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INTRODUCTION

The theory of prime-power groups is very important in the application

of finite group theory. This becomes apparent upon observation of Sylow's

Theorem which is Theorem b listed later in this introduction. In fact it

happens that any finite group may be generated by any set of these Sylow sub-

groups which contains one Sylow subgroup of each possible order.

The purpose of this report is to present in a logical order some of the

basic properties of prime-power groups. To do this a basic knowledge of ele-

mentary finite group theory will be assumed on the part of the reader. Those

theorems which are particularly important to this development are listed in

the latter part of this introduction. Reference will be made to many of

these throughout the paper. In addition a basic knowledge of permutations

will be assumed.

Since this paper is not concerned in any way with groups that are not

finite, henceforth the word "groups" will be used to mean finite groups.

The identity element of any group throughout the paper will be denoted

by the letter "e". The group which is generated by the elements a, b, and

c, for example, will be denoted by {a, b, c} . The permutation in which the

element abc, for example, is replaced by the element dfg will be denoted as

(abc\

The following is a list of definitions, theorems and corollaries which

will be used throughout the paper.

DEFINITION a: If a and b are elements of a group G such that b ab = a

for all b in G, then a is a self-conjugate element of G„

DEFINITION b: If H is a subgroup of a group G such that b'^Hb = H for

all b in G, then K is a 'normal subgroup of G.



DEFINITION c: The set of all self-conjugate elements in a group G is

the center of G.

DEFINITION d: A group G is an Abelian group if ab = ba for all elements

a and b of G.

DEFINITION e: Let G be a group of order n and let H be a subgroup of G

of order h. The quotient n/h is the index of H in G.

DEFINITION f: Let K be a normal subgroup of a group G„ Consider all

sets of the form aH where a is any element of G. These sets form a group

which is called a factor group of G and is denoted by the symbol G/H.

DEFINITION g: A mapping G -» H of the elements of a group G onto those

of a group H is called a homomorphism if whenever a^ —* b.. and a_-» b
? , then

a_a_ —*b n b-. where a. is an element of G and b. is an element of H for i = 1, 2,
\L 2 1 2 x x *

DEFINITION h: If G is an Abelian group of order p where p is a prime

number and m is a positive integer and G is the direct product of groups of

m
l

m
2

m
n

order p , p , ..., p , then G is of type (n^ , m_, ..., m ).

DEFINITION i: The set of all elements of the form a'H^ab, where a and

b are any two elements of a group G, generate a subgroup of G which is called

the commutator subgroup of G.

DEFINITION j: The elements of a group G which are permutable with a

given subgroup H of G form a subgroup K of G which is called the normalizer

of H in G.

THEOREM a: (Theorem of Lagrange). The order of a subgroup of a group G

is a factor of the order of G.

COROLLARY 1: The order of an element of G is a factor of the order of G.

COROLLARY 2: Any cyclic group and hence any group whose order is a prime

is an Abelian group.



THEOREM b: (Sylow's First Theorem). Let G be a group of order n and let

p be the highest power -of a prime p contained in n as a factor where r is a

p
positive integer. Then G contains at least one subgroup of order p .

THEOREM c: (Cauchy's Theorem). If the order of a group G is divisible

by a prime number p, then G has elements of order p.

THEOREM d: The center of a group G is a subgroup of G.

THEOREM e: A non-cyclic Abelian group G whose order is p , where p is a

prime and m is a positive integer, is the direct product of cyclic groups no

two of which have any element in common except the identity element.

THEOREM f : The elements common to the subgroups of a complete set of

conjugate subgroups of a finite group G form a normal subgroup H of G.

THEOREM g: If A is the commutator subgroup of a given group G and H is

any normal subgroup of G, then ^H,£^ /H is isomorphic to the commutator sub-

group of G/H.

COROLLARY 1: If the normal subgroup H of G contains the commutator sub-

group A of G, then G/H is Abelian.

COROLLARY 2: If G/H is Abelian, then H contains A .

THEOREM h: The elements of a group G which are permutable with a given

subgroup H of G form a subgroup K of G which is either the same as H or con-

tains H as a normal subgroup. The number of subgroups conjugate to H in G is

equal to the index of K in G.

THEOREM i: The elements of a finite group G which are permutable with a

given element b of G form a subgroup H of G. The number of elements conjugate

to b in G is equal to the index of H in G.

THEOREM j: (Fermat's Theorem). If p is a prime, then x5 s x mod p for

any positive integer x.
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THEOREM k: The only subgroups of order h are the cyclic group a = e and

2 2
the group defined by a =b = e, ab = ba.

GENERAL PROPERTIES OF PRIME-POWER GROUPS

In much of the literature on finite group theory reference is made to

either prime-power groups or to p-groups.

DEFINITION 1: A group is a prime-power group if its order is a positive

integral power of a prime number.

DEFINITION 2: A group is a p-group if every element of the group has

order a non-negative integral power of a fixed prime number.

Many books which refer to one or the other of these two types of groups

do not refer to both. This, along with the similarity of definitions, would

lead one to believe that they are either very closely related or equivalent.

