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CHAPTER I

INTRODUCTION

In the world today there is an ever growing need for communication;

thus transmission systems are being built to try to fulfill the needs of

our society. A great deal of communication tends to be in digital form, as

digital information is more efficient to transmit. Therefore, time division

multiplexing of digital information plays an important part in the communi-

cations world and will continue to become more important as the communica-

tion needs of society increase.

Fixed Frames and Variable Frames

A device which takes digital data from several sources, compresses the

data in time if necessary, addresses and interleaves the data into a single

high traffic stream, is termed a time division digital multiplexer. There

are at least two ways in which digital multiplexing may be accomplished with

efficiency. These may be distinguished from each other by the format used

to scan the sources. The first might be called fixed frame length multiplex-

ing, while the second could be called variable frame length multiplexing. In

the multiplexing operation each input source is scanned and sampled according

to the predetermined format, A set of samples from one scan of all sources

is termed a frame. When a fixed frame is used time slots are reserved for

each source on every scan. If the variable frame is employed the length of

the frame may vary from scan to scan. This is the result of the fact that

all sources may or may not have data to transmit . In the case of the fixed



frame technique there is a one-to-one correspondence between the source and

the time slot, while in the variable frame scheme there is no such corres-

pondence.

Probabilistic and Deterministic Sources

The type of multiplexing frame used is dependent upon the kind of data

to be multiplexed. If the sources produce a continuous stream of digital

information then the fixed frame type of multiplexing should be used. This

choice of format is the most economical as far as electronic equipment and

synchronizing information is concerned. If the sources of data give infor-

mation at intermittent intervals, the variable frame scheme may be used.

The advantage of the variable frame is that on a single scan time slots are

reserved only for sources which have information to transmit. As the mul-

tiplexer scans each input, it may remain long enough on one source to send

one entire word to the transmitter or it may sample the source only long

enough to transmit one bit. In the case of the fixed frame, sampling is

usually done on a bit basis, while for the variable frame, word or block

sampling is usually used. The reason for choosing word sampling over bit

sampling in the case of the variable frame scheme is that synchronization

and addressing is more efficient when a word sampling scheme is used.

Synchronization

There are two kinds of synchronization which must be performed by a

digital multiplexer. First, before multiplexing can take place, the incoming

bit streams must be, or must be made to be, precise submultiples of some mas-

ter frequency. There have been four proposed schemes to accomplish source

synchronization for continuous data sources (10) . These are the master

clock, phase averaging, stable clocks, and pulse stuffing. Source



synchronization of probabilistic data is accomplished by buffer store units

placed in each input before the multiplexer . Second, to perform the demul-

tiplexing operation additional information must be transmitted with the

multiplexed stream. When using fixed frame multiplexing the only additional

information needed is the synchronization pulse to keep the multiplexer and

demultiplexer at the same frequency and in proper phase. Once the demulti-

plexer has locked on in proper phase with the bit stream, information as to

which source the pulse came from is then given by the time slot position

relative to the sync pulse. In variable frame multiplexing, an address code

must be sent with each information block conveying to the demultiplexer the

identification of the source from which the information block came. (See

Figure 1-1.)

The master clock approach to frequency locking sources which are at

different geographical points involves the distribution of a synchronizing

frequency to all interfaces (multiplex-demultiplex stations) from a central

location. Thus, all sampling clocks and coders can be harmonically related

to the "master frequency." There are several undesirable features about this

system of synchronization for large numbers of interfaces. Because the mas-

ter frequency is derived from only one centrally located position, it would

have to be highly reliable with sufficient backup systems in case of failure.

It would have to be protected against natural and manmade disasters, as

interruption of the master clock would completely disable the whole system.

Because of transmission line delay there would have to be variable delays

built into the interfaces so that proper phasing could be accomplished

between bit streams. The initial costs of the master clock system would be

large if the number of interfaces was large and the various multiplexing-



MULTIPLEXER WITH THREE INPUTS

INPUT 1

ui
X
ui

Q.

2

INPUT 2 OUTPUT

S2

INPUT 3

s 3

ADDRESS CODE FOR
VARIABLE LENGTH
FRAME MULTIPLEXER

INPUT ADDRESS

1 00

2 1

3 1

OUTPUT FOR FIXED FRAME LENGTH MULTIPLEXER WITH

THREE INPUTS

h m m ?o] h pn m r
Sync S,

Pulse
S

Sync
Pulse

~n ,

ruisa rjuise

U FRAME *+• FRAME
t=0

OUTPUT FOR VARIABLE FRAME LENGTH MULTIPLEXER

WITH THREE INPUTS

fn m !Q? m
Sync
Pulse

L-
t«o

S 3 (Sync

Address Pulse Addreee

FRAME

ti rsi roi m ro] m m m

,

t
j
\

Bvnc
Ad drees

FRAME

>ync

Pulse

Figure I-

1



demultiplexing stations were spread far apart. For a system which was very

specialized and required few interfaces the ''master clock" approach might

well be feasible.

Phase averaging is the second technique for synchronizing the incoming

pulse streams. This technique allows for sampling clocks of all coders to

be frequency locked without the use of a master clock. At every interface

there are pulse streams entering and leaving. A reference frequency may then

be established from an average of all frequencies entering the multiplexer.

A voltage controlled oscillator whose phase is locked to the average of all

signals entering the various locations will then set a reference for all

sampling frequencies throughout the network. It can be shown (10) that the

reference frequency will be the same at all interfaces and that this fre-

quency will be bounded by the highest and lowest free running oscillators in

the network. This system is not as susceptible to failure as the master

clock, but the initial expenses would still be high. The scheme has been

analyzed in considerable detail by Bell Telephone Laboratories Systems

Research Department, but before a complete system is committed further

analysis should be carried out.

Stable clocks is the third method of synchronizing continuous incoming

pulse streams. In this system a buffer storage is provided for each channel

and a very stable oscillator is used as the sampling clock. Now if an input

bit stream of frequency f . is multiplexed to a frequency f
i
+ Af , then the

elastic store will be exhausted every C/Af seconds if there were C bits of

storage. Defining the clock stability factor as s = Af/f i , then the store

is exhausted every C/sf
i

seconds. Each time the store is exhausted, infor-

mation must either be lost or repeated in order for the store to recover.



As an example, consider a 100 Megabits/sec (Mb/s) pulse stream and a clock

-10 3
stability factor of 10 .If once a day reframing is allowed, 10 bits of

storage will be needed. This would add great expense to the multiplexer.

The stable clock system of synchronization although simple in concept is not

usable if loss of information is not acceptable.

