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I. INTRODUCTION

Since the primary function of the lung is to oxygenate

venous blood and remove carbon dioxide from the same blood, an

automated quantitative technique designed to measure this gas

exchange is very desirable [1]

.

In the past, the researcher and clinician have had to depend

on procedures utilizing oxygen content of the blood and the

oxygen concentration of end-expired gas collected in bags. These

methods allowed for average
2
consumption and C0

2
production and

said nothing about the transient or breath-by-breath changes

involved in the respiratory process [2,3].

Since the advent of computer-controlled instrumentation and

rapidly responding gas analyzers, several researchers have begun

looking at the dynamics involved in the respiratory process as

well as the problems inherent in breath-by-breath measurements

[4-111. Most notable is the research by Creel [11], in which

techniques were developed to study exercise stressed calves on a

breath-by-breath basis.

The studies described in this thesis evolved in an attempt

to not only convert Creel's work from the calf to human subjects,

but also to reorganize both the developed software and hardware

so a more accurate and precise system would result. This thesis

presents an overview of the system, the instrumentation used for

calibration and data acquisition, the system software, the

experimental methods used for system verification, and the

results of those experiments. In addition to these topics, all

system operating procedures are described and complete software

documentation is included in the appendices.



II. GENERAL SYSTEM DESCRIPTION

For the human breath-by-breath respiratory system, five

physiological signals are monitored, namely fractional CO- and 0?

concentrations, respiratory flow, respiratory flow temperature,

and body temperature. With the exception of body temperature,

the mentioned signals (which are converted to electrical analog

signals using various transducers) are converted to their digital

representations using a custom built p.ata Acquisition .Module

(DAM) and passed onto the memory of a desktop computer, the

controller for the entire instrumentation system. Using the

digitized information as well as calibration factors determined

from specially designed calibration procedures, various gas

volumes (air,
2 , and C02 > during both inspiration and expiration

can be determined. By allowing for data windowing, any section

(window) of the collected data can be analyzed.

Conversion of these volumes to both BTPS and STPD conditions

is also possible provided the data analysis routine is supplied

not only with the digitized respiratory signal (which allows for

point-by-point temperature correction) but also with the

barometric pressure, relative humidity, and the subject's body

temperature.

Tabular results are organized so that a single row of the

data lists values for the calculated gas volumes and respiratory

times corresponding to the given breath. Also, average and time-

dependent cardio-pulmonary variables for the analyzed window are

displayed following the breath-by-breath results. These

quantities include inspiratory and expiratory minute volumes,

inspiratory and expiratory tidal volumes, respiratory frequency,



mean inspiratory and expiratory 0_ and CO- volumes, mean 0,

consumed and CO. produced per breath, rates of 0- consumption and

CO, production, respiratory quotient, and total times for

inspiration, expiration, and respiration.

Graphical representation of the windowed data includes four

time domain plots for the fractional CO, and 0, signals, the

respiratory flow signal, and respiratory temperature signal.



III. INSTRUMENTATION FOR CALIBRATION AND DATA ACQUISITION

3.1 Instruments and Interconnects

In order to successfully measure respiratory gases (CO, and

0_) in exercising humans on a breath-by-breath basis a

significant amount of computer monitored equipment is necessary.

Following is a brief description of the basic instruments and how

these instruments are interconnected so as to function in the

proper manner. Refer to Figure 3.1 for a system pictorial.

The heart of the computer controlled system is the HP9826

desktop computer. By utilizing a PASCAL operating system during

the data acquisition process (faster data acquisition is possible

using a compiled language such as PASCAL) and a BASIC operating

system for data analysis, a well controlled respiratory

measurement system is possible. The HP9826 contains memory in

excess of 0.5 Mbytes of RAM allowing for real time data

collection of eight minutes at a 50 Hz sampling frequency.

Acquired data is stored using two mass storage devices, an

HP9895A 8" flexible disk memory and an HP9134A hard disk memory.

These two mass storage devices were selected because of high

speed data storage capabilities (the hard disk) and the

possibility of data portability (the 8" flexible disk)

.

Connection between the HP9826 computer and these mass storage

devices is accomplished via an HPIB interface at select code 7

[12].

A DECwriter II serial printer is currently connected to the

HP9826 computer via an RS-232C link (at select code 9) to provide

hard copy output of analysis results and program listings. Vast

system improvement could be realized in analysis speed if a
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state-of-the-art printer were used in place of the DECwriter II.

Gateno's Data Requisition .Module (DAM) C131 is connected to

the HP9826 using a GPIO 16-bit parallel interface. This

interface provides the signal pathways for controlling and

monitoring the DAM. The reader is referred to Appendix IX for

details of the DAM control and status words. The GPIO interface

is located at select code 12.

Four analog input channels of Gateno's DAM are currently

controlled by HP9826 hardware and software, two of these inputs

(DAM channels A and B) being fractional gas concentrations of CO-

and
2

. These signals are supplied by a Gas Mass Spectrometer

(GMS) (Perkin-Elmer 1100 medical gas analyzer) [14] . These

analog signals supplied by the GMS are proportional to the

instantaneous fractional gas concentration. Associated with the

GMS, however, is a delay time associated with the gas transport

time of the gas sampling capillary and electrical response of the

GMS itself. These delays are corrected by using system software

described in Chapter IV.

Respiratory gas flow is measured using a No. 2 Fleisch

PneumoJachoMeter (PTM) and a Godart Pneumotachograph (PTG) [15] .

The PTM produces a differential pressure across its screen

proportional to the gas flow through the screen. The PTG is

pneumatically connected across the PTM screen and converts this

differential pressure to an electrical analog signal which is

sampled at DAM input channel C. This method of inspiratory and

expiratory flow is known as a closed circuit technique as

mentioned by Creel 111] .

A Hans Rudolf 2-way breathing respiratory mask model series



#7900 E 16] is used to secure the PTM and GMS sampling capillary

to the subject's face, in the region of the mouth and nose. The

masks were designed not only to accommodate the PTHs used but

also to insure leakage and dead space volumes are minimized.

Channel D of the DAM is reserved for measurement of the

respiratory gas temperature. A complete description of the

temperature apparatus may be obtained from Masters [17]

.

Measurement of the respiratory temperature allows for point-by-

point temperature correction of respiratory gas volumes from one

ambient temperature to another.

A Monark bicycle ergometer provides the desired work load

for the human exercise. According to Astrand [18] , bicycling is

a very suitable work form, since, among other things, at a given

load, (submaximal) , it demands about the same energy output,

whether the subject is trained or out of condition, elite

bicyclist or unfamiliar with the sport. With the ergometer

presently being used, work loads from watts (rest) to 500+

watts are possible.

Figure 3.2 shows the overall system layout as it appears in

the Bioengineering Research Laboratory. This particular

organization was chosen because of the short coaxial cable runs

necessary in the analog portion of the computer-controlled

system. It is felt that many of the calibration and operation

problems that existed in Creel's calf studies [11] have now been

eliminated through proper equipment organization.

3.2 calibration Hardware

Additional hardware is needed in order to calibrate the

mentioned instrumentation. To calibrate the Fleisch/Godart flow
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signal, the apparata arrangement as shown in Figure 3.3 is used.

A Harvard Respirator of known stroke volume (see Creel's work

[11] for calibration of respirator) is used to force known

inspiratory and expiratory volumes of air through the PTM. By

integrating the inspiratory and expiratory flow signals as

measured by the DAM and comparing these sums with the known

cylinder volume, flow calibration factors can be determined (see

Chapter V for more details) .

Calibration of the GMS requires the apparata as shown in

Figure 3.4. A 12.9% 0, , 7% CO, (balance nitrogen) gas cylinder

supplies the calibration point for the minimum 0_ level and the

maximum CO- level. Adjustment of the zero suppression box as

well as DAM gain adjustments can be made so the analog signals

produced by the GMS fall within the operating range of the DAM

(see Appendix II for complete details).
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IV. SYSTEM SOFTWARE

4.1 Overview

The respiratory system software was designed around the

HP9826 desktop computer. It (the software) is a combination of

PASCAL and BASIC programs for calibrating, acquiring data, and

analyzing the data. The two programming languages were chosen

because of the speed necessary to control the DAM (PASCAL) and

the ability to alter analysis parameters quickly and with little

or no effort (BASIC). Figure 4.1 shows the typical sequence for

collecting breath-by-breath respiratory information with the

system as it presently exists and the software necessary to

perform the mentioned tasks.

With the use of two different systems, file compatability

between the PASCAL and BASIC operating systems is of great

importance. Figure 4.2 demonstrates how the issue of file

compatability is resolved. Because ASCII files are the only

compatable file types between the two operation systems, creation

of the rather large ASCII files is necessary. ASCII calibration

or data files are created by the PASCAL programs CAP. CODE and

DAP. CODE. The dashed line in Figure 4.2 indicates the separate

operating systems.

To reduce mass storage usage and the time necessary to load

the mentioned files into HP9826 memory from disk, the ASCII files

are crunched (converted to Binary DATa files (BDAT) ) . Once

converted to BDAT files, the respiratory calibration and data

files can be analyzed by ANALYSIS (the breath-by-breath analysis

routine) . What follows is a description of the various software

segments depicted in Figure 4.2.
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4.2 Calibration Software

The PASCAL routine CAP. CODE contains the various procedures

for calibrating the system transducers. CAP. CODE generates an

ASCII calibration file containing calibration factors (numbers

used to convert the binary data collected by the DAM to known

units, i.e. to fractional concentration values or degrees C) and

DC offsets. Creel [11] describes in detail the means by which DC

offsets and calibration factors are determined.

Three procedures internal to CAP. CODE perform the

calibration necessary for the GMS (GASCAL) , the Fleisch/Godart

apparatus (FLOWCAL) , and the respiratory temperature transducer

(TEMPCAL) . Following is a list of the calibration factors and DC

offsets generated by these calibration procedures.

Calibration parameter PASCAL procedu r e

Bin_zero_flow FLOWCAL

Co2_cal GASCAL

Co2_dc_ offset GASCAL

Expr_flow_cal FLOWCAL

Insp_flow_cal FLOWCAL

02_cal GASCAL

02_dc_offset GASCAL

01 GASCAL

Ta TEMPCAL

Tb TEMPCAL

Tc TEMPCAL

For a complete description of these calibration parameters and

thorough CAP program documentation see Appendix VIII.
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4.3 Data Acquisition Software

The software necessary to monitor and control the DAM is

found throughout the PASCAL programs CAP. CODE and DAP. CODE. This

software (located primarily in the procedure DATA_COLLECT) was

written in PASCAL to allow the DAM to be controlled to sampling

frequencies of 350 Hz. In addition to DATA_COLLECT, two 68000

assembly language routines were written to monitor the filatuS.

(STS) bit of the AD574 (Analog-to-D_igital converter (A/D) ) to

determine when the A/D finishes a conversion. These two assembly

language routines were written simply because comparable PASCAL

routines were not fast enough to accurately monitor the STS bit.

Figure 4.3 outlines the procedure used to control and monitor the

DAM. Details of the control and status words for the DAM as well

as complete program documentation for the mentioned software can

be found in Appendices VIII, IX, and X.

Another critical operation performed by the data acquisition

software is the setting of the sampling frequency. This is

accomplished by writing appropriate values to the Intel 8253

programmable interval timer found on the DAM. The PASCAL

procedure CLKSET documented in Appendix VIII determines these

values based upon the desired sampling frequency selected by the

user. Refer to the 1980 Intel Data Catalog [191 for complete

programming instructions on the 8253.

4.4 File Manipulation Software

As mentioned in the software overview section, a certain

amount of file manipulation (conversion from ASCII to BDAT files)

is necessary. The ASCII data and calibration files are needed as

the only compatable file type between the PASCAL and BASIC
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operating systems is ASCII. The conversion of these ASCII files

to BDAT files is done to reduce the amount of mass storage

necessary for a given data or calibration file and also to

increase the speed at which these files can be loaded into memory

which ultimately leads to lower analysis times.

Referring to Figure 4.2, CAP. CODE (the PASCAL system

calibration routine) creates an ASCII calibration file that is

compatible with both the PASCAL and BASIC operating systems on

the HP9134A hard disk. CAPCRONCH (the BASIC calibration file

crunch routine) then converts the ASCII calibration file to a

BDAT file which can then be read by the BASIC analysis routine

ANALYSIS. The larger ASCII file is purged (deleted) and the BDAT

file is stored on the HP9895A 8" flexible disk for maximum data

portability.

In similar fashion, DAP. CODE creates four ASCII data files

(one for each of the four analog input channels) and DAPCRUNCH

crunches these ASCII files to comparable BDAT files for use by

ANALYSIS. Complete software documentation for CAPCRUNCH and

DAPCRUNCH can be found in Appendices XII and XIII respectively.

4.5 Data Analysis and Display Software

The BASIC routine, ANALYSIS, performs those functions on the

respiratory data involved with analyzing (on a breath-by-breath

basis) and displaying of the data collected from exercising

humans. These functions include:

1) Calculation of the total time associated with

the capillary gas transport and GMS response on a breath-

by-breath basis.

2) Calculation of the breath-by-breath 0-
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consumption and CO, production using digitized flow and

fractional concentration signals and appropriate

calibration factors. Windowing of the respiratory data

is possible.

3) Calculation of additional respiratory quantities

based on the digitized respiratory signals (see Appendix

XIV for complete details)

.

4) Calculation and application of correction

factors to compensate for temperature and pressure

differentials between the subject and the environment.

5) Provides plots of the four respiratory signals

(CO-, 0_, flow, and respiratory temperature) using either

the HP9826 CRT (in conjunction with the HP2673A thermal

printer) or the HP9872C 8 pen plotter. Windowing of the

plotted respiratory data is also possible.

Of the functions mentioned, two deserve further explanation.

Capillary gas transport and GMS response is currently corrected

on a breath-by-breath basis. Figure 4.4 depicts the means by

which this variable time delay is determined. The respiratory

flow signal is examined to locate the start of inspiration (the

beginning of inspiration is that point in the flow signal that is

less than or equal to binary zero flow followed by five binary

points less than binary zero flow)

.

Once the beginning of inspiration is found, the CO- signal

is examined to locate the maximum CO. level within the current

breath. The location of this maximum is labeled Tmax in Figure

4.4. That time (or sample point) that corresponds to 1/2 of the

maximum CO- level is then located. This point is labeled Tmid.
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The time (or point) difference is then found between Tmid and

Tmax and this difference is added to Tmid to locate that point on

the CO, signal known as the ending point of integration (Tmax is

also known as the starting point of integration)

.

The time between Tmax and the ending point of integration is

then located where the area below the CO, signal (from Tmax to

the mentioned time) equals the area above the CO, signal (from

the mentioned time to the ending point of integration.

Subtracting from this absolute time the absolute time of the flow

zero crossing yields the time delay for the breath in question.

The previous operation is then performed for each successive

breath. Figures 4.5 and 4.6 depict non-time aligned and time

aligned respiratory signals.

The second function deserving explanation is the calculation

of breath-by- breath respiratory gas volumes. Creel [11] goes

into great detail on how these volumes are computed and how

corrections to STPD and BTPS conditions are possible. To avoid

repetition, the author refers you to his work.

One function that has been added to the human respiratory

research is the possibility of windowing the accumulated data

both in the analysis of the data and the plotting routine. This

addition allows for the analysis of transient exercise phenomenon

as well as steady-state analysis. By selecting the desired

points over which analysis is to take place, ANALYSIS will

perform the mentioned functions only on the window of choice.

Samples of hard copy outputs from an experimental run are

shown in Figures 4.7 and 4.8. Examples of the plotter routine

output can be found throughout this thesis.
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Inspiratory minute volume = -26.8 liters per minute

Expiratory minute volume = 26.3 liters per minute

Inspiratory tidal volume - -1.1153 liters

Expiratory tidal volume * 1.0917 liters

Respiratory freauency = 24.1 breaths per minute

Mean 02 inspired = -.233 liters

Mean 02 expired .183 liters

Mean C02 inspired -.001 liters

Mean C02 expired = .040 liters

Mean 02 consumed per breath = -.049 liters

Mean C02 produced per breath .039 liters

02 consumed per minute = -1.188 liters per minute

C02 produced per minute = .938 liters per minute

RESPIRATORY QUOTIENT = .790

Total time of inspiration = 30.8 sec

Total time of expiration = 34.1 sec

Total time of respiration = 64.8 sec

Number of good inspirations = 26.0

Number of good expirations = 26.0

Number of sood breaths = 26.0

FL0U DC OFFSET = 2038

C02 DC OFFSET = 244

02 DC OFFSET * 498

C02 CALIBRATION FACTOR = 1.8700E-05

02 CALIBRATION FACTOR = 2.3400E-05

INSPIRATORY FL0U CALIBRATION FACTOR = 3.2001E-03

EXPIRATORY FLOW CALIBRATION FACTOR = 3.1789E-03

TEMPERATURE CORRECTION = . 0000E+00X~2 + O.OOOOE+OOX O.OOOOE+00

SAMPLING FREQUENCY = 50

FLOW. CALIBRATION FILENAME! CAL724

C02 DATA FILENAME: C50724

02 DATA FILENAME.* 050724

FLOW DATA FILENAME: V50724

TEMPERATURE DATA FILENAME: T50724

FIGURE 4.8 HRRD COPY OUTPUT OF RVERRGE
RESPIRRTORY DRTR
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V. EXPERIMENTAL METHODS

5.1 Subject Selection and Preparation (Breath-by-breath)

To evaluate the performance of the computer-based

instrumentation system, a well conditioned, male graduate student

(age, 24 years) was selected as the test subject. This subject

was selected to minimize fluctuations in respiration (both during

rest and exercise) that often occurs in the untrained individual

during exercise and to reduce the possibility of physiological

conditioning that would almost certainly occur in a sendentary

subject.

The bicycle ergometer seat was first adjusted so as to fit

the subject comfortably (a seat heighth not quite high enough to

allow full leg extension is preferred) . As mentioned in the

Instruments and Interconnects section, the subject was fitted

with the Hans Rudolf respiratory mask (#7900M) and a heated No. 2

Fleisch head assembly. Heating of the PTM was done in an attempt

to warm the inspired air to body temperature so comparison

between the breath- by-breath system and an end-expired bag

collection technique [2,3] could be made. The GMS probe was also

secured to the No. 2 Fleisch head on the room air side of the

PTM. This insures the GMS samples room air at the beginning of

inspiration and not a high CO, gas concentration that would be

present on the subject side of the PTM.

5.2 System Calibration (Breath-by-breathl

Before meaningful data collection using the breath-by-breath

system can begin, system calibration must be performed,

preferably immediately before the exercise trial is conducted.

System calibration is controlled entirely by the PASCAL routine
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(see Appendix VIII for complete documentation) . This routine

guides the operator through the entire calibration procedure

which involves GMS calibration, flow signal calibration, and

respiratory temperature calibration. Following is a brief

summary of the calibration that is performed.

Calibration of the fractional gas concentrations is

necessary to determine the relationship between the fractional

COg and 2 gas concentrations and the associated binary values

read from the DAM.

GMS calibration is accomplished by simply placing the GMS

sampling probe in the extreme C0
2 and 2 gas concentrations that

one would most likely encounter in respiratory studies of this

type (21%
2 , 0% C02 was one calibration point and 12.9% 2 , 7%

CO2 was the other calibration point) and determining the proper

C0
2 and 2 calibration factors as described by Creel til].

Figure 3.4 depicts that apparatus and interconnections

necessary to perform the GMS calibration. As is obvious from

this figure, zero suppression (Creel til]) of both the fractional

C0
2 and 2 channels was necessary to allow the output of the GMS

to utilize the entire analog input range of the DAM (Gateno

[13]). For the complete step-by-step procedure used to calibrate

the GMS refer to Appendix III.

Calibration of the respiratory flow signal (PTM calibration)

consists of determining inspiratory and expiratory flow

calibration factors and the binary value from the DAM associated

with zero flow through the PTM. Creel til] desribes these three

variables in detail; that explanation will not be repeated here.

In short, flow calibration involves forcing a known volume of gas
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(via the Harvard Respirator) through the PTM in both inspiratory

and expiratory directions, integrating the resulting flow signal

generated by the PTM assembly, and determining the ratio between

the known gas volume and the mentioned integration (areas)

.

Figure 3.3 shows the apparatus and interconnections used for

the flow signal calibration. For the complete flow calibration

procedure see Appendix III.

Calibration of the respiratory temperature signal involves

measuring three known temperatures (water baths) and then

computing a second order polynomial curve fit of the data.

Masters' [171 decribes this procedure in detail.

5.3 Data Collection and Analysis (Breath-by-breath)

To validate the breath-by-breath respiratory system, a

stringent exercise program was selected. This program consisted

of both morning and afternoon runs. The morning's run included a

40 second rest period, followed immediately by a 3 minute

exercise period at 50 watts, and then a 200 watt work load for 4

minutes and 20 seconds (the total exercise run was thus an 8

minute run, the maximum allowable run possible with the present

system operating at 50 Hz) . The afternoon run included a 40

second rest period, followed by a 3 minute exercise period at 100

watts and a 150 watt work load for the remaining 4 minutes and 20

seconds.

To collect the mentioned data, 24000 data points per channel

were collected at a rate of 50 Hz. Thus the data collection

period was exactly 8 minutes. Windowing of the data was

performed for the last 2 minutes of the data at each of the

various work loads. This insured that the analysis was performed
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on steady-state respiratory data and not on transient respiratory

information.

During data collection, a metronome was used to pace the

rider at 50 rpm and the ergometer belt was continually adjusted

to achieve the desired work load. Ergometer wheel revolutions

were observed using an optical revolution counter as a indicator

of the total work done during exercise. As previously mentioned,

the PTM was heated in an attempt to elevate the inspired air to

body temperature (this was done so that all analysis could be

assumed to be at body temperature and comparison could then be

made to the end-expired bag collection technique which corrects

its results to body temperature) . Later, the PTM heat was

increased after crude temperature measurements indicated that the

PTM was not heating the inspired air to body temperature (see

Experimental Results for details) .

5 .4 System Comparison with Bag Collection Technique

For system verification, comparisons with an end-expired bag

collection technique were made. The bag collection technique

consisted of a two-way non-rebreathing valve and a meteorological

balloon. Using the valve, expired gases were collected in the

bag during data collection. Once the bag was nearly full

(usually 90 seconds of gas collection) the collected gas was

dumped to a spirometer for accurate measurement of the gas

volume. While dumping the gas, the 0_ and CO- fractional gas

concentrations of the collected gas were measured using the GMS.

Body temperature, elapsed time of gas collection, and spirometer

gas temperature were recorded. From these quantities, several

respiratory quantities are calculated.
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The actual exercise routine used to collect the expired gas

is similar in form to the breath-by-breath studies. Horning data

collection consisted of 3 minutes at 50 watts followed

immediately by 5 minutes at 200 watts. During the last 90

seconds of the mentioned work loads, gas collection occurred.

Afternoon data collection closely paralleled the morning runs

with 3 minutes at the 100 watt work load and 5 minutes at 150

watts.
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VI. EXPERIMENTAL RESULTS

6.1 Presentation of Results

Although the breath-by-breath respiratory system is capable

of displaying transient respiratory information as well as

steady-state results, only the average steady-state values

generated by this system could be compared with the bag

collection technique. In particular, three parameters

(expiratory minute volume, rate of C0
2

production, and rate of 0,

consumption) were compared between the two systems.

As is obvious from the discussion above, in order for

comparisons to be made, steady-state conditions must be reached.

Figures 6.1 and 6.2 show the transient as well as steady-state

information that is contained in the breath-by-breath data for 50

watt and 100 watt work loads. To insure that only analysis of

steady-state data was made, scatter plots of the rate of 0~

consumption on a per breath basis were made. Figures 6.3 and 6.4

are typical plots for the 50-200 watt and 100-150 watt work load

trials. These plots enabled the justification of the use of the

final two minutes at a particular work load for steady-state

evaluations.

For the breath-by-breath studies, three plots (Figures 6.5-

6.7) depict the results of five trials conducted at the work

loads shown. As previously mentioned, expiratory minute volume,

rate of C0
2

production, and rate of
2

consumption were plotted

so comparisons with the bag collection technique could be made.

Figures 6.8 through 6.10 illustrate the same parameters for the

bag collection method.

Having compared these six plots, it was decided that the PTM
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was not warming the inspired air to body temperature, thus

causing the rate of 0_ consumption in the breath-by-breath system

to be significantly higher at the high work loads (see the mean

and standard deviation plot [Figure 6.161 for more details).

After increasing the PTM heat to a level where the inspired air

approached body temperature (a slowly responding Tektronix

temperature probe was used for this adjustment) five more trials

at the 50 and 200 watt work loads were made, the results of which

are plotted in Figures 6.11 through 6.13.

For the nine plots mentioned, three mean and standard

deviation plots (Figures 6.14-6.16) were generated for comparison

between the two analysis techniques. Section VII includes a

discussion of these three plots.
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VII. DISCUSSION OF RESULTS

A review of the mean and standard deviation plots (Figures

6.14-6.16) reveal several interesting results. First, at the low

work level (50 watt) regardless of the degree of PTM heating, the

breath-by-breath averages fell within one standard deviation of

the bag collection averages. However, at the high work levels

(150 and 200 watt) significant differences between the bag

collection technique (heated PTM, but not close to body

temperature) and the breath-by-breath studies were noted. By

increasing the PTM heat, these differences were not observed.

It is felt that because the breath-by-breath analysis

determines the difference between the inspired and expired oxygen

volumes to compute the rate of 0_ consumption, the amount of

inspired oxygen observed is actually less than what the breath-

by-breath system measures with the PTM only partially heated. By

increasing the PTM, the rate of 0- consumption falls to an

acceptable level while the expiratory minute volume and rate of

CO, production remains the same as if the PTM heat was not

increased. This error is not observed in the rate of C0_

production because essentially zero percent CO, is inspired by

the subject, thus any volume adjustments due to heating of the

inspirate are of little significance to the rate of C0
2

production.

Based upon these results it is obvious that point-by-point

temperature correction should be pursued. Correction of the

various gas volumes on a point-by-point basis will allow for

correction to BTPS (which is what this research assumes the

operating condition is) or STPD. Masters' research [17] deals
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with the topic of point-by-point temperature correction.

The real time plots of the fractional C02 concentration,

fractional 0. concentration, and flow signals (Figures 6.1-6.2)

show not only sample steady-state information but also transient

information. By observing the envelope formed by these three

signals a fairly accurate means of determining when steady-state

has been reached is possible. At least, these plots clearly

indicate the respiratory frequency of the subject. By further

windowing of the mentioned signals, observing the changes in the

various perturbations of these signals is possible, a feature

that might prove invaluable when transient type analysis is

performed using the breath- by-breath system.

A more obvious indicator of steady-state conditions is found

in Figures 6.3-6.4. By plotting the rate of 0, consumption on a

per breath basis it is a simple matter to determine when the

subject is indeed in steady-state. Again, these plots were only

used to provide additional justification that the subject was in

steady-state during the time analysis was performed (that time

period being the last two minutes of each work load exercise)

.

For both the partially heated breath-by-breath studies

(Figures 6.5-6.7) and the bag collection studies (Figures 6.8-

6.10) precision and repeatability of both systems are obvious.

It is obvious from these plots that the subject should be

acclimated to the respective system before serious data

collection is to commence. Good examples of this can be observed

on the July 5 trial for the breath-by-breath system and the July

17 trial for the bag collection system. Both of these runs

represent the first trial completed for that particular system.
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Error in the data collection procedure for those initial runs is

also possible. Regardless of the cause of this variance on the

first trial runs, a tighter grouping of data points would almost

certainly result if another trial had been run and the first

trial data ignored.
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VIII. CONCLUSIONS

Upon successful conversion of Creel's treadmill respiratory

studies with cattle to human studies using a bicycle ergometer,

the following conclusions can be made.

1. Organization of various transducers in close proximity

to the DAM and HP9 826 desktop computer has eliminated many of

the "glitches" and calibration troubles encountered in Creel's

work. Referring to Figure 3.2, an obvious attempt was made to

keep coaxial cable runs found in the analog section of the

breath- by-breath system as short as possible in an attempt to

eliminate stray noise that might be present in the research

laboratory. Not only have noise problems been reduced with

this type of organization but a more repeatable system has

resulted. Also, with the present system organization, system

calibration can be accomplished by a single individual in about

10 minutes (this does not include temperature calibration of

the thermocouple). This is in contrast to Creel's cattle

research where as many as three individuals were needed to

accurately calibrate the system.

2. . It is felt that reorganization of the DAM control

software has resulted in a more reliable data acquisition

system. By paying special attention to the STS bit using 68000

assembly language code, few data acquisition problems exist.

Occasionally (on the average about 1 conversion in 10000U) a

spike in one of the DAM channels is observed. With

considerable confidence it is felt that these spikes are the

result of conversion errors generated by the successive

approximation converter and not due to problems in the
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controlling software. The frequency of this problem does not

significantly influence the accuracy of the breath-by-breath

respiratory system.

3. For the types of signals encountered in these studies

Gateno's DAM has functioned in an acceptable manner. Upon

replacement of a faulty multiplexer, clean digitized signals

were the rule. Creel encountered problems in the flow

calibration procedure and it is felt that these repeated

problems were due to the crosstalk that was observed between

channels B (the
2

fraction channel) and C (the flow signal

channel) . Occasionally the multiplexer should be checked for

crosstalk by injecting four unique signals into the four DAM

channels and observing the respective outputs. One major flaw

in Gateno's design involves the direct connection of the 8253

timer chip select line to the read/write line. According to

Intel [19] , the timer chip should be selected prior to the

read/write signal being set. This design flaw is responsible

for problems in setting the DAM's sampling frequency that are

sometimes observed when the DAM is initially turned on. This

problem is usually rectified by running the routine that sets

the sampling frequency a second time.

4. Temperature fluctuations and measurement play a major

role in the accuracy of the breath-by-breath respiratory

system. Although this research dealt very little with the

issue of respiratory temperature, it has become obvious that

accurate temperature measurement is essential if reasonable 0,

consumption values at the higher work loads are to be obtained.

Masters' work [17] deals with the issue of respiratory
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temperature measurement in detail.

5. The HP9826 desktop computer is well suited for

controlling the DAM and data analysis routines. With the help

of the PASCAL compiler and 68000 assembler [20-22] , generation

of relatively fast and simple control software is possible. By

acquiring more RAM for the HP9826 (it presently has slightly

more that 0.5 Mbytes of RAM) longer real time data collection

would be possible for a given sampling frequency. The data

filing scheme used for compatability between the HP9826 PASCAL

and BASIC operating systems is probably the best solution to

the problem considering the control and analysis software as it

presently exists. Understanding full well the problems that

would be encountered having the analysis routine written in

PASCAL, the present filing scheme could be scrapped, the

collected data simply being stored as binary data files (if

ANALYSIS was translated to PASCAL) . This action would

significantly reduce the time required to process the

respiratory data.

6. Comparisons made between the breath-by-breath

respiratory system and the bag collection technique suggest

that the breath-by-breath system is accurate over several work

loads provided steady-state respiration is reached and

respiratory temperature adjustments and/or measurements are

made. Noting that the bag collection technique does not have

the ability to measure transient changes in respiration and

that the breath-by-breath system developed is just as accurate

as the bag collection technique during steady-state exercise,

the breath-by-breath system seems to provide more potential for
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cardio-pulmonary studies. In terms of the exercise programs

described in this report, the breath-by-breath system is a much

simpler system to operate (as compared to the bag collection

technique) and requires fewer people to operate it. Because

the breath-by-breath system is accurate at steady-state, the

assumption can be made that it is equally accurate in transient

type measurements and can be used in a series of exercise

studies to measure transient respiratory phenomenon.

7. The addition of the windowing feature in both the

plotting of the respiratory data and the analysis of that data

have proven to be invaluable, even in the steady-state analysis

performed in this research. Using the windowing feature, plots

can be expanded to any desired time base, a feature the typical

chart recorder is incapable of providing. The real power of

the windowing ability will manifest itself in transient

respiratory measurements.
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IX. IMPENDING RESEARCH

Although the computer-controlled instrumentation system is

functioning as well as the accepted bag collection technique,

additions to the system (both hardware and software) would

further enhance the breath-by-breath system. Following are a few

recommended system changes and additions.

1. As the system is presently organized, only four of the

DAM channels are used (the four channels being CO. and 0,

fractional concentrations, respiratory flow, and respiratory

temperature) . By adding additional control software to the data

acquisition program (DAP. CODE) and making the necessary additions

to the calibration routine (CAP. CODE) as many as eight analog

channels could be monitored simultaneously. Additional signals

of interest might include body temperature, heart rate, blood

pressure, and PTM temperature.

2. The ability to evaluate the respiratory data based upon

inter-breath changes in the Functional Residual £apacity (FRC)

should be added to the existing analysis routine. These

additions would allow for the determination of alveolar 0, and

C0
2

gas exchange volumes using the gas fractional concentrations

currently being measured at the mouth (Beaver [4] )

.

3. Although the existing file compatability scheme for the

PASCAL and BASIC operating systems represents the best solution

to this problem, by rewriting the analysis routine (ANALYSIS) in

PASCAL no ASCII to Binary DATa (BDAT) file conversion would be

necessary. This would allow both the data and calibration files

to be stored initially as BDAT files, which the analysis routine

(now written in PASCAL) could read directly. This would
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eliminate the need for both of the file compaction routines

(CAPCRONCH and DAPCRUNCH) and the data handling time would be

minimized. Rewriting ANALYSIS in PASCAL would, however, destroy

the user friendliness that is prevalent in the BASIC operating

system. The rewriting of ANALYSIS should occur only after all

major additions to the analysis routines have been made.

4. Once the desired system enhancements have been made,

well defined exercise programs for the purpose of respiratory

research should be conducted. Of particular interest in this

research would be the study of transient phenomena that occur

both at the onset of exercise and the onset of rest and/or

another exercise level.

5. Reapplication of this research to the cattle research

being conducted by the Department of Anatomy and Physiology

should be made. It is felt that by careful duplication and/or

transfer of the system organization, hardware, and software,

little (if any) effort to obtain an accurate, easy to use system

would be necessary.

