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Abstract 

 Previous research in low-income countries reveals that genetically modified (GM) maize 

has the potential to increase yield and reduce labor use; however, other issues, especially 

regarding Roundup Ready (RR) maize, remain mostly unexplored. This research examines the 

impact of GM maize on yield, cost, and risk among 184 smallholders during the 2009-10 maize 

production season in two regions in KwaZulu-Natal, South Africa; Hlabisa and Simdlangetsha. 

Two hybrid maize varieties; Pannar and Carnia, and three GM varieties; Bt, RR, and BR (stacked 

with Bt and RR) are produced. In both regions, producers of RR and BR maize pay 47% more 

per kilogram of seed and use 44% less labor per hectare compared to other varieties. Due to low 

labor costs, net returns from RR and BR varieties are 25% and 40% higher than other varieties in 

Hlabisa and Simdlangetsha, respectively. 

Stochastic dominance analysis is used to compare net returns of all five varieties in both 

regions. RR maize is second-degree stochastic dominant to all other varieties in Simdlangetsha, 

while no variety is stochastically dominant in Hlabisa. Stochastic efficiency with respect to a 

function (SERF) analysis indicates that RR maize is the preferred variety for producers over the 

entire range of risk preferences in both regions. While average maize gross returns are $713 per 

hectare, risk premiums between $18 and $221 must be paid to RR maize producers, depending 

on region and farmer risk preference, to persuade them to switch to the second-most preferred 

variety. 

 Econometric analysis indicates significant yield gains of at least 8% from RR maize, 

although the yield gain varies greatly when input endogeneity is taken into account. Elasticities 

of output with respect to labor are 0.41 and 0.82 for RR and non-RR maize respectively, and 

0.61 and 0.33 with respect to land. A cost function analysis indicates that RR maize has 19% 

lower costs per maize plot, which increases to at least a 35% advantage when controlling for 

selectivity bias. Nonparametric kernel density estimation also reveals consistently lower total and 

average costs of RR maize at most levels of output, suggesting technological benefits to 

smallholder farmers from RR maize not available through conventionally-bred hybrids. 
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Chapter 1 - Introduction 

 The State of Agricultural Production in Sub-Saharan Africa 

 Since 1960 growth in agricultural production has increased at a rate of 2-3 percent per 

year in most low-income countries, but growth in Sub-Saharan Africa has been less than 1 

percent annually. Since 1980, growth in agricultural production has slowed down to only 0.4 

percent annually (Evenson 2003). In the last several decades, population growth in Sub-Saharan 

Africa has outpaced agricultural production, causing per capita food production to fall by about 

20 percent. Population growth has also outpaced agricultural expansion into new land, creating a 

39 percent drop in arable land per capita (Tumusiime, et al. 2010). Sub-Saharan Africa’s 

population will continue to increase at a rate much higher than the rest of the world, and their 

food requirements are expected to more than double by 2050. In the region of the world with the 

highest rate of food insecurity, where more than 30 percent of the population is malnourished, 

factors such as environmental degradation, poor infrastructure, and limited access to inputs will 

increasingly put downward pressure on agricultural production. Meanwhile, climate change is 

expected to reduce crop yields in many Sub-Saharan African countries by more than 20% by 

2050 (Lobell and Burke 2010). Needless to say, investing in technology to boost agricultural 

productivity should be a priority in the strategy for reducing hunger and poverty in Sub-Saharan 

Africa. 

The objective of this research is to examine if investment in genetically modified (GM) 

maize should be part of a strategy to increase agricultural productivity in Sub-Saharan Africa. Of 

particular interest are any benefits that GM technology offers smallholders. Chapter 1 introduces 

the topic of maize production in Sub-Saharan Africa, constraints to increasing productivity, and 

the potential of GM maize to address these constraints. Chapter 2 provides an overview of 

current research on GM crops and their impact on smallholders in low-income countries, 

followed by an overview of data used in this research in Chapter 3. Building on the previous 

research and data overview, the subsequent chapters test a set of hypotheses. Chapter 4 test the 

first hypothesis, that GM maize has higher output than non-GM maize, using a production 

function approach. The second hypothesis that GM maize reduces risk is tested in Chapter 5, 

using stochastic dominance and stochastic efficiency with respect to a function. Chapter 6 test 
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the third and final hypothesis, that GM maize has lower costs, using both an econometric cost 

function approach and a nonparametric regression.  

 Maize Production 

 Sub-Saharan Africa 

 Maize, Africa’s most prominent grain, covered 27% of cereal area and represented 34% 

of cereal production from 2005 to 2008. In Sub-Saharan Africa, 77% of maize is consumed 

directly by humans, compared to only 3% in high income countries (Smale, Byerlee and Jayne 

2011). Maize is a vital source of nourishment, as it represents 22% of total daily caloric intake in 

Sub-Saharan Africa, and 31% in South Africa (Tumusiime, et al. 2010). 

 Total maize production in Sub-Saharan Africa has increased almost 4-fold since 1962, 

but most of this increase has come from extending the area under cultivation rather than 

increasing yield (Evenson 2003). Average maize yields in Sub-Saharan Africa, excluding South 

Africa, have stagnated around 1.5 tonnes per hectare, significantly below the world average of 5 

tonnes per hectare (FAOSTAT 2011). Net maize imports average less than 5% of total maize 

consumption, but this number is expected to continue to increase as Africa’s population 

continues to grow, especially in urban areas (Smale, Byerlee and Jayne 2011).  

 Low maize yields in Sub-Saharan Africa can be explained by multiple factors including 

low adoption rates of modern varieties, low use of external inputs like fertilizer and pesticides, 

and poor soil management. Another explanation lies in a unique characteristic of maize. Unlike 

rice and wheat, maize demonstrates “hybrid vigor” or significant yield advantages when it cross-

pollinates. Hybrid vigor is quickly lost if farmers reuse seed. Therefore, smallholder maize 

farmers are reliant on a seed industry which is only sustained through strong demand for seed 

(Smale and Jayne 2003). 

 South Africa 

 In contrast to the rest of Sub-Saharan Africa, maize yields in South Africa increased from 

around 1.5 tonnes per hectare in 1962 to well over 4 tonnes per hectare
1
 in the last decade 

(Directorate Agricultural Information Services 2011). Between 2005 and 2009, South Africa 

                                                 

1
 This yield is equal to 24 to 64 bushels per acre respectively at 56 pounds of maize per bushel. 
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produced 22.5% of total maize in Sub-Saharan Africa, while only using 10% of total land in 

maize production (FAOSTAT 2011). High maize yields have allowed South Africa to remain the 

primary maize exporting country in Sub-Saharan Africa, despite the fact that land cultivated into 

maize has actually decreased significantly in the last 15 years. In 2011, South Africa exported 

2,070 million tons of maize, or 17% of their total crop, mostly to other Southern African 

countries (Directorate Agricultural Information Services 2011). 

 The high yields of maize and other crops in South Africa can be attributed in part to its 

emphasis in agricultural research. Although South Africa holds only 8% of arable land available 

across Sub-Saharan Africa, its public sector invested $137 million in 2000, representing 27% of 

total agricultural funding to public research while hiring 8% of total agricultural research staff in 

Sub-Saharan Africa (Beintema and Stads 2006, FAOSTAT 2011). Research in maize is a priority 

in South Africa, since maize is the most important cereal, covering 19% of arable land and 

representing 44% of the total value of cereals (Department of Agriculture, Forestry and Fisheries 

2011). 

 In 1999, South Africa became the first nation in Africa to approve genetically modified 

(GM) maize, when Monsanto introduced insect resistant (IR) yellow maize. Since then, many 

insect resistant and herbicide tolerant (HT) varieties of maize have been developed, tested, and 

approved.
2
 Adoption has been rapid as GM maize in South Africa covered 1.9 million hectares, 

representing 77% of total maize area in 2010. Of the GM maize, 46% of area was planted to Bt 

maize, followed by 41% to stacked maize (both Bt and RR) and 13% to Roundup Ready maize 

(James 2010). Economic benefits from all GM crops (maize and cotton) in South Africa were 

estimated at US$142 million in 2009 (Brookes and Barfoot 2011) although most benefits went to 

large-scale farmers, who own 87% of the land and produce over 90% of the maize crop (Gouse, 

Piesse, et al. 2009). In 2001, Bt white maize became the first GM crop released as a staple food 

to smallholders, followed by RR white maize in 2004. Currently, adoption of all types of GM 

maize has been slower among smallholders (Gouse, Piesse, et al. 2009). 

                                                 

2
 Since all maize varieties that are insect resistant are Bt and all herbicide tolerant varieties are Roundup Ready in 

this study, they will be referred to as Bt and RR respectively. 
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 Biotic and Abiotic Stress and its Effect on Maize Yield 

 Plant stress, both biotic and abiotic, can significantly reduce yield. Biotic factors include 

insects, weeds, and disease, while abiotic factors consist of temperature, rainfall, sunlight, and 

wind. Different management strategies allow farmers to mitigate stress in various ways. This 

includes crop rotations, leaving land fallow, using abating inputs such as pesticide or irrigation, 

or the use of seed with built in protection against biotic or abiotic stresses.  

 Biotic Stress 

 Insect pests pose a direct threat to maize yield, especially in tropical areas where pest 

pressure is high (Qaim and Zilberman 2003). The conventional method to control insects is 

through the use of insecticides. Insecticide are typically expensive, must be applied at the 

optimal time and numerous times, may cause environmental damage by polluting water bodies, 

kill non-target insects, and jeopardize farmer health. Another method to control pests is through 

the use of crop rotations, but this is only effective with area-wide farmer cooperation, and does 

not eliminate, only reduces the threat of insect damage. Insect-resistant varieties of GM maize, 

although more expensive, produce a natural insecticide which eliminates the need for 

insecticides in most cases, require little management, and kill only targeted insects.  

 The conventional method to control weeds during plant growth is tillage, whether it is 

tractor-powered cultivators, oxen, or hand hoes. Cultivation using tractors with cultivators is 

costly and does not provide complete control of weeds, and hand hoeing is very labor intensive. 

Crop rotations, crop planting patterns, and high leaf area coverage are effective ways to manage 

weed growth, unless weed pressure is high. Pre-emergent herbicides are effective in controlling 

weeds early in the growing season, but they may only be sprayed prior to the emergence of the 

maize plant. Most post-emergent herbicides are used to control broadleaf weeds, but have little 

control over grasses – only a few post-emergent herbicides kill both grasses and broadleafs 

without killing the maize plant. These maize plants have been genetically modified to be 

herbicide tolerant (HT); therefore, the seed is typically more costly. However, HT maize usually 

reduces the overall cost of weed control and often result in more complete weed control than 

other methods.  

 Most diseases common to maize are funguses that attack the leaves, stock, or ear, taking 

nutrients from the plant and reducing yield. Fungicides can control fungal growth, but they are 
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expensive, require precise timing of application, and may not always be effective. Crop rotation 

and crop removal limit fungal diseases, but only to an extent. One of the root causes of fungicide 

damage to maize is due to insect damage. Therefore, proper control of insects to limit damage to 

the maize plant is the most effective way to control fungal infections, especially fumonisins, a 

type of toxic fungus which poses a threat to the health of both animals and humans (Pray, et al. 

2009).  

 Abiotic Stress 

  Abiotic stress is caused primarily by fluctuations in temperature, rainfall, salinity, 

sunlight, and wind. While these stresses are already challenges faced by many farmers in Sub-

Saharan Africa, it is projected that climate change will lead to even higher temperatures and 

lower rainfall. Since maize is highly reliant on water, it will be the most impacted crop in 

Southern Africa. By 2030, yields are expected to decline by at least 10% and as much as 30% 

(Lobell, et al. 2008). Weather related risk is usually mitigated by irrigation, but many farmers in 

Sub-Saharan Africa either find irrigation to be cost-prohibitive or lack the necessary groundwater 

resources.  

 Maize can be bred to be more tolerant of abiotic stress. Traditional plant breeding selects 

for maize plants that survive in stressful conditions, leading to more drought-tolerant varieties. 

GM technology has led to the discovery of certain genes which control certain operations in the 

plant, allowing it to perform even under drought or heat stress (Fukuda-Parr 2007). 

 GM Maize Applications to Address Yield Stress 

 Genetically modified (GM) crops differ from conventional and hybrid varieties, only in 

the method used to develop a new variety. Conventional breeding requires a sexual cross 

between two varieties, whereas genetic modification allows for the identification of specific 

genes in one organism to be transferred directly to another. This allows for a more precise and 

efficient breeding process, expanding the possibilities of developing varieties with certain 

characteristics, and reducing the years it takes to introduce a new variety (Fukuda-Parr 2007). 

 Herbicide-Resistant Maize 

The herbicide Roundup
®
, a “kill-all” herbicide with the generic name of glyphosate, was 

developed by Monsanto in 1976. In the early 1980s, scientists noticed that certain bacteria 
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among waste outside the manufacturing plants were immune to glyphosate. Monsanto scientists 

speculated that genes from these bacteria could be transferred to crops, giving them resistance to 

glyphosate as well. The project was successful, and Roundup Ready
®

 corn, cotton, and soybeans 

were commercially released in 1996, opening up a whole new market of seed, and extending 

Monsanto’s control in the glyphosate market another 20 years (Glover 2010). Today, Roundup 

Ready
®

 (RR) crops are the most prominent genetically engineered crop in the world (James 

2010).
3
 

RR maize has many benefits; herbicide-resistance allows farmers to spray entire fields 

without causing damage to the maize plant. Although RR maize seed is more expensive, 

glyphosate is typically a cheaper herbicide, results in high weed control, and is less toxic than 

other herbicides. RR maize also allows for conservation farming practices such as no-till, which 

reduce erosion, minimize nutrient runoff, and increase soil carbon content (Hurley, Mitchell and 

Frisvold 2009). Concerns that weeds sprayed with glyphosate will develop resistance are well-

founded, but weeds develop resistance to every herbicide given enough time. To extend the life 

of glyphosate as long as possible, farmers should rotate the use of herbicides. Additional 

herbicides have been developed to make this possible. 

 Insect-Resistance Maize 

Insect resistance maize called Yieldgard
®
 was first introduced in the United States in 

1996 and to South Africa in 1998. It is usually called “Bt” since it originates from a naturally 

occurring bacterium Bacillus thuringiensis.
4
 The protein in this bacterium is toxic to certain 

insect species that feed on maize plants. Upon ingestion of the maize plant, the Bt protein 

interacts with proteases in the midgut of the insect, killing the insect by disrupting the midgut 

membrane. Bt has been used as an organic insecticide for over 60 years, but it was in the early 

1990s when genes from the bacteria which create the Bt proteins, Cry proteins, were transferred 

to maize plants using genetic engineering techniques (Al-Deeb, et al. 2003). One advantage of Bt 

maize is that it targets only the lepidopteran insects which feed on maize plant matter, including 

                                                 

3
 Roundup

®
 herbicide, synonymous with glyphosate, and Roundup Ready

®
 seed are trademarks of Monsanto 

Technology, LLC. Throughout the entirety of the thesis they are referred to as “Roundup” and “Roundup Ready” or 

“RR” respectively. 

4
 Yieldgard

®
 seed is a trademark of Monsanto Technology, LLC., referred to as “Bt” throughout the thesis. 
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the corn borer, stem borer, stock borer and rootworms. Concern has been expressed that Bt maize 

could harm non-target organisms, especially Monarch butterflies, earthworms and micro-

organisms, but a review of numerous studies shows “no indication of direct effects of Bt plants 

on natural enemies” (Romeis, Meissle and Bigler 2006). 

Bt maize reduces reliance on conventional insecticides, which decreases health risks to 

farm workers through less exposure to insecticides. It also reduces insecticide drift which can kill 

non-target organisms and contaminate water sources (Qaim and de Janvry 2005). Since the 

insecticide is in the seed, much of the uncertainty in timing of pesticide application is removed, 

reducing the need to scout fields as frequently to check for insect damage (Kruger, Van 

Rensburg and Van den Berg 2009). Bt maize is an especially suitable technology in South 

Africa, where high stem borer pressure is estimated to have reduced the maize crop by 10% 

annually before the use of Bt technology (Gouse et. al 2006). 

Another benefit to Bt maize is that it reduces exposure to a type of mycotoxin called 

fumonisin, a toxic fungus associated with esophageal cancer and birth defects in humans, and 

potentially fatal to livestock. Bt maize reduces insect damage to the maize plants, which limits 

fungal colonization. In a study in South Africa between 2004 and 2007, Bt maize showed levels 

of mycotoxin fumonisin 28% lower than conventional varieties. Since maize represents a large 

portion of dietary consumption, this reduction could have a significant impact on human and 

animal health (Pray, et al. 2009). 

Recently there have been legitimate concerns that lepidopteran insects which feed on 

maize plants will develop resistance to the Cry toxin more quickly than they would with the Bt 

pesticide. If not managed correctly, Bt maize leads to prolonged exposure of toxins to insects. 

Many governments require farmers to plant 20% of their crop to non-Bt “refuge acres” which 

allows the pests to reproduce without exposure to Cry toxins. These surviving insects mate with 

those with developed resistance, slowing down the rate that resistance builds up in the insect. 

Most target pest populations remain susceptible to Bt to date, due to proper management, with 

only three known insect species showing resistance to Bt (Tabashnik, Van Rensburg and Carrière 

2009). In an ex ante study, Qaim and de Janvry (2005) simulate resistance development over a 

15-year period in Argentina. Beginning with an initial resistance level of 0.1, results under a 20% 

refuge area show that the level of resistance remains low, but under a 0% refuge area, pest 

resistance increases to 1 after only 6 to 7 years. Kruger, Van Rensburg, and Van den Berg (2011) 
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show that high pest resistance to Bt maize has developed in the Northern Cape Province of South 

Africa. When Bt maize was introduced in South Africa in 1998, only 7.7% of farmers planted 

refuge acres. By 2007, 92.3% were planting refuge acres, but the Bt technology was losing 

effectiveness and 55% of large-scale farmers were forced to use insecticides to control stem 

borer damage to Bt maize. The lack of refuge acres was due to little government enforcement of 

refuge and separation requirements, and farmer perception that Bt maize requires less 

management than non-Bt maize (Kruger, Van Rensburg and Van den Berg 2011). 

Another concern of Bt maize is that it will cross pollinate with conventional varieties, 

decreasing biodiversity. This has led to the requirement for separation distances between Bt and 

non-Bt maize fields in certain countries, which reduces benefits to the technology, prohibiting 

adoption. A study in Kenya estimates that if separation distances of just 50 meters were required, 

benefits of Bt maize to farmers would be reduced by 32.5% (Tumusiime, et al. 2010). In South 

Africa the separation distance requirement is 400 meters, but very few farmers comply and it is 

not strictly enforced (Kruger, Van Rensburg and Van den Berg 2009). 

 Drought Tolerant Maize 

Drought tolerant (DT) maize is the most recent development in GM maize technology. In 

a wet or normal year, there is no expected yield difference between DT and non-DT maize. But 

under hot and dry conditions, DT maize will produce a higher yield than non-DT maize, 

effectively reducing yield variation and risk to farmers. The African Agriculture Technology 

Foundation (AATF) predicts that by limiting variation in yield, DT maize has the potential to 

increase overall production by 24 to 35 percent (AATF 2012). 

DT maize could offer more benefits to smallholder farmers, especially in areas of Sub-

Saharan Africa that are directly affected by drought. Unlike many hybrid maize varieties, DT 

maize does not require high fertilizer, chemical, or irrigation use to realize benefits. DT maize is 

a scale-neutral technology that can be grown on marginal lands, that is more likely to be adopted 

by smallholders (AATF 2012). 

 “Stacked” Maize Traits 

DT maize requires a complex array of genes, each gene representing a different drought 

resistant characteristic in the plant. As mentioned previously, genetic modification allows for the 

isolation of specific drought tolerant traits. Once a gene is isolated, it can be combined with any 
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number of other genes, a process called “stacking.” Only genetic modification allows plant 

breeders to stack multiple genes to create a plant with optimal drought tolerant characteristics, 

with each gene making a small contribution to the overall drought tolerance of the plant. Using 

stacking techniques, these traits may be transferred to varieties in any particular region of the 

world in a fraction of the time that it would take using conventional breeding methods (Fukuda-

Parr 2007). One of the most popular stacks to this point is “BR” which has both the Bt and RR 

genes. BR maize was approved in South Africa in 2005 (James 2007). 

 Research and Development of GM Crops 

 Genetic modification allows scientist to target specific genes in order to address biotic 

and abiotic stresses. Research and development of GM crops has led to lower costs and higher 

productivity, with high economic benefits that have been realized in numerous countries (James 

2010). Aside from cotton farmers in China and India, many of the beneficiaries are large-scale 

farmers in high-income countries for whom the technology was targeted. The potential benefits 

for smallholders, particularly in Sub-Saharan Africa, remain mostly unexplored (Fukuda-Parr 

2007). This lack of investigation of potential benefits of GM crops for smallholders is partly due 

to low investment and restrictive policy. 

 Investment in GM Crops Worldwide 

 Investment in GM maize to explore these scientific possibilities for smallholders remains 

low for several reasons. First, GM maize research is largely funded by the private sector in high-

income countries, unlike past research which was heavily funded by the public sector. This is 

due in part to policy such as strong patent protection for transgenic life-forms, provided under 

the Diamond versus Chakrabarty case and the Bayh-Dole Act in 1980. These policies created an 

incentive for the private sector to purchase biotechnology research from public universities and 

invest in developing new varieties. Monsanto’s state-of-the-art research center in St. Louis, 

established in 1981 with a research budget of $275 million ($694 million in terms of 2012 US 

dollars), is a direct result of these policies (Glover 2010, US Bureau of Labor Statistics 2012). 

The privitazation of GM seeds reduced the spillover of GM maize technology to countries 

without the institutional infrastructure needed to monitor use and collect royalties for private 

firms. This has slowed down the process of GM maize dissemination and increased the need for 

public-private partnerships to disperse the GM technology to low-income countries. Another 
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reason that investment in low-income countries is low is that research and development of GM 

crops requires large upfront costs, since the technology is knowledge-intensive, and requires 

expensive equipment and highly-trained personnel (Fukuda-Parr 2007). 

 One of the greatest hindrances to investment in GM maize in low-income countries is the 

controversy surrounding GM crops. While the international community recognizes that the 

economic returns from investment in technology to boost agricultural productivity for 

smallholders are high, GM crops are often left out of the discussion. The controversy centers on 

the question of whether GM crops are fundamentally different than non-GM crops, and pose 

higher risks to human health or the environment (Fukuda-Parr 2007). No adverse effects to 

human health have been reported, and studies have shown that GM crops, particularly Bt maize 

and cotton, reduce insecticide use which improves farmers’ health and the environment (Qaim 

and de Janvry 2005). GM medicines, on the other hand, have been met with little social or 

political opposition, although they represent about 25 percent of new drugs on the market in both 

the US and the EU (Paarlberg 2008).   

 Policy of GM Crops in Sub-Saharan Africa 

The primary international regulatory system of GM crops is the Cartagena Protocol on 

Biosafety (CPB), created in 1996 by the United Nations to ensure safe transfer, handling and use 

of transgenic products. The CPB requires that member countries develop national biosafety 

frameworks (NBFs) prior to the commercialization of GM crops. The NBFs are used to 

implement national policies, laws, administrative and technical instruments (such as permits) in 

order to ensure safety of the environment and human health. Governments are also required to 

establish a Biosafety Clearing House for registration and documentation of GM products before 

their release into the environment (Makinde, Mumba and Ambali 2009).  

The results of the CPB and other similar initiatives have been quite poor: out of 53 

countries in the African Union, 45 have signed the Cartagena Protocol, but only 16 countries 

have regulations related to modern biotechnology, and 11 have established the necessary 

regulatory structures necessary to commercialize GM products (Makinde, Mumba and Ambali 

2009). As of 2010, only 3 countries have approved the commercialization of GM crops; South 

Africa, Burkina Faso, and Egypt, but both Uganda and Kenya plan to market GM crops for the 

first time in 2014 (Khisa 2012). 
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The Cartagena Protocol provides such thorough regulation that the release of GM 

products poses little risk to human health and yet most countries appear to have a “wait and see” 

attitude regarding approval of GM crop research. Some argue that this attitude is due to 

skepticism based on unscientific data circulated about the potential risks of GM products and a 

concern for certain donors’ positions rather than scientific data (Fukuda-Parr 2007).  

 Current GM Maize Research and Development Projects in South Africa   

South Africa became the first African nation to accept GM crops, beginning in 1989 

when Delta and Pine Land seed company began to perform field trials of GM cotton (Wolson 

2007). Today South Africa is still the only country that has truly embraced genetically modified 

crops, receiving adamant support from both private and public sector in several ongoing projects 

as indicated below. 

Improved Maize for African Soils Project (IMAS) focuses on developing maize varieties 

that use nitrogen more efficiently. They are using cutting-edge biotechnology tools such as 

molecular markers and transgenic approaches, with a goal of increasing yields by 30-50% with 

the same amount of nitrogen fertilizer applied. The main partners are the Bill & Melinda Gates 

Foundation, USAID, DuPont, Pioneer Hi-Bred, Kenya Agricultural Research Institute (KARI) 

and South African Agricultural Research Council (ARC) (CIMMYT n.d.). 

The Water Efficient Maize for Africa (WEMA) partnership is an effort led by the African 

Agricultural Technology Foundation, a non-for-profit with a mission to promote access to 

appropriate technologies to increase productivity of smallholder farmers in Sub-Saharan Africa. 

The five year project, funded by the Gates Foundation, focuses on maize since it makes up a 

large percentage of smallholder’s dietary intake: 31 percent of diets in South Africa and 42 

percent in Kenya (Tumusiime, et al. 2010). Hybrid varieties of maize are already being used 

extensively throughout Sub-Saharan Africa, but WEMA uses the latest techniques in marker 

assisted breeding and biotechnology from the International Maize and Wheat Improvement 

Center (CIMMYT) and Monsanto. The Bacillus protein gene cspB, which has shown significant 

increase in yield under drought stress conditions, will be introduced into African maize varieties 

at five key national agricultural research systems (NARS) in East and Southern Africa, a major 

maize-producing area (Thompson and Shepherd 2010, Castiglioni et al 2008). The NARS in 

South Africa, Mozambique, Tanzania, Kenya, and Uganda, are responsible for supporting 
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research efforts, conducting risk assessment of the new varieties, and creating public awareness 

and acceptance of new varieties. New varieties that are produced will be developed royalty-free, 

and sold by local agro-dealers. As of May 2011, confined field trials had been performed in 

South Africa, Uganda, and Kenya, and had been approved but not yet completed in the other two 

countries (AATF 2012). 

