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Chapter J, : Introduction

"Much ado about nothing"

-Shakespeare

An increasing concern in relational database

theory is that of retaining representational con-

sistency while allowing additional semantic representa-

tion. A developed relational schema will not accept

information that does not completely adhere to the

preconceived structure. Therefore, incomplete sets of

information may not be stored, and subsequently are not

available for processing.

One proposed method for dealing with this problem

is the extension of the relational model with the

inclusion of nulls as valid storable and processable

values. A null value is defined as a value which is

incompletely specified or in some manner unknown or

inconsistent. A report released by ANSI/X3/SPARC lists

fourteen manifestations of nulls (see appendix a).

This list can be generally categorized as three dis-

tinct types of nulls: unknown values, incomplete or

inconsistent values, and values resulting from process-

ing one of the previously mentioned types of null (the

fourteenth manifestation).

Allowing representation of nulls is an important

- 1



issue in modeling possible real-world situations where

unavailable information can prevent inclusion of

related data in all processing. The artificial intel-

ligence community has long recognized the need for more

fully representing the semantic aspects of stored

information. It is apparent that the constraints of

representation imposed by normalization of relations

severely limit the semantic flexibility of the rela-

tional database model.

The purpose of this study of nulls is to propose a

method with which to represent incomplete or partial

knowledge within the structure of the relational data-

base model. The definition of a sound set of basic

relational operations to apply to these relations

allowing the presence of nulls is necessary to preserve

the underlying integrity of the database. Allowing

processing of relations containing partial or unknown

information can also be of use in deriving inferential

knowledge about such information.

Review of Literature

The scope of the research conducted includes

several approaches to the solution of the problem of

dealing with null values. Four principle categories

are discussed: first order (predicate) logic, fuzzy
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logic and non-monotonio reasoning, knowledge represen-

tation from the artificial intelligence viewpoint, and

various relational algebras from relational database

theory. The logicians are concerned with n-valued log-

ics, partial order lattices, and proofs of representa-

tions of systems. Fuzzy logic approaches the problem

from the aspect of inference, circumscription and non-

monotonic reasoning, and domain sets. Artificial

intelligence views deal with human inference, default

reasoning, knowledge bases, and the constraints neces-

sary to model the semantics of such systems. The rela-

tional algebras developed for null values include such

varied representation methods as range domains, sets,

and logical quantifiers. Database systems with no

nulls, nulls representing unknown values, and marked

nulls are discussed. These various approaches are out-

lined in the following section.

Fir3t- 0rder Predicate Lfigic

One of the views coming from the field of logic is

that a three-valued logic must be defined to deal with

an unknown truth value. A method introduced by Col-

merauer [Col81], in a paper dealing with knowledge

representation, transforms a complete three-valued

logic into a corresponding two-valued logic. The notion

of presupposition, which is necessary for natural

- 3



language processing, is supported in this view. Asser-

tions are defined to contain two properties, and the

resulting logic system is interpreted using the presup-

position property.

Vassiliou [Vas79] abandons classical two-valued

logic for what he considers a more appropriate n-valued

logic (modal logic) to allow representations of nulls.

He suggests redefinition of the interpretation of func-

tional dependencies along with the requirements of

satisfiability of inference rules. He also describes a

many- valued logic approach with examples using denota-

tional semantic interpretations to better understand

the problems of dealing with null values [Vas80].

Jaegermann, in a two part discussion of informa-

tion storage and retrieval systems with incomplete

information [ Jae78, Jae79] , has developed a theoretical

system incorporating descriptor algebras. These turn

out to be pseudo-Boolean algebras forming a lattice of

the describable sets of a given system.

Fuzzy Logic

The developing area of logic dealing with fuzzi-

ness of classification, known as fuzzy logic, was

investigated. The focus of the papers from this area

[Dav80,McC80,McD80] is on non-monotonic reasoning.
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Circumscription, a form of this reasoning, is discussed

as a method of allowing a formalized rule of conjecture

to be U3ed with the rules of inference of first order

logic. Nonmonotonic logic deals with a system in which

new axioms can invalidate previous theorems. Processes

acting in the presence of incomplete information must

possibly revise asumptions based on new observations.

Buckles [Buc82] presents a structure for

representing inexact information in a relational data-

base. He describes a fuzzy relational algebra as a

special case of ordinary relational algebra. As

equivalence is based on identity in normal relational

theory, a weakening of dependence on this equivalence

is necessary to allow manipulation of stored fuzzy

relations.

Buell [Bue82] discusses fuzzy subset theory as it

relates to information processing. His fundamental

concern is that of the underlying lattice structure of

a fuzzy subset.

Zadeh [Zad83] asserts that fuzzy reasoning allows

fuzzy concepts such as "most", "many", "infrequently",

and "about" to be modeled. Applicable mainly to rule-

based expert systems design, fuzzy logic subsumes both

predicate logic and probability theory.

Lipski [Lip79] states that fuzzy sets are not



applicable to this study, as the information is not

inherently fuzzy, only incomplete (see Relational Al-

gebras).

Artificial Intelligence Approaches

Artificial intelligence-based approaches are con-

cerned with the semantically correct interpretation of

information. Levesque [Lev81] presents a discussion on

the interaction between an expert system and its

knowledge base which contains incomplete information.

He describes special expressive requirements necessary

for the representation of incomplete information.

Gaines [Gai81] is concerned with the type of

real-world information which can be represented only in

softer terms than are currently in use. Data which is

imprecise, dynamic, or redundant can not be incor-

porated into relational database systems unless a

many-valued logic is used to determine the correct

interpretation. He also attempts to model degrees of

imprecision of data.

In a discussion of human inferential processing,

Collins [C0I75] suggests that added knowledge can

increase uncertainty in some cases, thus invalidating

the uniqueness assumption, and forcing the use of some

default assumption. Lack of knowledge assumptions are

also discussed. Functional inferences can aid



reasoning in the face of incomplete knowledge.

Reiter [Rei78,Rei81 ] presents a proof theoretic

view of a relational database developed from a model

theoretic representation. He examines the inclusion of

nulls, integrity constraints, and conceptual modeling

in terms of real-world semantics. He covers methods of

using default reasoning to obtain semantically correct

results from database query evaluations. To produce a

proof of his model-theoretic database, Reiter must take

a closed world view of the information his model

represents. Every aspect of the model has a finite

representability which enables his proof- theoretic

model derivation.

Winograd [WinSO] states that common sense reason-

ing differs from formal mathematical logic in the need

to draw conclusions from partial information. Such

reasoning is termed non-monotonic. His desire is to

develop inferential systems which are efficient and are

able to do plausible reasoning. He discusses such

related issues as resource limitation and ordering of

inferential processing.

RelatjonaJ, Algebras

Some background material from relational database

theory was found to be of help. Codd's [CodY5]



original three-valued logic for null values is evi-

dently one of the first attempts to define a represen-

tation to be used in database systems. Fagin [Fag82]

finds that multivalued dependencies can be represented

as simpler functional dependencies with a constraining

join dependency, which would allow existing dependency

theory to be more flexible in terms of representing

nulls. Rissanen [Ris77] introduces the notion of

attribute independence which aids in the definition of

relations allowing null valued attributes.

Many of the interpretations of null values rely

upon the underlying view taken of the stored informa-

tion. Internal and external interpretations differ

slightly in various models and so must be taken into

account. In general, the external interpretation views

the information in terms of the "real world," every

possible information content the database could have.

This interpretation is the "open world" view. The

internal interpretation, on the other hand, must deal

with information in the context of only what the data-

base knows of the world—not reality itself, but only a

restricted knowledge of reality. This is a "closed

world" view, in which information not present is con-

sidered to be false information.

Much of the literature dealing with various

attempts to represent null values for use in relational



databases includes descriptions of operations for these

representations. There are several authors who have

conducted research in this area, producing a series of

articles dealing with their findings.

Codd introduces a null substitution principle and

maybe operations [Cod75] , in a discussion of relations.

In a later paper, [Cod79] , he extends the relational

model with the inclusion of nulls to improve the seman-

tics of the model. He speaks of atomic and molecular

semantics, and attempts to generally improve semantic

representation by defining the semantic aspects of

relationships with the use of property-relations. He

also models associations, generalizations, and event

precedence with these definitions.

Grant's series of articles [Gra77,Gra79,Gra80]

begins with a note on the inconsistency of Codd's maybe

operations. He goes on to describe a method of

representing partial values as ranges or sets of possi-

ble values. Descriptions of various relational algebra

operations are given. He also covers the notion of

functional dependencies for partial values. His opera-

tional definitions rely on the introduction of a

may be- eq ual ity

.

Biskup uses the existential quantifier to

represent null or incompletely known values in database

relations [Bis8l]. His view is that a relational tuple



denotes a statement of predicate logic. He also incor-

porates the universal quantifier to reduce redundancy.

Using these quantified variables, Biskup extends the

basic relational algebraic operations to relations with

null values. The actual range of values is not used to

infer information. Marked existential quantifiers may

allow the inference of more information. In a later

paper [Bis83], he uses classical notions of predicate

logic to elaborate Codd's maybe tuples, and Reiter's

closed world concept. In this paper, he introduces the

"appropriate scheme assumption", which can describe an

appropriate state of reality for which information is

incomplete. This assumption is simply that the chosen

scheme is an appropriate representation of the modeled

world. This, in turn, leads to an "incomplete informa-

tion assumption", which means that the modeled world is

not completely specified—an open world view. This is

used to develop a model of a system containing incom-

plete information, using sets to deal with redundancy

and duplicate removal (comparison of information con-

tent). Included are algorithms for computing these

extended operations.