6. Further system changes or additions proposed by those

who use the breath- by-breath system on a regular basis should

also be seriously considered.
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APPENDIX I

Mass Storage Management

One of the most critical operations a system user must

perform is mass storage management. With the large volume of

data that is processed by the system routines, lack of mass

storage organization could result in the loss of several trials

worth of data. Following is the procedure one should use to

monitor and maintain the two main mass storage devices in the

breath-by-breath respiratory system, namely the HP9134A hard disk

memory and the HP9895A 8" flexible disk memory.

1. Referring to Figure Al.l, turn on the DECwriter

II printer, DAM, Tektronix TM power supply, HP9895A 8"

flexible disk memory, HP913 4A hard disk memory, and

HP2673A thermal printer (in that order).

2. Place the 5.25" floppy disk labeled "Pascal 2.1

System, Boot:" in the computer's (HP9826) disk drive

(label side up) and turn on the HP9 826. The Pascal

operating system will automatically be loaded and

initialized to accommodate all peripherals in the

instrumentation system.

3. Once a majority of the initialization is

complete, the system date is requested and should be

entered as DD-MON-YR. As is the case with all data input

in the Pascal system, desired input is typed via the

computer keyboard and information is accepted by pressing

the "ENTER" key.
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4. The time (24 hour) should then be entered as

HH:MM:SS. This step completes the Pascal system

initialization.

5. To perform standard mass storage operations

(i.e. directory listings, directory crunching, etc.) in

the PASCAL system, the system filer must be loaded into

memory. This is accomplished by typing "F" (£iler) at

the system command level.

6. Once the system filer is loaded into memory,

execution of FILER begins. The operator will first

notice that the menu at the top of the CRT is different.

The FILER has its own menu, seperate from that of the

main command level. The first operation the user should

perform is to list the volumes (disks, printers, etc.)

that are currently on-line. Typing "V" (Volumes) will

cause FILER to display this information.

7. Of the volumes listed, only four are of interest

to the system manager. Following is a table of the

volumes of interest.

PASCAL Volume * BASIC Volume Description

#7

#12

#13

#14

HP9895, 700,0

HP9895, 702,1

HP9895,702,2

HP9 895,702,3

HP9895A 8" flexible disk

HP9134A hard disk #1

HP9134A hard disk #2

HP9134A hard disk #3
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Volume #7 is used exclusively for storing DAM and

calibration binary data files. The 8" flexible disk was

selected for these binary data files because of its

portability and the possibility of multiple 8" flexible

disks (leading to an unlimited amount of data storage

capabilities)

.

Volume #12 currently contains all the DAM and

calibration binary data files accumulated during the calf

respiratory research conducted during the summer of 1983.

Volume #13 contains copies of the system software

and is the volume where the ASCII files created by

CAP. CODE and DAP. CODE reside prior to conversion to

binary data files (see Appendicies V and VI for more

information)

.

Volume #14 contains many of the system files

necessary for the PASCAL operating system to function.

It is the system volume and can be referenced either as

"#14" or "*" ("*" designates the system volume).

8. For volume #7 (the 8" flexible disk memory

system) there are several aspects of mass storage of

which the system operator should be aware. The procedure

most often performed on volume #7 is simply to determine

how much room is available for data storage on the

current 8" flexible disk. This can be accomplished by

pressing "L" (List) followed by "#7" when asked for the

volume number. Pressing enter causes the directory of
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volume #7 to be displayed. (The user may have to press

the space bar to continue long directory listings.) At

the end of the directory listing a summary of the amount

of mass storage used, the amount that is unused, and the

largest unused space.

9. Depending on how many unused blocks remain will

dictate when a new 8" flexible disk should be used. (As

an example, a binary data file containing 24000 data

points requires 189 blocks of mass storage. A binary

calibration file requires only two blocks.) Should a new

8" disk be required, it will have to be initialized

before being used. Disk initialization should be done in

the BASIC operating environment. To initialize a disk

place the 5.25" disk labeled "HP9826 Data Analysis

Routines" in the disk drive and turn the HP9 826 off and

then back on. The BASIC operating system will be loaded

and "AOTOST", the BASIC menu select routine, will be

loaded into memory. The user should place the 8" disk to

be initialized in the HP9895A 8" drive and select item 2

in the "MSI" option of the menu select routine. The menu

select routine should then be stopped by pressing

"PAUSE". Typing "INITIALIZE " :HP9895 ,700 ,0"
' followed by

the "EXECDTE" key will cause the 8" disk to be

initialized (initialization will take several minutes).

Once initialization is complete, the "*" in the lower

right hand corner of the HP9826 CRT will be removed and

pressing "CONTINUE" will restart "ADTOST" . Selecting the

"CAT" option in the menu will now display the blank



A1.7

directory of the newly initialized 8" disk.

10. As is the case with all mass storage volumes,

volume #7 can be compacted so that the number of unused

blocks corresponds to the largest unused space on the

disk. This is accomplished by typing "K" (firunch) while

the filer is running followed by "#7" when asked for the

volume number. Pressing enter causes FILER to ask the

user if directory B9826 should be compacted. Answering

"Y" to this question causes the compaction of volume #7

to begin. Once this compaction routine begins, FILER

advises the user not to touch any of the computer

equipment until the compaction procedure is complete as

any action could result in the loss of some files.

11. For volume #13 (the HP9134A hard disk #2) , space

considerations should never be a problem provided no

additional programs are stored on #13. (Even with four

24000 point ASCII files stored on volume #13 enough space

remains for over 1400 ASCII calibration files.) The user

is reminded, however, that the ASCII data files created

by DAP. CODE must be crunched after each data collection

session. (See Appendix VI for more details.)

12. Volumes #12 and #14 (HP913 4A hard disks #1 and

#3 respectively) do not require directory crunching or

initialization as these mass storage devices are fairly

static storage areas (see step 7 above for explanation).

To perform directory listings, directory crunching, or

disk initialization on these volumes refer to the
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preceding steps used for volume #7.
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APPENDIX II

Dam Offset and Gain Adjustments

Following is the step-by-step procedure to perform offset

and gain adjustments on the DAM built by Gateno [13] . These

adjustments are made only when analog signal gain adjustments are

required or when the operator feels that significant offset error

exists in the DAM. Upon initial adjustments, these adjustments

should need to be made only once or twice every two to three

months.

1. Referring to Figure Al.l, turn on the DECwriter

II printer, DAM, Tektronix TM power supply, HP9895A 8"

flexible disk memory, HP9134A hard disk memory, and

HP2673A thermal printer (in that order)

.

2. Turn on the HP9826 computer. Once the HP9826

has completed its own internal tests, the user should

type "WRITEIO 12, 4,-0". followed by the "EXECUTE" key.

This places the DAM sample and hold amplifiers in the

tracking mode so that offset adjustments can be made.

3. Referring to Figure A2.1, to adjust the offset

in the AD521 differential amplifiers, the gain adjustment

pots on the DAM should be turned fully counterclockwise.

This sets the maximum gains possible for the AD521's.

4

.

With the inputs to the DAM grounded and

measuring the output voltage on pin 7 of the AD521,

adjust the amplifier multiturn potentiometer so the

output voltage is a minimum. Perform this adjustment for
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all four channels. This completes the amplifier offset

adjustments.

5. With the inputs to the DAM still grounded and

measuring the output voltage on pin 8 of the AD582 sample

and hold amplifiers, adjust the AD582's multiturn

potentiometer so the output voltage is a minimum.

Perform this adjustment on all four channels. This

completes all DAM offset adjustments.

6. To set the gain adjustment potentiometers on the

DAM, place the 5.25" disk labeled "Pascal 2.1 System,

Boot:" in the computer's (HP9826) disk drive (label side

up) . Turn the computer off and then back on. The Pascal

operating system will automatically be loaded and

initialized to accommodate all peripherals in the

instrumentation system.

7. Once a majority of the initialization is

complete, the system date is requested and should be

entered as DD-MON-YR. As is the case with all data input

in the Pascal system, desired input is typed" via the

computer keyboard and information is accepted by pressing

the "ENTER" key.

8. The time (24 hour) should then be entered as

HH:MM:SS. This step completes the Pascal system

initialization.

9. To set the proper DAM gains, the program

DAP. CODE (P_ata Acquisition £rogram) must be run. This is
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accomplished by pressing the "R" key (Bun) and entering

DAP for the program name.

10. Once the program is loaded into memory,

execution of DAP. CODE begins. The user is first asked to

enter the desired sampling frequency. Typically a 50 Hz

sampling rate is used; however, faster (to 350 Hz) and

slower rates are allowed.

11. The number of samples per channel is then

entered. For the majority of the DAM gain adjustments,

DC input signals are used. Thus, 400 data points per

channel is sufficient.

12. The user is then prompted to press the "ENTER"

key to continue. At this point, the desired input

signals should be applied to the DAM inputs. Referring

to the following table, apply the appropriate input

signal to obtain either a maximum or minimum for the

channel in question.
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Channel Input

A 0% CO

A 7% CO.

B 21% 0.

B 13% 0.

C Relax<

D 30 deg C

D 35 deg C

D 40 deg C

Acceptable binary value

80-200

3800-4000

3800-4000

80-200

Relaxed breathing 1300-1500 (minimum)

2500-2800 (maximum)

80-200 (minimum)

3800-4000 (maximum)

80-200

1990-2100

3800-4000

Harvard respirator

13. By adjusting the DAM gain potentiometers along

with the zero suppression box for channel A and B DC

offset levels, the mentioned binary values can be

obtained. To rerun DAP. CODE after gain and offset

adjustments are made, press the "CLR I/O" key on the

HP9826 followed by "O" (User restart). Steps 10 through

13 should be repeated until acceptable binary values are

obtained.

14. All DAM gain and offset adjustments are complete

(as well as adjustment of the zero suppression box)

.

System calibration may now be performed on the

instrumentation system.
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APPENDIX III

System Calibration Procedure

Following is the step-by-step procedure to calibrate the

four channel instrumentation system.

1. Referring to Figure Al.l, turn on the DECwriter

II printer, Perkin-Elmer gas mass spectrometer, DAM,

Tektronix TM power supply, HP9 895A 8" flexible disk

memory, HP9134A hard disk memory, and HP2673A thermal

printer (in that order).

2. Place the 5.25" floppy disk labeled "Pascal 2.1

System, Boot:" in the computer's (HP9826) disk drive

(label side up) and turn on the HP9826. The Pascal

operating system will automatically be loaded and

initialized to accommodate all peripherals in the

instrumentation system. (NOTE: If the HP9826 computer

is on before the system boot disk is placed in the disk

drive, turn the HP9826 off and then back on. This allows

the Pascal operating system to be automatically loaded

and executed.)

3. Once a majority of the initialization is

complete, the system date is requested and should be

entered as DD-MON-YR. As is the case with all data input

in the Pascal system, desired input is typed via the

computer keyboard and information is accepted by pressing

the "ENTER" key.

4. The time (24 hour) should then be entered as
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HH:MM:SS. This step completes the Pascal system

initialization.

5. To calibrate the four data acquisition channels,

the program CAP. CODE (Calibration £rogram) must be run.

This is accomplished by pressing the "R" key (Bun) and

entering CAP for the program name.

6. Once the program is loaded into memory,

execution of CAP. CODE begins. The user is first asked to

enter the desired sampling frequency. Typically a 50 Hz

sampling rate is used; however, faster (to 3 50 Hz) and

slower rates are allowed.

7. The user is asked if the fractional

concentration signal should be calibrated. If the

operator answers "N" to this question CAP. CODE jumps to

the flow signal calibration procedure (see step 15

below)

.

8. If the fractional gas concentration signal is to

be calibrated, the operator is prompted to connect the

mass spectrometer probe to room air. (NOTE: The mass

spectrometer's "ON" switch should be depressed while data

is being collected. The "STANDBY" mode of operation

should be selected otherwise. Also, make sure inlet port

1 is selected.) By removing the screened cap on the

sampling capillary, room air is sampled by the mass

spectrometer.
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9. The user is asked to enter the actual 0,

concentration of the sampled air. This value is read

directly from the mass spectrometer's left most digital

readout. The 0, concentration (as well as all other

fractional concentrations) should be entered as a

fractional value less than unity. Thus, if the left most

display reads 20.9% the value entered for 0„

concentration should be .209.

10. Once the O, concentration is entered, the

program prompts the operator to press "ENTER" to

continue. This pause allows the user to make any final

adjustments to the instrumentation prior to sampling of

the mass spectrometer.

11. One thousand data points are taken and averaged

for the
2

and C0
2

channels (room air is assumed to be 0%

C0
2

) . The CO, DC offset (binary value read for 0% CO,)

,

average value read for 0% CO, (same as CO, DC offset),

and average value read for 21% 0, are then displayed.

12. The operator is instructed to connect the £as

iJass Spectrometer (GHS) probe to 7% CO, and 13% 0,.

These gas concentrations allow for calibration on the

upper CO, levels and calibration on the lower 0, levels.

By placing the GMS probe in the gas delivery port leading

from the calibrated gas cylinder and opening the main

valve on the cylinder, the desired gas concentrations are

available for calibration.
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13. The fractional gas concentrations of CO, and 0,

are then entered. The CO, concentration is read from the

right most digital readout on the GMS. Again, these

values should be entered as fractional quantities less

than one.

14. Once the C0
2

and 0, concentrations are entered,

1000 data points are collected and averaged for the two

channels. The
2

DC offset (binary value read for 13%

O,), average value read for 7% CO,, and average value

read for 13%
2

(same as 0, DC offset) are displayed.

15. The user then has the option of calibrating the

flow signal. Should the operator enter "N" for the flow

calibration prompt, the flow calibration procedure will

not be executed and CAP. CODE will jump to the temperature

calibration routine (refer to step 22) . Any input

besides "N" will cause execution of the flow calibration

section.

16. CAP. CODE then instructs the operator to connect

zero flow to the pneumotach. This is accomplished by

placing the mask and Fleisch head inside the

pneumotachometer auto-zeroing box and closing the box.

(NOTE: The Godart/Fleisch assembly should be zeroed

prior to its use. This is accomplished by placing the

Godart in the V [Volume] mode, forcing air through the

Fleisch head until the Godart meter reads near midrange,

and adjusting the zero balance control [while the head is

in the auto-zeroing box] until no meter movement is
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observed. The Godart should then be placed back in the V

[flow] mode.)

17. CAP. CODE pauses at this point to allow the

operator to perform the mentioned task. Pressing "ENTER"

causes CAP. CODE to acquire 1000 data points for zero flow

and the average binary for zero flow is determined and

display on the HP9 826 CRT.

18. The Harvard Respirator should then be connected

to the pneumotach via the custom fittings that are

available. The pump should be turned on and the highest

respirator frequency selected.

19. Approximately 5 minutes should expire before the

user presses the "ENTER" key to begin data acquisition.

This allows an equilibrium to be reached between the

pump, pneumotach, and surroundings.

20. Four thousand data points will then be acquired.

The respirator may be turned off once the data collection

complete prompt is displayed on the CRT. Once data

collection is complete, CAP. CODE performs a series of

integrations on the flow signal to determine an

inspiratory and expiratory flow calibration value (see

Appendix VIII for more details). As these integrations

are performed, CAP. CODE displays the breath number

followed by the inspiratory and expiratory integration

values. If the system is functioning properly these

inspiratory and expiratory values should not vary
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significantly from breath-to-breath. Thus, observing

these values can help in isolating system problems at the

flow calibration stage.

21. Binary zero flow (binary value corresponding to

zero flow) , inspiratory flow calibration factor, and

expiratory flow calibration factor are then displayed on

the HP9826 CRT. The flow calibration procedure is

complete.

22. The user is then asked whether or not the flow

temperature instrumentation is to be calibrated.

Answering "N" to this question causes CAP. CODE to jump to

the calibration factor storage procedure (see step 26)

.

Any other response to this question causes the

temperature calibration procedure to be initiated.

23. Provided the temperature calibration procedure

is requested, the operator is instructed to place the

thermocouple in the lowest temperature water bath. The

actual water bath temperature is then entered (deg C)

.

This temperature is obtained using the precision mercury

thermometer provided.

24. One thousand temperature data points are then

collected and averaged. The average binary value for the

low temperature is displayed on the CRT and the operator

is instructed to place the thermocouple in the middle

temperature water bath.
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25. Steps 23 and 24 are repeated for both the middle

and high temperature water baths. CAP. CODE then performs

a 2nd order fit of these three data points and the

polynomial coefficients for this fit are displayed.

26. The user is asked if the calibration factors

computed should be stored. Answering "N" to this

question terminates CAP. CODE. Any other answer causes

CAP. CODE to prompt the user for the calibration file name

and calibration date. Following are examples of

appropriate calibration file names.

File Name Description

CAL618 Calibration file created on

June 18

CL2618 Second calibration file created

on June 18

These file names are only suggestions. They (the names)

were selected for their descriptive nature. (NOTE:

Pascal file names in excess of 9 characters should not be

used.

)

27. Once this information is supplied, the

previously mentioned calibration factors are converted to

ASCII and stored on the HP913 4A hard disk. CAP. CODE then

ends.
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28. This ASCII data file should then be crunched

(converted to BASIC BDAT files) before using it in the

data analysis routine. See Appendix V for more details.
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APPENDIX IV

System Collection of Breath-by-breath Respiratory Data

Following is the step-by-step procedure to collect respiratory

data using the current instrumentation system.

1. Referring to Figure Al.l, turn on the DECwriter

II printer, Perkin-Elmer gas mass spectrometer, DAM,

Tektronix TM power HP9895A 8" flexible disk memory,

HP9134A hard disk memory, and HP2673A thermal printer (in

that order)

.

2. Place the 5.25" floppy disk labeled "Pascal 2.1

System, Boot:" in the computer's (HP9826) disk drive

(label side up) and turn on the HP9 826. The Pascal

operating system will automatically be loaded and

initialized to accommodate all peripherals in the

instrumentation system. (NOTE: If the HP9826 computer

is on before the system boot disk is placed in the disk

drive, turn its (the computer's) power off and then back

on. This allows the Pascal system to be loaded

automatically.

)

3. Once a majority of the initialization is

complete, the system date is requested and should be

entered as DD-MON-YR. As is the case with all data input

in the Pascal system, desired input is typed via the

computer keyboard and information is accepted by pressing

the "ENTER" key.

4. The time (24 hour) should then be entered as
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HH:HM:SS. This step completes the Pascal system

initialization.

5. To collect four channels of respiratory data,

the program DAP. CODE (Data Acquistion program) must be

run. This is accomplished by pressing the "R" key (Bun)

and entering DAP for the program name. In the steps that

follow, if an error in data entry is made, typing the

"SHIFT" and "STOP" keys simultaneously returns the system

to the Pascal command level.

6. Once the program is loaded into memory,

execution of DAP. CODE begins. The user is first asked to

enter the desired sampling frequency. Typically a 50 Hz

sampling rate is used; however, faster (to 350 Hz) and

slower rates are allowed. It should be remembered that a

maximum of 2 4000 data points per channel is possible with

the present data collection system, so fast sampling

rates significantly limit data collection time.

7. The number of samples per channel is then

entered. As previously mentioned, 1 to 24000 data points

per channel can be taken. For example, if a 5 minute

data collection period is desired at a sampling frequency

of 50 Hz, 15000 data points per channel should be taken.

8. The user is then prompted to press the "ENTER"

key to continue. Pressing "ENTER" begins the actual data

acquisition process. This pause was implemented to allow

the operator (s) of the system to make last minute
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adjustments to the system before acquiring data.

9. Once the four channels of data are collected and

loaded into HP9826 memory, maximum and minimum values for

the CO- , 0,, flow, and temperature channels are

determined and displayed on the HP9 826 CRT. Pressing

"ENTER" following this display initiates the data storage

procedure.

10. The acquired binary data are converted to ASCII

data and stored on the HP9134A hard disk memory by the

data storage procedure. Data conversion to ASCII is

necessary to allow for file compatability between the

Pascal and BASIC operating systems.

11. The data are also displayed on the HP9826 CRT.

Because a 12-bit A-to-D converter is used, binary

representations ranging in values from to 4095 are

possible. By observing the displayed values, the

operator can determine if saturation of the input signals

has occurred.

12. These ASCII data files should then be crunched

(converted to BASIC BDAT (Binary DATa) files) before any

other exercise trials are conducted. Failure to crunch

the data prior to another exercise run will result in the

loss of the first trial's data (see Appendix VI for more

details)

.

13. At this point, to execute the crunch routine on
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the respiratory data, go to Appendix VI, item 2.
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APPENDIX V

Pascal to BASIC F ile Conversion of Calibration Data

Following is the procedure to crunch (convert from ASCII to

binary data) files created by CAP. CODE.

1. Referring to Figure Al.l, turn on the DECwriter

II printer, DAM, Tektronix TM power supply, HP9895A 8"

flexible disk memory, HP9134A hard disk memory, and

HP2673A thermal printer (in that order)

.

2. Place the 5.25" floppy disk labeled "HP9826 Data

Analysis Routines" in the computer's (HP9826) disk drive

(label side up) and turn on the HP9826. A BASIC

autostart routine (AOTOST) is automatically loaded and

initiated.

3. To start the calibration file compaction routine

(CAPCRDNCH) press the special function key "kO" on the

HP9826. CAPCRUNCH will then be loaded into memory from

the HP913 4A hard disk and executed. Once CAPCRUNCH is

running, the user must press key "kO" again to continue

or press key "k9" to exit back to AOTOST. This extra

check allows for accidental execution of CAPCRDNCH.

4. Once key "kO" is pressed, the user is asked to

enter the name of the calibration file to crunch. As in

the Pascal operating system, data input is typed via the

computer keyboard and information is accepted by pressing

the "ENTER" key.
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5. Upon receipt of the calibration file name,

CAPCRUNCH searches the HP913 4A hard disk for the

calibration file. If the calibration file is found, it

is loaded into memory and converted to binary data.

6. If the calibration file is not found an error

message will be displayed and CAPCRUNCH will be aborted.

The "RUN" key should be pressed followed by key "k9" to

return back to AUTOST.

7. Assuming the calibration file does exist, the

converted calibration file is stored on the HP9895A 8"

flexible disk and the ASCII version of the calibration

file is deleted from the hard disk.

8. Following compaction of the calibration file, an

operator's message indicating that file compaction is

complete is displayed. CAPCRUNCH loads the autostart

routine from the 5.25" floppy disk (HP9 826 Data Analysis

Routines diskette) and AUTOST is executed.
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APPENDIX VI

Pascal to BASIC File Conversion of Respiratory Data

Following is the procedure to crunch (convert from ASCII to

binary data) files created by DAP. CODE.

1. Referring to Figure Al.l, turn on the DECwriter

II printer, DAM, Tektronix TM power supply, HP9895A 8"

flexible disk memory, HP9134A hard disk memory, and

HP2673A thermal printer (in that order)

.

2. Place the 5.25" floppy disk labeled "HP9826 Data

Analysis Routines" in the computer's (HP9826) disk drive

(label side up) and turn on the HP9826. A BASIC

autostart routine (AUTOST) is automatically loaded and

initiated. (NOTE: If the HP9826 computer is on prior to

placing the data analysis disk in the disk drive, turn

off the HP9826 and then turn it back on. This allows

AUTOST to be automatically loaded and executed.)

3. To start the data file compaction routine

(DAPCRDNCH) press the special function key "kl" on the

HP9 826. DAPCRDNCH will then be loaded into memory from

the HP913 4A hard disk and executed. Once DAPCRUNCH is

running, the user must press key "kl" again to continue

or press key "k9" to exit back to ADTOST. This extra

check allows for accidental execution of DAPCRUNCH.

4. Once key "kl" is pressed, the user is asked to

enter the number of .data points (per channel) to crunch.

As in the Pascal operating system, data input is typed
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via the computer keyboard and information is accepted by

pressing the "ENTER" key.

5. Opon receipt of the number of data points,

DAPCRUNCH searches the HP9134A hard disk for the ASCII

C0
2

file H0NSTER1.ASC. If MONSTER1.ASC is found, it is

loaded into memory and converted to binary data. The

user is then prompted for the name of the file to contain

the binary data. Following are examples of appropriate

file names.
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File Name Description

C50618 C - C0
2

file, 50 - 50 Hz sampling,

618 - June 18 collection date

050618 -
2

file, 50 - 50 Hz sampling,

618 - June 18 collection date

V50618 V - flow file, 50 - 50 Hz sampling,

618 - June 18 collection date

T50618 T - temperature file, 50 - 50 Hz

sampling, 618 - June 18 collection date

C2618 C - C0
2

file, 2 - second run of

of the day, 618 - June 18 collection date

C3618 C - C0
2

file, 3 - third run of

the day, 618 - June 18 collection date

These file names are only suggestions. They were

selected because they portray (at a glance) information

about the data contained in the named files. (NOTE:

BASIC file names should not exceed 10 characters in

length.

)

6. If MONSTER1.ASC is not found, ASCII CO, data

does not exist and DAPCRUNCH will be aborted. The "RUN"
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key should be pressed followed by key "k9" to return back

to AOTOST.

7. Assuming MONSTER1.ASC does exist and the name of

the file to contain the binary data has been entered, the

converted data will be stored on the HP9895A 8° flexible

disk and M0NSTER1.ASC will be deleted from hard disk.

8. In a similar manner the 0, file (M0NSTER2.ASC)

,

flow file (M0NSTER3.ASC) , and temperature file

(M0NSTER4.ASC) are crunched.

9. Following compaction of the four ASCII files, an

operator's message indicating that file compaction is

complete is displayed. DAPCRUNCH loads the autostart

routine from the 5.25" floppy (HP9826 Data Analysis

Routines diskette) and AUTOST is executed.

10. To immediately analyze the crunched data, go to

Appendix VII, item 3.
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APPENDIX VII

System Analysis of Breath-by-breath Respiratory Data

Following is the step-by-step procedure to analyze the

respiratory data on a breath-by-breath basis. Data files to be

used by this analysis routine must have been crunched by

DAPCRUNCH prior to their use. Calibration files must have been

crunched by CAPCRUNCH prior to use in the analysis routine. (See

Appendices V and VI for more information.)

1. Referring to Figure Al.l, turn on the DECwriter

II printer, DAM, Tektronix TM power supply, HP9895A 8"

flexible disk memory, HP9134A hard disk memory, HP2673A

thermal printer, and HP9872C plotter (in that order)

.

2. Place the 5.25" floppy disk labeled "HP9826 Data

Analysis Routines" in the computer's (HP9826) disk drive

(label side up) and turn on the HP9 826. A BASIC

autostart routine (AUTOST) is automatically loaded and

initiated. (NOTE: If the HP9826 is on prior to placing

the data analysis disk into the disk drive, turn the

HP9826 power off, then back on. This will allow AUTOST

to be loaded automatically.)

3. To start the analysis routine (ANALYSIS) press

the special function key "k2" on the HP9826. ANALYSIS

will then be loaded into memory from the HP913 4A hard

disk and executed. Once ANALYSIS is running, the user

must press key "k2" to continue or key "k9" to exit back

to AUTOST. This extra check allows for accidental

execution of ANALYSIS.
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4. The number of data points (per channel) to be

analyzed should then be entered. As in the Pascal

operating system, data input is typed via the computer

keyboard and information is accepted by pressing the

"ENTER" key.

5. The subject's name or identifier is then

entered. This information is printed at the top of the

hard copy output produced by the analysis routine. It

(the information) is used strictly for identifying the

hard copy output.

6. Calibration factors generated from an earlier

system calibration procedure can then be loaded from the

8" flexible disk memory. Answering "Y" to the

calibration factor question prompts the user to enter the

calibration file name. Dpon receipt of a valid

calibration file name, ANALYSIS reads in the calibration

factors. (NOTE: The calibration file must have been

crunched by CAPCRUNCH prior to its use in the analysis

routine. See Appendix V for more details.)

7. Should an improper file name be entered, an

error message will be displayed and the routine will be

halted. (This is the case for the BASIC operating system

in general.) Should an error condition exist, pressing

"PAUSE" followed by the "RUN" key will restart the

routine.

8. Binary data file names are then entered for the
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COjf 0,, flow and temperature data. Once these names are

entered, the analysis routine loads the binary data from

the 8" flexible disk memory. (NOTE: These data files

must have been crunched by DAPCRONCH prior to their use

in the analysis routine. See Appendix VI for more

details.

)

9. The user then selects the sampling frequency at

which the data were collected. A default value of 50 Hz

is available as the majority of the previous work was

conducted at the 50 Hz sampling frequency. Answering "Y"

to changing the sampling frequency causes ANALYSIS to

prompt the user for the new sampling frequency.

10. Breath-by-breath or fixed time delays are then

selected. Selecting "B" allows for breath-by-breath

determination of the gas mass spectrometer time delay

(see section 4.5 Data Analysis and Display Software for

more details) . Selecting "F" causes the current mass

spectrometer time delay to be displayed on the HP9826 CRT

and the option to alter this delay is made. The user can

either alter this fixed delay or use the current delay

throughout the remainder of the analysis routine.

11. Provided the necessary information has been

collected, gas volumes may (if the user desires) be

corrected to BTPS/STPD conditions. Answering "Y" to this

question causes a table of water vapor pressures (VAP) to

be loaded into memory and further prompting of the

operator for the barometric pressure (torr), relative
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humidity (%) , and body temperature (deg C) . This

information should have been collected at data collection

time.

12. The user is then asked if a plot of the data is

desired. Answering nY" to this question causes the

number of data points available for plotting to be

displayed. The user then enters the point within this

array of data at which to start plotting and the point at

which to stop plotting. This option allows the user to

expand the time axes on the plots for better definition

of the respiratory data.

13. Once these starting and ending points are

entered, the maximum and minimum values of the points to

be plotted are displayed. Again, this information can be

used to determine whether or not any of the four data

acquisition channels saturated during the data collection

process.

14. The plotted data are then routed either to the

CRT or the HP9872C plotter. (Entering "CRT" routes the

plot to the HP9826 CRT and "PLOTTER" cause the plot to be

plotted on the HP9872C.) If the HP9872C plotter is

desired, press the "CHART LOAD" key on the plotter. This

releases the electrostatic charge on the plotter surface

so plotter paper can be applied. Place an 11" x 16.5"

piece of plotter paper on the plotting surface so the

long edge (16.5") is along the bottom edge of the plotter

and the left edge is flush with the left edge of the
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plotting surface. Pressing "CHART HOLD" on the plotter

applies the charge to the plotter surface and holds the

plotter paper in place. Plotting limits PI (lower left)

and P2 (upper right) should be set by moving the plotting

arm to the desired limit using the arrow keys (up, down,

left, and right arrows) , pressing the "ENTER" key,

followed by "PI" or "P2" depending upon which limit is

being set. The HP9 87 2C is now ready for plotting. It

should be mentioned that once the plot is completed on

the HP9 826 CRT, an image of that plot can be dumped to

the HP2673A thermal printer by simply holding down on the

"SHIFT" key and pressing the "DUMP GRAPHICS" key.

15. Once the plot is completed, the analysis routine

is in a paused mode. This allows the operator to observe

the completed plot and possibly prepare for additional

plots. When ready, the user presses the "CONTINUE" key

and a question to redo the plot is made.

16. Should the user answer "Y" to this question,

ANALYSIS returns to the question concerning the point at

which to start plotting and the routine repeats as

described. Answering "N" to the redo graphics question

causes printed output of the data analysis to begin on a

breath-by-breath basis. This option requires calibration

files to have been both crunched and previously selected

for use in step 6 of this appendix.

17. Upon completion of the hard copy output,

ANALYSIS loads the autostart routine from the 5.25"
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floppy (HP9 826 Data Analysis Routines diskette) and

AOTOST is initiated. The user can then perform

additional data analysis if desired (see step #3 above)

.
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APPENDIX VIII

CAP. COPE

General Description

CAP. CODE is a Pascal routine which calibrates the system

transducers, namely the Perkin-Elmer gas mass spectrometer, the

Fleisch/Godart pneumotach assembly, and the respiratory

temperature thermocouple. Following is a list of summarized

features of DAP. CODE.

1. This routine assumes that the ASCII calibration

file created by CAP. CODE is to be stored on hard disk

volume #13 (":HP9895,702,2" in the BASIC operating

system)

.

2. The DAM should be connected to the HP9 826

computer via a GPIO interface at select code #12. This

insures the proper device address for sending and

receiving information between the DAM and the HP9 826.

3. Two external 68000 assembly language routines

are utilized by CAP. CODE to handle the high speed

requirements needed to monitor the STS (.SJJatuSJ signal

from the DAM. (See Appendix X for more details.)

4. CAP. CODE'S CLKSET procedure sets the 8253 timer

chip on the DAM to the desired sampling frequency. A

maximum sampling rate of 350 Hz is recommended. This

value may have to be reduced if substantial additions to

the procedure DATA_COLLECT are made.
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5. Procedure DATA_COLLECT is used by CAP. CODE to

sample the necessary channels for calibration purposes.

It (DATA_COLLECT) is identical to the DATA_COLLECT

procedure used by DAP. CODE.

6. Procedure GASCAL is designed to calibrate the

Perkin-Elmer gas mass spectrometer for both the CO-

(channel A) and
2

(channel B) DAM channels.

7. Procedure FLOWCAL is used to calibrate the

FLEISCH/GODART pneumotach assembly. FLOWCAL determines

not only the binary value for zero flow but also computes

inspiratory and expiratory flow calibration factors.

8. Procedure TEMPCAL is designed to calibrate the

thermocouple for measuring respiratory temperature.

TEMPCAL determines a 2nd order equation for converting

binary DAM figures into actual temperature values.

9. CAP. CODE converts all the calibration factors to

ASCII units and stores these units in a single ASCII data

file (see File Structure section for more details.)

Cal cul ation s

Following are the important calculations that are made by

CAP. CODE.

1. DAM status word

The DAM status word (16 return bits from the DAM

to the HP9826 computer) is organized as follows.
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DAM Status Bit Description

8253 clkl output for system timing

1 STS signal from DAM, goes high then

low when conversion is complete

2-13 12 bits digital value from the AD574

A/D

14-15 Not used

As is obvious from the preceding bit

organization, the equations

R4:=IOSTATDS(12,3) ; {Read 16-bit status word}

R4:=R4 DIV 4; {Shift result right 2 bits}

R4:=BINAND(Mask,R4) ; {Mask off all but 12 bits}

alter the 16-bit value stored in R4 (a variable)

.