A second project using biotechnology to create more drought tolerant maize is being 

conducted by the University of Cape Town. The resurrection plant, Xerophyta viscosa, has the 

ability to lose over 90% of its relative water content, survive in this state for prolonged periods of 

time, and resume growth within 72 hours when water becomes available. Researchers have 

isolated several genes from the resurrection plant and transferred them to tobacco plants, which 

have shown improved drought stress. Future research aims to introduce these same genes into 

maize, with expectations of similar results (Thompson and Shepherd 2010, Garwe, Thomson and 

Mundree 2006). 

Research on maize resistant to Maize Streak Virus (MSV) is also being investigated at 

the University of Cape Town, with support from Pannar Seed Company. Researchers are using 

genes which contain the proteins Rep and RepA and inserting the genes into Pannar maize 

varieties to create maize resistant to MSV. Field trials are set to begin in 2012-13 (Thompson 

and Shepherd 2010). These projects reveal the private and public support that South Africa has 

given to genetic modification as a means to increase agricultural productivity.  Unlike other 

governments in the region, South Africa paved the way early for new investment in crop 

biotechnology research.  
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Chapter 2 - Literature Review  

Since GM crops were commercially introduced in the US in 1996, relatively thorough 

research has been conducted to measure their farm-level impact. Most of the research on GM 

maize conducted in high-income countries has shown that Bt maize has the potential to lower 

pesticide use and reduce yield loss due to pests, and that Roundup Ready (RR) maize can reduce 

costs, increase weed control, allow farmers to plant no-till, and boost yield. (Smale, Zambrano, et 

al. 2008, Qaim and Matuschke 2005). Brookes and Barfoot (2009) examine the worldwide 

impact of GM crops in 2007, and conclude that cotton, maize, canola, and soybeans added 4.4% 

to the value of global production after taking both yield impact and seed premiums into 

consideration. While much of the past research to examine the impact of GM crops has been 

conducted in high-income countries, low-income countries grew 43% of total GM crops by area 

and were responsible for 58% of the additional global value from GM crops as of 2007 (Brookes 

and Barfoot 2009). This chapter, which is organized into two sections, focuses on the research 

that is available from low-income countries. The first section looks at literature which measures 

the impact of GM crops on yield and profit in low-income countries. In the second section, the 

current research which addresses the issues of endogeneity and selectivity bias is examined.  

 Studies of GM Crops in Low-Income Countries 

In 2007, the additional value of GM crops in low-income countries came from three 

primary sources: 44% from soybeans grown mostly by commercial farmers in South America, 

50% from smallholder cotton farmers in China and India, and only 6% came from maize, mostly 

grown in South America on industrialized farms (Brookes and Barfoot 2009).  More than 90% of 

smallholders growing any type of GM crop come from farmers growing cotton in India and 

China. Therefore, only a small body of literature examines GM maize among smallholders in 

low-income countries, primarily in the Philippines and South Africa, where yield gains for maize 

appears to be higher than in high-income countries (Zilberman and Sexton 2011, James 2007). 

The following section examines the farm-level impact of GM crops in low-income countries, 

mostly among smallholders. 
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 Bt Cotton in India 

 Qaim and Zilberman (2003) demonstrate that Bt technology used in cotton has led to 

decreased pest damage, less pesticide use, less toxic pesticides, and higher yields in India. The 

researchers assume that benefits to Bt cotton will be greater in India, where a tropical climate 

leads to insect damage between 50 to 60% compared to damage of 12% and 15% in the US and 

China respectively. Data were collected from 157 farms, covering 25 districts in three major 

cotton-producing states. Using a nonparametric function allowed the researchers to estimate Bt 

and non-Bt yield-density functions, in which the Bt maize distribution shifts noticeably to the 

right, with a mean yield 80% higher than that of non-Bt maize. Then, econometric analysis using 

a logistic damage-control function estimates that Indian farmers planting non-Bt cotton would 

have to triple pesticide use to achieve the same level of damage control offered by Bt cotton.  

 Bt Cotton in Argentina 

 Qaim and de Janvry (2005) determine that farmers planting Bt cotton achieve higher 

yields with lower pesticide use in Argentina. Adoption of Bt cotton is low, however, presumably 

due to a relatively high technology fee. A survey was given to 89 Bt and 210 non-Bt small and 

large-scale farmers. First, a regression with insecticide use as the dependent variable shows that 

Bt maize plots use 1.2 kg less pesticide than non-Bt. To eliminate bias, the predicted pesticide 

quantities are used in a quadratic production function, which reveals that Bt cotton yields are 506 

kg per hectare, or 32% higher than non-Bt yields. Next, a damage control function shows that Bt 

yield effects will be larger among small-scale producers, who use less pesticides and have more 

to gain from Bt technology than large-scale producers. On average, Bt cotton farmers could 

decrease pesticide use by 73%, and net yield gain is predicted to be 17% for large-scale 

producers and 42% for smallholders. 

 Bt, RR, and Stacked Maize in South Africa 

 Gouse, Piesse, and Thirtle (2006) use a stochastic frontier production model to show that 

RR maize increases overall farmer efficiency by allowing for no-till farming, which increases 

output, reduces labor use, and reduces land preparation. Data were collected from smallholders 

in Kwazulu-Natal, of whom 48 plant Bt maize, 25 plant no-till, and 62 use both conventional 

seed and tillage methods during the 2003-04 season. A Cobb-Douglas stochastic frontier 

production model estimates the technical efficiency of each farmer using farm-specific variables. 
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No-till maize increases output, and decreases land preparation and labor. Other results show that 

no-till farmers are 11% more efficient than conventional farmers, while Bt farmers are 12% less 

efficient than non-Bt farmers. This contrast from most other literature in South Africa, and may 

be due to the dry year in which pest pressures were low. Therefore, the benefits from Bt maize 

do not always outweigh the high cost of Bt seed. This emphasizes that benefits to Bt maize will 

vary from year to year, and increase as pest pressure increases, while benefits of no-till may be 

more consistant. 

 A second study by Gouse, Piesse, et al. (2009) shows that farmers planting Bt and RR 

maize use less labor, but pay more for their seed. The study is based on data from the 2006-07 

maize production season in South Africa. Descriptive statistics show that labor use for Bt and RR 

maize was 28.2% and 13.7% lower than conventional seed respectively, while seed prices were 

27-30% higher. Data were fit to a Cobb-Douglas stochastic production frontier model, as well as 

an inefficiency production function to estimate factors influencing yield. Estimates from the 

frontier model show that seed cost has the biggest impact on output, as a 1% increase in seed 

costs results in a 0.42% increase in output, while a 1% increase in land and labor leads to a 

0.14% and a 0.13% increase in output respectively. All output elasticities are significantly 

different than 0 and sum to 1.049, signifying slight increasing returns to scale. Results of the 

inefficiency production function are mostly insignificant. 

 Other studies of Bt maize in Kwazulu-Natal reveal that smallholders use far too few 

pesticides, which could lead to impressive yield gains from Bt maize (Thirtle, Piesse and Gouse 

2005). Yield benefits decrease, however, as pest pressure drops. This has been demonstrated by a 

study of smallholders in South Africa over three consecutive seasons from 2001-04, in which 

yield benefits of Bt maize were recorded of 32%, 16%, and 5% as pest pressure declined (Gouse 

et. al 2006). 

 Studies of GM crops in Low-Income Countries: Controlling for Endogeneity 

and Selectivity Bias 

Endogeneity and selectivity bias are both issues that can create inconsistent estimates 

when using least squares estimation.  Endogeneity is an issue which creates biased estimates in 

production function estimation. It can occur for two reasons; first, when the farmer makes a 

decision regarding input quantity during the production season and second, due to unobserved 
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farmer characteristics such as motivation, access to credit, or experience. Instrumental variables 

which are correlated with the endogenous variables can correct for endogeneity bias and create 

unbiased and consistent estimates. Selectivity bias, on the other hand, occurs when adoption of a 

new technology such as RR maize is determined endogenously. If RR maize producers are better 

farmers, the RR maize variable will overestimate the effects of the RR technology. Several 

methods are used to control for selectivity bias, including a fixed-effects model (Crost, et al. 

2007) or a Heckman two-step estimation using the full sample (Shankar and Thirtle 2005, Mutuc 

and Yorobe 2007). The following studies in this section examine the impact that GM crops have 

on yield, cost, and net returns while controlling for either endogeneity or farmer self-selection 

bias. 

 Bt Cotton in India 

Crost, Shankar, Bennett and Morse (2007) control for selection bias using a fixed-effects 

model which reveals that more efficient farmers are more likely to adopt Bt cotton, but Bt cotton 

yield is still significantly higher. Panel data from six villages in India were collected during the 

2002-03 seasons among 338 cotton farmers with a total of 718 plots. Two Cobb-Douglas 

production functions are estimated, one which only uses the pooled data and the other which is a 

fixed effects model to control for selectivity bias. Results show that when controlling for 

selectivity bias, the seed and labor coefficients become insignificant. The yield effect is only half 

as large in the fixed effects model, but it is still positive and significant, thus, controlling for 

selectivity bias reveals that the pooled model overestimated the impact of Bt cotton. Using 

average prices for seed and output, the yield advantage is still large enough to offset the higher 

price of Bt seed and lead to higher net returns for Bt farmers. 

 Bt Cotton in China 

Huang, et al. (2002) find that Bt cotton significantly lowers pesticide use among 

smallholders in China. Data were collected from 337 Bt and 45 non-Bt farmers. Both a Cobb-

Douglas and damage control production function were used to estimate the impact of pesticide 

and Bt cotton on productivity, where both pesticides and Bt cotton are considered damage 

abatement inputs. Pesticide was also expected to be endogenous, as more pesticide is applied 

when pest pressure is high. Therefore, an instrumental variable approach was used for each of 

the models, where Bt cotton as an instrumental variable significantly explains pesticide use. 
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Results show that Bt cotton reduces pesticide use by 58%. Results of the Cobb-Douglas function 

reveal that age, education, and Bt cotton all significantly positively impact yield. The results are 

similar in the damage control function, which uses both the Weibull and Exponential 

specifications. The damage control models also show that producers of Bt and non-Bt cotton are 

both using pesticides about three times above their optimal levels of use. While the study 

indicates that Bt cotton may lead to higher yields, the greatest benefit in China where pesticide 

use is excessively high, is that Bt cotton farmers use significantly fewer pesticides. 

 Bt Cotton in South Africa 

Shankar and Thirtle (2005) reveal that Bt cotton allows farmers to sidestep credit and 

labor constraints that limit pesticide use in South Africa during the 1999-2000 season. A damage 

control framework applied to a production function is used to analyze 58 Bt and 33 non-Bt 

cotton farmers. It is predicted that pesticide is an endogenous independent variable in the 

production function, since it is applied in response to insect attacks during the production season. 

Using instrumental variables of the previous year’s pesticide and output levels, the Hausman test 

reveals that pesticide use is not endogenous to production. Therefore, ordinary least squares 

regression is considered more efficient and instrumental variables are not included in the model. 

Further testing using the Heckman’s two-step model reveals that the inverse Mills ratio is not 

significant, so adoption endogeneity is not an issue. Results show that by adopting Bt cotton, 

farmers have much more potential to increase output that non-Bt produces since they use less 

than half the optimal rate of insecticide. Other results show that Bt cotton is not labor-saving in 

this case in South Africa as labor use is not significantly different between Bt and non-Bt 

producers. 

 Bt Maize in the Philippines 

 Yorobe and Quicoy (2006) use econometric techniques which indicated that Bt maize 

significantly increases both yields and net returns in comparison to non-Bt maize. Information 

was collected from 107 Bt and 363 non-Bt yellow maize farmers in four regions of the 

Philippines during both the wet and dry maize season in 2003-04. To control for agro-climatic 

variability, non-Bt farmers that are adjacent to Bt adopters are randomly selected. First, a Cobb-

Douglas production function finds that Bt maize results in a 35% statistically significant increase 

in yield. Next, a two-stage Heckman net returns function was estimated to control for selection 
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bias; the first stage consisted of a probit to estimate Bt adoption, and the second stage predicted 

net returns based on the probabilities of adoption derived in the first stage. Factors that 

significantly increase the probability of Bt maize adoption include education, hired labor, net 

income, agricultural training, and farmer’s risk perception of the impact of Bt maize on health 

and the environment. Although Bt seeds are almost twice the price of non-Bt seeds, profit is 

nearly twice as high due to a large savings in insecticide use. 

 Mutuc, Rejesus, Pan and Yorobe (2012) reveal that controlling for censoring in addition 

to the control of selection bias reduces the the impact of Bt maize in the Philipines. The same 

data is used from the previous study of 107 Bt and 363 non-Bt maize farmers during the 2003-04 

growing season. A quadratic profit function is used to derive maize output supply and pesticide 

input demand functions to control for simultaneity bias. The first step of the model uses a 

bivariate probit model to estimate the Bt adoption and pesticide use decisions simultaneously to 

control for selection bias. Results show that the error correlation between Bt adoption and 

pesticide use is insignificant. Maize price, rice price, fertilizer and pesticide prices and off-farm 

income all impact Bt maize adoption, while factors which impact pesticide use include off-farm 

income, pesticide price, and extension. Next the parameters of each equation are estimated 

individually, using a univariate Tobit model to estimate the parameters of the censored pesticide 

variables. A multivariate Tobit regression is then used to re-estimate the parameter vector. 

Results of the censored and uncensored impact model reveal that Bt maize has a much smaller, 

yet still significant impact on yields. The impact on net returns is similar between the two 

models. This study reveals that while most research reveals a significant impact of Bt maize on 

yield, not controlling for censoring could greatly impact the results. 
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Chapter 3 - Data Overview 

 This chapter provides a detailed look at the data used in this research. The first section 

focuses on household demographics and the potential for maize production in the region of 

KwaZulu-Natal, South Africa. Next, the quantity and cost of both inputs and labor used in each 

stage of maize production are examined, from planting to harvest. In the final section, maize 

yield, total costs and net returns are examined across all five maize types in both regions. The 

information in this chapter is meant to present an accurate representation of the data in order to 

provide a reference point to test hypotheses presented in subsequent chapters.  

 Maize Production in KwaZulu-Natal 

 KwaZulu-Natal is a sub-humid region located in Northeastern South Africa (see Figure 3-

1). As one of 9 provinces, it is home to 21% of the population of South Africa. Arable land 

covers only 13% of KwaZulu-Natal, while a majority of land is used for grazing, nature reserves 

and forestry. In comparison to the rest of South Africa, KwaZulu-Natal contains about 7% of 

land used for cereals and produces 4% of the total maize crop. More than 39% of total area is 

owned by smallholders as opposed to commercial farmers, in comparison to only 14% in the rest 

of the country (Department of Agriculture, Forestry and Fisheries 2011). 

 The research focuses on two regions in KwaZulu-Natal; Hlabisa and Simdlangetsha, 

which lie within close proximity to each other and share many similar agro-ecological 

characteristics (see stars in Figure 3-1). Annual rainfall in these regions is around 980mm (38 

inches), and much of it falls during the maize production season (Gouse, Piesse and Poulton, et 

al. 2008). The land is marginal with low potential in all areas and little variation exists in 

topography between farms, so there is no need to adjust for land quality (Gouse, Piesse, et al. 

2009). Average maize yield is typically around 1.5 tonnes per hectare
 
(24 bushels per acre), 

similar to average maize yields throughout Sub-Saharan Africa. In comparison, average maize 

yields are closer to 4 tonnes per hectare on commercial farms in South Africa and 9 tonnes per 

hectare in the United States (FAOSTAT 2011). 
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Figure  3-1 Climate in the Area of Research, KwaZulu-Natal, South Africa

 
Source: FAO (2005) 

  

Bt maize became the first genetically modified maize planted in South Africa when it was 

first grown by commercial farmers in the 1998-99 season and smallholders in 2001-02. Roundup 

Ready maize was first planted in the 2004-05 season, soon followed by BR stacked maize, which 

contains genes for both Bt and RR (Gouse, Piesse, et al. 2009). By 2010, Bt, BR, and RR maize 

was planted on more than three-fourths of total maize area in South Africa, mostly by 

commercial farmers who are responsible for over 90% of maize production (James 2010). All 

three types of GM maize are planted by smallholders in KwaZulu-Natal, the region of focus for 

this research. 

 Data were collected during the 2009-10 maize production season from a sample of 184 

maize producers planting both GM and non-GM maize. Twenty-eight of the farmers have two 

maize plots, so the total number of maize plots is 212. Producers of both GM and non-GM maize 

were randomly selected, although the adoption rate of GM maize in the region is lower than the 

data indicate as GM maize producers were targeted in the study (Gouse 2012). The original data 

included a third region, Dumbe, and four other observations which were removed due to 

unreliable and incomplete information.   
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 Data collection was completed by the University of Pretoria in South Africa. The team of 

researchers and enumerators has considerable past experience researching smallholder adoption 

of GM cotton and maize. Information was collected from the farms through three visits during 

the maize growing season from November 2009 through June 2010 in order to reduce recall bias. 

Data was collected on the timing, quantity, and prices of inputs and labor used during each stage 

of production, from land preparation until harvest. Other information was collected on 

demographics, education, experience using herbicide, access to extension and credit, household 

consumption habits (Table 3-1), assets, expenses, and non-farm income. A fourth survey was 

completed in the fall of 2010 which surveyed producers on preferences of maize seed and 

willingness to pay for certain maize traits. All indications show that the 2009-10 maize 

production season was a typical year, as producers reported that rainfall was good in both 

Simdlangetsha and Hlabisa throughout the entire growing season. 

  

 Household Demographics 

 HIV/AIDS and Population 

 Among the 184 households surveyed, 56% of inhabitants are under the age of 25, 

compared to the average of 52% across South Africa. This is due to high population growth and 

an HIV/AIDS rate of 15.9% in South Africa among the working age population. The HIV/AIDS 

infection rate is even higher in KwaZulu-Natal, where 26.4% of the working age population is 

HIV-positive (Thurlow et. al, 2009). The most affected people in KwaZulu-Natal are males, ages 

35-49 (41.3%); females, ages 20-34 (43.3%), and unskilled workers in agriculture (38.2%). In 

KwaZulu-Natal, 40% of people are unemployed and 33% live below the poverty line of 

US$2/day (Thurlow et. al 2009). The impact of a high population growth and HIV/AIDS is 

apparent in Figure 3-2.  
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Figure  3-2 Population Pyramid of Hlabisa and Simdlangetsha, 2009-10 

 

  

It is apparent in Figure 3-2, which is based on data from the survey taken in Hlabisa and 

Simdlangetsha, that there are fewer men than women above the age of 40, which is most likely 

due to the migration of men from rural areas to urban centers to find work. These findings match 

with previous literature which indicates that the labor supply is more constrained due to high 

levels of HIV/AIDS and migration of agricultural workers to urban centers (Gouse, Piesse, et al. 

2009). The reduced supply of labor is expected to result in relatively high labor costs, which has 

implications on the profitablility and adoption of labor-saving technologies such as RR maize.  

 

 Household Characteristics, Consumption of Maize, and Access to Credit  

 Household characteristics in Hlabisa and Simdlangetsha are similar in many ways, such 

as number of people per household, average age of the head of household, access to credit, 

member of farmer association, and education (Table 3-1). Almost half of the households grew 

maize solely for home consumption, and 28% of all households bought maize meal in the 

previous six months because they did not harvest enough maize, mostly in Simdlangetsha. All 

households in Hlabisa consume maize at least three times per week compared to only half of 

households in Simdlangetsha. Almost all farmers had access to credit through a financial group 

or bank in both regions; therefore, it is expected that farmers can purchase inputs needed for 

maize production. 
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Table  3-1 Household Characteristics, Maize Consumption, and Access to Credit   
 Hlabisa Simdlangetsha Total 

People per household 6.1 6.4 6.2 

% of respondent that was female 66 56 61 

Average age of head of household 57 53 55 

    

% of Households (1=yes)    

Member of Farmer Association 100 93 97 

    

Head of household with education above 

primary 

16 31 23 

Highest educated member of household with 

high school diploma 

20 11 15 

    

Sold part of maize crop 65 44 55 

Bought extra maize last 6 months 11 46 28 

    

Ate rice more than 3 times week 78 23 52 

Ate bread more than 3 times week 97 71 85 

Ate maize more than 3 times week 100 49 76 

    

Access to bank account 65 83 73 

Access to financial group 83 70 77 

Access to credit 96 97 96 

   

 Household Expenses, Income, and Assets 

 Producers in the two regions have similar expenses and income, but livestock assets are 

significantly higher in Hlabisa and non-farm assets are significantly higher in Simdlangetsha 

(Table 3-2). When examining individual households, there is a large difference in the value of 

their assets. The 20% of producers with the most assets have $21,139 in assets on average, while 

the bottom 20% had average assets of $386.
5
 This is partly due to livestock which accounts for 

more than two-thirds of total wealth, but are owned by only 63% of producers.  

 

 

 

 

                                                 

5
 All monetary units are converted from South Africa Rand to US dollars (USD) at the constant exchange rate of 

7.44 Rand per US dollar. This is the average rate of exchange between the dates of initial land preparation and 

planting from late October until harvest in late April. Actual variation is slight during this period, from 7.39 Rand 

per USD on October 23
rd

, 2009 to 7.49 on April 30
th

, 2010. 
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Table  3-2 Land Area, Expenses, Income, and Assets across Regions (USD)
a
 

 

Site 

Hlabisa Simdlangetsha Total 

Mean Std. Deviation Mean Std. Deviation Mean 

Std. 

Deviation 

Total Land Area (ha) .97 .44 2.83 1.27 1.85 1.31 

Maize Plot Area (ha) .42 .18 .57 .25 .49 .23 

School Expenses 52 31 45 26 49 29 

Remittances 121 113 108 130 115 121 

Animal Income 224 260 224 264 224 261 

Maize Income by Plot 362 180 296 254   326* 225 

Livestock Assets 6109 5511 4567 5144    5380* 5381 

Farm Assets 1414 1814 1421 2903 1417 2384 

Non-farm Assets 566 975 1546 4454     1029** 3172 

Total Assets 8089 6996 7533 8478 7826 7715 

**,* Significantly different at the 1% and 5% levels respectively using a two-tailed t-test. 
aat an exchange rate of 7.44 Rand per US dollar 

Note: N = 184; Hlabisa = 97; Simdlangetsha = 87 

 

 In KwaZulu-Natal, the average household received approximately US$115 in remittances 

during an 8 month period, an important source of income. In comparison, the average household 

received $224 in livestock income per year. Pension is the top source of income for 53% of 

households; male and females above the age of 60 in each household also receive a $168 pension 

each month, which is not accounted for in Table 3-2 (Gouse 2012). The pension is especially 

important to maize producers in KwaZulu-Natal, as close to half of household heads are over the 

age of 60. Some of these producers have returned from jobs in the city to retire on their farms, 

which may explain why there are a large number of males and females ages 60 to 64 (Figure 3-

2). Full-time or part-time off-farm employment is the second-most important top income source, 

while crop production is the top income source for only 5% of respondents. 
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Table  3-3 Household Expenses, Income, and Assets across Maize Types (USD)
a
 

 
Seed Type 

BR Bt Carnia Pannar RR Total 

School Expenses 49 52 48 49 49 49 

Remittances 132 114 120 86 123 115 

Animal Income 261 174 242 201 221 222 

Maize Income by Plot 347 296 215 296 391 326 

Livestock Assets 5038 5891 4694 4420 6065 5288 

Farm Assets 1432 1521 1608 1215 1388 1402 

Non-farm Assets 2291 897 1412 2134 483 1340 

Total Assets 8761 8309 7715 7769 7936 8031 
aat an exchange rate of 7.44 Rand per US dollar 

Note: N = 212; BR = 35, Bt = 18, Carnia = 34, Pannar = 48, RR = 77 

  

 Household expenses and income are very similar, regardless of what variety the producer 

used (Table 3-3). Several differences exist between livestock and non-farm assets, but total 

assets are statistically the same across all five maize types. Due to the large difference between 

assets among producers, it was hypothesized that producers with more assets would have greater 

income, and thus purchase more inputs leading to higher yields. At 95% confidence, the 20% of 

producers with the most assets had significantly higher total input costs and output per hectare 

than the 20% of producers with the fewest assets. 

 

 Sources of Agricultural Income other than Maize 

 Of the 184 producers, maize was their primary crop. An additional 36% planted beans, 

9% pumpkins, 5% groundnuts, and 5% planted sweet potatoes, as well as other vegetables. 

Almost all farmers raised chickens, 63% owned cattle, accounting for more than half of the total 

value of assets, and 49% had goats. Producers that grew maize were targeted in the study, so this 

information is not representative of the entire region.  

 

 Summary of Maize Production Activities 

 Farmers planted 10 different maize varieties on 212 plots, as seen in Table 3-4. The 

maize varieties are categorized into five maize types based on seed characteristics. The first three 

categories are genetically modified: Bt, RR, and BR maize. Both RR and BR maize are herbicide 

tolerant (HT). Since RR maize is currently the only type of HT maize available commercially, 

the terms “RR” and “HT” are interchangeable throughout this research. The terms “stacked” and 
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“BR” are also interchangeable, since BR is the only type of stacked maize referred to in this 

study. The final two categories of maize are hybrids; Pannar hybrids, sold by Pannar seeds, and 

Carnia hybrids, produced by Monsanto.
6
 Since the yield and net returns of Pannar maize are both 

significantly higher than Carnia, they are placed in separate categories.  

 

Table  3-4 Categories of Seed Types based on Seed Variety, Company, and Technology 

Seed Type Seed name Seed Company Technology 

Bt 

 

RR 

 

 

BR  

 

 

Pannar  

 

 

 

Carnia  

DKC 78-15B 

 

Phb 30D04R 

DKC 78-35R 

 

Phb 31M84BR 

DKC 80-40BR
a
 

 

Pan 6043 

Pan 6611 

Pan RO 413 

 

CRN 3549 

CRN 3505 

 

Monsanto 

 

Pioneer 

Monsanto 

 

Pioneer 

Monsanto 

 

Pannar 

Pannar 

Pannar 

 

Monsanto 

Monsanto 

YieldGard
®
 

 

Roundup Ready
®
 

Roundup Ready Plus
®
 

 

YieldGard
®
 and Roundup Ready

®
 

YieldGard
®
 and Roundup Ready Plus

®
 

Sources: www.monsanto.co.za; www.pannar.co.za; southafrica.pioneer.com   
aThe maize variety DKC 80-40BR, planted on two plots, is yellow maize, all other maize is white maize. 