Lipski investigates incomplete information systems

by defining objects with properties which coincides

with a "description language." His tools are mainly

those of logic. This system is modeled in terms of

equivalence classes. He introduces additive and
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multiplicative normal form to be used in determining

this equivalence. These forms, respectively, are con-

junctive and disjunctive forms of queries and are

further defined in chapter two. Incomplete information

(Codd's description) is extended to the case when the

subset representing this information is the whole

domain [Lip79]. In this paper, a simple query language

is introduced which emphasizes the distinction between

the external and internal interpretation of informa-

tion. Equivalent transformation of queries is discussed

to provide the semantically correct evaluation of

queries. Similar issues are presented in yet another

paper [Lip81], with the introduction of a complete

axiom system for internally equivalent transformation

of terms, and a method for computing the internal

interpretation of arbitrary terms and a broad class of

formulas. These algorithms may be exponential in the

worse case, but are of practical use in evaluating

real-world queries. This later approach deals mainly

with topological algebras.

Imielinski and Lipski discuss null values in the

context of semantically correct processing. This

approach is similar to the external interpretations and

lower values defined in [Lip79]. A later paper intro-

duces two semantically meaningful extensions for opera-

tions on tables with nulls of various kinds. One is

based on Codd's usual nulls, and the second is based on

11



marked nulls. Marked nulls incorporate a scheme to

differentiate one null from another. In this way, a

null value in one relation can be associated with a

null value in another relation, in the situation where

they actually represent the same partially known infor-

mation. A third theoretical system which can handle

difference operations under a closed world assumption,

is based on a device called a conditional table. It is

mainly of interest in the proof of correctness of the

second system mentioned. Definitions of Codd's multit-

ables, representational equivalence, and valuation

tables are developed. Representational equivalence

concerns the manner in which the equivalence of nulls

in different tuples can be determined. A valuation

table is a relational table in which all nulls are

replaced by variables, a variation on the marked null.

A conditional table is an extension of a valuation

table, by specifying conditions associated with each

null present. In a later paper, the influence of

dependencies on the processing of tables with null

values is examined [Imi83].

Many sources offered suggestions for representa-

tions of nulls, or possible extensions which can be

incorporated into already existing theories. Bowers

[Bow84] suggests a method for storing aggregate-

incomplete data, and reconciling these with the set of

non-null data values. Wong [Won82] uses statistical

- 12 -



properties in an attempt to deduce some knowledge from

null values.

Goldstein [Gol81] deals with constraints on the

appearance of null values which denote missing values,

and are termed disjunctive existence constraints. He

attempts to show that no set of disjunctive existence

constraints will properly model all constraints unless

the universal instance assumption is in effect.

Lien [Lie79] considers null values in the frame-

work of multi-valued dependencies, which affect the

treatment of such values during processing. He demon-

strates that multi-valued dependencies can be modified

to allow inclusion of nulls in the universal relation.

Osborn [0sb8l] presents algorithms which perform

insertions in a multirelation database allowing no

nulls, marked nulls, or unmarked nulls. The conclusion

reached is in terms of the tradeoff between a universal

instance with no nulls, which allows less data to be

stored, and a universal instance with marked nulls,

which is more costly to maintain.

Sagiv [Sag81] states that with a pure universal

instance assumption, nulls must be allowed. He allows

for a universal relation scheme, defining a representa-

tive instance to determine if the functional dependen-

cies are satisfied by the database. Null values exist

13 -



only in the representative instance in this case. A

modified foreign-key constraint is proposed as a possi-

ble guarantee of lossless joins. Join dependencies are

considered with respect to null values.

Seiore [Sci81] deals mainly with placeholder

nulls. He considers an open world assumption necessary

for a missing value-type null, and a closed world

assumption sufficient for a non-existant value null.

In his representation, an object is a means of specify-

ing which tuples (or portions of tuples) in a universal

relation correspond to facts. The facts known about

the world being modeled determine the allowable pat-

terns of null values. The set of objects are seen as

the semantic constraints on the representation. He

assumes that the null set is always present as an

object. His approach allows subsumption among tuples.

Vassiliou [Vas79] extends functional dependency to

apply to missing value nulls. Operations on domains

including these nulls exhibit different behaviors and

must therefore be examined. He suggests the substitu-

tion of values from the domain to test for incon-

sistency or contradiction. He also describes a many-

valued logic approach with examples using denotational

semantics to interpret the problems stemming from the

inclusion of null values [Vas80]. Treating queries as

continuous functions, he presents an algorithm for

14



evaluation of simple queries to illustrate these

acceptable semantic interpretations.

Siklossy [Sik8l] describes an efficient algorithm

for query evaluation which requires no Boolean normali-

zation nor case analysis and value substitution for

missing values. This algorithm, adapted from

Vassiliou's, does not compute principal normal forms,

and substitutes primitive terms for query simplifica-

tion.

Zaniolo [Zan82] uses a "no information" null

value, which leads to null tuples and extended rela-

tions in the representation of relations containing

these nulls.

The Areas of Needed Research

Many of the authors discussed various topics which

they feel require more extensive study. These topics

deal mainly with continuations of the particular

viewpoint of the author in question. All of the

suggestions are related to the semantic interpretation

of queries on databases with incomplete information.

Buckles speaks of the need for developing a

nonprocedural query language, to allow a more effective

interface between a user and a database which contains

15



imprecise data. Along these same lines, he suggests

the personalization of query responses, dependent upon

the access view of the user. A database which

currently supports "views" should easily accomodate

such an addition, if the interpretation of incomplete

information is sound. Buckles also believes more study

should be directed toward the area of fuzzy functional

dependencies between domains. McDermott suggests a

study on the relationship between the logic of non-

monotonic reasoning and that of incomplete information.

Imielinski is concerned that functional dependen-

cies require special consideration when null values are

allowed. Further investigation involving the inclusion

of nulls in specified fields (e.g., null key attribute

values) is suggested. Sagiv believes that functional

dependencies can by correctly dealt with by adding an

extended join dependency, to correctly interpret a

representative instance of a database. Osborn feels

that some reasonable restrictions on functional depen-

dencies would yield more efficient algorithms for

evaluation of queries.

Several authors discussed the availability of a

limited amount of knowledge which may be inferred from

partial information. Wong believes that the possibil-

ity of using inconsistent information will result from

finding a reliable method of representing such nulls.

16



Winograd sees memory representation and accessing stra-

tegies as the key in finding useful formal characteri-

zations of non-deductive inference modes. Biskup

introduces the possibility of using indexed null3

(modified from the use of Skolem constants for index-

ing) to allow inference to be taken from incomplete

information. He notes that a difficulty which may

arise from this is the introduction of functionalities

which are nonexistant. Another problem is related to

the operations of difference and division, where nega-

tive information is required. His assumptions of

knowledge concerning this negative information are too

weak to preserve the image of the relation.

Lipski mentions the need to investigate the logic

involved in the internal interpretation of formulas

contained in queries. He questions the decidability of

the logic of molecular formulas, because he sees a need

to develop a simple axiom system for such a logic.

Vassiliou feels that a 3tudy of the semantics of

acquisition of information by a database is necessary.

He speaks of internal acquisition as the non-ambiguous

substitution of null values, and external acquisition

as modification operations specified by users of the

database. Siklossy sites the need to investigate proof

procedure computation versus case analysis computation

in particular domains to insure semantically correct

and efficient processing.

- 17 -



Proposed Area of Study

Although many algebras for dealing with relations

containing incomplete information have been developed,

there is still a need to examine some set of algebraic

operations from the standpoint of the internal

interpretation of the operations. This internal

interpretation is the actual semantic meaning given to

the information and determines how that information is

used in the processing of a query on a given instance

of a database. If the differing interpretations of

these values can be brought more closely in line with

each other, the difficulty of finding a correct method

of processing will diminish.

After examining the existing algebras, and their

semantic interpretations, which have been found in the

literature, a set of sound operations is proposed.

These may be applied to a relational database to allow

null values representing incomplete information. These

operations will allow the semantically correct evalua-

tion of these specifically defined null values, omega-1

and omega-2. This will be of use in the development of

a relational database which will accept partial infor-

mation for storage, and incorporate this incomplete

data in the evaluation of queries. In addition, it

appears that the inclusion of partial information could

be of great importance in the modeling of realistic



situations where response to query evaluation deter-

mines future action. In particular, a decision support

system which relies on uncertain information to produce

evaluations would benefit from the ability to represent

and process uncertain information in a well-defined

manner.
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Chapter JJho : Dealing with Hull Values

The fact that so many types of nulls have been

distinguished, and the amount of existing research in

the area of representing nulls, gives the impression

that little is left to be done. Various problems still

exist. Actually, although much has been written about

the problem, no concrete solutions have been developed

for the many problems of representing nulls for use in

the retrieval of data from databases. This stems from

the different approaches which can be seen in the

literature. Much research is shown to be so computa-

tionally complex that it is only of theoretical value.

Similarly, the simpler representations exhibit complex-

ity and ambiguity regarding interpretation.

One reason for the distinct differences in

approaching the problem of nulls is the view of the

modeled world that the database designer choses. The

open world view demands the allowance of null values.

If this view is adopted, the known states are finite,

yet may be incomplete, thus allowing inapplicable or

unknown values to be represented. The closed world

view is more restricted in that its knowledge is com-

plete, and therefore its states are infinite. This

view lends itself to a more restricted modeling of the

- 20



world, with results which can be anticipated and

strictly proven. These differing views have lead to the

development of various suggested representations and

algebras to deal with null values. The more prominent

ones are discussed in the following sections.

Existing Algebras

The studies which have been conducted previously

may be approximately ordered in terms of existence and

influence on subsequent research. Codd's introduc-

tion of three-valued logic to deal with null values

in relational tables is apparently the first published

effort in this area. However, Jaegermann was working

with incomplete information systems in approximately

the same time frame. Subsequent research from

these introductory studies can be split into two dis-

tinct approaches.