R4 is shifted two bits to the right (DIV 4) and

bits 14 and 15 are masked off (BINAND (Mask,R4)

)

to yield the 12-bit value from the A/D.

2. DAM control word

The DAM control word (16 bits to the DAM from the

HP9826 computer) is organized as follows.
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PAM Control Bit Description

DO and BCD for 8253 timer control

1 Dl and MO for 8253 timer control

2 D2 and Ml for 8253 timer control

3 D3 and M2 for 8253 timer control

4 D4 and RLO for 8253 timer control

5 D5 and RL1 for 8253 timer control

6 D6 and SCO for 8253 timer control

7 D7 and SCI for 8253 timer control

8 8253 timer select, low = selected

9 R/C for AD574 A/D, low = start

conversion

10 MAO for AD7503 multiplexer

11 MAI for AD7503 multiplexer, Al for

8253 timer

12 MA2 for AD7503 multiplexer, A0 for

8253 timer

13 S/H control for S/H amplifiers,

high = hold

14-15 not used

For a detailed explanation of the 8253 timer

controls, see the 1980 Intel Component Data

Catalog [19]. For the multiplexer [23] controls

MAO, MAI, and MA2 the following table is helpful.
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mz MAI MAO

1

1

1 1

i

i 1

i 1

i 1 1

Channel/switch

Channel F, Switch 1

Channel A, Switch 2

Channel E, Switch 3

Channel B, Switch 4

Channel H, Switch 5

Channel C, Switch 6

Channel G, Switch 7

Channel D, Switch 8

As can be seen from the previous bit

specifications, to select channel A, with the S/H

amplifiers in the hold mode and the A/D convert

signal high, the following code is necessary.

R6:=BINAND(15360,Chna) ; {AND 15360 with 15359}

R6:=BINCMP(R6)

;

{Compliment result}

IOCONTROL(12,3,R6) ; {Write bit pattern to DAM}

Similar calculations are performed throughout the

procedure DATA_COLLECT.

3. Average binary values

Throughout the calibration procedures GASCAL,

FLOWCAL, and TEMPCAL compute average binary

values for certain constant calibration points

(i.e. for the
2

channel 21% and 12.9%
2

levels

are used) . Following are the calculations used
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throughout the mentioned procedures for

determining these averages.

Tot_zero:=LINE3~[l]

;

{SUM UP Sam POINTS}

FOR I: =2 TO Sam DO

BEGIN

Tot_zero : =Tot_zero+LINE3 *
[ I ]

;

END;

Bin_zero_flow:=Tot_zero DIV Sam; {COMPOTE AVERAGE}

4. Inspiratory flow calibration factor

The inspiratory flow calibration factor

(Insp_flow_cal) is determined by integrating the

inspiratory side of the flow calibration signal

generated by the Harvard pump (of known stroke

volume) , dividing by the number of breaths

included in the integration, and dividing the

result into the stroke volume of the Harvard

pump. This results in a calibration factor

having units of liters per second per binary

value. (NOTE: Insp_flow_cal is a positive

quantity even though inspiratory flow is

considered negative flow.)

5. Expiratory flow calibration factor

The expiratory flow calibration factor

(Expr_flow_cal) is determined by integrating the

expiratory side of the flow calibration signal

and performing those divisions mentioned in
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selection 4 above. Expr_flow_cal also has units

of liters per second per binary value.

6. Determining the 2nd order temperature coefficients

A set of 2nd order temperature coefficients are

determined for converting binary temperature data

to actual temperatures in degrees C. Using the

method of Least Squares as described by Agnew and

Knapp [24] the 2nd order (Ta) , 1st order (Tb)

,

and constant coefficients (Tc) are computed from

the three calibration temperatures used.

File Structure

One serial ASCII calibration file is created by CAP. CODE.

The calibration file name supplied by the user will have the

ASCII extension (.ASC) placed on it by the Pascal operating

system. Because of the name conversion process necessary between

the Pascal and BASIC systems, Pascal file names in excess of 9

characters are not recommended. (NOTE: The ASCII calibration

files will appear on the " :HP9895,702,2° hard disk and are purged

immediately following execution of the crunch routine CAPCRUNCH.)
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Recprd # Contents

1 Co2_dc_offset (4 ASCII bytes)

O2_dc_offset (4 ASCII bytes)

Bin_zero_flow (4 ASCII bytes)

Co2_cal (25 ASCII bytes)

02_cal (25 ASCII bytes)

Insp_flow_cal (25 ASCII bytes)

Expr_flow_cal (25 ASCII bytes)

Time_delay (25 ASCII bytes)

S (4 ASCII bytes)

01 (25 ASCII bytes)

Ta (25 ASCII bytes)

Tb (25 ASCII bytes)

Tc (25 ASCII bytes)

Date (25 ASCII bytes)

Variable List

A INTEGER variable used as a pointer into the

flow signal array Line3 during flow signal

integration.

Aire REAL value containing the amount of air expired

for the current breath.

Airi REAL value containing the amount of air inspired

for the current breath.
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Avco2h INTEGER variable containing the average binary

value read for 7% CO,.

Avco21 INTEGER variable containing the average binary

value read for 0% CO,..

Avo2h INTEGER variable containing the average binary

value read for 21% 0.

.

Avo21 INTEGER variable containing the average binary

value read for 12.9% 0..

Avole REAL value equal to the average volume of air

expired by the Harvard pump.

Avoli REAL value equal to the average volume of air

inspired by the Harvard pump.

B INTEGER variable equal in value to the variable

Bin_zero_flow. "B" was selected because of

its shorter name length.

Bin_temp REAL matrix containing temperature data for

determining the 2nd order curve fit coeffic-

ients.

Bin_temp_inv REAL matrix equal to the inverse of the matrix

Bin_temp.
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Bin_zero_flow INTEGER value equal to the average binary value

read from the flow channel for zero flow.

Cal STRING variable containing the user defined

name for the calibration file.

Ch REAL variable containing the actual fractional

concentration read from the mass spectrometer

for 7% C0
2

.

CI REAL variable containing the actual fractional

concentration read from the mass spectrometer

for 0% C0
2

.

Co2_cal REAL value used to convert the binary data

collected from the CO, channel into fractional

concentration values.

Co2_dc_offset INTEGER value equal to the average binary value

read from the CO, channel for 0% CO,.

Date STRING variable containing the date of cal-

ibration.

Del INTEGER variable used in the delay loop that

allows the S/H amplifiers time to track the

input signals before the hold command is given.
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Expr_btps REAL variable used to correct expiratory-

flow values to BTPS conditions. Expr_btps

is equal to unity in CAP. CODE.

Expr_flow_cal REAL variable used to convert expiratory

flow binary data points from channel C to

flow units of liters per second.

F TEXT variable containing the Pascal name

associated with the ASCII files created

by DAP. CODE.

Fl INTEGER variable used by the procedure CLKSET

to set the LSB of clock 1 in the 8253 timer for

proper sampling rate.

Flow_cal REAL value used to multiply binary data

collected from the flow channel to obtain

units of liters per second. For CAP. CODE,

Flow_cal is always equal to unity.

Fm INTEGER variable used by the procedure CLKSET

to set the MSB of clock 1 in the 8253 timer for

the proper sampling rate.

Fname STRING variable containing the calibration

file name as it will appear in the Pascal

operating system.
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I INTEGER value used as a loop counter and

array pointer.

Insp_btps REAL variable used to correct inspiratory

flow values to BTPS conditions. Insp_btps

is equal to unity in CAP. CODE.

Insp_flow_cal REAL variable used to convert inspiratory

flow binary data points from channel C to

flow units of liters per second.

Linel 24000 point data string containing the BCD

values acquired from the CO, channel of

the DAM. Access of this external data string

is made through the pointer "I".

Line2 24000 point data string containing the BCD

values acquired from the 0, channel of the

Dam. Access of this external data string is

made through the pointer "I".

Line3 24000 point data string containing the BCD

values acquired from the flow channel of the

DAM. Access of this external data string is

made through the pointer "I".
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Line4 24000 point data string containing the BCD

values acquired from the temperature channel

of the DAM. Access of this external data

string is made through pointer "I".

Norm_a REAL variable equal to the determinant of the

temperature matrix Bin_temp[3 ,3]

.

No_breaths INTEGER value representing the number of

breaths generated by the Harvard pump during

the flow calibration procedure.

NSTRING Four byte STRING variable containing the

ASCII representation of the previously

converted BCD value.

02_cal REAL variable used to convert the binary data

collected from 0- channel to fractional

concentration values.

02_dc_offset INTEGER variable equal to the average binary

value read from the 0, channel for 12.9% 0-.

01 REAL variable containing the 0~ concentration

read from the mass spectrometer for 12.9% 0_

.
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Q STRING variable containing the answer to

a question asked by CAP. CODE. Typically this

answer is either a "Y" or "N".

R4 INTEGER variable read from the DAM' s status

register. (See Calculations section above

for more details.)

R6 INTEGER variable written to the DAM'

s

control register. (See Calculations section

above for more details.)

RSTRING STRING variable containing the ASCII repre-

sentation of those REAL calibration factors

stored by CAP. CODE.

S INTEGER value representing the DAM sampling

frequency in Hz.

Sam INTEGER variable representing the number of

samples per channel.

T REAL variable equal to the reciprocal of the

sampling frequency (S) .

Ta REAL variable representing the 2nd order

coefficient for converting binary temperature

data to units of degrees C.
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REAL variable representing the 1st order

coefficient for converting binary temperature

data to units of degrees C.

Tc REAL variable representing the constant

coefficient for converting binary temperature

data to units of degrees C.

TEMP INTEGER value used by the STRWRITE function

in converting the acquired BCD data to ASCII.

Tlow REAL variable containing the actual low

temperature water bath in degrees C.

Tlow_bin REAL variable equal to the average binary

value read for the low temperature water

bath.

Tmid REAL variable containing the actual middle

temperature water bath in degrees C.

Tmid_bin REAL variable equal to the average binary

value read for the middle temperature water

bath.

Thigh REAL variable containing the actual high

temperature water bath in degrees C.
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Thigh_bin REAL variable equal to the average binary

value read for the high temperature water

bath.

Tot_temp INTEGER variable containing the sum of the

binary temperature values during temperature

calibration.

Tot_vol_expr REAL value containing the sum of the expired

volume during flow calibration.

Tot_vol_insp REAL value containing the sum of the inspired

volume during flow calibration.

Tot_zero INTEGER variable containing the sum of all

the binary data points collected from

channel C (the flow channel)

.

X INTEGER used by the procedure CLKSET to set

clock 1 in the 8253 timer for proper sampling

rate.

Z INTEGER variable used as a pointer into the

flow signal array Line3 during flow signal

integration.
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$SYSPROG 0N$

$LINES 64$
$REF 40$ {ALLOCATE ROOM FOR REFERENCE TABLE}
PROGRAM CAP (INPUT, OUTPUT);

SYSTEM CALIBRATION ROUTINE

PASCAL REV 2.1 SOURCE FILENAME: CAP. TEXT

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

KANSAS STATE UNIVERSITY

REVISION DATE PROGRAMMER

1.0 JUNE 28, 1984 LOREN E. RIBLETT, JR.

****** ******** ****** *********************************************************

PURPOSE

THIS ROUTINE PERFORMS ALL THE NECESSARY ACTIONS TO CALIBRATE
THE BREATH-BY-BREATH RESPIRATORY SYSTEMS INSTRUMENTATION AND
STORES THE CALIBRATION FACTORS IN ASCII CALIBRATION FILES.

ROUTINE(S) CALLED BY THIS ROUTINE

BITJTST - 6 8000 ASSEMBLY MODULE THAT WAITS UNTIL THE STS BIT

ON THE DAM GOES HIGH, THEN LOW
BIT_HI - 6 8000 ASSEMBLY MODULE THAT WAITS UNTIL THE STS BIT

ON THE DAM GOES LOW
CLKSET - INTERNAL PROCEDURE THAT SETS THE 8253 TIMER CHIP FOR

THE PROPER SAMPLING FREQUENCY
HOLD_UP - INTERNAL PROCEDURE FOR TEMPORARY PAUSING OF PROGRAM

OPERATION
DATA_COLLECT - INTERNAL PROCEDURE THAT CONTROLS THE DAM IN THE

PROPER FASHION TO COLLECT THE DESIRED NUMBER OF
DATA POINTS

GASCAL - INTERNAL PROCEDURE THAT CALIBRATES THE PERKIN-ELMER
GAS MASS SPECTROMETER

FLOWCAL - INTERNAL PROCEDURE THAT CALIBRATES THE FLEISCH/
GODART FLOW APPARATUS

TEMPCAL - INTERNAL PROCEDURE THAT CALIBRATES THE RESPIRATORY
TEMPERATURE TRANSDUCER

****************************************************************

NOTE 1: THIS ROUTINE ASSUMES THAT THE ASCII CALIBRATION FILE CREATED
BY CAP IS TO BE STORED ON HARD DISK VOLUME #13 (":HP9895,702,
2" IN THE BASIC OPERATING SYSTEM).

NOTE 2: THE DAM SHOULD BE CONNECTED TO THE HP9826 COMPUTER VIA A
GPIO INTERFACE AT SELECT CODE #12. THIS INSURES THE PROPER
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DEVICE ADDRESS FOR SENDING AND RECEIVING INFORMATION BETWEEN
THE DAM AND THE HP9826.

NOTE 3: TWO EXTERNAL 6 8000 ASSEMBLY LANGUAGE ROUTINES (BIT_TST AND
BIT_HI) ARE UTILIZED BY CAP TO HANDLE THE HIGH SPEED
REQUIREMENTS NEEDED TO MONITOR THE STS( STATUS)
SIGNAL FROM THE DAM.

NOTE 4: CAP'S CLKSET PROCEDURE SETS THE 8253 TIMER CHIP ON THE DAM
TO THE DESIRED SAMPLING FREQUENCY. A MAXIMUM SAMPLING RATE
OF 350 HZ IS RECOMMENDED. THIS VALUE MAY HAVE TO BE REDUCED
IF SUBSTANTIAL ADDITIONS TO THE PROCEDURE DATA_COLLECT ARE
MADE.

NOTE 5: PROCEDURE DATA_COLLECT IS USED BY CAP TO SAMPLE THE NECESSARY
CHANNELS FOR CALIBRATION PURPOSES. IT (DATA_COLLECT) IS
IDENTICAL TO THE DATA_COLLECT PROCEDURE USED BY DAP. CODE.

NOTE 6: PROCEDURE GASCAL IS DESIGNED TO CALIBRATE THE PERKIN-ELMER
GAS MASS SPECTROMETER FOR BOTH THE C02 (CHANNEL A) AND 02
(CHANNEL B) DAM CHANNELS.

NOTE 7: PROCEDURE FLOWCAL IS USED TO CALIBRATE THE FLEISCH/GODART
PNEUMOTACH ASSEMBLY. FLOWCAL DETERMINES NOT ONLY THE BINARY
VALUE FOR ZERO FLOW BUT ALSO COMPUTES INSPIRATORY AND
EXPIRATORY FLOW CALIBRATION FACTORS.

NOTE 8: PROCEDURE TEMPCAL IS DESIGNED TO CALIBRATE THE THERMOCOUPLE
FOR MEASURING RESPIRATORY TEMPERATURE. TEMPCAL DETERMINES A
2ND ORDER EQUATION FOR CONVERTING BINARY DAM FIGURES TO
ACTUAL TEMPERATURE VALUES.

NOTE 9: CAP CONVERTS ALL THE CALIBRATION FACTORS TO ASCII UNITS AND
STORES THESE UNITS IN A SINGLE ASCII DATA FILE (SEE EXTERNAL
PROGRAM DOCUMENTATION FOR MORE DETAILS).

*}

LOAD NECESSARY LIBRARY MODULES

IMPORT IODECLARATIONS , GENERALJ)

,

IOCOMASM;

{

*** SET PROGRAM CONSTANTS

}

CONST Time_delay=400.0;
{

*** DECLARE FOUR LARGE EXTERNAL DATA ARRAYS AND POINTERS
}

TYPE LI=ARRAY [1..5000] OF INTEGER

{AVERAGE TIME DELAY STORED WITH CAL DATA}

PT1="L1
L2=ARRAY [1..5000] OF INTEGER
PT2="L2

PT3=*L3

{POINTER TO ARRAY LI}

{POINTER TO ARRAY L2}
L3=ARRAY [1..5000] OF INTEGER

{POINTER TO ARRAY L3}

{CO 2 CHANNEL DATA ARRAY}

{02 CHANNEL DATA ARRAY}

{FLOW CHANNEL DATA ARRAY}
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L4=ARRAY [1..5000] OF INTEGER; {TEMPERATURE CHANNEL DATA ARRAY}
PT4="L4; {POINTER TO ARRAY L4}

{

*** DECLARE PROGRAM VARIABLES

}

VAR S, Sam: INTEGER;
TEMP , Co2_dc_of fset : INTEGER

;

O2_dc_offset: INTEGER;
Tot_zero , Bin_zero_flow : INTEGER

;

GPINT[7077 890] : INTEGER;

1 , Co2_ca 1 , 02_ca 1 : REAL

;

Insp_flow_cal :REAL;

Expr_f low_ca 1 :REAL

;

Ta,Tb,Tc:REAL;
NSTRING: STRING [4];

Q: STRING! 1];

Cal: STRINGt6];
Date: STRING[25];
Fname: STRING[14];
RSTRING: STRING! 25];
F: TEXT;
Linel: PT1

;

Line2: PT2;
Line3: PT3;
Line4: PT4;

{
*** DECLARE EXTERNAL 6 8000 ASSEMBLY MODULES
}

PROCEDURE BIT_TST;EXTERNAL; {WAITS UNTIL STS BIT GOES HIGH, THEN LOW}
PROCEDURE BIT_HI;EXTERNAL; {WAITS UNTIL STS BIT IS LOW}
{
*** DECLARE PROCEDURE TO SET DAM CLOCK
}

PROCEDURE CLKSET(VAR S:INTEGER); {PASS SAMPLING FREQUENCY (S)}
VAR X,Fm,FI:INTEGER;
BEGIN

{

*** HAVE USER ENTER THE SAMPLING FREQUENCY
}

WRITELN( 'ENTER SAMPLING FREQUENCY: ');

READLN(S);

{

*** DETERMINE 16-BIT COUNTER VALUE FOR CLK1 IN 8253 TIMER CHIP
}

X: =1000000 DIV 2 DIV S;

IF X>-256 THEN
BEGIN

Fm:=°X DIV 256;
Fl:-X-256*Fm;

END
ELSE

BEGIN
Fm:=0;
F1:=X;

END;
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{

*** SET COUNTER IN 8253 TIMER TO MODE 3

}

IOCONTROL(12,3,1567 8); {11110100111110}
IOCONTROLU2.3, 15422); {11110000111110}
IOCONTROL(12,3, 15670); {11110100110110}

{

*** SET COUNTER 1 IN 8253 TIMER TO MODE 2

}

IOCONTROL(12,3,15740); {11110101111100}
I0C0NTR0L(12,3,15484); {11110001111100}
IOCONTROL(12,3,15732); {11110101110100}

{
*** LOAD LSB OF COUNTER

}

IOCONTROL(12,3,9474); {10010100000010}
I0C0NTR0L(12,3,9218); {10010000000010}
I0C0NTR0L(12,3,9474); {10010100000010}
{

*** LOAD MSB OF COUNTER

}

IOCONTROL(12,3,9472); {10010100000000}
I0C0NTR0L(12,3,9216); {10010000000000}
I0C0NTR0L(12,3,9472); {10010100000000}
{
*** LOAD LSB OF COUNTER 1

}

IOCONTROL(12,3,13568+Fl); {11010100000000}
I0C0NTR0L(12,3,13312+F1); {11010000000000}
IOCONTROL(12,3,1356 8+Fl); {11010100000000}
{

*** LOAD MSB OF COUNTER 1

}

IOCONTROL(12,3,1356 8+Fm); {11010100000000}
I0C0NTR0L(12,3,13312+Fm); {11010000000000}
IOC0NTROL(12,3,13568+Fm); {11010100000000}

END; {CLKSET END}

{

*** DECLARE PROCEDURE FOR PAUSING PROGRAM OPERATION
}

PROCEDURE HOLD_UP;
BEGIN

WRITELN( 'PRESS ENTER TO CONTINUE.'); {DISPLAY PROMPT ON CRT}
READLN; {WAIT UNTIL 'ENTER' IS PRESSED}

END; {HOLD_UP END}
{

*** DECLARE PROCEDURE FOR COLLECTING FOUR CHANNELS OF DAM DATA
}

PROCEDURE DATA_COLLECT(VAR Sam:INTEGER;
VAR LINE1:PT1;VAR LINE2:PT2;
VAR LINE3:PT3;VAR LINE4:PT4);

VAR I,R6,Del,R4:INTEGER;
CONST Chna=15359;Chnb=13311; {BIT PATTERNS NECESSARY TO SET THE CHANNEL MU

LTIPLEXER}
CONST Chnc=11263;Chnd=f9215;
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CONST Mask=4095; {MASKS OFF ALL BDT 12 DATA BITS IN STATUS WORD}

{

*** MAIN LOOP FOR FOUR CHANNEL DATA ACQUISITION
}

BEGIN {DATA_COLLECT}
FOR I:=l TO Sam DO

BEGIN

{

*** PUT S/H AMPS IN TRACKING MODE AND SELECT CHANNEL A
}

R6:=BINAND(15360,Chna);
R6:=BINCMP(R6);
I0CONTROL(12,3,R6);

{

*** GIVE S/H AMPS TIME TO TRACK INPUT SIGNALS

}

Del:=15;
WHILE Del>0 DO

BEGIN
Del:-Del-1;

END;

{

*** SELECT CHANNEL A ON MULTIPLEXER AND CONVERT SIGNAL HIGH
}

R6 : =BINAND( 7 16 8, Chna )

;

R6:-=BINCMP(R6);
IOCONTROL(12,3,R6);

{
*** SELECT CHANNEL A ON MULTIPLEXER AND CONVERT SIGNAL LOW
}

R6:=BINAND(7680,Chna); {SEND CONVERT...}
R6:=BINCMP(R6); {...PULSE}
IOCONTROL(12,3,R6);

{

*** SELECT CHANNEL A ON MULTIPLEXER AND CONVERT SIGNAL HIGH
}

R6:=BINAND(716 8,Chna); {RETURN TO...}
R6:=BINCMP(R6); {...NORMAL}
IOCONTROL(12,3,R6);

{

*** WAIT FOR STS LINE TO GO LOW
}

BIT_HI

;

{

*** READ GPIO STATUS REGISTER AND KEEP ONLY 12 BITS
}

R4:=IOSTATUS(12,3);
R4:=R4 DIV 4;

R4:=BINAND(MASK,R4)
;

Linel"[I]:-R4;
{

*** SELECT CHANNEL B ON MULTIPLEXER AND CONVERT SIGNAL HIGH
}

R6 :=BINAND(716 8,Chnb)

;

R6:=BINCMP(R6);
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IOCONTROL(12,3,R6);

{

*** SELECT CHANNEL B ON MULTIPLEXER AND CONVERT SIGNAL LOW

}

R6 : =BINAND( 76 80 , Chnb )

;

R6:=BINCMP(R6);
IOCONTROL(12,3,R6);

{
*** SELECT CHANNEL B ON MULTIPLEXER AND CONVERT SIGNAL HIGH
>

R6:=BINAND(7168,Chnb);
R6:=BINCMP(R6);
IOCONTROL(12,3,R6);

{

*** WAIT FOR STS SIGNAL TO GO LOW

}

BIT_HI

;

{

*** READ GPIO STATUS REGISTER AND KEEP ONLY 12 BITS
}

R4:=IOSTATUS(12,3);
R4:=R4 DIV 4;

R4:=BINAND(Mask,R4)

;

Line2~[l]:=R4;

{

*** SELECT CHANNEL C ON MULTIPLEXER AND CONVERT SIGNAL HIGH
}

R6 :.=BINAND(7 16 8,Chnc)

;

R6:=BINCMP(R6);
IOCONTROL(12,3,R6);

{
*** SELECT CHANNEL C ON MULTIPLEXER AND CONVERT SIGNAL LOW
}

R6 :=BINAND(76 80 ,Chnc)

;

R6:=BINCMP(R6);
IOCONTROL(12,3,R6);

{

*** SELECT CHANNEL C ON MULTIPLEXER AND CONVERT SIGNAL HIGH
}

R6 : =BINAND( 7 16 8, Chnc )

;

R6:=BINCMP(R6);
IOCONTROL(12,3,R6);

{
*** WAIT FOR STS SIGNAL TO GO LOW
}

BIT_HI

;

{

*** READ GPIO STATUS REGISTER AND KEEP ONLY 12 BITS
}

R4:-IOSTATUS(12,3);
R4:=R4 DIV 4;

R4:-BINAND(Mask,R4)
;

Line3"[I]:=R4;
{

*** SELECT CHANNEL D ON MULTIPLEXER AND CONVERT SIGNAL HIGH
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>

R6 :=BINAND(716 8,Chnd)

;

R6:=BINCMP(E6);
IOCONTROL(12,3,R6);

{
*** SELECT CHANNEL D ON MULTIPLEXER AND CONVERT SIGNAL LOW

}

R6:=BINAND(76 80,Chnd);

R6:=BINCMP(R6);
IOCONTROL(12,3,R6);

<
*** SELECT CHANNEL D ON MULTIPLEXER AND CONVERT SIGNAL HIGH

}

R6 : -BINAND (716 8, Chnd )

;

R6:=BINCMP(R6);
IOCONTROL(12,3,R6);

{

*** WAIT FOR STS SIGNAL TO GO LOW

}

BIT_HI

;

{

*** READ GPIO STATUS REGISTER AND KEEP ONLY 12 BITS

}

R4:=IOSTATUS(12,3);
R4:=R4 DIV 4;

R4:=BINAND(Mask,R4)
;

Line4"[I]:=R4;

{

*** WAIT FOR STS SIGNAL TO GO HIGH, THEN LOW
>

BIT_TST;

{

*** LOOP BACK UNTIL ALL POINTS ARE COLLECTED
}

END;

END; {DATA_COLLECT}

{

*** DECLARE PROCEDURE FOR CALIBRATING THE PERKIN-ELMER GAS MASS SPECTROMETER
}

PROCEDURE GASCAL(VAR 01,Co2_cal,02_cal :REAL;

VAR Co2_dc_offset,02_dc_offset,
Sam:INTEGER; VAR LINE1:PT1;
VAR LINE2:PT2; VAR LINE3:PT3;
VAR LINE4:PT4);

VAR I,Avco21,Avo2h,Avco2h,Avo21: INTEGER;
Cl,Ch,Oh:REAL;

{
*** BEGIN GMS CALIBRATION

>

BEGIN {GASCAL}

{

*** INSTRUCT USER TO CONNECT GMS PROBE FOR 21% 02 AND OX C02
}

WRITELN( 'CONNECT THE MASS SPECTROMETER PROBE TO ROOM AIR.');
WRITELN;
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{

*** OBTAIN ACTUAL 02 AND C02 CONCENTRATIONS FROM GMS FRONT PANEL
}

WRITELNC 'ENTER ACTUAL C02 CONCENTRATION.');
READLN(Cl);
WRITELNC 'ENTER ACTUAL 02 CONCENTRATION.');
READLN(Oh)

;

{

*** FOLLOWING A CARRIAGE RETURN, TAKE 1000 DATA POINTS ON C02 AND 02
*** CHANNELS

}

HOLD_UP;
DATA_COLLECT( Sam, LINE1 , LINE2 .LINE3 , LINE4) ;

{

*** COMPUTE AVERAGE BINARY VALUES FOR 02 AND C02 CHANNELS
}

Avco21:=LINEl"[l];
Avo2h:=LINE2*[l];
FOR I: -2 TO Sam DO

BEGIN
Avco21:=Avco21+LINEl~[l]

;

Avo2h:=Avo2h+LINE2~[I]

;

END;

Avco21:=Avco21 DIV 1000;
Co2_dc_of fset : =-Avco21

;

Avo2h:=Avo2h DIV 1000;
{

*** DISPLAY AVERAGES ON HP9 826 CRT

}

WRITELNCC02 DC OFFSET »',Co2_dc_of fset) ;

WRITELNC 'Value read for 0% Co2 was. .

.

' ,Avco21)

;

WRITELNC 'Value read for 21% 02 was. . .' ,Avo2h)

;

{

*** INSTRUCT THE USER TO CONNECT GMS PROBE TO 7% C02 AND 13% 02
}

WRITELNC 'CONNECT THE GMS PROBE TO 7% C02 AND 13% 02.');
WRITELN;

{

*** OBTAIN ACTUAL 02 AND C02 CONCENTRATIONS FROM GMS FRONT PANEL
}

WRITELNC 'ENTER THE ACTUAL VALUE FOR THE C02 CONCENTRATION.');
READLNCCh);
WRITELNC 'ENTER THE ACTUAL VALUE FOR THE 02 CONCENTRATION.');
READLNCOl);

{

*** TAKE 1000 DATA POINTS ON C02 AND 02 CHANNELS
}

HOLD_DP;
DATA_COLLECTC Sam, LINE1 , LINE2 , LINE3 , LINE4)

;

{

*** COMPUTE AVERAGE BINARY VALUES FOR 02 AND C02 CHANNELS
}

Avco2h:=LINEl~[l];
Avo21:=LINE2"[l];
FOR I: =2 TO Sam DO
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BEGIN

Avco2h:-Avco2h+LINEl"[I]

;

Avo21:=Avo21+LINE2"[I]

;

END;
Avco2h:=Avco2h DIV 1000;
Avo21:-Avo21 DIV 1000;
O2_dc_of fset : =Avo21

;

{

*** DISPLAY AVERAGES ON HP9826 CRT

}

WRITELNC02 DC OFFSET -' ,02_dc_of fset)

;

WRITELNC 'Average value read for 7% C02 was. ..' ,Avco2h)

;

WRITELNC 'Average value read for 13% 02 was. . .',Avo2D ;

{

*** COMPUTE C02 AND 02 CALIBRATION FACTORS FROM THESE AVERAGES
}

Co2_cal:=R0UND((Ch-Cl)/(Avco2h-Avco21)*10000000)/10000000;
02_cal:=R0UND(C0h-Ol)/CAvo2h-Avo21)*10000000)/10000000;
{

*** DISPLAY C02 AND 02 CALIBRATION FACTORS ON 9826 CRT

}

WRITELNCC02 CALIBRATION FACTOR =',Co2_cal);
WRITELNC02 CALIBRATION FACTOR =',02_cal);

END; {GASCAL}

{

*** DECLARE PROCEDDRE FOR CALIBRATING THE FLEISCH/GODART FLOW APPARATUS
}

PROCEDURE FLOWCALCVAR Insp_flow_cal,
Expr_flow_cal:REAL;
VAR Bin_zero_flow,Sam:INTEGER;
VAR LINE1:PT1; VAR LINE2:PT2;
VAR LINE3:PT3; VAR LINE4:PT4);

LABEL 1,2,3,4,5,6,7,8;
VAR I , Tot_zero , No_breaths ,A , Z , B : INTEGER

;

T,Tot_vol_insp,Tot_vol_exp,Flow_cal:REAL;
Insp_btp8,Expr_btps,Air i,Aire: REAL;
Avoli ,Avole :REAL

;

{

*** BEGIN FLOW CALIBRATION

}

BEGIN {FLOWCAL}

{

*** INSTRUCT USER TO APPLY ZERO FLOW TO THE PNEUMOTACHOMETER
}

WRITELNC 'CONNECT ZERO FLOW TO PNEUMOTACHOMETER.');
WRITELN;
{

*** FOLLOWING A CARRIAGE RETURN, GO COLLECT 1000 FLOW DATA POINTS
>

HOLD_UP;
DATA_COLLECT(Sam,LINEl ,LINE2,LINE3 .LINE4)

;

{

*** AVERAGE THE 1000 DATA POINTS FOR ZERO FLOW VALUE
)

Tot_zero:=LINE3~[l];
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FOR I:=2 TO Sam DO

BEGIN
Tot_zero : =Tot_zero +LINE3 "til;

END;

Bin_zero_flow:=Tot_zero DIV 1000;

{

*** DISPLAY BINARY ZERO FLOW VALDE ON. 9 826 CRT
}

WRITELN( 'Average binary value for zero flow =',Bin_zero flow);
{

*** INSTRUCT DSER TO CONNECT PNEUMOTACHOGRAPH TO HARVARD PUMP
>

WRITELNC 'CONNECT PUMP FLOW TO THE PNEUMOTACHOGRAPH.');
WRITELN;

{

*** FOLLOWING A CARRIAGE RETURN, GO COLLECT 4000 DATA POINTS OF PUMP FLOW
}

HOLD_UP

;

Sam: =4000;
WRITELNCNOW COLLECTING DATA... please wait patiently.');
DATA_COLLECT(Sam,LINEl .LINE2.LINE3 ,LINE4)

;

{

*** INSTRUCT USER DATA COLLECTION IS COMPLETE AND BEGIN INTEGRATION
*** OF FLOW SIGNAL TO DETERMINE INSPIRATORY AND EXPIRATORY FLOW CALIBRATI

}

WRITELN( 'DATA COLLECTION COMPLETE... turn off the pump.');
{

*** INITIALIZE NECESSARY VARIABLES FOR FLOW SIGNAL INTEGRATION
}

No_breaths:=0;
T:=l/S;
A:-l;
Z:-l;
Tot_vol_insp : =0

;

Tot_vol_exp:=0;
Flow_cal:=l;
Insp_flow_cal : "1

;

Expr_f low_cal :=1

;

B:=Bin_zero_flow;
{

*** LOOK FOR FIRST INSPIRATION IN FLOW SIGNAL
}

WHILE ((LINE3~[A]-B)<0) OR
((LINE3"[A+l]-B)>-0) OR
((LINE3"[A+2]-B)>=0) OR
((LINE3~[A+3]-B)>-0) OR
((LINE3"[A+4]-B)>-0) DO
BEGIN
A:=A+1;

END;

