives from the analysis helped us identify imprecision from

the automatically generated Snort knowledge base and some subtle but minor gaps in the

core model as well. This indicates that such an empirical approach could produce a shared

knowledge base that can be constantly refined among security practitioners to yield agile

and accurate tools.

Rest of the thesis is organized as follows: chapter 2 provides the background information

on intrusion detection system and discusses related work in the areas of intrusion detec-

tion system and reasoning with uncertainty. In chapter 3, we discuss the reasoning model

developed based on the true life incident. Chapter 4 deals with our reasoning framework

and proof strengthening technique. We discuss the automated model building for Snort in

chapter 5 and in chapter 6 we show the experiments done to evaluate the empirical model

6http://cis.ksu.edu/~xou/argus/software/snips
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developed. In chapter 7 we conclude with a summarization of our work along with future

direction of research.
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Chapter 2

Background and related work

2.1 Intrusion detection system

Intrusion can be defined as “an unwanted and unauthorized intentional access of computer

and network resources” [18]. Intrusion Detection Systems (IDS), are systems used to identify

such intrusive activity in computers and network services. One can compare IDS to a car

alarm or a burglar alarm installed to detect theft or unwanted access to the property.

2.1.1 Types of IDS

IDS has been around for a couple of decades now. IDS can be software-based or a combina-

tion of software and hardware in a stand-alone system. Current IDSes are specialized and

developed based on the services it is monitoring. They can be roughly classified into the

following categories:

Network-based

A network-based IDS, or NIDS, monitors a network segment for intrusive activity. Typically

they are installed in a network tap or span port, a location in the network where it can

monitor the entire network traffic. Also, the network interface card (NIC) should support

promiscuous mode1. NIDS performs protocol analysis or inspects the payload of the network

traffic to identify malicious behavior.

1Promiscuous mode allows NIC to view the traffic not sent to its MAC address
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Host-based

A host-based IDS, or HIDS, monitors only the host it resides in. Most HIDS identifies

malicious behavior by analyzing system call, system log, file system modification, etc.

Application-based

An application-based IDS (AIDS) protects only the application it monitors. Since AIDS are

tailored to a particular application, e.g. Apache web server, they usually are more accurate

than the generic IDSs previously discussed. They are similar to HIDS or NIDS, but with

more specific rules or signatures for the application.

2.1.2 IDS detection types

In order to identify an intrusion, IDS system has to understand an intrusion and differentiate

it from a benign activity. To do this it can be either provided with the information about

the intrusion and asked to report such events, or provide with benign events and report all

events that are not benign. The detection type can be broadly categorized as signature-based

detection and anomaly-based detection.

Signature-detection

Exploits, viruses, trojans and other malicious programs exhibit a pattern in their behavior

or payload. For example, buffer over flow exploit might contain NO OP code 2. In signature

detection, we search for these patterns of known attacks. IDS uses these patterns (also

known as rules or signatures) and compare them against the network traffic or log files.

When a pattern is matched it is reported as an alert. Signature based IDS may fail to detect

novel attacks as the pattern of such attacks may be unknown. Even with this drawback

signature-based IDSes are popular compared to anomaly-based IDS discussed in the next

subsection.

2NOOP (short for No Operation) is an assembly language instruction, sequence of programming language
statements, or computer protocol command that effectively does nothing at all (Wikipedia).
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Anomaly-detection

In anomaly detection, a model is developed by training it with information about benign

activity. Once trained the model will be able to identify benign activities and anything that

is unidentifiable is flagged as potentially malicious.

Even though using anomaly detection can identify novel attacks, this approach has a

very high false positive rate making it less popular than signature-based IDS. Also, training

an IDS for normal behavior is very difficult in practice.

IDS response type

On seeing an intrusion, IDS can be instructed to perform a predefined set of actions. A

passive response system will issue an alert and/or log entries in response to the alert. An

active response system may take actions such as drop the packet, send reset packet to the

connection, add IP address to the block list, and so on.

2.1.3 Problems in IDS

False positives IDS alerts that are triggered on benign activity where no intrusion or

attack is underway are called false positives. A false positive can be issued because the

benign activity matched an attack signature.

False negatives When an IDS fails to detect an actual intrusion since it didn’t have the

rules to match the attack, it is called a false negative.

An ideal IDS should have very low false positive and false negative rate. But in reality,

this is hardly achievable because there exists a correlation between false positive and false

negatives in an IDS. Since undetected attacks are more detrimental than a false alarm,

current IDSes try to have a low false negative rate at the cost of having false positives. In

order to have low false negatives, the signatures or anomaly-model are generic in nature,

which results in reporting more benign activities as attacks.
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Because of the above mentioned trade off, current IDS suffers from high false positive

rates. In an enterprise network comprised of many hosts, IDS sensors create thousands of

alerts each day. With limited human resources, it is very difficult to analyze the low-level

alerts and identify an actual attack. Moreover, an IDS issues an alert on the attempts

made by an attacker to compromise a network element. This might result in generating a

huge amount of alerts if the attacker is naive and trying many different attacks. While it is

important to capture such attempts, security officers and system administrators are more

interested in identifying potentially successful attacks as there may be an overwhelming

number of failed attempts.

2.2 Related work

2.2.1 Reasoning under uncertainty

Uncertainty in data, even specifically in the context of security analysis, is a vast and fertile

topic. Probabilistic reasoning appears to be a natural candidate for such problems and

there have been several attempts along this direction [9, 14, 16]. A fundamental challenge

in applying these techniques is how to obtain the logical structure needed for combining the

probability measures. Moreover, these techniques require as inputs statistical parameters

in terms of probability distributions of related events, conditional probability tables, etc.

that have proven very hard to estimate or learn from real-life data because of overwhelming

background noise. For security analysis, it is nearly impossible to obtain the ground truth

in real traces and public data sets and it is hard if not impossible to realistically simulate

attack scenarios. Consequently calibrating analysis techniques with metrics such as false

positive/negative ratios is a huge challenge (See [8] for details) and intrusion analysis remains

a manual and intuitive art, which has inspired us to formulate a logic that approximates

human reasoning that works with a qualitative assessment on a few confidence levels which

are relatively easy to understand. We acknowledge that this formulation not only hides the

lack of knowledge of base probabilities but also reflects the great deal of ambiguity that
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exists in intrusion analysis of real data. We hope that by creating an option to specify

the confidence level explicitly and by providing general practical tools to manipulate these

uncertain pieces of knowledge, we can bypass some of these fundamental problems and gain

experience and insight that may make some statistical approaches viable in the future.

Friedman and Halpern used a new approach to modeling uncertainty based on “plausi-

bility measures” [19]. Our levels of uncertainty are inspired by similar considerations but

we do not use their precise definition because the meaning of negation is not yet clear in our

context. Similarly, a formal description of our logic as a modal logic is the subject of future

investigation. Along similar lines, the Dempster-Shafer (DS) theory [12, 20] has been used

effectively in many kinds of evidential analysis. This theory allows us to construct belief

functions and plausibility measures for beliefs by combining sets of events within certain

constraints. There have been highly customized applications of the DS theory to application

domains in AI and expert systems, where numerical quantification is not possible (see, for

example, [21, 22]). These logics may be useful in building a theoretical underpinning for our

system; we have only done a partial investigation in this direction as our focus has been on

building usable empirical tools.

2.2.2 Alert reduction techniques

The literature on IDS alert reduction techniques is vast and they can be roughly categorized

into alert correlation [1, 3–9, 23–27], alert clustering [28, 29] and alert verification [30–34].

The goal of these works are to eliminate redundancy, remove failed attempts and provide a

logical correlation of the alerts so that a system administrator can easily comprehend the

huge volume of alerts.