Pulse stuffing is the fourth method of synchronization. In the pulse

stuffing technique, extra pulses which carry no information are inserted into

the incoming bit streams to change the bit rates to some harmonic rate of the

multiplexing frequency. The extra pulses are then removed at the demulti-

plexer. This technique requires the incoming bit streams to be nominally

some harmonic of the multiplexing frequency. If the bit rates were not har-

monics of the multiplexing frequency, excessive stuffing would be required to

change the bit rates. The pulse stuffing technique is discussed in greater

depth in Chapter II.

If the sources of information are probabilistic in nature, synchroni-

zation is accomplished by the use of buffer storage units. It is only neces-

sary to be able to have an output bit rate which is equal to or greater than

the sum of the long time average input bit rates. In order to make calcula-

tions and predictions about the probabilistic system it would be necessary to

form a mathematical model of the system and then make predictions about the

size of the storage and the number of sources which can be multiplexed.

Introduction to Chapters II, III, and IV

There are in general two systems of multiplexing which are under con-

sideration in the present literature. The first system uses a fixed frame

format, pulse stuffing for synchronization, and is called the asynchronous

digital signal multiplexer by Johannes and McCullough (4) . Chapter II is an



analysis of the logic of the pulse stuffing technique and of the limitations

of the system. The asynchronous system requires that all inputs be continu-

ous and that all inputs be nominally submultiples of each other. The second

system is called the digital data dynamic transmission system by Hasegawa,

Tezuka, and Kasahara (3). The dynamic system entails the variable frame

format and uses a phase averaging clock for synchronization. This system

can be made to handle intermittent sources of diverse message frequencies or

even continuous sources of different frequencies. The price paid for such a

versatile system is transmission time; that is, an address must be sent with

each sample.

Chapter III contains a description of the dynamic multiplexer, while

Chapter IV presents a proposed mathematical model of the variable frame mul-

tiplexer. Each input to the multiplexer of Chapter IV is assumed to have

Poisson distributed transitions with each input having a different statis-

tical average rate. Next the total number of demands generated by all

sources is assumed to be Poisson distributed with an average value of one-

half the sum of the input statistical averages . This last assumption corres-

ponds to over estimating the probabilistic rate at which demands occur.

These ideas will be expanded upon in the presentation of the mathematical

model. The main things which have been accomplished in this paper are a

general organization of digital multiplexing and a presentation of a mathe-

matical model of the variable frame system.



CHAPTER II

A CONTINUOUS FLOW, FIXED FRAME, DIGITAL
TIME DIVISION MULTIPLEXER

The asynchronous multiplexer is a device which is able to combine sev-

eral continuous bit streams into a single high speed stream. This multi-

plexer, however, requires that the nominal bit rates into the inputs be

approximately integer multiples of each other. The reason for this is that

extra pulses called "stuffed pulses" are inserted into the input bit streams

to make them precise submultiples of each other. In this way, merging the

input streams into a single stream is accomplished with ease. Because of

the fixed frame and, more important because of pulse stuffing synchroniza-

tion, the input data must be of a continuous nature, for if just one of the

inputs should be interrupted, stuffed pulses would have to be inserted to

equal the rate of the interrupted input. Since the maximum rate at which

stuffing can take place is far less than any single input rate an interrup-

ted input would completely disable the system. The maximum stuffing rate

is a direct result of the method used to remove the stuffed pulses at the

demultiplexer.

A simplified block diagram of the asynchronous digital signal multi-

plexer is shown in Figure II-l. Assume that the inputs to this multiplexer

have bit rates f
n , f„, f„ . . ., f , , f, .,, f , ,

„ and that
1 l o h h+1 h+z

n
l
f
l

= n
2
f
2

= n
3
f
3

-
' ' '

- Vh " VlfW = n
h+2

f
h+2

where n , n„, . . . n,
+2

are all integer numbers. The inputs f, . and f,,~
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are not external inputs but inputs through which synchronizing data and

stuffed pulse data are sent. They may, however, be treated as external

sources for purposes of analysis and will be discussed later in this chapter.

Let f-^ be the highest bit rate and f^ the lowest. The multiplex clock in

combination with the multiplexer scans and samples each buffer store at the

nominal frequency f . One cycle of the scanner is governed by the format of

a single frame. In a single frame there is one pulse from input h+1, one

from h+2, one from input h, . . . n, /no from input 2, and n^/n-i from input 1.

Because there cannot be such a thing as a fractional pulse, the ratios

\ \ \ \
> • • • J 5 J

\ n
3

n
2

n
l

must also be integer numbers . The length of the frame is determined by the

lowest frequency to be multiplexed, namely T = l/f>,. In order to preserve

continuity, nominally,

f - f, + f , + f , + . . . + f, + f, ,. + f. ...
o 1 2 j h h+1 h+2

But it is possible that the output frequency, which is governed by the multi-

plex clock, may drift from its assigned frequency. It is also possible that

the input frequencies f .. , f„, . . . f may drift from their exact values.

Therefore, to preserve continuity exactly

f ± 6 = f i 6 + f ± 6 + . . . + f.± «.+ f_. + f_ .ooll22 hh h+1 h+2

To insure that there is no overflow the following inequality is made to hold

f
o " 6

o
> f

l
+ 6

1
+ f

2
+ 6

2
+

' '
+ f

h
+ 6

h
+ f

h+l
+ f

h+2-
(II- X >

If this condition is valid, the storage units, into which the incoming bit

streams are read, will on occasion be emptied because the output rate of

information is greater than the input rates combined. If buffer h should be

nearly depleted the comparator associated with buffer h signals the
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synchronizing transmitter which in turn inhibits the multiplexer clock from

reading out the buffer store. At the same time, an extra pulse is stuffed

in the time slot reserved in the frame for the h-th input. In this way, the

buffer store may recover and bit integrity is preserved.

In order to keep the multiplexer and demultiplexer locked to the same

frequency and in phase with each other, a synchronizing pulse is sent in the

h+1 time slot in each frame. It has been suggested that an alternating bit

pattern be used (4) (11) . That is, in one frame a pulse is sent in the h+1

slot, then in the next frame no pulse is sent, and then in the next frame a

pulse is again sent in the h+1 slot. Thus, an alternating pattern is set up

which the demultiplexer electronics can easily recognize. The demultiplexer

must also remove the stuffed pulses and, therefore, must receive information

as to which channel was stuffed. The multiplexer sends stuffing information

to the demultiplexer via the h+2 time slot. A typical frame sent by the mul-

tiplexer might look like that shown in Figure II-2 . The format by which the

stuffing information is sent is in itself lengthy and is called a stuffing

frame. Since there is only one slot in each multiplex frame allocated to

TYPICAL FRAME SENT BY MULTIPLEXER

I. I 2 1—1 i Ihtzl) I — |h|h+i| , |--
t

U I FRAME <4

Figure II-2
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sending stuffing information, it takes many multiplex frames to send one

stuffing frame. Johannes and McCullough have suggested (4) that a second

order M word be sent first. An n-th order M word for a binary channel is

defined as a word capable of being detected and located exactly in time in

the presence of n or less binary errors within a number of bits equal to the

length of the M word. Following the M word is the stuffing information for

the first four time slots of the multiplexer frame. The stuffing informa-

tion as suggested by Witt (11) should be redundantly coded, such as "000"

meaning no stuff and "111" meaning stuffed. The number of stuff words

(called C words) depends on the number of slots in the multiplex frame. At

the end of the stuffing frame is a word which marks the end and resets the

logic for identifying the stuffing information for the first time slot. A

more complete discussion of the stuffing format can be found in Witt (11)

and Johannes and McCullough (4)

.