{

*** ADJUST FLOW INDEX A AS NEEDED TO BEGINNING OF INSPIRATION
}

IF ((LINE3"[A]-B)<>0) THEN
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BEGIN

A:=A+1;
END;

{

*** ADJUST ADDITIONAL ROUTINE VARIABLES

}

Z:=A;
Insp_btps:=l;
Expr_btps:=l

;

{

*** PRINT HEADER ON CRT FOR BREATH-BY-BREATH INTEGRATION DISPLAY
}

WRITELN( 'BREATH AIR AIR');
WRITELN( 'NUMBER INSPIRED EXPIRED');
WRITELNC (LITERS) (LITERS)');
WRITELN( '

')
;

{

*** MAKE SURE FLOW INDEX IS AT BEGINNING OF INSPIRATION
}

8: WHILE ((LINE3*[A]-B)>0) OR
((LINE3"[A+1]-B)>=0) OR
((LINE3*[A+2]-B)>=0) OR
((LINE3"[A+3]-B)>=0) OR
((LINE3*[A+4]-B)>=0) OR
((LINE3~[A+5]-B)>=0) DO
BEGIN
A:=A+1;
Z:=Z+1;
IF A> Sam-10 THEN GOTO 1; {Goon}

END;

{

*** COMPUTE 1/2 OF FIRST TRAPEZOIDAL AREA OF INSPIRATION
}

Flow_cal : =Insp_flow_cal

;

Airi:=0.5*(LINE3*[A]-B)*Flow_cal*Insp_btps;
{

*** SUM UP ENTIRE INSPIRATION TRAPEZOIDS
}

4: A:=A+1;
Z:=Z+1;
IF Z>Sam THEN GOTO 1; {Goon}
IF LINE3"[A]-B=0 THEN GOTO 2; {B}
IF LINE3"[A]-B>0 THEN GOTO 3; {Decri}
Airi:=Airi+(LINE3*[A]-B)*Flow_cal*Insp_btps;
GOTO 4; {A_label}

{

*** SUBTRACT OFF 1/2 OF LAST TRAPEZOIDAL AREA OF INSPIRATION
}

3: A:=A-1;
Z:-Z-l;

Airi:=Airi-0.5*(LINE3*[A]-B)*Flow_cal*Insp_btps;
A:=A+1;
Z:=Z+1;

{

*** LOOP UNTIL BEGINNING OF EXPIRATION IS FOUND
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}

2: IF A>Sam-10 THEN GOTO 1; {Goon}
WHILE (LINE3~[A]-B<0) OR

(LINE3*[A+1]-B<=0) OR
(LINE3~[A+2]-B<-0) OR
(LINE3"[A+3]-B<=0) OR
(LINE3*[A+4]-B<=0) OR
(LINE3"[A+5]-B<=0) DO

BEGIN
A:=A+1;
Z:«Z+1;
IF A>Sam-10 THEN GOTO 1; {Goon}

END;

{

*** COMPUTE 1/2 OF FIRST TRAPEZOIDAL AREA OF EXPIRATION
}

Flow_cal : =Expr_f low_cal

;

Aire:=0.5*(LINE3"[A]-B)*Flow_cal*Expr btps;
{

*** SUM UP ENTIRE EXPIRATION TRAPEZOIDS
}

7: A:=A+1;
Z:=Z+1;
IF Z>Sam THEN GOTO 1; {Goon}
IF LINE3"[A]-B=0 THEN GOTO 5; {C}

IF LINE3"[A]-B<0 THEN GOTO 6; {Deere}
Aire:=Aire+(LINE3*[A]-B)*Flow_cal*Expr_btps;
GOTO 7; {F}

{

*** SDBTRACT OFF 1/2 OF LAST TRAPEZOIDAL AREA OF EXPIRATION
}

6: A:=A-1;
Z:=Z-1;
Aire:=Aire-0.5*(LINE3~[A]-B)*Flow_cal*Expr_btps;
A:-A+l;
Z:=Z+1;

{

*** COMPUTE AIR INSPIRED AND AIR EXPIRED FOR THIS BREATH
}

5: Airi:=Airi*T;
Aire:=Aire*T;
{

*** BUMP THE NUMBER OF BREATHS COUNT
}

No_breaths : =No_breaths +1

;

{

*** UPDATE TOTAL VOLUMES INSPIRED AND EXPIRED
}

Tot_vol_insp : =Tot_vol_insp+Airi

;

Tot_vol_exp : =Tot_vol_exp+Aire

;

{

*** DISPLAY AIR INSPIRED AND AIR EXPIRED ON CRT FOR THIS BREATH
}

WRITELN(No_breaths,' '.Airi,' '.Aire);
{
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*** LOOP UNTIL FLOW DATA ARRAY IS EXHAUSTED
}

GOTO 8; {New_inspire}
{

*** COMPUTE AVERAGE VOLUMES INSPIRED AND EXPIRED (PER BREATH BASIS)
>

1 : Avoli : =Tot_vol_insp/No_breaths

;

Avole : =Tot_vol_exp/No_breaths

;

{

*** COMPUTE INSPIRATORY AND EXPIRATORY FLOW CALIBRATION FACTORS
}

Insp_flow_cal:=ROUND(0.647/(-l*Avoli)*10000000)/10000000;
Expr_flow_cal:=ROUND(0. 647 /Avole*10000000)/ 10000000;
{

*** DISPLAY FLOW CALIBRATIONS ON HP9826 CRT
}

WRITELN( 'BINARY ZERO FLOW = ',Bin_zero_flow) ;

WRITELN( 'INSPIRATORY FLOW CALIBRATION FACTOR -' ,Insp_flow_cal)

;

WRITELN( 'EXPIRATORY FLOW CALIBRATION FACTOR =',Expr_fIow_cal)

;

END; {FLOWCAL}

{

*** DECLARE PROCEDURE FOR CALIBRATION OF TEMPERATURE TRANSDUCER
}

PROCEDURE TEMPCAL(VAR Ta,Tb,Tc:REAL;
VAR Sam: INTEGER;
VAR LINE1:PT1; VAR LINE2:PT2;
VAR LINE3:PT3; VAR LINE4:PT4);

TYPE TWODIM=ARRAY [1..3.1..3] OF REAL;
VAR Tlow.Tmid, Thigh,Tlow_bin,Tmid_bin: REAL;

Thigh_bin , Norm_a : REAL

;

I , Tot_temp .-INTEGER

;

Bin_temp , Bin_temp_inv : TWODIM

;

{

*** BEGIN TEMPERATURE CALIBRATION ROUTINE
}

BEGIN {TEMPCAL}

{

*** INSTRUCT USER TO PLACE TC IN LOW TEMPERATURE WATER BATH
}

WRITELNCPUT THERMOCOUPLE IN THE LOWEST TEMP WATER BATH.');

*** GET ACTUAL TEMPERATURE OF LOW TEMPERATURE WATER BATH
}

WRITELN ('ENTER THE ACTUAL WATER BATH TEMPERATURE (deg C).');
READLN(Tlow) ;

{

*** GO TAKE 1000 DATA POINTS ON THE TEMPERATURE CHANNEL
}

Sam: =1000;
DATA_COLLECT( Sam , LINE 1 , LINE2 , LINE3 , LINE4) ;

{

*** COMPUTE THE AVERAGE VALUE FOR THE 1000 TEMPERATURE DATA POINTS
}

Tot_temp:=0;
FOR I:=l TO Sam DO
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BEGIN

Tot_temp:=Tot_temp+LINE4"[l]

;

END;

Tlow_bin:=Tot_temp/Sam;

{

*** DISPLAY THE AVERAGE VALDE ON THE HP9826 CRT

}

WRITELN( 'AVERAGE BINARY VALDE READ FOR ',Tlow,' deg C');
WRITELNCIS: ',Tlow_bin);

{

*** INSTRDCT USER TO PLACE TC IN MIDDLE TEMPERATDRE WATER BATH
}

WRITELNCPDT THERMOCOUPLE IN THE MIDDLE TEMP WATER BATH.');
{

*** GET ACTUAL TEMPERATDRE OF MIDDLE TEMPERATDRE WATER BATH
}

WRITELN( 'ENTER ACTDAL WATER BATH TEMPERATDRE (deg C).');
READLN(Tmid);

{

*** GO TAKE 1000 DATA POINTS ON THE TEMPERATDRE CHANNEL
}

DATA_COLLECT(Sam,LINEl .LINE2.LINE3 ,LINE4)

;

{

*** COMPOTE THE AVERAGE VALDE FOR THE 1000 TEMPERATDRE DATA POINTS
}

Tot_temp:=0;
FOR I:=l TO Sam DO

BEGIN
Tot_temp:=Tot_temp+LINE4"[I]

;

END;
Tmid_bin: =Tot_temp/Sam;

*** DISPLAY THE AVERAGE VALDE ON THE HP 9 826 CRT

WRITELN( 'AVERAGE BINARY VALDE READ FOR '.Tmid,' deg C);
WRITELNCIS: ',Tmid_bin);

*** INSTRDCT DSER TO PLACE TC IN HIGH TEMPERATDRE WATER BATH

WRITELNCPDT THERMOCOUPLE IN THE HIGH TEMP WATER BATH.');

*** GET ACTDAL TEMPERATDRE OF HIGH TEMPERATDRE WATER BATH

WRITELNC 'ENTER THE ACTUAL WATER BATH TEMPERATURE (deg C).');
READLN(Thigh)

;

*** GO TAKE 1000 DATA POINTS ON THE TEMPERATDRE CHANNEL

DATA_COLLECT ( Sam , LINE 1 , LINE 2 , LINE3 , LINE4 )

;

*** COMPDTE THE AVERAGE VALUE FOR THE 1000 TEMPERATURE DATA POINTS

Tot_temp:=0;
FOR I:-l TO Sam DO

BEGIN
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Tot_temp:=Tot_terap+LINE4~[I]

;

END;
Thigh_bin: =Tot_temp /Sam;
{

*** DISPLAY THE AVERAGE VALUE ON THE HP 9 826 CRT
}

WRITELN( 'AVERAGE BINARY VALUE READ FOR '.Thigh,' deg C) ;

WRITELNCIS: ' ,Thigh_bin)

;

{

*** SET UP TEMPERATURE MATRIX FOR 2ND ORDER CURVE FIT DETERMINATION
}

Bin_temp[l,l] :-l;

Bin_temp[2,l] :=1;

Bin_temp[3,l] :-l;

Bin_temp[l,2] :=Tlow_bin;
Bin_temp[l,3] :=SQR(Tlow_bin)

;

Bin_temp [2,2]: =Tmid_bin

;

Bin_temp [2,3]: =SQR(Tmid_bin)

;

Bin_temp[3,2] :=Thigh_bin;
Bin_temp[3,3] :=SQR(Thigh_bin)

;

{

*** CALCULATE THE DETERMINANT OF Bin_temp MATRIX
}

Norm_a:=Bin_temp[l,l]*(Biii_temp[2,2]*
Bin_temp [3 ,3 ] -Bin_temp [2,3]*
Bin_temp[3,2])-Bin_temp[l,2]*
(Bin_temp [ 2 , 1 ]*Bin_temp [3,3]-
Bin_temp[2,3]*Bin_temp[3,l])+
Bin_temp[l,3]*(Bin_temp[2,l]*
Bin_temp[3,2]-Bin_temp[2,2]*
Biti_temp[3,l]);

{
*** DETERMINE THE INVERSE OF Bin_temp MATRIX
>

Bin_temp_inv[l,l] :=(Bin_temp[2,2]*
Bin_temp[3,3]-Bin_temp[2,3]*
Bin_temp [3,2]) /Norm_a

;

Bin_temp_inv[ 1 ,2] : -( Bin_temp [1,3]*
Bin_temp[3,2]-Bin_temp[l,2]*
Bin_temp [3,3]) /Norm_a

;

Bin_temp_inv[l,3] :"=(Bin_temp[l,2]*
Bin_temp [2,3] -Bin_temp [1,3]*
Bin_temp [2,2]) /Norm_a

;

Bin_temp_inv [ 2 , 1 ] : =( Bin_temp [3,1]*
Bin_temp[2,3]-Bin_temp[2,l]*
Bin_temp [3,3]) /Norm_a

;

Bin_temp_inv [2,2]: =( Bin_temp [1,1]*
Bin_temp[3,3]-Bin_temp[l,3]*
Bin_temp [3,1]) /Norm_a

;

Bin_temp_inv[ 2 ,3 ] : -( Bin_temp [1,3]*
Bin_temp [2,1] -Bin_temp [1,1]*
Bin_temp [2,3]) /Norm_a

;

Bin_temp_inv[ 3 , 1 ] : =( Bin_temp [2,1]*
Bin_temp [3,2] -Bin_temp [2,2]*
B in_temp [3,1]) /Norm_a

;
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Bin_temp_inv[3,2] :=(Bin_temp[l,2]*
Bin_temp [3,1] -Bin_temp [1,1]*
Bin_temp[3 ,2] ) /Norm_a;

Bin_temp_inv[ 3 ,3 ] : =(Bin_temp [1,1]*
Bin_temp [ 2 , 2] -Bin_temp [2,1]*
Bin_temp [1,2]) /Norm_a

;

{

*** MULTIPLY INVERSE OF Bin_temp MATRIX BY TEMPERATURE TO YIELD 2ND
*** ORDER COEFFICIENTS

}

Tc : »Bin_temp_inv [1,1]*
Tlow+Bin_temp_inv [1,2]*
Tmid+Bin_teinp_inv[ 1,3]*
Thigh;

Tb:-Bin_temp_inv[2,l]*
Tlov+Bin_temp_inv [2,2]*
Tmid+Bin_temp_inv[ 2 ,3 ]

*

Thigh;
Ta : =Bin_temp_inv[ 3 ,1 ]*

Tlow+Bin_temp_inv [3,2]*
Tmid+Bin_temp_inv [3,3]*
Thigh;

{
*** DISPLAY 2ND ORDER COEFFICIENTS ON HP9826 CRT

}

WRITELN('2nd ORDER POLYNOMIAL CALIBRATION COEFFICIENTS');
WRITELN( 'SECOND ORDER COEFFICIENT —> ',Ta);
WRITELNC 'FIRST ORDER COEFFICIENT --> ',Tb);
WRITELNCZERO ORDER COEFFICIENT —> ',Tc);

END; {TEMPCAL}

{

*** BEGIN MAIN SYSTEM CALIBRATION PROGRAM (CAP)

}

BEGIN {CAP START}
NEW(Linel); {CREATE DYNAMIC VARIABLE Linel}
NEW(Line2); {CREATE DYNAMIC VARIABLE Line2}
NEW(Line3); {CREATE DYNAMIC VARIABLE Line3}
NEW(Line4); {CREATE DYNAMIC VARIABLE Line4>
{

*** GO SET DAM CLOCK AT DESIRED FREQUENCY
}

CLKSET(S);

{
*** SET NUMBER OF SAMPLES AT 1000 POINTS PER CHANNEL

}

Sam: =1000;

{

*** CALIBRATE FRACTIONAL CONCENTRATIONS SIGNALS IF DESIRED
}

WRITELN( 'CALIBRATE FRACTIONAL CONCENTRATION SIGNAL? (Y/N)');
READLN(Q)

;

IF (Q-'Y') OR (Q='y') THEN
BEGIN

GASCAL(01,Co2_cal,02_cal,Co2_dc_offset,
02_dc_offset,Sam,LINEl,LINE2,
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LINE3.LINE4);
END;

{

*** CALIBRATE THE FLOW SIGNAL IF DESIRED

}

WRITELN( 'CALIBRATE THE FLOW SIGNAL? (Y/N)');
READLN(Q);
IF (Q='Y') OR (Q-'y') THEN

BEGIN
FLOWCALC Insp_flow_cal ,Expr_flow_cal

,

Bin_zero_flow, Sara, LINE1.LINE2,
LINE3,LINE4);

END;

{
*** CALIBRATE THE TEMPERATURE SIGNAL IF DESIRED

}

WRITELN( 'CALIBRATE FLOW TEMPERATURE SIGNAL? (Y/N)');
READLN(Q);
IF (Q-'Y') OR (Q-'y') THEN

BEGIN
TEMPCAL(Ta,Tb,Tc,Sam,LINEl,LINE2,

LINE3.LINE4);
END;

{
*** STORE THE CALIBRATION DATA IN AN ASCII FILE IF DESIRED

>

WRITELN( 'STORE CALIBRATION FACTORS ON DISK? (Y/N)');
READLN(Q);
IF (Q-'Y') OR (Q='y') THEN

BEGIN

{

*** GET CALIBRATION FILE NAME

}

WRITELN( 'ENTER THE FILE NAME FOR CALIBRATION FACTORS.');
READLN(Cal)

;

{

*** GET TODAYS DATE

}

WRITELN( 'ENTER TODAYS DATE, FORMAT: Month/Day/Year');
READLN(Date);

{
*** CONSTRUCT ASCII FILE NAME AS IT SHOULD APPEAR IN THE PASCAL
*** FILE DIRECTORY ( .ASC EXTENSION).
}

Fname: ='#13 :.ASC;
STRINSERT ( Ca 1 , Fname , 5 )

;

{
*** CREATE OR REWRITE ASCII FILE ON VOLUME #13 (":HP9895 ,702,2")

}

REWRITE (F, Fname)

;

{

*** WRITE ASCII Co2_dc_offset TO FILE
}

STRWRITE(NSTRING,1 ,TEMP,Co2_dc_of fset :4) ;

WRITELN(F.NSTRING)

;
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{

*** WRITE ASCII 02_dc_offset TO FILE

}

STRWRITECNSTRING, 1 ,TEMP,02_dc_of fset : 4)

;

WRITELN(F.NSTRING)

;

{

*** WRITE ASCII Bin_zero_flow TO FILE

}

STRWRITECNSTRING, 1, TEMP, Bin_zero_flow:4);
WRITELN(F.NSTRING);

{

*** WRITE ASCII Co2_cal TO FILE

}

STRWRITE(RSTRING,1 ,TEMP,Co2_cal) ;

WRITELNCF, RSTRING)

;

{

*** WRITE 02_cal TO FILE

}

STRWRITE(RSTRING,l,TEMP,02_cal)

;

WRITELNCF, RSTRING) ;

{

*** WRITE Insp_flow_cal TO FILE

}

STRWRITE(RSTRING,l,TEMP,In8p_fIow_cal);
WRITELNCF, RSTRING);
{

*** WRITE Expr_flow_cal TO FILE

}

STRWRITECRSTRING, 1 ,TEMP,ExprJElow_cal)

;

WRITELN(F,RSTRING);

{

*** WRITE Time_delay TO FILE

}

STRWRITE(RSTRING,1 , TEMP ,Time_de lay)

;

WRITELNCF, RSTRING)

;

{
*** WRITE SAMPLING FREQUENCY (S) TO FILE

}

STRWRITE CNSTRING , 1 , TEMP , S : 4) ;

WRITELN(F,NSTRING)

;

{
*** WRITE ACTUAL 02 CONCENTRATION FOR GAS MIXTURE TO FILE

}

STRWRITE (RSTRING , 1 , TEMP ,01);
WRITELNCF, RSTRING)

;

{

*** WRITE 2ND ORDER TEMPERATURE COEFFICIENT (Ta) TO FILE
}

STRWRITE ( RSTRING, 1 ,TEMP,Ta)

;

WRITELNCF, RSTRING)

J

{

*** WRITE 1ST ORDER TEMPERATURE COEFFICIENT (Tb) TO FILE
}

STRWRITE (RSTRING , 1 , TEMP , Tb )

;

WRITELN(F, RSTRING)

;
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{

*** WRITE CONSTANT TEMPERATURE COEFFICIENT (Tc) TO FILE
}

STRWRITE (RSTRING , 1 , TEMP , Tc )

;

WRITELNC F , RSTRING )

;

{

*** WRITE TODAYS DATE TO FILE

>

WRITELN(F.Date);

{
*** CLOSE AND COMPACT THE CALIBRATION FILE

}

CLOSE(F, 'CRUNCH');
END;

END. {CAP END}
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APPENDIX IX

DAP .CODE

General Description

DAP. CODE is a Pascal routine which performs all the

necessary actions to acquire, convert (to ASCII), and store four

channels (C0
2

,
2

, flow, and temperature) of 12-bit binary data

from the DAM. Following is a list of summarized features of

DAP. CODE.

1. This routine assumes that the ASCII files

created by DAP. CODE are to be stored on hard disk volume

#13 (":HP9895,702,2" in the BASIC operating system).

2. The DAM should be connected to the HP9 826

computer via a GPIO interface at select code #12. This

insures the proper device address for sending and

receiving information between the DAM and the HP9826.

3. A maximum of 24000 data points per channel is

allowed with the current version of DAP. CODE. This value

may have to be reduced if substantial additions to

DAP. CODE'S program length is required.

4. Two external 68000 assembly language routines

are utilized by DAP. CODE to handle the high speed

requirements needed to monitor the STS (.Status) signal

from the DAM. (See Appendix X for more details.)

5. DAP. CODE'S CLKSET procedure sets the 8253 timer

chip on the DAM to the desired sampling frequency. A
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maximum sampling rate of 350 Hz is recommended. This

value may have to be reduced if substantial additions to

the procedure DATA_COLLECT are made.

6. Once the requisite number of samples per channel

are collected, procedure MAXMIN determines the maximum

and minimum for each of the four data acquisition

channels.

7. Procedure DATA_STORAGE converts the 12-bit

binary values to 4-byte ASCII units and stores these

units in four ASCII data files (see File Structure

section for more details.)

Calculations

Following are the important calculations that are made by

DAP. CODE.

1. DAM status word

The DAM status word (16 return bits from the

DAM to the HP9826 computer) is organized as

follows.

PAM Status Bit Description

8253 clkl output for system timing

1 STS signal from DAM, goes high then

low when conversion is complete

2-13 12 bits digital value from the AD574

A/D

14-15 Not used
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As is obvious from the preceding bit

organization, the equations

R4:=IOSTATUS(12,3) ; {Read 16 bit status word}

R4:=R4 DIV 4; {Shift result right 2 bits}

R4:=BINAND(Mask,R4) ; {Mask off all but 12 bits}

alter the 16-bit value stored in R4 (a variable)

.

R4 is shifted two bits to the right (DIV 4) and

bits 14 and 15 are masked off (BINAND (Mask,R4)

)

to yield the 12-bit value from the A/D.

2. DAM control word

The DAM control word (16 bits to the DAM

from the HP9 826 computer) is organized as

follows.
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DAM Control Bit Description

DO and BCD for 8253 timer control

1 Dl and MO for 8253 timer control

2 D2 and Ml for 8253 timer control

3 D3 and M2 for 8253 timer control

4 D4 and RLO for 8253 timer control

5 D5 and RL1 for 8253 timer control

6 D6 and SCO for 8253 timer control

7 D7 and SCI for 8253 timer control

8 8253 timer select, low = selected

9 R/C for AD574 A/D, low = start

conversion

10 MAO for AD7503 multiplexer

11 MAI for AD7503 multiplexer, Al for

8253 timer

12 MA2 for AD7503 multiplexer, A0 for

8253 timer

13 S/H control for S/H amplifiers,

high = hold

14-15 not used

For a detailed explanation of the 8253 timer

controls, see the 1980 Intel Component Data

Catalog [19] . For the multiplexer [23] controls

MAO, MAI, and MA2 the following table is helpful.
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M2 MAI MAO

1

1

1 1

1

1 1

1 1

1 1 1

Channel/Switch

Channel F, Switch 1

Channel A, Switch 2

Channel E, Switch 3

Channel B, Switch 4

Channel H, Switch 5

Channel C, Switch 6

Channel G, Switch 7

Channel D, Switch 8

As can be seen from the previous bit

specifications, to elect channel A, with the S/H

amplifiers in the hold mode and the A/D convert

signal high, the following code is necessary.

R6:=BINAND(15360,Chna) ; {AND 15360 with 15359}

R6:=BINCMP(R6)

;

{Compliment result}

I0C0NTR0L(12,3,R6) ; {Write bit pattern to DAM}

Similar calculations are performed throughout the

procedure DATA_COLLECT.

File Structure

Four serial ASCII data files are created by DAP. CODE and

each are organized into single record files. These files are

always named MONSTER1.ASC, MONTER2.ASC, MONSTER3 . ASC, AND

MONSTER4.ASC for the CO., 0,, flow, and temperature data files

respectively. Following is the organization of these files.
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(NOTE: These files will appear on the " :HP9895 ,702,2" hard disk

and are purged immediately following execution of the crunch

routine DAPCRUNCH.)

File Record #

MONSTER1.ASC 1

M0NSTER2.ASC

MONSTER3.ASC

MONSTER4.ASC

Contents

CO, channel maximum (4 ASCII bytes)

CO, channel minimum (4 ASCII bytes)

n CO, channel data points

(4 ASCII bytes per point)

0, channel maximum

(4 ASCII bytes)

0, channel minimum

(4 ASCII bytes)

n 0, channel data points

(4 ASCII bytes per point)

Flow channel maximum (4 ASCII bytes)

Flow channel minimum (4 ASCII bytes)

n flow channel data points

(4 ASCII bytes per point)

Temperature channel maximum

(4 ASCII bytes)

Temperature channel minimum

(4 ASCII bytes)

n temperature channel data points

(4 ASCII bytes per point)
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Variable List

Co2max INTEGER variable representing the maximum

acquired BCD value on the CO- channel.

Co2min INTEGER variable representing the minimum

acquired BCD value on the CO, channel.

Del INTEGER variable used in the delay loop that

allows the S/H amplifiers time to track the

input signals before the hold command is given.

F TEXT variable containing the Pascal name

associated with the ASCII files created

by DAP. CODE.

Fl INTEGER variable used by the procedure CLKSET

to set the LSB of clock 1 in the 8253 timer

for proper sampling rate.

Fm INTEGER variable used by the procedure CLKSET

to set the MSB of clock 1 in the 8253 timer

for proper sampling rate.

I INTEGER variable used as a loop counter and

array pointer.



A9.8

Linel 24000 point data string containing the BCD

values acquired from the CO- channel of

the DAM. Access of this external data string

is made through the pointer "I".

Line2 24000 point data string containing the BCD

values acquired from the O, channel of

the DAM. Access of this external data string

is made through the pointer "I".

Line3 24000 point data string containing the BCD

values acquired from the flow channel of the

DAM. Access of this external data string is

made through the pointer "I".

Line4 24000 point data string containing the BCD

values acquired from the temperature channel

of the DAM. Access of this external data

string is made through pointer "I".

NSTRING Four byte STRING variable containing the

ASCII representation of the previously

converted BCD value.

02 max INTEGER variable representing the maximum

acquired BCD value on the 0, channel.
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INTEGER variable representing the minimum

acquired BCD value on the 0, channel.

R4 INTEGER variable read from the DAM' s status

register. (See Calculations section above

for more details.)

R6 INTEGER variable written to the DAM's

control register. (See Calculations section

above for more details.)

INTEGER variable representing the DAM sampling

frequency in Hz.

Sam INTEGER variable representing the number of

samples per channel.

TEMP INTEGER variable used by the STRWRITE

function in converting the acquired BCD

data to ASCII.

Tmax INTEGER variable representing the maximum

acquired BCD value on the temperature

channel.

Tntm INTEGER variable representing the minimum

acquired BCD value on the temperature channel.
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Vmax INTEGER variable representing the maximum

acquired BCD value on the flow channel.

Vmin INTEGER variable representing the minimum

acquired BCD value on the flow channel.

X INTEGER variable used by the procedure CLKSET

to set clock 1 in the 8253 timer for proper

sampling rate.
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SSYSPROG ON$
$LINES 64$
PROGRAM DAP ( INPUT .OUTPUT);
{*

DATA ACQUISTION AND STORAGE ROUTINE

PASCAL REV 2.1 SOURCE FILENAME: DAP. TEXT

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

KANSAS STATE UNIVERSITY

REVISION DATE PROGRAMMER

1.0 JUNE 28, 1984 LOREN E. RIBLETT, JR.

***** * A*** AAA k**irk*irk*1rk****irkicicic*irk**rk***irk***irk*irkirk*ic***ic*

PURPOSE

THIS ROUTINE PERFORMS ALL THE NECESSARY ACTIONS TO ACQUIRE,

CONVERT (TO ASCII), AND STORE FOUR CHANNELS (C02, 02, FLOW,

AND TEMPERATURE) OF 12-BIT BINARY DATA FROM THE DAM.

ROUTINE(S) CALLED BY THIS ROUTINE

BITJTST - 6 8000 ASSEMBLY MODULE THAT WAITS UNTIL THE STS BIT

ON THE DAM GOES HIGH, THEN LOW

BIT_HI - 6 8000 ASSEMBLY MODULE THAT WAITS UNTIL THE STS BIT
ON THE DAM GOES LOW

CLKSET - INTERNAL PROCEDURE THAT SETS THE 8253 TIMER CHIP FOR
THE PROPER SAMPLING FREQUENCY

MAXMIN - INTERNAL PROCEDURE THAT DETERMINES THE MAXIMUM AND
MINIMUM VALUES FOR EACH OF THE FOUR DATA CHANNELS

DATA_STORAGE - INTERNAL PROCEDURE THAT CONVERTS THE FOUR
CHANNELS OF 12-BIT VALUES TO ASCII AND STORES
THESE VALUES IN FOUR SEPERATE ASCII FILES

HOLDJDP - INTERNAL PROCEDURE FOR TEMPORARY PAUSING OF PROGRAM
OPERATION

DATA_COLLECT - INTERNAL PROCEDURE THAT CONTROLS THE DAM IN THE

PROPER FASHION TO COLLECT THE DESIRED NUMBER OF
DATA POINTS

k'k-k'ie'jc'k'tctck'k'k'k'k'k'ic'ie'k'tck'ic'ic'k'k'ic'kTk'k 'icfc'k'k'k'k'tc'k ~irte m
t:

-
ic-ic

-icic'k -
k'ic'icrk'ic

-k -X"k "itic'ic'ic'k'te'ic'A'k'ii'ieic'k'k'ie'iric'ic'lc

NOTE 1: THIS ROUTINE ASSUMES THAT THE ASCII FILES CREATED BY DAP
ARE TO BE STORED ON HARD DISK VOLUME #13 (":HP9895 ,702,2"

IN THE BASIC OPERATING SYSTEM).

NOTE 2: THE DAM SHOULD BE CONNECTED TO THE HP9826 COMPUTER VIA A
GPIO INTERFACE AT SELECT CODE #12. THIS INSURES THE PROPER
DEVICE ADDRESS FOR SENDING AND RECEIVING INFORMATION BETWEEN
THE DAM AND THE HP9826.
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NOTE 3: A MAXIMUM OF 24000 DATA POINTS PER CHANNEL IS ALLOWED WITH
THE CURRENT VERSION OF DAP. THIS VALUE MAY HAVE TO BE
REDUCED IF SUBSTANTIAL ADDITIONS TO DAP'S PROGRAM LENGTH
IS REQUIRED.

NOTE 4: TWO EXTERNAL 6 8000 ASSEMBLY LANGUAGE ROUTINES ARE UTILIZED
BY DAP TO HANDLE THE HIGH SPEED REQUIREMENTS NEEDED TO

MONITOR THE Status (STS) SIGNAL FROM THE DAM.

NOTE 5: AT PRESENT, A MAXIMUM SAMPLING RATE OF 350 HZ IS RECOMMENDED.
THIS VALUE MAY HAVE TO BE REDUCED IF SUBSTANTIAL ADDITIONS
TO THE PROCEDURE DATA COLLECT ARE MADE.

