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STOCHASTIC MODELS IN A FREE-RECALL EXPERIMENT

1. Introduction

The purpose of this paper is to show some of the stochas-

tic models used to represent the data of a free-recall experi-

ment often done in psychology. The use of stochastic models is

relatively new. Most of the work has been done since 1950.

This paper will consider four stochastic models. Choice of

a model will depend on assumptions and experimental procedures.

It is a well known fact in psychology that two experiments on the

same variable may not yield the same results and conclusions.

Two experimenters studying the same variable may vary the other

variables in their experiment differently. So before a stochas-

tic model can be used the experimental procedure must be speci-

fied. The free recall procedure for the first three models con-

sidered in this paper the subject is allowed as many trials as he

needs to learn completely the list of words. In the last model

considered the subject may only partially learn the list of words

A stochastic model provides a framework for analyzing data

at the level of single subjects and single trials. Models also

provide a way to summarize the data once various parameters are

estimated. For a general discussion of the value of stochastic

models see Miller (1964)

.



The first model considered is a model by Bush and Mosteller

(1955) . They assumed that if a word is recalled on a trial the

probability of recalling the word on the next trial is increased,

and this change could be represented by linear operators.

The second model is the Miller and McGill (1952) model.

Their model is closely related to Bush and Hosteller's model.

Use of some results from Bush and Hosteller's model in Hiller and

HcGill's model yields several interesting results.

The third model considered is a model by Waugh and Smith

(1962). Their model is a Harkov chain with an absorption state.

They look at the words in terms of what state they are in.

The last model considered is the model by Cowan (1966).

This model is not like the previous models. Cowan's model con-

siders the fact that certain words tend to cluster together in

recall.

2. Description of a Free-Recall Experiment

A list of nonsense syllables or monosyllabic words is pre-

sented to a subject. At the end of the presentation the subject

writes down all the words that he can recall. The order of the

words is then randomized, and the procedure is repeated until the

list is completely learned.

3. The Bush-Hosteller Linear Hodel

In developing their model Bush and Hosteller were influ-

enced by a paper written by Estes (1950). The authors first



described in two papers, (1951) and (1953), the basic structure

of the linear model. Since then they have published many other

articles and books on their model, most of which are listed in

Atkinson, Bower, and Crothers (1965).

3.1 Definitions and Terms.

Let p be the probability of a word being recalled, and q be

the probability of that word not being recalled. These are two

mutually exclusive events. Either the word is recalled, denoted

by E^ , or the word is not recalled, denoted by E2. It is assumed

that whenever either of the two events occurs the probabilities

of recall or non-recall are altered. So, corresponding to each

event there is a mathematical operator T^ (i=l,2) which when ap-

plied to the probabilities, transforms the probabilities to the

probabilities of recall or non-recall on the succeeding trial.

Bush and Hosteller (1951) considered the case where the operation

Op was expressible as a power series in p. They considered the

function Tp = af^+a-p as an approximation to the function Op. Since

Tp was a linear function of p, then matrix operators could be

used.

3.2 The General Model.

Bush and Hosteller (1955) considered that the event E^ had

a matrix operator T. of the general form

u.
'11, i "12,

i

. 21,i "22,

i

, i - 1, 2



Applying the operator T. to the probability vector p » (p,q;.

the vector T p is obtained

T^P

"11, iP " "12. i^

"21. iP "^ "22. i^

The probability of recalling a word on the next trial after event

E. occurs is u, , .p + u, , ,q, whereas the probability of non-

recall is u- .p + u„„ ,q. These new probabilities must sum to

one. So

("11. iP •" "12. i^^ ^ ("21. iP ^ "22. i^^ " ^

4>c;

( "ll.i " "21.i^P *
("12. i -22.

i

+ u_- ,)q = 1 .

The above equation must hold for all values of p and q consistent

with the condition that p and q sum to unity, and so in particu-

lar for p 1 and q «• ,

"ll.i -^ "21, i
" 1

whereas for q 1 and p »

"12, i + "22, i = ^ •

These equations mean the columns of the matrix T, must sum to

unity. Letting a. » \i^^
^

and b^ - \x^^
^

the matrix operator T^

may be written as



1-b^ ^i

1-a

Applying the operator T^ to the probability vector p gives

T,P -

(l-b,)p+a,q

b^p+(l-a^)q

i « 1, 2 .

Let Q.p and Q q denote the first and second element of vector

T.p respectively. Letting a^ = l-aj,-b^, a^ - (l-a^)X^, and using

the fact that p = 1-q the element Q.p may be written as

(3.2.1) Q^p = a^p + (l-o^)X^

Bush and Mosteller (1955) have shown that for Q^p to be between

the limits of zero and one and to represent learning probabili-

ties, then £ o. £1 and <_ X <_ 1 must hold. Note, that Q^p

is the probability of recalling a word on the next trial after

event E, has occurred.
1

On succeeding trials either E. or E_ occurs. The occurrence

of E, means that the operator Q. must be applied to the probabi-

lity Q^p.