  

The data summary is organized chronologically by production operation, from land 

preparation to harvest, to highlight differences in input and labor quantity and cost among the 

five maize types. By examining these differences from several angles, the impact on final yield 

and net returns can be seen more clearly. Hlabisa and Simdlangetsha share many similar 

characteristics including climate and agro-ecology, but at times it is useful to compare the 

regions since quantity and cost of inputs and labor are different in each region. Data can also be 

summarized by the 25 producers that grow both GM and non-GM maize on separate plots. This 

allows an unbiased comparison that is taking into account immeasurable farmer characteristics 

such as motivation or knowledge. A final way to analyze the data is by a comparison of RR and 

BR varieties which are herbicide tolerant and the remaining varieties which are not. 

 

                                                 

6
 Pannar seeds also sells YieldGard

®
 and Roundup Ready Plus

®
 white maize seed, but this seed was not purchased 

by farmers in this study. 

http://www.monsanto.co.za/
http://www.pannar.co.za/
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 Land Preparation 

Producers prepare their land for planting maize by plowing with oxen or a tractor, or with 

herbicide and a hand hoe. When maize producers use herbicide and a hand hoe, they are 

preparing their land without tilling, called no-till or planting without plowing (PWP). Herbicide, 

often applied with backpack sprayers, is a relatively new way for producers to control weeds 

before planting as a majority of producers report that they did not use herbicide prior to 2004. Of 

plots containing RR or BR maize, 86% and 40% are prepared using no-till respectively, while a 

majority of non-HT plots use conventional tillage (Table 3-5). Although no-till is not labor-

saving during initial land preparation since it requires hoeing, it pays off during the rest of the 

season when no-till farmers use less labor to weed (Table 3-11). Land preparation included also 

included the application of fertilizer. 

 

Table  3-5 No-till, Experience with Herbicide, Labor, and Land Size in Land Preparation 

SeedType % of Producers 

Planting No-till 

Years of 

Experience with 

Herbicide 

Land Preparation 

Labor (hours/ha) 

Days Land was 

Prepared Before 

Planting 

Land Area 

(hectares) 

BR .40 4.3 27 2.3 .58 

Bt .00 4.5 17 2.1 .56 

Carnia .00 4.1 19 2.2 .47 

Pannar .06 4.5 43 2.5 .42 

RR .86 3.8 26 .7 .46 

Note: N = 212; BR = 35, Bt = 18, Carnia = 34, Pannar = 48, RR = 77 

 

 According to Table 3-6, most producers who plow their land do so to open up a furrow to 

plant, and 70% then spray a pre-emergent herbicide between the rows to control weeds, typically 

within one day of planting (Gouse 2012). Roundup is the herbicide of choice for controlling 

weeds prior to planting on 97% of maize plots, even by producers who did not plant RR maize. 

A significantly higher percent of no-till farmers used herbicide, although the farmers using 

conventional tillage spent more time applying herbicide (Table 3-6). 
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Table  3-6 Pre-Emergent Herbicide Use for Land Preparation 

Seed Type 

% of Producers 

Who Applied 

Herbicide 

Labor to Apply 

Herbicide 

(hours/ha) 

Herbicide 

(litres/ha) 

 

Herbicide 

($/litre) 

Days Herbicide was 

Applied Before Planting 

BR .43 4 3.2 16.7 2.4 

Bt .94 29 6.8 10.3 .6 

Carnia .85 31 6.4 10.1 .4 

Pannar .44 14 3.2 9.9 .7 

RR .86 10 5.2 16.9 5.0 

No-till     .99** 10     5.7**     17.2** .4 

Conventional .51     18** 4.1 10.1    2.6** 

Note: N = 212; BR = 35, Bt = 18, Carnia = 34, Pannar = 48, RR = 77; No-till = 83, Conventional tillage = 129 

**,* Indicates significantly higher at 1% and 5% respectively using a one-sided t-test. 

 

 Non-RR maize producers used less labor in applying pre-emergence herbicide, but this is 

most likely because the labor used to apply herbicide was already accounted for in land 

preparation labor. The total cost of land preparation is not significantly different for no-till 

producers (Table 3-7).  

 

Table  3-7 Land Preparation Input and Labor Costs (USD/hectare) 

SeedType 

Land Prep 

Labor  

Pre-Emergence 

Herbicide Labor  

Total 

Labor  Oxen  Tractor  

Pre-Emergence 

Herbicide  Total Cost  

BR 21 3 24 15 31 52 122 

Bt 13 22 35 7 64 67 173 

Carnia 15 23 38 5 65 64 173 

Pannar 33 11 44 12 44 31 131 

RR 20 7 28 15 9 86 137 

No-till 25 8 33     19** 0     99** 150 

Conventional 20     14** 33 8     56** 40 137 

Note: N = 212; BR = 35, Bt = 18, Carnia = 34, Pannar = 48, RR = 77; No-till = 83, Conventional tillage = 129 

**,* Indicates significantly higher at 1% and 5% respectively using a one-sided t-test. 

 

 

 Planting  

 As previously mentioned, two primary methods are used for preparing land to plant 

maize in KwaZulu-Natal.  In one method of planting, producers use a plow to open furrows for 

planting with either hired tractors or oxen. Other producers use only a hand hoe to open the soil, 

plant the seed, and close the furrow (Gouse 2012). Many of these producers, using HT varieties 

or not, still use pre-herbicide on their plots to control weeds, since neither method of planting 
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eliminates the weed problem. This may explain in part why planting labor is consistently higher 

for non-HT maize varieties (Table 3-8). Another reason may be intercropping, which is used 

primarily for non-HT maize. Producers who plant HT maize typically spray the plot with 

Roundup later in the season, which severely limits them from planting any crop which is not 

tolerant of Roundup, in this case pumpkins and beans. Of the 19% of producers that intercropped 

with the maize, 78% used pumpkins and the remaining intercropped with beans. 

 

Table  3-8 Planting Labor, Intercropping, and Planting Date 

Site Seed Type 

Planting Labor 

(hours/ha) 

% Planted 

with a Hoe 

% Intercropping 

 

Planting Date 

(dd/mm/year) 

Hlabisa BR 70 1.00 .07 21.11.2009 

 Pannar 107 .27 1.00 23.11.2009 

 RR 92 1.00 .04 19.11.2009 

Simdlangetha BR 60 .65 .05 18.10.2009 

 Bt 75 .67 .17 18.10.2009 

 Carnia 76 .59 .09 25.10.2009 

 Pannar 77 .79 .39 23.10.2009 

 RR 67 .50 .10 29.10.2009 

Note: N = 212; Hlabisa = 97; Simdlangetsha = 115; BR = 35, Bt = 18, Carnia = 34, Pannar = 48, RR = 77 

 

 Planting date varies by region, from the middle of October in Simdlangetsha until the 

middle of November in Hlabisa. Seed cost is highest for GM varieties, especially HT varieties, 

which may explain why the seeding rate is lowest among GM varieties (Table 3-9). Total 

planting cost is highest for HT varieties due to the high seed costs. The same tradeoff between 

seed cost and seeding rate is evident with the 25 farmers who planted GM and non-GM on 

separate plots (Table 3-10).
7
 

 

 

 

 

 

 

                                                 

7
 An additional three farmers planted two plots of GM maize. 
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Table  3-9 Planting Seed, Labor, and Total Costs 

SeedType Seed ($/kg) 

Seeding Rate 

(kg/ha) Seed ($/ha) 

Planting Labor 

($/ha) 

Total Planting Cost 

($/ha) 

BR 11 17.0 179 49 228 

Bt 9 17.0 151 58 209 

Carnia 8 17.1 131 58 189 

Pannar 6 18.5 115 66 181 

RR 11 15.8 168 68 236 

Total 9 16.9 150 62 212 

Note: N = 212; BR = 35, Bt = 18, Carnia = 34, Pannar = 48, RR = 77 

 

Table  3-10 Planting Seed, Labor, and Total Costs of Farmers with 2nd plot 

Seed Type N Seed ($/kg) 

Seeding Rate 

(kg/ha) Seed ($/ha) 

Planting Labor 

($/ha) 

Total Planting 

Cost ($/ha) 

BR 14 10 17 172 49 221 

Bt 7 9 18 164 50 213 

Carnia 12 9 18 154 56 209 

Pannar 13 6 20 121 72 193 

RR 4 12 15 172 56 228 

Total 50 9 18 153 57 210 

 

 Farmers must have either savings or credit in order to purchase GM or hybrid maize seed, 

as opposed to using seed saved from the previous season. In this case, nearly all farmers have 

access to some type of to credit, and many have non-farm income. In fact, 51% of smallholders 

used government payments (including pension and child grants), and 24% used wage income or 

remittances to pay for their maize seed. Regardless of good access to credit, 22% of smallholders 

were not able to get their first choice of seed; of these, 80% reported that the reason was that the 

seed was not available and 88% preferred to buy RR or BR maize seed. 

 

 Post-Emergence Weed Control 

 The average experience of each producer using herbicide does not vary much across 

maize types, and did not seem to influence their preference for RR or BR maize (Table 3-5). 

Herbicide was used to control weeds on a majority of plots for all maize types except Pannar, 

which relied heavily on weeding (Table 3-11). Prices of herbicide were higher for RR and BR 

maize plots which used Roundup in contrast to non-RR maize plots which used mostly 2,4-D and 

Atrazine. Roundup is a considerably more effective herbicide, and probably explains why RR 

and BR plots required almost no manual weeding. Twenty-five percent of non-RR producers also 
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used either Roundup or another herbicide in-between the maize rows, being careful not to touch 

the maize plant with the herbicide. These may be producers that recognized the control that 

Roundup has over weeds, but were not able or willing to purchase RR maize seed at the 

beginning of the season. Pannar stands out as having much higher labor use than any other 

variety. This is because more than half of Pannar producers use weeding, not herbicide, to 

control weeds while a majority of producers of all other maize types used herbicide to control 

weeds. 

 

Table  3-11 Post-Emergence Weed Control Using Herbicide and Weeding in No-till Maize 

Seed Type 

% Applied Post-

Emergence 

Herbicide  

Post-Emergence 

Herbicide  

(litres/ha) 

Post-Emergence 

Herbicide  

($/litre) 

Post-Emergence 

Herbicide 

(hours/ha) 

Weeding Labor  

(hours/ha) 

BR 1.00 6 7 20 0 

Bt .94 7 8 28 23 

Carnia .94 7 7 33 15 

Pannar .42 3 3 15 127 

RR .99 5 14 11 4 

No-till    .95** 5    17** 8 6 

Conventional .78 5 8    25**    53** 

Note: N = 212; BR = 35, Bt = 18, Carnia = 34, Pannar = 48, RR = 77; No-till = 83, Conventional tillage = 129 

**,* Indicates significantly higher at 1% and 5% respectively using a one-sided t-test. 

  

 The tradeoff between RR and non-RR varieties is obvious (Table 3-12); either herbicide, 

labor or a combination of both can be used to control weeds. Proper allocation of resources will 

depend on the price of both inputs. If the price of labor is high in the region, which the previous 

section suggested, then maize producers will be more likely to adopt RR maize for its labor-

saving characteristics. If herbicide prices are high, the opposite will occur. The cost of Roundup 

Ready herbicide was by far the most expensive part of weed control for RR and BR maize; 

however, Pannar maize has significantly higher weeding labor cost than all other varieties, and 

significantly higher total weed-control costs than Bt, Carnia, and RR maize.
8
 

 

 

 

 

                                                 

8
 P-values calculated using a one-tailed t-test. 
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Table  3-12 Post-Emergence Herbicide versus Weeding Input and Labor Cost 

(USD/hectare) 

SeedType 

Post-Herbicide 

Labor 

Post-Emergence 

Herbicide Weeding Labor Total Cost 

BR 16 101 0 117 

Bt 21 57 18 97 

Carnia 25 59 12 96 

Pannar 12 28 98 137 

RR 9 85 3 97 

Note: N = 212; BR = 35, Bt = 18, Carnia = 34, Pannar = 48, RR = 77 

 

 Fertilizer 

 According to previous literature, the average use of fertilizer on maize in Sub-Saharan 

Africa is about 17 kg/ha compared to about 100 kg/ha in other low-income countries and 270 

kg/ha in high-income countries
9
 (Smale, Byerlee and Jayne 2011). Forty percent of fertilizer in 

Sub-Saharan Africa is used for maize where fertilizer prices are at times 6 to 8 times higher per 

unit than in the US (Sanchez 2003). The difference in fertilizer use and price in Kwazulu-Natal 

appears to be less extreme. Farmers in Kwazulu-Natal used an equivalent of about 50 kg/ha
10

 and 

paid approximately 60% more per unit fertilizer than farmers in the US (Appendix Table A-1). 

 Prior to planting, an average of 206 kg/ha of fertilizer with a relatively low nitrogen 

content between 6.3% and a 12.5% was applied on 211 maize plots (Table 3-13). Another 33 

maize producers used an additional 312 kg/ha of organic fertilizer (kraal manure), which is even 

lower in nutritional content than other fertilizer. An additional 108 plots in Simdlangetsha 

received an average of 257 kg/ha of LAN top dressing which is higher nitrogen content. LAN is 

28% nitrogen, and it was applied on average 33 days after planting. 

 

 

 

 

 

                                                 

9
 100 kilograms per hectare is equal to 89 pounds per acre. 

10
 Farmers in this study used 206 kg/ha of fertilizer, but the nitrogen content is approximately one-fourth the 

concentration of fertilizer used in developed countries. 
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Table  3-13 Fertilizer, Manure and Top Dressing (kilograms/hectare) 

 N Mean Median Std. Deviation Minimum Maximum 

Fertilizer (kg/ha) 211 205 175 99 20 498 

Manure (kg/ha) 33 312 204 347 64 1363 

Top Dress (kg/ha) 108 257 240 79 80 498 

Total Fertilizer (kg/ha) 212 384 307 297 20 1884 

 

 Total fertilizer in kilograms per hectare is misleading, since there is so much variation in 

the nutritional content of each fertilizer. Therefore, Table 3-14 breaks down each fertilizer by its 

N:P:K ratio, which stands for nitrogen, phosphorous, and potassium, the three most essential 

macronutrients. The N:P:K ratio of kraal manure was calculated by a study conducted in 

KwaZulu Natal (Mkhabela et. al 2000).  

 

Table  3-14 Fertilizer Type as a Percentage of Nitrogen, Phosphorus, and Potassium 

 Frequency % N % P % K 

 2:3:2 (22) 57 6.3 9.4 6.3 

3:2:1 (25) 91 12.5 8.3 4.2 

3:2:1 (25) Zn 6 12.5 8.3 4.2 

4:3:4 (30) 12 10.9 8.2 10.9 

MAP 30 11 52 0 

LAN 108 28 0 0 

Kraal Manure 33 1.7 1.1 2.7 

 Water Fertilizer 15 - - - 

 Total 212 - - - 

 

 Fifteen producers in Simdlangetsha used “water fertilizer” in the 2009-10 season, a bi-

product of 2:3:2 (22) fertilizer which has not been used before or since. Water fertilizer was 

bought in a concentrated form and diluted with between 1:10 and 1:50 parts water before being 

applied to maize (Gouse 2012). Since water fertilizer is a product sold informally to maize 

producers, the N:P:K content is unknown.
11

 

                                                 

11
 The N:P:K content of water fertilizer is unknown, both the quantity and price are biased, creating a challenge 

when estimating production and cost functions. To control for quantity, the total cost of water fertilizer was divided 

by the average price of fertilizer. For example, 5 kilograms of water fertilizer is costs $20.18/$0.59per kilogram = 



34 

 

Table  3-15 Fertilizer by Region in terms of Nitrogen, Phosphorus, and Potassium 

(kilograms/hectare) 

 

Site 

Hlabisa Simdlangetsha Total 

Mean Std. Deviation Mean Std. Deviation Mean Std. Deviation 

Nitrogen 19 6 89 35 57 43 

Phosphorus 13 4 54 57 35 47 

Potassium 7 2 15 13 11 10 

Top Dressing – Nitrogen 0 0 67 28 36 39 

Note: N = 212; Hlabisa = 97; Simdlangetsha = 115 

  

Recommendations for Kwa-Zulu Natal vary depending on region, from 10 kilograms of 

phosphorous per hectare (kg P/ha) to between 40 and 60 kg P/ha as government research 

indicates that most soils in Kwa-Zulu Natal are deficient in phosphorous (Mkhabela 2004, 

Manson n.d.). In Simlangetsha average use is 54 kg P/ha, but in Hlabisa farmers use less than 13 

kg P/ha (Table 3-15). It may be difficult to come to strong conclusions regarding phosphorous 

since no soil nutrient recommendation information for farmers specifically in Hlabisa or 

Simlangetsha and phosphorous binds to the soil and is available for the plant to use for several 

years. Phospherous does not need to be applied every year like nitrogen which easily leaches 

through the soil; therefore, data from one production season may not capture actual phosphorous 

available. 

 To achieve 7000 kilograms of maize per hectare in Kwa-Zulu Natal, Mkhabela (2004) 

recommended using 120 kg N/ha, 10 kg P/ha, and 56 kg K/ha (Mkhabela 2004). Farmers 

surveyed are using an average of 57 kg N/ha, 35 kg P/ha, and 11 kg K/ha. Nitrogen and 

potassium use is far below the suggested amount, which may partly explain why yields are well 

below 7000 kilograms of maize per hectare, or this may be the result of planting maize on 

marginal land. This low use of fertilizer suggests that farmers are producing in stage one or two 

of the production curve. 

 

 

 

                                                                                                                                                             

34.2 equivalent kilograms of 2:3:2 (22) fertilizer. To control for price, the price of water fertilizer is set to the 

average price of fertilizer of $0.59. 
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Table  3-16 Fertilizer, Manure, Top Dressing, and Labor Cost 

Site 

Seed 

Type 

Fertilizer 

Price ($/kg) 

Fertilizer 

(kg/ha) 

Fertilizer 

($/ha) 

Manure 

($/ha) 

Top Dressing 

($/ha) 

Top Dressing 

Labor  ($/ha) 

Total 

Fertilizer 

($/ha) 

Hlabisa BR .62 167 98 1 0 0 98 

Pannar .62 196 121 0 0 0 121 

RR .62 154 86 1 0 0 88 

Total .62 162 94 1 0 0 94 

Simdlangetsha BR .61 519 270 3 120 42 435 

Bt .64 500 254 5 118 52 430 

Carnia .55 640 305 6 145 41 496 

Pannar .57 600 275 11 128 50 464 

RR .62 471 244 2 120 52 419 

Total .59 571 277 6 129 46 459 

 HT        

         

Note: N = 212; Hlabisa = 97; Simdlangetsha = 115; BR = 35, Bt = 18, Carnia = 34, Pannar = 48, RR = 77 

  

Producers in Simdlangetsha also applied top dressing to their fields, while no producers 

in Hlabisa used top dressing (Table 3-16). Fertilizer costs are higher for Pannar and significantly 

different than BR and RR maize in Hlabisa at 95% confidence. In Simdlangetsha, fertilizer costs 

for Pannar and Carnia are higher but not significantly different. Producers with two plots applied 

247 kilograms of fertilizer per hectare on GM maize, which is significantly higher than 325 

kilograms per hectare applied to non-GM maize plots. 

 

 Insecticide 

 Insecticide is similar to herbicide in that it provides damage abatement. In KwaZulu-

Natal, the primary insect that causes damage to maize is the stock borer. Only 3 farmers used 

insecticide to control an insect other than stock borers. During the 2009-10 season little pest 

pressure from the stock borer existed, with 98% reporting that there were either “no worms” or 

“a couple worms.” 83% of farmers in post-season surveys reported “no damage” or “a little 

damage” due to stock borer (Table 3-17). Most farmers said that similar conditions of stock borer 

existed the previous year as well.  
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Table  3-17 Pest Infestation Rate and Insecticide Use 

Site SeedType 

% Producers Who 

Reported “A Couple 

Worms” 

% Producers Who 

Reported “Many 

Worms” 

% Producers Who 

Applied Insecticide to 

Control Pests 

Insecticide Applied 

(liters/ha) 

Hlabisa BR .33 .00 .00  

Pannar 1.00 .27 .00  

RR 1.00 .00 .03 3.8 

Total .90 .04 .02 3.8 

Simdlangetsha BR .60 .00 .05  

Bt .56 .00 .00  

Carnia .91 .00 .68 1.9 

Pannar .82 .00 .61 2.5 

RR .80 .00 .60 1.7 

Total .77 .00 .43 2.1 

Note: N = 212; Hlabisa = 97; Simdlangetsha = 115; BR = 35, Bt = 18, Carnia = 34, Pannar = 48, RR = 77 

 

Farmers in Hlabisa used very few insecticides, most likely due to low pest pressure and 

the use of BR maize. In Simdlangetsha on the other hand, no insecticides were used in plots with 

Bt technology, while over 60% of farmers who planted varieties that were not resistant to stem 

borer sprayed insecticide, which cost around $28 per hectare as seen in Table 3-18. 

 

Table  3-18 Insecticide Price, Quantity, Labor, and Cost 

Site SeedType Insecticide ($/L) 

Insecticide 

($/ha) 

Insecticide 

(hrs/ha) 

Insecticide 

Labor ($/ha) 

Total Cost 

($/ha) 

Hlabisa BR  0 0 0 0 

Pannar  0 0 0 0 

RR  0 1 1 1 

Total  0 1 0 0 

Simdlangetsha BR  1 0 0 1 

Bt  0 0 0 0 

Carnia 33 13 36 27 40 

Pannar 21 20 35 27 47 

RR 21 7 30 23 30 

Total 27 10 23 18 28 

Note: N = 212; Hlabisa = 97; Simdlangetsha = 115; BR = 35, Bt = 18, Carnia = 34, Pannar = 48, RR = 77 

 

 Harvest 

 Harvest labor is similar for different maize varieties, but significantly different between 

regions (p = 0.000). One explanation for this is that producers in Hlabisa are more efficient at 

harvesting maize. Maize harvest efficiency is defined as kilograms of maize harvested per hour, 
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and is calculated in two ways. First, harvest efficiency is calculated as total output divided by the 

total hours of harvest labor reported by producers. Second, producers were asked on average 

“how many bags of maize cobs do an adult male and female harvest in a day.” The answers were 

converted to reflect kilograms of maize harvested per hour as presented in Table 3-19.  

 Harvest efficiency (both calculated, male, and female) is significantly higher in Hlabisa 

using a one-tailed t-test (p = 0.000 for all three tests).  The time it takes to walk to the maize plot 

appears to explain why farmers in Hlabisa are more efficient, which could suggest that these 

producers are more efficient in other activities as well. 

 

Table  3-19 Maize Yield, Harvest Labor, Cost, and Efficiency 

Site 

Seed 

Type 

Yield 

(kg/ha) 

Harvest 

Labor 

(hrs/ha) 

Harvest 

Labor Cost  

($/ha) 

Harvest 

Efficiency, 

Calculated 

(kg/hour) 

Harvest 

Efficiency, 

Male 

(kg/hour)  

Harvest 

Efficiency, 

Female 

(kg/hour) 

Time to 

Walk to 

Maize Plot 

(minutes) 

Hlabisa BR 1910 50 39 36 33 36 3 

Pannar 1788 60 46 30 25 32 3 

RR 1880 51 39 37 38 37 3 

Total 1870 52 40 36 35 36 3 

Simdlangetsha BR 1347 88 79 19 16 16 14 

Bt 1351 87 67 16 15 15 16 

Carnia 1227 87 66 18 17 16 16 

Pannar 1659 69 53 21 16 16 11 

RR 1953 75 58 26 18 17 9 

Total 1454 81 64 20 16 16 13 

Note: N = 212; Hlabisa = 97; Simdlangetsha = 115; BR = 35, Bt = 18, Carnia = 34, Pannar = 48, RR = 77 

 

Most of the variation in maize price is between regions, not maize types. Farmers from 

Hlabisa received an average maize price of $0.48 per kilogram
12

, while farmers in Simdlangetsha 

received $0.38 per kilogram of grain (Table 3-20). Green mealies is defined as cobs of maize that 

are harvested prior to drying. A high percentage of green mealies can be an indication of food 

insecurity if households are not able to wait until harvest to eat, but green mealies are also a part 

of households diets. The number of green mealies is included in the final maize yield
13

 (in Table 

                                                 

12 Calculated at the exchange rate of 7.44 Rand per US dollar. 

13
 100 green mealies = 16.7 kilograms of dry grain. Conversion from green mealies to dry grain is as follows: for 

100 green mealies harvested, it was estimated that 3 green mealies is 1 kilogram. Therefore, 100 green mealies is 
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3-21). Producers of GM maize sold significantly more maize than non-GM producers (p = 

0.000). Producers in Simdlangetsha harvested maize more than 20 days later on average than 

producers in Hlabisa, which could be attributed to weather patterns or farm characteristics, as 

farmers planted similar varieties in both regions. 

 

Table  3-20 Maize Price, Percent of Green Mealies, Insecticide, Days to Harvest 

Site SeedType Maize Price
a
 

% of Total Yield 

Harvested as 

Green Mealies  

% of Producers 

Who Sold Grain 

% of Producers 

Who used Post-

Harvest Insecticide 

Days from 

Planting to 

Harvest 

Hlabisa BR .48 5.9 .67 .00 164 

Pannar .48 12.8 .40 .07 165 

RR .48 5.4 .70 .00 165 

Total .48 6.6 .65 .01 165 

Simdlangetsha BR .38 1.1 .85 .90 192 

Bt .37 1.2 .61 1.00 190 

Carnia .38 1.3 .41 .88 186 

Pannar .38 1.6 .33 .85 187 

RR .38 .9 .40 1.00 182 

Total .38 1.3 .50 .90 188 

Note: N = 212; Hlabisa = 97; Simdlangetsha = 115; BR = 35, Bt = 18, Carnia = 34, Pannar = 48, RR = 77 
aAverage maize price of $0.38 and $0.48 per kilogram is equal to $9.40 and $12.19 per bushel respectively, 1 bushel = 56 pounds 

 

 

 Maize Yield 

 Maize yield was measured in kilograms of maize per hectare, as presented in Table 3-21. 