{

*** LOAD NECESSARY LIBRARY MODULES

}

IMPORT IODECLARATIONS,GENERAL_0,
GENERAL_1 , IOCOMASM

;

{

*** DECLARE FOUR LARGE EXTERNAL DATA ARRAYS AND POINTERS

'k'ie'kie'irkicick'irii'fc'k'ie'k'itlt'k'frle'k'k'klrk'k'lrk'k \

}

TYPE L1=ARRAY [1.. 24000] OF INTEGER;
PT1-"L1

PT4="L4

{POINTER TO ARRAY LI}
L2=-ARRAY [1.. 24000] OF INTEGER;
PT2="L2; {POINTER TO ARRAY L2}
L3-ARRAY [1.. 24000] OF INTEGER;
PT3="L3; {POINTER TO ARRAY L3}
L4=ARRAY [1.. 2 4000] OF INTEGER;

{POINTER TO ARRAY L4>

{C02 CHANNEL DATA ARRAY}

{02 CHANNEL DATA ARRAY}

{FLOW CHANNEL DATA ARRAY}

{TEMPERATURE CHANNEL DATA ARRAY}

{
*** SET PROGRAM CONSTANTS

}

CONST MAX=24000;

{

*** DECLARE PROGRAM VARIABLES

}

VAR S, Sam: INTEGER;
Co2min ,02min , Vmin ,Tmin : INTEGER

;

Co2max , 2max , Vmax , Tmax : INTEGER

;

Linel: PT1

;

Line2: PT2;

Line3: PT3

;

Line4: PT4;

{MAXIMUM NUMBER OF SAMPLES PER CHANNEL ALLOWED}

{

DECLARE EXTERNAL 6 8000 ASSEMBLY MODULES

PROCEDURE BIT_TST; EXTERNAL;
PROCEDURE BIT_HI; EXTERNAL;

{

*** DECLARE PROCEDURE TO SET DAM CLOCK
}

PROCEDURE CLKSET(VAR S: INTEGER);
VAR X,Fm,Fl:INTEGER;
BEGIN

{WAITS UNTIL STS BIT GOES HIGH, THEN LOW}
{WAITS UNTIL STS BIT IS LOW}

{PASS SAMPLING FREQUENCY (S)}
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{

*** HAVE USER ENTER THE SAMPLING FREQUENCY

}

writelnCenter sampling frequency: ');

READLN(S);

{

*** DETERMINE 16-BIT COUNTER VALUE FOR CLK1 IN 8253 TIMER CHIP

}

X: =1000000 DIV 2 DIV S;

IF X>=256 THEN
BEGIN
Fm:=X DIV 256;

Fl:-X-256*Fm;
END

ELSE
BEGIN

Fm:=0;
F1:=X;

END;

{

*** SET COUNTER IN 8253 TIMER TO MODE 3

}

IOCONTROL(12,3,1567 8); {11110100111110}
IOCONTROL(12,3,15422); {11110000111110}
IOCONTROL(12,3,15670); {11110100110110}

{

*** SET COUNTER 1 IN 8253 TIMER TO MODE 2

}

I0C0NTR0L(12,3, 15740); {11110101111100}
I0C0NTR0L(12,3 ,15484); {11110001111100}
IOCONTROL(12,3,15732); {11110101110100}

{

*** LOAD LSB OF COUNTER

>

I0C0NTR0L(12,3,9474); {10010100000010}
I0C0NTR0L(12,3,9218); {10010000000010}
IOCONTROLC 12,3 ,9474); {10010100000010}

{

*** LOAD MSB OF COUNTER

}

IOCONTROL(12,3,9472); {10010100000000}
I0C0NTR0L(12,3,9216); {10010000000000}
I0C0NTR0L(12,3,9472) ; {10010100000000}

{
*** LOAD LSB OF COUNTER 1

}

I0C0NTR0L(12,3,13568+F1); {11010100000000}
I0C0NTR0L(12,3,13312+F1); {11010000000000}
I0C0NTR0L(12,3,13568+F1); {11010100000000}
{

*** LOAD MSB OF COUNTER 1

}

IOCONTROLC 12, 3, 13 56 8+Fm); {11010100000000}
IOCONTROL(12,3,13312+Fm); {11010000000000}
IOCONTROL(12,3,1356 8+Fm); {11010100000000}
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END; {CLKSET END}

{

*** DECLARE PROCEDURE TO DETERMINE MAXIMUM AND MINIMUM VALUES FOR
*** C02, 02, FLOW, AND TEMPERATURE DATA ARRAYS

}

PROCEDURE MAXMIN(VAR Sam,Co2max,Co2min,02max,
02min , Vraax , Vmin , Tmax , Tmin : INTEGER

;

VAR Linel:PTl; VAR Line2:PT2;
VAR Line3:PT3; VAR Line4:PT4);

VAR I: INTEGER;
BEGIN {MAX/MIN ROUTINE}

{

*** SET INITIAL MAX/MIN VALUES TO FIRST DATA POINTS IN ARRAYS
}

Co2max:=Linel~[l]

;

Co2min:=Linel~[l]

;

02max:=Line2"[l]

;

02min:=Line2~[l] ;

Vmax : =Line3 *
[ 1 ]

;

Vmin:=Line3"[l]

;

Tmax:=Line4"[l];
Tmin:=Line4"[l]

;

{

*** STEP THROUGH REMAINDER OF DATA ARRAYS TO FIND TRUE MAX/MIN VALUES
}

FOR I: -2 TO Sam DO
BEGIN

{

*** CHECK FOR NEW C02 CHANNEL MAXIMUM
}

IF Co2max<Linel"[l] THEN
BEGIN

Co2raax:=Linel~[I]

;

END;

{

*** CHECK FOR NEW C02 CHANNEL MINIMUM
}

IF Co2min>Linel*[I] THEN
BEGIN

Co2min:=Linel*[l]

;

END;

{
*** CHECK FOR NEW 02 CHANNEL MAXIMUM
}

IF 02max<Line2~[I] THEN
BEGIN

02max:=Line2''[I]

;

END;

{

*** CHECK FOR NEW 02 CHANNEL MINIMUM
}

IF 02min>Line2"[I] THEN
BEGIN

02min:=Line2"(l];
END;
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{

*** CHECK FOR NEW FLOW CHANNEL MAXIMUM

}

IF Vmax<Line3~[l] THEN
BEGIN

Vmax:=Line3"[l]

;

END;

{
*** CHECK FOR NEW FLOW CHANNEL MINIMUM

}

IF Vmin>Line3~[I] THEN
BEGIN

Vmin : =Line3 * [ I ]

;

END;

{

*** CHECK FOR NEW TEMPERATURE CHANNEL MAXIMUM
}

IF Tmax<Line4~[I] THEN
BEGIN

Tmax:=Line4~[I]

;

END;

{

*** CHECK FOR NEW TEMPERATURE CHANNEL MINIMUM
}

IF Tmin>Line4*[l] THEN
BEGIN

Tmin:«Line4*[l]

;

END;
END;

END; {MAXMIN END}

{

*** DECLARE PROCEDURE TO CREATE FOUR ASCII DATA FILES FOR C02, 02, FLOW,
*** AND TEMPERATURE DATA

}

PROCEDURE DATA_STORAGE(VAR Sam,Co2max,Co2min,
02max , 02min , Vmax , Vmin , Tmax , Tmin : INTEGER

;

VAR LinelrPTI; VAR Line2:PT2;
VAR Line3:PT3; VAR Line4:PT4);

VAR TEMP, I.-INTEGER;
NSTRING: STRING [41

J

F: TEXT;
BEGIN {DATA_STORAGE>

{

*** BEGIN CREATING ASCII C02 FILE, FILENAME = M0NSTER1.ASC
}

REWRITE(F,'#13:M0NSTER1.ASC'); {CREATE OR REWRITE FILE ON UNIT #13}
STRWRITE(NSTRING,l,TEMP,Co2max:4); {CONVERT C02 MAXIMUM TO ASCII}
WRITELN(F, NSTRING); {WRITE C02 MAXIMUM TO FILE}
STRWRITE(NSTRING,l,TEMP,Co2min:4); {CONVERT C02 MINIMUM TO ASCII}
WRITELN(F, NSTRING); {WRITE C02 MINIMUM TO FILE}
{

*** MAIN LOOP FOR CONVERTING AND STORING C02 DATA TO ASCII FILE
}

FOR I:-l TO Sam DO
BEGIN
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STRWRITECNSTRING,l,TEMP,Linel~[l]:4); {CONVERT C02 VALUE TO ASCII

WRITELN( 'CHANNEL #1 : '.NSTRING); {DISPLAY VALDE ON CRT}

WRITELNCF, NSTRING); {WRITE C02 VALUE TO FILE}
END;

CLOSE (F,' CRUNCH'); {CLOSE AND COMPACT ASCII C02 FILE}

{

*** BEGIN CREATING ASCII 02 FILE, FILENAME « M0NSTER2.ASC

}

REWRITECF,'#13:M0NSTER2.ASC); {CREATE OR REWRITE FILE ON UNIT #13}

STRWRrTECNSTRING,l,TEMP,02max:4); {CONVERT 02 MAXIMUM TO ASCII}
WRITELNCF, NSTRING); {WRITE 02 MAXIMUM TO FILE}
STRWRITE(NSTRING,l,TEMP,02min:4); {CONVERT 02 MINIMUM TO ASCII}

WRITELNCF, NSTRING); {WRITE 02 MINIMUM TO FILE}

{

*** MAIN LOOP FOR CONVERTING AND STORING 02 DATA TO ASCII FILE

}

FOR I:-l TO Sam DO
BEGIN

STRWRITECNSTRING,l,TEMP,Line2~[l]:4); {CONVERT 02 VALUE TO ASCII}
WRITELNC 'CHANNEL #2: '.NSTRING); {DISPLAY VALUE ON CRT}

WRITELNCF, NSTRING); {WRITE 02 VALUE TO FILE}
END;

CLOSECF, 'CRUNCH'); {CLOSE AND COMPACT ASCII 02 FILE}

{
*** BEGIN CREATING ASCII FLOW FILE, FILENAME = M0NSTER3.ASC

}

REWRITECF,'#13:M0NSTER3.ASC); {CREATE OR REWRITE FILE ON UNIT #13}

STRWRITECNSTRING,l,TEMP,Vmax:4); {CONVERT FLOW MAXIMUM TO ASCII}
WRITELNCF, NSTRING); {WRITE FLOW MAXIMUM TO FILE}
STRWRITE(NSTRING,l,TEMP,Vmin:4); {CONVERT FLOW MINIMUM TO ASCII}
WRITELNCF, NSTRING); {WRITE FLOW MINIMUM TO FILE}

{
*** MAIN LOOP FOR CONVERTING AND STORING FLOW DATA TO ASCII FILE

}

FOR I:-l TO Sam DO

BEGIN
STRWRITE(NSTRING,l,TEMP,Line3*[I]:4); {CONVERT FLOW VALUE TO ASCI

WRITELNC 'CHANNEL #3: '.NSTRING); {DISPLAY VALUE ON CRT}

WRITELN(F, NSTRING); {WRITE FLOW VALUE TO FILE}
END;

CLOSECF, 'CRUNCH'); {CLOSE AND COMPACT ASCII FLOW FILE}

{
*** BEGIN CREATING ASCII TEMPERATURE FILE, FILENAME - M0NSTER4.ASC

}

REWRITE(F,'#13:MONSTER4.ASC); {CREATE OR REWRITE FILE ON UNIT #13}
STRWRITE ( NSTRING, 1, TEMP, Tmax: 4); {CONVERT TEMPERATURE MAXIMUM TO ASCII}
WRITELNC F, NSTRING); {WRITE TEMPERATURE MAXIMUM TO FILE}
STRWRITECNSTRING,l,TEMP,Tmin:4); {CONVERT TEMPERATURE MINIMUM TO ASCII}
WRITELNCF, NSTRING); {WRITE TEMPERATURE MINIMUM TO FILE}

{

*** MAIN LOOP FOR CONVERTING AND STORING FLOW DATA TO ASCII FILE

}

FOR I:-l TO Sam DO
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BEGIN
STRWRITE(NSTRING,l,TEMP,Line4~[I]:4); {CONVERT TEMPERATURE VALUE

TO ASCII}
WRITELN( 'CHANNEL #4: '.NSTRING); {DISPLAY VALUE ON CRT}
WRITELN(F, NSTRING); {WRITE TEMPERATURE VALUE TO FILE}

END;

CLOSE(F,' CRUNCH'); {CLOSE AND COMPACT ASCII FLOW FILE}
END; {DATA_STORAGE}

{

*** DECLARE PROCEDURE FOR PAUSING PROGRAM OPERATION

}

PROCEDURE HOLD_UP;
BEGIN

WRITELNC 'PRESS ENTER TO CONTINUE.'); {DISPLAY PROMPT ON CRT}
READLN; {WAIT UNTIL 'ENTER' IS PRESSED}

END; {HOLD_UP END}

{

*** DECLARE PROCEDURE FOR COLLECTING FOUR CHANNELS OF DAM DATA

}

PROCEDURE DATA_COLLECT(VAR Sam: INTEGER;

VAR LINE1:PT1;VAR LINE2:PT2;
VAR LINE3:PT3;VAR LINE4:PT4);

VAR I,R6,Del,R4:INTEGER;
CONST Chna=15359;Chnb=13311; {BIT PATTERNS NECESSARY TO SET THE CHANNEL MU

LTIPLEXER}
CONST Chnc=11263;Chnd"92I5;
CONST Mask-4095; {MASKS OFF ALL BUT 12 DATA BITS IN STATUS WORD}
BEGIN {DATA_COLLECT}

{

*** MAIN LOOP FOR FOUR CHANNEL DATA ACQUISTION
}

FOR I:=l TO Sam DO
BEGIN

{

*** PUT S/H AMPS IN TRACKING MODE AND SELECT CHANNEL A
}

R6 :=BINAND(15360,Chna)

;

R6:=BINCMP(R6);
IOCONTROL(12,3,R6);

{

*** GIVE S/H AMPS TIME TO TRACK INPUT SIGNALS
}

Del:=15;
WHILE Del>0 DO

BEGIN
Del:=Del-l;

END;

{
*** SELECT CHANNEL A ON MULTIPLEXER AND CONVERT SIGNAL HIGH
}

R6 : -BINAND( 7 16 8, Chna )

;

R6:=BINCMP(R6);
IOCONTROL(12,3,R6);

{

*** SELECT CHANNEL A ON MULTIPLEXER AND CONVERT SIGNAL LOW
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}

R6 : -BINAND ( 7 6 80 , Chna )

;

R6:=BINCMP(R6);
IOCONTROL(12,3,R6);

{

*** SELECT CHANNEL A ON MULTIPLEXER AND CONVERT SIGNAL HIGH

>

R6 :=BINAND(716 8,Chna)

;

R6:=BINCMP(R6);
IOCONTROL(12,3,R6);

{

*** WAIT FOR STS LINE TO GO LOW

}

BIT_HI

;

{

*** READ GPIO STATUS REGISTER AND KEEP ONLY 12 BITS

}

R4:-I0STATUS(12,3);
R4:=R4 DIV 4;

R4:»BINAND(MASK,R4);
Linel"[l]:=R4;

{

*** SELECT CHANNEL B ON MULTIPLEXER AND CONVERT SIGNAL HIGH

}

R6 :-BINAND(716 8,Chnb)

;

R6:=BINCMP(R6);
IOCONTROL(12,3,R6);

{
*** SELECT CHANNEL B ON MULTIPLEXER AND CONVERT SIGNAL LOW

}

R6 : -BINAND ( 7 6 80 , Chnb )

;

R6:=BINCMP(R6);
IOCONTROL(12,3,R6);

{

*** SELECT CHANNEL B ON MULTIPLEXER AND CONVERT SIGNAL HIGH

}

R6 :=BINAND(716 8, Chnb)

;

R6:-BINCMP(R6);
IOCONTROL(12,3,R6);

{
*** WAIT FOR STS SIGNAL TO GO LOW

}

BIT_HI

;

{

*** READ GPIO STATUS REGISTER AND KEEP ONLY 12 BITS

}

R4:»IOSTATUS(12,3);
R4:-R4 DIV 4;
R4:-BINAND(Mask,R4)

;

Line2*[l]:=R4;

{
*** SELECT CHANNEL C ON MULTIPLEXER AND CONVERT SIGNAL HIGH
}

R6 :=BINAND(716 8,Chnc)

;

R6:=BINCMP(R6);
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IOCONTROL(12,3,R6);

{
*** SELECT CHANNEL C ON MULTIPLEXER AND CONVERT SIGNAL LOW

}

R6 :=BINAND(76 80 ,Chnc)

;

R6:=BINCMP(R6);
IOCONTROL(12,3,R6);
R6 :=BINAND(716 8,Chnc)

;

{

*** SELECT CHANNEL C ON MDLTIPLEXER AND CONVERT SIGNAL HIGH

}

R6:=BINCMP(R6);
IOCONTROL(12,3,R6);

{

*** WAIT FOR STS SIGNAL TO GO LOW

}

BIT.HI

;

{

*** READ GPIO STATUS REGISTER AND KEEP ONLY 12 BITS

>

R4:«IOSTATUS(12,3);
R4:=R4 DIV 4;

R4 : -BINAND (Mask , R4 )

;

Line3"[I]:-R4;

{

*** SELECT CHANNEL D ON MDLTIPLEXER AND CONVERT SIGNAL HIGH

}

R6 :-BINAND(716 8,Chnd)

;

R6:=BINCMP(R6);
IOCONTROL(12,3,R6);

{

*** SELECT CHANNEL D ON MDLTIPLEXER AND CONVERT SIGNAL LOW

}

R6 : =BINAND ( 7 6 80 , Chnd )

;

R6:=BINCMP(R6);
IOCONTROL(12,3,R6);

{

*** SELECT CHANNEL D ON MDLTIPLEXER AND CONVERT SIGNAL HIGH

}

R6 : =BINAND(7 16 8, Chnd)

;

R6:=BINCMP(R6);
IOCONTROL(12,3,R6);

{

*** WAIT FOR STS SIGNAL TO GO LOW
}

BIT_HI

;

{

*** READ GPIO STATUS REGISTER AND KEEP ONLY 12 BITS

}

R4:-=I0STATDS(12,3);
R4:=R4 DIV 4;
R4:=BINAND(Mask,R4)

;

Line4"[I]:=R4;

{

*** WAIT FOR STS SIGNAL TO GO HIGH, THEN LOW
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}

BITJTST;

{

*** LOOP BACK UNTIL ALL POINTS ARE COLLECTED

}

END;

END; {DATA_COLLECT}

{
*** BEGIN MAIN DATA ACQUISITION PROGRAM (DAP)

}

BEGIN {DAP START}
NEW(Linel); {CREATE DYNAMIC VARIABLE Linel}
NEW(Line2); {CREATE DYNAMIC VARIABLE Line2}
NEW(Line3); {CREATE DYNAMIC VARIABLE Line3}
NEW(Line4); {CREATE DYNAMIC VARIABLE Line4}

{

*** GO SET DAM CLOCK TO DESIRED FREQUENCY

}

CLKSET(S);

{

*** DETERMINE NUMBER OF DATA POINTS PER CHANNEL TO ACQUIRE

}

Sam:=24001;
WHILE Sam>24000 DO

BEGIN
WRITELNC 'ENTER NUMBER OF SAMPLES [24000 MAX]: ');

READLN(Sam);
END;

HOLD_UP

;

{

*** GO COLLECT THE FOUR CHANNELS WORTH OF DATA

}

DATA_C0LLECT(Sam,LINEl,LINE2,LINE3,LINE4);

{

*** DETERMINE THE MAXIMUM AND MINIMUM VALUES FOR EACH OF THE FOUR CHANNELS

>

MAXMINC Sam, Co2maz , Co2min , 02max , 02min

,

Vmax , Vmin , Tmax , Tm in , Line 1 , L ine 2

,

Line3,Line4)

;

{
*** DISPLAY THESE MAX/MIN VALUES ON THE CRT

}

WRITELNC 'Co2max = ',Co2max);
WRITELNC 'Co2min = ',Co2min);
WRITELNC '02max = ',02max);
WRITELNC '02min - ',02min);
WRITELNC 'Vmax = ',Vmax);
WRITELNC 'Vmin = '.Vmin);
WRITELNC 'Tmax = ' ,Tmax)

;

WRITELNC 'Tmin - ' ,Tmin)

;

HOLD_UP;

{
*** GO STORE THE FOUR CHANNELS OF DATA AS ASCII FILES
}

DATA_ST0RAGE ( Sam, Co2max,Co2min,02max,02min,
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7max > Vmin,Tmax,Tmin,Linel ,Line2,

Line3 ,Line4)

;

END. {DAP END}
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APPENDIX X

BIT . CODE

General Description

Module BIT. CODE contains two 68000 assembly language

routines that monitor bit 1 of the GPIO status register (STS

available from AD574 A/D) to determine when data from the 12-bit

A/D are valid. This code was written in assembly language as a

similar Pascal routine was found to execute too slowly.

Following is a list of the summarized features of BIT. CODE.

1. Routine BIT_TST within BIT. CODE simply continues

to loop on itself until bit 1 of the GPIO status register

first goes high and then low. Following completion of

the looping process BIT_TST returns back to the calling

routine.

2. Routine BIT_HI within BIT. CODE loops on itself

until bit 1 of the GPIO status register goes low.

Following completion of the looping process BIT_HI

returns back to the calling routine.

3. Both of these routines (BIT_TST and BIT_HI)

assume that the GPIO interface is connected to the HP9826

computer at select code #12. This insures proper

addressing of the STS signal. See Calculations section

below for more on the GPIO addressing.

4. BIT. CODE as it presently exists is contained in

the Pascal system library.
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Calculations

Following are the important calculations that are made by

DAP.

1. Absolute address of GPIO interface

Refering to the GPIO section of the PASCAL

2.1 PROCEDURE LIBRARY MANUAL [12], the base

address of the GPIO is determined as follows.

The HP9826 has 24-bit addressing capability. To

address external I/O interfaces bits 20 through

23 (bit being the LSB) must be 0,1,1, and

respectively. Bits 16 through 20 corresponds to

the interface select code. The GPIO interface

currently used has an interface select code of

12. Therefore, bits 16 through 20 must be

0,0,1,1,0 respectively. The bottom 16 bits of

the GPIO base address are all zeros. Combining

the mentioned bits, the base address of the

interface is 7077888. Once the base address of

the GPIO interface was located, the system

debugger [25] was used to locate the actual

address of 16 return bits from the DAM (register

#3 within the GPIO) . Using the system debugger,

the MSB of the 16 return bits from the DAM are

located at 7077892 and the LSB is located at

7077893.

2. Determining the status of the STS bit

The STS bit (bit 1 of the GPIO status
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register) is polled by simply ANDing the LSB of

GPIO status register with 2. Then, depending

upon whether or not the result is zero or non-

zero one can monitor the status of the STS bit.

Thus the code

ANDI.B #2, DO

BEQ BIT_LCW

will loop back to BIT_LOW so long as bit 1 is

low. For the case when a loop is desired when

bit 1 is high

ANDI.B #2, DO

BNE BIT_HI

will work.
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BIT TEST MODULE FOR BIT 1 OF GFIO STATUS REGISTER

SOURCE FILENAME: BIT. TEXT

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

KANSAS STATE UNIVERSITY

REVISION DATE PROGRAMMER

1.0 JUNE 29, 1984 LOREN E. RIBLETT, JR.

*
*

*

*

*

*

*

*

*

*

PURPOSE

THIS MODULE MONITORS BIT 1 OF THE GPIO STATUS REGISTER

(STS SIGNAL FROM AD 57 4 A/D) TO DETERMINE WHEN VALID DATA
FROM THE 12-BIT A/D IS AVAILABLE.

ROUTINE(S) CALLED BY THIS MODULE

NONE

NOTE 1: ROUTINE BITJTST WITHIN BIT. CODE SIMPLY CONTINUES TO LOOP

ON ITSELF UNTIL BIT 1 OF THE GPIO STATUS REGISTER FIRST
GOES HIGH THEN LOW. FOLLOWING COMPLETION OF THE LOOPING
PROCESS BITJTST RETURNS BACK TO THE CALLING ROUTINE.

NOTE 2: ROUTINE BIT_HI WITHIN BIT. CODE LOOPS ON ITSELF UNTIL BIT 1

OF THE GPIO STATUS REGISTER GOES LOW. FOLLOWING COMPLETION
OF THE LOOPING PROCESS BIT.HI RETURNS BACK TO THE CALLING
ROUTINE.

NOTE 3: BOTH OF THESE ROUTINES (BITJTST AND BIT_HI) ASSUME THAT THE

GPIO INTERFACE IS CONNECTED TO THE HP9826 COMPUTER AT SELECT
CODE #12. THIS INSURES PROPER ADDRESSING OF THE STS SIGNAL.

NOTE 4: BIT. CODE AS IT PRESENTLY EXISTS IS CONTAINED IN THE PASCAL
SYSTEM LIBRARY.

*"*A"ir"irk "k*

SPC

MNAME BIT
DEF BITJTST
DEF BIT_HI
DEF BIT BIT
RORG

GPINT EQU 7077 893

SPC 2

BITJTST EQU *

DECLARE MODULE NAME
DEFINE ENTRY POINTS INTO MODULE

DEFINE ORIGIN OF PROGRAM
ADDRESS OF LSB OF GPIO STATUS REGISTER

BEGIN BIT TST PROCEDURE
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BIT_LOW MOVE.B GPINT.DO *LOOP UNTIL BIT 1 OF GPIO IS HIGH

ANDI.B #2, DO
BEQ BIT_LOW

BIT_HI MOVE.B GPINT.DO *LOOP UNTIL BIT 1 OF GPIO IS LOW
ANDI.B #2,D0
BNE BIT_HI

BIT_BIT RTS *RETURN BACK TO CALLING ROUTINE
END *END OF BIT MODULE
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APPENDIX XI

AUTQST

General Description

AUTOST is an HP BASIC auto start routine which allows the

user to select (from a menu) those BASIC programs that currently

exist for the human respiratory research. Features of AUTOST

include:

1. Because this is an HP AUTOST routine, it should

appear only on the 5.25" floppy used in the mass storage

unit ": INTERNAL".

2. The program is initiated by placing the floppy

in the mentioned drive and applying power to the HP9 826.

3. AUTOST is recalled upon completion of the called

routines CAPCRUNCH, DAPCRUNCH, and ANALYSIS.

4. The various functions AUTOST is capable of

performing are assigned to special function keys. Key

assignments include:

A. kO - loads and executes the BASIC routine CAPCRUNCH.

B. kl - loads and executes the BASIC routine DAPCRUNCH.

C. k2 - loads and executes the BASIC routine ANALYSIS.

D. k5 - changes the mass storage unit specifier.
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E. k6 - loads and executes a user selected routine.

F. k7 - performs a catalog listing for the current mass

storage device.

G. k9 - causes AUTOST to end.

These key assignments allow for single key stroke command

entry. Also, little if any knowledge concerning where

various programs are stored is required as AUTOST

automatically loads and executes the desired routines.

Vari abl e List

A An integer representing the desired mass storage

device as specified in the mass storage menu.

Dev$(5)[15] A string array consisting of 5 elements, 15 bytes

long containing the 5 mass storage unit specifiers

available for use by the respiratory routines.

I An integer used strictly as a FOR/NEXT loop

counter.

Lo$ A string variable representing the name of the

user defined program to load and execute.
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*************************************************************************

AUTO-START ROUTINE

HP BASIC FILENAME: AUTOST

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
KANSAS STATE UNIVERSITY

REVISION

1.0

DATE

JUNE 1, 1984

PROGRAMMER

LOREN E. RIBLETT

f *************************************************************************

!

! PURPOSE
i

I THIS ROUTINE ALLOWS THE USER TO ACCESS THE VARIOUS HP
BASIC ROUTINES THAT CURRENTLY EXIST FOR THE HUMAN
RESPIRATORY RESEARCH PROGRAMS.

ROUTINE(S) CALLED BY THIS ROUTINE

CAPCRUNCH - CALIBRATION ASCII TO BINARY FILE CONVERSION
DAPCRUNCH - DAM DATA ASCII TO BINARY FILE CONVERSION
ANALYSIS - BREATH-BY-BREATH ANALYSIS ROUTINE

*************************************************************************

NOTE 1: Because this is an AUTOST routine, it should appear
! only on the 5.25" floppy used in the mass storage unit

! ": INTERNAL".

NOTE 2: The program is initiated by placing the floppy in the

mentioned drive and applying power to the HP9826.

NOTE 3: This program is recalled upon completion of the called
routines.

*************************************************************************

*** DECLARATIONS

DIM Dev$(5)[15]

*** ASSIGN SPECIAL FUNCTION KEYS

ON KEY LABEL "CCRUNCH" GOTO Ccrunch
ON KEY 1 LABEL "DCRUNCH" GOTO Dcrunch
ON KEY 2 LABEL "ANALYSIS" GOTO Analysis
ON KEY 5 LABEL "New MSI" GOTO Msi
ON KEY 6 LABEL " LOAD" GOTO Load
ON KEY 7 LABEL " CAT" GOTO Cat
ON KEY 9 LABEL " EXIT" GOTO Exit
GOTO 480



All.

4

560 !

570 !*** CALL TO DAPCRUNCH
580 !

590 Dcrunch:

!

600 OFF KEY
610 MASS STORAGE IS ":HP9895 ,702 ,2"

620 LOAD "DAPCRUNCH" ,

1

630 !

640 !*** CALL TO CAPCRUNCH
650 !

660 Ccrunch:

!

670 OFF KEY
680 MASS STORAGE IS ":HP9895,702 ,2"

690 LOAD "CAPCRUNCH" ,

1

700 !

710 !*** CALL TO ANALYSIS
720 !

730 Analysis: I

740 OFF KEY
750 MASS STORAGE IS ":HP9895 ,702,2"

760 LOAD "ANALYSIS",

1

770 !

7 80 !*** CATALOG REQUEST
790 !

800 Cat:!

810 OFF KEY
820 CAT
830 GOTO 480

840 !

850 !*** NEW MASS STORAGE REQUEST
860 !

870 Msi:!

880 OFF KEY
890 PRINT CHR$(12)
900 PRINT "Select the device you wish to use"
910 Dev$(l)=
920 Dev$(2)=
930 Dev$(3)=
940 Dev$(4)=
950 Dev$(5)=

: INTERNAL"
:HP9895, 700,0"
:HP9895, 702,1"

:HP9895,702,2"
:HP9895,702,3"

960 FOR 1=1 TO 5

970 PRINT USING "3X,D,29A, 15A";I ," -is the mass storage device ",Dev$(D
980 NEXT I

990 INPUT "ENTER the desired device's corresponding number.",

A

1000 IF A<1 OR A>5 THEN Msi
1010 MASS STORAGE IS Dev$(A)
1020 PRINT CHR$(12)
1030 GOTO 480
1040!
1050!*** LOAD PROGRAM REQUEST
1060!

1070 Load:!
1080 OFF KEY
1090 PRINT "ENTER THE NAME OF THE PROGRAM YOU WISH TO LOAD"
1100 INPUT Lo$



All.

5

1110 LOAD Lo$
1120 GOTO 480

1130!
1140!*** PROGRAM TERMINATION REQUEST
1150!

1160 Exit:!

1170 OFF KEY
1180 END
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APPENDIX XII

CAPCRUNCH

General Description

CAPCRUNCH is an HP BASIC routine which converts the

calibration file created by the Pascal routine CAP. CODE from

ASCII to binary, allowing for more efficient data storage. To

give a more complete description of CAPCRUNCH, a list of

summarized features is given below.

1. This routine assumes that the ASCII files to be

converted are stored on hard disk " :HP9895 ,702,2".

2. Converted files (binary) are stored on the 8"

floppy ":HP9895, 700,0". Care should be exercised by the

user to insure that the 8" floppy has adequate room for

the converted files. See Appendix I for more details.

3. Calibration file names should not exceed 9

characters in length. Calibration file names are

actually established in CAP. CODE.

4. The ASCII calibration files are purged (deleted)

following the conversion process.

5. The auto start routine AUTOST is called

following completion of CAPCRUNCH.

6. The various functions CAPCRUNCH is capable of

performing are assigned to special function keys. Key

assignments include:
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A. kO - allows CAPCRUNCH to crunch a calibration file.

B. k9 - causes CAPCRUNCH to exit and AUTOST to be called.

These key assignments allow for single key stroke command

entry. Also, should the user enter CAPCRUNCH by

accidentally pressing "kO" in AUTOST, pressing "k9" in

CAPCRUNCH allows the operator to exit without attempting

to crunch any calibration files.

Calculations

Only two calculations are performed in CAPCRUNCH. One

relates to changing file names from Pascal to BASIC format and

the other determines the binary data file size.

1. Pascal to BASIC file name conversion

File names listed in the Pascal operating system

directory as "FNAME.ASC" appear as "FNAMEA " in

the BASIC operating system. In other words, the

file name along with the first letter of the

extension (.ASC) are combined and the "_"

character then fills the file name to 10

characters. As can be seen from this renaming

scheme, file names longer than nine characters in

the Pascal operating system are not recommended.

As far as the program user ' is concerned, the

ASCII calibration file is given the name "FNAME"

and once the crunch on the calibration file is

complete, the binary data file stored on the

HP9895A 8" floppy disk will appear as "FNAME" in
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both the Pascal and BASIC operating system

directories.

2. Binary data file size determination

Binary data file sizes are determined realizing

that 8 bytes of mass storage is required to store

a single real variable and 1 byte per character

is required for string variables. Thus, for the

13 calibration constants (real variables) and 25

character date, the number of mass storage bytes

needed is

# bytes = (13 * 8) + 25

File Structure

The serial ASCII calibration files created by CAP. CODE are

organized into single record files using the following format.

(NOTE: These files will appear on the " :HP9895,702,2" hard disk

and are purged immediately following the crunch procedure.)
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Record # Contents

1 Co2_dc_offset$ (4 bytes)

02_dc_offset$ (4 bytes)

Bin_zero_flow$ (4 bytes)

Co2_cal$ (25 bytes)

02_cal$ (25 bytes)

Insp_flow_cal$ (25 bytes)

Expr_flow_cal$ (25 bytes)

Time_delay$ (25 bytes)

S$ (4 bytes)

01$ (25 bytes)

Ta$ (25 bytes)

Tb$ (25 bytes)

Tc$ (25 bytes)

Date? (25 bytes)

The serial BDAT (.Binary DATa) calibration files created by

CAPCRUNCH are organized into single record files using the

following format. (NOTE: The following file is created on the

":HP9895, 700,0" 8" flexible disk.)
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Recprd | Contents

1 Co2_dc_offset (INTEGER)

02_dc_offset (INTEGER)

Bin_zero_flow (INTEGER)

Co2_cal (REAL)

02_cal (REAL)

Insp_flow_cal (REAL)

Expr_flow_cal (REAL)

Time_delay (REAL)

S (INTEGER)

01 (REAL)

Ta (REAL)

Tb (REAL)

Tc (REAL)

Date$ (Character string, 25 bytes)

Once the calibration files appear in the format shown above

they are compatible with ANALYSIS (the breath-by-breath analysis

routine) and can be used in converting the BCD data collected by

the DAM to real world units.

Variable List

Bin_zero_flow$[4] ASCII representation of the average BCD value

of 100 samples obtained from the DAM flow

channel with zero flow connected to the

pneumotach.
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Co2_cal$[25] ASCII representation of the calibration factor

for the CO, channel (channel A of the

DAM) . Multiplying digital CO- data by

this factor yields fractional CO,

concentration units.

Co2_dc_of fset$[4] ASCII representation of the average BCD value

of 1000 samples obtained from the CO-

channel with the mass spectrometer probe

connected to room air.

DateS [25] Character string containing the date that

a particular calibration file was created.

Expr_flow_cal? [25] ASCII representation of the expiratory

flow calibration factor (channel C of the

DAM) . Multiplying digital expiratory flow

data by this factor yields flow units of 1/s.

Insp_flow_cal$ [25] ASCII representation of the inspiratory

flow calibration factor (channel C of the

DAM). Multiplying digital inspiratory flow

data by this factor yields flow units of 1/s.

N$[10] Character string containing the name of the

calibration file as it was named by the user

in the Pascal operating system.
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Nl$[10] Character string containing the calibration

file name as it appears in the BASIC operating

system (having been created in the Pascal

operating system)

.

02_dc_of fset$[4] ASCII representation of the average BCD value

of 1000 samples obtained from the 0, channel

with the mass spectrometer probe connected to

13%
2

.

02_cal$[25] ASCII representation of the calibration factor

for the 0, channel (channel B of the DAM)

.

Multiplying digital 0, data by this factor

yields fractional 0- concentration units.

01$[25] ASCII representation of the actual value dis-

played by the mass spectrometer when the

sampling probe is connected to 13% 0_.

