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INTRODUCTION

Due to the availability of accelerators, such as those at Yale and

Berkeley, capable of accelerating ions of charge up to l8e with energies up

to 10 MeV per nucleon, and the ability of balloons and rockets to reach the

outer limits of the earth's atmosphere where heavy ions with energies up to

10^° eV are found in the primary cosmic radiation, scientists have been In-

terested in obtaining knowledge of the interactions of heavy ions with mat-

ter and of the practical application of these interactions.

In tlhe process of interacting with matter, a heavy ion transfers its

energy to the surrounding medium. Therefore, it is reasonable to assume

that several phenomena, such as the width of ion and monopole tracks in

emulsion, radiation damage to biological materials and to solids, and re-

lated processes, can be explained by means of an accurate description of

the way in which the ion's energy is transferred to the surrounding medium.

It was the purpose of the research that is reported in this thesis to

calculate the spatial distribution of ionization energy associated with a

heavy ion and to use the results as a means of describing the width of ion

tracks in emulsion.

SPATIAL DISTRIBUTION OF IONIZATION ENERGY

As a heavy ion passes through matter, it loses energy by ionization,

that is, the ion ejects electrons, commonly called delta rays, out of the

atoms of the medium. As these primary delta rays scatter out from the ion's

path, they in turn lose their energy through interactions with other elec-

trons of the medium.

By the spatial distribution of ionization energy, we mean the energy



density, E
+

, given as a function of radial distance, x, from the ion's path,

which is deposited by delta rays within a cylindrical shell of unit length

and mean radius x centered on the ion's path. We can write an expression

for the density of energy deposited as

E
+ = -l/(27rx)(dE/dx), (1)

where E is the total energy carried through a cylindrical surface of radius

x by delta rays. To find the energy E, we integrate the product of W, the

energy carried outside the cylinder by a single delta ray with initial ener-

gy w, and a, the number of delta rays with initial energy w that penetrate

the cylinder, over the appropriate energies. Since only a fraction, rj , of

the delta rays of initial energy w pass through a cylinder of given radius,

we write the quantity, a, as Vdn, where dn is the initial number of delta

rays with Initial energies between w and w + dw generated within the cyl-

inder by the passing ion and V Is the fraction of the initial number of

delta rays with initial energy w that penetrate the cylinder of radius x.

This symbolic structure is dictated by available data on the penetration of

electrons through matter. In these terms our expression for E and E
+ are

w
"max

W»?(dn/dw)dw, (2 )

and

^max

E
+ = [-l/(27rx)](a /^x)M W»7(dn/dw)dw^, (3)

wx
where Wmax is the maximum energy that can be given to an electron by a

passing ion and is the maximum Initial energy that an electron which

just reaches the surface of the cylinder can have.



By use of the chain rule for partial differentiation Eq. (3) becomes
wmax

E
+

= [-n/(2*-x)]0W
x/dx)(d

/^W
x)^ W>7(dn/dw)dw^. (k)

Certain results from theory and from experiment must be used to eval-

uate Eq. (k).

The expression for dn/dw is given by the classical delta ray distri-

bution formula

li o 2 2 2
dn/dw - (lire^m'

2)/^ w ), (5)

where e and m are the charge and mass of an electron, N is the electron

density of the medium, c' is the speed of light in vacuum, /3 is the ratio

of the speed of the ion to the speed of light, and Z'e is the effective

charge of the ion.

An empirical expression for Z' as given by Barkas' is

Z'e = Ze[l - exp(-125/9/Z )] , (6)

where Z is the atomic number of the ion. This expression for Z' takes into

account electron capture by the ion as it nears the end of its range, and

is based on studies of the range of machine accelerated ions In emulsion.