The mean maize yield across all farms was 1645 kilograms per hectare, with a range of about 

350 to 4350 kilograms per hectare. In Hlabisa, the maize yield of BR, Pannar, and RR are not 

significantly different from each other. In Simdlangetsha, RR maize was significantly higher 

than Carnia (p = 0.003) and BR maize (p = 0.047). 

 

 

 

 

 

                                                                                                                                                             

33.33 kilograms including the cobs; since the cobs make up 50% of the weight, 33.33*0.5 = 16.7 kilograms (Gouse 

2012). 
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Table  3-21 Maize Yield by Region and Maize Type (kilograms/hectare)
a
 

Site SeedType N Mean Median Std. Deviation Minimum Maximum 

Hlabisa BR 15 1910 1953 615 631 2676 

Pannar 15 1788 1864 540 745 2586 

RR 67 1880 1988 577 512 3400 

Total 97 1870 1945 573 512 3400 

Simdlangetsha BR 20 1347 1174 663 569 2631 

Bt 18 1351 1056 892 345 4170 

Carnia 34 1227 1089 551 444 2763 

Pannar 33 1659 1298 1149 444 4362 

RR 10 1953 1864 909 753 3885 

Total 115 1454 1170 877 345 4362 

Total  212 1645 1658 780 345 4362 
aAverage yield in Hlabisa and Simdlangetsha is 29.7 and 23.1 bushels per acre respectively where 1 bushel is equal to 56 pounds. 

  

Comparing farmers who planted GM maize on one plot and non-GM maize on the other, 

removes uncertainty of farmer and farm characteristics, leading to a more concrete analysis. As 

Table 3-22 below shows, GM maize has a yield a little more than 100 kilograms per hectare, but 

this is not significantly different than non-GM maize. 

 

Table  3-22 Maize Yield of Farmers with Two Plots (kilograms/hectare) 

Seed Type N Mean Median Std. Deviation Minimum Maximum 

BR 14 1406 1174 727 569 2631 

Bt 7 1673 1111 1230 709 4170 

Carnia 12 1333 1322 351 680 1872 

Pannar 13 1628 1387 989 444 3684 

RR 4 2116 1896 641 1620 3051 

GM 25 1594 1355 885 569 4170 

Non-GM 25 1487 1377 754 444 3684 

 

 Total Costs and Net Returns of Maize 

 Yield is important for producers in KwaZulu-Natal where a majority of maize is 

consumed at home. In comparing average maize yields of the five seed types, there was little 

significant difference between them. However, biochemical and labor use can have a large 

impact on total costs. GM maize typically has more expensive inputs such as seed or herbicide, 

while non-GM maize has more expensive labor costs. Each maize producer must make the 
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decision of how to allocate their resources between labor and biochemical inputs. The 

assumption is made that each producer will optimize resource use, allocating capital and labor to 

a variety of activities, including livestock, off-farm employment, leisure, or maize production. It 

is also assumed that producers are utility maximizers and will only produce maize if they 

consider it an optimal use of their resources. Examining net returns of the different maize types 

allows for a better understanding of optimal resource allocation among farmers. 

 

 Summary of Biochemical and Mechanical Input Costs 

Biochemical and mechanical input costs, not including fixed costs such as land and 

depreciation of equipment, are presented in Table 3-23. In Hlabisa, GM maize plots had 

significantly higher seed and herbicide costs than non-GM maize, resulting in significantly 

higher total input costs. In Simdlangetsha, non-GM maize also has significantly higher seed 

costs, but total input costs are not significantly different. Insecticide costs are significantly higher 

on non-GM plots, which is expected since Bt and BR maize do not require insecticide. 

 

Table  3-23 Biochemical and mechanical input costs (USD/hectare) 

Site Seed Type Seed Fertilizer  Herbicide  Insecticide  Oxen  Tractor  Total Inputs  

Hlabisa BR 185 98 216 0 32 0 531 

Pannar 124 121 22 0 30 0 297 

RR 169 87 187 0 16 0 458 

 GM    172** 88 192** 0 19 0     471** 

 Non-GM 124 121** 22 0 30 0 297 

Simdlangetsha BR 175 271 106 1 3 54 609 

Bt 151 259 124 0 7 64 600 

Carnia 131 307 123 13 5 65 642 

Pannar 111 280 76 20 3 64 549 

RR 159 247 68 7 11 66 556 

 GM    163** 259 105  2 6 60 595 

 Non-GM 121   290* 100    16** 4 64 596 

Note: N = 212; BR = 35, Bt = 18, Carnia = 34, Pannar = 48, RR = 77; Hlabisa = 97; Simdlangetsha = 115 

**,* Indicates significantly higher at 1% and 5% respectively using a one-sided t-test. 

  

 Labor Summary 

   An even greater difference between GM and non-GM maize varieties is evident when 

comparing labor use by task (Table 3-24). Non-GM maize varieties use significantly higher labor 

than GM varieties except in planting and harvest labor. 
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Table  3-24 Labor by Task (hours/hectare) 

Seed 

Type 

Land 

Preparation Planting Weeding Insecticide Herbicide Top Dress Harvest Total Labor 

BR 27 64 0 0 24 31 72 219 

Bt 17 75 23 0 57 68 87 327 

Carnia 19 76 15 36 64 53 87 350 

Pannar 43 86 127 24 29 44 66 421 

RR 26 89 4 5 21 9 54 207 

GM 25 80 6 3 27 23 63 227 

Non-GM  33* 82    81**    29**    44**    48** 75    391** 

Note: N = 212; BR = 35, Bt = 18, Carnia = 34, Pannar = 48, RR = 77; GM = 130, non-GM = 82 

**,* Indicates significantly higher at 1% and 5% respectively using a one-sided t-test. 

  

 While it is evident that GM maize is labor-saving, Table 3-25 breaks labor into categories 

of family and hired labor in hours per hectare. Non-GM maize plots use significantly higher 

child, male, and female labor than non-GM plots in both Simdlangetsha and Hlabisa (Table 3-

25). Hired labor is significantly higher in Hlabisa for non-GM maize and workgroup labor is 

significantly higher for GM maize. In Simdlangetsha hired and workgroup labor is not 

significantly different between GM and non-GM maize. The reason for higher family labor use 

may be that households with lower opportunity cost of time are more likely not to adopt labor-

saving GM varieties of maize, but this assumption requires further research. 

 

Table  3-25 Family and Hired Labor by Seed Type (hours/hectare) 

Site 

Seed Type Child Male Female Hired Workgroup Total Labor 

Hlabisa BR 2 37 62 39 47 187 

 Pannar 18 153 177 68 20 437 

 RR 2 41 52 22 76 194 

 GM 2 41 54 25    71** 192 

 Non-GM    18**    153**    177**    68** 20    437** 

Simdlangetsha BR 21 47 58 87 28 242 

 Bt 42 70 122 39 54 327 

 Carnia 55 93 115 42 45 350 

 Pannar 75 96 121 59 62 414 

 RR 48 77 103 39 33 300 

 GM 35 62 91 59 39 286 

 Non-GM    65**    94**  118* 50 53    381** 

Note: N = 212; BR = 35, Bt = 18, Carnia = 34, Pannar = 48, RR = 77; GM = 130, non-GM = 82 

**,* Indicates significantly higher at 1% and 5% respectively using a one-sided t-test. 
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Labor cost varies based on activity, as more labor intensive activities like land 

preparation and weeding labor are typically more expensive (Table 3-26). Previous research also 

suggests that spraying labor is also more expensive since spraying takes place during the 

Christmas period in KwaZulu-Natal when labor availability is low (Thirtle, Piesse and Gouse 

2005). The wage rate was only available for 72 maize plots so the remaining plots simply 

received an average wage rate between $0.79 and $0.81 per hour
14

, depending on the region. 

Labor costs are slightly more than one third of total production costs, so their impact on net 

returns is still important. Hired labor is not significantly different between HT and non-HT maize 

plots. However, a two-sided t-test reveals that family labor is significantly different on HT maize 

plots (p = 0.000). 

 

Table  3-26 Family and Hired Labor Costs by Region and Maize Type (USD/hectare) 

Site SeedType Family Labor  Hired Labor  Total Labor  

Hlabisa BR 77 66 143 

Pannar 267 67 335 

RR 73 75 149 

Total 104 73 177 

Simdlangetsha BR 97 89 186 

Bt 179 72 251 

Carnia 202 66 268 

Pannar 224 93 317 

RR 175 55 230 

Total 184 78 262 

 HT 87 75 162 

Non-HT    215** 76    291** 

Note: N = 212; Hlabisa = 97; Simdlangetsha = 115; BR = 35, Bt = 18, Carnia = 34, Pannar = 48, RR = 77; HT = 112, non-HT = 

100 

**,* Indicates significantly higher at 1% and 5% respectively using a one-sided t-test. 

 

 Maize Input and Labor Cost Isoquant 

 As mentioned previously, there is a tradeoff between input and labor use. Producers of 

RR and BR maize appear to value the opportunity cost of labor high, and therefore substitute 

labor with herbicide, insecticide, or seed that allows them to use significantly less labor than 

other varieties. The assumption is made that maize yield is a function of inputs and labor, 

                                                 

14 At the exchange rate of 7.44 Rand per US dollar. 
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similar to the Cobb-Douglas production function assumption that output is a function of capital 

and labor (Orazem 1998). 

 In order to create an isoquant, inputs and labor are normalized by USD per kilogram 

maize. The shape of the isoquant is apparent in Figure 3-3. Producers of BR and RR maize use 

relatively less labor than other producers which is why most of the RR and BR observations 

remain along the left side of the isoquant. Pannar producers on the other hand, are more strung 

out along the bottom, since they substitute labor for biochemical inputs in particular. The 

isoquant also shows producer efficiency; observations that are closer to the outer edges of the 

isoquant are more efficient. Many RR observations are clustered at the bottom along the left edge 

of the isoquant, while a group of Pannar observations are also clustered at the bottom of the 

isoquant, suggesting that these two varieties are very efficient at using biochemical inputs and 

labor respectively to increase maize output.  

 

Figure  3-3 Isoquant of Input and Labor Cost by Maize Type 
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 Maize Net Returns 

 The yield of HT maize was only slightly higher, and not significantly different than non-

HT maize by region (Table 3-27). Since HT maize has higher biochemical costs and much lower 

labor costs than non-HT maize, net returns of HT maize in Simdlangetsha are significantly 

different than non-HT net returns (p = 0.078).
15

 RR maize out-performed all other varieties in 

both regions, due to high yields and low labor costs which outweighed higher seed and herbicide 

costs. BR performed second-best in Hlabisa for the same reasons, and Pannar performed second-

best in Simdlangetsha due to lower input costs.  

 

Table  3-27 Maize Revenue, Cost, and Net Returns across Region and Maize Type 

 Seed Type 

Yield 

(kg/ha) 

Maize Price 

($/kg)
a 

Maize 

Revenue 

($/ha) 

Input Cost 

($/ha) 

Labor Cost 

($/ha) 

Total Cost 

($/ha) 

Net Returns 

($/ha) 

Hlabisa BR 1910 .48 918 531 143 674 244 

Pannar 1788 .48 866 297 335 632 234 

RR 1880 .48 910 458 149 606 304 

 GM 1885 .48 912     471** 148 619 293 

Non-GM 1788 .48 866 297     335** 632 234 

Simdlangetsha BR 1347 .38 512 609 186 794 -283 

Bt 1351 .37 502 600 251 851 -349 

Carnia 1227 .38 463 642 268 910 -447 

Pannar 1659 .38 640 549 317 866 -226 

RR 1953 .38 737 556 230 786 -48 

 GM 1475 .38 555 595 219 814 -259 

 Non-GM 1440 .38 550 596     292**     888** -338 

 Bottom 10% 586 .40 236 536 199 735 -499 

 Middle 80% 1623 .43 713 529 223 752 -39 

 Top 10% 2827 .42 1173 493 246 739 434 

Note: N = 212; BR = 35, Bt = 18, Carnia = 34, Pannar = 48, RR = 77; Hlabisa = 97; Simdlangetsha = 115; GM = 130, non-GM = 

82 

**,* Indicates significantly higher at 1% and 5% respectively using a one-sided t-test. 
aAverage maize price of $0.38 and $0.48 per kilogram is equal to $9.40 and $12.19 per bushel respectively. 

  

 

 As stated previously, the assumption was made that producers will maximize net returns 

against the constraints capital, biochemical inputs, and labor. As can be seen in Table 3-27, the 

                                                 

15
 Net returns are calculated as gross returns less total costs, excluding fixed costs such as land. 
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average producer lost money in Simdlangetsha. This is partly due to lower maize prices received 

by famers in Simdlangetsha. It is also because the full wage rate is applied to both hired and 

family labor, even though non-pecuniary benefits to family labor may exists. Farmers in this 

study are not considered irrational; rather, some farmers may enjoy farming and receive a benefit 

from planting maize which is not captured in monetary units. This implicit price paid for family 

labor appears to have an impact on adoption of HT and non-HT maize (Table 3-26), warranting 

further research. However, the focus of this research is on net returns and attempting to capture 

this implicit labor price is beyond the scope of this study.  

 Producers with two plots also realized higher labor cost and greater loss on non-GM 

compared to their GM plots (Table 3-28). When comparing maize net returns, all GM varieties 

are significantly different than Carnia at 95% confidence level, but only RR is significantly 

different than Pannar at the 90% confidence level. When both regions are combined, GM maize 

net returns are significantly different than non-GM maize (p = 0.000) and that HT maize net 

returns are significantly different than non-HT maize (p = 0.000). This is not a fair assumption to 

make, however, since the number of GM or HT maize plots is not equally distributed between 

the two regions. 

 

Table  3-28 Maize Revenue, Costs, and Net Returns of Producers with two plots
a
 

SeedType 

Maize Revenue 

($/ha) 

Total Inputs 

($/ha) 

Total Labor 

Cost ($/ha) 

Total Cost 

($/ha) 

Maize Net 

Returns ($/ha) 

BR 540 622 196 818 -278 

Bt 623 588 221 809 -186 

Carnia 502 724 309 1032 -530 

Pannar 619 668 330 998 -379 

RR 798 603 245 849 -51 

GM 604 609 211 820 -216 

Non-GM 563 695 320 1014 -451 

Total 584 652 265 917 -334 
aAt the exchange rate of 7.44 Rand per US dollar 

 

 Results of the data overview reveal consistent differences between maize types. 

However, few conclusions can be made without further analysis. As stated earlier, the objective 

of this thesis is to test a set of three hypothesis; that GM maize has higher output, that GM maize 

reduces risk, and that GM maize has lower costs. The following section uses econometric 

techniques to test the first hypothesis that GM maize has higher output. 
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Chapter 4 - Production Analysis 

The objective of Chapter 4 is to test the hypothesis that GM maize has higher output than 

non-GM maize. This chapter provides a technical approach by using econometric techniques to 

capture the variation in production, especially between RR and Bt maize varieties. The first 

section of this chapter provides the functional form and specification of linear and quadratic 

production functions, including a two-step least squares model which accounts for endogenous 

variables. Results of the analysis are presented in the second section, where the RR dummy 

variable stands out as significant and positive. For this reason, split regressions of RR and non-

RR maize plots are used to calculate elasticities of output, which allows for the comparison 

responsiveness of maize output to input use.  

 Production Function Estimation 

Production is defined as the process of turning a given set of inputs into outputs. The 

decision-making is in the hands of farmers, who must decide how to best allocate the limited 

inputs available in order to maximize output, using the information available to them. It is 

assumed that the production function is a representation of the farmers’ technical knowledge; for 

example, farmers understand the effect that one more unit of fertilizer will have on maize output.  

 Functional Form 

A short-run single-output production function as used in this research is represented as, 

    (       |         ) (4.1)  

where y denotes the quantity of output and         are variable production inputs and 

          are fixed inputs. Two functional forms, linear and quadratic, are used to describe the 

relationship between dependent and independent variables. This relationship can be described 

using either an ordinary least squares (OLS) or weighted least squares (WLS) regression. 

 Linear Model 

The simplest form is the linear production function, which is specified as, 
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         ∑  

 

   

     ∑      

 

   

     (4.2)  

where    represents the total maize output in kilograms produced by the maize plot i,     is a 

vector representing quantity of input j by maize plot i,     is a vector of dummy variables which 

includes location and maize seed type,              are parameters and    is an error term.  

 Elasticities of Output 

One advantage of the linear model is that running split linear regressions (of RR and non-

RR maize for example), allows for the calculation of elasticities of output. Elasticities of output, 

Ei, are measured as the percentage change in output, Yi, associated with a one percent change in 

input    defined as 

     
   

   
   

  

  
  

    

    
 (4.3)  

where      is the marginal physical product and      is the average physical product, both of 

output  . Elasticities of output are especially useful because they are unit-free which allows the 

comparison of the marginal productivities of multiple inputs (Beattie, Taylor and Watts 2009). 

The summation of elasticities of output with respect to all the inputs is referred to as returns to 

scale,  , also called the function coefficient, defined as 

    ∑
   

    
  ∑  

 

   

 

   

 (4.4)  

where    represents the total maize output in kilograms produced by the maize plot i and     is a 

vector representing quantity of input j by maize plot i.  The function exhibits constant returns to 

scale (CRS) if    . This indicates that the function is homogenous of degree one in inputs; if 

all inputs are doubled, output will double. 

 Quadratic Model 

The quadratic model builds on the simplicity of the linear model, allowing for a more 

realistic representation of the relationship between the dependent and independent variables. 
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Squared and interaction terms between inputs allow for curvature in the production function. The 

quadratic model functional form is represented as follows, 

         ∑  

 

   

     ∑      

 

   

 ∑ ∑          

 

   

 

   

    (4.5)  

where notation is the same as the linear production function (see equation 4.2) with the inclusion 

of a vector of interaction and squared terms, denoted by        representing quantity of input j 

and input l used on maize plot i. The quadratic equation also includes the additional parameter 

    which estimates the effect of the interaction and squared terms. To control for 

heteroscedasticity, a quadratic weighted least squares (WLS) regression is also provided. 

 Two-Stage Least Squares (2SLS) 

Least squares models assume that inputs in the production function are exogenous, 

although this is typically not be the case. Endogenous independent variables which are correlated 

with the error term are common when estimating production functions, and should be accounted 

for. The functional form of a least squares model which includes endogenous variables can be 

defined as, 

        ∑  

 

   

               (4.6)  

where      is a vector representing all independent exogenous variables j, and     represents the 

endogenous variables k which are correlated with the error term   . In this case, the least squares 

models will produce inconsistent coefficients β and   (Cameron and Trivedi 2009).  

The two-stage least squares (2SLS) method is the most efficient instrument variable (IV) 

estimator, used for controlling for endogenous variables to provide unbiased estimates 

(Wooldridge 2002). First, variables can be tested for endogeneity using the Durbin-Wu-Hausman 

test. Once an endogenous variable is detected, instrumental variables defined by    , of plot   and 

input  , are used to correct for the endogeneity bias. Instrumental variables that are chosen must 

be correlated with     and satisfy the assumption that  (  |   )     

 The first step of the 2SLS procedure is to regress the endogenous variable     on 

exogenous variables from the least squares equation and appropriate instrumental variables. The 

first-stage regression equation is defined as 
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  ̂       ∑  

 

   

     ∑  

 

   

         (4.7)  

 

where  ̂   is the endogenous variable which is correlated with    , a vector of instrumental 

variables. The vector of exogenous variables is defined by     and the error tern is   . In the 

second-stage regression, the same variables as those in the original model are used, with the 

replacement of the endogenous variable,    , with the predicted value of the endogenous 

variable,  ̂   (Cameron and Trivedi 2009, Wooldridge 2002). 

 Model Specification 

The linear and quadratic production models presented in this section are based on a 

typical set of inputs. Maize output is a function of independent variables as presented in the 

following equation: 

 

                (                                                            

                                                                    ) 

 

Inputs include labor, fertilizer, herbicide, seed, land, and land preparation cost. Since an 

increase in each of these inputs except for land preparation cost should lead to higher maize 

output, the value of the coefficient is expected to be positive. Dummy variables are used to 

capture differences based on region and maize type. To simplify analysis, and capture the effects 

of the RR and Bt technologies, only dummy variables for RR and Bt maize are included. Since 

BR maize includes both technologies, it is included in both dummy variables (Table 4-1). The 

remaining variables – assets, experience with herbicide, and education – are farmer 

characteristics which are used in the two-step least squares estimation as instrumental variables 

to reduce endogeneity bias of independent variables. Table 4-1 on the following page presents a 

description of variables used in the OLS, WLS, and 2SLS production models. 
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Table  4-1 Description of Variables Used in the Production Models 
Variable Description Unit 

Maize Output Total kilograms of maize harvested Kilograms 

Labor Total family and hired labor Hours 

Fertilizer Total kilograms of fertilizer Kilograms 

Herbicide The total liters of herbicide used both before and after 

planting 

Liters 

Seed Total kilograms of seed planted Kilograms 

Land The estimated area in hectares for each plot Hectares 

Land Preparation Cost The total cost to prepare land, including the use or hiring 

of both oxen and tractors 

US Dollars (2010) 

Hlabisa Dummy The dummy takes a value of one if the region is Hlabisa, 

and zero if the region is Simdlangetsha 

1= Hlabisa 

0= Simdlangetsha 

Roundup Ready Maize 

Dummy 

If the maize seed has the Roundup Ready trait, the 

dummy takes a value of one. This includes both RR and 

BR (stacked) maize 

1= Roundup Ready 

maize 

0= non-Roundup 

Ready maize 

Bt Maize Dummy If the maize seed is Bt, the dummy is one, including 

both Bt and BR (stacked) maize 

1= Bt maize 

0= non-Bt maize 

Assets Total assets of the household for each plot, a majority 

which is livestock assets such as cattle, goats, sheep, 

chickens, and donkeys. Also included are farm assets 

such as planters and plows 

US Dollars (2010) 

Experience Using 

Herbicide  

The number of years that producers reported using 

herbicide to control weeds on maize plots in the past  

Years 

Education Dummy Education dummy takes a value of zero if the head of 

household has had no formal education, and one if the 

head of household has had at least a primary education 

1= Primary education 

at least 

0= No formal 

education 

 

The summary statistics presented on the next page in Table 4-2 reveal that there is a large 

variation in maize output and input use between the different maize plots.  One of the reasons is 

that the plot size varies from 0.17 to 1.5 hectares, but there is also large variation in the amount 

of inputs that producers used on a per hectare basis (see Chapter 3). 
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Table  4-2 Descriptive Statistics of the Variables Used in the Production Models 

Variable Units N Mean Median Std. Deviation Minimum Maximum 

Maize Output Kilograms 212 754 637 526 89 4600 

Labor Hours 212 127 109 74 30 537 

Fertilizer Kilograms 212 93 100 59 0 500 

Herbicide Liters 212 4.5 4.0 2.5 0 10 

Seed Kilograms 212 7.9 5.0 3.8 3 25 

Land Hectares 212 .48 .37 .23 .17 1.50 

Land Preparation 

Cost 

US Dollars (2010) 212 21 20 19 0 101 

Hlabisa Dummy 1= Hlabisa 

0= Simdlangetsha 

212 .46 - - 0 1 

Roundup Maize 

Ready Dummy 

1= Roundup Ready 

maize 

0= non-Roundup 

Ready maize 

212 .47 - - 0 1 

Bt Maize Dummy 1= Bt maize 

0= non-Bt maize 

212 .25 - - 0 1 

Assets US Dollars (2010) 212 8031 5735 7999 104 31931 

Experience Using 

Herbicide  

Years 212 3.5 4.0 2.0 0 10 

Education Dummy 1= Primary education 

at least 

0= No formal 

education 

212 .67 - - 0 1 
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 Results 

 Estimation of Production Function using OLS and WLS 

Table 4-3 presents the regression results using least squares estimates with maize output 

in kilograms as the dependent variable
16

. Both linear and quadratic models are used to explain 

the relationship between maize output and input use, while controlling for region and maize type 

using dummy variables. As seen in Chapters 4, RR maize appears to be the preferred variety by 

risk averse farmers; therefore, the RR maize dummy variable is of particular interest in this 

section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 

16
 A model with maize output per hectare was also run to reduce heteroscedasticity, but results were basically 

unchanged. 
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Table  4-3 Regression Results of Production for All Maize Plots 

 
OLS - Linear 

 

OLS - Quadratic 

 

WLS - Quadratic 

  Coef.   

Std. 

Err. 

 

Coef.   

Std. 

Err. 

 

Coef.   

Std. 

Err. 