S$[4] ASCII representation of the sampling frequency

for channels A, B, C, and D of the DAM.

Ta$[25] ASCII representation of the 2nd order poly-

nomial coefficient used to convert digital

temperature data to units of degrees C.
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Tb$[25] ASCII representation of the 1st order poly-

nomial coefficient used to convert digital

temperature data to units of degrees C.

Tc$[25] ASCII representation of the constant term

used to convert digital temperature data

to units of degrees C.

Time_delay$[25] ASCII representation of the mass spectrometer

time delay in milliseconds.
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CALIBRATION FILE, ASCII TO BINARY CONVERSION ROUTINE

HP BASIC FILENAME: CAPCRUNCH

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
KANSAS STATE UNIVERSITY

REVISION

1.0

PURPOSE

DATE

JUNE 1, 1984

PROGRAMMER

LOREN E. RIBLETT

THIS ROUTINE CONVERTS THE CALIBRATION FILE CREATED BY
THE PASCAL ROUTINE "CAP. CODE" FROM ASCII TO BINARY,
ALLOWING FOR MORE EFFICIENT DATA STORAGE.

ROUTINE(S) CALLED BY THIS ROUTINE

AUTOST - USER PROGRAM ACCESS ROUTINE

*************************************************************************

NOTE 1: This routine assumes that the ASCII files to be converted
are stored on ":HP9895,702,2".

NOTE 2: Converted files (binary) will be stored on the 8" floppy
":HP9895, 700,0".

NOTE 3: File names in excess of 9 characters should not be used.

NOTE 4: ASCII files are purged following the conversion process.

NOTE 5: AUTOST is called following completion of CAPCRUNCH.

************************************************************************

!*** ASSIGN SPECIAL FUNCTION KEYS

ON KEY LABEL "CCRUNCH" GOTO 500

ON KEY 9 LABEL " EXIT" GOTO Done
GOTO 440

*** MAKE DECLARATIONS

OFF KEY
DIM Co2_dc_offset$[4] ,02_dc_offset$[4] ,Bin_zero_flow$[4]
DIM Co2_cal$[25] ,02_cal$[25] ,Insp_f low_cal$[25]
DIM Expr_flow_cal$[25] ,Time_delay$[25] ,S$[4]
DIM 01$[25) ,Ta$[25] ,Tb$[25] ,Tc$[25] ,Date$[25]
DIM N$[10],N1$[10]
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560

570

5 30

590

600

610

620

630
6 40

6 50

660

670
680

6 90

700

710

720
730

7 40

7 50

760

770

780

7 90

800

810

820

830

840

850

860

870

880

890

900

910

920

930

940

950

960

970

980

990

1000
1010
1020

1030

1040
1050

*** GET FILE NAME TO CRUNCH

MASS STORAGE IS ":HP9895,702,2"
BEEP

INPUT "ENTER NAME OF CALIBRATION FILE TO CRUNCH: ",NS

*** ALTER FILE NAME TO REFLECT PASCAL TO BASIC NAME CHANGES

Nl$=NSi"A"
Fill: IF LEN(N1$)>=10 THEN GOTO Full

N1$=N1$&"_"
GOTO Fill

|

!*** READ IN ASCII VALUES FROM CALIBRATION FILE
J

Full: ASSIGN @Pathl TO Nl$
ENTER @Pathl;Co2_dc_offset$,02_dc_offset$
ENTER @Pathl ;Bin_zero_flow$,Co2_cal$
ENTER @Pathl ;02_cal$,Insp_flow_cal$
ENTER @Pathl ;Expr_flow_cal$,Time_delay$,S$
ENTER @Pathl;01$,Ta$,Tb$,Tc$,Date$

*** CREATE BINARY FILE ON 8" FLOPPY

MASS STORAGE IS ":HP9895 ,700 ,0"

CREATE BDAT N$, 1,8*13 +25

*** WRITE BINARY CALIBRATION CONSTANTS TO FILE

ASSIGN @Pathl TO N$
OUTPUT @Pathl ;VAL(Co2_dc_of fset$) ,VAL(02_dc_of fset$)
OUTPUT @Pathl ;VAL(Bin_zero_flow$) ,VAL(Co2_cal$)
OUTPUT @Pathl;VAL(02_cal$) ,VAL(Insp_flow_cal$)
OUTPUT @Pathl ;VAL(Expr_f low_cal$) ,VAL(Time_delay$)
OUTPUT @Pathl;VAL(S$),VAL(01$),VAL(Ta$)
OUTPUT @Pathl ;VAL(Tb$) ,VAL(Tc$) ,Date$
MASS STORAGE IS ":HP9895,702,2"

*** DELETE OLD ASCII CALIBRATION FILE

PURGE Nl$
PRINT "CALIBRATION FILE COMPACTION COMPLETE."

!*** RETURN TO AUTO ST
|

Done: OFF KEY
MASS STORAGE IS ": INTERNAL"
LOAD "AUT0ST",1
END
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APPENDIX XIII

DAPCRUNCH

General Description

DAPCRDNCH is an HP BASIC routine which converts the four

ASCII files of DAM data from the Pascal routine DAP. CODE (namely

the CO_, 0- , flow, and temperature data files) from ASCII to

binary, allowing for more efficient data storage. To give a more

complete description of CAPCRUNCH, a list of summarized features

is given below.

1. This routine assumes that the ASCII files to be

converted are stored on the ":HP9895,702,2" hard disk.

These files must be named "M0NSTER1A_", "M0NSTER2A_",

"M0NSTER3A_", AND "M0NSTER4A_" in the BASIC operating

system (in the Pascal operating system these files would

appear as "M0NSTER1.ASC, "M0NSTER2.ASC" , etc.) See

Appendix XII for more information on Pascal to BASIC file

name conversion. The data from M0NSTER1A_ are assumed to

be CO, data (channel A) , M0NSTER2A_ are 0, data (channel

B) , H0NSTER3A_ are flow data (channel C) , and H0NSTEK4A_

are temperature data (channel D)

.

2. Converted files (binary) are stored on the 8"

floppy ":HP9895, 700,0". Care should be exercised by the

user to insure that the 8" floppy has adequate room for

the converted files. See Appendix I for more details.

3. Binary data file names in excess of 10

characters should not be used.
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4. The ASCII data files are purged (deleted)

following the conversion process.

5. The auto start routine AUTOST is called

following completion of DAPCRONCH.

6. The various functions DAPCRONCH is capable of

performing are assigned to special function keys. Key-

assignments include:

A. kl - allows DAPCRUNCH to crunch four ASCII data files,

B. k9 - causes DAPCRUNCH to exit and AUTOST to be called.

These key assignments allow for single key stroke command

entry. Also, should the user enter DAPCRUNCH by

accidentally pressing "kl" in AUTOST, pressing "k9" in

DAPCRUNCH allows the operator to exit without attempting

to crunch any data files.

Calcu3.at j.pns

Only one type of calculation is performed in DAPCRUNCH. It

(the calculation) is related to the determination of the binary

data file size for the four DAM data files.

1. Binary data file size determination

Binary data file sizes are determined realizing

that 2 bytes of mass storage is required to store

a single integer variable. Thus, for n DAM data

points (integers) plus the maximum and minimum

data points within the n data points (see File
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Structure section that follows) the number of

mass storage bytes needed is

# bytes = (n * 2) +4

File Structure

The four serial ASCII data files created by DAP. CODE are

organized into single record files using the following format.

(NOTE: These files will appear on the :HP9895,702,2" hard disk

and are purged immediately following the crunch procedure.)
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File Record # Contents

CO_ 1 CO- channel maximum
(4 ASCII bytes)
CO, channel minimum
{4 ASCII bytes)
n CO, channel data points
(4 ASCII bytes per point)

0_ 1 0, channel maximum
(i ASCII bytes)
0, channel minimum
(5 ASCII bytes)
n 0, channel data points
(4 ASCII bytes per point)

Flow 1 Flow channel maximum
(4 ASCII bytes)
Flow channel minimum
(4 ASCII bytes)
n flow channel data points
(4 ASCII bytes per point)

Temperature 1 Temperature channel
maximum (4 ASCII bytes)
Temperature channel
minimum (4 ASCII bytes)
n temperature channel data
points (4 bytes per point)

The serial BDAT (Binary DATa) data files created by

DAPCRUNCH are organized into single record files using the

following format. (NOTE: The following files are created on the

":HP9895, 700,0" 8" flexible disk.)
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File Record # Contents

CO- 1 CO, channel maximum (2 bytes)

CO, channel minimum (2 bytes)

n CO- channel data points

(2 bytes per point)

0, 1 0- channel maximum (2 bytes)

0- channel minimum (2 bytes)

n 0- channel data points

(2 bytes per point)

Flow 1 Flow channel maximum (2 bytes)

Flow channel minimum (2 bytes)

n flow channel data points

(2 bytes per point)

Temperature 1 Temperature channel maximum

(2 bytes)

Temperature channel minimum

(2 bytes)

n temperature channel data

points (2 bytes per point)

Once the data files appear in the format shown above they

are compatible with ANALYSIS {the breath-by-breath analysis

routine) and can be used by ANALYSIS for plotting or breath-by-



breath analysis.

Variable List

A13.6

Num INTEGER variable representing the number of

data points per file to crunch. This number

is supplied to DAPCRUNCH by the user.

A5(l:Num+2) [4] ASCII array containing the 4 byte channel data

from any one of the four DAM channel files

plus the maximum and minimum digital values

for that particular channel (i.e., A$(1)=C0,

maximum, A$(2)=C0
2

minimum, and A$(3. . .Num+2)

= ASCII data points 1 thru Num)

.

Line (Num+2) INTEGER array variable containing those values

converted from A$ (see above) . This array is

eventually written to respective binary data

files.
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DAM DATA FILE, ASCII TO BINARY CONVERSION ROUTINE

HP BASIC FILENAME: DAPCRUNCH

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
KANSAS STATE UNIVERSITY

REVISION

1.0

PURPOSE

DATE

JUNE 1, 1984

PROGRAMMER

LOREN E. RIBLETT

! THIS ROUTINE CONVERTS FOUR ASCII FILES OF DAM DATA (NAMELY
! THE C02, 02, FLOW, AND TEMPERATURE DATA FILES) CREATED
! BY "DAP. CODE" TO FOUR FILES OF BINARY DATA, ALLOWING FOR
! MORE EFFICIENT DATA STORAGE.

ROUTINE(S) CALLED BY THIS ROUTINE

AUTOST - USER PROGRAM ACCESS ROUTINE

NOTE 1: This routine assumes that the ASCII files to be converted
are stored on ":HP9895,702,2". These files must be named
M0NSTER1A_, MONSTER2A_, MONSTER3A_, and M0NSTER4A_.
(These files would be named M0NSTER1.ASC, M0NSTER2.ASC,
etc. in the PASCAL operating system.)

NOTE 2: Converted files (binary) will be stored on the 8" floppy
":HP9895, 700,0". The data from M0NSTER1A_ is assumed to
be C02 data, MONSTER2A_ is 02 data, M0NSTER3A_ is flow
data, and M0NSTER4A_ is temperature data.

NOTE 3: Binary data file names in excess of 10 characters should
not be used.

NOTE 4: ASCII files are purged following the conversion process.

NOTE 5: AUTOST is called following completion of DAPCRUNCH.

*** SPECIAL FUNCTION KEY DEFINITIONS

OPTION BASE 1

ON KEY 1 LABEL "DCRUNCH" GOTO 570
ON KEY 9 LABEL " EXIT" GOTO Done
GOTO 510

GET NUMBER OF DATA POINTS AND MAKE APPROPRIATE DIMENSIONS
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*** CREATE BINARY DATA FILE FOR C02 DATA

560 !

570 OFF KEY

580 BEEP

590 INPUT "ENTER NUMBER OF DATA POINTS TO CRUNCH: ",Num
600 ALLOCATE A$(l :Num+2) [ 4]

610 ALLOCATE INTEGER Line(Num+2)
620 !

630 !*** READ ASCII DATA FILE M0NSTER1A_
640 !

650 MASS STORAGE IS ":HP9895,702,2"
660 ASSIGN @Pathl TO "MONSTERU_"
670 ENTER @Pathl ;A$(*)

680 !

690 !*** CONVERT ASCII DATA TO BINARY
700 !

710 FOR 1=1 TO Num+2
720 Line(I)=VAL(A$(D)
730 NEXT I

740

7 50

760
770 BEEP
780 INPUT "ENTER NAME OF C02 BINARY DATA FILE",C1$
790 MASS STORAGE IS ":HP9895,700,0"
800 CREATE BDAT Cl$,l ,2*Num+4
810 ASSIGN @Pathl TO Cl$
820 ON END @Pathl GOTO 870

830

840

850

860 OUTPUT @Pathl;Line(*)
870 MASS STORAGE IS " :HP9895 ,702,2"
880 PURGE "M0NSTER1A_"
890

900

910

920 ASSIGN @Pathl TO "MONSTER2A_"
930 ENTER @Pathl;A$(*)
940

950

960

970 FOR 1=1 TO Num+2
980 Line(I)=VAL(A$(D)
.990 NEXT I

1000 !

1010 !*** CREATE BINARY DATA FILE FOR 02 DATA
1020 !

1030 BEEP
1040 INPUT "ENTER NAME OF 02 BINARY DATA FILE: ",0$
1050 MASS STORAGE IS ":HP9895 ,700 ,0"

1060 CREATE BDAT 0$,l,2*Num+4
1070 ASSIGN @Pathl TO 0$
10 80 ON END @Pathl GOTO 1130
1090 !

1100 !*** WRITE BINARY DATA TO 02 FILE AND DELETE ASCII 02 FILE

*** WRITE BINARY DATA TO C02 FILE AND DELETE ASCII C02 FILE

*** READ ASCII DATA FILE MONSTER2A

*** CONVERT ASCII DATA TO BINARY
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*** CONVERT ASCII DATA TO BINARY

*** CREATE BINARY DATA FILE FOR FLOW DATA

*** WRITE BINARY DATA TO FLOW FILE AND DELETE ASCII FLOW FILE

1110 !

1120 OUTPUT @Pathl;Line(*)
1130 MASS STORAGE IS ":HP9895, 702,2"
1140 PURGE "MONSTER2A_"
1150 !

1160 !*** READ ASCII DATA FILE MONSTER3A_
1170 !

1180 ASSIGN @Pathl TO "MONSTER3A_"
1190 ENTER @Pathl;A$(*)

1200
1210

1220
1230 FOR 1=1 TO Num+2
1240 Line(I)-VAL(A$(D)
1250 NEXT I

1260

1270
1280
1290 BEEP

1300 INPUT "ENTER NAME OF FLOW BINARY DATA FILE: ",V$
1310 MASS STORAGE IS ":HP9895,700 ,0"

1320 CREATE BDAT V$,l,2*Num+4
1330 ASSIGN @Pathl TO V$
1340 ON END @Pathl GOTO 1390
1350

1360
1370

13 80 OUTPUT @Pathl;Line(*)
1390 MASS STORAGE IS ":HP9895,702,2"
1400 PURGE "MONSTER3A_"
1410 !

1420 !*** READ ASCII DATA FILE M0NSTER4A_
1430 !

1440 ASSIGN @Pathl TO "M0NSTER4A_"
1450 ENTER @Pathl ;A$(*)

1460
1470
1480

1490 FOR 1=1 TO Num+2
1500 Line(I)=VAL(A$(D)
1510 NEXT I

1520

1530

1540
1550 BEEP
1560 INPUT "ENTER NAME OF TEMPERATURE BINARY DATA FILE: ",T$
1570 MASS STORAGE IS ":HP9895 ,700 ,0"

1580 CREATE BDAT T$,l,2*Num+4
1590 ASSIGN @Pathl TO T$
1600 ON END @Pathl GOTO 16 50

1610 !

1620 !*** WRITE BINARY DATA TO TEMPERATURE FILE AND DELETE ASCII FILE
1630 !

1640 OUTPUT @Pathl;Line(*)
1650 MASS STORAGE IS ":HP9895,702,2"

*** CONVERT ASCII DATA TO BINARY

CREATE BINARY DATA FILE FOR TEMPERATURE DATA
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1660 PURGE "MONSTER4A_"
1670 !

16 80 !*** RETURN TO AUTO ST
1690 !

1700 PRINT "DATA FILE COMPACTION COMPLETE."
1710 Done: OFF KEY
1720 MASS STORAGE IS ": INTERNAL"
1730 LOAD "AUT0ST",1
17 40 END
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APPENDIX XIV

General Description

ANALYSIS is an HP BASIC routine which, in addition to

containing the code necessary to plot any window (section) of the

collected data, performs breath- by-breath analysis on the data

collected from the DAM. Following is a list of summarized

features of ANALYSIS.

1. This routine assumes that the binary calibration

files created by CAPCRONCH are stored on the HP9895A 8"

flexible disk " :HP9895, 700,0" (volume #7 in the Pascal

operating system)

.

2. ANALYSIS assumes that the four binary data files

created by DAPCRONCH are also stored on the HP9 895A 8"

flexible disk " :HP9895 ,700,0" (volume #7 in the Pascal

operating system)

.

3. Gas mass spectrometer time delay values can be

determined on a breath-by-breath basis or a fixed time

delay can be selected for analysis of the acquired data.

Should an extreme breath-by-breath time delay be

calculated, an average time delay is substituted for the

computed time delay.

4. Respiratory volumes can be corrected to

STPD/BTPS conditions provided the barometric pressure

(torr) , relative humidity (%) , and body temperature (deg
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C) is supplied. Using this information along with point-

by-point temperature correction (using channel D, the

respiratory temperature channel) , the inspiratory and

expiratory gas volumes are corrected.

5. Any window of data from the DAM data may be

plotted either on the HP9826 CRT or HP9872C plotter. All

four channels of data are plotted, the CO, and 0,

channels being plotted with a time delay equal to the

average time delay entered by the user. Data plotted on

the HP9 826 CRT may also be dumped to the HP2673A thermal

printer.

6. Once breath-by-breath analysis of the DAM data

begins, information concerning each breath is printed on

the DECwriter printer. See section 4.5 Data Analysis and

Display Software for an example of the hard copy output.

7. Once the data arrays are exhausted summary data

for the entire run is computed and printed. File names

as well as critical calibration parameters are also

printed.

Calculations

Following are the important calculations that are made by

ANALYSIS.

1. Vapor pressure at given temperature

In order to convert volumes (or flows) to

STPD/BTPS conditions a data file named "VAP" is

read by ANALYSIS. VAP contains water vapor
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pressures from 20.0 to 44.9 deg C in 0.1 deq C

increments. Thus the equation

Ph2o_body=Vap( (Body_temp-20) *10)

will determine the vapor pressure of water at the

qiven body temperature.

2. Positive to negative transition of flow siqnal

To locate positive to negative transition of the

flow signal (beginning of inspiration) the array

index must point to a flow value that is less

than or equal to the binary zero flow and the

next five flow points must be less than binary

zero flow. Thus, the statements

IF (Line3(A)-B>0) OR (Line3 (A+l) -B>=0 ) OR

(Line3 (A+2)-B>=0) THEN 2960

IF (Line3 (A+3)-B<0) AND (Line3 (A+4) -b<0) AND

(Line3 (A+5)-B<0) THEN Deere

will not allow the program to exit from the

current expiration calculations until the

mentioned flow criterion is met.

3. Negative to positive transition of flow signal

To locate negative to positive transition of the

flow signal (beginning of expiration) the array

index must point to a flow value that is greater
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than or equal to the binary zero flow and the

next five flow points must be greater than binary

zero flow. Thus, the statements

IF (Line3(A)-B<0) OR (Line3 (A+l) -B<=0) OR

(Line3(A+2)-B<=0) THEN 2 490

IF (Line3(A+3)-B>0) AND (Line3 (A+4) -B>0) AND

(Line3 (A+5)-B>0) THEN Decri

does not allow the program to exit from the

current inspiration calculations until the

mentioned flow criterion is met.

4. Bad breath-by-breath time delays

If the breath-by-breath time delay subroutine

(Bbb_time_delay) calculates a mass spectrometer

time delay less than 330 ms or greater than 560

ms ANALYSIS ignores the computed time delay and

substitutes a running average of the previously

computed time delays that fall within the

mentioned time limits. The running average

(Avg_time_delay) is computed as follows.

Time_delay_sum=Time_delay_sum+Time_delay

Time_delay_cnt=Time_delay_cnt+l

Avg_time_delay=Time_delay_sum/Time_delay_cnt

This section of code is not executed if the

computed time delay falls outside the 330-560 ms
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range and the substitution

Time_delay=Avg_time_delay

is made.

5. Point-by-point temperature calculation

For successful conversion to STPD/BTPS the

temperature channel data (channel D) must be

converted to units of degrees C. Using the 2nd

order coefficients (Ta, Tb, and Tc) determined by

the calibration routine, this conversion is made

using the following equation.

Temp=Ta*Line4 (A) "2 + Tb*Line4 (A) + Tc

6. Inspiratory BTPS conversion constant

For conversion of inspiratory data to BTPS

conditions the following conversion constant is

necessary.

Insp_btps=(Pb-Rel_humid*Ph2o_insp)/(Pb-Ph2o_body)

*(273+Body_temp)/(273+Temp)

7. Inspiratory STPD conversion constant

For conversion of inspiratory data to STPD

conditions the following conversion constant is

necessary.
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Insp_stpd=(Pb-Rel_humid*Ph2o_insp)/760*273/

(273+Temp)

8. Inspiratory volumes of air, CO., and 0,

The trapezoidal rule for integration is used to

compute inspiratory gas volumes from the flow

signal (channel C) . Following are the three

general equations used for this integration

process.

Airi=Airi+(Line3 (A) -B) *Flow_cal*Inps_btps*T

Co2i=Co2i+(Linel(Z)-Co2_dc_offset)*(Line3 (A)-B)

*Flow_cal*Co2_cal*Insp_stpd*T

02 i=02 i+ ( ( Line2 ( Z ) -02_dc_of f se t ) *02_cal+01

)

*Insp_stpd*(Line3 (A) -B) *Flow_cal*T

As is consistent with the trapezoidal rule only

half of the first and last trapezoid areas are

included in the mentioned summing process.

9. Time of inspiration

Inspiratory time is simply determined by

multiplying the number of points acquired during

inspiration by the sampling period of the DAM.

Following is the equation used for this

calculation.

Insp_time=(A-Insp_count) *T
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10. Expiratory BTPS conversion constant

For conversion of expiratory data to BTPS

conditions the following conversion constant is

necessary.

Expr_btps=(Pb-Ph2o_expr)/(Pb-Ph2o_body)

* (273+Body_temp) / ( 273+Temp)

11. Expiratory STPD conversion constant

For conversion of expiratory data to STPD

conditions the following conversion constant is

necessary.

Expr_stpd=(Pb-Ph2o_expr)/760*273/( 273+Temp)

12. Expiratory volumes of air, CO., and 0~

The trapezoidal rule for integration is used to

compute expiratory gas volumes from the flow

signal (channel C) . Following are the three

general equations used for this integration

process.

Aire=Aire+(Line3 (A)-B) *Flow_cal*Expr_btps*T

Co2e=Co2e+(Linel(Z)-Co2_dc_offset)*(Line3(A)-B)

*Flow_cal*Co2_cal*Expr_stpd*T

02e=02e+ ( ( Line2 ( Z) -O2_dc_of fset) *02_cal+01)

*Expr_stpd*(Line3 (A)-B) *Flow_cal*T
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As is consistent with the trapezoidal rule only

half of the first and last trapezoid areas are

included in the mentioned summing process.

13. Time of expiration

Expiratory time is simply determined by

multiplying the number of points acquired during

expiration by the sampling period of the DAM.

Following is the equation used for this

calculation.

Exp_time= ( A-Exp_count ) *T

14. 0, consumed for this breath

Oxygen consumption for a particular breath is

found simply by adding the 0, inspired to the 0,

expired value. A negative value for 0,

consumption simply indicates oxygen is being

consumed. Following is the equation for

determining 0, consumption.

O2cons=02i+02e

15. CO, produced for this breath

CO, production for a particular breath is found

by adding the CO, inspired to the CO, expired

value. A positive value for CO, production

indicates CO, is being produced. Following is

the equation for determining CO, production.
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Co2prod=Co2i+Co2e

16. Total inspiratory volumes

Total inspiratory volumes are determined by

adding the inspiratory volumes for the individual

breaths. Following are those equations used for

calculating these inspiratory volumes.

Tot_vol_insp=Tot_vol_insp+Ai ri

Tot_o2_insp=Tot_o2_insp+02 i

Tot_co2_insp=Tot_co2_insp+Co2 i

17. Total expiratory volumes

Total expiratory volumes are determined by adding

the expiratory volumes for the individual

breaths. Following are those equations used for

calculating these expiratory volumes.

Tot_vol_exp=Tot_vol_exp+Ai re

Tot_o2_exp=Tot_o2_exp+02e

Tot_co2_exp=Tot_co2_exp+Co2 e

18. Total 0_ consumption and CO, production

Total 0_ consumption and CO, production values

are determined by adding consumption and

production values for the individual breaths.

Following are those equations.
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Tot_o2_cons=Tot_o2_cons+02cons

Tot_co2_prod=Tot_co2_prod+Co2prod

19. Total time of inspiration

Total time of inspiration is found by multiplying

the total number of inspiratory data points by

the period of sampling used. The equation to

calculate total inspiratory time follows.

Tot_time_insp=Tot_insp_points*T

20. Total time of expiration

Total time of expiration is found by multiplying

the total number of expiratory data points by the

period of sampling used. The equation to

calculate total expiratory time follows.

Tot_time_exp=Tot_exp_points*T

21. Total time of respiration

Total respiration time is found by multiplying

the total number of data points analyzed by the

period of sampling used. The equation to

calculate total respiration time follows.

Tot_time_resp=(Final_index-Init_index) *T
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22. Inspiratory minute volume

Inspiratory minute volume is the total volume of

air inspired per minute. The equation to

calculate inspiratory minute volume follows.

Minvoli=Tot_vol_insp*60/Tot_time_resp

23. Expiratory minute volume

Expiratory minute volume is the total volume of

air expired per minute. The equation to

calculate expiratory minute volume follows.

Minvole=Tot_vol_exp*60/Tot_time_resp

24. Average inspiratory volume

Average inspiratory volume is the total amount of

air inspired divided by the number of breaths

taken. The equation to calculate average

inspiratory volume follows.

Avoli=Tot_vol_insp/No_breaths

25. Average expiratory volume

Average expiratory volume is the total amount of

air expired divided by the number of breaths

taken. The equation to calculate average

expiratory volume follows.



A14.12

Avole=Tot_vol_exp/No_breaths

26. Respiratory frequency

The respiratory frequency is found by dividing

the total number of breaths by the total time of

respiration. Following is the equation used to

determine respiratory frequency.

Respf=No_breaths*60/Tot_time_resp

27. Average inspired
2

(C0
2 ) per breath

The average
2

(C0
2 ) inspired per breath is found

simply by dividing total CL (C0
2

) inspired for

the entire trial by the total number of breaths.

The equation to calculate average inspired 0.

(CO,) per breath follows.

02i_tidal=Tot_o2_insp/No_breaths

Co2i_tidal=Tot_co2_insp/No_breaths

28. Average expired 0, (CO.) per breath

The average 0- (CO.) expired per breath is found

by dividing total 0_ (CO.,) expired for the entire

trial by the total number of breaths. The

equation to calculate average expired (C0_)

per breath follows.

02e_tidal=Tot_o2_exp/No_breaths
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Co2e_tidal=Tot_co2_exp/No_breaths

29. Average 0- consumed per breath

Average 0- consumed per breath is found by

dividing the total 0- consumed for the entire

trial by the number of breaths taken during the

trial. Following is the equation used to

calculate average 0. consumed per breath.

Avo2cons=Tot_o2_cons/No_breaths

30. Average CO- produced per breath

Average CO- produced per breath is found by

dividing the total CO- produced for the entire

trial by the number of breaths taken during the

trial. Following is the equation used to

determine average CO- produced per breath.

Avco2prod=Tot_co2_prod/No_breaths

31. 0. consumed per minute

0. consumed per minute is found by dividing the

total 0- consumed for the entire trial by the

total time of respiration. The equation for

calculating 0- consumed per minute follows.

V_dot_o2=Tot_o2_cons/Tot_time_resp*60
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32. CO, produced per minute

C0
2

produced per minute is found by dividing the

total CO, produced for the entire trial by the

total time of respiration. The equation for

calculating CO,, produced per minute follows.

V_dot_co2=Tot_co2_prod/Tot_time_resp*60

33. Respiratory quotient

Respiratory quotient (R) is found as the rate at

which CO. is produced divided by the rate at

which 0, is consumed. The equation used for

calculating R follows.

R=ABS (V_dot_co2/V_dot_o2

)

34. Mass spectrometer time delay

See section 4.5 Data Analysis and Display

Software for details.

Pile Structure

The serial BDAT (Binary DAT a) calibration files used by

ANALYSIS are organized into single record files using the

following format. (NOTE: The following file is located on the

":HP9895, 700,0" 8" flexible disk.)
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Record # Contents

1 Co2_dc_offset (INTEGER)

02_dc_offset (INTEGER)

Bin_zero_flow (INTEGER)

Co2_cal (REAL)

02_cal (REAL)

Insp_flow_cal (REAL)

Expr_flow_cal (REAL)

Time_delay (REAL)

S (INTEGER)

01 (REAL)

Ta (REAL)

Tb (REAL)

TC (REAL)

Date$ (STRING, 25 bytes)

The four serial BDAT (Binary DAT a) data files used by

ANALYSIS are organized into single record files using the

following format. (NOTE: The following file is located on the

n :HP9895, 700,0" 8" flexible disk.)
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Eilfi Record # Contents

CO, 1 CO, channel maximum (INTEGER)

CO, channel minimum (INTEGER)

n CO, channel data points

(INTEGERS)

2
1

2
channel maximum (INTEGER)

0, channel minimum (INTEGER)

n 0, channel data points

(INTEGERS)

Flow 1 Flow channel maximum (INTEGER)

Flow channel minimum (INTEGER)

n flow channel data points

(INTEGERS)

Temperature 1 Temperature channel maximum

(INTEGER)

Temperature channel minimum

(INTEGER)

n temperature channel data

points (INTEGERS)

ANALYSIS utilizes water vapor pressure for conversion of gas

volumes to various conditions (i.e. to STPD or BTPS conditions).

The serial binary data file "VAP" contains a water vapor pressure

table for temperatures from 20.0 deg C to 44.9 deg C in 0.1 deg C

increments. Following is the organization of "VAP".
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File Record # Contents

VAP 1 Vapor pressure at 20 deg C (REAL)

Vapor pressure at 20.1 deg C (REAL)

Vapor pressure at 20.2 deg C (REAL)

Vapor pressure at 44.9 deg C (REAL)
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Variable List

A INTEGER variable used as a pointer into the

flow and temperature signal arrays (Line3 and

Line4) during signal integration.

A$[3] STRING constant set equal to the string "Air"

which is used in the hard copy output display

table heading.

Adiff REAL variable representing the absolute value

of the difference between Asum and Bsum. By

minimizing Adiff, the breath-by-breath time

delay can be determined.

Aire REAL variable equal to the amount of air ex-

pired for the current breath in liters.

Airi REAL variable equal to the amount of air in-

spired for the current breath in liters.

Asum REAL variable containing the area above the CO.

signal based upon the integration limits Beg_pt

and Beg_intg as defined in the breath-by-breatn

time delay subroutine.
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Avco2prod REAL value equal to the average C0_ produced

on a per breath basis.

Avg_time_delay REAL value equal to the average of valid

time delays as determined by the breath-by-

breath time delay subroutine.

Avo2cons REAL value equal to the average 0- consumed

on a per breath basis.

Avole REAL variable containing the average expiratory

volume for the entire trial in liters.

Avoli REAL variable containing the average inspira-

tory volume for the entire trial in liters.

B INTEGER variable equal to Bin_zero_flow. Dsed

simply to reduce length of calculation in-

volving the binary zero flow value.

B$[2] STRING constant set equal the string "02"

which is used in the hard copy output display

table heading.

Beg_pt INTEGER array pointer for the CO. signal

which points to where integration above the

CO, signal begins.
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Best_index INTEGER array pointer which points to that

location in the C0
2

and 0, signal arrays

corresponding to the beginning of inspiration.

By also knowing where inspiration begins, the

breath-by-breath time delay can be determined.

Best_match REAL variable containing the smallest differ-

ence in the area above and area below the frac-

tional C0
2

signal. Dsed by the breath-by-

breath time delay subroutine.

Bin_zero_flow INTEGER value equal to the average binary

value read from the flow channel for zero

flow.

Body_temp REAL variable representing the body temperature

of the subject in deg C.

Bsum REAL variable containing the area below the CO,

signal based on the integration limits Beg_intg

and End_pt as defined in the breath-by-breath

time delay subroutine.

INTEGER variable equal to Co2_dc_offset. Used

simply to reduce length of calculation in-

volving the CO, offset value.
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C$[3] STRING constant set equal to the string "C02"

which is used in the hard copy output display

table heading.

Cl$[10] STRING variable containing the name of the

C0
2

signal file name.

Cal$[10] STRING variable containing the name of the

calibration factors file.

Cal_flag INTEGER flag which equals zero when correction

to STPD/BTPS conditions is requested. Cal_

flag equals one otherwise.

Cmax INTEGER variable representing the maximum

acquired BCD value on the CO, channel.

Cmin INTEGER variable representing the minimum

acquired BCD value on the CO, channel.

Co2_cal REAL value used to convert binary data col-

lected from channel A of the DAM (CO,

channel) to fractional concentration values.

Co2_dc_offset INTEGER value equal to the average binary value

read from the CO, channel for 0% CO,.
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Co2e REAL variable containing the amount of CO,

expired for the current breath in liters.

Co2i REAL variable containing the amount of CO,

inspired for the current breath in liters.

Co2e_tidal REAL variable equal to the average CO- expired

by the subject on a per breath basis.

Co2i_tidal REAL variable equal to the average CO, inspired

by the subject on a per breath basis.

Co2prod REAL variable equal to the amount of CO,

produced for the current breath in liters.