Biskup and Grant have built their work upon

Codd's foundation. Lipski, initially alone, and a bit

later, with Imielinski, adopted Jaegermann 1 s study as

the supporting background for their work. Vassiliou

follows this second approach, but leans more toward

defining the underlying semantics, rather than

attempting to define an algebraic approach to

relational operations. His reasoning for this approach

- 21



is that the semantic interpretation of the incomplete

information should determine the way in which the

information is processed.

The two approaches can be compared in many

respects, yet each retains a distinct methodol-

ogy which demands investigation as to compati-

bility with the other. A brief synopsis of the

works of Codd, Biskup, Grant, Imielinski, Lipski, and

Vassiliou is presented in the following sections, to

provide insight as a base from which a further study

may be conducted.

Codd 's Original Work

Codd uses the null value exclusively as a place-

holder null, i. e. , value at present unknown. He

defines a null substitution principle which simply

states that the null may take on a value in a finitely

restricted attribute domain. This principle is used

in determining results of comparisons between null

and non-null values in the database. Codd's truth

tables are shown in Figure 2.1. [Cod75] An example of

the join operation is shown in Figure 2.2. The maybe

join is symbolized by "=g n
.
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ANDl T F g !

T 1 T F § !

F ! F F F !

i ! 1 F g !

OR ! T F g !

T 1 T T T !

F ! T F @ !

§ 1
T 1 e !

g unknown

NOT | = g

Figure 2.1. Codd's truth tables
for the omega null.

R S

A B C

u a 1

g 2 2

w 1

R[B=C]S R[B=gC]S

ABC ABC
§22 u g I

u g 2

g 2 g

w 1 g

Figure 2.2. True and Maybe theta join.

His approach has been highly criticized because the

three-valued logic presented has been found to be

non- truth functional. (Refer to the next section.)

In a later paper, he has introduced special

objects, as sets of n-ary relations, and the algebraic
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operations on these sets. For example, an entity

relation would list all the entities of one type that

currently are contained in the database; a property

graph relation contains property types associated with

entity relations. He forms a graphic depiction of

relations of entities, properties of entities,

and associations of entities, which creates a domain

object upon which to operate. These objects make up

the model of the database.

Codd lists four personalities which a data model

should have if it is to capture more semantic meaning :

tabular, set-theoretic, inferential string-formula, and

graph-theoretic. The tabular form is for display pur-

poses. The set-theoretic view allows search without

navigation. Inferential techniques may be applied

using the third personality, which is modern predicate

logic. The graphic view is useful for development and

maintenance.

A Different View of Codd 's Work bv Grant

Grant is one of the first to point out the previ-

ous problem with Codd's methodology, and seeks a

solution in a slightly different representation.

Codd's truth-value evaluation fails to retrieve a tuple

containing a null value when a query contains mutually

- 24 -



exclusive terms dealing with that attribute. For exam-

ple, if a tuple contains a null value for the attribute

Status, and a retrieval is attempted with a disjunctive

expression containing the condition (Status = 2) and

another with NOT(Status = 2), a tuple that meets all

other criteria for retrieval will not be found in the

result returned.

In a series of papers concerning incomplete

information in databases, he introduces concepts

which he feels deal more correctly with the evaluation

of this information. Grant's model consists of nona-

tomic data values, restricted to finite ranges of

domain values. In his approach, null values may be

properly replaced with an actual range which is

defined for the given domain by integrity con-

straints. His evaluation of the null value in process-

ing exhibits the following behavior: a true result

is returned if the predicate is true for all proper

substitutions, and a maybe result is returned if the

predicate is true for at least one proper substitu-

tion. This leads to a definition of true equality and

maybe equality. He introduces three notions of

operations which might be applied to his

representation— set theoretic, true, and maybe

versions. His true intersection operation, for example,

omits all finite range entries, while the maybe inter-

section deals with these ranges, selecting entries for
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which the ranges overlap even slightly. Figure 2.3b

shows an example of a true selection compared with a

maybe selection, and the way in which the finite ranges

are interpreted for this operation. [Gra80]

EMPLOYEE

I Etf ! EAGE ! ESALARY

1109 I 35 1(15000,18000)

!

1123 1(30,40)! null I

1250 ! null | 20000 |

1300 ! 49 ! 25000 I

Figure 2.3a. Grant's nonatomic data items.

Query: Select Employee where
Eage > 33 and Esalary > 19000

True Selection Maybe Selection

300 I 49 ! 25000 123 1(30,40)! null
250 ! null | 20000

300 I 49 ! 25000

Figure 2.3b. Grant's True and Maybe Selection

Grant also takes into account the generalization

of functional dependencies which is necessary for the

partial information model with which he is working. He

shows that decomposition can be done for tables with

these partial values. The following definitions illus-

trate the interaction of Grant's range values with
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functional dependencies. [Gra79]

V is a table with columns A and B, r1 and r2
are arbitrary rows of V with values a1 , a2
for A and t>1, b2 for B respectively. For any
two rows of V either a1 = a2 or not(a1 =m
a2).

(1) A ~>1 B if : A and B have single
entries only and if a1=a2 then b1=b2.

(ii) A —>2 B if : A has single entries only
and if a1=a2, then b1=b2.

(iii) A —>3 B if : B has single entries only
and if a1=a2, then b1=b2.

Civ) A —>4 B if : if a1=a2, then b1=b2.

Grant also shows, in a third paper, a method of allow-

ing substring predicates to define partial character

strings. His representation no longer views elements

as non-decomposable.

Biskup 's Algebra

Biskup relies upon logical quantifiers to give

meaning to the two types of nulls under study. The

existential quantifier "J" is used to denote missing

information; a value exists, but is unknown. The

universal quantifier "¥" is used to represent the fact

that for all values in the domain, the information in

question is valid. This is of use in removing redun-

dancy from a relation. The quantifiers are added to
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the set of regular values allowed for attributes. A

value-relation is necessary for this representation

(see Figure 2.1), adding a range declaration for

every relation.

B

I i !
a2| a3

I

I all I | V !

! 32! 31 1 a2!

with {a1 ,a2,a3,a4) as
the vslue-relstion

Figure 2.4. Biskup 1 s logical quantifiers.

He defines a partial ordering relation as an

equivalence relation which is developed for computa-

tional reasons. Redundancy is eliminated by using

this equivalence relation which is induced by the par-

tial ordering. Informstion viewed in this msnner

forms s distributive lattice.

In a subsequent psper, Biskup introduces dif-

ferent rules for data extraction, by defining a

three-valued logic, and for duplicate removal, consid-

ering one null the sajne ss sny other. Biskup notes

thst when computing a representstive relstion (remo-

val of redundant tuples), it is possible to lose
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information concerning ranges. His method for dealing

with comparisons of tuples is shown in Figure 2.5.

v(D)

V(C)
i 1 known value

!

! V

i -
1 — 1 +v(D) <— }

known
value

lif v(C)=

! v(D):-
|if v(C)=

1 v(D):+

! +v(D) <~v(C)

V ! + v(C)
<- 1

1+ v(C)

: <— v(d)
1 unknown range:

!+ v(C) <—
! v(D) <~ }

!

I I ! range defined:

I I |+ for all x in
| I irange, v(C)

I I
!<—v(D)<— x

no contribution is indicated by "-"

modification is indicated by "+"

Figure 2.5. Biskup's table for
tuple comparison.

He extends the relational table to include a

two-valued tag field, which he calls "Status", to

be stored with every internal tuple. Status may be

either definite or maybe, and is used to determine the

way in which a tuple is processed in any of the basic

operations. A tuple with a definite status expresses a

statement which is true of the model. Further, any

tuple of the model is obtainable from a stored

definite tuple via substitution. Biskup requires
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that a weak minimality must be somehow related to the

internal representation of a relation, thus preventing

totally unrelated tuples to be stored. An example of

his tables and his extended natural join is shown in

Figure 2.6. [Bis83] A Status of "D" means that the

information contained in the tuple is completely known;

a Status of "M" signifies incomplete information.

R S

ABC Status BCD Status

abcD bcdD§0c D e g d D

R|X|S

ABCD Status

abed D

§ b c d M
§ e c d M

Figure 2.6. Biskup's relations with
Status attribute.

Concerning information content, Biskup

defines equivalence with the notion of weaker and

strictly weaker orderings. Redundancy may be m-

redundant, md-redundant, or strongly m-redundant.

A formal definition of these term follows:
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For a given tuple r, and element of an inter-
nal relation R:

r is m- redundant in R, iff r is an element of
the set of maybe tuples of R, and there
exists a tuple s, not equal to r and weaker
than r.

r is md-redundant in R, iff r is an element
of the set of definite tuples of R, and there
exists tuple s in R, and a definite tuple t

in R, such that r is not equal to s or t, and

s is weaker than r, and r is weaker than t.

r is strongly md-redundant in R, iff r is
md-redundant in R, and there exists an attri-
bute A in R such that s(A) is not equal to

r(A).

His relational algebra operations are proven to be

restricted and adequate. [Bis83]

The Second Approach to Representing Hulls

Lipski is responsible for the underlying

study which has influenced both Imielinski and

Vassiliou. His mathematical theory is intended as a

logical background for studying the problems connected

with incomplete information. He views an informa-

tion system much as Jaegermann, in that the system

stores information (which may be incomplete) concern-

ing properties of some objects. These objects are

mapped, in an incomplete way, into the system. He

states that the representation of partial information
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is not expressible in an approach based only on null

values. Two extremes of representation are available

with this self- limiting approach— either everything is

known or nothing is known.

To allow incomplete knowledge to be represented,

the value of an attribute for any particular object

must be represented as a function. For a distinct

attribute value to be known, a function must be

defined from an object (defined in terms of attribute

domains) to the specific attribute. A partial

ordering of values may result in a complete exten-

sion, termed a completion.

One of Lipski's main concerns is the difference

between the external and internal interpretation of the

system's information about the world. A database itself

has two conceptual interpretations. All of the infor-

mation which is actually contained in the database, and

its meaning concerning the world the database models,

comprises the internal interpretation of the database.