Qi(QiP) - "^(QiP) + (l-a^)X^

aj_(a^p + (l-o^)X^) + (l-o^)X^

2 2
a^p + (l-a^)X^

The forms of Q.p and Q.p suggests the general form for any number

n of applications is



Using mathematical induction, the general form can be proven to

be true. Now, when a is less than unity, a tends to zero as n

gets large, so

(3.2.2)
.n

lira Q .
p = A

.

n -><«>

3.3 Assumptions Made for Free-Recall Experiments.

To simplify the estimation problem of the parameters Bush

and Hosteller (1955) made certain assumptions. The first assump-

tion made was that the probability of recalling one word is inde-

pendent of the other words. The second assumption made was that

all words have the same initial probability of recall, Pq. The

third assumption was that all words were equally difficult to

learn and the position on the list was irrelevant. The fourth

assumption made was that the non-recall of a word doesn't change

its probability of being recalled on the next trial. The fifth

assumption made was that a subject could learn a list of words

perfectly.

3.4 What the Assumptions Mean to the Model.

Let the probability that the i^h word is recalled on trial

n be p, . Now given that the ith word is not recalled on the
'^i ,n ^

nth trial the probability of recall on the (n+1) th trial is not

changed, by the fourth assumption. So Q2, which is applied when

E_ occurs, must be the identity operator. This means that (3.2.1)

becomes

(3.4.1) Pi, n+1 " ^2Pi.n " Pi,n

f >



For this equation to be of this form, then a^ must be equal to

one. Using the last assumption and (3.2.2), then X^^ = 1. This

means that

<3.^-2) Pi,n+1 " Vi,n " "l^Ln "^ ^^""l^ '

Since all the words start with the same initial probability

of recall, then any words that have been recalled exactly k times

will have the same probability Pj^ of recall on the next trial.

To find the probability of recalling a word after k recalls, the

operator Q, would be applied k times. The first application

yields

Pi = ^1^0 ' "iPo "^ ^^""l^

The probability after two recalls is

= Oj^Iaj^PQ + (1-a^)] + (1-aj^)

2 ^ /I 2.
= a^PQ + (l-a^

If this procedure is continued k times the result obtained would

be

(3.4.3) pj^ = Q^p - a^pQ + (1-a^)

This general form may be proven to be correct by using mathemati-

cal induction.

The third assumption of all the words being equally difficult

can be satisfied very easily when the words are nonsense syllables.

Both Glaze (1928) and Kruger (1934) have computed meaningf ulness

of nonsense syllables. By picking out syllables that are equally

meaningful the syllables would be approximately equal in difficulty.
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When using monosyllables the difficulty of a word would depend

on each subject's background. There is no criterion that can be

used to rate monosyllables on difficulty. This does not mean the

model cannot be used, but if the model does not fit the data very

well the experimenter should be aware this assumption may have

been incorrect. Also it should be noted that this assumption im-

plies that primacy and recency have no effect.

The fifth assumption means that the subjects are given as

many trials as they need in order to learn the list.

3.5 Estimation of the Parameter Pq.

The initial trial is equivalent to N binomial trials with a

probability p^, of a success, where N is the total number of words

to be recalled. Let x - = 1 if the i^^ word is recalled on the
X , u

initial trial, and x. _ = if it is not. Using Fryer (1966),
1 , u

N

(3.5. ^> Po •- i J, ^i,01=1

would be an unbiased maximum likelihood estimator of pQ with

variance

(3.5.2) a^(p.) - •

°

N

For a quick and easy way to obtain an estimate of pQ the above

estimates can be used.

A better estimate of p„ can be made by using more informa-

tion. Since the non-recall of a word doesn't change its probabil-

ity of being recalled on the trial, the data for each word can be

used to estimate p^. For each word the number of trials preceded



entirely by zero recalls can be obtained from the data. Let Nq

be the total number of word trials which are preceded entirely by

zero recalls. Using Mood and Graybill (1963) the probability of

obtaining a value x of N- can be found from the negative binomial

distribution, and is given by

To maximize the likelihood function fCN^) the logarithm can be

differentiated with respect to p^ , and set equal to zero.

(Mi)L* = log L = log

8p 1-p p
'^o o o

+ (Nq-N) log (1-Pjj) + N log p^

From which the maximum likelihood estimate of p^ is obtained as

(3.5.3) p^ = N/Nq .