Alert correlation

Most of IDS alert correlation works model IDS-specific states using pre- and post-conditions

that drive a correlation model and rely on the existence of a sparse (nearly deterministic)

mapping from alerts to their pre-/post-conditions. It appears to be difficult to model in this
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manner ubiquitous alerts such as “abnormally high network traffic” that could be indicative

of any of a wide variety of possible conditions. Our observation correspondence model

explained in chapter 3.2 assigns a direct meaning to an observation and our internal model

allows such meanings to be flexibly linked together based on their semantics. Such flexibility

is important when the evidence is tenuous and subject to multiple interpretations.

Alert clustering

In alert clustering, a set of similar alerts are clustered and represented as a single alert.

For example, alerts having similar source and destination IP addresses, alert types but

different time stamps are clustered and represented as a single alert. The time stamp of the

new predicate will be a time range having the earliest and latest time stamp from the set

of similar alerts. This step helps in reducing the redundancy in alerts generated by IDS.

Julish [28] proposed a data mining based alert clustering technique to discover root causes.

According to this work, a few dozen of root causes generally account for more than 90%

of the alerts. By identifying the root causes it is possible to filter alerts caused by benign

root cause and thus reduce the future alert load. Clustering is a good technique to reduce

the redundant information in the alerts. A limitation of alert clustering is that they do not

provide a high-level situational awareness of the network and causal relation between the

clustered events.

To handle the possibly enormous inputs but at the same time keep the linkage between

low-level traces to high-level meanings, our pre-processing step includes data reduction based

on clustering and simple correlation of local observations. Much of the previous work in IDS

has addressed this important problem [5, 8] (including the “layered approach” of Martignoni

et al. [35]). We intend to use all applicable tools and approaches from these works.

Other kinds of intrusion analysis such as M2D2 [23] require classifying incoming informa-

tion into various categories with mathematical notations which is a challenge for the typical

users; an important principle of our model is to represent knowledge as simple “assertions”

that can be easily translated into natural language.
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Alert verification

Kruegel et al. [34] introduced the idea of alert verification, a method for filtering failed

attempts from IDS alerts. Alert verification use active and passive techniques to verify if

conditions for success are favorable or observe the effect of an exploit to determine success.

For example, the system verifies if the services exist on the host the exploit is attempted

at and if the version of the services is vulnerable to this attack. Host can be probed to

gather such information in real time or gather information periodically (once a week or

when the system is updated) to avoid disrupting the services at every attempt. Observing

the effects of an attack can be useful too. If an attack is known to disrupt a service, probing

to find if the service is up can help identify if the attempt was a failure or successful one.

Atlantides [30] by Bolzoni et al., proposed an architecture design of alert verification for

network intrusion detection system.

2.2.3 Attack graph

Another related research area is attack graphs [36–41]. While primarily used in vulner-

ability assessment and security hardening, attack graphs can identify multi-stage attack

possibilities. Lingyu Wang et al. [41] used attack graphs for correlating, hypothesizing and

predicting alert correlation. They also proposed queue graph, an approach to retain the lat-

est alert of each type. The correlation between old and new alert of each type is implicitly

represented using the temporal order between alerts. This approach is efficient in handling

a large amount of alerts if they are of the same type. Recently, Zhang [42] proposed a new

representation of attack graphs which can better handle intrusion detection. However, we

have not seen systematic treatment of uncertainty in intrusion analysis using attack graph

techniques.
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2.2.4 Other closely related work

BotHunter [43] is an application for identifying Bot machines by correlating Snort alerts

with a number of other system-monitoring events. The notions of “confidence score” and

“evidence threshold” are introduced to capture the uncertainty in the correlation process

and specific processes are designed for the purpose of Bot detection. The goal of our work

is to provide a simple but more general model for intrusion analysis.

Hollebeek and Waltzman [44] proposed a notion of “suspicion” in modeling uncertainty

in intrusion analysis. It appears that the approach does not further differentiate the var-

ious meanings that could be associated with a “suspicious” event. The system relies on a

“deductive graph” and a “suspicion graph” to propagate certainty levels within the context

of the system under concern. But with just a single notion of “suspicion” for each event,

it is not clear how to build or interpret the meanings of such graphs in a systematic and

consistent manner.

Scyllarus [45] is another closely related work. Their goal is to perform IDS fusion using

Bayes nets and System-Z+ [46] with qualitative probability. This system use the notion

of “possible” and “likely” to determine if an event reported by IDS is a false positive.

The primary goal of our work is to provide a framework for specifying varying degree of

confidence level and use proof strengthening technique to elevate the confidence level.
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Chapter 3

Reasoning model

In this chapter we describe our reasoning model empirically developed from the true-life

incident. Observation correspondence relation maps low-level observations to high-level con-

ditions, internal model captures the relationships among high-level conditions; and modes

captures the degree of uncertainty. Our motivation behind the reasoning model was the

true-life incident (case study) discussed in section 1.1.1. We use this case study as an exam-

ple to understand the system administrator’s analytical state in the course of investigation,

identify the rationale behind his decision at various stages, and design a logic that is similar

to the human reasoning process.

3.1 Modeling uncertainty

While the goal of intrusion analysis is detection of events at a high-level of abstraction (e.g.,

a machine has been compromised and has been used to compromise others), tools today

operate with any known accuracy only at low levels of abstraction (e.g., network packets,

server logs, etc.). Uncertainty arises from this semantic gap. For example, a packet pattern

(a “signature”) could be associated mostly with attacks but on occasion with legitimate

use as well. Furthermore, it may not tell us whether the attack succeeded. A key step in

tackling the uncertainty challenge is to develop a model that can link multiple low-level

observations to the conditions under concern at the high level and simultaneously allow us

to specify our confidence in the assertions.
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Confidence level Mode
low possible p
medium likely l
high certain c

Table 3.1: Uncertainty modes

For example, an abnormal high network traffic (low-level observation) could mean

that an attacker is performing some network activity (high-level condition). Simi-

larly, the netflow dump showing a host communicating with known BotNet controllers

(low-level observation) indicates that it is likely an attacker has compromised the host

(high-level condition). All these assertions are associated with varying degrees of uncer-

tainty. For example, compared with the anomalous high network traffic, a netflow filter

that shows communication with known BotNet controllers is a more confident assertion on

attacker activity. It is crucial that the reasoning model be capable of expressing such differ-

ences and it is desirable that this be done without relying on probability parameters that

are difficult to obtain and hard to justify for humans.

The reasoning model uses three modes p, l, c, standing for “possible, likely, certain”

to express low, moderate, and high confidence levels (See table 3.1). Even though one

could think of certainty level as a continuous quantity ranging from completely unknown to

completely certain, in practice, human system administrators only deal with a few confidence

levels that roughly correspond to the ones defined here.These words are also used routinely

in natural-language description of security knowledge bases such as the Snort rule repository.

These uncertainty levels are assigned by humans and apart from the obvious ordering (p <

l < c) there is no ascribing of probability ranges to each level.

With this qualitative notion of uncertainty, two types of logical assertions are used

in the reasoning model: observation correspondence which maps low-level observations to

high-level conditions, and internal model which captures relationships among high-level

conditions (also called internal conditions). Correspondingly, obs(O) is used to denote a

fact about observation O, and int(F ) to denote an internal condition F . For example,
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A1 : obs(anomalyHighTraffic)
p7−→ int(attackerNetActivity)

A2 : obs(netflowBlackListFilter(H, BlackListedIP))
l7−→ int(attackerNetActivity)

A3 : obs(netflowBlackListFilter(H, BlackListedIP))
l7−→ int(compromised(H))

A4 : obs(memoryDumpMaliciousCode(H))
l7−→ int(compromised(H))

A5 : obs(memoryDumpIRCSocket(H1, H2))
l7−→ int(exchangeCtlMessage(H1, H2))

Figure 3.1: Observation correspondence

obs(netflowBlackListFilter(ip1, ip2)) is an observation from the netflow blacklist filter that

“machine ip1 is communicating with a known blacklisted (and hence likely malicious) host

ip2”, whereas int(compromised(ip1)) is an internal condition that “ip1 is compromised.”