The external interpretation is the real world modeled

by the system in an incomplete way. It is obvious that

these two interpretations could differ widely. For

example, a system contains information concerning

objects a, b, c, and d, and the set of objects known to

be red consists of object a, while the set of objects

known not to be red is only d. It is not known whether
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or not b and c are red. The external interpretation of

a query concerning red objects must deal with the set

of all objects which are in reality red— {a}, {a, b}

,

{a, c} , or {a, b, c} . But the system does not contain

sufficient information to exactly determine this set.

The lower bound on a query "red" is {a} which must be

contained in the external interpretation. The upper

bound is {a, b, c} , and this set can not be ruled out

as possibly belonging to the external interpretation of

the query. [Lip79]

LipsldL introduces a method for establishing a

query language which takes into account the inter-

nal interpretation of the information available.

This two level language is made up of terms, which

are subsets of the set of objects, and formulas,

which are built from terms and express some fact con-

cerning the system. The value of a query in a com-

plete system may differ from the value when the

internal interpretation is taken into account. The

internal interpretation of a query is equal to the

external only when the bounds of the complete system

are explicitly known. The following example illustrates

the difference between the two interpretations.

[Lip79]

- 33



Assume the information:
possibly white objects a, b, e, d

possibly black objects c, d, e, f

possibly red objects b, c, f, g

The interpretation of "White OR Black" is:

{a, d, e} external GLB
{a, b, c, d, e, f} external LUB
{a, e} internal

where GLB = greatest lower bound
LOB = least upper bound

Primitive terms are defined as products of values

from a given attribute domain. Coprimitive terms are

summations of values. Primitive and coprimitive terms

are used to arrive at additive (summations of

primitive terms) and multiplicative (products of

coprimitive terms) normal form. He presents a method

for constructing these forms from queries. [Lip79]

Below, an example of the forms is shown.

For the following query:

<Dept# in (2,3)> *

-<Sal < 10000> »

<Hireyear > 72> +

<Age > 50> • <Sal < 15000>

Figure 2.7a. Example query.
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Multiplicative Normal Form

(<Dept# in (2,3)>) *

(<Hireyear in (70,71,72)>
+ <Sal >= 10000>) »

(<Age <= 50> + <Sal >= 15000>)

Figure 2.7b. Lipski's MNF.

Additive Normal Form

<Age <= 50> » <Dept# in (2,3)>
» <Sal >= 10000> + <Dept# in

(2,3)> * <Sal >= 15000> +

<Age <= 50> * <Dept# in (2,3)>
* <Hireyear in (70,71,72)> +

<Dept# in (2,3)> * <Hireyear in

(70,71,72)> * <Sal >= 15000>

Figure 2.7o. Lipski's ANF.

Transformation of queries into either of these normal

forms is complicated by the classical problem of

the minimization of boolean functions. Lipski adds

two operators to allow for the possibility of incom-

plete information. Surely and possibly operators,

respectively, represent the least upper bound and the

greatest lower bound of the available information.

Lipski also notes that if intervals are allowed, some

classes of information are not representable.

Lipski continues with his investigation to find

that internal equivalence is decidably stronger than

external equivalence. His theory is further refined to
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show that a topological Boolean algebra has an

analagous role with respect to the Internal interpreta-

tion as that of a Boolean algebra with respect to an

external interpretation. By indirectly defining inter-

nal properties of objects, possible processes of

increasing knowledge may be specified. A system of dis-

tinct representatives may be formed, which provides a

possible completion of the information concerning

objects which result in a true value for a given for-

mula.

Special terms are defined as the internal

interpretation of terms including a broader class of

terms containing a new unary operator, "surely". These

special terms allow weak additive and weak multiplica-

tive normal forms. Special formulas are finite dis-

junctions of elementary formulas and are similarly

defined by Special Disjunctive Normal Form. SDNF is

achieved by transforming a formula into its externally

equivalent form from either the ANF or MNF of the

query.

In Lipski's most recent effort, he studies the

interaction of dependencies with null values. He uses

the well known chase procedure to transform dependency

information for a table into an equivalent table with

null values. With arbitrary implicational dependen-

cies, the transformation is not quite equivalent, but
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using only the operations of projection, positive

selection, union, natural join, and renaming of attri-

butes, any corruption introduced in not detected in the

result of the query.

Extensions of Lipski 's Theory

Imielinski, with Lipaki, attempts to define pre-

cise conditions for meaningful extensions to operations

for tables containing null values. He shows the result

of Codd's null in projection and selection, and a

marked null used in projection, positive selection,

union, and renaming of attributes. No form of the

universal relation assumption is required for these

operations.

Imielinski formulates conditions to be embodied

into the definition of a representation system. He

introduces Codd tables, Valuation tables, and finally,

Conditional tables. Codd tables are the usual rela-

tional tableau which contain omega to represent a null

value. The Valuation table is simply a Codd table in

which any occurrence of a null may be replaced with a

variable, the same variable being used for a specific

attribute. Conditional tables are Valuation tables

with an added attribute, a condition (reminiscent of

Biskup's status attribute) which may be used to con-
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strain the values in the tuple. An example of a condi-

tional table is given in Figure 2.8.

: a B r cond |

!
a b z (BrfO) !

!
a y (y*b)

!

1 x b (x/a)
!

Figure 2.8. Imiel inski ' s Conditional table.

These representations are intended to enable correct

evaluation of relational expressions, instead of single

operations.

A Denotational Semantics Approach

Vassiliou defines two specific nulls, omega, inap-

plicable, and theta, missing, in his approach. He

views the information in a database as a finite approx-

imation of the real world, which requires infinite

information for complete modeling. The only way to

model this infinite information is to allow an incon-

sistent object (one which cannot be represented in a

finite way) . Functional extensions between domains are

defined such that they are continuous. It is also

noted that the evaluation is very inefficient. Query
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evaluation is defined in terms of these continuous

functions between data types.

The system is viewed as a lattice with top,

representing the placeholder null, nothing is known,

and bottom, representing the inapplicable null, value

missing. In all domains, all other elements are

equally accurate, producing a flat lattice. Query

transformation is simply symbolic manipulation into

suitable forms for evaluation. The disadvantage in

this representation is that any algorithm must deal

with normal forms of a length that is exponential in

comparison to the number of primitive terms.

A later study by Vassiliou extends functional

dependency theory to handle nulls. Data dependencies

are purely syntactic notions introduced to capture

semantic information in a relational database, predi-

cates on instances of the set of relations. A null

equality constraint is introduced which determines

equivalence classes for null values. This constraint

states simply that two null values must take on the

same value in any substitution. This leads to the fact

that if the evaluation of a function (operation on a

domain) returns the same results with different substi-

tutions, the incomplete information is not essential

for the evaluation. He gives an example in which the

functional dependencies are not satisfied because of a
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null value. The following relation with nulla illus-

trates how a tuple might violate a functional depen-

dency. The FD for the relation R(ABC) is AB—>C.

R

A B c

=1 b1 _

a2 b2 c2

a3 - c3

a1 b1 02

Figure 2.9. Vaasiliou's placeholder null.

It is apparent that the first tuple in R is in viola-

tion of the functional dependency AB— >C because the

fourth tuple contains no nulls and is the same fop

attributes A and B as the first tuple. Therefore, the

first tuple must not be contained in R.

Vassillou takes the view that databases are often

overoonstrained because incomplete information is not

allowed to exist in the system. He feels that the

notion of weak satisfiability and allowing nulls will

enable a weaker set of constraints to be valid in more

instances, while still retaining semantic integrity.

- 40



Areas of Further Research

Biskup lists the following problems which he feels

are still open and in need of further research [Bis83]:

CD A clear formal semantic of the null value is missing.

(2) In the absence of a formal semantic, the meaning of
updating operations involving null values is not
investigated.

(3) There is no common basis for the two different rules
for processing nulls.

(4) There are some arbitrary choices in using one of the
rules for a specific task.

(5) Justification of these rules on the basis of
intuitive appeal and in the context of application-
verifiable assumptions is missing.

(6) There is no justification, except feasibility, for
considering nulls only locally, on the level of
tuples.

(7) There is no analysis of whether the proposals are
"best" in some sense.

(8) Although difference and division are treated, there
is no discussion of the underlying view of negative
information.

(9) There are no proposals of how to subsequently treat
tuples of a "maybe" result.

He addresses each of these issues in his later paper.

However, it is apparent that there are many areas which

are inadequately investigated. Many of the problems

which have developed from the prior research will be

discussed in the following chapter.
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Chapter Three : Algebraic Solutions

In an effort to clarify the existing problems,

this chapter deals with the existing algebraic metho-

dologies proposed in terms of their interpretation of

the world being modeled, the operators supported in the

algebra, the efficiency and usefulness of the algebra,

and the possibilities for further investigation pointed

out by the researchers themselves. We view each of the

approaches in the framework of the relational database

model, moving from the basic representation of null

values to their effect upon functional dependency

theory, following the lead of the more prominent

researchers on this subject. From Codd's original

introductory discussion of the inclusion of nulls, we

can trace the evolution of research and the interaction

which has occurred among those searching for a solution

to the problem of nulls.

Ihe Meaning of. Null Values

Codd bases his relational model with nulls on the

open world assumption. To support this view, range

declarations are necessary for each attribute domain in

the model. His null substitution principle is useful
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only with known, finite domains. His model rests

within the relational database model in that he res-

tricts all entries to atomic values.

Grant was the first to point out the non-truth

functionality in Codd's representation. His repre-

sentation allows partial values as elements which are

restricted as to information type. These partial

values are introduced as ranges within the domain.

This, unfortunately, requires that the relational

model be modified to deal with non-atomic data

elements— intervals, in this case. He has used

numeric intervals almost exclusively, the exception

being an example of substring capability in his

most recent article. He also allows the all purpose

placeholder null to be an element in his tables.