This estimate is not unbiased, but Girshick, Hosteller, and

Savage (19A6) have shown that when N is fixed and Nq is varied

the estimator

N-1
N -1
o

is unbiased. For large N, however (3.5.3) can be used. Bush and

Hosteller (1955) showed the asymptotic variance of (3.5.3) to be

(3.5.4)
a (p^) =

jj

This variance is smaller than the variance of (3.5.2) when p is

less than one, because of the extra p term in (3.5.4).
o
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3.6 Estimate of the Parameter a^.

After n trials there will be 2 possible and different se-

quences of recalls and non-recalls of a word. Let q, be the

probability of non-recall of a word in the kth sequence on the

nth trial. In the same way (3.4.1) and (3.4.2) were derived, the

probabilities for recall and non-recall of a word of the kth se-

quence on trial n+1 are given by

^^iPk.n'^lPk.n-'^^-^l^

and Q2Pk,n"Pk.n

Using the fact Q.p, -1-Q.q, , then the above equations can be

rewritten as

Q.q, "aiq,^l^k.n l^k,n

and ^2'lk,n''lk.n •

A word in the kth sequence is recalled with probability 1-q, >
iv & U

and if the word is recalled on trial n it has probability a,q,^ ' l^k,n

of not being recalled on trial n+1. A word in the kth sequence

is not recalled with probability q, , and if the word is not

recalled on trial n it has probability q, of not being recalled

on trial n+1. The mean value of q, ,, by definition is^k,n+l -^

E(qk,n+l ^ " °'l^k.n<l-'lk,n^ + ^k.n ^k.n'

To find the mean value over the entire population of words, de-

noted by V^ n+1' ^^^ ^^^ values q, are summed, each weighted by

its probability of occurence Q, . So
IV y XI
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'2" _

- ^1 J,^k,nQk,n " (^-°'1>
I

^k.n^k.n

(3.6.1) - a^V^^^ + (l-°'l>V2.n

where V^ is the second moment of the q, values about the
2 , n K. , n

origin. Equation (3.6.1) does not give an exact solution, be-

cause of the V^ term. Bush and Hosteller (1955) using several
2 ,n

approximations found that

(3.6.2) T^ - Ed^) =-117- Ind-q^) •

where Y, is the mean total number of non-recalls. Using (3.6.2)

gives

(3.6.3) o^ -

By counting the number of non-recalls actually made in the ex-

periment the quantity T- can be estimated. The value of p^ can

be estimated by using either method described in Section 3.5.

Knowing these estimates the value of o. can be estimated quite

easily by (3 . 6 . 3)

.

By knowing only the estimated values of p and o^ the data

of a free recall experiment can easily be summarized by the Bush

and Hosteller model.

Bush and Hosteller (1955) have given other ways to estimate

a^ for special cases, i.e. when q equals one. It is not
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worthwhile in this paper to consider the methods, because (3.6.3)

can be used for the special cases, and the amount of calculation

to apply the methods is greater than when (3.6.3) is used.

4. The Miller and McGill Stochastic Model.

Miller and McGill (1952) developed a stochastic model that

is closely related to the linear model. Using the same assump-

tions that were used in the linear model other quantities of

interest can be studied by using the Miller and McGill model.

4.1 Definitions and Terms of the Model.

Miller and McGill (1952) classified words according to which

state they were in, where a word which had been recalled exactly

k times on the preceding trials was said to be in state A, . The

probability that a word was in state A, on trial n was denoted by

p(Aj^,n).

4.2 The Difference Equation and Its Solution.

A word can get into state A, on trial n+1 in only two ways.

Either a word is in state A, on trial n and it is not recalled on
k

trial n+1, or the word is in state A, , on trial n and it is re-
k-1

called. So the difference equation to represent this is

(4.2.1) p(Aj^,n+l) » p(Aj^,n)(l-pj^) + ? (\_if^)V]^_i

where p, is the probability that a word will be recalled after k

recalls, and is given by (3.4.3).

To obtain the general solution of (4.2.1), the system of

equations of (4.2.1) is written in matrix form



•f-.-
- " r*

13

(A. 2. 2)

1-p.

1-p.

1-p,

p(AQ,n)

p(A^,n)

p(A2,n)

p(AQ,n+l)"

p(A^,n+l)

p(A2,n+l)

p(A3,n+l)

Let T be the first matrix in (4.2.2), the matrix of transition

probabilities. Let d and d ^^ be the column vectors of the state
*^ n n+i

probabilities on trial n and trial n+1 respectively, also in

(4.2.2). So (4.2.2) may be written as

Td = d ^.n n+1

The state probabilities on trial one are given by Td^ - d^. The

state probabilities on trial two are given by Td^^ = d^, or

Td, = T(Td ) = T^d = d„ .