3.2 Observation correspondence

Figure 3.1 shows the observation correspondence relation for the observations in the true-life

incident described in section 1.1.1 along with the corresponding uncertainty modes. In A1 an

abnormal high network traffic obs(anomalyHighTraffic) is mapped to int(attackerNetActivity),

meaning an attacker is performing some network activity. This is a low-confidence judgment

because a high network activity could be caused by many benign events such as a autho-

rized user downloading movies; thus the mode is p. Intuitively, the p mode means there are

other equally possible interpretations for the same observation. A2 and A3 give the meaning

to an alert identified in netflow analysis. There are a number of filtering tools that can

search for potential malicious patterns in a netflow dump such as “capture daemon” and

“flow-nfilter.” These rules deal with one filter that identifies communication with known

malicious IP addresses. Since any such activity is a strong indication of attacker activity

and compromise of the machine involved, the modality of the two rules is l. There are

still other possibilities, e.g. the communication could be issued by a legitimate user who

wants to find out something about the malicious IP address. But the likelihood of that is
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significantly lower than what is represented by the right-hand side of the two rules. It is

legitimate to have multiple observation correspondence assertions for the same observation:

they may represent different aspects or possibilities of an observation. A4 says if memory

dump on machine H identifies malicious code then H is likely to be compromised. A5 says if

the memory dump identifies open IRC sockets between machine H1 and H2 then it is likely

that the IRC channel was used to exchange control messages between BotNet members.

We recognize that these observation correspondence assertions are subjective. Quan-

tifying the results of intrusion sensing in a robust manner has remained a hard problem

for a variety of reasons [47]. Our goal is to create a flexible and lightweight framework

wherein a system administrator can feed in these beliefs of certainty and see what conse-

quences arise. For example, a system administrator may think the mode of A4 ought to be

c, which would be acceptable. One advantage of such a logic is that it facilitates discussion

and sharing of security knowledge. Given the large base of similar deployed infrastructures,

shared experiences from a large community can likely help tune the modes in those as-

sertions. We envision a rule repository model like that for Snort, where a community of

participants contribute and agree upon a set of rules in an open language. Currently there

are only coarse-grained classification and some natural-language explanations for the mean-

ings behind each Snort alert. In chapter 5, we show how a small number of internal-model

predicates can give meanings to the vast majority of Snort alerts and that the observation

correspondence relation can actually be automatically generated from a Snort rules class

type and the “impact” and “ease of attack” fields in the rules natural-language description.

If the Snort rule writers had a standard language for such information they would be able

to readily provide the observation correspondence assertions for Snort alerts.

3.3 Internal model

The reasoning model should also express the logical relations among the various high-level

conditions so that such knowledge can be mapped to correlate low-level events. For example,
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I1f : int(compromised(H1))
f, p−→ int(probeOtherMachine(H1, H2))

I1b : int(probeOtherMachine(H1, H2))
b, c−→ int(compromised(H1))

I2f : int(compromised(H1))
f, p−→ int(sendExploit(H1, H2))

I2b : int(sendExploit(H1, H2))
b, c−→ int(compromised(H1))

I3f : int(sendExploit(H1, H2))
f, l−→ int(compromised(H2))

I3b : int(compromised(H2))
b, p−→ int(sendExploit(H1, H2))

I4f : int(compromised(H1)), int(compromised(H2))
f, p−→ int(exchangeCtlMessage(H1, H2))

I4b1 : int(exchangeCtlMessage(H1, H2))
b, c−→ int(compromised(H1))

I4b2 : int(exchangeCtlMessage(H1, H2))
b, c−→ int(compromised(H2))

Figure 3.2: Internal model

the model should include knowledge such as “after an attacker has compromised a machine,

he/she may perform some network activity from the machine.” This is a generic action

common to many attack scenarios. This knowledge can reveal potential hidden correlations

between low-level observations, (e.g., high network traffic and netflow filtering result). In

the absence of any context to guide us, a traffic spike could be due to any of a number of

things but in the context of a likely compromise, the parameters of the traffic burst become

important — if the traffic emanated from the likely compromised machine it can be assigned

a different meaning than if it did not.

Figure 3.2 shows the internal model we developed from studying the real-life incident.

We use Cl
d,m−→ Cr to represent the inference rules for the internal conditions, namely condi-

tion Cl can infer condition Cr. There are two modality operators, d and m, associated

with a rule. Like in observation correspondence, the m mode specifies the confidence

in the inference and takes values from {p, l, c}. The d mode indicates the direction of

the inference and could be either f (forward) or b (backward). In forward inference, Cr

is caused by Cl, thus the arrow must be aligned with time, i.e. Cr shall happen after
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Cl. This can specify knowledge for reasoning what could happen after a known condi-

tion becomes true, e.g. after an attacker sends an exploit to a machine, he will

likely compromise the machine (I3f ). In the backward inference, we reason what could

have happened before to cause a known condition, and thus the direction of inference is

opposite to time. Example: if a malicious probe is sent from a machine, then an

attacker must have already compromised the machine (I1b). As another example, the

forward inference rule I1f specifies that “if an attacker has compromised machine H1, he

can perform a malicious probe from H1 to another machine H2.” This inference has a low

certainty: the attacker may or may not choose to probe another machine after compromis-

ing one. Thus the rule is qualified by the p mode. I4f is the only rule in this model that

has two facts on the left-hand side. As in typical logic-programming languages, the comma

represents the AND logical relation.

The internal model discussed above provides a flexible framework for representing high-

level abstract conditions and the relationship among various high-level conditions. Adding

a new security incident will require a new observation correspondence to map the incident

to any of the internal conditions developed from our case study. In chapter 5, we show our

automated approach to build observation correspondence for Snort IDS. Similarly, adding

new additional internal conditions will require minimal effort. The new internal conditions

along with the relationship with other predicates must be specified in the internal condition.

Adding new internal conditions or new observation correspondence relation will not require

any modification to the reasoning engine discussed in chapter 4.
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Chapter 4

Reasoning methodology

The reasoning model described in chapter 3 is analogous to human thinking – observations

are reflected as beliefs with varying strengths and the beliefs are related to one another

with varying strengths. This chapter will introduce the reasoning process to use such a

model to “simulate” human thinking such that an automated inference process can allow

us to combine observations to construct sophisticated attack conclusions along with a semi-

quantitative measure of our confidence. This inference process is capable of deriving from

a large number of possibilities high-confidence beliefs corroborated by a number of comple-

mentary evidence pieces logically linked together.

4.1 Reasoning framework

Figure 4.1 presents the architecture of our reasoning system. The two modules of the

reasoning model — observation correspondence (described in chapter 3.2) and internal model

(described in chapter 3.3) are input to the reasoning engine. Both modules are specified in

Datalog [48], a simple logic-programming language. The raw observations are pre-processed

and the distilled results are converted to Datalog tuples as input to the reasoning system.

The reasoning engine is itself implemented in Prolog. An important feature of our design is

that every component of the system is specified declaratively, which has the useful property

that once all specifications are loaded into the Prolog system, a simple Prolog query will

automatically and efficiently search for true answers based on the logic specification. For

25



Reasoning 
Engine 

Observations 
(System logs, IDS alerts etc) 

Observation 
Correspondence 

User query 
e.g. which machines 

are “certainly” 
compromised? 

High‐confidence 
answers with 
evidence 

Internal Model 

Figure 4.1: System architecture

example, a user can ask a question “which machines are certainly compromised?” in the

form of a simple Prolog query. Our reasoning engine will then give the answer along with

the evidence in the form of logical proofs.

4.2 Application of inference rules

All the rules in the observation correspondence and internal model can be viewed as infer-

ence rules. The reasoning engine applies those rules on the input Datalog tuples to derive

assertions with various levels of certainty. The certainty of the derived fact is the lowest

certainty of the facts and rules used to derive it.