Biskup assumes, in general, an open world assump-

tion by requiring range declarations for attributes in

relations. He notes that a closed world interpretation

is possible for negative information by appropriate

substitution of nulls, but that if an all-null tuple is

stored for any relation, the interpretation is open

even for negative information. His introduction of a

status attribute for each tuple is interpreted as

closed world for every definite tuple in the system.

He points out that his system deals correctly with
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negative information, a failing in other systems. His

appropriate scheme assumption and incomplete informa-

tion assumption are required, however. His method of

representing nulls is based upon the storage of state-

ments concerning the modeled world, not the relations.

Lipski begins by defining a minimal system, one

which contains no information at all. Using the intui-

tive definition of extension, he discusses methods of

increasing the information about an object. These

methods concern determining the upper and lower value

of a term describing an object. He states that there

is no inductive method for this, but that an equivalent

term in additive normal form can be used to determine

the upper bound, and multiplicative normal form to

determine the lower bound.

He differentiates between a complete system, one

which has a unique value for every attribute of every

object, and a complete extension, termed a completion,

which can be derived from an extension containing

incomplete information. Descriptors are treated as

nondecomposable elements without any internal struc-

ture. Lipski 's model, if its information is complete,

directly corresponds to the relational model.

No form of the universal relation assumption is

required for Imielinski's representation of null

values. An open world interpretation is used for these
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tables, which means they are not able to represent

negative information.

Vassiliou's main contribution is the formalization

of null values in the framework of denotational seman-

tics. He believes that there are alternatives which

exist in the semantic interpretation of nulls. The

universal relation assumption is used, as it must be in

any model which relies upon the dependency theory of

relational systems.

Representing Null Values

Codd's intent is to incorporate semantic data

modeling to support and define null values. He states

that his discussion should be regarded as preliminary

and in need of further research. One of the concerns

about the method of representation is that two dif-

ferent rules are used for processing null values. For

duplicate removal, all null values are not recognized

as equal unknown values, yet to prevent non-duplication

of tuples in processing, nulls are treated as the same

value.

Grant allows duplicate rows (entries) to be

present, for although an interval in one row may be the

same as an interval in another row, the actual values

they represent may be different values. His interpre-
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tations of subsets and equality is unlike Codd's.

With two columns such as R = [null;1] and S =

[null; 1; 2], Grant allows that S is a "maybe subset" of

R because of the possibility that f(2) could be null.

This leads to a definition of true intersection in

which all non-single entries are omitted. This con-

straint is the basis for the difference in each of his

true versus maybe operations. Some solutions that

Grant proposes, but does not elaborate upon, include

some type of coding for repeating intervals, and the

restriction of these partial values to certain columns.

Some of the problems which Biskup admits with his

representation are the comparison of the universal

quantifier null (¥), the evaluation of negative infor-

mation in difference and division operations, and the

additional complexity involved in using range declara-

tions when trying to extract information. Additional

cost is generated for elimination of duplicate and

redundant tuple and also for the storage of maybe

tuples. His extended operations may themselves produce

duplication. He considers null values in tuples only

locally.

Some of the problems which Lipski has suggested

concern the representation of the incomplete informa-

tion. Admissible subsets of domains determine whether

or not the information can be modeled with an incom-
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plete relational database. He notes that if ranges are

used, some information can not be represented. For

example, how can the information that some measurement

is not in the interval (50,100) be stored? Another

problem stems from the fact that a completion may have

nothing to do with the real process of increasing a

system's information. Many of the algorithms used are

of considerable computational complexity.

All of these problems seem to suggest that the

devices suitable for representing incomplete informa-

tion depend upon what processing needs to be correctly

performed. This realization led Imielinski and Lipski

to introduce the conditional table, which restricts

possible values of a null by explicit conditions stored

in the system. It was developed as a theoretical sys-

tem, mainly to support the V-table.

Vassiliou believes that any occurrence of the

inconsistent null should cause rejection of the con-

taining tuple from either the true or maybe result of a

query. He disallows queries involving the unknown

null, suggesting that "nothing" does not exist as a

value. He shows examples in which it is noted that

Codd's rules are sound but not complete.
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Operations on Tuples Containing Nulls

The operators which Codd defines for his model

include union, intersection, difference, Cartesian pro-

duct, and projection (using the non-duplication rule).

Further investigation has lead him to define true and

maybe theta joins, true and maybe equi- joins, and theta

selection. In addition, he introduces operations for

non-union compatible tables such as outer union, outer

intersection, outer difference, outer theta join (which

can generate nulls), and outer natural join. He notes

that natural and equi- joins will lose information when

there is a nonequal projection on the join attribute.

Generated null values are interpreted as unknown values

if an open world interpretation is in effect, but as an

inapplicable property with a closed world assumption.

Another problem, which has been pointed out by

many others, is that a query such as EMPL0YEE[Age<=50 B

Age>50] does not yield every employee as should be

expected. This is a result of the manner in which

Codd's truth tables function. He attempts to rectify

the problem with the introduction of the maybe opera-

tions. This in itself places an added burden of

knowledge upon a user of this type of system.

Grant notes that it is not, in general, possible

to obtain the resultant table by expanding a table to

all possible tables (using a null substitution
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principle for the interval), and then applying whatever

corresponding operation is requested. This is a problem

because substituting for nulls may violate an integrity

constraint. For example, a maybe join may prove lossy.

Again, this requires a user to be more knowledgeable

about the operations and the underlying semantics of

the system.

The operations which Biskup defines for his model

include an extended natural join, extended projection,

extended selection, extended comparison, extended

union, extended difference, extended division, and

extended update. The "extended" concept refers to the

additional status column, and the manner in which it is

used in the processing.

In an attempt to minimize the expense of formulat-

ing a completion during processing, Lipski uses query

transformation to arrive at an externally equivalent

form for the query. He believes that this external

interpretation is sufficiently appropriate for a naive

user who is unaware that the system may contain incom-

plete information. In other words, to use the internal

interpretation of the incomplete information, the user

must understand that it may in fact exist in the sys-

tem, and that it may affect the results of queries upon

the system. He also suggests that binary descriptors

be used to define a numeric property which he calls
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"known", to aid in the semantically correct interpreta-

tion of possibly incomplete information.

Lipski shows that while two queries can be shown

to be externally equivalent for a complete system,

there is no known method for computing the lower bound

of a formula for an incomplete system. He proposes

that a subclass of queries be developed, stating that

most query languages are more expressive than neces-

sary. As an example of the complexity of these algo-

rithms, one of the examples given in his discussion

does not follow the transformation rules in an attempt

to be more efficient [Lip79].

Special disjunctive normal form is defined as a

method for transformation of special formulas. Lipski

briefly discusses the fact that the length of the

transformed query in SDNF grows exponentially with the

length of the original query. He does temper this

information with the assurance that a normal query will

very seldom reach such a length as to make the

transformation unfeasable. The introduction of the

unary operator "possibly", which may be used in these

special formula, is the culprit here, as the method of

evaluation must enumerate all completions of the object

in question.

Imielinski (with Lipski) has extended Lipski's

work to define the operations of projection, selection,
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union, and join on union compatible relational tables.

He states that a relational algebra can be embedded

into a oylindrio set algebra to deal with incomplete

information. Unfortunately, this leads to infinite

relations, and creates problems concerning finite

representability. His main work is concerned with

extending the relational algebra for the systems he

discusses, which include Codd tables, variable tables,

and conditional tables. He points out some of the

problems with these systems as he progressively seeks

to alleviate them with more correct representations.

Codd tables correctly support projection, selec-

tion and union on independent attributes, but cannot

handle join operations. Biskup's join is correct only

if the two relations are independent, with correct

results for other simple relational operators. Imiel-

inski and Lipski use directed graphs to illustrate the

workings of their operators. The attribute domains are

infinite, and no disjunction may contain both an equal-

ity and a negation of the same equality. This seems to

be the same qualification for the correct evaluation of

Biskup's Join. A closed world interpretation of these

tables suggests that negative information can be

represented. This is determined by the use of the null

substitution principle developed by Codd. V-tables are

not a representation system, and therefore cannot sup-

port projection-selection expressions. The infinite
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attribute domains prevent reasonable use of the null

substitution principle. V-tables can handle arbitrary

conjunctions of atomic relational formula containing

constants or variables.

Vassiliou's theorems are proven with simple

expressions involving only equalities. The restriction

seen before (not allowing p and not p in a series of

terms) is present in Vassiliou's work, also. Because

of the denotational semantic approach, there is the

requirement of complete lattices and continuous func-

tions. The algorithms are transformed into a proposi-

tional calculus form, either principle disjunctive or

principle conjunctive normal form, which may not always

be applicable.

Domains are finite and known to the system. Only

two attribute relations are considered. One concern in

this manner of evaluation is in keeping a dependency

true while substituting values of the domain for a null

value. This is the only method to determine a "false"

tuple. This is, however, a very difficult procedure.

Vassiliou states that it is natural to weaken expecta-

tions and allow a margin of uncertainty when nulls are

included. It is possible that it is better to leave

the database model incomplete and not allow for substi-

tution of null values.
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Functional Dependency Theory and Hull Values

The modification to the relational model forces

Grant to deal with dependency theory, which is done by

interpreting only the simplest form of dependency

statements required for the model. Because non-atomic

elements are present, first normal form is not attain-

able. Grant redefines functional dependency for these

tables with partial values. The problem of negative

information determination is side-stepped by building

negation into the primitive operators that are defined

to work on these tables. He requires union compatibil-

ity for operations involving two or more tables, and

states that the obvious definitions for these opera-

tions are counter- intuitive.

Grant's definition of true and maybe functional

dependencies is used to define decomposition for rela-

tions with intervals. He suggests that some warning

mechanism be incorporated into the processing when

attempting to satisfy integrity constraints. He notes

that an interval may have to be changed during process-

ing for the same satisfaction.