Let the stuffing frame be m bits long; then it would require m multi-

plex frames to send one stuffing frame to the demultiplexer. If the multi-

plex frame is T^ seconds long then the maximum stuffing rate per time slot

in the multiplex frame is l/mT
f . Consider, for example, the input h, which

has an input rate of fh ± 6^. Because the multiplexing frequency is set by

the inequality of equation II-l, the multiplexer demands fl ± &l from input

h. The stuff rate Afh for input h is given by

f ' + 5u - f, + 6U = Af
h — " h h h

and if

f
h ± 6

h " f
h + 6

h < 1/mT
f t 11" 2 )

holds, then all stuffed pulses in time slot h will be removed at the demulti-

plexer provided that no other input exceeded its maximum stuffing rate. If
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the inequality does not hold, then some of the stuffed pulses will not be

removed or a pulse may be removed that was in reality not stuffed. The max-

imum stuffing rate is one of the biggest limiting factors of the asynchronous

digital multiplexer.

A block diagram of the demultiplexer is provided in Figure II-3. At

the demultiplexer the sync signal receiver disassembles the multiplex frame

and stores each bit in the appropriate buffer store. When a stuffed pulse

is found in the frame, the sync signal receiver is inhibited so that the

stuffed pulse is not read into the buffer store. In this way, the stuffed

pulses are eliminated from the bit streams. The next step after the pulses

are read into the memory is to read them out at their original frequency by

a voltage controlled oscillator, A control voltage is derived from the buf-

fer corresponding to the number of bits stored and is passed through an

integrator to obtain the average number of bits stored which, in turn, con-

trols the oscillator frequency. The information can then read out of the

desynchronizing buffer at the same frequency that it was read into the syn-

chronizing buffer. This method of reading the information out is also called

a phase locked loop (11)

,

The apparent advantages of this system are that it requires little

storage and, therefore, storage costs are not high. The multiplexer and de-

multiplexer are relatively independent of each other in that they do not have

to have a frequency standard at each location but rather the sync signal

receiver follows the sync signal transmitter. The whole system is at a dis-

advantage in that it can handle only those input rates which are integer

multiples of each other and even more restrictive, the ratios

!& 5l \ \
nh ' °

' ' ' n3 ' n2 ' nl
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must be integer values in order to make a fixed frame possible. Another dis-

advantage is that the inputs must be continuous as interruption of one input

interrupts the entire system. Therefore, a more versatile system is needed

for sources of a wide range in frequencies and intermittent operation. This

leads to the variable frame length multiplexer.



CHAPTER III

DESCRIPTION OF A VARIABLE FRAME DIGITAL TIME
DIVISION MULTIPLEXING SCHEME

In the search for a more versatile system, one which can handle inputs

which are intermittent and of a wide range of pulse rates, there have been

several contributors. It appears that Filipowsky and Scherer (1) were the

first to contrive the variable frame scheme,, Ristenbatt and Rothschild (9)

have worked with the problem of multiplexing of probabilistic digital data

and have showed very promising results. There is also work being done by

Najjar, Antonio and Blasbalg (6) on multiplexing inputs of diverse bit rates,

which has not as yet been published. Other works by Hasegawa, Tezuka, and

Kasahara (3) on the digital data dynamic transmission systems have shown good

results. The subject of this chapter will be the dynamic time division mul-

tiplexer.

It would be possible for the dynamic multiplexer to handle continuous

data of diverse input rates if the proper adjustments were made on the output

rate. In the case of pulse stuffing synchronization, when a buffer became

empty an extra pulse was stuffed into the waiting time slot so that continu-

ity was preserved. In the dynamic multiplexer an empty buffer is simply

skipped and information is sent from another buffer which has data to send.

The price paid for such versatility is in addressing the data, for each block

of information sent is addressed as to which input originated the block. It

would seem that the dynamic time division multiplexer would be most applic-

able to a system in which the input data was probabilistic and the input

16
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rates were diverse.

A block diagram of the dynamic multiplexer is shown in Figure III-l.

Let the inputs to the multiplexer be 1, 2, . . . , i, . . . , h where each

input has a different bit rate f , f„, . . ., f., . , . f . Let each input

be random, that is, not all inputs are active at the same time. Suppose that

the i-th input is active; then as information is received at the i-th input

it is read into the i-th buffer at the rate of f^ bits/sec. The primary pur-

poses of the buffer units are to synchronize the incoming data with data

coming in on other inputs and to act as a ballast for overloads. As informa-

tion flows into an empty buffer a signal C i is put onto the "and gate" A-, .

*

which indicates that buffer i has information in store to transmit. The out-

put of the multiplexer clock is fed through an inhibitor, which is inactive

at the present, to the ring counter. When the ring counter output reaches

the "and gate" A1± , the gate is opened and a signal C! activates the pulse

generator 1 through the "or gate B^" Both pulse generators 1 and 2 have as

an output one pulse for each positive going signal at their inputs. The out-

put pulse from pulse generator 1 sets the flip-flop through "or gate" B4.

The flip-flop activates the inhibitor which stops the clock pulse to the ring

counter; therefore, the scan is stopped on A1± . At the instant that C ±

appears at the output of A1± , it is also applied to "and gate" A,, and if

there is no information being transmitted at that instant then "and gate" A
2

•

is opened and an output appears from A2i which sets the holding gate B.± . The

output H± does two things; first, it activates the binary invertor 1 through

the "or gate" B2 which in turn closes "and gate" A2i and disables "and gates"

A
21 ,

A2
2

, . . . A
2h

« In this way no other blocks of information can be read

out until a block of information from buffer i has been transmitted. Second,



A VARIABLE LENGTH FRAME MULTIPLEXER

INPUT I BUFFER
I

INPUT 2. BUFFER
2

INPUT I

.