We use int(F, m)⇐ Pf to represent that “the internal fact F is true with modality m”,

and Pf is the proof that shows the logical derivation steps arriving at the conclusion. From

an observation one can derive an internal belief with some degree of certainty, based on

the observation correspondence relation. As an example, the open IRC Socket identified

through memory dump in the incident (Observation 4) described in section 1.1.1 will be an
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input to our system: obs(memoryDumpIRCSocket(172.16.9.20,172.16.9.1)). Together with

observation correspondence A5 shown in figure 3.1 the rule will derive:

int(exchangeCtlMessage(’172.16.9.20’,’172.16.9.1’), l)⇐

obs(memoryDumpIRCSocket(’172.16.9.20’,’172.16.9.1’))

There can be more than one derivation if there are multiple observation correspondences.

This is the first step that happens internally in the reasoning engine. All the observations

are mapped into an internal condition.

Using the internal-model rules shown in figure 3.2, further internal conditions are derived.

The fact int(exchangeCtlMessage(172.16.9.20,172.16.9.1), l) derived above, together with

the internal-model rule I4b1 , would yield the following derivation trace.

int(compromised(172.16.9.20), l)⇐

int(exchangeCtlMessage(172.16.9.20,172.16.9.1), l)⇐

obs(memoryDumpIRCSocket(172.16.9.20, 172.16.9.1))

At any point during the derivation, a newly inferred predicate will take the lower of two

modes from the internal rule or derivation chain. For example, the certainty mode for I4b1

is c, joined with the l mode in int(exchangeCtlMessage(172.16.9.20, 172.16.9.1), l), we get

l as the mode for the resulting fact int(compromised(172.16.9.20), l).

One could argue that the certainty of the derived fact should be lower than that of the

weakest fact in the derivation chain, especially when the derivation chain is long. However,

given the observation that most enterprise network intrusions are carried out in just a few

steps, we do not expect the derivation chains to be long in practice. Since the certainty modes

only represent a rough guess, accounting for certainty level decay along short derivation

paths is unlikely to be significantly valuable.

4.3 Proof strengthening

In the previous section, we discussed the rules used to derive internal conditions. All the

derived internal conditions will have a mode equal or lower than the mode of the observation.
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We use the proof strengthening technique to elevate the confidence level by combining

multiple observations inferring the same internal condition. This step results in creating

high-confidence proof traces which is later presented to a system administrator for further

analysis.

The key purpose of reasoning about uncertainty is to derive high-confidence facts from

low-confidence ones. In the true-life incident, the system administrator strengthened his

belief that the Trend Micro server was compromised by combining three different pieces

of evidence: netflow filter result showing communication with a blacklisted IP address,

memory dump result showing likely malicious code modules, and memory dump result

showing open IRC sockets with other Trend Micro servers. These three pieces of evidence

are independent — they are rooted on observations at different aspects of the system, and

yet they are logically connected — all of them indicate that the Trend Micro server is likely

compromised. Thus, they altogether can strengthen our belief in the fact that the server is

compromised.

We generalize this reasoning process in the following proof strengthening rule.

int(F, m1)⇐ Pf1 int(F, m2)⇐ Pf2 Pf1 ‖ Pf2
int(F, strengthen(m1, m2))⇐ strengthenedPf (Pf1, Pf2)

The ‖ relation indicates that two proofs are independent, meaning they are based on disjoint

sets of observations and internal conditions. This deduction rule states that if we have

two reasoning paths to a fact with some confidence levels and if the two paths are based

on independent observations and deductions, then the confidence level of the fact can be

strengthened.

According to the deduction rule, two independent proofs, Pf1 and Pf2 leading to a inter-

nal fact F, with modes m1 and m2 respectively can be strengthened and a new strengthened

predicate with an elevated mode is created. Mode elevation using strengthen function is

defined below.
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strengthen(l, l) = strengthen(l, p) = strengthen(p, l) = c

In simple words, two independent proofs can strengthen to “certain” if at least one of

them can yield a “likely” mode. There is no definition for strengthen when both parameters

are p or at least one of them is c. Since the p mode represents very low confidence we do

not allow strengthening from just possible facts. There is no need to strengthen a fact if it

has already reached the “certain” level.

We emphasize that the strengthening rules are defined here through our empirical study

on real-life security incidents and these strengthening conditions do reflect the mental process

a human system administrator goes through when catching real attacks.

4.4 Implementation

We use the XSB [49] system to evaluate the Prolog reasoning engine. We also implemented

a simple proof-generator so that whenever a fact is derived, the proof trace for that fact can

also be obtained simultaneously. We applied the reasoning system and the model described

in 3.2 and 3.3 on the input for our case study. The result is shown in Figure 4.2 (IP

addresses are sanitized.). The user enters the query show trace(int(compromised(H),c)),

to find all the provable facts in the form of compromised(H) with “certain” mode. This is

essentially asking the question “which machines are certainly compromised”. The reasoning

engine prints out a derivation trace for 172.16.9.20, the IP address for the compromised

Trend Micro server first identified by the system administrator. It is clear that the derivation

trace exactly matches the reasoning process the human system administrator used to identify

the compromised server — the confidence level is strengthened from concordant evidence

emanated from netflow dump and memory dump.

The execution time of the reasoning system is affected by both the internal model and the

number of input observations. We expect the internal model developed by a user commu-

nity contains a constant (and relatively small) number of internal predicates and assertions

29



| ?- show_trace(int(compromised(H),c)).

int(compromised(’172.16.9.20’),c) strengthen

int(compromised(’172.16.9.20’),l) I_4b1

int(exchangeCtlMessage(’172.16.9.20’, ’172.16.9.1’),l) A_5

obs(memoryDumpIRCSocket(’172.16.9.20’, ’172.16.9.1’))

int(compromised(’172.16.9.20’),l) A_4

obs(memoryDumpMaliciousCode(’172.16.9.20’))

int(compromised(’172.16.9.20’),l) A_3

obs(netflowBlackListFilter(’172.16.9.20’, ’129.7.10.5’))

Figure 4.2: Result of applying the reasoning system on the case study

that capture the semantics of security conditions of interest. The simple reasoning rules

described in Section 4.2 can be viewed as evaluating a fixed Datalog program against input

tuples (observations) in XSB whose complexity is dominated by the maximum number of

instantiations of subgoals [38]. Since our model can infer at most as many internal condi-

tions as there are input observations (in an asymptotic sense), the complexity of applying

the simple reasoning rules will be linear in the number of input tuples. The proof strength-

ening rule described in Section 4.3 needs to conduct pair-wise comparison among derivation

paths leading to a fact and hence can have quadratic complexity. Consequently, a rough

estimate of the reasoning time complexity is quadratic in the number of input tuples. This

was empirically verified by our experiments described in chapter 6.

During the evaluation of this empirical model, we recognized a need for pre-processing

and using time information in the reasoning process. The data given as input to the rea-

soning system contains a lot of redundant information which some times overwhelms the

system, in the pre-processing step we reduce the redundancy in the input data. We use the

time information as we have both forward and backward reasoning and they differ in the

time relationship in the derived facts. We discuss the pre-processing and time handling in

the following sections.
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int(probe(ext1, webServer), c, T1)
int(probe(ext2, webServer), c, T2)

...

...
int(probe(extn, webServer), c, Tn)

 int(probe(external, webServer), c, range(T1, Tn))

Figure 4.3: Preprocessing: Summarization

4.5 Pre-processing

The pre-processing step is performed to compact the information entering the reasoning

engine. We apply a data abstraction technique by grouping a set of similar “internal condi-

tions” into a single “summarized internal condition”.

The current implementation of summarization is done on time stamp and IP addresses.

This step is done after the observations are mapped to their internal conditions. If a set

of internal conditions differ only by timestamp, we merge them into a single summarized

internal condition with a time range between the earliest and latest timestamp in the set.

Similarly, we also abstract over external IP addresses so that alerts that differ only on the

external source or destination addresses are merged and the corresponding IP address is

abstracted as “external”. Figure 4.3 depicts the process of summarization with an example.