1 o o 2

Continuing this procedure, it is apparent that the state proba-

bilities on trial n are given by

T^d = d
o n

By Rao (1965) , the semi-matrix T can be written as

(4.2.3) T = S D S'-^

where D is an infinite diagonal matrix with the same elements on

its diagonal as are on the main diagonal of T, and with the re-

maining elements being zero. So T may be written as
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T^ = (SDS"''") (SDS""*") = SD^S"-"-

In general, then

t" = SD^S"^

Since D is a diagonal matrix, D is obtained by taking the nth

power of every diagonal element of D. Rewrite (A. 2. 3) as

TS " SD

The diagonal elements of S are arbitrary, so let S^. 1.

1-p
"^o

P 1-Pi
•^o *^1

?! ^"P2 •
*

*

21
1

^31 ^32

0. . .

0. . .

1.. .

• •

21
1

^31 ^32

0. . .

0. . .

1. . .

• • *

1-p
'^o

1-p^

1-p A • • •

The S.. terms can be solved for term by term. The matrix S turns

out to be equal to

Pl-Po

PqPi

(Pl-Po)(P2-Po^

P0P1P2

P2-P1

PiP1^2

(Pl-P„) (Po-P„) (Po-P„) (Po-Pi ) (P-i-Pi ) Pq-P'1 ''o'^*'2 ^'o''''3 ^o 2 *-!/ VK3 t-i- '3 ''2



Taking the inverse of S gives S which turns out to be

15

Po-Pl

P Pt

(Po-P2)(Pi-P2)

P0P1P2

1

Pi-P1 ""l

P1P2

(PQ-P3) (P1-P3) (P2-P3) (P1-P3) (P2"P3) P2"P3

0. . .

0. . .

0. . .

1...

n
So the first column of T turns out to be

(1-p,)
n

(I-P^)" (1-Pi)"

^Pl-Po^
"*"

Po-Pl

PoPl

(1-p^) (1-pl)
n

(I-P2)
n

(Pl-Po)(P2-Po^ ^ (Po-Pl)(P2-Pi)
"*"

<Po-P2^^Pl-P2^

The reason why only the first column of T was found is because

d is just the column vector (1,0,0, ...)• So, T d involves only

the first column of T and thus the general solution of (A. 2.1)

l8

(4.2.3) p(A^,n) = (1-Pj,)
n

for k -
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(1 )^
p(Aj^.n) = P^Pi-'-Pk-l J^ ic"^^ ,

k >

n (p. -p.)
j-o J

Using the results of the Bush and Hosteller linear model the

parameters p and a, can be estimated. The set of p, ' s can be
*^

o 1 «^

found by (3.4.3). Substituting for the Pj^'s in (4.2.3) the fol-

lowing is obtained.

p(A^,n) = (I-P^)"

(4.2.4)
k-1 (l-(l-p^)ah(l-a^ ")

P(A,.n) - (1-p^)" n -^, i—
1 = ^~°'i

4.3 Expected Number of Times a Word is Recalled.

Let E(k,n) be the expected number of times a word is re-

called up to and including trial n. By definition E(k,n) is

n

(4.3.1) E(k,n) =
I kp(A ,n) .

k=0
^

Let r
,

1 be the expected number of words recalled on trial n+1.
n+1 '^

Bydefinitionr,-is .'
•' n+1

(4.3.2) r^^^ = E(k,n+1) - E(k,n) .

n+1 n
'

or T^^^ = I kp(A^,n+l) - [ kp(Aj^,n) .

k=0 k=0

Using (4.2.2) the first summation is rewritten so that

n n+1 n

'^n+l
" ^ ^P(Aj^,n) (1-pj^) + I kp(\_i.n)Pk_i " I kp(Aj^,n) .

k=0 k=l k»0

n n n
*** 'n+1

" ^ kp(Aj^,n) - I kp(Aj^,n)pj^ + I (k+l)p(A ,n)p
k=0 k»0 k"0

n
- I kp(A, ,n)

k=0
^



-r--^
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n n

^°'
'^n+l

" ^ (k+l)p(Aj^,n)pj^ - I kp(Aj^,n)
k=0 k<»0

or rn+1 I P;jp(Aj^,n)
k;=0

The Bush and Hosteller model is used more to summarize the

data, and not for prediction. Miller and McGill's model can be

used for prediction. By comparing the predictions made and the

data it can be seen how well the model works.

5. The Waugh and Smith Stochastic Model

Waugh and Smith's (1962) model uses a Markovian process with

an absorbing state. For a general discussion of Markovian models

in psychology see Miller (1952), Kao (1953), and Goodman (1953).