BUFFER
I

INPUT h BUFFER
h

»2I

'12

ii-»

*ii

u-»

'ih

RING
COUNTER

SCAN
CLOCK

BINARY
INVERTER I

»2I

»

1 22

f m

*2l

I

'2h

t »

Hi

ill

J

J

Qi

r „

OUTPUT

r

INHIBITOR!
I

I 6gNE»AT0nl ^
PULSE
eWERATOR]

FLIP
FLOP

I I AND
UJ I QATE

I ± I GATE

Figure Iff — I



19

the output from H^ opens gate Gj which allows a block of information to be

read out, addressed and transmitted. When the binary invertor (B.I.) 1 is

activated by the output from H. and the gate A2^ is closed, then a positive

going signal appears at the output of binary invertor 2. Thus, the pulse

generator 2 is activated and the flip-flop is reset through B^ . The inhib-

itor is deactivated and the ring counter begins to scan again. As soon as

the ring counter finds another buffer with information to transmit, it waits

at that buffer until the previous block of information has been transmitted.

In this way, the buffers are scanned at the same time that information is

being transmitted and there is no lag between blocks of information in the

output. The holding duration of the holding circuits is just long enough to

allow one block of information and its address to be transmitted and then it

automatically deactivates itself. This of course enables "and gates" A...
,

A„2j • • • A„
. , . . . A again, allowing the next block of information to

start its holding time.

A block diagram of the logic at the demultiplexer is presented in Fig-

ure III-2. The address attached to the front of each block of information

contains a start-stop signal. The start-stop signal excites the start-stop

generator which sets the holding circuit H. The length of time that the

holding circuit remains active is just long enough so that address may be

read into the shift register. It can be seen that as long as the holding

circuit H is active the inhibitor circuit 2 inhibits the address information

from being passed on to the gates G
21

, G
22

, . . . G
2± , . . . G

2h
and the "and

gate" A
2

allows the write signal from the oscillator to pass into the shift

register. The write oscillator's frequency is controlled by the frequency of

the incoming data. As the address code is written into the shift register it
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is converted from serial form into parallel form. The parallel code sets the

matrix circuit to activate the proper gate G
±

. After the address is read

into the shift register the holding circuit deactivates itself which in turn

closes the "and gate" A2 which stops the shift register from reading in any

more pulses. The inhibitor 2 is also deactivated allowing the information

block to pass to the gates G
21

, G
22

, . . . G,., . . . G„ of which only one

has been opened by the matrix circuit. The information is read into the buf-

fer and is read out at the original frequency by a phase locked loop oscilla-

tor. The read and write circuits on the buffer stores have been deleted to

save confusion.

If this system is to be used for data which occurs at random, it will

be necessary to know how large the storage units should be used in order that

the probability of loss of information may be made small. Criteria as to how

many sources may be handled must be found. Thus, these are the primary prob-

lems that will be dealt with in Chapter IV.

The primary advantage of this system is that as long as there is any

information in any buffer within the multiplexer system, there will be a con-

tinuous flow of information in the transmission line. Therefore, the trans-

mission line is used to its capacity. The system is entirely versatile in

that it can be made to handle any input frequency and both probabilistic and

continuous data. As stated before, the price paid for such versatility is

that a great deal of addressing information must also be transmitted.



CHAPTER IV

A MATHEMATICAL MODEL OF THE VARIABLE FRAME SYSTEM

Introduction

The logic of the digital data dynamic transmission system is such that

the incoming messages are broken into blocks, addressed, and merged by a pre-

determined scheme into a single stream of information. In the analysis that

follows it is assumed that the messages are sent whole and that as a message

arrives it joins a strict queue. These assumptions are in keeping with the

actual multiplexer in that the output stream of data could be sectioned into

messages of random length. The only difference is that a message of length t

contains information from a single source as it enters the multiplexer, but

when the message leaves it may be shortened by a compression factor and may

contain information blocks from several sources. The compression factor

takes into account the fact that in real time on the average more messages

may enter the multiplexer than can be transmitted in real time.

Mathematical Description of the Multiplexer Input

Let the dynamic multiplexer be depicted as is shown in Figure IV-1;

there are h inputs each of which is to be represented by a Poisson distribu-

tion with different average statistics. There are four basic assumptions

which must be made about the inputs if they are to be described by Poisson

distributions. In Appendix A it is shown that the i-th input may be repre-

sented by a Poisson distribution with average k.x where k^ is the average

transition rate, if the following assumptions hold.

22
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THE DYNAMIC MULTIPLEXER
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Figure EM
i) The probability of a transition during a time interval At is assumed

to be statistically independent of the number of transitions previ-

ous to At. A transition is a change of state in the input; a change

from "message" to "no message" or vice versa,

ii) The probability of a transition during At is assumed to vary as the

length of At for At small.

Prob (5.-1, At) = Pr (1, At) = k.At
1

i
1

where Pr (1, At) is the probability that the random variable £

.

equals one transition in the time interval At.

iii) The probability of more than one transition in At is assumed to be

negligibly small, and in fact,

Lim Prob (5.>1; At) = 0.

At-K)
X

Another condition must be placed on each input of the "dynamic multiplexer."
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iv) The sources of information feeding the dynamic multiplexer produce

messages which are made up of digital pulses, thus a message is

quantized in its length. If the duration of an individual pulse is

assumed to be very short the quantization can be ignored and the

message duration considered as a continuous random variable.

If each of these four conditions holds for each individual input then the

i-th input is governed by

(k
-;
T ) _v t

n = 0, 1, 2, . . .

P
5

(n; t) =_L_ e
kiT

. (IV-1)
i i = 1, 2, 3, . . . h

The function P^ (n; t) is the probability distribution that the i-th
"i

input will make a number of message state transitions in the time interval t.

That is, Pr (n; t) is the probability that the number of transitions £-; is n
i

in t units of time.

The multiplexer in Figure IV-1 has the following properties: with each

input there is associated a large buffer store and as each message arrives at

its particular buffer it joins the queue in that buffer. The multiplexer

acts as a single server which services each buffer store and transmits infor-

mation to the single output. The logic of the multiplexer is such that as

long as there is any information within any buffer the multiplexer will con-

tinue to transmit a constant stream of information to the output.

Collective Input Transitions

Figure IV-2 shows a sample set of inputs to the multiplexer of Figure

IV-1. The last time response of Figure IV-2 is a record of all transitions

from all h sources. The total number of transitions E, in the interval x is

5 = K
1
+ K

2
+ £3 + . . . + K

±
+ • • . + Ch

- (IV-2)

The characteristic function of the random variable £ is defined as
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r (s) = E
?
<e
jsn

> (IV-3)

where E is the expected value operator on 5, s is a real variable with no

physical significance, and ? is a random variable governing the number of

message state transitions as seen collectively by the multiplexer. It can be

shown (5) that the characteristic function of the sum of h independent random

variables is the product of the h individual characteristic functions.

r
?
(s) = r

5
(s) r

c
(s) r

£3
(s) ... r

?
(s) ... r

?h
(s)

The characteristic function of a Poisson distribution is (7)

n / n

"k
i
T

V
jsn ^ K

j
; k±

x(eJ -l)
I> (s) - e * le

,

= e x

1 nf=0
nr

The characteristic function of h independent Poisson random variables is

(k+k +. . .+k±+. . .+kh ) (eJ -l)x

c
(s) = e 1 2 x h

Therefore the random variable £ has a distribution

D , ,

[(k1+k2
+...+k.+ ...+k

h
)T]

n
_(k+k+ ...+k+ ...+k )X

P r (n,x) = e l z x n
5 n!

and if

k = k
±
+ k

2
+ k

3
+ . . . + k + . . • + \ (IV-4)

then

P
e
(n,T) ="^r e

_kT
. (IV-5)

It is seen that collectively the number of transitions in t is governed by a

Poisson distribution whose parameter k is the sum of the parameters k. of the

individual sources. Thus, the average number of transitions per unit x that

the multiplexer experiences is equal to the sum of the average rates of the

individual inputs.