In this example, multiple observations map to the internal condition, probe with identical

mode, c. These observations have webServer as the destination IP address and a source IP

address from an external network. They may have the same time stamp or temporally close.

When we apply the summarization technique, this yields a single predicate having a wild

card variable external to represent source IP address belonging to external network and a

time range having the earliest and latest time in observations.

In the current implementation, we do not summarize on internal IP addresses as this

knowledge may be useful in the reasoning process. A mapping between the summarized

internal condition and the raw internal conditions/observations identifies the low level facts

belonging to the summarized predicates. The summarized tuples are then passed on to the

reasoning engine.
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4.6 Handling time

Timestamps associated with security monitoring events are important in tracking and di-

agnosing root causes of problems. When an observation correspondence rule is used, the

internal condition on the right hand side simply inherits the time field of the observation

on the left. When an internal model is used, the time stamps associated with the derived

assertion will be derived from the timestamp on the left hand side and the direction of the

rule in a straight-forward manner (e.g., for a forward rule the right hand-side shall happen

after the left hand side). Latency in detection and clock skews can also make timestamps

imprecise and less useful, which needs to be addressed through techniques such as time

windows.
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Chapter 5

Automating model building for Snort

In chapters 3 and 4 we empirically developed a model and reasoning engine for intrusion

analysis based on the true-life incident described in 1.1.1. To test the model developed from

the case study on a publicly available IDS, Snort, we created an Snort add-on, called SnIPS.

The purpose of this tool is to help the users to reason about Snort alerts using the techniques

discussed in the earlier chapters. Figure 5.1 shows the system architecture of SnIPS. It

consist of the reasoning engine and internal model developed from our empirical study,

observation correspondence for Snort alerts created automatically from Snort rule repository

and tools for translating Snort alerts. In this chapter we briefly introduce Snort IDS and

describe our approach to automatically creating a observation correspondence knowledge

base for Snort IDS.

5.1 Snort

Snort [50, 51] is an open source, rule-based network intrusion detection system and is

widely used for real time network traffic analysis. It combines signature, protocol and

anomaly-based inspection for identifying malicious events. Snort is cosmetically similar to

tcpdump [52] but is more focused on the security applications of packet sniffing. The major

feature of Snort is packet payload inspection. Snort decodes the application layer of the

packet and can be given rules to collect traffic that has specific data contained within its

application layer. This allows Snort to detect many types of hostile activity, including buffer
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Figure 5.1: SnIPS system architecture

overflows, CGI scans, or any other data in the packet payload that can be characterized in

a unique detection fingerprint.

5.1.1 Snort architecture

Internally, Snort is made up of a packet sniffer, preprocessor, detection engine and logging

module.

Packet sniffer The packet sniffer module uses libpcap [52] library for reading the network

packets. Typically, Snort listens to a network interface in promiscuous mode. This allows

Snort to read all the packets in the network. The packet sniffer module sends the captured

packet to the preprocessor module.
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alert tcp $EXTERNAL NET any -> $SMTP SERVERS 25 (msg:"EXPLOIT x86 windows

MailMax overflow"; flow:to server,established; content:"|EB|E|EB| [|FC|3|C9

B1 82 8B F3 80|+"; reference:bugtraq,2312; reference:cve,1999-0404;

classtype:attempted-admin; sid:310; rev:8;)

Figure 5.2: An example Snort rule

Preprocessor Snort’s preprocessor is used to either examine packets for suspicious activ-

ity or modify packets so that the detection engine can properly interpret them. For example,

the frag3 preprocessor defeats the IP fragmentation attacks by reassembling fragmented

packets and ARPspoof is a preprocessor designed to detect malicious Address Resolution

Protocol (ARP) traffic. There are many pre-processor plugins available in Snort that can

be added by system administrators.

Detection engine The detection engine is the most important feature of Snort. It receives

data from the preprocessor and checks it with a rule set, which contains signatures written

by experts for identifying malicious patterns. If a rule is matched, based on the configuration

of the rule, the packet can be sent to the logging model, dropped or passed.

Alert/Logging module The logging module receives the alert and the associated rule

that triggered the alert. It then writes the alert and rule information to a log file or a

database. Snort logging module can be configured to log the alerts into a log file, database,

windows event viewer, network connection, etc. In most production systems, where the

number of alerts generated can be huge, Snort is configured to store the alerts in a database.

This makes it convenient to manage the large volume and the ability to query for specific

alerts. (Refer to appendix A.3 for schema of the Snort alert database).

5.1.2 Snort signature

A Snort signature consists of a header and rule options. The header section is made up of

action (alert, drop, pass or log packet), protocol (IP, ICMP, TCP), source and destination

IP address (individual IP, range of IPs, list of IPs, or “any”), port (individual port, range of
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ports or “any”) and the direction of the packet. The rule options section contains options

for matching the payload, state of the connection and meta information about the rule.

Figure 5.2 shows an example snort rule for identifying “MailMax overflow exploit” on x86

windows machines. This rule instructs Snort detection engine to issue on alert when both the

header and options are matched. The header information is used by the detection engine as

a filter. When the header criteria is met, the detection engine will compare the rule options

against the packet. In our example, the rule header action is to alert on a tcp packet having

source IP address matching $EXTERNAL NET (A variable set in Snort configuration file) and

any source port. The destination IP address should match $SMTP SERVERS and destination

port number should be 25 (SMTP). All packets matching this criteria will then be compared

with the rule options, and an alert is issued if both criteria are met. Let us look at the

options specified in the rule. The msg specifies a title for the rule and flow option specifies

type of tcp connection. The content keyword is widely used in Snort rule. It is used for

matching a specific pattern in the packet payload. The option flow allows the rule to be

applied to only certain direction of the traffic flow. The rest of the rule options gives meta

information about the rule. sid is for uniquely identifying the rule and rev gives the number

of revisions made to the rule. The reference field points to the informations on the web

and popular vulnerability data such as bugtraq, cve, nessus, arachNIDS and McAfee. The

keyword classtype is a simple classification used by Snort to group rules based on the kind

of attack.

5.1.3 Snort alert

A Snort alert provides information to a system administrator about a potentially malicious

event. It contains source and destination IP address, type of attack, rule details, and other

packet details to help in intrusion analysis. A Snort alert is created when a packet matches

one of the Snort rules and it is stored in a log file or a database based on the configuration.

Figure 5.3 shows a Snort alert stored in a log file (The number is added manually for ease
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(1) [**] [1:2080:8] RPC portmap nlockmgr request TCP [**]

(2) [Classification: Decode of an RPC Query] [Priority: 2]

(3) 07/08-10:33:07.074650 129.130.10.171:43191 -> 129.130.10.33:111

(4) TCP TTL:64 TOS:0x0 ID:40304 IpLen:20 DgmLen:204 DF

(5) ***AP*** Seq: 0xF6970FCF Ack: 0x976A7839 Win: 0x2E TcpLen: 32

(6) TCP Options (3) => NOP NOP TS: 161714848 318558254

(7) [Xref => http://cgi.nessus.org/plugins/dump.php3?id=10220]

(8) [Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=2000-0508]

(9) [Xref => http://www.securityfocus.com/bid/1372]

Figure 5.3: An example Snort alert

of explanation). This alert is issued for an RPC portmap exploit. Line 1 contains the Snort

rule ID and title of the alert. Line 2 contains classtype of the rule that created the alert

and its priority level. Line 3 has packet information such as time stamp, source/destination

IP address and port number. Lines 4-6 contain TCP packet information and lines 7-9 have

web address pointing to resources having the vulnerability information.

5.2 Knowledge base creation

To use Snort alerts for reasoning in the system developed from our empirical study, we need

the observation correspondence relation for mapping Snort alerts to internal conditions. We

automated the knowledge base creation process, since the current Snort system does not

come with such mapping and creating the relation manually for approximately 9000 Snort

rules1 is tedious.