The following theorem shows that they are equivalent.

THEOREM 1: A group G is a p-group if and only if it is a prime-power

group.

Proof: If G is a prime-power group it is of order p where m is a posi-

tive integer and p is a prime number. Then by Corollary 1 of Theorem a, the

order of every element of G is a divisor of p , that is a power of p. Hence

G is a p-group.

For the second part of the proof assume that G is not a prime-power

group. This means the order of G contains another prime factor q, where

q / p. This implies, by Theorem c, that G has elements of order q and hence

G is not a p-group.

LEMMA 1: A non-empty subset H of a group G is a subgroup of G if and

only if it is closed with respect to the group operation.



Proof: (Recall that only finite groups are being considered and note that

this theorem would not be true in general for groups of infinite order.) If

H is a subgroup of G it is closed by one of the group postulates.

Conversely, let H be closed. Associativity of H follows directly from

the associativity of G. Since G is of finite order every element of G is of

finite order. Let a be an arbitrary element of H of order s. Then a = e

where e is the identity element of G. Since H is closed, a = e is an element

of H, and H contains the identity element of G. If s = 1, then ee = e and

the inverse e of e is in H. If s ^ 1, aa = a ~ a = a = e. Thus the in-

verse of a is a
S~

. Since this is a power of a and H is closed it is in H.

Thus every element of H has an inverse element in H since a was an arbitrary

element of H. Therefore H is a subgroup of G.

Several theorems and corollaries will now be proven concerning self-

conjugate elements and normal subgroups of prime-power groups. The first of

these is the following important theorem.

THEOREM 2: A prime-power group G of order p contains a self-conjugate

element of order p.

Proof: If G is Abelian every element a of G commutes with every other

element of G. This implies that a / e is self-conjugate in G. The order of

a is a power of p. If G is non-Abelian let g be a non-self-conjugate element

of G, and consider the complete set of conjugates to which g belongs. The

elements which commute with g form a subgroup H of G. The number of elements

conjugate to g in G is equal to the index of H in G. Since the order of H

must be p where s < m, the number of elements conjugate to g in G is p 'or

is a factor of p . Also since no two distinct complete sets of conjugates



have an element in common, the non-self-conjugate elements form disjoint sets,

each of whose number of elements is divisible by p. Therefore the number of

non-self-conjugate elements of G is a multiple of p, say kp. The number of

elements of G other than the identity is p - 1. Let r be the number of self-

conjugate elements of G other than the identity. Then r + kp = p - 1 or

r+l=p(p~ -k). This implies r + 1 is divisible by p. Thus r cannot be

zero. Therefore there is a self-conjugate element a of G other than the iden-

tity. Its order must be a power of p. This has now been shown for G either

Abelian or non-Abelian.

Now let the order of the self-conjugate element a in G be p where

i
<c i «S m. This implies that ap = e and this is the least positive power of

i i-1 i-1
a such that this is true. Also ap = (ap r = e. Since p is a prime, a?

is either e or of order p. If it is e this contradicts the assumption that

i i-1 i
i~1

a is of order p since p " ' < p . Therefore a? . is an element of order p.

Since a is self-conjugate, b~ ab = a for any element b in G. Thus

(b~ ab) p = ap or by associativity, b~ ar b = a? and hence aP is

a self-conjugate element of order p. This proves the theorem.

COROLLARY 1: The number of self-conjugate elements in G is a positive

power of p.

Proof: Since the set S of self-conjugate elements of G is a subset of G

by lemma 1 it is necessary only to show closure of S to prove that it forms a

subgroup of G. Let a and b be any two self-conjugate elements of G, and c be

-1 -1 -1 -1any element of G. Now c ac = a and c be = b. Therefore (c ac)(c be) = ab



or by associativity and the definition of the identity and inverse elements,

c~ abc = ab. This establishes closure. It was shown in the theorem that S

contains an element other than the identity. Therefore the number of elements

of S is a positive power of p.

Note that Definition o and Corollary 1 imply that the center of a prime-

power group G is greater than (e]

.

?
COROLLARY 2: A group G of order p is Abelian.

2
Proof: If G contains an element of order p it is cyclic and hence

Abelian. If G is not cyclic let a be a self-conjugate element of G of order

p and let b be an element of G not in {a}. Then b~ ab = a or ab = ba. Since

2
G is of order p the elements b and a generate G.

COROLLARY J: Every group G whose order is a multiple of a power of a

prime p contains an element of order p.

Proof: Let G be of order kp . Then by Theorem b, G contains a subgroup

of order p which by the previous theorem contains an element of order p.

THEOREM 3: In any group G of order p there exists a series of subgroups

p T m 1 m
or orders p, p , p , ..., p »P» such that each is normal in G and in all

the subgroups of the series which follow it.