It is now convenient to define the transition from a "no message" state
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to a "message" state as a "demand" transition and the transition from a "mes-

sage" state to a "no message" state as an "end" transition. It would seem

logical that

d e

where £a anc* ? e are discrete random variables describing the total number of

demands and ends in T
. By a procedure similar to that used in Appendix A,

the demands taken collectively can be shown to be Poisson distributed with

average kd T provided that there are an infinite number of sources (9). The

requirement of an infinite number of inputs is a direct result of assumption

i which states that the probability of a demand during a time interval At is

assumed to be statistically independent of the number of demands previous to

At. It is intuitively obvious that the number of demands which can occur

within an interval x is limited by the number of inputs h, for if h is finite

it would be very unlikely that more than h demands could occur in a time

interval i which was less than the average message length. Therefore, the

assumption of independence between time intervals At is not strictly true for

any case other than when h approaches infinity.

If the number of inputs h is finite, then the probability distribution

governing the number of collective demands would be a function of several

variables, namely,

Pr (n;i) = f(h,k
d
,i,n)

d

of which the average value would be kdT. If the collective demands are

assumed to be Poisson distributed with average kd x, then

P (n; T )
=-l_ e

-kT
.M n!

For n > k
d
i the probabilities given by the Poisson distribution would be an
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upper bound of the actual probabilities, or

(V^ -kx
: e > f (h,k,,x,n) for n > k,x

n! d d

and if n < k.T the probabilities given by the Poisson distribution would be a

lower bound of the actual probabilities, that is

(k
d
T)n

-kx
: e < f(h,k, ,i,n) for n < k,x

.

n! d d

It is easy to draw these conclusions knowing that

and that

I P
E

(n;x) = 1

n=0 d

k = k n +k + k +. . . + k . + . . . + k, .12 3 i h

Therefore a system designed to handle collective demands which were assumed

to be Poisson distributed, for a finite number of inputs h, would be over-

designed. The amount of overcompensation is dependent on how small an

integer h is

.

Assume that the collective demands are Poisson distributed. This auto-

matically implies that the demands and ends are independent, which in turn

implies the ends must also be Poisson distributed. Therefore,

(k i)
n

Pr (n;x) = —

-

e n = 0,1,2,... (IV-6)
s
d n!

(k x)
n

Pr (n;x) - —

=

e
KT

n = 0,1,2,... (IV-7)
s
e n!

Using the characteristic function approach again

r (s) = ry (s) r £ (s)
^ ^d e

it is seen that
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= e

from which

kx(e
jS

-i) .

(kd+ke )(eJ
s
-l)T

k = k, + k . (IV-8)
d e

Since for every demand transition there is an end transition,

E<£
d
> = E<5

e
>

where E< > is the expected value operator, then

Substituting IV-9 into IV-8,

k
d

= k
e

(IV-9)

k
d

= | . (IV-10)

Using equations IV-10 and IV-4, equation IV-6 becomes

n

[ (k +k +. . .+k +. . -+k )|] -(k+k + . . .+k.+. . .+k, )J
Pr (n;x) ±-^ i 2_i_ e 12 l h'2

(IV_H)
d n!

Single Input-Message Length Distribution

Consider first the i-th source of information. Given a demand transi-

tion at some time t
Q

the probability that the next transition (the end tran-

sition) will be found in some time interval t +t to t +t+dt later, is written
o o

as

Prob (t
Q
+t < a

±
< t

Q
+t+dt) = pa (t)dt (IV-12)

where t is a possible value that the random variable a
± can have and pa (t)

i

is the probability density which is sought. Making use of assumption i, it

is obvious that

Prob (t
Q
+t < a

±
< t

Q
+t+dt) = Prob (E,

±
=0;t) Prob (5 -l;dt). (IV-13)

Now from equation IV-1 (with the proper change in variables)

-k t
Prob (S.-0;t) = P^ (0;t) = e *

i

and from assumption ii
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Prob (£.=l;dt) = k.dt
1 1

equation IV-12 becomes

-k.t
Prob (t +t < a. < t +t+dt) = k.e 1 dt

o 1 o 1

from which the probability density of message lengths is

-k.t
Fn (t) = k.e 1

. (IV-14)
i

x

To show that this density is reasonable it should have an expected value of

E<a.> =
l

tk.e ! dt
l

Let k.t = x. Then k.dt = dx and
l l

1
E<a.> = r—

i k± j

-x, 1
xe dt = -— .

k.
x

Collective Message Length Distribution

Next, the probability density of message length for all inputs taken as

a composite is to be found. Let a be the random variable which describes the

length of any message taken at random from the composite. Then the probabil-

ity that the message will have length between t and t+dt is equal to the

probability that the message is from input 1 times the probability the length

a., is between t and t+dt, given the message was from the first input, plus

the probability that the message came from the second input times the prob-

ability that the message length a„ is between t and t+dt, given the message

was from the second source and so on to the h-th input. This may be written

as

h
Prob (t < a < t+dt) = £ Prob (message is from i-th input) Prob(t <

i=l

a. < t+dt / message is from i) (IV-15)

The probability that a message picked from the composite will be from the
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9 -k. t
Prob (t <' a < t+dt) = 7- ) kfe x dt

i-th input is ,

Prob (message is from the i-th source) = —r— = t—

2

assuming that the length of the message has nothing to do with the way in

which a message is chosen. It then follows from IV-14 and IV-15 that

h

I
i=l

and the composite density is then

1 r 2
-k .t

Pa
(t) - £ I k*e i . (IV-16)

i=l

An equivalent input may now be used in place of the h random inputs.

The equivalent input is described by

(k
H
T ) _k T

P
E

(n;x) -. e d (IV-17)
^d n!

5a (t) = £ I k2 e
"k

i
T

(IV-18)

h

1
i=l

and is unique in that the messages may overlap in time. The multiplexer may

be thought of as a device which can store and compress the overlapping mes-

sages into a real time output.