From our analysis, we found Snort rules and associated signature documents contained

valuable meta information useful for determining the observation correspondence relation.

We created a parser to extract the required information from these documents and using this

information, we automatically created the observation correspondence relation for a large

portion of the Snort rule. We discuss the meta information considered in our automated

process below.

1In Snort rule set version 2.8
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Snort Classtype Internal Condition Mode
attempted admin

compromised

l
attempted user l
successful admin c
successful user c
trojan activity l
shellcode detect

sendExploit

l
unsuccessful user p
web application attack l
web application activity p
attempted recon

probeOtherMachine

l
successful recon largescale c
successful recon limited c
network scan p
rpc portmap decode l
icmp event p
suspicious filename detect

Unknown Unknown

suspicious login
system call detect
unusual client port connection
misc activity
not suspicious
protocol command decode
string detect
unknown
tcp connection
policy violation
kickass porn
attempted dos
bad unknown
default login attempt
denial of service
misc attack
non standard protocol
successful dos

Table 5.1: Automatically created obsMap
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5.2.1 Classtype

The classtype keyword in a Snort rule is used for categorizing the rules into a more gen-

eral attack class. For example, Snort rule 1:3156 (ORACLE XDB FTP UNLOCK overflow

attempt), can possibly give the attacker administrator privileges on a victim machine. Thus,

this rule comes under the class type attempted-admin. Snort currently has 30 default class

types for a rule writer to classify the nature of the potential security implication. Some of

these class types roughly correspond to the internal predicates developed during our empir-

ical study. So, we manually created a mapping between class type and internal predicates

as given in table 5.1. Using this table, we infer the observation correspondence for the rule

in figure 5.2 as shown below:

obsMap(obsRuleId_3614,

obs(snort(’1:310’, FromHost, ToHost)),

int(compromised(FromHost, ToHost)), l).

Some of the class types is mapped to unknown as the class type information was insuffi-

cient for us to determine a relation. For such cases, we try to use the information available

in the rule document to find the answer.

5.2.2 Snort rule document

For some cases the class type alone does not provide enough information for determining

the observation correspondence relation, so we make use of the information available in the

Snort rule documents.

Each Snort rule has a document which provides a brief description in the following

sections: summary, impact, affected systems, ease of attack, false positives, false negatives,

corrective actions, contributions and additional reference (Appendix A.2 has an example

Snort rule document). The information found under “Impact” and “Ease of Attack” in

particular are quite useful for inferring the internal predicates. For example, the Snort rule

1:1140 is
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alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS

(msg:"WEB-MISC guestbook.pl access"; flow:to_server,established;

uricontent: "/guestbook.pl"; nocase; metadata:service http;

classtype:attempted-recon; sid:1140; rev:12;)

The natural language description of the two fields ”Impact” and ”Ease of attack” for

the above rule is:

Impact:

Information gathering and system integrity compromise. Possible

unauthorized administrative access to the server. Possible

execution of arbitrary code of the attackers choosing in some cases.

Ease of Attack: Simple. Exploits exist.

Using the keywords “possible administrative access” and “possible execution of arbitrary

code” in the “Impact” section and keyword “exploits exist” in the “Ease of Attack” field,

our automated program infers the following observation correspondence predicate:

obsMap(obsRuleId_3615,

obs(snort(’1:1140’, FromHost, ToHost)),

int(compromised(ToHost)), p).

In general, we found that these two fields are often composed of a set of fixed keywords.

Examples are “possible unauthorized administrative access”, “possible execution of arbitrary

code”, “exploits exist”, and so on. These phrases often indicate what internal predicate and

certainty mode can be assigned to the alert. Our automated program searches for those

keywords in the Snort rule document. Based on the combination of keywords contained in

a Snort rule description, a simple heuristic algorithm infers the internal condition and the

certainty mode for alerts generated by the Snort rule.
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obs(100, snort(’1:1140’, ’75.149.65.202’, ’64.40.147.175’, 1254954059)).

obs(101, snort(’1:1140’, ’75.149.65.202’, ’64.40.147.175’, 1254954059)).

obs(102, snort(’1:998’, ’10.23.3.10’, ’64.40.147.180’, 1254954060)).

Figure 5.4: Example translated Snort alerts

Using this approach, we were able to automatically generate the observation correspon-

dence relations for 60% of the 9000 Snort rules. This is a rough baseline, since the tool

has to make an “educated guess” from imprecise and incomplete information. But such an

initial model, derived from the knowledge already existent in the Snort rule repository, is

helpful for Snort users to get started benefiting from our empirically developed technique.

If our reasoning system turns to be useful tool by a significant number of users, there will

be incentives for more people to help fine-tune observation correspondence, and even for

future Snort rules to include such information. Security expert who writes a Snort rule (or

any such specification) has the best knowledge on what the observation means and is best

suited to provide this information. This will not incur additional burden since much of this

information is already being maintained in an unformatted and ad-hoc manner.

5.3 Snort alert translation

Snort provides different plugins to store the output alerts. We store the alerts in a MySQL

database. The tool provides a facility to query the mysql database and translate the Snort

alerts stored as Datalog tuples, a format understood by the reasoning engine.

Snort alerts are represented as observations, obs. The format of obs is shown below.

obs(ObsID, snort(SnortID, FromHost, ToHost, TimeStamp)).

Each predicate has an observation ID, Snort ID, from and to host IP address along with

the timestamp. ObsID is a unique value to identify a snort alert/observation. SnortID, a

combination of Generator ID2 and Snort Rule ID is used to identify the system responsible

for raising the alert. FromHost and ToHost IP address gives the source and destination IP

2Generator ID identifies internal subsystem that raised the alert.
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address of the packet that matched the rule. Timestamp gives us the time when the alert

was raised by Snort. Figure 5.4 has some example of translated Snort alerts.
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Chapter 6

Experiments

IDS evaluation is elusive because of the unavailability of data and lack of information for

verifying the results. Data sets created from production network (real attacks) lack necessary

information (ground truths) to verify success of an attack. And data sets created in a

controlled setup have ground truths but in most cases do not depict the actual scenarios [53,

54]. In our evaluation our primary goal was to test weather a reasoning model developed

empirically from studying one incident can find interesting attack traces in others. We

evaluated our reasoning engine on data sets collected using different techniques. Of the

three data sets we used, one was collected from a live exercise conducted as part of the

graduate course in computer security. The second data set was from a honey pot, and

the last data set was from a live production network. Our results clearly indicate that the

reasoning engine is capable of identifying interesting traces on the data sets.

6.1 Experimental setup

We used the SnIPS tool for our experiments. First, alerts generated from running Snort

on a live network or a tcpdump is sent to a MySQL database for storage. The stored

alerts are then translated into observations in Datalog format and stored in a text file. The

reasoning engine, internal model, observation correspondence and observations were loaded

into a XSB prolog engine. Then the engine is issued with queries like “Is the webServer

certainly compromised?” or “Is any host certainly compromised?”. The reasoning system
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Figure 6.1: Treasure hunt network topology

provides the results in the form of strengthened proof and evidences, which is then provided

to a system administrator for further evaluation.

6.2 Data sets

6.2.1 Treasure Hunt data set

The first set of experiments was performed on the Treasure Hunt (TH) data set [55]. This

data set was created during a cyber-attack competition organized in a graduate security

course at University of California, Santa Barbara. Our motivation to use this particular data

set was that the data set provides valuable “meta data” such as the back story (competition

task details) and network topology which can help us understand the result. We only used

the TCPdump portion of the dataset to generate Snort alerts as input to the reasoning

engine.