The expression for Wmax is determined by kinematics, if the mass of

the ion is much greater than the mass of the electron, as

W
max " 2mc'V/0 -0

2
)- (7)

Studies of the penetration of normally incident electrons through thin

films of various materials, most commonly aluminum, were carried out by

2
Kanter and Sternglass , for electrons in the energy interval of 0.6 - 10.0

3
keV, by Cosslett and Thomas , for the energy Interval of 2.0 - 15.0 keV,



and by Katz and Penfold , for the energy interval 10.0 keV - 20.0 Mev. The

information presented in these papers was combined in a range-energy rela-

ion for electrons suggest by Weber"*,

r - Aw[l - B/(l + Cw)], (8a)

w - )AB - A + rC + [r
2
C
2 + 2AC(B + l)r + (AB - A)

2]* }/(2AC) ,
(8b)

where r is the practical range of an electron with initial energy w. The

constants A, B, and C were determined by a least squares fit to this infor-

h 2 -1

nation for aluminum, to be A B *+.*+68X10 grams* (cm *ergs) , B - 0.982*+,

and C - 1.771X10
6

ergs" 1
. With these values for the constants A, B, and C,

Eq. (8a) fits the available information to within about 3% over the energy

2

interval of 0.6 keV - 20.0 MeV. When expressed in units of grams/cm , the

practical range of an electron is independent of the atomic number of the

medium. To express the practical range in centimeters, the constant A must

be divided by the density of the medium, p. The range-energy relation com-

puted from Eq. (8a) is plotted in Plate I.

According to Kanter^, the fractional number, t?, of normally incident

electrons of energy w transmitted through a film of thickness rQ
may be

represented as a function of w/WrQ , where W
r<5

is the Initial energy requir-

ed for an electron to traverse a distance rQ . The form,

1 - 1 - exp[G(w/W
rQ -•!)], (9)

with G -1.263 fits Kanter's data to within about 3%. We extrapolate the

application of Eq. (9) to all energies and thicknesses in the present work.

The information used in obtaining Eqs. (8) and (9) was acquired for

electrons normally Incident onto plane films. In the application of Eqs.



EXPLANATION OF PLATE I

Plot of the Pratical Range

Versus Initial Energy for

Electrons in Aluminum.
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(8) and (9) to the problem of determining the spatial distribution of ion-

ization energy, the difference between electrons normally incident onto

plane films and delta rays radially ejected from the axis of a cylinder is

ignored. Through the use of Eqs. (8) and (9), problems of delta ray scat-

tering and secondary delta ray production are automatically accomodated.

To the lowest order of approximation, we may take electrons to move in

straight paths. If the range of an electron of initial energy w is given

by r, then the residual energy, W, of an electron which has gone a distance

r is given by
o

W(r) « w(r - rQ ). (10)

To be able to get W and W
x

as functions of the radial distance, x,

from the ion's path, the relation between x and the linear distance trav-

ersed, r, must be found.

If the electrons of the medium can be considered free, the angle of

ejection, 0, of a delta ray with respect to the ion's path is uniquely

determined by its initial energy. The angle, 0, as determined by kinematics

is

o cos^O/^mc'V + w^)]*. (11)

Thus the relation between x and r
Q

is

x = r
Q
sin0, (12)

where rQ is the range of a delta ray that ejected at an angle will just

travel to the cylinder's surface.

The electrons of the medium are not free; therefore, the angular
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distribution ot delta rays is not uniquely known. Because the electrons

are bound to the atoms of the medium and because of delta ray scattering,

it is assumed that the delta rays are totally diffuse; that is, they follow

a cos0 distribution. On the average, the relation between x and r now
o

becomes

x = 0.5r. (13)
ave. o

where the factor of 0.5 is the average of cos0 over a hemishpere.

In the subsequent discussion, we will drop the subscript ave.. The

concept of x_w_ suppresses the computed energy density distribution for
ave •

radial distances x close to the range of the most energetic delta ray,

particularly at low ion velocity where delta rays of maximum energy are

abundant.

The expressions for W and W
x

can now be expressed as functions of x,

from Eqs. (10) and (13), as

W(x) = w(2X - 2x) (14)

and

W
x
(x) = w(2x), (15)

where X a 0.5r.

In the computation it is convenient to compile the information for W>?

in functional form as

W?/W - f(w/W ), (16)

where



f(w/W
x )

2 „.2, J-

A' + (a + bw/W + cw A/ ) , for wA/v £ u
x x

(w
2A^ - d)

2
, for wA/ > u.

07)

The Eq. (17) fits the relationship defined by Eq. (16) to within 1% in the

region 0.1 < r
Q
< 10.0m, with the values of the constants being A' -0.3296,

a - 2.138, b - -4.058, c - 2.029, d = 2.5^5, and u = 2.920. Equation (16)

is plotted in Plate II. When using this formulation for different materials

and different values of r
Q , the functional form of Eq. (17) remains the

same but the constants A', a, b, c, d, and u are changed, as demanded by

Eq. (16). At the appropriate energies and dimension in aluminum, Eq. (16)

is in good agreement with the appropriate curve of Kanter, (reference 5»

Fig. 10b).