Description of the Multiplexer Output

In order to calculate the amount of time compression which is necessary

the average message length must be found:

f
00

tp^COdt -i
h -k.i

t I k?e * dt

i=l
x

"

h

c

o

The average number of demands in x is

E<a> = — (IV-19)
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k
d
T = | t . (IV-20)

Now from IV-19 and IV-20 the following inequality must hold if message integ-

rity is to be maintained

(£) (k
d
T) < T

| 1 1 (IV-21)

and if = is greater than 1 then time compression of message length is neces-

sary. Consider the case where h = 2; then the equality holds and time com-

pression is not necessary. This is the time sharing problem where the

message rate of the transmission line is equal to the message rate of one of

the inputs but because one input uses the line only half of the time, the

second input can use the transmission line the other half of the time. Be-

cause Poisson distributions were chosen to represent the individual inputs;

this implied that each input over a long period of time had information to

send half of the averaging time. It would be expected that no more than two

inputs could be multiplexed without time compression. Perhaps a more realis-

tic input distribution would be one in which the probability of a long

message would be much less than the probability of a long no-message state.

This might be accomplished by using a higher ordered Erlang distribution (12) .

If
"J — "* t*ie comPress i°n factor a is given by

h
1a Y = 1

2
a = ^ h = 2,3,4, ...

Thus the compression factor has values ranging from to 1 excluding h = 1

which is an uninteresting case. Assuming that the multiplexer performs time

compression, the distribution of message lengths will be altered at the out-

put to conform to the distribution
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P (t) - f- I k?e
k
i
t

(IV-22)
o

Ko i-i
x

where a is the random variable which describes the length of the output

messages and the expected value is

E<V =
F~

• (IV-23)

The Rates Ratio

Let k be the average number of demands appearing at the output of the

multiplexer in the time interval x. Define the rates ratio as

y 5 ^ (IV-24)
K
o

The ratio y is of considerable importance in queueing theory and is measured

in units of erlangs . If y > 1 then on the average the number of output

demands is less than the number of input demands and the queue will continue

to grow in length. If u <_ 1 the queue will grow and shrink as the input

fluctuates. A typical value for y might be 0.8. If y = 1 the system would

be on the verge of instability.

The Expected Value of Queue Length

Consider a storage unit with an input described by:

(V)
11

-k,T
P, (n;x) 2 e d (IV-25)
s
d n!

1 -k t

Pa(t) "J I k
±
e 1 (IV-26)
-k,.t

kt«

i=l

and an output described by:

P
c

(n;x) = f(n,a ) (IV-27)
o

a r 2 "kit
Pa

(t) " f~ I k
i
6 (IV"28)

o K
o i=l

1
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where a is the compression factor.

Next let time be marked at the "end" transition of some message M
Q at

the output of the multiplexer, and let this time be t = 0. At the instant

t = there may be a certain number of demands in the buffer store (a demand

is the beginning transition of a message) . Designate this number of demands

in store d . If dQ ^ then the time t = also marks the "demand" transi-

tion of a message M-^, which is the next message to be transmitted, and M-^

will begin its service time ti. If d = at t = 0, the message M-j^ will

begin its transmission time as soon as it arrives at the multiplexer. The

state of the buffer d^, after M^ has been transmitted, may be found from the

difference equation

d- = d + r. - 1 + 6(d ) • (IV-29)
I o 1 o

The quantity r, is the number of demands which occur at the input during the

time it takes to transmit message M-, . The length of the message M. is t-^ and

the function <5(d ) is defined by

5(d
o

)
=

1 for d =0
°

(IV-30)

for d i .

o

It is important to note that the probability that there are n demands

received during the transmission of M.. is given by equation IV-25.

P_ (n;t )
2_i_ e d

L
l J- n!

The quantities d^, dQ , r^, and <5(dQ ) may be considered as range variables or:

d
1

= 0,1,2,3,...

d
Q

= 0,1,2,3, ..o

r
±

= 0,1,2,3,...

6(d ) = 0,1 .

o
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Turn now to the case where the q-th message M is beginning its trans-

mission time. Let Y
q_i

be the discrete random variable which describes the

number of demands in store at the beginning of the message M and let y be

the random variable which describes the number of demands in store after M
q

has been transmitted. Define v to be the random variable which describes

the number of demands which occurred at the input during the transmission of

M . It follows that

Y
q

= Vl + Vq~ 1 + 6(Vl ) ' (IV_31)

The function 6 (v , ) is defined by
q-1

6(Vi }
=

( 1 for y
i

=
q (IV-32)

for y i + 0.
q-1

Solving equation IV-31 for 6(y , ) and taking the expected value of both

sides implies

E<5(y ,)> = E<y > - E<y ,> - E<v > + 1. (IV-33)q-1 'q 'q-1 q

Evaluating the lefthand term of IV-33,

E<6(Y ,)> = (0)Prob {6(Y 1
)=0} + (l)Prob {6(Y ,)=1>.

q-1 q-1 'q-1

But from equation IV-32,

which implies

Prob {6( Y ,)=1} = Prob {y =0}
q-1 q-1

E<6( Y ,)> = Prob ( Y n
=0)

q-i q-1

Assuming that the process is stationary, that is,

it follows that

E< Y > = E<Yn ,>
q q-1

E< Y > = E<y ,> = Prob (y =0)
q 'q-1 'q

and equation IV-33 becomes
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Prob (y =0) = 1 - E<v > = E<6(y )>. (IV-34)
q q q

It should be noted that the random variable v is the number of demands

occurring during the transmission of some message. Therefore,

v
q

= f(5
d'

ao>

where 5j is the number of demands occurring during the transmission of a

particular message and a is the length of a message picked at random. There-

fore

q ^d.a d o

First taking the expected value of f(£,,a ) with respect to £, yields

00 (k-,01 ) _k a
Ep <£(C.,o )> = I n

Q °
e d ° = k,a . (IV-35)

K
d

d ° n=0 nl d °

Next take the expected value with respect to a to obtain

E<v > = k,E<a> = kA -.
—

q d d kQ

from which

ahk

h
2 -k,t

J

o

t I kfe i dt (IV-36)

i=l
X

E<v > = —

—

- = y . (IV-37)
q k

o

Substituting equation IV-37 into IV-34, the result is

Prob (y =0) = 1 - y . (IV-38)

Therefore the probability that the queue length is zero is dependent only upon

the value of y . Squaring equation IV-31 yields

'q 'q-1 'q-1 q 'q-1 'q-1 'q-1 q q

+ 26 (Y„ ,)v + 1 - 26(y ) + 6
2

(Y„ ,) . (IV-39)
q-1 q q-1 q-1

From the definition of 6(y _, ) , equation IV-32, it can be shown that

26(ViVi = °

and that
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fi2 <Vi }
= 6(Vi }

so that equation IV-39 becomes

q q-1 q q-1 q-1 q q-1 q

Taking the expected value of both sides results in

E<y 2 > = E<y 2 ,> + E<(v - 1) 2 > + E<6(y -,)>
q q-i q q-i

+ 2E<y , (v - 1)> + 2E<6(y ,)(v - 1) . (IV-40)
q-1 q q-1 q

Assuming stationarity, then

E<Y
2 > = E<Y

2 >

q q_1

and if there is independence between the number of demands in storage and the

number of demands arriving then IV-40 becomes

= E<(v - 1)
2
> + E<6(y ,)> + 2E<y ,>E<v - 1>

q q-i q-i q

+ 2E<6(y
n
)(v - 1)>. (IV-41)

q-1 q

Now since

E<v > = E<v n
>

q q-i

and from equation IV-34

E<6(y )> = E<6(y ,)> = 1 - y
q q-i

equation IV-41 may be written

= E<v 2
> -2u + l + l-y + 2E<y -, > (u - 1)

q q-i

+ 2(u - 1)(1 - u).