Imielinski shows that V-tables are capable of

representing functional dependencies and join dependen-

cies. They correctly support projection, positive

selection, union, and join.
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In this most recent discussion concerning view

dependencies, the universal instance assumption is seen

as a sequence of projections. They examine the global

problem of incorporating both implicational and inclu-

sion dependencies in the table content. They note the

the problem could be formulated more generally as the

problem of proportion between so-called extension and

intension of a database. The extension is the current

state of information contained in the database. The

intension represents time independent properties of the

information which may be contained at any time in the

database.

Unlike Codd and Lipski, who consider only the

retrieval aspects, Vassiliou incorporates dependency

theory in his investigation. Vassiliou' s interpreta-

tion of functional dependencies is as predicates on

instances of a relation. He notes that the incon-

sistent null cannot be present in a database where cer-

tain semantic rules are required to be valid. The

evaluation of a tuple containing a null value by using

substitution of each domain value is unacceptably com-

plex. The algorithms suggested for transformation of

queries make this substitution unnecessary.
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The Development fi£ Xhe lew. Approach

The non- truth functionality of Codd's original

approach has been used as a starting point for much of

the ongoing research in this area. The complexity of

the developed methods for dealing with nulls also ori-

ginates from this approach. Developing a truth func-

tional representation of null values and processing

techniques for tables containing nulls is the goal of

the next chapter.
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CHAPTER FOUR : Interpretation of Omega-1 and Omega-2

The omega null, which now shall be called oraega-1

,

will continue to represent unknown or partially known

information content. In this respect, it can be

thought of as Biskup defines this null— there exists

some value in the attribute domain, but it is not known

at this time which specific value it represents.

Because of this interpretation, and the previously

existing operations defined for omega-1 , the operations

defined for omega-1 in the following section will be

based upon Codd's work.

The theta null, which now shall be called omega-2,

is discussed most thoroughly in Vassiliou's work on

incomplete information. The interpretation of omega-2

will differ somewhat from the original meaning given

the theta null. Omega-2 will represent an inapplicable

value. It is noted that at the same time omega-2 nulls

are allowed as values of an attribute domain, integrity

constraints may be somewhat relaxed and a reduction of

redundant information will occur.

A more detailed explanation, along with rules,

examples, and tables, constitutes the main part of this

chapter. The relational algebra operations can not

simply be replaced by extensions which deal with nulls.
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New operations must be defined which will correctly

return the expected results. Operations for omega-1

and omega-2 nulls are introduced in this chapter.

Relations allowing both nulls are considered, along

with a discussion of the interaction between the two in

various operations.

Revision o£ Codd's Operations

As stated previously, the omega-1 null will be

interpreted semantically as incomplete information, the

existential quantifier— "there exists". One of the

goals of this representation is to allow all possibly

correct information to be returned using some minimal

processing technique. Codd's operations will be the

basis of these extended operations because of the

simplistic approach (in terms of processing), and the

ability to derive the desired results (in terms of pos-

sibly correct responses). The truth tables for the

three-valued logic containing omega-1 are shown in Fig-

ures 1 .1 a and 4.1b.
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AND T F w1 !

T T F T I

F F F F !

W1 T F T I

Figure 4.1a. Omega-1 AND truth table.

OR ! T F w1 !

T ! T T T |

F I T F T
I

w1 ! T T T
i

N0T(w1) = T

Figure 4.1b. Omega-1 OR truth table.

A modification of Codd's null substitution principle is

used to derive the values in the above truth tables.

This modification relies on part one of this principle.

Principle 1 : Any expression containing an
omega-1 may be replaced with an expression
which contains a value for that omega-1 so as

to yield a true result for the expression.

This does not negate the fact that an occurrence of

omega-1 can be replaced by a value which yields a false

result for the expression. By defining omega-1 in this
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way, it can be seen that the truth tables which direct

processing will retain truth functionality.

Codd's True operations [Cod79] work on relational

tables which contain nulls in such a way that tuples

containing nulls are excluded from the result. The

True operations return only those tuples for which the

expression evaluates to true. The Maybe operations are

defined in such a way that only those tuples for which

the expression evaluates to null are returned.

For the purpose of this study, and using the modi-

fied semantic interpretation of omega-1 , it is desir-

able for the extended operations to return all possibly

correct tuples. Therefore, these operations will be

defined such that the results will contain the tuples

for which the expression evaluates to true. All tuples

containing omega-1 as the value of an attribute will

now be returned as the result of an evaluation, if that

attribute is a criteria of the selection involved,

presumably, users of this database will be aware of the

types of evaluations they are requesting.

Operations Involving Omega- 1

The following relational tables are taken directly

from Codd's work on null values [Cod79]. The results

of a union and difference, using relations R and S are
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shown in Figure 4.2b. The same results are derived

using the definition stated for omega-1 (w1).

! w1 wl ! 1 w1
I

w1 !

! u w1 ! ! u ! 2 |

! u 1 ! ! u
! 1 !

: wi 1 1

Figure 4.2a. Relations containing omega-1.

R u s

I w1
I
w1 !

! u
:
w1 I

I
u I 1 I

i wi i 1 :

! u
!

2 !

wi

u
! w1

I

Figure 4.2b. Union and Difference.

The following example of selections are given to

show the point at which the processing of omega-1

differs from Codd's methods for the original omega

null. Notice that in the selections, every possibly
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correct result is returned. Codd defines Maybe Selec-

tion in which only those tuples for which the selection

criterion evaluates to omega are returned. In the first

selection example, both "v" and omega-1 can represent

"v", thus producing the given results. Because of the

interpretation that every value in the original rela-

tion for the attribute B could possibly represent the

value "1", in the second example of selection, all

tuples are returned.

A B c

I
u

! w1 ! wl
I

! v ! 1 1 w1 I

w1 I w1
I 1

X i 1 I Hi

y ! wl ! 1

Figure 4.3a. Relation R.

61



Select A = v [H]

! v ' 1 w1
!

! wl W1 1 I

Select B = [R]

! u w1 W1 I

I
v 1 wl !

: wi w1 1
I

I
X 1 w1 !

1 y w1 1
!

Figure 4.3b. Selection operation.

Figure 4.3c shows examples of projections using R

from Figure 4.3a. These are given to clarify the

duplicate removal which may take place in relations

containing omega- 1

.
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R[B, C]

w1
I

w1

1 ! wl

wl ! 1

R[A,C]

! x

y

w1

W1

w1

W1

Figure 4.3c Projection operation.

Notice that only those tuple that exactly match for all

attributes may be removed, i.e., [w1,1] i3 only present

once in the resulting table, although it occurs twice

in the original relation R.

In the following examples of the natural join,

Figure 4.4a and 4.4b, it can be seen that this new

interpretation of omega-1 and its subsequent processing

differs from Codd's. Note that the second, fourth, and

fifth tuple would not be included in Codd's definition

of join because the value returned is not omega.
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A B

1 u 1 w1
I

1 W1
I 2 I

I v 111

s

B C

I w1

I 2

1 I

2 I

Figure 4. la. Relations R and S.

A B C

1 u W1 1 I

1 u w1 2
I

1 w1 Hi 1 I

I
w1 2 2 I

I
v w1

I 1 1

Figure l|.l|b. Natural join of R and S.

It seems reasonable to assume that tuples two and four

of the join actually represent the same information.

The functional dependencies applicable to this relation

are the only knowledge which would enable the determi-

nation of the equivalence of these tuples. Tuples one

and three might also represent the same information.

Again, functional dependencies need to be taken into

account before a determination as to equivalence can be
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made. As one goal of this representation is to return

all possibly correct information to the user, duplicate

removal must occur only for exactly matching tuples.

The fact that unknown information is present must not

be hidden by the method of processing. For this reason,

any time a tuple is returned because of a match between

a specific domain value and omega-1 , the tuple will

show its "speculative" property by the presence of

omega-1 as the value of the attribute in question.

For a more concrete example, consider a relation

in which items, manufacturer, and color are the attri-

butes. The relation contains the following tuples: p1

= <1,A,red>, p2 = <1,A,white>, p3 = <1,A,w1>, p4 =

<2,w1,red>, p5 = <2,w1,blue>. Does this mean that the

item in p1 is the same item as that represented by pt

,

even though the item numbers are not equal? If these

items in reality represent the same item, it is because

the error was created during an update operation. The

fact that the item number is most likely a key of the

relation, can be used to determine that p1 and pt do

not represent different occurrences of the same infor-

mation.

Although there are omega-1 's present in each

attribute column of R (Figure 4.1a), it is anticipated

that normally at least one column (the prime attribute)

would not contain any type of null value. However, a

65



projection of any arbitrary relation oould always

return such a table. The problem of dealing with

tables containing nulls resulting from prior operations

must also be addressed.

Explanation of the Theta UiiXl

The constraints which are placed on a relational

schema to avoid anomalies have been carefully studied

by many researchers. It is apparent that many decompo-

sition schemes introduce redundancy of information

which must be stored to maintain the integrity of the

constraints and the information. Studies have been

done in an effort to reduce this aspect of duplication,

specifically those conducted on non-first normal forms

[Jae82]. By allowing the presence of omega-2's, infor-

mation which would normally have to be represented

elsewhere in an arbitrary schema, may instead be

represented with less duplication.

It is explained using lattice theory [Vas79] that

the theta null represents the top element, i.e., it is

the inconsistent null, containing more information than

can be represented. It seems more reasonable to allow

a null value which can represent the fact that no value

exists for a certain attribute. In this approach,

omega-2 will represent the fact that there is no value
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in the attribute domain which is correct for this

tuple.

Definition of omega-2: If Z is a column of

R(X, Y, Z), and there is a tuple t in R such

that t[Z] = w2, ¥z in R(Z), £t[Z] = z.