5.1 Definitions and Terms.

Waugh and Smith (1962) defined three processes that were

named labeling, selecting, and fixing. The process of labeling

was equivalent to a word acquiring a mnemonic tag. For a word

to be recalled it must be labeled, but if a word is labeled it

doesn't mean the word will be recalled. Labeling occurs with

probability X on any trial, and is irreversible. In other words,

once a word is labeled it stays labeled. The second process of

selecting is equivalent to rehearsing a word. Selecting a word

is assumed to occur with probability a on each trial. For a

word to be recalled for the first time on a given trial the word

must have been labeled on that trial or on some previous trial,

and it must be selected on that trial. The third process, fixing

a word, is assumed to occur with probability (j) on any trial in
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which a word is recalled. Once a word is fixed it is recalled

on every subsequent trial. If it is not fixed the word is for-

gotten, and the word must be selected again with probability a.

5.2 States of the Waugh and Smith Model.

A word may be in any one of five states after a given trial.

In state one the word hasn't been labeled yet. A word in state

two has been labeled, but not selected yet. For state three the

word has been labeled and selected, but not as yet fixed. In

state three the word was recalled, because it had been labeled

and selected. In state four the word has been recalled but not

fixed on some previous trial, and it was not selected on the given

trial. A word in state five has been fixed. State five is an

absorbing state. The trials are continued until perfect reten-

tion is obtained.

Let P i be the probability of a word being in state j on

trial n. By considering how a word can get to one state from

other states the following equations may be written.

n,l

n,2

n,3

n,4

n,5

(l-X)P
n-1,1

(^-°>^n-1.2-^^(^-^>Vl,l

^(^-*>(Vl.2-^^n-1.3^Vl.4>-^^^<^-*>Vl.l

(^-''><Vl.3-^Vl,4>

^n-l,5-^''*^Vl,2+Vl,3^Vl,4>^^'='*Vl.l

The system of equations may be written in matrix notation.
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(1-X)

A(l-a) 1-0

aA(l-<^) a(l-(f.) a(l-<()) a(l-(j))

1-a 1-0

0(J)X o<t) o<J) o<{) 1

^n-1,1 [^,il

^n-1,2 ^.2

^n-1,3
«

^.3

^n-1,4 ^.4

.^n-1,5. k.sj

Let, as before in Section (4.2), T be the transpose of the matrix

of transition probabilities, and d denote the column vector of
'^ n

state probabilities on trial n. Using the same method as in (A. 2)

then

T^'d - d
o n

The initial vector d' is the vector (1,0,0,0,0), because all of

the words start in state one. Therefore, only the first column

of the matrix T needs to be found to find the elements of the

vector d . If T is multiplied by itself a few times a pattern

soon develops. The elements of the first column of T can be

written by comparing terms. Thus, the elements of d turn out to
n

be

P„ , - (1-X)'n,l

'=•^•1) ^n.3 "TI^ < (l-o»)"- <1-X)» )

^,4 - W^ a-°*)"^ a-o)-"^' - llUViWy'' <^-^>"

n,5 l-a-'*> - ^^( (l-0(j)) - (1-X) )X-o4)
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- Once a word has been recalled for the first time it can

never return to state one or state two. The probability R. , of

a word being in state k after j trials from the first recall

trial is given by the matrix equation

(5.2.2)

o(l-({)) a(l-(j))

1-0 1-0

acj) a({i 1

R

R

j-1,3

j-1,4

R
J L 3-1.5

\.^]
•»

"3,4

h.5j

Let Q be the first matrix in (5.2.2) the transpose of the

matrix of transition probabilities. Let S. and S,,, be the

column vectors of the state probabilities on trial j and j+1

respectively, also in (5.2.2). Then using the same procedure as

in Section (4.2)

Q^S = S. .

o J

The S is equal to (l-<fi, 0, ((>)', because a proportion
(f)

of the

words are fixed on the trial on which they are first recalled,

while a proportion 1-(J) are selected but not fixed. Those se-

lected but not fixed go into state three. If Q is multiplied by

itself a few times a pattern soon develops. Using this pattern

the elements of Q-* can be easily found.

*a(l-4.)(l-0(j))J"-'- aa-<^)a-o^)^'-^

(l-a)(l-a(j))

l-(l-a({.)^

J-1 (l-a)(l-a({.)

l-(l-a<l.)^

J-1

o" "1-4.'

h.3i
as

"3.4

1. . * . L^j.J

Therefore, the solution for R , is
J > •^
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(5.2.3) R, A
- (l-oXl-^Xl-a*)^'-"-

R c - 1 - (I-*) (1-0*)^
J »

-* • •

The probability R. that a word will be recalled after j

trials from the first recall is / ^

Using (5.2.3), then R is

(5.2.4) R - 1 - (l-a)(l-(j))(l-a(|.)^"-'- .