Solving for E<y ,> = E<v > the result is
q-i q

E<v 2 > - 2p 2 + y

E<Y = q
2(1 - u) •

^ IV"42 >

The variance operator on the random variable v is defined by

V<v > = E<(v - E<v >) 2 >

q q q

which may be simplified to
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from which

V<v > = E<v 2 > - (E<v >) 2

q q q

E<v 2 > = V<v > + (E<v >) 2
. (IV-43)

q q q

Remembering that v = f(£,,a ) then6 a a' o

E r <v 2 > = VF <v > + (E F <v >) 2
. (IV-44)

*>a a ^ a *'d q s
d q ^d q

Now from IV-35

and it can be shown that (2)

Therefore

Er <v > = k.a
t.

d q do

V r <v > k,a ,

£,
A q do

E r <v 2 > = k.a + k2a 2

^ q do do

Then taking the expected value with respect to a yields

Er r,
<y2> = k,E<a > + k2E<a 2 >.

^d o q dodo
From IV-43

so that

E<a 2 > = V<a > + {E<a >}"
o o o

EF a <v2> = k,E<a > + k2V<a > + k 2 {E<a >} 2
. (IV-45)

^>

(j

a
q do do do.

Now remembering that

1
E<a > =

k
o

equation IV-45 becomes

k, k 2

E<v2 > = — + k 2V<a > + ~ = m + k2V<a > + y
2

. (IV-46)
q k d o t,

z do
o Ko

Substituting equation IV-46 back into IV-42 the expected value of queue length

is seen to be:

y
2 + k2V<a >

E<V * "*
2(1 -»)" (IV"47)

where Vca > is the variance of the service time distribution given by



V<a > = E<a 2 > - [E<a >] 2
<

o o o

The term E<a 2 > will be evaluated first.

39

E<a 2 > =
2k

o J

-k.t 3 Vt2 J k2. i dt

1=1 o i=l J

t
2k?e * dt

l

Let x. = tk.; then dx. = k.dt andli li
E<a2 > = -£

o 2k

n
i

L
\ k.

o i=l i

2
X
ij a V 1

xfe %. r- > r-

.

i i k ,**, k„
o 1=1 1

The term E<a > can be obtained from equation IV-19 in the form

E<a 1_

k

so that

h ,
j2

'o i=l "i *-
Q o

Substituting into equation IV-47 the result is:

V<a >
o

1_ ? J_ 111 L
k A k. l.2 k 11 ki k

1=1 i o

E<y > = u
q

+ kjy *--^
i +

,**, k. k
1=1 1 o

2(1 - u)

To show that this equation gives reasonable results assume that

k
l = k

2
= k. <\

then

h .

y 1 _ n

A k. k.
i=l i i

and then it would follow that

(IV-48)

k 2kd

h h *

Therefore

h

I
i=l "2A k 2k2kd
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Then equation IV-48 becomes

u + h2 (l - y)
E<y > = y

q
1 +

2(1 - y)

Let y = 8 and h = 30; then

,8 + (30)(.2)
e<v =

-T
+ '" wZir

1

.

= i4 - 4

But because v must be a discrete number
q

E<y > ~ 15
q

This would say then that out of 30 lines into the multiplexer, all with the

same statistics, on the average one half of the inputs would have demands in

queue at any particular instant, which would seem quite reasonable.

The Problem in General

At this point in the analysis the problem becomes more clearly defined

as to what quantities are needed, and what distributions must be found in

order to have meaningful results. It becomes quite evident at this point

that the probability distribution for the number of bits stored will be any-

thing but simple, as the number of bits which must be stored is dependent

upon the number of messages in queue, the lengths of the messages in queue,

as well as the amount of time that a message must wait before it is trans-

mitted.

It is clear that the input messages must be described in a probabilis-

tic manner with respect to demand transitions and length of messages. This

may be done on an individual input basis or it may be done on a collective

basis. It would be of greater use to describe each source probabilistically

and then describe the composite source, but in order to solve the problem for

even a simple case it may become necessary to describe the composite input in

the most compact way possible. That is, assume that the messages are Poisson
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distributed in the composite and assume that the lengths of messages are

exponentially distributed.

After the input has been properly described the output must be des-

cribed as far as transition occurrence and message length distribution. The

message length distribution for the output is sometimes called the service

time distribution in queueing theory. Next, the queue length distribution

must be found. The queue length distribution is of course a function of both

the input and the output distributions. And in order to write the difference

equations for the queue length the following probabilities must be known!

Prob (C
d

= 1, dt)

Prob (£ = 0, dt)

Prob U = 1, dt)

Prob U = 0, dt)

If both the input and output distributions are known then the above prob-

abilities are also known.

In the analysis carried out in this paper the output demand transition

distribution has not been found. The output service time distribution is

given by equation IV-28 which is a sum of exponentials. It may be possible

to generate the demand transition distribution from the service time dis-

tribution but on any account the output transition distribution must be found

before any other analysis can be carried out. After the queue length dis-

tribution is found the joint distribution between the queue length and bits

stored is the next quantity to be found. A procedure to follow might be to

find the probability that at some instant of time there are u bits stored

given that the queue is d messages in length, times the probability that the

queue is d messages in length. It is clear that three kinds of messages
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may be found in the storage at time t; the first kind is a message which has

been partly read into the buffer. The second kind is a message which has

been completely read into the store, and the third kind is a message which

has been partly read out of the buffer. The probability that a message has

been partly read into the buffer is the probability that the message length

is greater than t - (tQ + dt) given the message started in the interval dt

prior to t times the probability that the message started in the interval

dt prior to t . The other two cases may be similarly stated, and then know-

ing that the number of bits is proportional to the input frequency a joint

distribution between the number of bits stored and the queue length might be

found.