Corrects [1] STRING variable equal to "Y" or "y" when

correction to STPD/BTPS conditions are re-

quested.

Ctmax INTEGER variable representing the maximum data

value on the temperature channel in degrees C.

Ctmin INTEGER variable representing the minimum data

value on the temperature channel in degrees C.

D$[8] STRING constant set equal to the string

"Inspired" which is used in the hard copy

output display table heading.



A14.23

Date$[18] STRING variable containing the creation date

of the calibration factors file.

E$[7] STRING constant set equal to the string

"Expired" which is used in the hard copy

output display table heading.

End INTEGER variable containing the point in the

DAM data strings at which plotting or analysis

is to end.

End_pt INTEGER array pointer for the CO- signal

which points to where integration of the CO,

signal ends. Points to same location as the

pointer Hin_index.

Exp_count INTEGER array pointer where expiration first

begins within the flow signal. This pointer

is used along with the end of expiration point

to determine time of expiration for any given

breath.

Expr_btps REAL variable used to scale expiratory total

gas volumes to BTPS conditions.
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Expr_flow_cal REAL variable containing the factor necessary

to convert expiratory data collected from

channel C of the DAM (flow channel) to values

having flow units of liters per second.

Expr_stpd REAL variable used to scale expiratory CO,

and
2

gas volumes to STPD conditions.

Exp_time REAL variable containing the time for the

current expiration in seconds.

F$[8] STRING constant set equal to the string

"(liters)" which is used in the hard copy

output display table heading.

Final_index INTEGER pointer into the flow signal indicating

where analysis of the respiratory data ended.

Final_index is used with Init_index to deter-

mine total respiratory time.

Flow_cal REAL value used in converting DAM flow data

into units of liters per second. Flow_cal

equals Insp_flow_cal during periods of in-

spiration and equals Expr_flow_cal during

periods of expiration.

Fmax INTEGER variable representing the maximum

acquired BCD value on the flow channel.
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Fmin INTEGER variable representing the minimum

acquired BCD value on the flow channel.

G$[4] STRING constant set equal to the string "BTPS"

which is used in the hard copy output display

table heading.

Good_exp_count INTEGER variable containing the number of good

expirations analyzed. A good expiration is

defined to be an expiration greater than 500 ml.

Good_insp_count INTEGER variable containing the number of good

inspirations analyzed. A good inspiration is

an inspiration greater than 500 ml.

H$[4] STRING constant set equal to the string "STPD"

which is used in the hard copy output display

table heading.

I REAL loop counter.

Incr REAL variable used as the step value in plotter

routine FOR/NEXT loops.

Init_index INTEGER pointer into the flow signal indicating

where analysis of the respiratory data begins.

Init_index is used with Final_index to deter-

mine total respiratory time.
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Insp_btps REAL variable used to scale inspiratory total

gas volumes to BTPS conditions.

Insp_count INTEGER array pointer where inspiration first

begins within the flow signal. This pointer

is used along with the end of inspiration point

to determine time of inspiration for any given

breath.

Insp_flow_cal REAL variable containing factor necessary to

convert inspiratory data collected from channel

C of the DAM (flow channel) to values having

flow units of liters per second.

Insp_stpd REAL variable used to scale inspiratory CO,

and
2

gas volumes to STPD conditions.

Insp_time REAL variable containing the time of inspir-

ation in seconds.

Linel 24000 point data string containing the BCD

values acquired from the CO, channel of

the DAM.

Line2 24000 point data string containing the BCD

values acquired from the 0, channel of the

DAM.
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Line3 24000 point data string containing the BCD

values acquired from the flow channel of

the DAM.

Line4 24000 point data string containing the BCD

values acquired from the temperature channel

of the DAM.

Max_index INTEGER pointer into the CO, data string where

the maximum CO, fraction is observed in the

current breath. Used to determine the GMS time

delay value.

Mid_index INTEGER pointer into the CO, data string where

1/2 of the maximum CO, fraction is observed in

the current breath. Used to determine the GMS

time delay value.

Min_index INTEGER pointer into the CO, data string where

the minimum CO, fraction is observed in the

current breath. Used to determine the GMS time

delay value.

Minvole REAL variable containing the expiratory minute

volume of the subject in liters per minute.

Minvoli REAL variable containing the inspiratory minute

volume of the subject in liters per minute.
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No_breaths INTEGER variable representing the number of

breaths analyzed during the analysis procedure.

No_points INTEGER variable containing the total number of

data points to be analyzed.

O$[10] STRING variable containing the name of the

0- signal file.

02_cal REAL variable used to convert binary data

collected from channel B of the DAM (0,

channel) to fractional concentration units.

02cons REAL variable equal to the amount of 0_

consumed for the current breath in liters.

02_dc_offset INTEGER variable equal to the average binary

value read from the 0_ channel for 12.9% 0.

.

02e REAL variable containing the amount of expired

0_ for the current breath in liters.

02i REAL variable containing the amount of inspired

0- for the current breath in liters.

02e_tidal REAL variable equal to the average 0. expired

by the subject on a per breath basis.



A14.29

02i_tidal REAL variable equal to the average 0- inspired

by the subject on a per breath basis.

Offset INTEGER variable added to the CO. and 0, array

pointers for the plotting of time aligned

signals. Offset is directly related to the

Time_delay parameter.

01 REAL variable containing the actual 0_

concentration read from the mass spectrometer

for 12.9% 0„.

Omax INTEGER variable representing the maximum

acquired BCD value on the 0, channel.

Omin INTEGER variable representing the minimum

acquired BCD value on the 0_ channel.

P INTEGER variable containing the total number of

data points to be analyzed or plotted. (Same

as No_points.

)

Pb REAL variable containing the barometric

pressure in torr.

Ph2o_body REAL variable representing the vapor pressure

of water at body temperature in torr.
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Ph2o_expr REAL variable representing the vapor pressure

of water at the expiratory temperature in torr.

Ph2o_insp REAL variable representing the vapor pressure

of water at the inspiratory temperature in torr.

Q$[l] STRING variable containing the answer to a

question asked by ANALYSIS. Typically this

answer is either a "Y" or "N".

R REAL variable equal to the respiratory quotient.

See equations sections for more details.

Rel_humid REAL variable containing the relative humidity

in fractional form.

Respf REAL variable equal to the respiratory frequen-

cy of the subject in breaths per minute.

S INTEGER variable representing the DAM sampling

frequency in Hz.

Start INTEGER variable containing the point in the

DAM data strings at which plotting or analysis

is to begin.

T REAL variable equal to the reciprocal of the

sampling frequency (S).
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T$[10] STRING variable containing the flow temperature

file name.

Ta REAL variable containing the 2nd order temp-

erature coefficient for converting DAM temp-

erature data to units of degrees C.

Tb REAL variable containing the 1st order temp-

erature coefficient for converting DAM temp-

erature data to units of degrees C.

Tc REAL variable containing the constant temp-

erature coefficient for converting DAM temp-

erature data to units of degrees C.

Temp REAL variable equal to the incremental res-

piratory temperature at the present analysis

point in degrees C.

Temp_a INTEGER variable used by the breath-by-breath

time delay routine to preserve "A", the

flow and temperature signal pointer.

Temp_z INTEGER variable used by the breath-by-breath

time delay routine to preserve "Z", the

fractional C0
2 and

2
signal pointer.
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Time_delay INTEGER variable representing the gas mass

spectrometer time delay in msec.

Time_delay_cnt INTEGER variable containing the number of valid

time delays computed by the breath-by-breath

time delay subroutine. This count is used to

calculate an average time delay of the valid

time delays.

Time_delay_flag INTEGER flag which equals zero when fixed time

delays are requested, equal to 1 when variable

time delays are requested, and equal to 2 when

variable time delays are requested but the

computed time delay was invalid.

Time_delay_sum REAL variable containing the sum of all valid

time delays computed by the breath-by-breath

time delay subroutine. This sum is used to

calculate an average time delay of the valid

time delays.

Tmax INTEGER variable representing the maximum

acquired BCD value on the temperature channel.

Tmin INTEGER variable representing the minimum

acquired BCD value on the temperature channel.



A14.33

Tot_co2_exp REAL variable containing the total expired CO,

volume during the experiment in liters.

Tot_co2_insp REAL variable equal to the total inspired CO.

volume during the experiment in liters.

Tot_co2_prod REAL variable containing the total CO, volume

produced during the experiment in liters.

Tot_exp_points INTEGER variable representing the number of

flow signal points considered to be expiratory

points. This number is used along with the

sampling period to determine the total time

of expiration.

Tot_insp_points INTEGER variable representing the number of

flow signal points considered to be inspiratory

points. This number is used along with the

sampling period to determine the total time

of inspiration.

Tot_o2_cons REAL variable equal to the total 0, volume

consumed during the experiment in liters.

Tot_o2_exp REAL variable containing the total expired 0,

volume during the experiment in liters.
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Tot_o2_insp REAL variable equal to the total inspired 0,

volume during the experiment in liters.

Tot_time_exp REAL variable containing the total time during

which expiration occurred in seconds.

Tot_time_insp REAL variable containing the total time during

which inspiration occurred in seconds.

Tot_time_resp REAL variable containing the total time during

which respiration occurred in seconds.

Tot_vol_exp REAL variable containing the total expired gas

during the trial in liters.

Tot_vol_insp REAL variable containing the total inspired gas

during the trial in liters.

V$[10] STRING variable containing the flow signal

file name.

Vap REAL array containing the water vapor pressure

values from 20.0 to 44.9 deg C in 0.1 deg C

increments.

V_dot_co2 REAL variable equal to the average rate at

which CO, is produced in liters per minute.
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V_dot_o2 REAL variable equal to the average rate at

which
2

is consumed in liters per minute.

Wye INTEGER FOR/NEXT loop counter used by the

breath-by-breath time delay subroutine.

Z INTEGER variable used as a pointer into the

CO- signal array (Linel) and 0, signal array

(Line2) during signal integration.
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BREATH-BY-BREATH RESPIRATORY ANALYSIS/PLOTTING ROUTINE

HP BASIC FILENAME: ANALYSIS

DEPARTMENT OF ELECTRICAL ENGINEERING
KANSAS STATE UNIVERSITY

REVISION

1.0

DATE

JUNE 1, 1984

PROGRAMMER

LOREN E. RIBLETT

PURPOSE
THIS ROUTINE PERFORMS ALL ANALYSIS THAT IS CURRENTLY
DONE ON THE RESPIRATORY DATA. RESULTS OF THIS ANALYSIS
ARE PRESENTED IN BOTH TABULAR AND GRAPHICAL FORMS.

ROUTINE(S) CALLED

AUTOST - USER PROGRAM ACCESS ROUTINE

NOTE 1: THIS ROUTINE ASSUMES THAT THE BINARY CALIBRATION FILES
CREATED BY "CAPCRUNCH" ARE STORED ON THE HP9895A 8"

FLEXIBLE DISK ":HP9 895 ,700 ,0" (VOLUME #7 IN THE PASCAL
OPERATING SYSTEM).

NOTE 2: ANALYSIS ASSUMES THAT THE FOUR BINARY DATA FILES CREATED
BY "DAPCRUNCH" ARE ALSO STORED ON THE HP9895A 8" FLEXIBLE
DISK ":HP9895,700,0" (VOLUME #7 IN THE PASCAL OPERATING
SYSTEM)

.

NOTE 3: GAS MASS SPECTROMETER TIME DELAY VALUES CAN BE DETERMINED
ON A BREATH-BY-BREATH BASIS OR A FIXED TIME DELAY CAN BE
SELECTED FOR ANALYSIS OF THE ACQUIRED DATA. SHOULD AN
EXTREME BREATH-BY-BREATH TIME BE CALCULATED, AN AVERAGE
TIME DELAY IS SUBSTITUTED FOR THE COMPUTED TIME DELAY.

NOTE 4: RESPIRATORY VOLUMES CAN BE CORRECTED TO STPD/BTPS CON-
DITIONS PROVIDED THE BAROMETRIC PRESSURE (TORR) , RELATIVE
HUMIDITY (%), AND BODY TEMPERATURE (DEG C) IS SUPPLIED.
USING THIS INFORMATION ALONG WITH POINT-BY-POINT TEMP-
ERATURE CORRECTION (USING CHANNEL D, THE RESPIRATORY
TEMPERATURE CHANNEL) , THE INSPIRATORY AND EXPIRATORY
GAS VOLUMES ARE CORRECTED.

NOTE 5: ANY WINDOW OF DATA FROM THE DAM DATA MAY BE PLOTTED
EITHER ON THE HP9826 CRT OR HP9872C PLOTTER. ALL FOUR
CHANNELS OF DATA ARE PLOTTED, THE C02 AND 02 CHANNELS
BEING PLOTTED WITH A TIME DELAY EQUAL TO THE AVERAGE
TIME DELAY ENTERED BY THE USER. DATA PLOTTED ON THE
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560

570

580

590

600

610

6 20

630
6 40

6 50

660
670
680
6 90

700

710

7 20

730

740

750
760

770
730

7 90

800

810

820

830

840

850 Done
860

HP9826 CRT MAY ALSO BE DUMPED TO THE HP2673A THERMAL
PRINTER.

NOTE 6: ONCE BREATH-BY-BREATH ANALYSIS OF THE DAM BEGINS,
INFORMATION CONCERNING EACH BREATH IS PRINTED ON THE
DECwriter PRINTER.

NOTE 7: ONCE THE DATA ARRAYS ARE EXHAUSTED SUMMARY DATA FOR THE
ENTIRE RUN IS COMPUTED AND PRINTED. FILE NAMES AS WELL
AS CRITICAL CALIBRATION PARAMETERS ARE ALSO PRINTED.

****************************************************

*** SPECIAL FUNCTION KEY DECLARATION
!

OPTION BASE 1

ON KEY 2 LABEL
ON KEY 9 LABEL
GOTO 720

|

!*** CALL ANALYSIS SUBROUTINE Andata
!

OFF KEY
GOSUB Andata
!

"ANALYSIS" GOTO 7 80
" EXIT" GOTO Done

!*** SIGNAL END OF ROUTINE AND RETURN TO AUTOST

PRINTER IS 1

DISP "PROGRAM RUN COMPLETE"
OFF KEY
MASS STORAGE IS ": INTERNAL"
LOAD "AUTOST",

1

STOP

!*** BEGINNING OF ANALYSIS SUBROUTINE
I

I*** GET NUMBER OF POINTS TO ANALYZE AND MAKE APPROPRIATE DIMENSIONS

870

880

890

900

910

920

930 !

940 Andata: BEEP
950 INPUT "ENTER THE TOTAL NUMBER OF POINTS TO BE ANALYZED",

P

No_points=P
ALLOCATE INTEGER Linel(P) ,Line2(P) ,Line3(P) ,Line4(P)
INTEGER Cmax , Cmin ,0max ,Omin ,Fmax ,Fmin , Tmax , Tmin
INTEGER Co2_dc_offset,02_dc_offset,Bin_zero_flow,S

960

970

980

990

1000
1010

1020

1030
1040

1050
1060
1070
1080

1090

1100

*** GET SUBJECT INFORMATION FOR PRINTOUTS

BEEP
INPUT "ENTER THE SUBJECT'S NAME OR IDENTIFIER", Name$
Q$=""

|

!*** LOAD BINARY CALIBRATION FILE IF REQUESTED
|

BEEP
INPUT "LOAD CALIBRATION FACTORS FROM DISK ? (Y/N)",Q$
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1110 IF Q$="Y" OR Q$="y" THEN GOSUB Rtcal
1120 !

1130 !*** LOAD FOUR CHANNELS OF BINARY DATA
1140 !

1150 GOSUB Rtdata
1160 !

1170 !*** CHOOSE APPROPRIATE SAMPLING FREQUENCY
1180 !

1190 Analyze: S=50
1200 Q$=""

1210 BEEP

1220 INPUT "CHANGE SAMPLING FREQUENCY FROM 50 HZ.? (Y/N)",Q$
1230 IF Q$<>"Y" AND Q$<>"y" THEN GOTO 1290
1240 INPUT "ENTER DESIRED SAMPLING FREQUENCY (HZ.)",S
1250 Q$=""

1260 !

1270 !*** CHOOSE B-BY-B TIME DELAYS OR A FIXED GMS TIME DELAY
1280 !

1290 BEEP

1300 INPUT "B-BY-B TIME DELAY OR FIXED TIME DELAY (B/F) ?",Q$
1310 IF Q$<>"B" THEN 1430
1320 !

1330 !*** FOR B-BY-B DELAYS, CHOOSE STARTING VALUE FOR AVERAGE DELAY
1340 !

1350 BEEP

1360 INPUT "AVERAGE TIME DELAY FOR BAD BREATH PROBLEMS (msec)?",Time_delay_sum
1370 Avg_time_delay=Time_delay_8um
13 80 Time_delay_flag-1 ' ITime_delay_flag=l FOR B-BY-B TIME DELAYS
13 90 GOTO 1530
1400 !

1410 !*** FOR FIXED TIME DELAY, ENTER DESIRED TIME DELAY
1420 !

1430 Time_delay_flag=0 !Time_delay_f lag=l FOR FIXED TIME DELAYS
1440 PRINT "CURRENT TIME DELAY IS ";Time_delay ;" msec"
1450 Q$=""

1460 BEEP
1470 INPUT "CHANGE TIME DELAY? (Y/N)",Q$
1480 IF Q$<>"Y" AND Q$<>"y" THEN GOTO 1530
1490 INPUT "ENTER DESIRED TIME DELAY (msec. )",Time_delay
1500 !

1510 !*** SEE IF STPD/BTPS CONVERSION IS DESIRED
1520 !

1530 Correct$=""
1540 BEEP
1550 Cal_flag=0
1560 INPUT "CORRECT SIGNALS TO STPD AND BTPS? (Y/N)", Corrects
1570 IF Correct$<>"Y" AND Correct$<>"y" THEN Cal_flag=l
1580 IF Correct$<>"Y" AND Correct$<>"y" THEN 1840
1590 !

1600 !*** IF STPD/BTPS DESIRED, LOAD IN WATER VAPOR PRESSURE TABLE
1610 !

1620 DISP "READING WATER VAPOR PRESSURES"
1630 DIM Vap(250)
1640 ASSIGN @Pathl TO "VAP"
1650 ON END @Pathl GOTO 1710
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PRESSURES FROM 20.0 C TO 44.9 C

*** SEE IF PLOT OF DATA IS DESIRED

1660 ENTER @Pathl ;Vap(*)

1670 !

16 80 !*** FOR STPD/BTPS, ENTER BAROMETRIC PRESSURE, RELATIVE HUMIDITY,
1690 !*** AND BODY TEMPERATURE
1700 !

1710 DISP ""

1720 BEEP

1730 INPUT "ENTER THE BAROMETRIC PRESSURE (torr)",Pb
1740 BEEP
1750 INPUT "ENTER THE RELATIVE HUMIDITY (in 7.

) " , Re l_humid
1760 Rel_humid=Rel_humid/100
1770 BEEP

17 80 INPUT "ENTER THE BODY TEMPERATURE (deg C)",Body_temp
1790 Ph2o_body=Vap((Body_temp-20)*10) !Vap CONTAINS WATER VAPOR
1800

1810
1820

1830
1840 Q$=""

1850 BEEP
1860 INPUT "WOULD YOU LIKE A PLOT OF THE DATA?(Y/N)",Q$
1870 !

1880 !*** IF SO, GO PLOT THE DATA
1890 !

1900 IF Q$="Y" OR Q$="y" THEN GOSUB Dtplot
1910 Q$=""

1920!
1930!*** INITIALIZE NECESSARY ANALYSIS PARAMETERS
1940!

1950 Vol_compare: IF 01=0 THEN 01=. 11

1960 No_breaths-0
1970 Good_insp_count=0
1980 Good_exp_count=0
1990 Time_delay_cnt=l
2000 T=l/S
2010 BEEP
2020 INPUT "ENTER STARTING POINT TO ANALYZE. ".Start
2030 IF Start>No_points-50 THEN GOTO 2010
2040 A=Start
2050 Z=Start
2060 BEEP
2070 INPUT "ENTER ENDING POINT TO ANALYZE .", End
20 80 IF End>No_points THEN GOTO 2060
2090 Tot_vol_insp=0
2100 Tot_vol_exp=0
2110 Tot_o2_insp=0
2120 Tot_co2_insp=0
2130 Tot_o2_exp=0
2140 Tot_co2_exp=0
2150 Tot_o2_cons=0
2160 Tot_co2_prod=0
2170 Tot_insp_points=0
2180 Tot_exp_points=0
2190 !

2200 !*** LOCATE FIRST INSPIRATION IN FLOW SIGNAL
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2210 !

2220 First_inspire: Flow_cal=Insp_flow_cal
2230 B=Bin_zero_flow
2240 !

2250 !*** CHECK FOR FIRST POSITIVE TO NEGATIVE TRANSITION OF FLOW SIGNAL
2260 !

2270 IF (Line3(A)-B<0) OR (Line3(A+l)-B>=0) OR (Line3(A+2)-B>=0) THEN 2290
2280 IF (Line3(A+3)-B<0) AND (Line3(A+4)-B<0) THEN Start
2290 A=A+1
2300 GOTO First_inspire
2310 !

2320 !*** ONCE FIRST INSPIRATION FOUND, ADJUST ADDITIONAL ANALYSIS VARIABLES
2330 !

2340 Start: IF Line3(A)-Bin_zero_flow<>0 THEN A=A+1
2350 IF Cal_flag=l THEN X=l
2360 IF Cal_flag<>l THEN 2410
2370 Insp_btps=l
23 80 Expr_btps=l
2390 Insp_stpd=l
2400 Expr_3tpd=l
2410 Headings: A$="Air"
2420 B$-"02"
2430 C$="C02"
2440 D$-"Inspired"
2450 E$-"Expired"
2460 F$»"(liters) n

2470 G$="BTPS"
2480 H$="STPD"
2490 !

2500 !*** GO PRINT DATA TABLE HEADER ON PRINTER LISTING
2510 !

2520 GOSUB Hard_copy_head
2530 !

2540 !*** LOCATE NEXT INSPIRATION IN FLOW DATA
2550 !

2560 New_inspire: I Check first for glitches
2570 E:Insp_count=A
2580 !

2590 !*** IF B-BY-B TIME DELAY, GO TO SUBROUTINE TO DETERMINE THE DELAY
2600 !

2610 IF Time_delay_flag=0 THEN 2 800

2620 GOSUB Bbb_time_delay
2630 !

2640 !*** IF B-BY-B TIME DELAY OUTSIDE LIMITS, SUBSTITUTE AVERAGE DELAY
2650 !

2660 IF (Time_delay>560) OR (Time_delay<330) THEN Bad_time_delay
2670 !

26 80 !*** OTHERWISE, USE THE B-BY-B DELAY AND UPDATE RUNNING AVERAGE
2690 !

2700 Time_delay_flag=l
2710 Time_delay_sum=Time_delay_sum+Time_delay
2720 Time_delay_cnt=Time_delay_cnt+l
2730 Avg_time_delay"Time_delay_sum/Time_delay_cnt
2740 GOTO 2 800

2750 Bad_t ime_de lay : Time delav=Avg time delay
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2760 Time_delay_flag=2
2770 !

27 80 !*** ADJUST C02 AND 02 INDEX (Z) FOR PROPER POINT SELECTION
27 90 !

2800 Z-=A+INT(Time_delay/1000*S+.5)
2810 Flow_cal=Insp_flow_cal
2820 !

2830 !*** PREPARE FOR STPD/BTPS CONVERSION IF REQUESTED
2840 !

2850 IF Cal_flag-1 THEN 2930
2 860 Temp=Ta*Line4(A) *2+Tb*Line4(A) +Tc

2870 Ph2o_insp=Vap((Temp-20)*10)
2880 Insp_btps=(Pb-Rel_humid*Ph2o_in3p)/(Pb-Ph2o_body)*(273+Body_temp)/(273+Tem
p)
2890 Insp_8tpd=(Pb-Rel_humid*Ph2o_insp)/760*273/(273+Temp)
2900 !

2910 !*** COMPUTE HALF THE AREA FOR THE FIRST TRAPEZOIDAL AREA
2920 !

2930 Airi=.5*(Line3(A)-B)*Flow_cal*Insp_btps
2940 Co2i=.5*(Line3(A)-B)*(Linel(Z)-Co2_dc_offset)*Co2_cal*Insp_stpd*Flow_cal
2950 02i=.5*(Line3(A)-B)*Flow_cal*((Line2(Z)-02_dc_offset)*02_cal-tOl)*Insp_stpd
2960

2970
2980

2990 A_label: A=A+1
3000 Z=Z+1

3010 !

3020 !*** MAKE SURE ENOUGH DATA POINTS REMAIN FOR THIS BREATH
3030 !

3040 IF Z>End-50 THEN Goon
3050 !

3060 !*** BRANCH IF END OF INSPIRATION
3070 !

3080 IF (Line3(A)-B<0) OR (Line3(A+l)-B<=0) OR (Line3(A+2)<=0) THEN 3130
3090 IF (Line3(A+3)-B>0) AND (Line3(A+4)-B>0) AND (Line3(A+5)-B>0) THEN Decri
3100 !

3110 !*** PREPARE FOR STPD/BTPS CONVERSION IF REQUESTED
3120 !

3130 IF Cal_flag=l THEN 3210
3140 Temp=Ta*Line4(A)"2+Tb*Line4(A)+Tc
3150 Ph2o_insp=Vap((Temp-20)*10)
3160 Insp_btps=(Pb-Rel_humid*Ph2o_insp)/(Pb-Ph2o_body)*(273+Body_temp)/(273+Tem

P)
3170 Insp_stpd=(Pb-Rel_humid*Ph2o_insp)/760*273/(273+Temp)
3180 !

3190 !*** SUM UP INSPIRATORY VOLUME, INSPIRED C02 AND 02 FOR THIS BREATH
3200 !

3210 Airi«Airi+(Line3(A)-B)*Flow_cal*Insp_btps
3220 Co2i=Co2i+(Linel(Z)-Co2_dc_offset)*(Line3(A)-B)*Flow_cal*Co2_cal*Insp_stpd
3230 02i=O2i+((Line2(Z)-02_dc_offset)*02_cal-K)l)*Insp_stpd*(Line3(A)-B)*Flow_ca
1

3240
3250
3260
3270 GOTO A label

*** LOOP UNTIL END OF INSPIRATION
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3280

3290

3300
3310 Decri: A=A-1
3320 Z=Z-1

3330 !

3340 !*** PREPARE FOR STPD/BTPS CONVERSION IF REQUESTED

3350 !

3360 IF Cal_flag=l THEN 3440

3370 Temp=Ta*Line4(A)*2+Tb*Line4(A)+Tc
33 80 Ph2o_insp=Vap((Temp-20)*10)
3390 InspJ>tps=(Pb-Rel_humid*Ph2o_insp)/(Pb-Ph2o_body)*(273+Body_temp)/(273+Tem

P)
3400 Insp_stpd-(Pb-Rel_humid*Ph2o_insp)/760*273/(273+Temp)
3410 !

3420 !*** SUBTRACT OFF 1/2 OF THE LAST TRAPEZOIDAL AREA
3430 !

3440 Airi=Airi-.5*(Line3(A)-B)*Flow_cal*Insp_btps
3450 Co2i=Co2i-.5*(Line3(A)-B)*(Linel(Z)-Co2_dc_offset)*Flow_cal*Co2_cal*Insp_s
tpd

3450 02i-02i-.5*(Line3(A)-B)*Flow_cal*((Line2(Z)-02_dc_offset)*02_cal-tOl)*Insp_
stpd

3470 !

3480 !*** ADJUST ARRAY POINTER TO POINT TO START OF EXPIRATION

3490 I

3500 A=A+1

3510 Z=Z+1
3520 !

3530 !*** COMPUTE TIME OF INSPIRATION

3540 !

3550 B:Insp_time=(A-Insp_count)*T !Time of inspiration in seconds

3560 !

3570 !*** BEGIN COMPUTATIONS ON EXPIRATION

3580 !

3590 New_expire:Flow_cal=Expr_flow_cal
3600 Exp_count=A
3610 !

3620 !*** PREPARE FOR STPD/BTPS CONVERSION IF REQUESTED

3630 !

3640 IF Cal_flag=l THEN 3720

3650 Temp=Ta*Line4(A)"2+Tb*Line4(A)+Tc
3660 Ph2o_expr=Vap((Temp-20)*10)
3670 Expr_btps=(Pb-Ph2o_expr)/(Pb-Ph2o_body)*(273+Body_temp)/(273+Temp)
36 80 Expr_stpd=(Pb-Ph2o_expr)/760*273/(273+Temp)
3690 !

3700 !*** TAKE ONLY 1/2 OF THE FIRST TRAPEZOIDAL AREA (EXPIRATION)

3710 !

3720 Aire=.5*(Line3(A)-B)*Flow_cal*Expr_btps
3730 Co2e=.5*(Line3(A)-B)*(Linel(Z)-Co2_dc_offset)*Co2_cal*Expr_stpd*Flow_cal
3740 02e=.5*(Line3(A)-B)*Flow_cal*((Line2(Z)-02_dc_offset)*02_cal-K)l)*Expr_stpd
37 50

*** ADJUST ARRAY POINTERS FOR NEXT TRAPEZOIDAL AREA3760
3770
37 80 F A=A+1
37 90 Z-Z+l
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3 800

3 810

3 820

3830
3 840

3 850

3860
3870
3 880

3 890

3900

3910
3 920

3930
3940
3950
3960
3 970

3980
3 990

4000

4010
4020
d

4030
4040

4050

4060
4070
40 80

4090
4100
4110

4120

4130

4140
4150

4160
4170
4180
4190
4200
4210

4220
4230
4240

tpd
4250
stpd
4260
4270

42 80

4290
4300

4310

* MAKE SURE ADEQUATE POINTS EXIST FOR EXPIRATION CALCULATIONS

IF Z>End-50 THEN Goon

*** BRANCH IF END OF EXPIRATION

IF (Line3(A)-B>0) OR (Line3(A+l)-B>=0) OR (Line3(A+2)-B>=0) THEN 3920
IF (Line3(A+3)-B<0) AND (Line3(A+4)-B<0) AND (Line3(A+5)-B<0) THEN Deere
!

!*** PREPARE FOR STPD/BTPS CONVERSION IF REQUESTED
!

IF Cal_flag=l THEN 4000
Temp=Ta*Line4(A)"2+Tb*Line4(A)+Tc
Ph2o_expr=Vap((Temp-20)*10+l)
Expr_btps=(Pb-Ph2o_expr)/(Pb-Ph2o_body)*(273+Body_temp)/(273+Temp)
Expr_stpd=(Pb-Ph2o_expr)/760*273/(273+Temp)
!

!*** SUM UP EXPIRATORY VOLUME, EXPIRED C02 AND 02 FOR THIS BREATH
!

Aire-Aire +(Line3(A)-B)*Flow_cal*Expr_btps
Co2e=Co2e+(Line3(A)-B)*(Linel(Z)-Co2_dc_offset)*Flow_cal*Co2_cal*Expr_stpd
02e=02e+(Line3(A)-B)*Flow_cal*((Line2(Z)-O2_dc_offset)*02_cal-tOl)*Expr_stp

*** LOOP UNTIL END OF EXPIRATION

GOTO F

!

I*** SET ARRAY POINTERS BACK ONE TO REFLECT END OF EXPIRATION
!

Deere : A=A-1
Z-Z-l

*** PREPARE FOR STPD/BTPS CONVERSION IF REQUESTED

IF Cal_flag=l THEN 4230
Temp=Ta*Line4(A)"2+Tb*Line4(A)+Tc
Ph2o_expr=Vap((Temp-20)*10)
Expr_btps=(Pb-Ph2o_expr)/(Pb-Ph2o_body)*(273+Body_temp)/(273+Temp)
Expr_stpd=(Pb-Ph2o_expr)/760*273/(273+Temp)

*** SUBTRACT OFF 1/2 OF THE LAST TRAPEZOIDAL AREA (EXPIRATION)

Aire=Aire-.5*(Line3(A)-B)*Flow_cal*Expr_btps
Co2e=Co2e-.5*(Line3(A)-B)*(Linel(Z)-Co2_dc_offset)*Flow_cal*Co2_cal*Expr_3

02e=02e-.5*(Line3(A)-B)*Flow_cal*((Line2(Z)-02_dc_offset)*O2_caHOl)*Expr_

i

!*** BUMP ARRAY POINTERS TO START OF NEXT INSPIRATION
!

A-A+l
Z-Z+l

!
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4320

4330
4340

4350
4360
4370
43 80

4390
4400

4410
4420
4430

4440

4450
4460

4470

4480

4490
4500
4510
4520
4530

4540
4550

4560
4570
4580
LITERS)
4590
ERS)
4600

RS)

4610
4620

!*** BEGIN CALCULATIONS FOR THIS PARTICULAR BREATH

|

C: Airi-Airi*T 'INSPIRATORY VOLUME FOR THIS BREATH (LITERS)

Co2i-Co2i*T !C02 INSPIRED FOR THIS BREATH (LITERS)

02i=02i*T !02 INSPIRED FOR THIS BREATH (LITERS)
Aire=Aire*T (EXPIRATORY VOLUME FOR THIS BREATH (LITERS)

Co2e=Co2e*T !C02 EXPIRED FOR THIS BREATH (LITERS)

02e=02e*T 102 EXPIRED FOR THIS BREATH (LITERS)
02cons>O2i-tO2e [CONSUMED 02 FOR THIS BREATH (LITERS)

Co2prod=Co2i+Co2e !C02 PRODUCED FOR THIS BREATH (LITERS)

No_breaths=No_breaths+l ITOTAL NUMBER OF BREATHS ANALYZED
IF No_breaths=l THEN Init_index=Insp_count
Exp_time=(A-Exp_count)*T ITIME FOR CURRENT EXPIRATION (SECONDS)

Final_index=A-l
!