Intercept -336.32 *** 109.6 

 

-167.63 

 

233.9 

 

-52.32 

 

202.3 

Labor 3.26 *** 0.5 

 

2.73 * 1.6 

 

1.77 

 

1.4 

Fertilizer 1.35 * 0.8 

 

-0.58 

 

2.4 

 

-1.19 

 

2.2 

Herbicide 0.28 

 

13.0 

 

39.45 

 

40.6 

 

23.14 

 

34.6 

Seed -26.16 

 

20.6 

 

-33.72 

 

59.8 

 

5.22 

 

55.2 

Land 993.56 *** 324.1 

 

1976.90 * 1024.8 

 

1702.90 * 888.3 

Land Prep Cost 1.27 

 

2.6 

 

-13.20 * 6.8 

 

-15.28 ** 6.0 

Hlabisa Dummy 308.83 *** 91.9 

 

154.65 

 

98.2 

 

88.13 

 

83.7 

RR Dummy 217.27 *** 74.6 

 

137.45 ** 80.6 

 

131.61 * 69.8 

Bt Dummy -12.24 

 

65.4 

 

-4.90 

 

56.6 

 

5.39 

 

48.4 

Labor
2
 

    

-0.02 *** 0.0 

 

-0.02 *** 0.0 

Fertlizer
2
 

    

-0.02 

 

0.0 

 

-0.02 

 

0.0 

Herbicide
2
 

    

-4.72 

 

4.2 

 

-4.39 

 

3.9 

Seed
2
 

    

-7.13 

 

9.0 

 

-5.76 

 

9.5 

Land
2
 

    

-6420.40 *** 2437.6 

 

-4988.20 ** 2352.5 

Land Prep Cost
2
 

    

0.06 

 

0.1 

 

0.02 

 

0.1 

Labor*Fertilizer 

    

0.02 

 

0.0 

 

0.02 

 

0.0 

Labor*Herbicide 

    

0.49 *** 0.2 

 

0.48 ** 0.2 

Labor*Seed 

    

-0.58 ** 0.3 

 

-0.56 * 0.3 

Labor*Land 

    

12.32 ** 5.7 

 

12.61 ** 5.6 

Labor*Land Prep Cost 

    

0.11 ** 0.0 

 

0.10 ** 0.0 

Fertilizer*Herbicide 

    

-0.08 

 

0.3 

 

-0.03 

 

0.3 

Fertilizer*Seed 

    

0.49 

 

0.5 

 

0.32 

 

0.6 

Fertilizer*Land 

    

-13.89 

 

8.4 

 

-13.08 

 

8.9 

Fertilizer* Land Prep Cost 

    

0.11 * 0.1 

 

0.13 * 0.1 

Herbicide*Seed 

    

-21.84 ** 8.8 

 

-19.62 ** 8.9 

Herbicide*Land 

    

254.85 

 

160.6 

 

209.39 

 

158.4 

Herbicide* Land Prep Cost 

    

-0.47 

 

1.3 

 

-0.18 

 

1.2 

Seed*Land 

    

541.73 * 285.1 

 

422.44 

 

289.8 

Seed* Land Prep Cost 

    

0.33 

 

1.4 

 

0.92 

 

1.5 

Land* Land Prep Cost         -26.77   22.2   -33.57   23.3 

N 212 

   

212 

   

212 

  R-squared 0.47 

   

0.68 

   

0.87 

  Adjusted R-squared 0.45 

   

0.62 

   

0.85 

  Breusch-Pagan 138.8 *** 

  

25.1 *** 

  

4.6 ** 

 F-value 19.9       12.6       41.4     
***,**,* Indicates significantly different than zero at 1%, 5% and 10% respectively. 
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 Interpretation of OLS Linear Model 

The results of the OLS linear model show that labor, fertilizer, and land are all significant 

and positive; thus, they all have a positive marginal impact on maize output as expected. For 

example, for each additional hour of labor, it is estimated that maize output increases by 3.26 

kilograms. The coefficients on the Hlabisa and RR maize dummy variables are also positive and 

significant, and are interpreted as follows; maize output on RR maize plots are expected to be 

217 kilograms higher than non-RR maize output all else held constant.
17

 A one-sided t-test is 

used to determine if the output difference is positive. The null hypothesis, H0: RR = 0, is tested 

against the alternative hypothesis, H1: RR > 0. The null hypothesis is rejected, suggesting that 

RR maize plots have a significantly higher output than non-RR maize plots (p = 0.002). The 

Shapiro-Wilk W test for normality is required to run valid hypothesis testing, and is thus a good 

determinant of the robustness of these results. The null hypothesis of normal distribution rejected 

(p = 0.000), suggesting that the results of the hypothesis test are not robust. Even without 

normality, the OLS estimates are still unbiased, however, since an OLS regression only requires 

that the error term is identically and independently distributed (Chen, et al. 2003). The Bt 

dummy variable is not significant in any regression, which is because the benefits from Bt maize 

are realized when pest pressure is high (Gouse et. al 2006). In this production season, pest 

pressure appears to be very low as 98% of farmers reported that there were either “no worms” or 

“a couple worms.”
18

 

Several statistical tests were performed to test the robustness of the linear model. The 

first test was to check for multicollinearity using the variance inflation factor (VIF). The VIF for 

the slope of coefficient j is simply         (     
 )   The VIF reveals that the linear model 

has an acceptably low level of multicollinearity, since the VIF values for each coefficient were 

below 10. Next, the Breusch-Pagan test was used to check for heteroscedasticity with the null 

hypothesis that the variance of the residuals is homogenous. Using chi-squared distribution of the 

test statistic, the chi-squared value was 138.8 (p = 0.000) revealing heteroscedasticity in the 

model. Finally, the regression specification error test (RESET) was used to test for functional 

                                                 

17 100 kilograms is equal to 3.93 bushels of maize at 56 pounds per bushel maize, and average yield is 29.6 bushels per maize 

plot. 

18
 A dummy variable for no-till was included in all three models, but is not presented as it does not contribute to the R-squared 

value and thus goodness of fit of the model. The p-values in all three models were 0.553, 0.268, and 0.616 respectively. 
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form misspecification. Since the linear model failed the test (p = 0.000) it is expected that the 

relationship between the independent variables and output is not linear, and a quadratic model 

may be more appropriate (Chen, et al. 2003, Greene 2003).  

 OLS Quadratic Model  

The quadratic model has a higher R-squared value which shows that it better explains the 

relationship between maize output and the independent variables. The signs on the coefficients 

are once again as expected, except for land preparation costs which is negative. Labor is positive 

and significant, while labor squared is negative, showing diminishing marginal returns from 

labor. Labor interaction terms are mostly significant and positive. 

An F-test was used to test the significance of the squared and interaction terms. The F 

statistic is 5.47, which shows that these terms are significant at the 1 percent level. This reveals 

that the squared and interaction terms help to better explain the relationship between maize 

output and the independent variables. The impact of the Hlabisa and RR dummy variables is 

smaller than the linear model, but still relatively large, positive and significant. Just as the linear 

model, the quadratic model failed the Breusch-Pagan test for heteroscedasticity (p = 0.000), 

indicating that it may be necessary to run a WLS model.  

 WLS Quadratic Model 

To control for heteroscedasticity, a weighted least squares quadratic regression is used to 

provide more efficient coefficients. To determine which variable is causing heteroscedasticity, 

the residuals of the error term are plotted against the independent variables. A graphical 

representation shows that land is obviously the variable causing heterskedasticity in the model; 

in other words, as land size increases, the variance in output also increases. The 

heteroscedasticity of the land term is explained by the assumption that small plots are easy to 

manage, and outputs are consistent. As plots get larger, they are either more difficult to manage 

or farmers are achieving higher outputs by specializing in maize production, creating greater 

variance in maize output. To control for heteroscedasticity, the model is weighted proportionally 

to the log of squared residuals of land and land squared; therefore, observations with smaller 

variance receive a larger weight and have a greater influence in the estimates (Greene 2003).  

Although results show that the WLS quadratic model has a higher R
2 

value, this is not 

particularly informative as the WLS model is not a great measure of goodness-of-fit. More 
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importantly, the WLS estimators are very similar from the OLS estimators, and many of the 

same coefficients are significant in both models. The WLS quadratic model also failed the 

Breusch-Pagan test for heteroscedasticity. In the presence of heteroscedasticity, coefficients in an 

OLS or WLS model are still unbiased or consistent. The null hypothesis, H0: RR = 0, is tested 

against the alternative hypothesis, H1: RR > 0 using a one-tailed t-test. The null hypothesis is 

rejected, suggesting that RR maize plots have a significantly higher output than non-RR maize 

plots (p = 0.030) in the WLS model as well. 

 Estimation of Production Function with Additional Variables 

In this section, several additional variables which measure farmer characteristics are 

added to the production function to explain changes in output. The additional variables are 

assets, formal education, and experience using herbicide. Assets includes farm and livestock 

assets, and is a measure of farmers wealth or physical capital; it is expected that as a farmers 

wealth increases so does their ability to purchase inputs in larger quantities which lowers the 

total costs. Producers with higher education and more experience using herbicide have higher 

social capital, and are able to make a more informed decision when purchasing inputs. By 

including variables which capture assets, the model with additional variables provides a quasi-

fixed long run approach to estimating a production function. Results are presented in Table 4-4. 
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Table  4-4 Regression Results of Production Function with Additional Variables
a
 

 
OLS - Original 

 

OLS - Additional 

variables 

  Coef.   

Std. 

Err. 

 
Coef.   

Std. 

Err. 

Intercept -336.32 *** 109.6 

 

-608.52 *** 125.61 

Labor 3.26 *** 0.5 

 

3.60 *** 0.54 

Fertilizer 1.35 * 0.8 

 

1.37 * 0.76 

Herbicide 0.28 

 

13.0 

 

-10.09 

 

13.02 

Seed -26.16 

 

20.6 

 

-30.45 

 

19.91 

Land 993.56 *** 324.1 

 

935.73 *** 312.65 

Land Prep Cost 1.27 

 

2.6 

 

1.39 

 

2.55 

Hlabisa Dummy 308.83 *** 91.9 

 

406.37 *** 92.37 

RR Dummy 217.27 *** 74.6 

 

183.88 ** 74.03 

Bt Dummy -12.24 

 

65.4 

 

-47.34 

 

63.67 

Assets 

    

0.01 ** 0.00 

Experience using Herbicide     37.42 ** 15.28 

Formal Education     168.55 ** 65.27 

N 212 

   

212 

  R-squared 0.47 

   

0.52 

  Adjusted R-squared 0.45 

   

0.49 

  Breusch-Pagan 138.8 *** 

  

109.2 *** 

 F-value 19.9   

  

17.7 

  ***,**,* Indicates significantly different than zero at 1%, 5% and 10% respectively. 
aAverage output of 754 kilograms per maize plot. 

 

Linear models are used for the purpose of simplicity. Several coefficients change in the 

model with additional variables. The Hlabisa coefficient increases and the RR coefficient 

decreases, but both remain highly significant. All three additional variables are significant at the 

5% level, and all have a positive impact on maize output. For each additional $1000 in assets, the 

model with additional variables estimates that maize output will increase 10.4 kilograms. The 

assets coefficient captures livestock including oxen, and farm machinery, both which increase 

productivity of the farmer and explain the additional output expected as assets increase. It is 

expected that farmers with more experience using herbicide and formal education are more 

efficient, or are timelier in the application of inputs, thus increasing output. The model with 

additional variables explains output slightly better than the original model with an adjusted R-

squared or 0.49 compared to an adjusted R-squared of 0.45 in the original model. The VIF test 

reveals that there is not multicollinearity, but there is still heteroscedasticity with additional 

variables using the Breusch-Pagan test (p = 0.000). 
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 Estimation using 2SLS to Control for Input Endogeneity 

One issue of estimating the production function directly is that inputs are treated as 

exogenous. In reality, there could be endogenous variables for several reasons. First, farmers are 

deciding the level of input use; for example, a farmer may decide to apply herbicide midway 

through the maize production season if weed pressure is high. Second, farmer characteristics that 

are not observed such as include farmer motivation, education, experience, and access to 

services, could also have an impact on maize output.  

Endogenous variables are independent variables which are correlated with unobserved 

determinants of the dependent variable that are in the error term. Endogeneity can be controlled 

by using suitable instrument variables, which are used to explain variation in the endogenous 

varaible. If endogeneity is not severe, the least squares estimator is more efficient; however, it is 

important to test for endogeneity since it leads to biased and inconsistent coefficients (Shankar 

and Thirtle 2005).  

 Two-Stage Least-Squares (2SLS) Model 

The Durbin-Wu-Hausman test is used to test for endogenous variables. The first step is to 

regress the expected endogenous variable on the instrument variables as well as the rest of the 

independent variables. The residual of the “endogenous” variable is then included in the original 

regression. The null hypothesis of no correlation between the “endogenous” variable and the 

error term is rejected if the residual term is significant. The next step is determining appropriate 

instrumental variables, which must be correlated with the endogenous explanatory variables but 

not the dependent variable (and thus the error term). Once suitable instrumental variables are 

determined (those which explain variation in the endogenous variable), a two-stage least-squares 

model will correct for the endogenous input. Since heteroscedasticity was present in previous 

models, the 2SLS models are presented with heteroscedasticity-robust standard errors (Cameron 

and Trivedi 2009). 

Previous literature reveals that endogeneity is often a problem with pesticide use, since it 

may be applied in response to production shocks such as high weed pressure (Shankar and 

Thirtle 2005). The Durbin-Wu-Hausman test reveals that herbicide is an endogenous variable (p 

= 0.005). A learning curve is expected with farmers using herbicide, and thus as years of 

experience using herbicides increases, so does a farmer’s ability to more effectively control 
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weeds, leading to higher output. Years of experience using herbicide is shown to be a good 

estimator (p = 0.000), so it is used as an instrument variable in the two-stage least-squares 

(2SLS) model. Linear models were run for the sake of simplicity and to directly compare the 

impact of the 2SLS models on inputs. Results in Table 4-5 show that the adjusted R-squared 

value is 0.17 which is much lower than our OLS model and land is no longer a significant 

variable (p = 0.275). Instead herbicide is significant with a very large coefficient. The Hlabisa 

and RR dummy variables are still significant and larger than in the OLS model. 

 

Table  4-5 Regression Results of 2SLS and OLS Production Functions
a
 

  OLS - Linear   2SLS – herbicide
b
   2SLS – labor

c
 

  Coef.   

Std. 

Err. 

 
Coef.   

Std.
 

Err.
d
 

 
Coef.   

Std. 

Err.
d
 

Intercept -336.3 *** 109.6 

 

-710.6 * 211.1 

 

5.3 

 

221.5 

Labor 3.3 *** 0.5 

 

4.9 *** 58.3 

 

-0.4 

 

2.1 

Fertilizer 1.4 * 0.8 

 

1.0 

 

1.0 

 

2.1 

 

1.0 

Herbicide 0.3 

 

13.0 

 

128.6 ** 1.0 

 

-26.3 

 

20.4 

Seed -26.2 

 

20.6 

 

-56.4 

 

28.3 

 

-7.0 

 

25.0 

Land 993.6 *** 324.1 

 

493.7 

 

451.0 

 

1360.9 *** 410.5 

Land Prep Cost 1.3 

 

2.6 

 

2.9 

 

3.2 

 

0.1 

 

2.9 

Hlabisa Dummy 308.8 *** 91.9 

 

371.0 ** 115.2 

 

215.9 

 

113.6 

RR Dummy 217.3 *** 74.6 

 

332.0 *** 103.8 

 

38.9 

 

127.2 

Bt Dummy -12.2   65.4 

 

-86.4 

 

86.0 

 

6.4 

 

73.2 

N 212 

 

    212       212     

R-squared 0.47 

   

0.21 

   

0.35 

  Adjusted R-squared 0.45 

   

0.17 

   

0.32 

  F-value 19.9 ***   

 

13.94 *** 

  

12.91 *** 

 ***,**,* Indicates significantly different than zero at 1%, 5% and 10% respectively. 
aAverage yield is 1645 kilograms per hectare or 29.6 bushels per maize plot as 100 kilograms is equal to 3.93 bushels at 56 pounds per 

bushel. 
bInstrumented variables for herbicide are; experience with herbicide 
cInstrumented variables for labor are: assets , formal education, and experience with herbicide 
dHeteroscedasticity-robust standard errors 

 

 

Land is also expected to be an endogenous variable, whereas hectares of land increases 

output increases as well. It is predicted that total assets may be a proper instrumental variable, 

since it affects the ability of farmers to obtain credit to purchase inputs. Formal education 

(completing primary school) could also be an explanatory variable, as better educated farmers 

can read labels, gain knowledge more easily, and better manage larger plots of land which could 

all lead to higher output. Using the Durbin-Wu-Hausman test, it is determined that land is indeed 
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an endogenous variable (p = 0.000). An F test reveals, however, that assets and formal education 

are not good predictors of variation in output for land (p = 0.668). Since no proper instrumental 

variables are available, it is not possible to correct for the endogeneity problem for land.   

Finally, labor is also expected to be an endogenous variable since farmers who use less 

labor may have a much higher return of output on their labor if they are spraying herbicide rather 

than weeding. Also, farmers can make the decision to invest more time in their maize plot during 

the production season in order to improve maize output. The Durbin-Wu-Hausman test indicates 

that labor is an endogenous variable (p = 0.041) and an F-test reveals that assets, and formal 

education, and experience using herbicides are all good instruments for labor (p = 0.001). Results 

of the two-stage least-squares (2SLS) model in Table 4-5 show that the adjusted R-squared is 

0.32 which is lower that then OLS regression and that many variables that were significant in the 

OLS model are no longer significant, aside from fertilizer and the Hlabisa dummy variable. 

  Estimation of Split Production Functions: RR and Non-RR Maize 

Results of the previous models using the full sample show that the RR maize output is 

significantly higher than non-RR maize output. The interpretation of the difference between RR 

and non-RR maize is somewhat limited, however, since the RR dummy variable simply shifts the 

intercept (between 131 and 217 kilograms per maize plot). Splitting the regression by RR and 

non-RR maize plots shifts both the intercept and the slope, which reveals bias in the response of 

maize types to inputs. Results of the WLS and OLS models are presented in Table 4-6. 
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Table  4-6 Production Function Regression Results of RR and Non-RR Maize Plots 

 
OLS - RR 

OLS - Non 

RR OLS - RR OLS - Non RR WLS - RR WLS - Non RR 

 
Linear Linear Quadratic Quadratic Quadratic Quadratic 

  Coef.   Coef.   Coef.   Coef.   Coef.   Coef.   

Intercept 157.9 

 

-377.2 

 

-692.0 

 

55.8 

 

-636.2 

 

66.7 

 Labor 3.7 *** 3.7 *** -1.2 

 

4.3 * -1.9 

 

3.2 

 Fertilizer -3.2 ** 2.7 ** 12.1 

 

1.5 

 

9.6 

 

1.2 

 Herbicide -50.6 

 

-6.9 

 

217.4 

 

106.2 * 202.0 

 

82.0 

 Seed 16.8 

 

-15.8 

 

-88.3 

 

107.0 

 

-50.0 

 

99.0 

 Land 1074.9 *** 278.3 

 

1265.8 

 

-1609.5 

 

1224.4 

 

-447.9 

 Land Prep Cost -0.4 

 

5.1 

 

-7.0 

 

-32.8 ** -6.8 

 

-37.8 *** 

Hlabisa Dummy 187.9 

 

261.4 

 

487.3 ** 143.2 

 

456.1 ** 53.0 

 Labor
2
 

    

0.0 

 

-0.0 *** 0.0 

 

-0.0 *** 

Fertlizer
2
 

    

0.1 

 

-0.0 ** 0.1 

 

-0.0 * 

Herbicide
2
 

    

-39.1 

 

-7.3 

 

-36.9 

 

-6.0 

 Seed
2
 

    

16.5 

 

-35.7 ** 17.5 

 

-36.7 * 

Land
2
 

    

-6116.6 

 

-19465.2 *** -5324.4 

 

-16497.2 *** 

Land Prep Cost
2
 

   

0.3 

 

0.1 

 

0.1 

 

0.1 

 Labor*Fertilizer 

    

-0.0 

 

-0.0 

 

-0.0 

 

-0.0 

 Labor*Herbicide 

    

0.4 

 

0.5 

 

0.5 

 

0.4 

 Labor*Seed 

    

-0.3 

 

-0.4 

 

-0.6 

 

-0.2 

 Labor*Land 

    

7.2 

 

25.8 ** 10.3 

 

21.0 * 

Labor* Land Pre 

    

0.2 

 

0.1 

 

0.2 * 0.1 

 Fertilizer*Herbicide 

    

1.3 

 

-0.5 

 

1.6 

 

-0.4 

 Fertilizer*Seed 

    

-2.1 

 

1.6 * -2.3 

 

1.6 * 

Fertilizer*Land 

    

-10.0 

 

-23.4 

 

-6.3 

 

-29.5 

 Fertilizer*Land Prep 

   

-0.0 

 

0.3 ** 0.0 

 

0.3 ** 

Herbicide*Seed 

    

-49.1 

 

-23.7 * -43.3 

 

-18.5 

 Herbicide*Land 

    

638.7 

 

701.0 *** 515.6 

 

625.4 ** 

Herbicide*Land Prep 

   

-0.9 

 

-5.5 ** -1.3 

 

-5.6 ** 

Seed*Land 

    

455.9 

 

1426.4 ** 372.7 

 

1273.1 ** 

Seed*Land Prep 

    

-1.0 

 

-4.9 

 

-0.1 

 

-3.5 

 Land*Land Prep         -13.2   120.4   -21.0   85.4   

N 112 

 

100 

 

112 

 

100 

 

112 

 

100 

 R-squared 0.41 

 

0.54 

 

0.57 

 

0.8 

 

0.62 

 

0.97 

 Adjusted R-squared 0.37 

 

0.50 

 

0.43 

 

0.8 

 

0.50 

 

0.96 

 Breusch-Pagan 10.6 *** 70.9 *** 22.7 *** 9.4 *** 26.8 *** 0.82 

 F-value 10.1   15.2   4.0   11.4   4.9   79.4   

***,**,* Indicates significantly different than zero at 1%, 5% and 10% respectively. 
aAverage yield is 33.0 and 25.8 bushels per plot for RR and non-RR maize respectively; 100 kilograms is equal to 3.93 bushels at 56 pounds 

per bushel. 
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 Interpretation of OLS Linear Split Model 

Table 4-6 contains the results the linear and quadratic models of RR and non-RR maize 

plots. Results of the linear OLS RR maize model show that labor and land increase maize output, 

but fertilizer negatively impacts output. On the other hand, in the non-RR model, both labor and 

fertilizer increase output. The VIF tests reveals that the RR linear model has an acceptably low 

level of multicollinearity, but in the non-RR model both land and seed have a VIF value of 14.30 

and 10.25 respectively which is a higher VIF value than what is considered acceptable. This 

indicates that a quadratic regression may be a better fit for non-RR maize since it includes 

interaction variables. The Breusch-Pagan test for the RR and non-RR model have a chi-squared 

value of 10.61 (p = 0.011) and 70.86 (p = 0.000), revealing heteroscedasticity in both linear 

models. The regression specification error test (RESET) shows that the RR linear model is a 

good functional form; it is well specified with an F-value of 0.75 (p = 0.526) while the non-RR 

model is not a good fit as the F-value is 9.18 (p = 0.000).  

Another advantage of running split models is that it allows testing to see if coefficients 

are significantly different between RR and non-RR maize plots. To test whether the coefficient 

of labor is significantly different between the two models, a new variable RR*labor is created. 

RR*labor tests the null hypothesis                             which is not rejected (p = 0.264) 

suggesting that labor does not have a significantly different impact on output between RR and 

non-RR maize plots. The same hypothesis test is used on all the coefficients, and only fertilizer is 

significantly different between the two models (p = 0.005). 

 OLS Quadratic Split Model  

The RR maize quadratic model has a higher R-squared value but the only significant 

variable is the Hlabisa dummy variable. However, the added interaction and squared terms are 

jointly significant at the 10% level using an F-test (p = 0.081). In the non-RR model, many of the 

squared and interaction terms are significant, and an F-test reveals joint significance of the added 

terms (p = 0.000). Both the RR and non-RR quadratic model failed the Breusch-Pagan test for 

heteroscedasticity, with a p-value of 0.000 and 0.002 respectively. 

As in the linear model, the null hypothesis                              is used to test 

whether coefficients are significantly different between the RR and non-RR regressions. 

Interaction terms are created for the labor squared and interaction terms, and a Wald F-test is 

used to test the joint significance. Somewhat surprisingly, the F-test fails to reject the null 
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hypothesis (p = 0.192) indicating that the coefficient on labor is not significantly different 

between the RR and non-RR models. While the linear regression found only fertilizer to be 

significantly different, the quadratic model shows that none of the coefficients are significantly 

different between the RR and non-RR models (Cameron and Trivedi 2009, Chen, et al. 2003).  

 WLS Quadratic Split Model 

Due to heteroscedasticity in previous models, a weighted least squares (WLS) quadratic 

regression is used to provide more efficient estimates. Land is once again the variable creating 

heteroscedasticity; it is assumed that small plots are easy to manage, and output is consistent. As 

plots get larger, they are either more difficult to manage or farmers are achieving higher output 

by specializing in maize production, creating greater variance in maize output. Once again the 

model is weighted proportionally to the log of squared residuals of land and land squared, where 

observations with smaller variance receive a larger weight and have a greater influence in the 

estimates (Greene 2003).  

Estimates in the RR model are similar to the OLS model with one more significant 

coefficient, but in the non-RR model there are several less significant variables. The F statistic 

testing the significance of the squared and interaction terms is 1.82 (p = 0.029) in the RR model 

and 5.18 (p = 0.000) in the non-RR model. The RR model fails the Breusch-Pagan test for 

heteroscedasticity as the chi-squared value was 26.78 (p = 0.000) while the non-RR model passes 

the test with a 0.82 (p = 0.366), revealing that there is not heteroscedasticity in the WLS non-RR 

model. 

 Elastisities of Output of RR and Non-RR Maize 

In the RR and non-RR least squares models, it is not possible to compare the coefficients 

and their impact on output directly, since inputs are measured in various units such as hours, 

kilograms, and hectares. Elasticities of output on the other hand, which are calculated at the 

mean value of the independent variable, are unitless. 
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Table  4-7 Elasticities of Output Derived from OLS Linear Production Function 

 

RR 

 

Non-RR   

Labor 0.41 *** 0.82 *** 

Fertilizer -0.35 *** 0.44 ** 

Herbicide -0.11 

 

-0.14 

 Seed 0.12 

 

-0.20 

 Land 0.61 *** 0.33 

 Land Prep Cost -0.04   0.10   

Returns to Scale 0.64 *** 1.36 *** 
***,**,* Indicates significantly different than zero at 1%, 5% and 10% respectively. 

Note: N = 212; RR = 112, non-RR = 100 

 

Elasticities of output presented in Table 4-7 are interpreted as follows: a 1 percent 

increase in labor on RR plots will result in a 0.41 percent increase in output. On non-RR plots, a 

1 percent increase in labor will result in a 0.82 percent in output.
19

 The delta-method was used to 

calculate standard errors, which reveal that both output elasticities of labor are significant. This 

suggests that all farmers, but particularly those who are planting non-RR maize, are using less 

labor than they should in order to maximize maize output. This begs the question why farmers 

are not using more labor, especially with RR maize, if the expected returns to output are so high. 

The intuitive answer is that there is a labor constraint; either labor is not available or too 

expensive. This is an important issue that is investigated further when considering cost in 

Chapter 6. 

The elasticity of output with respect to land for RR maize plots is 0.61, which suggests 

that RR maize producers should expand in size to optimize maize output. This can be expected, 

as RR maize requires less labor, and thus less time, allowing farmers to manage a greater area. 