By multiplying and dividing the integrand' of Eq. (k) by W^ and then

substituting for dn/dw from Eq. (5) and for WVW
X

from Eq. (16), the energy

density equation becomes
W
-max

E
+

=[KZ'
2
/(0

2
x)](dW /dx)(d /dW )L\ W f(w/W )(l/w

2
)dwV (18)

X X V I X X J

k 2 W
where K = e N/(mc' ).

x

After substituting for f (wA/
x ) from Eq. (17) and carrying out the indi-

cated integration and partial differentiation, the energy density can be

expressed as

[KZ^OjO^x)] (dW /dx), for W A/x < u
v max *

(19)

[KZ 1 Q'/(/3 x)](6W
x
/ax), for WmaxA/* > u,
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where

Q, = -[A 1 + (aW* f bW
x
Wmax

+ cW^ax )^/Wx
]/W

(max
(20)

2 1
0_i . -(w - dW )

2/(w w_ax ),v max x 7 x max-" (21)

and

Since Eq. (19) Is only a function of x, 8, N, P, and Z, one can cal-

culate the density of Ionization energy at a distance x from the path of a

passing ton of atomic number Z and speed 8c l for a medium of density P and

electron density N. Errors are introduced Into the calculation by the fact

that V has a slight dependence on the atomic number of the medium^, by the

assumption that the delta rays are totally diffuse, and by the use of the

average "transverse distances", x. The computation then Incorporates avail-

able data on electron penetration In matter in a manner compatible with the

requirements of machine computation, which Is a limitation on the solution.

In 19^8, several methods have been proposed for Identifying the Ion causing

the formation of the track. These methods are counting the number of delta

rays per unit length of track, measuring the length of a delta ray, meas-

uring the ejection angle of a delta ray with respect to the ion's path, and

measuring the track width as a function of residual ion range, as measured

back from the position of the resting ion.

TRACK WIDTH THEORY

Since the detection of heavy Ion tracks in electron sensitive emulsion,



In part, the present research was directed to Investigate the use of

track width (as a function of ion range) as a possible means of Identifying

the Ion.

Several previous theoretical studies^'^' 10
Qf trac |< w | (j tn nave been

carried out by other investigators with only partial success. In these

studies the criteria for computing the track boundary were the number of

delta rays per unit length of track, energy flux, and energy density. In

the Investigations reported in this thesis, the criterion of energy density

Is used for defining the track boundary.

When passing through electron sensitive emulsion, and ion and Its

associated delta rays lose their energy by Ionizing the atoms of the emul-

sion. According to Hamilton and Bayer
1

, the initial mechanism for the for-

mulation of a latent-image is the creation of electron-hole pairs. Specify-

ing the creation of an electron-hole pair as a hit, an emulsion grain appears

to be sensitized in a multi-hit (30 - 100 hits) process, so that the re-

sponse Is a rapidly changing function of ionization energy, which may be

approximated as a step function for present purposes. Thus It Is reason-

able to assume that the activation of an emulsion grain occurs when there Is

a sufficient density of ionization energy deposited In a grain to create

the required number of electron-hole pairs. Therefore, the track boundary

Is computed as the surface of a cylinder centered on the ion's path at which

the density of ionization energy is a constant, E*. According to this cri-

terion, all the grains will be activated that He within a cylinder of

radius x centered on the ion's path, where at the distance x the density of

Ionization energy is E".

The track width, 2x, was calculated as a function of Z and from Eq.

(19) by setting E
+

- e", N - 1.048X10
24

electrons/cm3 , and P = 3.812
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3
grams/cm . These values for N and P are for G-5 emulsion.

To achieve agreement between experimental and computed track shapes,

and to obtain a cosmic ray heavy Ion spectrum similar to distributions

12 3 *
reported by others , a value of 6500 ergs/cnr was chosen for E .