!*** GO PRINT CALCULATED VALUES FOR THIS BREATH

|

GOSUB Hard_output

|

!*** KEEP TRACK OF GOOD INSPIRATIONS AND EXPIRATIONS

J

IF ABS(Airi)>.50 THEN Good_inap_count=Good_insp_count+l
IF ABS(Aire)>.50 THEN Good_exp_count=Good_exp_count+l

*** ADJUST RUNNING TOTAL VALUES FOR ENTIRE TRIAL

Tot_vol_insp=Tot_vol_insp+Airi

)

Tot_vol_exp"=Tot_vol_exp+Aire

Tot_o2_insp=Tot_o2_insp+02i

Tot_o2_exp=Tot_o2_exp+02e
Tot_co2_insp=Tot_co2_insp+Co2i

LITERS)
4630 Tot_co2_exp=Tot_co2_exp+Co2e
ERS)
4640 Tot_o2_cons=Tot_o2_cons-K)2con8
ITERS)

4650 Tot_co2_prod=Tot_co2_prod+Co2prod
T (LITERS)
4660 Tot_insp_points=Tot_insp_points+Insp_time/T
ATA POINTS USED
4670 Tot_exp_points=Tot_exp_points+(A-Exp_count)
TA POINTS USED
4680 !

I*** GO FIND ANOTHER BREATH TO PROCESS
!

GOTO New_inspire

ITOTAL INSPIRED GAS DURING EXPERIMENT (

!TOTAL EXPIRED GAS DURING EXPERIMENT (LIT

ITOTAL INSPIRED 02 DURING EXPERIMENT (LITE

ITOTAL EXPIRED 02 DURING EXPERIMENT (LITERS)

ITOTAL INSPIRED C02 DURING EXPERIMENT (

ITOTAL EXPIRED C02 DURING EXPERIMENT (LIT

ITOTAL CONSUMED 02 DURING EXPERIMENT (L

ITOTAL PRODUCED C02 DURING EXPERIMEN

l# OF INSPIRATORY VOLUME D

!# OF EXPIRATORY VOLUME DA

4690
4700
4710
4720
4730
4740
4750 Goon:Tot_time_insp=Tot_insp_points*T ITOTAL INSPIRATORY TIME (SECONDS)

4760 Tot_time_exp=Tot_exp_points*T ITOTAL EXPIRATORY TIME (SECONDS)

4770 Tot_time_resp=(Final_index-Init_index)*T ITOTAL RESPIRATORY TIME (SECO

*** DATA ARRAYS ARE EXHAUSTED, COMPUTE FINAL TRIAL AVERAGES
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NDS)

47 80 Minvoli=Tot_vol_insp*60/Tot_tinie_resp [INSPIRATORY MINUTE VOLUME (VI-D

OT, LITERS/MIN)

47 90 Minvole=Tot_vol_exp*60/Tot_time_resp [EXPIRATORY MINUTE VOLUME (VE-DOT

, LITERS/MIN)

4800 No_breaths=( Good_insp_count +Good_exp_count ) /

2

4810 Avoli=Tot_vol_insp/No_breaths [AVERAGE INSPIRATORY VOLUME (LITERS)

4820 Avole=Tot_vol_exp/No_breaths [AVERAGE EXPIRATORY VOLUME (LITERS)

4830 Respf=No_breaths*60/Tot_time_resp [RESPIRATORY FREQUENCY (BREATHS/MIN)

4840 02i_tidal=Tot_o2_insp/No_breaths [AVERAGE INSPIRED 02/BREATH (LITERS)

4850 02e_tidal=Tot_o2_exp/No_breaths [AVERAGE EXPIRED 02/BREATH (LITERS)

4860 Co2i_tidal=Tot_co2_insp/No_breaths [AVERAGE INSPIRED C02/BREATH (LITER

S)

4870 Co2e_tidal=Tot_co2_exp/Nq_breaths [AVERAGE EXPIRED C02/BREATH (LITERS)

4880 Avo2cons=Tot_o2_cons/No_breaths [AVERAGE 02 CONSUMED /BREATH (LITERS)

4890 Avco2prod=Tot_co2_prod/No_breaths
4900 V_dot_o2=Tot_o2_cons/Tot_time_resp*60
4910 V_dot_co2=Tot_co2_prod/Tot_time_resp*60
4920 R=ABS(V_dot_co2/V_dot_o2)

4930 !

4940 !*** GO PRINT MEAN VALUES

4950 !

4960 GOSUB Means
4970 Q$=""

4980 BEEP

4990 INPUT "REDO ANALYSIS? (Y/N)",Q$

5000 IF Q$="Y" OR Q$="y" THEN GOTO Analyze

5010 !

5020 !*** END OF ANALYSIS SUBROUTINE

5030 !

5040 RETURN ! Branch back to the main routine

5050 !

5060 !*** SUBROUTINE TO PRINT STANDARD HEADER TO THE DECwriter II PRINTER

5070 !

50 80 Hard_copy_head: PRINTER IS 9

5090 PRINT ""-."SUBJECT IDENTIFIER: ";Name$

5100 PRINT "";"DATE: ";Date$;""

5110 PRINT USING "#,2X,K,5X,K,7X,K, 8X.K, 8X,K,7X,K";"Breath";A$;A$;B$;B$;C$

5120 PRINT USING "#,7X,K, 8X,K,7X,K ) 7X >
K,6X

)
K,5X

>
K";C$;B$;C$;"Insp";"Expr";"Dela

y"

5130 PRINT
5140 PRINT USING "#

> 2X,K,4X )
K > 2X >K,3X >

K,2X,K";"Start";D$;E$;D$;E$

5150 PRINT USING "#,3X,K ) 2X,K )
3X,K,2X,K";D$;E$;"Consumed";"Produced"

5160 PRINT USING "#
> 4X >

K,6X,K,6X,K";"TIME";"TIME";"TIME"
5170 PRINT
5180 PRINT USING "#,2X >K,4X,K,2X > K >

2X,K,2X,K,2X,K";"Index";F$;F$;F$;F$;F$

5190 PRINT USING "#,2X >K >
2X,K,2X,K ) 3X,K,5X,K,5X >

K";F$;F$;F$;"(sec)";"(sec)";"(m

sec)"
5200 PRINT
5210 IF Correct$<>"Y" THEN 5250

5220 PRINT USING "#
>
13X,K,6X,K,6X,K,6X,K,6X )

K";G$;G$;H$;H$;H$

5230 PRINT USING "#,6X >
K,6X,K,6X,K";H$;H$;H$

5240 PRINT
5250 PRINT USING "#,K";" "

5260 PRINT USING "#,K";" "
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5270 PRINT USING "#,K";" "

5280 PRINT
5290 RETURN

5300 !

5310 !*** SUBROUTINE TO PRINT A SINGLE LINE OF BREATH-BY-BREATH INFORMATION
5320 !

5330 Hard_output: !

5340 SPRINT USING "#,70X,K,18X,K";" I";" I"

5350 PRINT
5360 PRINT USING "#,2X,DDDDD";Insp_count
5370 PRINT USING "#,5X,DD.DDD,3(4X > DD.DDD)";Airi;Aire;02i;02e
5380 PRINT USING "tf^X.D.DDD.SX.D.DDD.SX.K, lX,D.DDD";Co2i;Co2e;" |";02cons
5390 PRINT USING "#,5X,D.DDD,2X,K";Co2prod;" |"

5400 PRINT USING "#,3X,D.DD,6X,D.DD";Insp_time;Exp_time
5410 IF Time_delay_flag<>2 THEN PRINT USING "#,6X,DDD";Time_delay
5420 IF Time_delay_flag=2 THEN PRINT USING "#,4X,K >DDD )K";"**";Time_delay;"**"
5430 PRINT
5440 RETURN
5450 !

5460 !*** SUBROUTINE TO PRINT TRIAL AVERAGE VALUE INFORMATION
5470 !

5480 Means: !

5490 IF Correct$<>"Y" THEN H$=""
5500 IF Correct$<>"Y" THEN G$=""
5510 PRINT USING "K,DDD.D,K,4A";"Inspiratory minute volume = ";Minvoli;" liters
per minute ",G$
5520 PRINT USING "K,DDD.D,K,4A";"Expiratory minute volume ";Minvole;" liters p
er minute ",G$
5530 PRINT USING "K,DDD.4D > K > 4A";"Inspiratory tidal volume = ";Avoli;" liters ",

G$

5540 PRINT USING "K,DDD.4D,K,4A";"Expiratory tidal volume = ";Avole;" liters ",

G$

5550 PRINT USING "K,DDDD.D,K";"Respiratory frequency ";Respf;" breaths per mi
nute"
5560 PRINT USING "K )DDD.3D,K ) 4A";"Mean 02 inspired - ";02i_tidal;" liters ",H$
5570 PRINT USING "K,DDD.3D,K,4A";"Mean 02 expired = ";02e_tidal;" liters ",H$
5580 PRINT USING "K,DDD.3D,K,4A";"Mean C02 inspired = ";Co2i_tidal ;" liters ",H
$

5590 PRINT USING "K,DDD.3D,K,4A";"Mean C02 expired = ";Co2e_tidal ;" liters ",H$
5600 PRINT USING "K,DDD.3D,K,4A";"Mean 02 consumed per breath = ";Avo2cons;" li
ters ",H$
5610 PRINT USING "K,DDD.3D,K,4A";"Mean C02 produced per breath =";Avco2prod;" 1

iters ",H$
5620 PRINT USING "K,DDD.3D,K,4A";"02 consumed per minute = ";V_dot_o2;" liters
per minute ",H$
5630 PRINT USING "K,DDD.3D,K,4A";"C02 produced per minute =";V_dot_co2;" liters
per minute ",H$
5640 PRINT USING "K,DDD.3D";"RESPIRATORY QUOTIENT - ";R
5650 PRINT USING "K ) 3D.D,K";"Total time of inspiration = ";Tot_time_insp;" sec"
5660 PRINT USING "K,3D.D,K";"Total time of expiration = ";Tot_time_exp;" sec"
5670 PRINT USING "K

) 3D.D,K";"Total time of respiration = ";Tot_time_resp ;" sec"
56 80 PRINT USING "K, 3D. D"; "Number of good inspirations = ";Good_insp_count
5690 PRINT USING "K,3D.D";"Number of good expirations = ";Good_exp_count
5700 PRINT USING "K, 3D. D"; "Number of good breaths = ";No_breaths
5710 IF Correct$<>"Y" THEN 5760
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5720 PRINT USING "K,DD.D,K";"Relative Humidity = ";Rel_humid*100 ;"%"

5730 PRINT USING "K,DD.DD,K";"Body Temperature = ";Body_temp;" deg C"
5740 PRINT USING "K,DD.DD,K,DD.3D,K";"PH20 at ";Body temp;" deg C = ";Ph2o bodv
;" torr"
5750 PRINT USING "K,3D.DD >K";"Barometric Pressure = ";Pb;" torr"
5760 PRINT USING "K,4D";"FL0W DC OFFSET = ";Bin_zero_flow
5770 PRINT USING "K,4D";"C02 DC OFFSET = ";Co2_dc_of fset
57 80 PRINT USING "K,4D";"02 DC OFFSET = ";02_dc_of fset
5790 PRINT USING "K,D.4DE";"C02 CALIBRATION FACTOR = ";Co2_cal
5800 PRINT USING "K,D.4DE";"02 CALIBRATION FACTOR = ";02_cal
5810 PRINT USING "K.D.4DE"; "INSPIRATORY FLOW CALIBRATION FACTOR = ";Insp_flow_c
al

5 820 PRINT USING "K.D.4DE"; "EXPIRATORY FLOW CALIBRATION FACTOR = ";Expr_flow_ca

5830 PRINT USING "3(K,MD.4DE)";"TEMPERATURE CORRECTION = ";Ta;"X*2 + ";Tb-"X +
";Tc

5840 PRINT "";"SAMPLING FREQUENCY =";S
5850 PRINT "";"FLOW CALIBRATION FILENAME: ";Cal$
5850 PRINT "";"C02 DATA FILENAME: ";C1$
5870 PRINT "";"02 DATA FILENAME: ";0$
5880 PRINT "";"FL0W DATA FILENAME: ";V$
5890 PRINT ""; "TEMPERATURE DATA FILENAME: ";T$
5900 PRINTER IS 1

5910 RETURN
5920 !

5930 !*** SUBROUTINE TO PLOT OUT THE FOUR BINARY DATA SETS
5940 !

5950 Dtplot: PRINT " DATA PLOTTING ROUTINE"
5960 PRINT "THERE ARE ";No_points ;" DATA POINTS AVAILABLE
5970
5980

5990
6000 BEEP
6010 INPUT "ENTER STARTING POINT TO PLOT. ".Start
6020 IF Start<l OR Start >No_points THEN GOTO 6010
6030 BEEP
6040 INPUT "ENTER ENDING POINT TO PLOT.",End
6050 IF End<=Start OR End>No_points THEN GOTO 6040
6060
6070
6080
6090 P-End-Start
6100
6110
6120
6130 Offset=INT(Time_delay/1000*S)
6140 !

6150 !*** DETERMINE MAXIMUM AND MINIMUM VALUES FOR THE PLOTTED POINTS
6160 !

6170 Cmax=Linel( Start)
6180 Cmin=Linel(Start)
6190 Omax=Line2( Start)
6200 Omin=Line2( Start)
6210 Fmax=Line3(Start)
6220 Fmin=Line3( Start)

*** OBTAIN STARTING AND ENDING POINTS TO PLOT

*** COMPUTE NUMBER OF POINTS TO PROCESS

*** COMPUTE PLOTTING OFFSET FOR MASS SPECTROMETER DELAYS
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6230
6240

6250
6260
6270
6280
6290
6300
6310
6320
6330
6340
6350
6360
6370
6380
6390
6400
6410
6420
6430
6440
6450
6460
6470
6480
6490
6500
6510
6520
6530
6540
6550
6560
6570
6580
6590
6600
6610
6620
6630
6640
66 50

6660
6670
66 80

6690
6700
6710
6720
6730
6740
6750
6760
6770

Tmax=Line4( Start)
Tmin=Line4( Start)
FOR I=Start+l TO End
IF Cmax<Linel(I) THEN Cmax=Linel(I)
IF Cmin>Linel(I) THEN Cmin=Linel(I)
IF Omax<Line2(I) THEN Omax=Line2(I)
IF 0min>Line2(I) THEN Omin=Line2(I)
IF Fmax<Line3(I) THEN Fmax=Line3(I)
IF Fmin>Line3(I) THEN Fmin=Line3 ( I

)

IF Tmax<line4(I) THEN Tmax=Line4(I)
IF Tmin>Line4(I) THEN Tmin=Line4(I)
NEXT I

!

!*** DISPLAY THE MAXIMUM AND MINIMUM VALUES ON THE CRT
1

DISP
PRINT "C02 MAX: " ;Cmax;TAB(25) ;"C02 MIN: ";Cmin
PRINT "02 MAX: ";Omax;TAB(25) ;"02 MIN: ";Omin
PRINT "FLOW MAX: ";Fmax;TAB(25) ;"FLOW MIN: ";Fmin
PRINT "TEMP MAX: ";Tmax;TAB(25) ;"TEMP MIN: ";Tmin
!

!*** ADJUST MAXIMUM AND MINIMUM PLOTTING VALUES FOR SMALL INPUT CHANGES
j

IF Fmax-Fmin>100 THEN 6490
Fmax=4095
Fmin=0
IF Cmax-Cmin>100 THEN 6520
Cmax=4095
Cmin=0
IF Omax-Omiii>100 THEN 6550
0max=4095
Omin=0
IF Tmax-Tmin>100 THEN 6620
Tmax=4095
Tmin=0

*** IF NO TEMPERATURE CALIBRATION DATA IS AVAILABLE, ONLY PLOT BINARY
*** TEMPERATURE DATA

!

IF (TaOO) AND (Tb<>0) THEN 6690
Ta=0
Tc-0
Tb=l
[

!*** ALLOW USER TO SELECT PLOTTING DEVICE
|

BEEP
INPUT "OUTPUT ON PLOTTER OR CRT ? (PLOTTER/CRT)",Q$

*** SET DEFAULT PLOTTING DEVICE TO INTERNAL CRT AND DUMP DEVICE TO
*** THERMAL PRINTER

PLOTTER IS 3, "INTERNAL"
DUMP DEVICE IS 801

IF Q$O"PL0TTER" THEN GOTO 6 880
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*** INITIALIZE GRAPHICS SYSTEM

PLOT THE TEMPERATURE DATA ARRAY

67 80 !

6790 !*** SET SYSTEM FOR HP9872C PLOTTER
6 800 !

6 810 PLOTTER IS 705,"HPGL"
6 820 PRINTER IS 705
6 830 PRINT "VS5;"
6 840 PRINTER IS 1

6 850

6860
6870
6 880 GRAPHICS ON
6 890 GCLEAR
6 900 PRINT CHR$(12)

6910 PEN 1

6 920 DEG !SET DEGREES MODE
6930
6940

6950
6960 VIEWPORT 10,120,4,24
6970 Ctmin=Ta*Tmin"2+Tb*Tmin+Tc
6980 Ctmax=Ta*Tmax'*2+Tb*Tmax+Tc
6990 WINDOW -P/10,P,Ctmin,Ctmax
7000 LINE TYPE 1 !SET FOR SOLID LINE
7010 CSIZE 2.8
7020 LDIR
7030 LORG 2 !SET LABEL ORIGIN TO POSITION 8

7040 AXES P/20,(Ctmax-Ctmin)/10,0,Ctmin
7050 IF (Ctmin=Tmin) AND (Ctmax=Tmax) THEN 7120
7060 Incr-(Ctmax-Ctmin)/5
7070 FOR I=Ctmin+Incr TO Ctmax-Incr STEP Incr
7080 MOVE -P/10,1
7090 LABEL DSING 7100;I
7100 IMAGE ZZ.DD
7110 NEXT I

7120 CSIZE 3.3 !SET CHARACTER HEIGHTH TO 3.3 GDU'S
7130 LINE TYPE 1

7140 PEN 2

7150 MOVE l,Ta*Line4(Start)"2+Tb*Line4(Start)+Tc
7160 FOR I=Start TO End
7170 Temp=Ta*Line4(I)*2+Tb*Line4(I)+Tc
7180 PLOT I-Start+l,Temp
7190 NEXT I

7200 PEN 1

7210 CSIZE 2.5

7220 LINE TYPE 1

7230
7240
7250
7260 VIEWPORT 0,120,4,24
7270 WINDOW 0,125,4,24
7280 MOVE 1,14
7290 LORG 5

7300 LDIR. 90

7310 LABEL "FLOW TEMP"
7320 MOVE 4,14

*** LABEL THE TEMPERATURE PLOT
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*** PLOT THE FLOW DATA ARRAY

7330 LABEL "DEGREES C"

7340 LDIR
7350 VIEWPORT 0,125,24,28
7360 WINDOW 0,10,0,4
7370 MOVE 2,2
73 80 LABEL "START POINT ="; Start
7390 MOVE 5,2

7400 LABEL "END POINT =";End
7410 MOVE 8,2
7420 LABEL "1 TICK =";DROUND(P/(20*S) ,3) ;" SECONDS"
7430
7440
7450
7460 VIEWPORT 10,120,28,48
7470 WINDOW -P/lO.P.Fmin.Fmax
7480 LINE TYPE 1

7490 CSIZE 2.8
7 500 LORG 2

7510 Flow_cal=(Insp_flow_cal+Expr_flow_cal)/2
7520 IF Flow_cal=0 THEN Bin_zero_flow=2048
7530 AXES P/20,(Fmax-Fmin)/10,0,Bin_zero_flow
7540 IF Flow_cal=0 THEN 7640
7550 Incr=(Fmax-Fmin)/5
7 560 FOR I=Bin_zero_flow TO Fmax STEP Incr ! LABEL Y-COORDINATE AXES (FLOW)
7570 MOVE -P/10,1
7580 LABEL OSING 7100 ;(I-Bin_zero_flow)*Expr_flow_cal
7 590 NEXT I

7600 FOR I=Bin_zero_flow-(Fmax-Fmin)/5 TO Fmin STEP (Fmin-Fmax)/5
7610 MOVE -P/10,1
7620 LABEL OSING 7100 ; (I-Bin_zero_flow)*Insp_flow_cal
7630 NEXT I

7640 LDIR
7650 CSIZE 3.3

7660 LINE TYPE 1

7670 PEN 2

7680 MOVE l,Line3( Start)
7690 FOR I=Start TO End
7700 PLOT I-Start+l,Line3(I)
7710 NEXT I

7720 PEN 1

7730 LINE TYPE 1

7740 CSIZE 2.5

7750
7760
7770
77 80 VIEWPORT 0,120,28,48
7790 WINDOW 0,125,5,30
7 800 MOVE 1,18
7 810 LORG 5

7 820 LDIR , 90

7 830 LABEL "FLOW [L/S]"
7 840

7 850

7860
7 870 VIEWPORT 10,120,52,72

*** LABEL THE FLOW PLOT

*** PLOT THE 02 DATA ARRAY
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7 880 WINDOW -P/10,P,0,Omax
7 890 AXES P/20,0max/10
7 900 LDIR
7910 CSIZE 2.8
7 920 LORG 2

7 930 IF O2_cal=0 THEN 7990

7940 IMAGE Z.DDD.X
7950 FOR I=Omax/5 TO Omax-Omax/5 STEP Omax/5
7960 MOVE -P/10,1
7970 LABEL USING 7 940 ;I*02_cal+01
7 980 NEXT I

7 990 LDIR 90

8000 CSIZE 3.3
8010 LINE TYPE 1

8020 PEN 2

8030 MOVE l,Line2(Start-K)ffset)-02_dc_offset

8040 FOR I=Start TO End-Offset
8050 PLOT I-Start+l,Line2(HOffset)-02_dc_offset
8060 NEXT I

8070 PEN 1

80 80 LINE TYPE 1

8090 !

8100 !*** LABEL THE 02 PLOT
8110 !

8120 VIEWPORT 0,120,52,72
8130 WINDOW 0,125,35,60
8140 MOVE 1,47

8150 LORG 5

8160 CSIZE 2.5

8170 LABEL "FRACTIONAL 02"

8180 MOVE 4,47
8190 LABEL "CONCENTRATION"
8200 LDIR
8210 LORG 6

8220 !

8230 !*** PLOT THE C02 DATA ARRAY
8240 !

8250 VIEWPORT 10,120,76,96
8260 WINDOW -P/10,P,Cmin,Cmax
8270 AXES P/20,(Cmax-Cmin)/10,0,Cmin
82 80 LDIR
8290 CSIZE 2.8
8300 LORG 2

8310 IF Co2_cal=0 THEN 8370
8320 Incr=(Cmax-Cmin)/5
8330 FOR I=Cmin+Incr TO Cmax-Incr STEP Incr
8340 MOVE -P/10,1
8350 LABEL USING 7940 ;(I-Co2_dc_of fset)*Co2_cal
8360 NEXT I

8370 CSIZE 3.3
83 80 LDIR 90

8390 LINE TYPE 1

8400 PEN 2

8410 MOVE l,Linel(Start+Offset)
8420 FOR I=Start TO End-Offset



A14.52

8430 PLOT I-Start+l,Linel(HOffset)
8440 NEXT I

8450 PEN 1

8460 !

8470 !*** LABEL THE CO 2 PLOT
8480 !

8490 VIEWPORT 0,120,76,96
8500 WINDOW 0,125,65,90
8510 LINE TYPE 1

8520 LORG 5

8530 MOVE 1,7 8

8540 CSIZE 2.3
8550 LABEL "FRACTIONAL C02"
8560 MOVE 4,7 8

8570 LABEL "CONCENTRATION"
85 80 Q$=""

8590 !

8600 !*** PUT PEN AWAY AND PAUSE FOR USER TO OBSERVE PLOT
8610 !

8620 PEN
8630 PAUSE
8640 !

8650 !*** ONCE PAUSE IS COMPLETE, PROMPT THE USER FOR REDO OF GRAPHICS
8660 !

8670 GRAPHICS OFF
86 80 Q$=""

8690 BEEP
8700 INPUT "REDO GRAPHICS? (Y/N)",Q$
8710 !

8720 !*** IF DESIRED, GO START PLOTTING SUBROUTINE OVER
8730 !

8740 IF Q$="Y" OR Q$="y" THEN GOTO Dtplot
8750 !

8760 !*** OTHERWISE, RETURN BACK TO BEGIN BREATH-BY-BREATH ANALYSIS
8770 !

87 80 RETURN
8790

8800 !*** SUBROUTINE FOR RETRIEVING FOUR CHANNELS OF BINARY DATA FROM STORAGE
8810

8820

8830

8840

8850 Rtdata: BEEP
8860 INPUT "ENTER THE C02 SIGNAL FILE NAME", CIS
8870 BEEP
8880 INPUT "ENTER THE 02 SIGNAL FILE NAME",0$
8890 BEEP
8900 INPUT "ENTER THE FLOW SIGNAL FILE NAME",V$
8910 BEEP
8920 INPUT "ENTER THE FLOW TEMPERATURE SIGNAL FILE NAME",TS
8930 !

8940 !*** SELECT PROPER MASS STORAGE UNIT AND OPEN THE FILES
8950 !

8960 MASS STORAGE IS ":HP9895,700 ,0"

8970 ASSIGN @Pathl TO Cl$

*** GET THE NAMES OF THE FOUR FILES
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8980

8990

9000

9010
.9020

9030
9040

9050
9060
9070

90 80

9090

9100
,9110

9120
.9130

9140
9150
9160

9170
9180

9190

9200
.9210

9220

9230
.9240

9250
9260

9270
9280

9290

9300
9310
.9320

9330

9340
9350

9360
9370

93 80

.9390

9400

9410
9420

9430
9440

9450
9460

9470
9480

9490

9500
9510
9520

ASSIGN @Path2 TO 0$
ASSIGN @Path3 TO V$
ASSIGN @Path4 TO T$

*** TELL PROGRAM WHEN TO QUIT READING THE FILES

ON END @Pathl GOTO 9160

ON END @Path2 GOTO 9210
ON END @Path3 GOTO 9260
ON END @Path4 GOTO 9310

* READ THE CO 2 DATA FILE

ENTER @Pathl;Cmax,Cmin
ENTER @Pathl;Linel(*)
|

!*** READ THE 02 DATA FILE
!

ENTER @Path2;Omax,Omin
ENTER @Path2;Line2(*)

*** READ THE FLOW DATA FILE

ENTER @Path3;Fmax,Fmin
ENTER @Path3;Line3(*)
!

!*** READ THE TEMPERATURE DATA FILE
I

ENTER @Path4;Tmax,Tmin
ENTER @Path4;Line4(*)

*** SET MASS STORAGE UNIT BACK TO INTERNAL FLOPPY

MASS STORAGE IS ": INTERNAL"

!*** RETURN BACK TO ANALYSIS ROUTINE

RETURN

*** SUBROUTINE FOR RETRIEVING CALIBRATION FACTORS FROM MASS STORAGE

*** GET CALIBRATION FILE NAME AND ASSIGN PROPER MASS STORAGE UNIT

Rtcal: BEEP
INPUT "ENTER CALIBRATION FILE FILENAME", Cal$
MASS STORAGE IS ":HP9895 ,700,0"

*** OPEN CALBRATION FILE AND TELL PROGRAM WHEN TO STOP READING FILE

ASSIGN @Pathl TO Cal$
ON END @Pathl GOTO 9590
|

!*** READ PARAMETERS IN CALIBRATION FILE
!
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9530 ENTER @Pathl ;Co2_dc_offset,02_dc_offset ,Bin_zero_flow,Co2_cal,02_cal
9540 ENTER @Pathl ;Insp_flow_cal,Expr_flow_cal

> Time_delay,S ) 01,Ta,Tb,Tc,Date$
9550 !

9560 !*** SET MASS STORAGE UNIT BACK TO INTERNAL DRIVE AND RETURN BACK TO
9570 !*** ANALYSIS ROUTINE
95 80 !

9590 MASS STORAGE IS ": INTERNAL"
9600 RETURN
9610 !

9620 !*** SUBROUTINE TO DETERMINE MASS SPECTROMETER TIME DELAY ON A BREATH-
9630 !*** BY-BREATH BASIS
9640 !

9650 Bbb_time_delay: Temp_a=A
9660 Temp_z=Z
9670 B=Bin_zero_flow [SET B TO BINARY ZERO FLOW VALUE
96 80 C=Co2_dc_offset !SET C TO BINARY ZERO C02 VALUE
9690 !

9700 !*** BEGINNING AT POINT ON FLOW SIGNAL CORRESPONDING TO ZERO FLOW,
9710 !*** LOCATE PEAK END EXPIRED CO 2 VALUE
9720 !

9730 Hunt_max: Z-A !C02 INDEX CORRESPONDING TO ZERO FLOW
9740 IF No_points-Z<50 THEN Bomb_out IMAKE SURE 150 POINTS FOLLOW ZERO CROS
SING
9750 Co2max=Linel(Z)-C !SET INITIAL C02MAX LEVEL TO FIRST C02 VALUE
9760 Max_index=Z
9770 FOR Wye=Z TO Z+.75*S ! SEARCH AHEAD FOR THE MAX END EXPIRED FC02 VALUE
97 80 IF Linel(Wye)-C>Co2max THEN Max_index=Wye
9790 IF Linel(Wye)-C>Co2max THEN Co2max=Linel(Wye)-C
9800 NEXT Wye
9810 !

9820 !*** FIND THE MIDDLE INDEX (THAT POINT CORRESPONDING TO 50% OF THE MAXIMUM
9830 !*** END EXPIRED CO 2 VALUE)
9840 !

9850 Mid_index=Max_index
9860 FOR Wye=Max_index TO Z+.75*S
9 870 IF Linel(Wye)-C>.5*Co2max THEN Next_wye
9880 Mid_index=Wye ! INDEX OF THE 50% DOWN POINT ON FC02 CURVE
9890 GOTO Set_limits
9900 Next_wye: NEXT Wye
9910 !

9920 !*** FIND THE MINIMUM INDEX (THAT POINT CORRESPONDING TO THE MINIMUM END
9930 !*** EXPIRED C02 VALUE
9940 !

9950 Set_limits: Min_index=Mid_index
9960 Co2min=Linel(Mid_index)-C
9970 FOR Wye=Mid_index TO Mid_index-iMid_index-Max_index
9980 IF Linel(Wye)-C>Co2min THEN Next_y
9990 Min_index=Wye
10000 Co2min=Linel(Wye)-C
10010 Next_y: NEXT Wye
10020 !

10030 !*** INITIALIZE INDEXES FOR START OF INTEGRATION OF C02 SIGNAL
10040 !

10050 Best_match=l.E+50
10060 Beg_pt=Max_index
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10070 End_pt=Min_index
10080 I

10090 !*** EXIT ROUTINE IF ADEQUATE NUMBER OF POINTS DO NOT EXIST
10100 !

10110 IF End_pt>No_points THEN Bomb_out
10120 Beg_intg=Max_index
10130 End_intg=Min_index
1014O !

10150 !*** USE TRAPEZOIDAL RULE TO COMPUTE THE AREA ABOVE AND BELOW THE CURVE
10160 !

10170 New_sum: Asum=0
10180 Bsum=0
10190 !

10200 !*** FIRST, ABOVE THE CURVE, 1/2 OF FIRST AND LAST POINTS
10210 !

10220 Asum=.5*(Co2max-(Linel(Beg_pt)-C))+.5*(Co2max-(Linel(Beg_intg)-C))
10230 FOR Wye=Beg_pt+l TO Beg_intg-1
10240 Asum=Asum+Co2max-(Linel(Wye)-C)
10250 NEXT Wye
10260 !

10270 !*** NEXT, BELOW THE CURVE, 1/2 OF FIRST AND LAST POINTS
10280 !

10290 Bsum=.5*(Linel(Beg_intg)-Co2_dc_offset)+.5*(Linel(End_pt)-Co2_dc_offset)
10300 FOR Wye=Beg_intg+l TO End_pt-1
10310 Bsum=Bsum+Linel(Wye)-Co2_dc_offset
10320 NEXT Wye
10330 !

10340 !*** COMPUTE DIFFERENCE IN THE TWO AREAS
10350 !

10360 Adiff=ABS(Asum-Bsum)
10370 !

103 80 !*** IF AREA DIFFERENCE IS A MINIMUM, REMEMBER THE PROPER INDEX
10390 !

10400 IF Adiff<Best_match THEN Best_index=Beg_intg
10410 IF Adiff<Best_match THEN Best_match=Adiff
10420 !

10430 !*** BUMP THE CENTER INTEGRATION POINT AND GO TRY ANOTHER IF STILL
10440 !*** WITHIN OUTER LIMITS OF INTEGRATION
10450 !

10460 Beg_intg=Beg_intg+l ! IF NOT TO ENDPOINT SHIFT THE CENTER INTGR PONT
10470 IF Beg_intg<=End_intg THEN New_sum ! GO COMPUTE NEW AREAS FOR LIMITS
10480 !

10490 !*** COMPUTE MASS SPECTROMETER TIME DELAY FOR THIS BREATH AND RETURN
10500 !*** BACK TO ANALYSIS ROUTINE WITH VARIABLES UNALTERED.
10510 !

10520 Bomb_out: ! DATA STREAM EXHAUSTED
10530 Time_delay=(Best_index-Z)/S*1000
10540 A=Temp_a
10550 Z=Temp_z
10560 RETURN
10570 END
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ABSTRACT

A complete computer-controlled instrumentation system has

been developed to monitor 0- consumption and CO, production on a

breath-by-breath basis in exercising humans. Using a custom

built data acquisition module, four physiological signals can be

monitored, namely fractional concentrations of C0_ and
2 ,

respiratory flow, and respiratory flow temperature. In addition

to the various transducers necessary to measure the fore

mentioned signals, equipment for calibrating these transducers

have also been integrated into the complete system.

Calibration, instrument control, and data analysis software

has been developed and documented. Using combinations of BASIC,

Pascal, and 68000 assembly language routines, the breath-by-

breath measurement system can be calibrated, data can be taken

and stored in various forms, and ultimately the data can be

analyzed and displayed in both tabular and graphical form.

For system verification, comparisons have been made between

the breath-by-breath system and an end-expired bag collection

technique. Well defined exercise programs were developed and the

test subject was carefully selected so comparison of results from

the two techniques could be made. Results from these experiments

indicate that the breath-by-breath system is as precise and

accurate as the bag collection technique in steady-state

conditions. The breath-by-breath system has the added advantage

of being able to analyze transient respiratory phenomena.