The output elasticity of land for non-RR maize plots was 0.33, but not significant. The output 

elasticity of fertilizer is negative for RR plots, and positive for non-RR plots, suggesting that 

non-RR plots can increase maize output if they increase fertilizer use, while RR plots already 

receive enough fertilizer. This is somewhat surprising, as overall fertilizer use is well below the 

                                                 

19
 Elasticities of output are calculated as   (  ) (  )     , where both   is the input and   is the 

output calculated at their mean values. Therefore, different mean input values between RR and non-RR maize will 

impact our results. The mean value of labor is 98 hours for RR maize and 159 hours for non-RR maize (Table 3-24). 

As the value of labor increases, the value of the elasticity of output with respect to labor also increases. 
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suggested level as reported in Chapter 3 (Mkhabela 2004, Manson n.d.). The elasticities of 

output presented in this research are estimated at the mean of the independent variables. 

Although ranges of elasticities may be more appropriate, concavity cannot be assumed. 

Therefore, the results are not largely applicable outside this study (Just 2000). 

Returns to scale, called the function coefficient, is simply the summation of all elasticities 

of output. The function coefficient     for RR maize plots is 0.64 and significant (p = 0.000), 

which shows that returns to scale are decreasing (both average and marginal). The null 

hypothesis that       is rejected using a joint F-test (p = 0.002), suggesting that there is not 

constant returns to scale. A function coefficient value less than 1 and greater than zero suggests 

that maize is in stage two production, where increasing input use will increase maize output, but 

at a decreasing rate. The function coefficient         for non-RR maize plots
 
is 1.36 which 

represents increasing average returns to scale while marginal returns to scale are increasing or 

decreasing. A joint F-test fails to reject the null hypothesis that           (p = 0.488), 

indicating constant returns to scale for non-RR maize producers. A function coefficient greater 

than 1 suggests that non-RR maize is in stage one of production. For example, if inputs are 

doubled on non-RR maize plots, output will more than double (Beattie, Taylor and Watts 2009).  

Both function coefficients     and        are positive, indicating that maize producers 

should increase input use to maximize maize outputs. For RR maize, the elasticity of land is the 

largest positive value, so the best way to increase output on RR maize plots is to increase land 

size. For non-RR maize, labor is the most elastic input, indicating that increasing labor use is the 

best option to increase output for non-RR maize plots. Previous literature suggests that producers 

have access to an unlimited supply of land, while the labor supply is more constrained due to 

high levels of HIV/AIDS and migration of agricultural workers to urban centers (Gouse, Piesse, 

et al. 2009). Therefore, based on the results from the 2009-10 season, farmers using RR maize 

have the most potential to increase output by expanding the size of their maize plots. 
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Chapter 5 - Risk Analysis 

Chapter 5 provides a more technical approach which compliments initial results in 

Chapter 3 which shows that producers of GM maize use significantly higher labor per hectare 

compared to non-GM maize, resulting in significantly higher costs in Simdlangetsha. This 

chapter tests the second hypothesis that GM maize reduces risk as compared to non-GM maize. 

In the first section, stochastic dominance techniques are used to compare maize yield and maize 

net returns of all five maize types in both regions. Then stochastic efficiency with respect to a 

function (SERF) compares the net returns of different maize types across a range of absolute risk 

aversion coefficients, assuming that producers are risk averse.  

Motivation for this chapter lies in the supposition that maize production, not unlike other 

agricultural activities, is a game of risk. At planting, many uncertainties still exist for a farmer, 

such as rainfall, wind, temperatures, pest pressure, disease, and weed density, some of which 

cannot be controlled and all which have an impact on final production. For smallholders who 

lack risk mitigation tools such as insurance or their own safety net of cash reserves, the risk of 

failure is even greater.  For smallholders who rely heavily on maize yield for consumption such 

as those in KwaZulu-Natal, failure to produce an ample harvest could mean inadequate caloric 

intake and reduced productivity, or inability to pay loans or send children to school. Therefore, 

risk assessment is vital for the long term success of any new agricultural technology, including 

GM maize.  

 

 Stochastic Dominance Analysis 

 The subjective expected utility (SEU) hypothesis states that to assess risky alternatives, it 

is necessary to know the shape of each decision maker’s utility function. A risk averse decision 

maker will have a concave utility function while a convex function is indicative of a risk seeking 

individual. To precisely compare two or more risky technologies using SEU hypothesis would 

require the elicitation of utility functions, or risk preferences, from each producer. Elicitation of 

utility functions has been used in analysis of risk in agriculture previously using SEU hypothesis 

in the past, but with rather unconvincing results (Hardaker, et al. 2004). Since individual risk 

preferences are usually unknown and can be difficult to attain, approaches like stochastic 

dominance are frequently used. Stochastic dominance compares at least two risky alternatives 
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that are mutually exclusive and assumes that the distribution is representative of the entire 

population.  

 Methodology 

 The concepts of first-degree stochastic dominance (FSD) and second-degree stochastic 

dominance (SSD) were first introduced by Hadar and Russell (1969) and Hanoch and Levy 

(1969). First-degree stochastic dominance simply assumes that producers prefer higher net 

returns to lower net returns, and that decision-makers have absolute risk aversion with respect to 

wealth between the bounds       ( )     (Dillon and Anderson 1990, Hardaker, et al. 

2004). Absolute risk aversion,   ( ), is defined as  

 
  ( )   

    ( )

  ( )
 (5.1)  

where   ( ) is the first derivative of the specified utility function, and    ( ) is the second 

derivative of the utility function. If there are two probability functions f(x) and g(x), cumulative 

distribution functions (CDFs) F(x) and G(x) are created by ordering observations of both yield 

and net returns from smallest to greatest, and assigning cumulative probabilities from 0.0 to 1.0 

to each observation. FSD occurs only if F(x) always lies to the right of G(x).  

 
 ( )   ∫  ( )   ∫  ( )    ( )

 

  

 

  

 (5.2)  

 If F(x) and G(x) cross and no FSD can be determined, the integration of F(x) and G(x) is 

used to determine whether there is second-degree stochastic dominance. Second-degree 

stochastic dominance, like FSD, assumes that more is preferred to less. It is more restrictive in 

that it assumes that decision-makers are risk averse for all values of x, meaning the slope of their 

utility function is concave. Therefore, the absolute risk aversion with respect to wealth is bound 

between     ( )     (Hardaker, et al. 2004). This second assumption is to be expected in 

smallholder agriculture, where it is assumed that a majority of decision-makers are risk averse. 

Second-degree stochastic dominance occurs if the area under F(z) is smaller than the area under 

of G(z) as presented in equation 5.3 (Moss 2010, Hardaker, et al. 2004). 

  ( )  ∫  ( )   ∫  ( )  
 

 

 

 

  ( ) (5.3)  
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 Literature Review 

 Several studies compare yield distribution using stochastic dominance techniques.   

Shankar, Bennett, and Morse (2007) use stochastic dominance to determine the impact of Bt 

cotton yield and net returns on risk. Three years of data is analyzed from smallholders planting 

Bt and non-Bt cotton in Kwazulu-Natal, South Africa. Cumulative distribution functions are 

derived using the probability distribution of both yield and net returns for Bt and non-Bt cotton. 

In all three years, the CDF of Bt cotton yield is to the right of the non-Bt CDF, which confirms 

that Bt cotton is first-degree stochastic dominant, suggesting that Bt is a superior technology. 

The CDF of Bt cotton profits are also first-degree dominant in the first two years of analysis, but 

in the third year it is neither FSD nor second-degree stochastic dominant (SSD). Shankar 

concludes that while Bt cotton reduces the probability of very low-yield outcomes, it does not 

necessarily reduce it strongly enough to reduce the probability of very low-returns outcomes. 

 Barrett et al. (2004) uses stochastic dominance to compare yield distributions of 

traditional and intensive rice cultivation methods. The intensive cultivation method (SRI) is first-

degree stochastically dominant to the conventional (SRT) method in both yield and labor 

productivity. However, the study concludes that stochastic dominance may be misleading since 

FSD assumes that any differences among alternatives is a result of only different technologies 

and chance, while farmer or plot characteristics may also influence final yield. 

 Shively (1999) uses stochastic dominance analysis to compare maize plots with and 

without hedgerows, which are used primarily to control erosion. The yield CDFs cross twice, 

eliminating the possibility of first-degree stochastic dominance, and failing to exhibit second-

degree stochastic dominance. Shively concludes that differences in factors such as input levels, 

plot characteristics, or farming practices may provide a better explanation for differences in yield 

distributions, and must be controlled using econometric approaches.  

 

 Results 

 Stochastic dominance compares at least two technologies that are mutually exclusive and 

assumes that the distribution is representative of the entire population. First-degree stochastic 

dominance is the least restrictive stochastic dominance analysis which only assumes that more is 

preferred to less and that differences between two alternatives come only from technological 

differences and chance.  
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 Yield – Stochastic Dominance 

 Since the mean maize yield is significantly different between regions (p = 0.000), 

Simdlangetsha and Hlabisa are analyzed separately. CDFs were calculated from the probability 

distribution of yields of all five maize types using SIMETAR
© 

developed by Schumann, 

Feldman and Richardson (2011). The CDF of RR maize is to the right of all other varieties until 

it crosses the CDF of Pannar at a cumulative probability of 0.7 where yield is approximately 

1900 kilograms of maize per hectare (Figure 5-1). This is interpreted that RR maize has the 

highest yield 70% of the time, while Pannar has the highest yield 30% of the time. Most 

importantly to risk averse decision-makers, RR maize protects against low yields. Pannar on the 

other hand, appears to be the choice for more risk neutral or risk loving individuals, as it has the 

most potential for high yields. RR maize yield exhibits first-degree stochastic dominance (FSD) 

to Carnia since the CDF of RR maize is below and to the right of the CDF of Carnia at every 

point. 

 

Figure  5-1 Cumulative Distribution Functions of Maize Yield, Simdlangetsha 

 

Note: N = 115; BR = 20, Bt = 18, Carnia = 34, Pannar = 33, RR = 10 

  

Second-degree stochastic dominance, which offers a more restrictive analysis, assumes 

that more is preferred to less. It also states that all producers are risk averse, which is a 

reasonable assumption to make with smallholders (Shankar, Bennett and Morse 2007). RR maize 
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yield is second-degree stochastically dominant to every other maize type in Simdlangetsha 

(Figure 5-1).  

 In Hlabisa, only data on BR, Pannar, and RR was collected, and each variety exhibits 

neither first-degree nor second-degree stochastic dominance (Figure 5-2). Multiple crosses exist 

throughout the entire cumulative density function. As referred to earlier, differences in yield are 

not usually significant between maize varieties. There is a significant difference in the use of 

biochemical inputs and labor, however. For this reason, it is expected that net returns will reveal 

more variation between varieties.  

 

Figure  5-2 Cumulative Distribution Functions of Maize Yield, Hlabisa 

 

Note: N = 97; BR = 15, Pannar = 15, RR = 67 

  

 Net Returns – Stochastic Dominance 

 The usefulness of a comparison of yields between maize types is limited using stochastic 

dominance, since it does not take into account varying cost of biochemical inputs and labor. The 

tradeoff between RR and non-RR maize is especially important, since RR maize seed is more 

expensive, but RR also use significantly less labor by applying herbicide rather than weeding 

their maize plots. Therefore, the comparison of net returns is considered to be the most 

appropriate way to compare difference maize types. 
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 First, maize revenues were calculated for each individual plot, multiplying maize output 

in kilograms by maize price. Since not all households sold grain, no price information was 

available. In that case, the average price from the region was used to calculate maize revenue. 

Then total costs, including inputs and labor, were subtracted from maize revenues to obtain 

maize net returns. Fixed costs such as land or machinery were not included in these estimates. 

Also, since no wage rate was available for family labor, the full wage rate of $0.79 to $0.81 per 

hour in Simdlangetsha and Hlabisa respectively, was used for both hired and family labor on all 

maize plots resulting in many negative net returns. 

 Results presented in Figure 5-3 are similar to yield in both locations, although they are 

more clear and easier to interpret in Simdlangetsha (Schumann, Feldman and Richardson 2011). 

RR maize has higher net returns more than 75% of the time, and Pannar has higher net returns 

about 25% of the time. Since RR maize is to the right of other varieties until a cumulative 

probability of 0.75 is reached, it appears to reduce the probability of low net returns even more 

than it reduces probability of low yields. This assumption is not certain, however, due to the 

general approach of stochastic dominance.  

 

Figure  5-3 Cumulative Distribution Functions of Maize Net Returns, Simdlangetsha 

 

Note: N = 115; BR = 20, Bt = 18, Carnia = 34, Pannar = 33, RR = 10 
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RR maize indicates first-degree stochastic dominance for net returns to Bt, Carnia, and 

BR maize varieties. Another interpretation is that 63% of RR maize producers are expected to 

lose money producing maize, compared to almost 80% of Pannar producers, 90% of Bt and BR 

producers, and nearly 100% of Carnia producers. RR maize is second-degree stochastic 

dominant over all other varieties. 

The shape of the CDFs of net returns for the three maize types in Hlabisa are also similar 

to yield but more difficult to interpret than results in Simdlangetsha due to a lower tail cross of 

BR, Pannar, and RR maize varieties (Figure 5-4). No variety in Hlabisa is either first-degree 

stochastic dominant or second-degree stochastic dominant. Until a cumulative probability of 0.40 

is reached, the CDFs of all three varieties cross continually and stay very close together. RR 

maize has higher net returns at least 50% of the time. Producers that are very risk averse in 

Hlabisa will be indifferent, while producers that are moderately risk averse to risk neutral will 

prefer RR maize. Net returns are higher than $450 per hectare 35% of the time with RR maize, 

but only 16% and 14% of the time for BR and Pannar maize respectively. 

 

Figure  5-4 Cumulative Distribution Functions of Maize Net Returns, Hlabisa 

 
 

Note: N = 97; BR = 15, Pannar = 15, RR = 67 
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 While it can be assumed that farmers that are more risk averse will be more willing to 

adopt RR maize, stochastic dominance allows decision makers to have absolute risk aversion that 

is infinitely negative or positive, meaning that some decision-makers are so risk averse that a 

very small change in yield would result in an extraordinarily large change in utility (Hardaker, et 

al. 2004). Therefore, the more restrictive analysis which stochastic efficiency with respect to a 

function offers is necessary to allow more conclusive conclusions to be made.  

  

 Stochastic Efficiency with Respect to a Function (SERF) Analysis 

 Although first and second-degree stochastic dominance are useful methods for making 

general comparisons of risky alternatives, they are not very discriminating; for example, they 

allow for absolute risk aversion to be infinitely high, meaning that a minute change in yield at the 

lowest observation could be extraordinarily important. This extreme risk aversion is simply 

unrealistic. Stochastic efficiency with respect to a function (SERF) provides a more restrictive, 

and arguably more realistic approach to risk by putting lower and upper bounds on absolute risk 

aversion coefficients. 

 Methodology 

 Stochastic efficiency with respect to a function (SERF) simultaneously compares several 

alternative certainty equivalents (CE) across a range of absolute risk aversion, using graphs to 

show more transparent results.
20

 The certainty equivalent is defined as the amount of net returns 

necessary to make the decision-maker indifferent to the risky alternatives. A higher CE is 

expected for alternatives with higher net returns, and is preferred to a lower CE. The value of the 

certainty equivalent is based on the risk preference of the decision maker, and is 0 for a risk 

neutral individual (Hardaker, et al. 2004). 

 The certainty equivalents are calculated using the inverse utility function. Any type of 

utility functions for which the inverse function can be calculated may be used, defined as 

   (   ( ))      (   ( )) (5.4)  

                                                 

20
 Stochastic dominance with respect to a function (SDRF), introduced by Meyer (1977) sets lower and upper 

bounds on absolute risk aversion to   ( )    ( )    ( ). Since SDRF is a bit tricky to use, and does not 

discriminate well between alternatives, stochastic efficiency with respect to a function (SERF) was developed by 

Hardaker et. al (2004). 
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where   represents the level of net returns. A negative exponential utility function, which has 

concave slope, is used to characterize farmers since it is assumed that they are the risk averse. 

The certainty equivalents are calculated from the inverse of the negative exponential utility 

function, defined as  

   (    ( ))    {(
 

 
∑    (   ( )  )

 

 

)

     ( )

} (5.5)  

where the negative exponential utility function assumes constant absolute risk aversion. At each 

level of absolute risk aversion,   ( ), the most utility efficient technology is that with the highest 

CE value. For a utility function U(x), the absolute risk aversion coefficient is within lower and 

upper bounds,   ( )    ( )    ( ). These bounds are determined by the known relationship 

between absolute and relative risk aversion,   ( )    ( )  . Relative risk aversion,   ( ), is 

measured as a range between 0 and 4, where   ( ) = 0 is risk neutral and 4 is extremely risk 

averse. 

 Then the risky alternatives, in this case F(x) and G(x), are integrated with the inverse 

utility function to determine each certainty equivalent 

 ∫  ( )    ( )   ( )   (5.6)  

where option F(x) is preferred to G(x), as long as the above expression is positive across all 

values of   ( )   

 Risk premiums, which are used to compare risky alternatives, are defined as the 

minimum amount that a decision-maker must be compensated to switch from one alternative to 

another. Utility weighted risk premiums can be calculated by subtracting certainty equivalents 

from each other, defined as  

         ( )
       ( )

       ( )
 (5.7)  

where         ( )
 is the positive risk premium between alternative 1 and a less preferred 

alternative 2, at the given absolute risk aversion level of   ( ) (Hardaker, et al. 2004).  

 Literature Review 

 Hardaker, Richardson, Lien, and Schumann (2004) developed stochastic efficiency with 

respect to a function (SERF) in order to simultaneously compare several alternatives across 
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different levels of risk aversion. SERF is a type of stochastic dominance analysis with respect to 

a function that is developed as an alternative to stated expected utility (SEU) analysis which 

requires the elicitation of utility functions from respondents. SEU has been used in analysis of 

risk in agriculture, but with rather unconvincing results. Stochastic dominance analysis places 

fewer restrictions on the utility function, which leads to more general results; for example, first-

order stochastic dominance allows decision makers to have absolute risk aversion with respect to 

wealth that is infinitely negative or positive, signifying that some decision makers are so risk 

averse that a very small change in wealth would result in an extraordinarily large change in 

utility. SERF uses an estimated utility function to calculate certainty equivalents. SERF then 

orders alternatives by levels of certainty equivalents over a range of relative risk aversion, which 

allows comparison of different alternatives based on decision maker risk preferences. 

Williams et al. (2011) apply stochastic efficiency with respect to a function (SERF) 

analysis to determine the preferred strategy of wheat stubble management in south-central 

Kansas, using experiment station and price data from 1997 to 2006. Data was sorted into 

cumulative distribution functions according to the net returns of three different production 

systems used to control wheat stubble; no-till, reduced-till, and burning. Certainty equivalents 

(CEs) were then calculated using a negative exponential utility function, with relative risk 

aversion coefficients over a range of 0 to 4, representing risk neutral to extremely risk averse 

preferences of producers. The relative risk aversion coefficients were divided by net worth per 

acre to estimate absolute risk aversion coefficients. Risk premiums are then calculated by 

comparing CE values for each production system. Results show that the net returns between 

2006 and 2010 are usually slightly higher for no-till systems than for burning. The highest risk 

premium required to encourage no-till instead of burning wheat stubble is only $3.16 per acre, 

which suggest that only a small policy change could convince farmers to adjust practices.  

 Bryant et al. (2008) use stochastic efficiency with respect to a function (SERF) analysis 

to compare four types of cotton; conventional, Roundup Ready, Bollgard, and stacked gene 

varieties. Yield and production data is collected from field plots from 2001-03 in Southeast and 

Northeast Arkansas and used to calculate net returns, excluding seed costs and technology fees 

associated with the different cotton varieties. Net returns are used to create a cumulative 

distribution function, which is fit to a negative exponential function using absolute risk aversion 

coefficients (ARAC). The ARAC are calculated based on relative risk aversion values of 0.5 to 
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4.0, based on the average wealth for each alternative. Results show that in Southeast Arkansas, 

stacked cotton is preferred over other cotton varieties by at least $34 per acre. In Northeast 

Arkansas, where pest pressure was low during the study period, Roundup Ready cotton was 

preferred to all other varieties. In both cases, the extra seed cost and technology fee is more than 

compensated by the gains in net returns, and widespread adoption of stacked and Roundup 

Ready cotton is expected in Northeast and Southeast Arkansas respectively.  

 

 Results 

 Stochastic efficiency with respect to a function (SERF) analysis was carried out using 

SIMETAR
©

 (Schumann, Feldman and Richardson 2011). The negative exponential utility 

function which assumes constant absolute risk aversion was used to calculate certainty 

equivalents, since it is assumed that smallholders are risk averse. It was assumed that producers 

range from risk neutral to very risk averse, with relative risk aversion values between 0 and 4 

respectively. 

 Since SERF is based on utility, only results comparing net returns are derived. Due to 

regional differences mentioned previously, Simdlangetsha and Hlabisa are examined separately. 

In Simdlangetsha, the range of absolute risk aversion coefficients (ARAC) was calculated by 

dividing the relative risk aversion coefficients of 0.00 and 4.00 by the average net worth of 

producers. Net worth was calculated as farm assets such as plows and planters divided by total 

arable land per farmer (Table 3-2).
21

 Net worth, not including any outstanding debts, is 

calculated as $465 per hectare, resulting in an upper bound ARAC of 0.0086. The range of 

ARAC corresponding to the relative risk aversion coefficients is 0.00 to 0.01 in Figure 5-5 to 

reveal the entire range of expected ARACs. The SERF results from Simdlangetsha show that RR 

maize always has a higher certainty equivalent, represented by the highest line. Since the highest 

CE is always preferred, RR maize is the superior choice, regardless of the risk preference of the 

decision-maker.  

 

 

                                                 

21
 Not included in the estimate of wealth are non-farm assets like televisions and cell phones, and livestock, 

primarily cattle valued at an average of $5380 per household. 
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Figure  5-5 SERF under a Negative Exponential Utility Function for Net Returns 

(USD/hectare), Simdlangetsha 

 

Note: N = 115; BR = 20, Bt = 18, Carnia = 34, Pannar = 33, RR = 10 

 

 The second most preferred choice depends on the risk aversion preference of the 

producer. The value of the risk aversion coefficient where the preference changes, was named 

the breakeven risk root (BRAC) by McCarl (Hardaker, et al. 2004). The BRAC point is where 

the CE curves of Pannar and BR cross, where   ( )          which is equal to a relative risk 

aversion value of 0.37, representing slight risk aversion. Thus, producers with a relative risk 

aversion value between 0.00 and 0.37 will prefer Pannar as their second choice of maize seed to 

plant, while producers who are slightly to extremely risk averse, with RRA values between 0.37 

and 4.00, will prefer BR maize. 

 The difference in value between different CE curves is the risk premium. The risk 

premium is calculated by subtracting the CE of each variety from the CE of BR, the baseline 

variety.  This value of each curve represents the amount of net returns that producers would have 

to be compensated to switch from BR to an alternative maize variety over a continuum of ARAC 

values. Figure 5-6 shows that producers of RR maize of all risk preferences would have to be 

paid over $180 per hectare to switch to BR maize, and almost $500 per hectare to switch to 

Carnia maize. Pannar is the most dynamic variety, as the risk premium varies depending on the 
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producers risk preference. As decision-makers become more risk averse, a higher risk premium 

will be required for them to switch to from RR to Pannar maize. 

 

Figure  5-6 Negative Exponential Utility Weighted Risk Premiums Relative to RR maize 

(USD/hectare), Simdlangetsha 

 

Note: N = 115; BR = 20, Bt = 18, Carnia = 34, Pannar = 33, RR = 10 

 

  Net worth for producers in Hlabisa is calculated as $1607 per hectare, resulting in an 

upper bound ARAC of 0.0025. The range of ARAC corresponding to the relative risk aversion 

coefficients is 0.00 to 0.006 as seen in Figure 5-7. The SERF results from Hlabisa reveal that RR 

maize is once again the superior choice with a higher certainty equivalent, regardless of the risk 

preference of the decision-maker within our expected range of ARACs of 0.00 to 0.0025. 

However, extremely risk averse producers would prefer BR maize. 
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Figure  5-7 SERF under a Negative Exponential Utility Function for Net Returns 

(USD/hectare), Hlabisa 

 

Note: N = 97; BR = 15, Pannar = 15, RR = 67 

 

 The risk premium, the value necessary to convince producers to switch varieties of 

maize, is much lower in Hlabisa as seen in Figure 5-8. Risk neutral RR producers would only 

have to be paid $40 and $65 per hectare to switch to BR and Pannar maize, respectively, but as 

farmers get more risk averse they must be paid less to switch varieties. RR producers that are 

extremely risk averse where   ( )        , representative of a relative risk aversion value of 

4.00, would require only $18 and $40 to switch to BR and Pannar maize. 
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Figure  5-8 Negative Exponential Utility Weighted Risk Premiums Relative to RR maize 

(USD/hectare), Hlabisa 

  

Note: N = 97; BR = 15, Pannar = 15, RR = 67 

 

 SERF gives a clear picture of which varieties are preferred, and results are consistent 

across regions. In both Simdlangetsha and Hlabisa, maize producers prefer RR maize. The 

reduction in labor use clearly outweighs the extra cost of seed, according to the SERF. The race 

for second place is slightly less defined between BR and Pannar maize, but BR maize clearly 

holds an advantage for more highly risk averse producers in Simdlangetsha and for all producers 

in Hlabisa. It appears that certain types of GM maize reduce the risk of low yields and net 

returns, primarily RR maize, but the results are not completely conclusive. 

 Both stochastic dominance and SERF are fairly general approaches to analyze differences 

in yield and net returns of different maize varieties. They assume that differences between 

varieties are simply random or can be explained by the maize type. For example, while the 

stochastic dominance for net returns takes into consideration input and labor costs, it usually 

does not directly account for input quantities and prices or farmer characteristics which may lead 

to different results (Shively 1999). Econometric techniques are required to control for these 

differences. For this reason, the impact of different maize varieties using both production and 

cost function approaches is look at in the following sections.  
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Chapter 6 - Cost Analysis 

The objective of Chapter 6 is to test the hypothesis that GM maize has lower cost than 

non-GM maize using an unrestricted cost function. One advantage of the cost function is that it 

uses input prices, eliminating endogeneity which is a persistent issue in the production function 

estimation in Chapter 4 (Binswanger 1974). The cost function also compliments Chapter 5 on 

risk since the cost function is more restrictive and technical than stochastic dominance and 

SERF, allowing for differences in cost between maize varieties to be teased out.  

