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ABSTRACT. We introduce a reproducing kernel structure for Hilbert spaces
of functions where differences of point evaluations are bounded. The associ-
ated reproducing kernels are characterized in terms of conditionally negative
functions.

1. INTRODUCTION

The study of positive definite kernels, and the associated Hilbert spaces, plays a
key role in both pure and applied mathematics. It is known (since [2]) that every
Hilbert space 2 of functions on some set X with the property that point evalu-
ations at points in X are continuous in the norm of 5# can be represented by a
positive definite kernel. These Hilbert spaces are called reproducing kernel Hilbert
spaces. Areas of pure mathematics where reproducing kernel Hilbert spaces play an
important role include harmonic analysis [5], representation theory, partial differen-
tial equations [7L[11] and operator theory [3]. Positive definite kernels also serve as
tools in numerical analysis and approximation theory; see e.g. [4]. Unfortunately,
a consequence of the axiom of choice is that there exist Hilbert spaces of functions
which are not reproducing kernel Hilbert spaces, whereas if one accepts instead the
weakened axiom of choice, all everywhere defined linear operators between Hilbert
spaces are bounded (see [I2]) and hence all Hilbert spaces of functions are repro-
ducing kernel Hilbert spaces. See [IL[6] for a discussion.

In the present paper our main concern is Hilbert spaces where differences of point
evaluations f — f(x)— f(y) are bounded functionals. This is a wider class than that
of reproducing kernel Hilbert spaces. Such spaces are called relative reproducing
kernel Hilbert spaces. See Definition 2.1 below. On the applied side, our interest is
motivated by electrical network models, where the differences may represent voltage
drops, and the absolute value of the voltage function is often irrelevant. In these
cases, the Hilbert spaces of relevance are energy spaces, i.e., Hilbert spaces defined
from quadratic variations, for example the square sum over all voltage drops across
edges in an electric network (see [§], [9] and [10]). When the network is Z?, such
spaces always contain dipoles (which correspond to differences of point evaluations),
while monopoles (which correspond to evaluations at a single point) appear only
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for d > 3. This dichotomy corresponds to a well-known phenomenon in transient
random walks on Z?; see [10, Remark 2.11 and Theorem 13.5] and references therein.

The kernels of relative reproducing kernel Hilbert spaces are characterized in
terms of conditional negativity rather than definite positivity. The notion of con-
ditional negativity plays a role in infinitely divisible distributions. For example,
Schoenberg’s theorem about semigroups of positive definite kernels K; states that
semigroups of positive kernels admit a tangent space representation; i.e., every
semigroup of positive definite kernels K; is associated uniquely to a conditional
negative function 1, via the formula K; = exp(—tt). For an application of the
latter to E-semigroups of endomorphisms in B(.), see [3].

The paper is structured as follows. In Section [2 the definition of a relative
reproducing kernel is introduced and the connections between relative reproducing
kernel Hilbert space, reproducing kernel Hilbert space, and continuity of point
evaluations are explored. In Section [J] the relation between relative reproducing
kernels and conditionally negative functions is established. The last section contains
an example (constructed using the axiom of choice) of a relative reproducing kernel
Hilbert space which is not a reproducing kernel Hilbert space.

2. RELATIVE REPRODUCING KERNEL HILBERT SPACES

In this section the Hilbert spaces are over the complex numbers. Note that in
Section 3 we consider real Hilbert spaces.

Definition 2.1. Let 7 be a Hilbert space of functions defined on the set X. We
say that it is a relative reproducing kernel Hilbert space if there exists a function
M, , from X x X into S such that

for all choices of z,y € X and of F € 7.

By Riesz’ theorem, (ZT]) holds if and only if the functional F — F(x) — F(y) is
continuous.

Proposition 2.2. The function M, in 21) is unique and satisfies
(2.2) My y(t)+ M,y . (t) = M, .(t), Vz,y,zteX.

Proof. The uniqueness of the function M, follows from Riesz’ representation the-
orem. This uniqueness and the equality

f(@) = f(z) = f(x) = fy) + fy) = f(2)
imply (22]). O
We will call M, , the relative reproducing kernel.