5.3 Estimation of the Parameters.

Let the probability of first recall on trial n be F^. This

probability is found by considering Pr(lst recall by nth trial)

» Prdst recall on n*'*trial or 1st recall by the (n-l)th trial).

This statement may be rewritten as Pr(lst recall by nth trial) -

Pr(lst recall on trial n) + Pr(lst recall by the (n-l)th trial),

or Prdst recall on trial n) » Pr(lst recall by nth trial) -

Prdst recall by the (n-l)th trial) - Pr(not yet recalled by the

(n-l)th trial) - Pr(not yet recalled by nth trial). Thus,

F =P ^ r, + ? ,,-P --P^^or using (5.2.1) F is equal
n n-1,2 n-1,1 n,2 n,l n

to

(5.3.1) F " :rT ( <i-^)" - <i-«^)" ) •n a-

A

The F can be estimated from the data for various values of n.
n

Let x^ if the ith word is not recalled on trial n, or if it
i,n

has been recalled before the given trial. Let x, - 1 if the
i ,n
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first recall of the word occurs on trial n. Then F^ would be

estimated by

N

^n " N ,^/i,n *

i""l

The parameters o and X are estimated by finding the minimum

chi-square estimates of a and X that best fit the data of (5.3.1),

Let R be the probability of recall on trial n. When a word
n "^

is recalled on a trial it must be in either state three or state

five. Therefore, R is given by

R = P c + P
-Jn n ,5 n , 3

If (5.2.1) is used, then R can be written as

(5.3.2) R = 1 - (1-0(1.)'' - 4^^ ( a-o^)"" - (1-X)" ) .

n A-o 9

The quantity R can be estimated from the data by
n

1
N

RI = - y y

where y. = 1 if the ith word is recalled on trial n, and y. „ " (

^ i,n 1 ,n

if it is not recalled. Using the estimated values of a, X, and R

the least-squares estimate of (j) is found. This is the estimate

of (j) that is used in the model.

6. The Cowan Stochastic Model

The Cowan model is unlike the previous models discussed, be-

cause this model considers the effect of associative connections
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between words in recalling them. Bousfield (1953) showed that

there is a tendency for some words to cluster together when the

list is recalled. When a certain type of word is recalled the

remaining words that have a high association value to the word

recalled are likely to have a higher probability of recall than

words of lower association strength. The entire list is given a

number of times, each time in a different order. After a number

of presentations the subject is asked to recall as many words as

he can. The Cowan model predicts the kinds of words that will

appear in a given recall position.
,

6.1 Definitions and Terms.

Cowan (1966) considers a list of stimulus words that could

be divided into two groups. One group is denoted as Category C^^

and the other as Category C„. An example would be if C^ consisted

of tree names, and C- consisted of words that were selected ran-

domly. The strength of C, or C2 is defined in terms of the asso-

ciative connections which exist between its members.

There are four sets of associative interconnections. There

are two within-category associations, (C^-*-C^) and (C2-*C2) • There

are also the between-category associations,
^^i'*'^2^

^^^ (C2-»'Cj^) .

If the first word recalled is a C2 word, then the probability of

recalling a C^ word next would be

nic^-^c^)

^^^l'^2^ - M(C,-»-C,) + M(C,-C,)
'2 1' '2 "2
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where M(») is a measure of association of (•)• The probabilities

P(C2iC ), P(C |C ) and P(C2|C2) would be defined similarly.

6.2 Estimation of Association Strengths.

A method suggested by Pollio (1963) to measure the within-

category and the between-category association strengths may be

used. The method used is to set up matrices of C^xC^, C2XC2, and

C,xC„. In each cell the association strength between the corre-

sponding words is entered. Let c^ and c^ be the total number of

words in C^ and C- respectively. Let C^(i) be the ith word in

C. . The association strengths for selected word lists can be

found in Palemo and Jenkins (1964) .

C^(2)

C,(c,)

C^(l) C^(2) C3_(c,)

IZ-a.

The sum of the entries of the C^xC^, C2XC2 , and C^xC2 matrices

are symbolized by a., a,, and 8 respectively. The mean associa-

tion value between any C, word occurring first in recall and the

remaining C, words is given by a /c., where c. represents the

total number of words in the C^ category. Similarly the mean

associative value estimate of a C^ word leading to another C2

would be a^/cj. For a C^ word leading to a Cj word the estimate

would be S/c^, and for a C^ word leading to a C^^ would be ^Ic^^,
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In this model the words within a category are assumed to be in-

distinguishable from each other. Thus, the association between

any pair in a category is the same as any other pair and the mean

association strength is used to estimate this value.

The probability of a C word on first recall on a given

trial followed by another C^^ word would be

(6.2.1) P(Cj^lC^) = M(C^-*C^)+M(C^-»-C2) " a^/c^+g/c^ " a^+g *

The probabilities P(Cj^|C2), P(C2|C2), and PCC^Ic^^) would be de-

fined similarly.