T

In order to obtain track width as a function of Z and Ion range, R,

1 1
Barkas' 1 -' range-/? relation for heavy ions was used,

R(0) = (M/Z
2
)[X(/3) + B (0)], (23)

where

B
z

1. 296X1
0"3

/9Z
5/3

cm, for < 2Z/137

1.897X10"^ cm, for > 2Z/137,

(24)

M Is the mass of the Ion in units of a proton, and X(/3) Is the range of an

Ideal proton as a function of 0. (An ideal proton Is a particle of protonlc

mass and charge that does not capture electrons or Interact strongly with

nuclei.) The mass M was taken as the mass of the most abundant naturally

occurring isotope, and the data for the range of an ideal proton was taken

from Table 10.4.1 of Barkas^.

The track width as a function of Ion range and Z Is plotted In Plate III.

EXPERIMENT

Using a stereo-zoom microscope at 40X magnification, emulsion plates

exposed In two balloon flights from Fort Churchill In July 1962 ( and proc-

essed by D. E, Guss) and July I965 (and processed by M. W. Fr ledlander)

,

which were processed to the same developed grain diameter (approximately O.8a0,

were scanned for heavy ion tracks with a dip angle less than 10 degrees.
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Photographs were then taken of the tracks at specified ranges by using a

Leitz Ortholux microscope with an Aristophot attachment, a 100X piano oil

immersion objective in conjunction with a 6X paraplan eyepiece, and a 70 mm,

100 ft. roll, camera back. From these photographs, 8"X10" glossy prints

were made. The total magnification of the tracks is about 3380X.

The data from the 8"X10" prints were taken by tracing around the image

of the tracks according to a specified criterion; that one grain of each

delta ray track protruding from the ion track would be considered as part

of the track image. Because of the roughness in the track boundary, the

width was determined by measuring the area per unit length of a segment of

track. The segment lengths used were 10m in the first 100m of track, 50m

between the ranges of 100 - 1000m, and 100m for greater ranges. These seg-

ment lengths were such that the average width did not change appreciably in

the segment length. The areas were measured by use of a planimeter.

The tracks were traced by different individuals on different prints

from the same negative using the same tracing criterion. The data used in

this thesis were taken from 17 tracks, each traced by 4 individuals, 43

tracks, each traced by 3 individuals, and 16 tracks, each traced by 2 in-

dividuals. The agreement in tracing between the different individuals was

about 5% for all 76 tracks.

To reduce the error introduced by differences in tracing between in-

dividuals and variations in emulsion processing, each tracing was normal-

ized by subtracting from all width measurements the average width in the

first 30m of track.

The Z assignments were based entirely on the agreement between experi-

ment and theory for the area between 150 - 300M and the average width be-

tween 300 - 600m. These are the regions of the track where there is best Z
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discrimination. In the region 150 - 300M, the width changes most rapidly

with range, and the track boundary Is smooth. In the region 300 - 600m, the

width changes most rapidly with Z, and the average width Is the maximum

width of the track.

A plot of the average width from 300 - 600m versus the area from 150 -

300M for theory and experiment Is given In Plate IV.

Additional work Is being undertaken by M'. R'# Querry In this laboratory

to examine the consistency of assignments by track width with Z assignments

by delta ray counts. Results thus far obtained Imply that the two mehtods

are Internally consistent.

Attempts at other internal checks of Z, such as the range and angular

distribution of delta rays, were unsuccessful.

Other attempts to calibrate the Z spectrum by means of machine accel-

erated Ions from the Berkeley accelerator yielded Inconclusive results,

possibly because machine accelerated ions have a range of less than 150m,

and are entirely In the top 15m of emulsion, where the emulsion Is quite

sensitive to processing procedures. Cosmic ray Ion tracks selected for

study In this work generally begin at about 100m from the surface of the

emulsion.

RESULTS

Due to the capture of electrons by the Ion at low velocities, the

theory predicts crossing over of the width-range curves below 50m as shown

In Plate III'. This prediction of cross over Is not detected experimentally

because the magnitude of the cross over (0.1m) is less than an undeveloped

grain diameter (0.27M).

In order to compare the normalized experimental data to theory, the





20

tO ^ CO (M r-

snouoiiai ni HiaiM wnwixvw



average theoretical width for each Z In the region - 30m was subtracted

from all calculated widths.

The Z assignments taken from Plate IV by averaging the width assign-

ment and the area assignment for each of the 76 tracks used are listed In

Table 1. To make the best comparison of experiment to theory, the width of

the tracks of the same Z assignment were averaged (with the exception that

the tracks assigned as Z = 26 and 27 were averaged together).

Table 1. Z assignments.