Two teams, Alpha and Omega, were participating in the exercise. In order to prevent the

two teams from interfering with each other, two identical networks were setup. The topology

of the network used in the exercise is show in figure 6.11. The web server (WWW 1 & 2)

was located in a DMZ accessible from the Internet. The MySQL server (SAA/SOO), the

1Figure source http://ictf.cs.ucsb.edu/data/treasurehunt2002/
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(1) int(compromised(’192.168.10.90’),c) strengthen
(2) int(compromised(’192.168.10.90’),p) I_3f
(3) int(sendExploit(external,’192.168.10.90’), p) summarizedFact

obslist(273)
(4) int(compromised(’192.168.10.90’),l) I_1b
(5) int(probeOtherMachine(’192.168.10.90’, ’128.111.48.35’), l) summarizedFact

obslist(257)

Figure 6.2: Partial output trace from the reasoning system

file server (UAA/UOO), and the transaction server (TAA/TOO) were placed on a separate

network, accessible only by the web server host (Servers with suffix AA belong to the Alpha

team and suffix OO belong to Omega).

We discuss one of the proofs created by the reasoning engine. The first task in the TH

competition was to gain access to the web server. This scenario was identified by our model

and the high-confident output is shown in figure 6.2 (the parenthesized numbers are added

for explanation purpose). The web server, 192.168.10.90, was certainly compromised (1)

based on two independent proofs: (2) and (4), which capture the first step: an exploit being

sent from an external host to the web server (3), and the second step: reconnaissance by

the attacker from the web server to learn about the internal network (5). The two pieces of

evidence both point to the compromise of the web server, strengthening our confidence level

to “certain”. The raw alerts belonging to the summarized internal condition is identified

using the mapping variable obslist(Var). In total, there were 18 such proofs verifying the

two web servers were compromised. Table 6.1 shows the reduction in the amount of data

that was presented by our tool to the system administrator for further analysis.

We manually validated the raw alerts of the 18 proofs generated by the reasoning engine

for false positives. From our analysis we perceive all of them are plausible. The published

TH data set did not include a truth file (a file containing information on how the actual

attacks were carried out and to what extent they were successful). Thus it was impossible

to identify if the reasoning engine missed any true attack traces (false negatives).
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6.2.2 Experiment on data collected on a honeypot

We conducted our second set of experiments on a data set collected from a honeypot deployed

at Purdue University. This data set contains network traffic information collected for an

unrelated project whose main intention was to collect spam relayed using open proxies.

The network setup of the honeypot was simple, it had a single host running misconfigured

squid proxy server. The data was collected few hours every day for a period of two months.

The total size of the zipped tcpdump files was about 68GB. When we applied Snort on the

tcpdump, it reported 637,564 alerts from the network traffic. Our analysis on the Snort alert

showed that 99% of the alerts were Snort alert ’122:27’ (portscan:port open). We filtered

this particular alert from the input as it did not provide valuable information about host

compromise.

The reasoning engine had enough information to conclude the honeypot host was com-

promised. With the knowledge about operating system and services running in the honeypot

host, we validated the traces manually.

6.2.3 Experiments on a production system

The last two experiments also helped us find a few inaccuracies in the observation correspon-

dence relations created by the automated model building process, which were subsequently

corrected. In the last experiment, SnIPS with the updated knowledge base was applied

on an university network. We installed Snort in our departmental network having around

200 machines including workstation, dedicated web servers, file servers, database servers

etc. We were only able to analyze the alerts captured over a period of three days. Snort

reported about 1.1 Million alerts with 150 different alert types and 15 class types. Table 6.1

shows the number of alerts generated by Snort and the number of high-confidence proofs

presented to a system administrator. The 17 proofs pointed that 4 hosts had a higher chance

of being compromised. To verify this result would require further analysis of other log data

which we did not have access to. We analyzed the output traces with the corresponding
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Data set Snort alerts Summarized alerts High-confidence proofs
Treasure Hunt 4,849,937 278 18
Honeypot 637,564 30 8
Production system 1,138,572 6634 17

Table 6.1: Reduction of alert

low-level alerts. It appeared that a couple traces were worthy of further investigation and

we forwarded those to the system administrator. The others were likely to be false positives.

6.3 Results

From our experiments with the available data sets, we observed that the tool we devel-

oped based on true-life incident was able to identify interesting traces of host compromise

from low-level Snort alerts and considerably reduced the search space and time involved in

identifying intrusion from Snort alerts.

Our current implementation of the reasoning engine only used Snort alerts as input.

Since Snort alerts provided a limited view of an intrusion, some of the proof strengthening

appeared to be false positives. These experiments helped us to identify potential information

and techniques to improve the quality of the reasoning engine. We discuss some of the ideas

in chapter 7.

6.4 Observations from the data sets

From our analysis on the data sets, we noticed that a small number of alerts occur in huge

numbers in these data set. For example, we can see in the figure 6.3 that in Treasure Hunt

data set more than 99% of the total alerts fall under two attack classes “web-application-

activity” and “web-application-attack” each having only one type of alert. This could be

cased by repeated attempts made by the attacker to make the exploit work by trying different

parameters. We also noticed that the traffic from the live network and data collected

honeypot had similar characteristics. Huge volume of some alerts were created because

47



1 

10 

100 

1000 

10000 

100000 

1000000 

10000000 

 a
tt
e
m
p
te
d
‐a
d
m
in
   
   
   
   
 

 a
tt
e
m
p
te
d
‐d
o
s 
   
   
   
   
  

 a
tt
e
m
p
te
d
‐r
e
co
n
   
   
   
   
 

 a
tt
e
m
p
te
d
‐u
se
r 
   
   
   
   
 

 b
a
d
‐u
n
kn
o
w
n
   
   
   
   
   
  

 d
e
fa
u
lt
‐l
o
gi
n
‐a
tt
e
m
p
t 
   
   

 m
is
c‐
a
ct
iv
it
y 
   
   
   
   
  

 m
is
c‐
at
ta
ck
   
   
   
   
   
  

 n
o
t‐
su
sp
ic
io
u
s 
   
   
   
   
 

 p
o
lic
y‐
vi
o
la
ti
o
n
   
   
   
   

n
o
n
‐s
ta
n
d
a
rd
‐p
ro
to
co
l  
 

 p
ro
to
co
l‐
co
m
m
a
n
d
‐d
e
co
d
e
   
  

 r
p
c‐
p
o
rt
m
a
p
‐d
e
co
d
e
   
   
   
 

 s
h
e
llc
o
d
e
‐d
e
te
ct
   
   
   
   

su
cc
e
ss
fu
l‐
a
d
m
in
   

 s
u
cc
e
ss
fu
l‐
re
co
n
‐l
im

it
e
d
   
 

 s
u
sp
ic
io
u
s‐
fi
le
n
a
m
e
‐d
e
te
ct
  

 s
ys
te
m
‐c
a
ll‐
d
e
te
ct
   
   
   
 

 t
ro
ja
n
‐a
ct
iv
it
y 
   
   
   
   

 u
n
kn
o
w
n
   
   
   
   
   
   
   

 w
e
b
‐a
p
p
lic
at
io
n
‐a
ct
iv
it
y 
   

 w
e
b
‐a
p
p
lic
at
io
n
‐a
tt
a
ck
   
   

Department  Treasure Hunt  Honeypot 

Figure 6.3: Data distribution in the three data sets

of noisy rules or repeated probes by Botnet. By using data sets collected from different

environment, we were able to test our tool for many diverse cases and scenarios.
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Chapter 7

Conclusion

In this thesis, we presented an empirical approach to modeling uncertainty in intrusion

analysis. Our goal is to help the system administrator in reaching conclusions quickly about

possible intrusions, when multiple pieces of uncertain data have to be integrated. The model

language we designed has two components: observation correspondence and internal model.

The observation correspondence gives a direct meaning to low-level system monitoring data

with explicit uncertainty tags, and can be derived from natural-language description that

already exists in some IDS knowledge bases, e.g. the Snort rule repository. The internal

model is concise and captures general multi-stage attack conditions in an enterprise network.