Although a tuple with an omega-2 attribute value

might appear to contain the same value as another tuple

containing an omega-2, two instances of omega-2 in dis-

joint tuples can never be considered to represent the

same value. This is basically the same problem of

determining equivalence which is present in the pro-

cessing of omega-1. The occurrence of omega-2 's in

disjoint tuples are never considered equal, but are

considered equal only to omega-2.

Because of this interpretation, duplicate removal

for a tuple containing omega-2 is treated as normal

duplicate removal. Omega-2 is a distinct value which

is the same distinct value in a tuple where all other

attribute values are equal.

Vassiliou states that a query involving theta

(e.g., selection on the condition that something equals

theta) is not allowed. As omega-2 is considered a dis-

tinct value, it seems appropriate that a query could be

allowed on that value. For example, it could be bene-

ficial to allow a query to determine which employees do
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not have a phone, which can be determined by a selec-

tion of employees that have omega-2 as the value for

their phone number.

It seems appropriate, then, that omega-2 must be

included as a value in all attribute domains where it

will be allowed to occur. It is not necessary or even

desirable to include omega-2 in every attribute domain.

Key attributes, specifically, should not be allowed to

have omega-2 as a possible domain value.

Figures 4.5a and 4.5b illustrate the truth tables

developed in this thesis for operations involving

attributes in which omega-2 is an acceptable value.

AND ! T F w2 !

T 1 T F F !

F ! F F F 1

W2 ! F F F !

Figure 4.5a. Omega-2 AND truth table.
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OR ! T ! F ! w2 !

T | T | T
I

T I

F ! T
i

F ! F !

w2 1 T
I

F ! F !

N0T(w2) = W1

Figure 4.5b. Omega-2 OR truth table.

Using the null substitution principle, and the

interpretation of omega-2, the rule which governs the

above truth tables can be simply stated.

Principle 2: Any expression will evaluate to

false for every possible substitution for an
occurrence of omega-2.

Notice, also, in Figure 4.5b that the negation of

omega-2 results in omega-1. The intuition behind this

equivalence is that a value which is not inapplicable

must be applicable. It can not be determined which

applicable value is correct. This is exactly the

definition of omega-1

.

Operations Involving Omega- 2

Figures 4.6b and 4.6c are examples of the opera-

tions of union and difference on tables containing
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omega-2. The notion of functional dependency is

retained in that the first column of each relation is

assumed to be a prime attribute, in which no omega-2 is

allowable.

P1 P2

I A 6 ! ! A : 6 !

! B w2 ! ! B : w2
I

: c 3 ! ! D : w2 |

! F : 5 !

Figure 4.6a. Relations P1 and P2.

P1 U P2

! A ! e i

! B ! w2 !

! C
I 3 :

! D ! w2 !

I
F ! 5 !

Figure 4.6a. Union.
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P2 - PI

D ! w2

F ! 5

PI - M

C ! 3

Figure 4.6b. Difference.

Figures 4.7 and 4.8 are example relations for sub-

sequent selections on tables containing omega-2. In the

relation in Figure 4.8, the presence of omega-2 can be

interpreted as an inapplicable attribute for that par-

ticular item. For example, part 101 comes in two

colors, each with a different size. Part 102, however,

is not or can not be described by color or size.

P3

Part_ supl Part* Price

! A 101 .03 !

! A 102 .52 !

: b 102 .50 1

: b 103 .18 !

! c 101 .04
:

! c 102 .50 !

! c
I

104 .25 !

Figure 4.7. Relation P3.

71 -



Part*

P4

Color Size

! 101 white 10 !

! 101 red 22
i

! 102 w2 W2 !

! 103 silver 8 !

! 104 w2 22
i

Figure 4.8. Relation P4.

The following examples of selection illustrate

that only those tuples which definitely match the

selection criteria are returned. The truth tables

defined for omega-2 are used to determine the results.

Select Color=white [P4]

Part* Color Size

! 101 ! white ! 10 I

Select Size=16 [P4]

Part* Color Size

Figure 4.9. Selection operation.
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The first selection returns only one tuple, as only one

value in the color attribute column matches the value

"white". In the second selection, no tuples are

returned because no values in the attribute column for

size match the value "16".

Figure 4.10 shows a projection which illustrates a

more important aspect of omega-2 processing.

P4 [Color, Size]

Color Size

! white ! 10
!

I
red ! 22 !

! w2 | w2
]

I
silver! 8 !

! w2 I 22 I

Figure 4.10. Projection operation.

The second and fifth tuples have the same value for

size. Neither tuple can replace the other, however.

They are not equivalent, by definition of omega-2.

The following example of the natural join is

trivial (Figure 4.11). It does not show the behavior

which is important in the processing of omega-2.
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P3 IX i P4

Part_supl Part* Price Color Size

! A 101 .03 white 10
I

! A 101 .03 red 22 !

! A 102 .52 w2 W2 !

! B 102 .50 w2 w2 !

! B 103 .18 ail ver 8 1

! c 101 .04 white 10 !

! C 101 .04 red 22 !

! c 102 .50 w2 w2 :

! c 104 .25 w2 22 !

Figure 4.11. Natural join of P3 and P4.

The following examples will give a better idea of

the methods which bring about the desired results for

the processing of omega-2. Figures 4.12 and 4.13 will

be used to demonstrate the difficulties which may

arise. Both columns of the join attribute have been

left in place in the table in Figures 4.14 so that the

processing concerns remain visible.
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EMPLOYEES

Empname Empnum Phone

! Smith 101 418 !

| Jones 102 w2 !

! Burns 103 327 !

! Allen 104 w2 !

! Laurel 105 611 !

! Hardy 106 794 !

1
Jones 107 810

:

! Moore 108 w2 !

Figure 4.12. Employee relation.

MANAGERS

Empname Proj t Phone

! Jones 89 ! w2 !

! Hardy 64 ! 794 !

! Burns 41 ! 327 I

Figure 4.13. Manager relation.
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EMPLOYEES III MANAGERS

Empname Empnum Phone Empname Proj# Phone

! Jones ! 102 w2 Jones 89 w2 !

! Hardy ! 106 794 Hardy 64 794 !

1 Burns
! 103 327 Burns 41 327 !

Figure 4.14. Natural join.

All attributes that have the same names (domain), must

match before a tuple may be formed for the natural

join. In the case of the natural join above, "Empname"

and "Phone" must match from each relation to become a

tuple in the new table.

Theta joins are demonstrated in Figures 4.15a and

4.15b. Again, all attribute columns are left intact so

that the join criteria may be examined.

EMPLOYEES [Phone = Phone] MANAGERS

Empname Empnum Phone Empname Proj# Phone

I J one s 102 w2 Jones 89 ! w2 !

! Allen 104 w2 Jones 89 ! w2 !

I
Moor e 108 w2 Jones 89 ! w2 ]

! Hardy 106 794 Hardy 64 ! 794 !

! Burns 103 327 Burns 41 I 327 !

Figure 4.15a. Theta join.
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EMPLOYEES [Empname = Empname] MANAGERS

Empname

! Jones

Empnum

! 102

Phone

i w2

Empname

Jones

Projif

89

Phone

w2
I

! Jones ! 107 ! 810 Jones 89 w2 !

! Hardy ! 106
1 794 Hardy 64 79* I

i
Burns

I 103 1 327 Burns 41 327 I

Figure 4.15b. Theta join.

It is apparent that these results for the joins

are in some manner incorrect. There is a need to

determine the semantically correct method of removing

those tuples which are obviously inconsistent. For

example, in the first join, the names in tuples two and

three do not match. Because of the identically named

attributes involved in the relations, these must be

taken into account although the join attribute does not

involve the attributes. In the second join, the names

match for all tuples, yet there is an inconsistency in

the phone attribute. It is necessary to consider all

attributes which have the same attribute name, other-

wise, an inconsistency will result.

In Figure 4.15a. the second and third tuples

should not be included in the results of the join.

Likewise, in Figure 4.15b, the second tuple shows this
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same inconsistency. It should be removed from the join

before the results are returned.

The rules for duplicate removal and data extrac-

tion for omega-2 are the same. An exact match must

occur in either type of processing.

Interaction o£_ Qmega-1 and Pmega-Z Hulls

As omega-2 is interpreted as a domain value, dis-

tinct from all other domain values, when an omega-1 is

compared against the value omega-2, it seems possible

that omega-2 is a valid value for omega-1 to represent.

However, by using the omega-1 as the value for that

attribute, it is stated that some value does exist

—

excluding omega-2 as a possible value for the replace-

ment of omega-1. This section will examine the

interaction of these two nulls when present in the same

relational table.
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Part_3upl Part*

! A 101 I

! A 102
i

! A 103 i

! B 102 !

!
B 103 !

! c 101 !

! C 102 !

Figure 1.16. Parts-Supplier relation.

Part* Color Size

! 101 w2 W1 I

! 102 w1 12 !

I
102 blue 14 !

! 103 red wl !

! 103 blue 14 !

Figure 4.17. Part#-color-size relation.

The relational table in Figure 4.17 contains both

omega-1 and omega-2 as values for attributes color and

size. The figures below show a selection on this rela-

tion.
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Select color "red"

Part* Color Size

! 102

! 103

w1

red

12

w1

Figure t.1 8a. Selection operation.

Select color /= "red"

Part* Color Size

! 101 ! W2 w1 !

! 102 ! w1 12
!

! 102 ! blue 14 !

! 103 I
blue 11 !

Figure 4.18b. Selection operation.

In the first selection, the presence of omega-1 as a

value allows the result to include both tuples for

which the color could possibly be "red". The second

selection returns all tuples for which the color is not

"red", and possibly not "red". This brings up an

important point which adds to the usability of the con-

cept being presented. The ability to represent nega-

tive information is very valuable. The non-truth

functionality of Codd's original truth tables for the
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omega null was first explained using such a negation-

type query. As an example, the query "(Color not "red"

AND Size = 12) OR (Color = "red" AND Part* = 103)"

3hould return tuples one, two, and four, and, in fact,

does when the truth tables defined for the respective

nulls are used. Another problem mentioned was that of

a ("red" and not "red)-type of query. The results of

the both selections for these criteria can be seen to

contain all the information available, which is the

expected result.