The first section of Chapter 6 provides the functional form and specification of a linear 

and quadratic cost function as well as a two-step treatment effects model, using a probit model to 

correct for selectivity bias. Finally, a nonparametric function using a kernel density estimator 

provides a more general graphical representation of the shape of total and average cost as maize 

output increases. 

 Cost Function Estimation 

Using an unrestricted cost function, it is assumed that the production and consumption 

decisions of the household are independent. This assumption suggests that the households will 

seek to minimize cost subject to maize output which is held constant. Therefore, as input prices 

change which are out of the farmers’ control, producers will use different input allocations to 

produce at minimum costs. As with the production functions, both linear and quadratic models 

are used to explain the relationship between total cost and input prices while controlling for 

region and RR and Bt maize types. 

 Functional Form  

A short-run single-output unconstrained total cost function is represented as, 

  ̃   (         ) (6.1)  

where y denotes the quantity of output and         are the input prices of the variable 

production inputs         . The variable  ̃ is defined as the minimum cost producers will use to 

produce   kilograms of maize output, which is held constant (Beattie, Taylor and Watts 2009). As in the 
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production function analysis, both linear and quadratic relationships are used to describe the 

relationship between the dependent variable, total cost, and all other independent variables. 

 Linear Model 

The linear cost function is specified as, 

             ∑  

 

   

     ∑      

 

   

     (6.2)  

where    represents the total cost in US dollars to produce the output of maize plot i,    

represents maize output of plot i,     is a vector representing the price of input j by maize plot i, 

    is a vector of dummies which includes location and maize type represented by d of maize 

plot i, while                are parameters and    is an error term. Shephard’s lemma allows for 

a direct interpretation of the cost function, defined as  

 
   

   
     (6.3)  

where    is the estimated price of input j, and    is the conditional factor demand, or the input 

quantity that minimizes cost holding all else constant. 

 Quadratic Model 

Since it is not expected that the cost relationship is linear, the quadratic model includes 

squared and interaction terms of inputs to allow for curvature. The quadratic model functional 

form is represented as follows, 

 
                 ∑  

 

   

    ∑ ∑          

 

   

 

 

   

∑      

 

   

    

(6.4)  

where    once again denotes total cost, and the other notation is identical to the linear cost 

function in the previous equation. The quadratic model also includes a vector of interaction and 

squared terms, denoted by      for output, and        representing the price of input j and input k 

used on maize plot i, along with the additional parameters   and    . 
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 Treatment Effects Model 

 One hypothesis is tested in this research, is that RR maize has lower costs than non-RR 

maize. The previous equations estimated the effect of RR maize on total cost as follows, 

         ∑  

 

   

              (6.5)  

where    represents total cost, and     is a set of all variables (including dummy variables) except 

    which is the dummy variable for RR maize. The parameter   estimates the impact of RR 

maize. However, if the farmers adopting RR maize are better farmers, the parameter   will 

overestimate the impact of the technology. The treatment effects model is the preferred method 

to correct for this bias. It is a type of Heckman’s two-step estimation procedure, which first 

estimates a probit equation using maximum likelihood, followed by a least squares regression 

(Greene 2003). The treatment effects estimation uses the full sample which is available in our 

data set (both RR and non-RR maize plots). It assumes that there are only two groups of farmers, 

those which use RR maize and those which do not, and the selection of RR maize by farmers is 

not random (Maddala 1983). 

The first step of the treatment effects model is the adoption decision model, estimated 

using a probit equation which controls for self-selection by estimating factors that influence RR 

adoption. It is assumed that farmers choose either RR or non-RR maize, whichever alternative 

minimizes cost at a given level of output. The probit model is defined by the equation 

    
   ∑  

 

   

        (6.6)  

where     = 1 if    
 
 > 0, and 0 otherwise. The vector of all explanatory variables is denoted by 

   ,     is a parameter and    is the error term. If the decision to plant RR maize seed is 

determined by unobservable variables as predicted, the error terms    and    are correlated.
22

 As 

a result, the expected impact of RR maize on total cost is determined by 

                                                 

22
 The error terms are also assumed to have normal distribution. 
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    |         ∑  

 

   

             |      

 ∑  

 

   

             ̂ 

(6.7)  

where   ̂ is the inverse Mills ratio
23

 computed from the estimates of the probit model,    

(equation 6.6) defined as 

   ̂   
 (  )

 (  )
          (6.8)  

where  (  ) is the probability density function,  (  ) is cumulative density function, and 

     ∑   
 
      . The second step of the treatment effects model is to run an ordinary least 

squares model including the inverse Mills ratio,   ̂, in the estimation. If    ̂ is significant, it is 

effectively controlling for selectivity bias, and omitting   ̂ from the previous least squares 

models will create biased estimators    and   (Maddala 1983, Greene 2003, Key and McBride 

2003). 

 Model Specification 

The total cost models in this section are a function of input prices, dummy variables, and 

additional explanatory variables, as demonstrated in the following equation: 

  

            (                                                                   

                                                                           

                        ) 

 

The value on coefficients for prices of labor, fertilizer, herbicide, seed, land, and land 

preparation are all expected to be positive, since an increase in input prices should lead to higher 

total cost. Dummy variables capture differences based on region and maize type, and variables 

                                                 

23
 The inverse Mills ratio is also called the Hazard rate in the treatment effects model. 
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which explain farmer characteristics are used to explain total cost, as well as adoption of various 

maize types.  

Rather than using input quantities, the cost function uses input prices. This requires 

accurate price information which is not easy to collect. Information on prices is missing from 

several variables, including labor and land preparation cost. Labor price was only recorded from 

producers who used hired labor. Therefore, labor price information is only available for 40% of 

maize plots. To deal with the missing labor price, the average was calculated for each region. 

Price only varied slightly, between $0.79 and $0.81 per hour in Simdlangetsha and Hlabisa 

respectively. A similar approach was used to address the issue of missing prices of land 

preparation. In this case, producers who planted their maize no-till did not have land preparation 

prices, which includes only tractor and oxen use. The average price for land preparation of $65 

per hectare was used for these maize plots. Also, since no reliable price information was 

available for land, land area in hectares is used as a fixed factor instead. A description of 

variables used in the cost function is presented in Table 6-1. 

 

Table  6-1 Description of Variables Used in the Cost Models 
Variable Description Unit 

Total Cost The total cost of land, labor, and inputs US Dollars (2010) 

Labor Price The price of labor, both hired and family USD/Hour 

Fertilizer Price The price of fertilizer, including top dressing USD/Kilogram 

Herbicide Price The price of herbicide per liter used both before and after 

planting 

USD/Liter 

Seed Price The price of seed per kilogram USD/Kilogram 

Land The estimated area in hectares for each plot Hectares 

Land Preparation Price The price of land preparation is calculated as the total 

cost per hectare to prepare land for planting, including 

the use or hiring of oxen and tractors 

USD/Hectare 

Maize Output Total kilograms of maize harvested Kilograms 

Hlabisa Dummy The dummy takes a value of one if the region is Hlabisa, 

and zero if the region is Simdlangetsha 

1= Hlabisa 

0= Simdlangetsha 
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(Table 6-1 continued)   

Roundup Ready Maize 

Dummy 

If the maize seed has the Roundup Ready trait, the 

dummy takes a value of one. This includes both RR and 

BR (stacked) maize 

1= Roundup Ready 

maize 

0= non-Roundup 

Ready maize 

Bt Maize Dummy If the maize seed is Bt, the dummy is one, including both 

Bt and BR (stacked) maize 

1= Bt maize 

0= non-Bt maize 

Assets Total assets of the household for each plot, including 

livestock assets such as cattle, goats, sheep, chickens, and 

donkeys as well as farm assets such as planters and plows 

US Dollars (2010) 

Experience Using 

Herbicide  

The number of years that producers reported using 

herbicide on maize plot to control weeds in the past 

Years 

Education Dummy Education dummy takes a value of zero if the head of 

household has had no formal education, and one if the 

head of household has had at least a primary education 

1= Primary education 

at least 

0= No formal 

education 

  

Table 6-2 presents descriptive statistics of the variables. All values are reported in US 

dollars, converted from South Africa Rand to US dollars (USD) at the constant exchange rate of 

7.44 Rand per US dollar.  
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Table  6-2 Descriptive Statistics of the Variables Used in the Cost Models 

Variable Units N Mean Median Std. 

Deviation 

Minimum Maximum 

Total Cost  US Dollars  212 343 313 156 107 1087 

Labor  USD/Hour 212 .80 .79 .15 .39 1.60 

Fertilizer  USD/Kilogram 212 .93 .75 .51 .55 5.03 

Herbicide  USD/Liter 212 13.8 13.8 4.6 4.4 43.7 

Seed USD/Kilogram 212 9.0 9.7 2.2 3.2 14.6 

Land Hectares 212 .48 .37 .23 .17 1.50 

Land Preparation USD/Hectare 212 65 65 19 24 153 

Maize Output Kilograms 212 754 637 526 89 4600 

Hlabisa Dummy 1= Hlabisa 

0= Simdlangetsha 

212 - - .50 0 1 

Roundup Ready Dummy 1= Roundup Ready 

maize 

0= Non-Roundup Ready 

maize 

212 - - .50 0 1 

Bt maize Dummy 1= Bt maize 

0= Non-Bt maize 

212 - - .43 0 1 

Assets US Dollars (2010) 212 8031 5735 7999 104 31931 

Experience Using 

Herbicide  

Years 212 3.5 4.0 2.0 0 10 

Education Dummy 1= Primary education at 

least 

0= No formal education 

212 - - .47 0 1 

 

It is expected that the independent variables will explain total cost better than 

independent variables in the production function. This is because it is assumed that more 

expensive seed and herbicide are also more effective. For example, Roundup, used on RR maize 

plots, is considered a more effective herbicide but it also costs about 50% more than 2, 4-D or 

Atrazine used by non-RR maize producers (Table 6-3). RR seed is also significantly more 

expensive. The hypothesis is that seed and herbicide will have a greater effect on total cost than 

they had on maize output, leading to even greater expected differences between RR and non-RR 

maize in the total cost model. 
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Table  6-3 Comparison of RR and Non-RR Seed and Herbicide Quantity and Price 

 RR Non-RR Total 

Seed    

Seeding Rate (kg/ha) 16.2 17.8 16.9 

Price ($/kg) 10.6 7.2 9.0 

Cost ($/ha) 171 127 150 

Post-emergence Herbicide    

Quantity (L/ha) 5.8 7.5 6.5 

Price ($/L) 16.9 8.4 13.1 

Cost ($/ha) 98 62 84 

Note: N = 212; RR = 112, non-RR = 100 

 Probit Model Specification 

The first stage of the treatment effects model is an adoption decision model, which is 

estimated with a probit equation. The probit model estimates variables that influence RR maize 

adoption, and is described as follows: 

  

    (                 )   (                                        

                                                                       

                                ) 

 

The value of the coefficients Hlabisa, assets, formal education, experiences with 

herbicide, distance to maize plot, and head of household above 60 years are all expected to be 

positive since it is believed that these factors increase the probability of RR maize adoption. The 

coefficient of people in household is expected to be negative. This is because as the number of 

people in the household increase, it is expected that more labor is available, thus discouraging 

producers from adopting RR maize which is labor-saving. The following Table 6-4 presents 

variables included in the probit model, the first step of the treatment effects model. All 

descriptive statistics of the variables used in the probit estimation are presented in Table 6-5 on 

the following page. 
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Table  6-4 Description of Variables Used in the Probit Model to Estimate RR Adoption 
Variable Description/ Expected Effect Unit 

Hlabisa Dummy Location may capture attitudes towards GM crops, availability 

of RR maize seed, or farmer characteristics 

1= Hlabisa 

0= Simdlangetsha 

Assets Total assets are a measurement of wealth; as assets increase, 

farmers may be more likely to purchase RR seed and herbicide, 

which are more expensive than non-RR 

US Dollars (2010) 

Education Dummy Producers with at least a primary education may be more likely 

to adopt a new technology such as RR maize 

1= Primary 

education at least 

0= No formal 

education 

Experience Using 

Herbicide  

As the number of years farmers use herbicide increases, it is 

expected that they become more comfortable with it, thus 

increasing the likelihood that they use RR maize which requires 

regular herbicide applications 

Years 

People in Household RR maize requires significantly less labor; therefore, as the 

number of people in the household increases, the likelihood of 

RR adoption is expected to decrease 

Number of People 

Distance to Maize Plot As the distance to the maize plot increases, it is expected that 

RR maize adoption also increases. This is because RR maize 

allows for no-till which should require fewer trips to the field 

Meters 

Head of Household 

above 60 years 

All people above the age of 60 receive a pension of more than 

$150 a month, a large amount of money relative to the prices of 

maize inputs. 51% of farmers used their pension to purchase 

maize seed; therefore it is expected that those receiving pension 

are more likely to purchase RR maize 

1=Head of 

Household above 60 

0=below 60 
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 Table  6-5 Descriptive Statistics of the Variables Used in the Probit Model for RR maize 

 

 Nonparametric Regression Estimation  

Parametric models require strong assumptions about functional form, homoscedasticity, 

correlation and distribution. For example, the least squares models used previously assume that 

total cost is generated with normal distribution where mean is zero and variance, skewness, and 

kurtosis are all one. Nonparametric models, on the other hand, abandon almost all of the 

assumptions held by parametric models. The result of removing these assumptions is that 

nonparametric models do not provide precise information such as statistical significance; 

however, the information they do provide is extremely robust. This is simply the tradeoff that 

exists between structured parametric and general nonparametric models (Just 2000). Examining 

both parametric and nonparametric models provides different perspectives and produces a more 

robust analysis (Greene 2003). 

 Kernel Density Estimation 

The kernel density estimator is the most common nonparametric method, which fits a 

relationship between   which is maize output, and  , either total or average cost. The 

relationship is local, meaning that separate fitted relationships are determined for different levels 

Variable Units N Mean Median Std. Deviation Minimum Maximum 

Hlabisa Dummy 1= Hlabisa 

0= Simdlangetsha 

212 .46 - - 0 1 

Assets US Dollars (2010) 212 8031 5735 7999 104 31931 

Education Dummy 1= Primary education at 

least 

0= No formal education 

212 .67 - - 0 1 

Experience Using 

Herbicide  

Years 212 3.5 4.0 2.0 0 10 

People in household Number of People 212 6.2 6.0 2.1 1 17 

Distance to maize plot Meters 212 8.5 5.0 9.3 1 60 

Head of household above 

60 years 

1=Head of Household 

above 60 

0=below 60 

212 .51 - - 0 1 
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of  . A bandwidth parameter is used for smoothing. With regards to the cost function, it is 

expected that as maize output increases, total cost increases while average cost decreases. The 

relationship between   and   are represented by a nonparametric regression is specified as 

      ( )     (6.9)  

where    represents the independent variable of observation i, and  ( ) is an unspecified 

conditional mean function, which allows nonlinearity (Cameron and Trivedi 2009, Greene 2003). 

The predicted value of  ( ) at      is a local weighted average of   , where   is a 

vector of all independent variables and    is the mean value of the independent variables at   . A 

greater weight is placed on observations where   , the individual independent variable, is close to 

   and little or no weight when    is far from   . The general form of the conditional mean 

estimating function,  ( ), is defined as 

  ̂(  )   ∑  (    
   )

 

   

   (6.10)  

where the weights   (    
   ) sum over   to one and decrease as the distance between    and    

increases.  

The Epanechnikov kernel weighted regression estimator, used to provide a smoother 

estimate of the conditional mean function, is defined as 

  ̂(    
   )   

∑
 
 

 [
     

 
] 

     

∑
 
 

 [
     

 
] 

   

 (6.11)  

where         (       )          | |   , 0 otherwise. The Epanechnikov kernel function, 

    , creates a smoother estimation by explicitly defining a neighborhood of points that are close 

to    and weighting extreme observations as zero. The choice of a kernel function is not usually 

critical, whereas choosing bandwidth is the more important issue. The bandwidth parameter, 

which controls the smoothness of the estimation, is defined by  . As the bandwidth parameter   

increases, more weight is placed on observations where    is closer to   . This wider bandwidth 

creates more bias in the estimation, but it also creates a smoother function since it reduces 

variance (Cameron and Trivedi 2009, Greene 2003). 
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 Results 

In Chapter 3 it is revealed that non-GM maize has significantly higher labor cost. 

Therefore, it is expected that the reduction in labor will result in cost savings for RR maize that 

are even greater than the output advantage due to a relatively high wage rate in KwaZulu-Natal. 

This section provides results of the least squares models, the treatment effects model, and the 

nonparametric regression analysis. 

 Estimation of Cost Function using OLS and WLS 

The results of the linear and quadratic least squares and the quadratic least squares total 

cost models are presented in Table 6-6, which includes all 212 observations. The variables 

assets, formal education, and experience with herbicide, which attempt to capture physical and 

social capital, are included in Table 6-7.   
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Table  6-6 Regression Results of Cost for All Maize Plots
a 

 
OLS - Linear 

 

OLS - Quadratic 

 

WLS - Quadratic 

  Coef.   

Std. 

Err. 

 

Coef.   

Std. 

Err. 

 

Coef.   Std. Err. 

Intercept -138.92 * 81.43 

 

-2947.07 ** 1287.73 

 

-2839.86 ** 1256.34 

Labor 134.59 *** 30.49 

 

436.95 

 

1207.51 

 

290.77 

 

1190.79 

Fertilizer 237.79 ** 117.88 

 

6558.10 ** 2700.18 

 

6598.81 ** 2621.50 

Herbicide 2.91 ** 1.40 

 

-41.96 

 

29.52 

 

-39.81 

 

29.35 

Seed 14.64 *** 3.24 

 

79.49 * 46.93 

 

75.83 * 43.89 

Land 389.67 *** 26.38 

 

1630.07 *** 557.54 

 

1547.03 *** 541.99 

Land Preparation -0.75 *** 0.27 

 

9.28 * 4.94 

 

9.68 ** 4.67 

Output 0.05 *** 0.01 

 

0.69 *** 0.22 

 

0.61 *** 0.23 

Hlabisa Dummy -168.77 *** 14.40 

 

-187.69 *** 21.57 

 

-170.97 *** 21.18 

RR Dummy -63.83 *** 17.62 

 

-77.67 *** 17.45 

 

-69.60 *** 16.50 

Bt Dummy 6.57 

 

10.60 

 

4.51 

 

9.59 

 

2.90 

 

8.30 

Labor
2
 

    

-28.53 

 

114.71 

 

20.22 

 

117.78 

Fertlizer
2
 

    

-2497.82 ** 965.04 

 

-2617.35 *** 940.96 

Herbicide
2
 

    

-0.02 

 

0.12 

 

0.05 

 

0.12 

Seed
2
 

    

-1.02 

 

0.85 

 

-0.71 

 

0.79 

Land
2
 

    

-334.78 ** 131.05 

 

-277.79 ** 122.35 

Land Prep
2
 

    

-0.01 

 

0.01 

 

-0.01 

 

0.01 

Output
2
 

    

0.00 

 

0.00 

 

0.00 

 

0.00 

Labor*Fertilizer 

    

-802.17 

 

2133.87 

 

-724.69 

 

2148.11 

Labor*Herbicide 

    

11.22 

 

17.72 

 

15.92 

 

18.43 

Labor*Seed 

    

9.01 

 

30.56 

 

-4.16 

 

28.76 

Labor*Land 

    

-110.37 

 

205.27 

 

-83.17 

 

204.30 

Labor*Land Prep 

    

1.35 

 

1.61 

 

1.66 

 

1.44 

Labor*Output 

    

-0.04 

 

0.09 

 

0.00 

 

0.09 

Fertilizer*Herbicide 

    

38.66 

 

47.11 

 

25.31 

 

47.03 

Fertilizer*Seed 

    

-139.56 ** 67.29 

 

-113.63 * 63.51 

Fertilizer*Land 

    

-1124.03 

 

839.65 

 

-1123.13 

 

807.15 

Fertilizer*Land Prep 

    

-12.11 

 

7.96 

 

-13.97 * 7.65 

Fertilizer*Output 

    

-1.05 *** 0.34 

 

-0.99 *** 0.35 

Herbicide*Seed 

    

2.64 *** 0.77 

 

2.26 *** 0.74 

Herbicide*Land 

    

-6.86 

 

7.90 

 

-5.28 

 

7.76 

Herbicide*Land Prep 

    

-0.04 

 

0.11 

 

-0.01 

 

0.10 

Herbicide*Output 

    

0.00 

 

0.00 

 

0.00 

 

0.00 

Seed*Land 

    

-7.16 

 

15.03 

 

-8.34 

 

14.60 

Seed*Land Prep 

    

-0.07 

 

0.14 

 

-0.08 

 

0.13 

Seed*Output 

    

0.00 

 

0.01 

 

0.00 

 

0.01 

Land*Land Prep 

    

-2.07 

 

2.02 

 

-2.49 

 

1.93 

Land*Output 

    

0.24 *** 0.07 

 

0.25 *** 0.08 

Land Prep*Output         0.00 

 

0.00   0.00 

 

0.00 

N 212 

   

212 

   

212 

  R-squared 0.85 

   

0.91 

   

0.93 

  Adjusted R-squared 0.84 

   

0.88 

   

0.91 

  Breusch-Pagan 60.96 *** 

  

39.16 *** 

  

34.90 *** 

 F-value 112.2       43.6       60.3 

  ***,**,* Indicates significantly different than zero at 1%, 5% and 10% respectively. 
aAverage cost is $343 per maize plot 
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 Interpretation of OLS Linear Model 

Shephard’s lemma allows for the direct interpretation of coefficients from the cost 

function. The values of the coefficients are simply the factor demands, conditional on output. For 

example, the coefficient on labor is 135, indicating that it should take 135 hours of labor in order 

to produce the optimal level of output. 

The linear model has a R-squared value of 0.85 and an adjusted R-squared value of 0.84, 

suggesting that the independent variables explain total cost well. The sign on the independent 

variables in the linear model is positive for all input prices except land preparation price and can 

be explained as follows; as the price of labor, fertilizer, herbicide, and seed increases, so does 

total cost. Total cost also increases as land and output increase. Only the land preparation price is 

negative, which suggests that as farmers use more expensive methods of land preparation such as 

tractors, total costs decrease. This because initially investing in better land preparation, saves 

cost in subsequent production activities. 

Only the Bt variable is not significant in the linear model. Similar to results from the 

production models, the coefficients on Hlabisa and RR maize dummy variables are significant 

and negative, indicating that farmers in Hlabisa and those which use RR maize have significantly 

lower costs. A one-sided t-test is set up to test the null hypothesis, H0: RR = 0, against the 

alternative hypothesis, H1: RR < 0. The null hypothesis is rejected, suggesting that RR maize 

plots have a significantly lower total cost than non-RR maize plots (p = 0.000). 

The linear model passes the VIF test with values for each coefficient below 10, revealing 

an acceptably low level of multicollinearity. The Breusch-Pagan reveals heteroscedasticity in the 

model, with a chi-squared value of 60.96 (p = 0.000). Also, the regression specification error test 

(RESET) reveals that the model may be misspecified (p = 0.000). Similar to the production 

function, the Shapiro-Wilk W test for normality rejects the null hypothesis that distribution is 

normal (p = 0.000) in the OLS linear cost function. 

 OLS Quadratic Model  

The quadratic model has an R-squared value of 0.91 and an adjusted R-squared value of 

0.88, slightly higher that the R-squared values of the linear model. The signs on the coefficients 

are as expected, although several significant coefficients are large and have high standard errors. 

Both fertilizer and land have positive linear terms and negative squared terms, indicating 

decreasing marginal costs. The quadratic model also failed the Breusch-Pagan test for 
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heteroscedasticity, with a p-value of 0.000. The F statistic from the F-test is 3.76, which shows 

that these terms are significant at the 1 percent level. This reveals that the squared and interaction 

terms help to explain total cost.  

 WLS Quadratic Model  

Next, a weighted least squares quadratic regression is used to provide more efficient 

estimates by controlling for heteroscedasticity. As in the production model, it is assumed that the 

land term is causing the heteroscedasticity but for a different reason. It is expected that costs are 

higher for small plots which purchase inputs in small quantities, while producers with larger 

plots of maize may purchase their inputs in bulk at lower prices, resulting in lower total costs. 

Therefore, the WLS model is weighted proportional to the log of squared residuals of land and 

land squared. 

 The WLS quadratic model has a high R-squared value of 0.93, but this is not a great 

measure of goodness-of-fit. On the other hand, the WLS estimators are very similar from the 

OLS estimators, and many of the same coefficients are significant in both models. The WLS 

quadratic model also failed the Breusch-Pagan test for heteroscedasticity (p =0.000), although 

coefficients are still unbiased.  

 RR and Hlabisa Dummy Variables 

Of particular interest in these models is the interpretation of the RR dummy coefficient. 

Results show that RR maize is significantly less expensive; from $65 to $78 cheaper per maize 

plot than non-RR maize while obtaining the same output (Table 6-6). Average plot size is one-

half a hectare, or slightly more than one acre. These results are in agreement with results from 

both Chapter 3 and 4 which indicated that RR maize has lower costs than non-RR maize. 

Producing maize is also significantly cheaper in Hlabisa, from $99 to $161 per maize plot 

depending on the model. The reason for this large disparity is unknown, but could capture some 

unobserved regional differences such as soil type or rainfall, or farmer characteristics such as 

motivation.  

  Estimation of Cost Function with Additional Variables 

The initial models only included variables which are expected to have a direct effect on 

total cost. Other variables, such as those that measure farmer characteristics, can also be used to 
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explain differences in cost. Several variables are added to the model; assets, formal education, 

and experience using herbicide. Assets includes farm and livestock assets, and is a measure of 

farmers wealth or physical capital; it is expected that as a farmers wealth increases so does their 

ability to purchase inputs in larger quantities which lowers the total costs. Producers with higher 

education and more experience using herbicide have higher social capital, and are able to make a 

more informed decision when purchasing inputs. Results are presented in Table 6-7. 

 

Table  6-7 OLS Regression Results without and with Additional Variables
a
 

 
OLS - Original 

 

OLS - Additional 

variables 

  Coef.   
Std. 

Err. 
 

Coef.   
Std. 