CHAPTER V

SUMMARY AND SUGGESTIONS FOR FUTURE STUDY

The type of multiplexing system which should be used in a particular

application is dependent upon the kind of data which is to be multiplexed.

If the data is of a continuous nature and the pulse repetition rates are

nominally submultiples of each other, then a fixed-frame system with pulse

stuffing for synchronization is a very efficient method for multiplexing.

That is, the amount of synchronizing information which must be transmitted

with the multiplexed data is a minimum and the transmission media may be

used to its fullest capacity. If the data is of a continuous nature but the

inputs are of diverse frequencies a variable frame dynamic multiplexer may

be used with the confidence that it is the most efficient multiplexer which

can be used. To calculate this system is still a deterministic problem

because the input frequencies are all known and the output frequency may

then be determined. The amount of storage which is necessary is small and

may be calculated knowing the longest amount of time that it will take for

the scanner to return to any given line once it has sampled that line.

If the input data is of a probabilistic nature, the dynamic system is

the most applicable system of multiplexing. In such a system the inputs

must be described in a collective manner or on an individual basis. It is

of more use to describe the inputs on an individual basis, as it then becomes

possible to calculate the number of inputs which may be multiplexed without

a gross overload which cannot be compensated. The inputs must be described
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probabilistically as to demand arrivals and message length. The output must

also be described probabilistically as to processed demands and output mes-

sage length. The distribution of message length for the output may be taken

to be the same as the distribution of message length for the input modified

only by a compression factor. The output distribution of demands may then

be generated from the output distribution of message length. This, however,

has not yet been accomplished in this paper and work is left to be done.

Once the output is described the next step is to find the queue length dis-

tribution and then a joint distribution of queue length and the number of

bits stored. From this distribution it will then be possible to find the

distribution of bits stored from which the size of storage may be found.

In order to test this mathematical model it would be advisable to run

a Monte Carlo simulation and in this way calculated values may be verified.

However, if the input and output distributions become too difficult to handle

the computer may have to be used in order to get numerical results. There

are other ways to describe the inputs to the multiplexer and one such method

is the use of Erlang distributions. These distributions may be useful in

that the message length may then have a different average length than the

average interval between consecutive transitions. Further study should be

devoted to this area.
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APPENDIX A

POISSON DISTRIBUTED TRANSITIONS, i-th INPUT

Consider the ensemble shown in Figure A-l. Each member of the ensemble

consists of randomly distributed messages which are represented by blocks;

thus there are intervals of time when there is no incoming information and

intervals when there is information flow in the i-th input . There are two

possible states that the i-th input may be in at a given instant of time,

that is a "message" state or a "no message" state. A transition is next

defined as the change from a "message" state to a "no message" state or a

change from the "no message" state to the "message" state. Of the two types

of transitions the change from "no message" to "message" will be referred to

as a demand transition, and the demand lasts until the message is terminated

by an "end transition."

To show that the transitions may be represented by a Poisson distribu-

tion certain assumptions about the transitions must be made.

i) The probability of a transition during a time interval At is assumed

to be statistically independent of the number of transitions pre-

vious to At.

ii) The probability of a transition during At is assumed to vary as the

length of At for At small. That is, as At approaches zero length

Lim Prob (£ =l;At) = Lim P
?

(l;At) = Lim k.At = k.dt (A-l)
At->0 At--0 i At+0

1 1

iii) The probability of more than one transition in At is assumed to be

negligibly small and in fact

Lim Prob (£.>l;At) =

At-0
1
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It is evident from this last assumption that in the limit as At

approaches zero

Lim Prob (5-0; At) + Lim Prob (5-1; At) = 1 (A-2)
At+0

1
At+0

1

Consider any interval of time x + Ax in which the probability of no

transition may be written as (see Figure A-l)

:

P, (0;x+At) = P (0;x) P (0;Ax) (A-3)
i *i H

where C i is the random variable which describes the number of transitions in

any time interval. Substituting A-l and A-2 into A-3 with the proper change

in variable

P, (0;x+Ax) - P
E

(0;x)H i

At
- -k.P

?
(0;x)

Taking the limit as At approaches zero the following differential equation

is generated:

f-P ?
(0;t) = -k.P f (0;x)

,

1 '1

the solution of which is

-k x

Pg (0;x) = Ae ±
,

i

Using the boundary condition

P
5

(0;0) = Lim Prob (£.=0;At) = 1
i Ax->0

x

one obtains
~ki T

Pc.(0;t) = e . (A-4)
*i

Next consider the probability of n transitions in x + Ax

.

Prob (C
±
-n;T+AT) = Prob (?.=n-l;x and 5 -1;At)

+ Prob (£ -n;T and £.=0;Ax)

Using assumption i the following difference equation may be written:
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Pr (n;x+Ax) = ?
E

(n-l;x) P E (l;Ax) + P r (n;x) P£ (0;At) (A-5)

Substituting A-l and A-2 into A-5 gives

P^ (n;x+Ax) - P
?
_(n;x)

— — + k^ (n;x) = k^ (n-l;r).

Taking the limit as At approaches zero:

|- P
s

(n;x) + k P (n;x) = k Pr (n-l;x) (A-6)

This differential equation is of the type

^+ R(x)y = S(x)

a solution of which is

/R(x)dx , . /R(x)dXjye = s(x)e dx .

The solution of A-6 is

k , x k,. t
P
?
_(n;x)e x = k.P

?
(n-l;x)e x dx .

Now examine the case where n = 1

P
£

(l;x)e
iT

= k.P
r (0;x)e ^dx . (A-7)

Substituting equation A-4 into A-7 and integrating the right-hand side

results in:

k-x
P
£ (l;x)e 1 = k.x + C.

But Prob U
±
=l ;0) = which implies that C., = 0; therefore

Pg.(l;x) = k.e"
ki T

. (A-8)

Next let n = 2:

P
5
_(2;x)e

ki T = /k.P, (l;x)e
ki T

dx (A-9)

Substituting A-8 into A-9 yields



P
5

(2;x)e
±T

= /k.{k.xe Me ^di
i 1 1

(k.)
+ C,

Now Pr (2,0) = 0; thus C = and therefore
i z

-k,.x
Pr (2;x) = —

i

(k.x) 2

e i
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The general expression is written after inspection of several values of n

and may be proved by induction to be

<V>" -k.x
Pr (n;i) = • e x n=0,l,2,... (A-10)

1 n!
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ABSTRACT

An investigation of the current methods used to perform time division

multiplexing of digital data is summarized in this thesis. A mathematical

model for probabilistic data in a variable length frame system is discussed

and the problems involved in finding the amount of storage needed are shown

in detail. The input data into the variable frame multiplexer is assumed to

be given by

P
5

(n;r) =

(k,T)
n

d K
de

'd n!

and

p (t) - £ I kje-^
i=l

and an expression for the expected value of queue length is derived.