Proposition 2.3. Let 7 be a relative reproducing kernel Hilbert space of functions
defined on the set X, with relative reproducing kernel M, . Then the orthogonal
complement of the functions M, ,, x,y € X is equal to the space of constant func-
tions in J. In particular the linear span of the functions My, x,y € X is dense
in I if and only if F contains no non-zero constant functions.

Proof. Let F' € A be orthogonal to all the functions M, ,. By (1)) we have
F(z) =F(y), Va,ye€X,

and hence F'is constant. O
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We note that ([22) implies that a relative reproducing kernel can always be
written as a difference of a given function T' from X into H. More precisely, fix any
zop € X. Then,

Mac,y = T:c - Tyv
where T, = M, ., .

A reproducing kernel Hilbert space is a relative reproducing kernel Hilbert space.
It suffices to take

Mx,y = Km - Ky7
where K is the reproducing kernel, but there are relative reproducing kernel Hilbert

spaces which are not reproducing kernel Hilbert spaces.

Proposition 2.4. A Hilbert space € of functions on the set X is a relative re-
producing kernel Hilbert space if and only if there exists a function h, : X —
and an everywhere defined possibly unbounded linear functional C : 7 +— C such
that

(2.3) F(z) = (F,hy) e + C(F), VFe X, VaeX.

Proof. One direction is clear. Take (Z3) for z,y € X and subtract. One obtains
1) with M, , = h, — hy. Conversely take any xo € X. Then, (ZI) with y = ¢
implies (23)) with h, = M, 5, and CF = F(zy). O

See Section Ml for an example. As a corollary of Proposition [Z4] we have:

Corollary 2.5. Let 7 be a relative reproducing kernel Hilbert space of functions
defined on the set X, and assume that for one point x¢o € X the point evaluation
F +— F(xg) is bounded. Then, S is a reproducing kernel Hilbert space.

Proof. Tt suffices to write for z € X,
F(z) = (F(x) = F(x0)) + F(x0). O

3. RELATIVE REPRODUCING KERNELS AND NEGATIVE FUNCTIONS
We first recall that the function ¥ : X x X — R is called conditionally negative
definite if:
(1) ¥(xz,x) =0 for all x € X;
(2) Y(2,y) = Y(y, ) for all 2,y € X;

n

(3) Z cecijP(ze,z;) < 0 for all n € N all @q,...,2, € X and all numbers
£j=1

n
c1,-.-,cn € R subject to ZCg =0.
=1

Theorem 3.1. Let 7 be a relative reproducing kernel real Hilbert space of func-
tions with relative reproducing kernel M, . Then the real-valued function

Y(w,y) = HMx,yHQﬁ” = M:L’,y(x) + My,x(y)

is conditionally negative.
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Proof. Fix x¢ and write M, , = T, — Ty, where T, = M, ,. Then

1M y* = I Tall” + 1Ty 11° — 2(T5, T)-

From this the properties (1) and (2) of ¢(x,y) are clear.
Now let n € N, x1,...,x, € X and ¢y, ...,¢, € R be such that

i Cy = 0.
=1

Then
7 i | Myya, |7 =D coci(ITe P + 1T 1) =2 > cej(Tu,, T,
£,j=1 £,j=1 £,j=1
=23 e, |? <0. 0
=1

Proposition 3.2. Let 5 be a relative reproducing kernel real Hilbert space of
Junctions with relative reproducing kernel M, . Then for every triple of points
x,y,z € X it holds that

M%,y(z) + My,z(‘r) + M, (y) =0.
Proof.
Mx,y(z) + My,z(x) + Mz,x(y) = _My,z(z) - Mz,ac(z) + My,z(x) + Mz,ac(y)
= <My,Za Mw,z>3f + <Mz,:c7 My,z>ﬁf = 0. O

Theorem 3.3. Let M, ,(z) be a function in X, satisfying for all x,y, z,t the iden-

tities
(3.1) My (t) + M, . (t) + M, 4 (t) = 0;
(3.2) My y(2) + My () + M, (y) =0

Suppose that the function
Y(w,y) = Mx,y(x) + My,ac(y)

is conditionally negative. Then there is a real Hilbert space which has M, , as its
relative reproducing kernel.