Project [Color.Size]

Color Size

! w2 w1 I

I
W1 12 !

! blue
I 14 !

! red wl !

Figure 4.19a. Projection operation.

Two tuples containing <blue,14> are returned for this

projection, but since they match exactly, the duplica-

tion is removed. Tuples one and two are definitely not

possible duplicates as omega-2 is never equal to a pos-

sible domain value such as omega- 1. It is also possi-



ble that tuple two and four represent the same informa-

tion.

Project [Part*, Size]

Part* Size

! 101 w1 !

! 102 12 I

! 102 14 !

I 103 wl
I

I 103 14 !

Figure 4.19b. Projection operation.

In the projection in Figure 4.19b, it is possible that

tuples four and five are, in reality, the same informa-

tion. Neither tuple is removed, however, to prevent

hiding some possibly correct information.
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Project [Part*, Color]

Part* Color

! 101 w2 !

! 102 w1 I

I 102 blue!

I 103 red
I

! 103 blue
|

Figure 4.19c. Projection operation.

The same concern of hiding possibly correct information

is apparent in Figure 4.19c Therefore, all tuples

remain in the result as before.
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[Part_supl,Part#] |X| [Part*, Color, Size]

Part_supl Part* Color Size

! A 101 I w2 W1 |

! A 102 ! w1 12 !

! A 102 ! blue 14 !

! A 103 I
red w1

i

! A 103 ! blue u :

! B 102 ! wl 12 I

! B 102 1
blue w1

I

! B 103 I
red wl

!

! B 103 ! blue 14 !

1 c 101 1 w2 w1
!

! c 102 1 w1 12 !

! c 102 ! blue 14
:

Figure 4.20. Natural join.

All possibly correct information has been returned

by taking the natural join of the two relations in

question. By referlng to the original tables which

were used to create this natural join, it can be seen

that both tables are no longer needed to represent the

information. Allowing omega-1's and omega-2's in this

relation does away with the need for any other tables

to represent the same information. As can be seen from

the natural join relation above (Figure 4.20), more
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information can be more precisely represented with the

combined use of omega-1 and omega-2.

The Overall View of Omega-1 and Omega-2

Although there are many ways in which these nulls

may be represented, the major objection to previous

simplistic representations has been the non-truth func-

tionality of the logical operations. This semantic

representation of omega-1 and omega-2 allows much more

information, particularly that which is only partially

defined or inapplicable, to be included in processing

in a useful manner.

Two types of null values representing unknown and

inapplicable attribute values have been presented for

inclusion in relational databases. Each null has been

semantically defined with the use of logical operations

which illustrate the truth functionality. The power of

each representation has been demonstrated by examples

of algebraic operations on a variety of relational

tableaux. The omega-1 and omega-2 nulls have also been

used in the same table to give a graphic example of the

power of the suggested representation.

There are still many facets of this representation

which can be futher developed. It is, as yet, only an

intuitive approach to a problem which has been studied
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in great detail. The strength of the approach lies in

the simplicity of the overall concept and the con-

sistency of the processing. The following chapter will

include suggestions which may enhance the mechanisms

developed here.
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Chapter 5. : Ihe Representation as a D sable Basis

The semantic definition given the omega-1 and

oraega-2 are modifications of the previously defined

omega and theta nulls. Many attempts to formalize a

usable system with nulls have been made, yet none

return the results desired for this study. Those which

have approached the issue from the standpoint of pro-

cessing concerns rather than representational concerns,

have developed very complex, impractical techniques.

These techniques, while very formally developed, still

do not display the desired representation or behavior.

In addition, many are computationally very complex.

The mechanisms developed here exhibit the desired

behavior in terms of processing and representation. All

possibly correct information is presented as a result

of an algebraic operation. The semantics of the nulls,

in both cases, retain their consistency in the face of

processing.

Truth Functi onality

Truth functional processing has been presented

through the development of the modified truth tables

for omega-1 and omega-2. The examples shown in Chapter
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four illustrate that the major concern of non-truth

functionality has been removed with the representation

of omega-1 . The underlying meaning of omega-1 is

preserved throughout various operations. Data extrac-

tion with omega-1' s is accomplished with the use of the

truth table defined for it. Duplicate removal follows

the normal rule of removing only those tuples which are

exact matches. Tuples resulting from an operation

retain the semantics of the omega-1 null.

The view taken in this representation is that of a

partially open world. Information is specified to the

extent that a finite amount of information can be used

in the model. Negative inferences can be taken from

the presence of both types of null. The representation

can be used to determine what information "is" and what

information "isn't". This gives the advantage that the

meaning of a null is considered on a wider basis than

that of the individual tuple, as in some representa-

tions.

Tuples Resulting From Processing

Data extraction is the prime area where processed

information might exhibit incorrect results from

further processing. The rules developed for data

extraction are quite simple and in line with the seman-
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tic interpretation given the two nulls. By examining

the results of algebraic operations, it is seen that

the information is still intact. No information is

lost and no extraneous information is introduced. This

is extremely important when selection criteria become

more complex.

Duplicate removal is the other aspect which might

affect extended processing. It has not been proven,

however that corruption of information will take place

if the rule of exact matches for duplicate removal is

used. No problems should result from the removal of a

tuple which is exactly represented by another.

Further examination should be given both of these

aspects of processing tables with omega-1 and omega-2.

The intuitive appeal of the results shown point to

proper behavior for extended processing.

Functional Dependency Considerations

One view of this representation which has not been

thoroughly investigated is the constraints which are

placed on information in the form of functional depen-

dencies. As dependency theory is an intrinsic part of

relational database theory, it will introduce con-

straints concerning the up-to-now unlimited appearance

of nulls. Some of these considerations have already
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been introduced, particularly in the discussion of

allowable domains for omega-2.

Restricting the occurrence of nulls as specific

attribute values is an important issue. To allow max-

imum flexibility of representation, no restriction has

been placed on the omega-1 null, with minimal restric-

tion placed on the omega-2 null. There is an advantage

in allowing the representation of information such as,

"some manufacturer makes item 102". It is understood

that the identity is not known at this time. Of

course, a retrieval on a specific manufacturer, say

"A", would also result in the retrieval of this unknown

manufacturer. This may not be desirable, but at the

same time, it is not a semantic contradiction.

Integrity Constraints

A very brief example given in a later section of

Chapter four illustrates the manner in which integrity

constraints might be relaxed with the inclusion of

these null3. A database with a lossless schema may be

used to demonstrate that less redundancy of information

can be achieved in a representation relying upon this

semantic definition of omega-1 and omega-2.
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Complex Query Expressions

Some effort has been made to illustrate that

evaluation of simple expressions results in the semant-

ically correct retrieval of information. The fact that

this basic set of algebraic operations works as

expected suggests that few problems will develop as

more complex expressions are applied. The operations

illustrated in Chapter four can be combined. Although

it has not been proven, it is felt that compound

expressions should not introduce incorrect information.

No investigation has been done concerning optimi-

zation of queries. Algorithms for both aspects of pro-

cessing, data extraction and duplicate removal, should

be simple and efficient to implement.

Statistical Representations

Perhaps one of the most interesting aspects of

this representation is its inclusion in some type of

decision support system. This type of system produces

estimates from partially known information. The incor-

poration of an associated probability for a tuple con-

taining some partially known information is a future

consideration. For example, if it is known that the

probability of a certain fact being correct is "x", an

estimate could be established for the use of this
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information in combination with other factors.

Conclusions

This representation of two distinct null values

exhibits many of the behavioral qualities which are of

importance in the modeling of an incompletely known

world for information processing. The logical and

algebraic operators which have been defined are con-

sistent with the semantics of the representation. The

intuitive aspect of this study does not negate its usa-

bility and flexibility for future investigation.
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Appendix a.

Manifestation o£ Hull s

-Not valid for this individual (e.g., maiden name of
male employee)

-Valid, but does not yet exist for this individual
(e.g., married name of female unmarried employee)

-Exists, but not permitted to be logically stored
(e.g., religion of this employee)

-Exists, but not knowable for this individual (e.g.,

last efficiency rating of an employee who worked for
another company)

-Exists, but not yet logically stored for this indivi-
dual (e.g., medical history of newly hired employee)

-Logically stored, but subsequently locially deleted

-Logically stored, but not yet available

-Available, but undergoing change (may be no longer
valid)

Change begun, but new values not yet computed

Change incomplete, committed values are part

new, part old, may be inconsistent

Change incomplete, but part new values not

yet committed

Change complete, but new values not yet com-

mitted

-Available, but of suspect validity (unreliable)

. Possible failure in conceptual data acquisition

Possible failure in internal data maintenance

93



-Available, but invalid

Not too bad

Too bad

-Secured for this class of conceptual data

-Secured for this individual object

-Secured at this time

-Derived from null conceptual data (any of the above)
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An increasing concern in relational database

theory is that of retaining representational con-

sistency while allowing additional semantic rep-

resentation. A usable representation of null

values is important in modeling possible real-

world situations where unavailable information

can prevent the inclusion of any associated

information in processing. Current research has

developed methods which involve complex process-

ing techniques for evaluation of queries, which

eliminate the benefits of the ability to use null

values in the representation. Other research has

changed the representation mechanism to allow the

inclusion of nulls in relational tables.

A new interpretation and a simple processing

mechanism is defined for the inclusion of nulls.

Two specific null values are defined: the null

representing incomplete knowledge, "omega- 1",

and the null representing inapplicable informa-

tion, "omega-2 B
. These interpretations will be

of use in the development of a relational

database which will accept partial information

for storage, and incorporate this incomplete data

in the evaluation of queries. A set of



relational operations is developed which allows

the inclusion and processing of null values,

while preserving the Integrity of the underlying

information.