No. of No. of No. of No. of
z tracks Z tracks Z tracks z tracks

3 3 10 8 18 1 26 k
k 7 11 3 19 1 27 k

5 9 12 1 21 1 30 1

6 6 13 3 22 2 36 1

7 2 14 1 23 1

8 8 15 1 2k 3

9 2 16 2 25 1

In Plate V, the averaged width for all tracks assigned Z = 5 Is plotted

over the theory for Z = 5 t 1 and similarly for Z = 10 *
1 and Z = 26 * 2.

As shown In Plate V, there Is good agreement between experiment and theory

only In the region 100 - 700M of Ion range where the Z discrimination Is

less than _ 2. At Ion ranges less than 100m, the theoretical width Is less

than the experimental width. This disagreement Is due to the concept of

the average transverse distance, x„„- , which does not allow a delta ray to

deposit energy at a distance greater than one half of Its true range from

the ion's path. There is, however, a finite probability that a delta ray

may even deposit energy at a distance equal to Its true range from the ion's

path. This probability plays a more important role at ion ranges less than
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2k

100M than at greater ranges because of the severalfold Increase in the

number of delta rays that receive energy Wmax . In the present work, this

probability function Is not considered because the form of the function is

not known, because of machine limitations, and because this region of the

track contains little Z discrimination.

At Ion ranges greater than 700m, the theory predicts widths that are

greater than experiment. This disagreement is not completely understood.

We do know, however, that the agreement is not improved by using the rel-

atlvistic delta ray distribution or different angular distributions. There

is reason to suspect that part of the disagreement Is in the range-£ re-

lation for heavy ions. The range-/8 relation for an ideal proton used in

this work as given by Barkas^ in 1963 (which is in agreement with Shapiro^)

disagrees by about 20 - 30% with a subsequent range-/? relation again given

by Barkas'^ in 196*t. The experimental work of Rudd, Sautter, and Bailey^

2 1 8 ? ?ft
implies that the 1/w term in Eq. (5) varies from 1/w ' to 1/w * for low

Z and at low ion energies in gases of low atomic number, while Gryzinskl^

3
computes a 1/w term. Also the experimental results of delta ray counting

by AIzu^ and his co-workers for heavy ions in emulsion state that the num-

2
ber of delta rays varies as Z in the region about 1000m in ion range and

as Z^* at greater ranges. These questions are in need of further experi-

mental test. Error is also introduced because we are dealing with bound

electrons, while the delta ray distribution formula, Eq. (5), used is

strictly valid only for free electrons.

CONCLUSIONS

Some of the reaining difficulties In the calculation are the concept of

the average transverse distance, the uncertainties in the range-/? relation
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for heavy Ions, and the uncertainties in the delta ray distribution func-

tion. With the avail ibllity of larger and faster computers, the problem of

the average transverse distance can be corrected. Emulsion studies provide

the only experimental access presently available to studies of the delta

ray distribution function at high energies. Disagreements between calculat-

ed and measured track width at high energies imply that research in this

field Is desirable.

The stronger points in the calculation of the spatial distribution of

Ionization energy are the incorporation of the latest electron penetration

data into the computation and the versatility of the formulation to be used

for calculations in different materials and different dimensions. Track

profiles developed from these calculations are in excellent agreement with

observed tracks between the ion ranges of 100M and 700m leading to a supe-

rior system of Z discrimination.
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Due to the Increasing interest in radiation damage by heavy ions, its

hazards and its applications, an accurate calculation of the spatial dis-

tribution of ionization energy associated with a heavy ion is needed. This

distribution has been calculated using the latest electron penetration data

and a highly versatile formulation that can be used for different media and

different spatial dimensions.

The calculated energy distribution, when applied to the width of ion

tracks in emulsion, gives good agreement with measurements obtained by

tracing around the photographic image of a track that has been magnified

3380X. Using the same tracing criterion, each track was traced by two or

more individuals whose tracings agreed to within about 5%. The Z assign-

ments made from the area between the ion ranges of 150 - 300M and the maximum

width of the track (the average width between the ranges of 300 - 600m) by

agreement between experiment and theory are in good agreement with Z assign-

ments based on delta ray counts.

The disagreement between calculated track width and experiment at ion

ranges greater than 1000m, may lead to a better formulation of the delta

ray distribution generated by rapidly moving heavy ions.