Proof. Fix z and denote T,, = My, ,,. By BI) with z =y = z we get
M, .(t) = 0.
Again by 1)), now with y = z, we get
Moy (8) = —My ().
Once more by 1) with z = o we have
My y(t) = =My,a(t) = May o (t) = Moo (8) = Myo, (t) = Te(t) = T, (t),
and it follows that
V(z,y) =To(x) = Ta(y) — Ty(x) + Ty (y).

Licensed to Kansas St Univ. Prepared on Wed Feb 11 15:27:27 EST 2015 for download from IP 129.130.37.179.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



RELATIVE REPRODUCING KERNEL SPACES 3893

As in the proof of [5, Proposition 3.2 p. 82], we consider the function

(33) B, 4) = 5 (W0, 70) + Y(w0,9) — Y1)

We claim that ¢(z,y) is positive in X. Indeed, since ¥ (z,y) = ¥(y,x), ¢(x,y) =
o(y,x). Let x1,...,2, € X and cy,..., ¢, € R. Denote

n
Co = — E Cj.
j=1

Then

0> > ccjtb(ay,we) = Y ey, me) +2¢0 Y ¢jtb(wo, z5)

G4=0 ji=1 j=1
n
== ccipla,z).
jl=1

Next we observe that, as follows from (B3),

B(,9) = 5 (Taly) + Ty(2) = Tulio) — Ty (av)).

Set z =z in (B2)) to obtain
Ty (o) — Ty(xo) + Ty(z) — Tu(y) = 0,
which implies
o(z,y) = Tu(y) — Tu(z0).

Finally, consider the Hilbert space ‘H obtained as a completion of the linear span
(over R) of the functions T, with respect to the inner product

For z,y,z € X we have

(To, My 2) = (T, Ty) — (T2, T2) = d(x,y) — o, 2) = Ta(y) — Ta(2).

Since the span of T}, is dense in H, H is a real relative reproducing kernel Hilbert
space. O

Corollary 3.4. Let ¢¥(z,y) be a conditionally negative function. Then there ex-
ists a real relative reproducing kernel Hilbert space € of functions with relative
reproducing kernel

M, (2) = w

which satisfies
1Mz ylI2 = ().
Proof. 1t is easily checked that M, ,(z) satisfies (B.I) and (B.2)). Furthermore,

Pz, y) + 9y, z) — b, x) = 9(y,y)
2

My () + My (y) = = Y(x,y). O
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4. AN EXAMPLE OF A RELATIVE REPRODUCING
KERNEL HILBERT SPACE

We now give an example of a relative reproducing kernel space which is not a
reproducing kernel Hilbert space. Let H be a Hilbert space of functions on a set
X, which do not contain the constants (for example the Hardy space of the open
upper half-plane). Let C be an everywhere defined unbounded linear operator with
complex values, and let (h;)zcx be a family of functions in H indexed by X, and
such that the linear span of the functions h, — hy, x,y € X is dense in H. We
consider functions of the form

(X)) = (fiha)n +C(f), feH.
Then:

Lemma 4.1.

=
~
~
~—
I
o
~
Il
o

Proof. We have

(f, ha) = =C(f),
and so

(f,he — hy)3 =0,

and so f = 0 by the hypothesis on the h, and since H has no non-zero constant
function. 0

Theorem 4.2. The linear space € of functions of the form I(f) with the inner
product

(4.1) (1), Lg) e = (f, 9)n

is a relative reproducing kernel space which is not a reproducing kernel space.

Proof. We first note that 7 is a Hilbert space since I is one-to-one and the inner
product on S is given via ([£I]). Suppose that 52 is a reproducing kernel Hilbert
space. Then by Riesz theorem, for z € X there exists g, € H such that, for all
feH,

AN () = (), Ugz)) e = (] g2 )t
so that
C(f) = <f7 g:z:>?-l - <f7 hm>7~[

Since C' has been assumed to be unbounded, this gives a contradiction.
To verify that 2 is a relative reproducing kernel Hilbert space, we write for
feHand z,y € X:

I (@) = A () = (fshe — hy)n
= <I(f)7 MI7y>3f7
where

My = I(he) = T(hy). =

We remark that by Corollary the example gives a Hilbert space where no
point evaluation is bounded.
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