We developed a reasoning system that is easy to understand, handles the uncertainty existent

in both observation correspondence and the internal model, and finds high-confidence attack

traces from many possible interpretations of the low-level monitoring data. Our prototype

and experiments show that the model developed from studying one set of data is effective for

analyzing completely different data sets with very little effort. This is a strong indication

that the modeling approach can codify the seemingly ad-hoc reasoning process found in

intrusion analysis and yield practical tools for enterprise-network security defense.

7.1 Future work

From our empirical study we found new research problems and identified areas that need to

be improved in our current implementation. We discuss the ideas in this section and leave
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them for future work.

In our current proof strengthening approach, we consider two independent proof paths for

proof strengthening. This approach provided a simple mechanism for elevating our beliefs.

A graphical representation of the model will provide a greater flexibility for capturing the

semantics of the proofs and elevating confidence levels.

Our current implementation uses only the host information for summarization. Having

more information about the host, network topology and vulnerability information will help

in preventing false strengthening and the alert verification technique discussed in related

work can be used to improve the quality of input alerts.

As this is the first time that uncertainty has been dealt with in this explicit but qualitative

manner, much work remains to be done, some of which we have already alluded to earlier.

Specifically, our modality is a very crude operator – we do not distinguish the various forms

of uncertainty. On a practical level adding too much complexity to the modality itself may

be counter-productive. But with some maturity of modeling and experience, we hope to

separate in our model these two sources of uncertainty as well. As in any modeling tool,

there is a natural question of how granular our models have to be to achieve best results.

Because the uncertainty of knowledge increases after a certain granularity, we expect that

there is an optimal point that can only be discovered with experience. Our modeling and

reasoning are monotonic and we do not deal with negation in our models. Although we have

not needed it in the data we analyzed, it is plausible that a new observation can reduce the

modality of an internal condition, e.g. from likely to possible. These are some areas subject

to future research.
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Appendix A

Snort – Intrusion detection system
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A.1 Snort default classtype

Classtype Description Priority
attempted-admin Attempted Administrator Privilege Gain high
attempted-user Attempted User Privilege Gain high
kickass-porn SCORE! Get the lotion! high
policy-violation Potential Corporate Privacy Violation high
shellcode-detect Executable code was detected high
successful-admin Successful Administrator Privilege Gain high
successful-user Successful User Privilege Gain high
trojan-activity A Network Trojan was detected high
unsuccessful-user Unsuccessful User Privilege Gain high
web-application-attack Web Application Attack high
attempted-dos Attempted Denial of Service medium
attempted-recon Attempted Information Leak medium
bad-unknown Potentially Bad Traffic medium
default-login-attempt Attempt to login by a default username and

password
medium

denial-of-service Detection of a Denial of Service Attack medium
misc-attack Misc Attack medium
non-standard-protocol Detection of a non-standard protocol or event medium
rpc-portmap-decode Decode of an RPC Query medium
successful-dos Denial of Service medium
successful-recon-largescale Large Scale Information Leak medium
successful-recon-limited Information Leak medium
suspicious-filename-detect A suspicious filename was detected medium
suspicious-login An attempted login using a suspicious user-

name was detected
medium

system-call-detect A system call was detected medium
unusual-client-port-connection A client was using an unusual port medium
web-application-activity Access to a potentially vulnerable web appli-

cation
medium

icmp-event Generic ICMP event low
misc-activity Misc activity low
network-scan Detection of a Network Scan low
not-suspicious Not Suspicious Traffic low
protocol-command-decode Generic Protocol Command Decode low
string-detect A suspicious string was detected low
unknown Unknown Traffic low
tcp-connection A TCP connection was detected very low
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A.2 An example Snort rule document

A Snort rule document is a plain text file which contains a detailed information about a

Snort rule. This document is typically created by the rule writer. The following is an

example Snort rule document taken from “4333.txt”:

Rule:

--

Sid:

4333

--

Summary:

This event is generated when an attempt is made to exploit a known

vulnerability is the Microsoft Plug and Play subsystem on a host.

--

Impact:

Serious. Execution of code is possible leading to full system

compromise.

--

Detailed Information:

A programming error in the Plug and Play (PnP) service used by

Microsoft Windows machines can present a remote attacker with the

opportunity to overflow a fixed length buffer, execute code on the

vulnerable system and escalate privileges on the host to the extent

that they could take complete control of the affected machine.
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Specifically this event is generated when the UMPNGMGR interface is

targeted via the function.

--

Affected Systems:

Microsoft Windows 2000

Microsoft Windows XP

Microsoft Windows 2003

--

Attack Scenarios:

An attacker merely needs to send extra data to the PnP service to

overflow the buffer and execute code of their choosing on the affected

system.

--

Ease of Attack:

Simple.

--

False Positives:

None known.

--

False Negatives:

None known.
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--

Corrective Action:

Apply the appropriate vendor supplied patches.

Disallow access to ports 139 and 445 from sources external to the

protected network.

Consider disabling the use of those ports completely on Windows based

networks.

--

Contributors:

Sourcefire Vulnerability Research Team

Matt Watchinski <matthew.watchinski@sourcefire.com>

Nigel Houghton <nigel.houghton@sourcefire.com>

--

Additional References:

--

A.3 Snort database schema

Snort database schema taken from [51] gives the structure of the Snort alerts stored in

MySQL database. We briefly describe the table structure here.

The schema is designed to store alerts reported by more than one sensor and the ta-
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ble “sensor” contains information about each sensor. The “sid” field in this table helps

uniquely identify a sensor. And each event reported by a sensor has an entry in the “event”

table, which is uniquely identified by the key pair “cid” and “sid”. The event table also

contains a field to identify signature of an event and timestamp. The “signature” table

contains the meta information about events such as the class type, priority, Snort rule id

and Snort rule revision. Using tables “sig reference”, “reference” and “reference system”

we can find reference to various vulnerability resources. The table “iphdr” holds the source

and destination IP address and other flags set in the packet that matched a rule. Tables

“icmphdr”, “tcphdr” and “udphdr” contains the header information of icmp, tcp and udp

packets respectively.
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sig_reference

PK,FK2 sig_id
PK,FK1 ref_id

ref_seq

protocols

protocol

name
description

icmphdr

PK,FK1 cid
PK,FK1 sid

icmp_type
icmp_code
icmp_csum
icmp_id
icmp_seq

signature

PK sig_id

sig_name
FK1 sig_class_id

sig_priority
sig_rev
sig_sid

reference

PK ref_id

FK1 ref_system_id
ref_tag

reference_system

PK ref_system_id

ref_system_name

iphdr

PK,FK1 cid
PK,FK1 sid

ip_src
ip_dst
ip_ver
ip_hlen
ip_tos
ip_len
ip_id
ip_flags
ip_off
ip_ttl

FK2 ip_proto
ip_csum

tcphdr

PK,FK2 cid
PK,FK2 sid

FK3 tcp_sport
FK4 tcp_dport

tcp_seq
tcp_ack
tcp_off
tcp_res

FK1 tcp_flags
tcp_win
tcp_csum
tcp_urp

detail

PK detail_type

detail_text

schema

PK vseq

ctime

encoding

PK encoding_type

encoding_text

sensor

PK sid

hostname
interface
filter

FK2 detail
FK1 encoding

last_cid

event

PK,FK2 sid
PK cid

FK1 signature
timestamp

flags

number

RES1
RES2
URG
ACK
PSH
RST
SYN
FIN
valid
description

udphdr

PK,FK1 cid
PK,FK1 sid

FK2 udp_sport
FK3 udp_dport

udp_len
udp_csum

services

port
protocol

name
description

sig_class

PK sig_class_id

sig_class_name

opt

PK,FK1 cid
PK,FK1 sid
PK optid

opt_proto
opt_code
opt_len
opt_data

Snort Database Schema v1.06
Diagram created Sept 10, 2004

chris.reid@codecraftconsultants.com

data

PK,FK1 cid
PK,FK1 sid

data_payload

Standard Snort Table

SnortDB Extra Table

Bold fields are “not null”
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