6.3 The Non-Markovian Process of the Cowan Model.

The probabilities of (6.2.1) change on the next recall of

the same trial, because once a word has been recalled it will

not be a possible response for the next word recalled. Thus, the

within-category mean association value and the between-category

mean association value are reduced. Since it was assumed that

all words are indistinguishable in a category, the association

strength between each pair is equal in value to the association

strength between every other pair.

The mean association strength between each pair in C^ is

given by

(6.3.1) a^/c^(c^-l) .

So, the new within-category mean association value encountered by

the second C^ word would be

Cj^(c^-l)
or

c^-c^
(c^-2)



26

Each time another word from C^ is recalled the mean within-

association value is reduced by the amount given by (6.3.1).

When a total of r, words from C^^ have been recalled the mean

association value encountered by the next C^^ word is given by

"l
(6.3.2) M(C^-»-Cj^) - — U^-r^-l) .

c^-c^

Similarly, when a total of x^ words from C^ have been recalled

the mean within-association value left for the next C^ word is

given by

(6.3.3) M(C2-*-C2) " — (^2^2-1) .

'^2-'^2

The mean between-association strength for a C^^ word and a

Cj word would be given by

(6.3.4) c^C2

Each time a C^ word is recalled the mean association strength is

reduced by the amount given in (6.3.4). So, after r2 words are

recalled from C„ the remaining mean association strength left for

the next C^ word is given by

(6.3.5) M(C^-C2) - -^ (c2-r2) •

Similarly for r^ words recalled from C^^ the mean association

strength of a €„ leading to a C word would be equal to
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(6.3.6) M(C2-^Cj^) —^ (c,-r,) .

C3_C2 1 1

Thus, using the above equations for M(.) and the equations

for P(. ) , then

. P(C, Ic,) -
a^C2(Cj^-rj^-l)

ll^l^ " aj^C2(c^-r^-l) + B(Cj^-l)(c2-r2)

e(c^-l) (c2-r2)
b. P(C2|C^) - a^C2(c3^-r3^-l)+B(c2-l)(c2-r2)

(6.3.7)

c. P(C2|C2)
a2C^(c2-r2-l)

a2C^(c2-r2-l)+6(c2-l) (Cj^-rj^)

e(c2-i) (ci-r^)
d. P(C^|C2) - a2C^(c2-r2-l)+6(c2-l)(c^-r^)

The process can be in two states, C^^ or C^. The transitional

probabilities are functions of the number of each type of word

recalled, and so this is a Non-Markovian process.

6.4 The Transition Matrix.

By redefining the states to represent the type of word and

the number of words of each type recalled, by Feller (1957), the

process can be treated as a Markov chain. Let C^(m,n) be the

state in which a C. word has just been given with m C^^ words and

n C» words previously recalled.

The probabilities for the transition matrix are found from

(6.3.7). For example, consider the probability of going from

state C^(i,n) to state C^(i+l,n). Using (6.3. 7)a. with r^ - i

the P(C^(i,n) |Cj^(i+l,n)) is calculated and substituted into the

transition matrix.
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The transition matrix P can be arranged into sets, such that

when one set is reached the process cannot enter the states

located below it, and after a set has been entered it is immed-

iately left. All sets then are transient except the set repre-

senting complete recall, and those states would be absorbing. An

example of how matrix P would be arranged is given in Table 1.

These sets contain all the possible states involved in recall of

lengths denoted by the set number. The states are numbered to

conserve space and divided into sets labeled I, II, III, etc.

Matrices of the form in Table 1 are submatrices of the matrix P.

Let Q be any submatrix formed this way. The sets in matrix Q are

transient. Kemeny and Snell (1960) have proved a matrix H which

gives the probabilities that a process will ever go from any

transient state to any other transient state is given by

,-1
H = (N-I) N

dg

-1
where N » (I-Q) , and N is a diagonal matrix whose elements are

the same as the diagonal elements of N. The matrix Q has only

non-zero elements below the diagonal. So the matrix N would have

ones on the diagonal. Thus N~ would be the identity matrix, so* dg

(6.4.1) H = (I-Q)"-"- - I.

For example, the probability of starting in state C^(0,0)

and ending in state C»(3,2) in the sixth recall position can be^

found in the matrix H. The matrix Q would include the sets I

through VI.
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TABLE 1

TRANSITION MATRIX P FOR THE FIRST FOUR WORDS RECALLED

(X's signify nonzero entries)

state No.

S tat es
State
No.