Err. 
Intercept -138.92 * 81.43 

 

-131.96 

 

82.18 

Labor 134.59 *** 30.49 

 

129.69 *** 30.55 

Fertilizer 237.79 ** 117.88 

 

253.75 ** 118.88 

Herbicide 2.91 ** 1.40 

 

2.88 ** 1.40 

Seed 14.64 *** 3.24 

 

15.13 *** 3.31 

Land 389.67 *** 26.38 

 

387.74 *** 26.80 

Land Preparation -0.75 *** 0.27 

 

-0.75 *** 0.27 

Output 0.05 *** 0.01 

 

0.05 *** 0.01 

Hlabisa Dummy -168.77 *** 14.40 

 

-177.33 *** 15.67 

RR Dummy -63.83 *** 17.62 

 

-63.74 *** 17.60 

Bt Dummy 6.57 

 

10.60 

 

6.51 

 

10.74 

Assets 

    

0.00 

 

0.00 

Experience using Herbicide     0.04  2.44 

Formal Education     -18.63 * 10.54 

N 212 

   

212     

R-squared 0.85 

   

0.85 

  Adjusted R-squared 0.84 

   

0.84 

  Breusch-Pagan 61.0 *** 

  

62.2 *** 

 F-value 112.2 ***     87.0 *** 

 ***,**,* Indicates significantly different than zero at 1%, 5% and 10% respectively. 
aAverage cost is $343 per maize plot 

 

Linear models were used for the purpose of simplicity. The two models are nearly 

identical, with R-squared and coefficient values that barely change. The assets and experience 

using herbicide coefficients are insignificant, while the coefficient on formal education is 

negative and significant and at the 10% level, which confirms our hypothesis that educated 

farmers have lower total costs. The VIF test reveals that there is not multicollinearity, but there is 

still heteroscedasticity with additional variables using the Breusch-Pagan test (p = 0.000). 
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 Estimation of Cost Function using Treatment Effects Model to Control for Selectivity 

Bias 

The previous models show that RR maize has significantly lower total cost. While it is 

expected that the lower cost is a result of the RR technology alone, this result could be biased if 

adopters of RR maize self-select. In other words, if RR maize producers are already better 

farmers than non-adopters, the resulting lower cost cannot be attributed only to the RR 

technology alone. The unobservable characteristics of better farmers would cause the RR dummy 

variable to be endogenous, thus overestimating the effects of the RR trait. It is well known that 

new technologies are not adopted evenly by different producers. Some farmers may have 

superior access to information or credit, or they may have positive (or negative) attitude towards 

GM maize (Crost, et al. 2007, Greene 2003). 

The preferred method used to control for self-selection is to compare maize plots from 

producers that are planting both RR and non-RR maize, although this is not possible due to data 

limitations (only 18 farmers planted both RR maize and non-RR maize). Running separate OLS 

regressions for RR and non-RR maize does not fix the selectivity bias either, since estimators 

will still be inconsistent. The best way to control for selectivity bias with the data available for 

this research is a two-stage treatment effects model. The first stage of the model is an adoption 

decision model, estimated with a probit equation which takes into account factors that influence 

adoption of RR maize. The second stage is the impact model which estimates the impact of using 

RR maize on total cost (Fernandez-Cornejo and Li 2005, Maddala 1983). 

Results from the probit analysis for adoption of RR maize are reported in Table 6-7. They 

show that the probability of adopting RR maize is both significantly and positively influenced by 

both location and experience using herbicide. The positive value of experience with herbicide 

indicates that as farmers gain experience using herbicide and become more comfortable with it, 

they are more likely to adopt RR maize. The signs on the other variables are as expected, but not 

significant. 
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Table  6-8 Probit Analysis Results: Estimation of the Probability of Planting RR Maize 

Variable Coef. 

 

Std. Err. 

Intercept -1.44 *** 0.49 

Hlabisa dummy 1.90 *** 0.29 

Assets 0.00 

 

0.00 

Formal education 0.16 

 

0.28 

Experience with herbicide 0.23 *** 0.06 

People in household -0.03 

 

0.06 

Distance to maize plot -0.02 

 

0.01 

Head of household above 60 years 0.20   0.23 

Number of observations 212 

  Likelihood Ratio test statistic 99.64 *** 

 ***,**,* Indicates significantly different than zero at 1%, 5% and 10% respectively. 

 

In the second step of the treatment effects model, the inverse Mills ratio which was 

computed from the Probit estimates is included in the cost function. The treatment effects model 

is least squares estimation, and it uses the same variables used to estimate total cost in Table 6-6. 

Results are presented in Table 6-9. 

 Interpretation of the Treatment Effects Model  

The first two models presented in Table 6-9 are simply the OLS and WLS presented 

earlier (Table 6-6) for comparison. The third model is a two-step treatment effects model, 

estimated to control for selection bias. The values of most of the coefficients in the least squares 

and treatment effects models are very similar. The herbicide coefficient is significant in the 

treatment effects modle, and the Hlabisa dummy variable is slightly lest but still significant. 

Most notably is the difference in the RR maize dummy variable, which is still significant but 

almost twice as large in the treatment effects model when selectivity bias is taken into account. 

Most importantly, the inverse Mills ratio is positive and significant at the 5% level. The fact that 

it is positive signifies that the previous models underestimated the impact of RR maize on 

reducing total cost. Significance of the inverse Mills ratio indicates that selectivity is an issue 

that needs to be corrected, and that it is being corrected for. The chi-squared value of the Wald 

test statistic was 1851.1 (p = 0.000), revealing that the model significantly explains the 

difference in total cost. 
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Table  6-9 Regression Results of Cost including the Two-Stage Treatment Effects 

 
OLS - Quadratic 

 

WLS - Quadratic 

 

Treatment Effects- 

Quadratic 

  Coef.   

Std. 

Err. 

 

Coef.   

Std. 

Err. 

 
Coef.   

Std. 

Err. 

Intercept -2947.1 ** 1287.7 

 

-2839.9 ** 1256.3 

 

-2353.0 ** 1131.5 

Labor 436.9 

 

1207.5 

 

290.8 

 

1190.8 

 

32.0 

 

1016.2 

Fertlizer 6558.1 ** 2700.2 

 

6598.8 ** 2621.5 

 

5410.8 ** 2356.1 

Herbicide -42.0 

 

29.5 

 

-39.8 

 

29.4 

 

-44.6 * 25.8 

Seed 79.5 * 46.9 

 

75.8 * 43.9 

 

70.8 * 40.9 

Land 1630.1 *** 557.5 

 

1547.0 *** 542.0 

 

1558.1 *** 480.9 

Land Preparation 9.3 * 4.9 

 

9.7 ** 4.7 

 

8.8 ** 4.3 

Output 0.7 *** 0.2 

 

0.6 *** 0.2 

 

0.6 *** 0.2 

Hlabisa Dummy -187.7 *** 21.6 

 

-171.0 *** 21.2 

 

-149.0 *** 25.6 

RR Dummy -77.7 *** 17.5 

 

-69.6 *** 16.5 

 

-162.3 *** 37.4 

Bt Dummy 4.5 

 

9.6 

 

2.9 

 

8.3 

 

7.7 

 

8.6 

Labor
2
 -28.5 

 

114.7 

 

20.2 

 

117.8 

 

-56.1 

 

99.1 

Fertlizer
2
 -2497.8 ** 965.0 

 

-2617.4 *** 941.0 

 

-2243.7 *** 836.6 

Herbicide
2
 0.0 

 

0.1 

 

0.1 

 

0.1 

 

0.0 

 

0.1 

Seed
2
 -1.0 

 

0.8 

 

-0.7 

 

0.8 

 

-1.0 

 

0.7 

Land
2
 -334.8 ** 131.1 

 

-277.8 ** 122.4 

 

-332.2 *** 114.6 

Land Preparation
2
 0.0 

 

0.0 

 

0.0 

 

0.0 

 

0.0 

 

0.0 

Output
2
 0.0 

 

0.0 

 

0.0 

 

0.0 

 

0.0 ** 0.0 

Labor*Fertilizer -802.2 

 

2133.9 

 

-724.7 

 

2148.1 

 

7.1 

 

1771.3 

Labor*Herbicide 11.2 

 

17.7 

 

15.9 

 

18.4 

 

2.2 

 

15.2 

Labor*Seed 9.0 

 

30.6 

 

-4.2 

 

28.8 

 

14.2 

 

25.8 

Labor*Land -110.4 

 

205.3 

 

-83.2 

 

204.3 

 

-28.2 

 

174.4 

Labor*Land Prep 1.4 

 

1.6 

 

1.7 

 

1.4 

 

1.4 

 

1.4 

Labor* Output 0.0 

 

0.1 

 

0.0 

 

0.1 

 

0.0 

 

0.1 

Fertilizer*Herbicide 38.7 

 

47.1 

 

25.3 

 

47.0 

 

52.1 

 

41.8 

Fertilizer*Seed -139.6 ** 67.3 

 

-113.6 * 63.5 

 

-137.7 ** 58.4 

Fertilizer*Land -1124.0 

 

839.7 

 

-1123.1 

 

807.2 

 

-1134.2 

 

709.4 

Fertilizer*Land Prep -12.1 

 

8.0 

 

-14.0 * 7.7 

 

-11.5 

 

6.8 

Fertilizer* Output -1.1 *** 0.3 

 

-1.0 *** 0.4 

 

-0.9 *** 0.3 

Herbicide*Seed 2.6 *** 0.8 

 

2.3 *** 0.7 

 

3.0 *** 0.7 

Herbicide*Land -6.9 

 

7.9 

 

-5.3 

 

7.8 

 

-5.7 

 

7.1 

Herbicide*Land Prep 0.0 

 

0.1 

 

0.0 

 

0.1 

 

-0.1 

 

0.1 

Herbicide* Output 0.0 

 

0.0 

 

0.0 

 

0.0 

 

0.0 

 

0.0 

Seed*Land -7.2 

 

15.0 

 

-8.3 

 

14.6 

 

-11.2 

 

13.2 

Seed*Land Prep -0.1 

 

0.1 

 

-0.1 

 

0.1 

 

0.0 

 

0.1 

Seed* Output 0.0 

 

0.0 

 

0.0 

 

0.0 

 

0.0 

 

0.0 

Land*Land Prep -2.1 

 

2.0 

 

-2.5 

 

1.9 

 

-1.9 

 

1.7 

Land* Output 0.2 *** 0.1 

 

0.3 *** 0.1 

 

0.3 *** 0.1 

Land Prep* Output 0.0   0.0   0.0   0.0   0.0   0.0 

Inverse Mill's ratio
1
                 49.77 **   

N 212       212       212     

R-squared 0.91 

   

0.93 

      Adjusted R-squared 0.88 

   

0.91 

      F-value 43.64 *** 

  

47.39 *** 

     Wald test statistic 

        

1851.13 *** 

 ***,**,* indicates significantly different than zero at 1%, 5% and 10% respectively 
aAverage cost is $343 per maize plot. 
b The inverse Mills ratio, lamda, is also called the Hazard rate in the treatment effects model. 
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This section uses several different cost functions to examine the impact of RR and Bt 

maize on total cost. First, least squares models are estimated which reveal a strong relationship 

between prices, output, and total cost. Little is added with the inclusion of additional variables to 

control for the impact of physical and social capital on total costs. The final cost function is 

estimated taking into account selection bias using a treatment effects model. When controlling 

for selection bias, which is present, the impact of RR maize on total cost increases. 

Each of these cost functions requires assumptions to be made regarding functional form 

and distribution. One assumption is normality which is required for robust hypothesis testing; 

however, the previously mentioned cost functions fail the Shapiro-Wilk W test for normality. 

One way to deal with this situation is to use one final nonparametric approach to analyze the 

impact of maize seed type on total and average cost. The benefit of nonparametric analysis is that 

it discards most of the assumptions made previously by least squares estimations. 

 Nonparametric Regression: Total and Average Cost 

In this section, a nonparametric regression of total and average cost is examined using the 

Epanechnikov kernel density estimator. This provides a very open approach to analyze how total 

and average costs change as maize output increases. It allows the impact of maize seed type on 

total and average cost to be analyzed, while discarding the stricter assumptions of parametric 

least squares techniques. 

 Kernel Density Estimator 

The kernel density estimator is a nonparametric estimation technique which abandons 

most assumptions about functional form and distribution. The nonparametric model shows the 

distribution of values that the random variable takes as opposed to a parametric model which 

produces estimates assuming normal distribution. The kernel density estimator is additive to this 

section since it provides a graphical representation of total and average cost. Regarding the cost 

function, it is expected that as output increases, total cost increases while average cost decreases.  

The distribution of observed total cost has a mean value of $343 and a median of $313, 

meaning that the distribution is positively skewed. This is represented graphically by the 

histogram of total cost in Figure 6-1, which shows that the distribution of total cost is also 

bimodal. Histograms of RR and non-RR total cost also indicate bimodal tendencies (Figures A-1 

and A-2). 
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Figure  6-1 Histogram of Total Cost of All Maize Production (USD) 

 

 

Bimodal distribution of total costs may occur because Bt farmers do not typically use 

herbicide, and non-RR producers do not always use herbicide. Accounting for censoring in 

econometric analysis using a Tobit model may reduce the bias created by the bimodal 

distribution (Mutuc, et al. 2012).  However, a kernel density estimator eliminates the issue due to 

its lack of restrictions.  

In order to estimate total cost nonparametrically, predicted values of total cost were first 

estimated from the split regression of RR and non-RR maize using the WLS quadratic regression 

weighted by land and land squared (Table A-2). Average cost was then calculated by dividing 

the predicted total cost by maize output. One important aspect of the kernel density regression is 

bandwidth, or the width of the bin. As bandwidth size increases so does bias, but variance 

decreases resulting in a smoother estimator. No method exists for determining optimal 

bandwidth; therefore, graphs of total cost and average cost include bandwidth sizes of 100 and 

300 for comparison (Greene 2003). 
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Figure  6-2 Predicted Total Cost of RR and non-RR Maize using Epanechnikov Kernel 

Density Estimators, Bandwidth = 100 

 

 

The results of the Epanechnikov kernel density estimators (bandwidth = 100) in Figure 6-

2 show an expected general trend; as output increases so does total cost. The estimator of RR 

maize appears to follow cost function theory more closely, where total cost will increase at a 

decreasing rate until it reaches the inflection point (considered stage two in production) and then 

begin to increase at an increasing rate as output increases (Beattie, Taylor and Watts 2009). RR 

and non-RR maize total cost curves cross briefly at a output of approximately 1600 kilograms. In 

Figure 6-3, the bandwidth is 300 so the total cost curves are much smoother. It is less obvious 

that the total cost curves follow economic theory. Figure 6-3 reveals that RR maize has lower 

total costs that non-RR maize, except below a output of approximately 200 kilograms.  
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Figure  6-3 Predicted Total Cost of RR and non-RR Maize using Epanechnikov Kernel 

Density Estimators, Bandwidth = 300 

 

 

Average cost is simply the total cost divided by output. Figure 6-4 reveals that as output 

increases, average cost decreases for both RR and non-RR maize, as is expected based on 

economic theory. Once again, both bandwidths of 100 and 300 are presented for comparison. In 

Figure 6-4, it appears that RR maize has overall lower output except at around 1500 kilograms 

where the kernel density estimator of RR and non-RR maize cross. Figure 6-5 is a smoother 

estimation since a higher bandwidth is used to determine the Epanechnikov kernel density 

estimator. 

The results of the kernel density estimation do not provide precise information as 

presented in the total cost models. For example, it is not possible to determine how much lower 

cost are for RR maize at a given point. The results do, however, reaffirms previous results that 

indicated that RR maize has lower costs than non-RR maize. This allows for a visual 

interpretation of the difference between RR and non-RR maize, adding to the robustness of the 

findings in this research. 
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Figure  6-4 Predicted Average Cost of RR and non-RR Maize using Epanechnikov Kernel 

Density Estimators, Bandwidth = 100 

 

  

Figure  6-5 Predicted Average Cost of RR and non-RR Maize using Epanechnikov Kernel 

Density Estimators, Bandwidth = 300 
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Chapter 7 - Conclusion 

The objective of this thesis is to examine the impact that GM maize has on risk, yield, 

and cost on small-scale farmers in two regions in South Africa. Smallholder farmers in Sub-

Saharan Africa remain increasingly susceptible to food insecurity while agricultural productivity 

remains stagnant in the face of challenges such as environmental degradation and climate 

change. The development of pertinent agricultural technology which boost agricultural 

productivity and reduces risk for smallholder farmers must be of upmost importance in the 

strategy for reducing hunger and poverty in the region. The commercialization of GM crops is 

one with large implications for policymakers in Sub-Saharan Africa, where a majority of 

countries remain in limbo on the issue. The impact of GM crops in low-income countries, 

especially in Africa, is poorly researched, leading to assumptions that may or may not be true 

concerning the impact that GM crops may have on smallholders, especially regarding 

agricultural productivity and poverty reduction. Three primary hypotheses were tested: that GM 

maize leads to lower risk of low yield and net returns, that GM maize has higher yields, and 

lower cost. 

The initial overview of data indicates that RR maize offers a technological benefit that is 

not provided by conventionally-bred hybrids. Producers of RR maize pay 47% more per 

kilogram of seed and use 44% less labor per hectare compared to other maize varieties. Due to a 

high HIV/AIDS rate and urban migration of agricultural workers, labor costs are relatively high 

in KwaZulu-Natal, South Africa. Therefore, RR varieties are still 25% and 40% more profitable 

than other varieties in the regions of Hlabisa and Simdlangetsha, respectively.  

One of the objectives of this research is to examine the impact of GM maize technologies 

on smallholder risk. Several methods are used; first, stochastic dominance analysis compares net 

returns of all five varieties in both regions. RR maize is second-degree stochastic dominant to all 

other varieties in Simdlangetsha, while no variety is stochastically dominant in Hlabisa. The 

second method to examine risk is stochastic efficiency with respect to a function (SERF) 

analysis, which considers all maize producers to be risk averse. Results indicate that RR maize is 

the preferred variety for producers over the entire range of risk preferences in both regions. 

While average maize gross returns are $713 per hectare, risk premiums between $18 and $221 
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must be paid to RR maize producers to persuade them to switch to the second-most preferred 

variety, depending on region and farmer risk preference. 

Another objective is to examine the impact of GM maize on yields and profit. 

Econometric analysis, which uses a relatively restrictive approach, compares RR and non-RR 

maize using both production and cost functions. Results indicate that RR maize has a 

significantly higher yield of at least 8%, although the yield gain varies greatly when input 

endogeneity is taken into account. Elasticities of output are calculated from a split regression of 

both RR and non-RR maize. The elasticity of output with respect to land for RR maize producers 

is 0.61, indicating that RR maize producers should expand production onto new land in order to 

increase output. The largest elasticity of production for non-RR producers is labor, with a value 

of 0.82, suggesting that RR maize producers should increase labor use in order to increase 

output. Previous literature reveals an abundant supply of land in KwaZulu-Natal, while the labor 

supply is more constrained which suggests that RR maize producers in KwaZulu-Natal may be 

able to increase output the easiest (Gouse, Piesse, et al. 2009) 

Next, a cost function analysis is used compare the cost of GM and non-GM varieties. 

Results reveal that total costs to produce the same output of maize are 19% lower when using RR 

maize as opposed to non-RR maize plots. The lower cost is most likely from the reduction of 

labor requirements of RR maize. The treatment effects model which controls for selectivity bias 

suggests that total costs for RR maize are up to 47% lower than for non-RR maize plots. 

Nonparametric kernel density estimation also reveals consistently lower total and average costs 

of RR maize, across most levels of output. Overall results reveal that GM maize, particularly RR 

maize, appears to hold strong benefits for smallholders. The benefits over non-RR maize include 

lower risk, higher yields and lower costs, although the results are not unambiguous. 

 Future Research 

The use of GM maize in low-income countries among smallholder farmers has many 

implications that are not examined in this research. One area that should be examined in future 

research is the method used to estimate the impact of GM maize without overestimating its 

effect. This study reveals that controlling for selectivity bias using a treatment effects model 

leads to more consistent estimates. Mutuc, et al. (2012) takes it a step further, revealing that a 

Tobit model which controls for censoring should also be used so that the impact of GM maize at 



107 

 

the farm level is not overestimated. Future research should develop a more robust technique to 

remove this type of bias. One specific challenge is to determine a method to integrate the 25 

farmers with both GM and non-GM maize plots into our econometric estimation.  

In our study, it was revealed that maize producers planting GM maize used significantly 

less total labor, as well as significantly less child, male, and female labor, than producers of non-

GM maize. Future research should provide more quantitative analysis to determine the extent 

that the labor supply is constrained. It should also consider how the adoption rates of GM maize 

are affected by the fact that RR maize is a labor-saving technology. Research should explore how 

RR maize will impact rural employment, and determine in which countries RR maize is most 

suitable for smallholder farmers as well as regions where the technology may not be appropriate.  

Several factors also appear to influence the adoption of GM maize, warranting further 

research. The first is market constraints, as 22% of smallholders in this study were not able to get 

their first choice of seed, of 88% which preferred to buy GM maize seed. Future research should 

identify the source of these constraints, and their impact on adoption of GM maize. The second is 

the implicit price that farmers pay for labor, as non-RR producers use significantly higher 

amounts of labor leading to negative net returns. Assuming rational behavior by producers, this 

leaves some non-pecuniary benefits unaccounted for when estimating net returns which 

influence adoption of RR maize. 

 The results of this research indicate a strong preference for RR maize regarding yield, 

cost, and risk. However, previous research reveals that benefits of GM maize vary greatly 

depending on the year and location, which makes it a challenge to compare the benefits of the 

technology. For example, the average price of Roundup herbicide paid by farmers in the US 

dropped from $42.80 in 2009 to $16.80 in 2011, due to the flooding of generic versions of 

glyphosate (Roundup) on the market (National Agricultural Statistics Service 2011). Therefore, 

further investigation should look into the impact of GM technology on smallholder farmers over 

several years and within different regions. 
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Appendix A - Additional Tables 

Table  A-1 Comparison of Average Prices of Herbicide, Fertilizer, Seed, and Maize in 2009 

 

United States 

KwaZulu-Natal, South 

Africa 

Atrazine (per gallon) $20.80 $32.78 

2, 4-D (per gallon) $19.30 $30.69 

Roundup (per gallon) $42.80 $64.10 

   LAN (per ton) $307.00 $486.00 

   % Premium paid for GM seed 69% 52% 

Maize Price (per bushel May 2010) $4.16  $10.92 

   Average Yield (bushels/acre) 152.8 26.2 
Source: USDA; National Agricultural Statistics Service 
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Table  A-2 Cost Function Regression Results of RR and Non-RR Maize Plots
a
 

 
OLS - Linear RR 

 

OLS - Linear Non-

RR 

 

WLS - Quadratic 

RR 

 

WLS - Quadratic 

Non-RR 

  Coef.   

 

Coef.   

 

Coef.   

 
Coef.   

Intercept -208.74 

  

-91.25 

  

16212.80 *** 

 

-1944.76 

 Labor 161.12 *** 

 

119.17 ** 

 

-8866.64 *** 

 

2687.39 

 Fertilizer 375.85 * 

 

149.62 

  

-26490.83 *** 

 

16.03 

 Herbicide 6.19 *** 

 

-2.63 

  

207.00 *** 

 

84.57 

 Seed 12.22 * 

 

14.43 *** 

 

-336.83 * 

 

1768.12 * 

Land 312.15 *** 

 

450.83 *** 

 

-3171.96 ** 

 

15.54 * 

Land Prep -1.34 *** 

 

-0.30 

  

-119.14 *** 

 

0.43 

 Output 0.02 

  

0.06 *** 

 

0.87 ** 

 

-134.89 ** 

Hlabisa Dummy -207.56 *** 

 

-113.98 *** 

 

-226.41 *** 

 

185.07 

 Labor2 

      

0.56 

  

-2503.30 

 Fertlizer2 

      

-11211.56 *** 

 

1.09 

 Herbicide2 

      

-1.53 *** 

 

0.71 

 Seed2 

      

-2.32 

  

-402.66 * 

Land2 

      

-121.47 

  

-0.01 

 Land Prep2 

      

0.04 

  

0.00 ** 

Output2 

      

0.00 

  

4841.93 

 Labor*Fertilizer 

      

17736.90 *** 

 

-61.35 

 Labor*Herbicide 

      

-60.82 ** 

 

30.73 

 Labor*Seed 

      

-62.69 

  

-259.04 

 Labor*Land 

      

-169.05 

  

-4.36 

 Labor*Land Prep 

      

-1.50 

  

-0.19 

 Labor*Output 

      

0.03 

  

0.72 

 Fertilizer*Herbicide 

      

115.59 

  

-186.23 

 Fertilizer*Seed 

      

842.63 *** 

 

-1175.12 

 Fertilizer*Land 

      

5576.60 ** 

 

-17.49 

 Fertilizer*Land Prep 

      

227.43 *** 

 

-0.45 

 Fertilizer*Output 

      

-2.42 *** 

 

-0.43 

 Herbicide*Seed 

      

-6.89 *** 

 

0.00 

 Herbicide*Land 

      

-26.52 

  

0.14 

 Herbicide*Land Prep 

      

-1.33 *** 

 

-0.01 

 Herbicide*Output 

      

0.00 

  

10.14 

 Seed*Land 

      

6.31 

  

-0.11 

 Seed*Land Prep 

      

-0.38 

  

0.01 

 Seed*Output 

      

0.07 *** 

 

-5.01 

 Land*Land Prep 

      

8.52 *** 

 

0.37 *** 

Land*Output 

      

0.16 

  

0.00 

 Land Prep*Output             0.00 

 

  -1333.02 

 N 112 

  

100 

  

112 

  

100 

 R-squared 0.85 

  

0.89 

  

0.96 

  

0.99 

 Adjusted R-squared 0.83 

  

0.88 

  

0.95 

  

0.98 

 Breusch-Pagan 80.77 *** 

 

22.44 *** 

 

0.46 

  

0.76 

 F-value 70.47     89.45     55.81     130.06   

***,**,* indicates significantly different than zero at 1%, 5% and 10% respectively 
aaverage cost is $343 per maize plot 
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Figure  A-1 Histogram of Total Cost of RR Maize Production (USD) 

 
 

 

Figure  A-2 Histogram of Total Cost of Non-RR Maize Production (USD) 

 