IV Ill II I

12345678 12 3 4 5 6 12 3 4 1 2

IV

^1(3,0)
1

^2(3,0)
2

^1(2,1)
3

^2(2,1)
4

^1(1.2)
5

^2(1,2)
6 •

-

^1(0,3)
7

^2(0,3)
8

III

/

^1(2,0)
1 X X

^2(2,0)
2 X X

,

^^1(1,1)
3 X X -

C . 4 X X
''2(1,1)

^1(0,2)
5 X X

C 6 X X
''2(0,2)

II

r 1 X X
^^1(1,0)
C 2 X X
''2(1,0)
c 3 X X
''1(0,1)
c 4 X X
''2(0,1)

I

C , 1 X X
''1(0,0)
c , 2 X X
'^2(0.0)



30

6.5 Adjustments Made for the Model.

When the set of data and the model were compared it was

found necessary to make some adjustments. It was found by

Cowan that a better fit was obtained by using c, and c^^ as the

mean number of C^ and C„ words recalled respectively. Cowan

thought the reason for having to redefine c^ and c^ was because

the subject received, organized, and recalled completely only a

limited number of items on the list. Finally, o.^ was made free

and a family of curves were generated. The value of a^ was picked

which gave the best fit to the data. Gofer and Reicher (1964),

and Puff (1964) demonstrated that when words in a category appear

together in the list presented, they will tend to appear together

in recall. Thus, the occurrence of items together in the list

might increase the association between them, and this would in-

crease the value of a.

7. Summary

Using (3.5.3) and (3.6.3) the values of p and a^ can be

estimated. Knowing only these two values the data of a free re-

call experiment can be summarized by Bush and Mosteller's model.

Knowing the estimates of a, and p the probability p, of recalling

a word after k recalls can be found by using (3.4.3) of the linear

model.

Using Miller and McGill's model and the values of p and a^

estimated by the Bush and Mosteller model an experimenter can
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find the probability of a word being recalled exactly k times on

trial n by using (4.2.4). Using Miller and McGill's model the

expected number of times a word is recalled up to and including

trial n can be found by using (4.3.1). Another quantity of

interest is the expected number of words recalled on trial n+1,

which can be found by using (4.3.2).

If the process of labeling, selecting, and fixing of a word

are considered, the Waugh and Smith model may be used. With

their model the probability R. that a word will be recalled after

j trials from the first recall can be found by using (5.2.4).

By estimating the probability F of first recall on the nth trial

the values of a and X can be found by using the best minimum chi-

square fit to (5.3.1). By estimating the probability R of re-

calling a word on trial n from the data and using the estimates

of and X, the least-squares estimate of (j> is found using

(5.3.2). If the values of a, X, and (}> are already known, say

from a previous and similar experiment, the probability of first

recall on trial n and the probability of recall on trial n can be

found by (5.3.1) and (5.3.2) respectively.

Cowan's model is used when an experimenter wishes to con-

sider the effect of associations between words. The model is

limited to the case where the words in a list can be put into two

categories. Once a measure of association is found between cate-

gories or within categories various probabilities can be found.

Using (6.3.7) the probability of a word from a category following
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a word from the same category or the other category can be found

given that r. words have been recalled from C^ and r^ words from

C^. A transition matrix can be formed by letting the states

represent the type of word and the number of words of each type

recalled. Using (6.4.1) the probability of starting in a state

and ending in a certain state can be found.

By comparing the predictions of the models and the data ob-

tain the experimenter can determine which model best fits his

experiment. With the parameter values known the data can be

summarized. Individual subjects can be compared easily, and the

effects of changing the number of words in the list or speed of

presentation of words can be measured readily in terms of the

parameters.
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ABSTRACT

The purpose of this paper is to show four stochastic models

used to represent the data of a free recall experiment. The

free-recall experiment for the first three models considered in

this paper is one in which a subject is given as many trials as

necessary to completely learn a list of words. In the last model

considered the subject may only partially learn the list of words.

The first model considered is the Bush and Mosteller linear

model. Changes in the probabilities of recall or non-recall are

described with the aid of linear operators. By knowing only two

parameters the data of a free-recall experiment can be summarized.

The next model considered is the Miller and McGill model.

Their model is closely related to Bush and Hosteller's model.

Using the estimates of Bush and Hosteller's model in Miller and

McGill's model the probability of recalling a word exactly k times

in n trials, and the expected number of times a word is recalled

in n trials can be found.

The third model discussed is Waugh and Smith's stochastic

model. The model describes a Markov process with a realizable

absorbing state, allowing complete learning on some finite trial

as well as imperfect retention prior to this trial.

The last model considered is the Cowan model. This model

considers the effect of associations between words that will

appear in a given recall position. The recall of words is re-

garded as a Markov chain where the category of the recalled word



is determined by the kind of word preceding it. Three parameters

are used which are based on associative measures of between and

within categories of stimulus words.