Proof: By Theorem 2 there is an element of order p in G which is self-

conjugate. Denote this element by a^ . By the process used in Corollary 1 and

by Definition b it can be shown that ja^ is a normal subgroup of G. It is of

order p. Denote this normal subgroup by H . Consider the factor group G/B_

(Definition f ) . It will be recalled that in this group the identity element

is BL^ and its order is equal to the index of H in G. Thus it is of order p
m

,
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Set up the natural homomorphism (Definition g) of G -^ G/IL where the p ele-

ments of H. in G correspond to the identity element H in G/H . Note that

the element a is in H if and only if a -^ H „ Since G/H is of order p ~
,

it is a prime-power group and hence contains an element of order p which is

self-conjugate. Denote this element by b_. Let a_ be one of the elements in

G which corresponds to b
2

« From the operation preserving property of homomor-

phisms, a —^ b implies that ^-^^^ = H
t • Tilus a

?
P is in H

-i
• Let a be any

element of G and b the corresponding element of G/EL . Since b_ is self-

conjugate, b" b b = b_ or b ~ b~ b
2
b = e = H and therefore a ~ a" a

?
ais in H .

It will now be shown that the set of elements Sa^ , a_l forms a normal subgroup

2
of G of order p . Denote this set of elements by EL. That H_ is closed

follows from the fact that it is the set of elements made up of all possible

products of powers of =l and a-. Thus by Lemma 1, L is a subgroup of G. If

c is an arbitrary element of H_ and a an arbitrary element of G, then

c a ca = £l where < i Sp. This then becomes a~ ca = ca_. . However

ca^
1

is an element of H
2

by closure of H_. Thus a H_a = H and H is a nor-

2
fc

l *2
mal subgroup of G. The p elements a a_ (t , t_ = 1, 2, ..., p) are

distinct for a-^a/ = \&2 implies that a^~v = a.
11""*, which says that

a
2

is in H



If m > 2 continue as before considering the factor group G/H . Since

P m P
H_ is of order p the order of G/H

?
is p "

, Set up the horaomorphism G -» G/H_

where the p elements of H_ correspond to the identity element H_ of G/H_,

Since G/H_ is a prime-power group it contains a self-conjugate element of

order p which will be denoted by b.,. Let a, be one of the elements of G which

corresponds to b,. This implies that a,^-^ b,P and b,P = H_. Hence a,P is
3 3 3 3 ^ 3

in Rp. Let a be any element of G and b an element of G/H_ such that a—>b.

Since b, is self-conjugate in G/H,., b" b,b = b-. or b,~ xT b,b = e = H„ and
3 <- 5 5 5 5 <?-

thus a, a a,a is in H_. Let H = fa^, a_, a_"l. Now H is closed since it

is made up of all possible products of powers of a^ , a_, and a_. Therefore

by Lemma 1 it is a subgroup of G. Let c be an arbitrary element of H, and a
3

an arbitrary element of G. Then c~ a~ ca = a^a-*1 where 0£i, j S p. This

is equivalent to a" ca = ca-
1
a_'1

. By closure of H, this becomes a Hva = H,
1 ^ 3 3 3

3and H, is a normal subgroup of G. The p elements

*1 l
2 S

a^ a
2

a C^, t
2 , t = 1, 2, ..., p) are distinct for a.

X
a
2
ya_

Z
= a^

U
a^

V
a.

V

2 "3

~T ' = a^" "a_* J which says that a "~"
is in H .

Now consider the factor group G/H and take a self-conjugate element b.

implies that a.
Z_W

» =
u_x

*
v"y «™~* «M «..* -

z-v

of order p in G/H and proceed as before if m > 3. The process can be con-

t t t
tinued until one obtains the p elements a_ a

£
..wa

m
(t. = 1, 2, ..., p;
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i = 1, 2, ..., m). In general then b. is a self-conjugate element of order

p in G/H. ^ where H. = fa^ , a
? , . .., a.S . In the homomorphisra G-^G/H. _, a.

in G is chosen such that a. —*b.. Then H. forms a normal subgroup of G of

i
order p . The normality of H. follows directly from the fact that for any

element a of G, a." a~ a. a and a. are in H. .. . The p are all distinct be-
' i l i i-l *

x x_ x. u_ u_ u.

cause for all i, a^ a
2

...a. = a.. a~ ...a. ' implies that

x.-u. u
n -x, u -x_ u. .,-x. ., x.-u.

„ i i 1 J. 2 2 i-l i-l ... ., i i .

a. = a^ a
2

...a. which says that a. is in H. .

Since all products of powers of the a. 's are elements of G by closure of G,

and since all p of them are distinct it follows that every element of G is

m *1 t
2

t

included once and only once among the. p elements a^ a
p ...a

(t. = 1, 2, ..., p; i = 1, 2, .. ., m) . It was shown that every ri. is a normal

subgroup of G. From the nature of the H. 's it is apparent that every H. is

a subgroup of H. where 1<" s 5m-i, Since H. is normal in G. a
-1
H.a = H.i+s 1 11

for any element a of G. This is also true whenever a is an element of H.
i+s

and thus any one of the subgroups H , H_, . .., H , H = G of order

2 m-1 m . , . ,„ _
Pi P » •••» p »p is normal in all the subgroups succeeding it.

The following corollary was proven in the course of the theorem.

COROLLARY 1: A group G of order p
m

contains a set of elements

aii ap» •••» a such that a. and a. a a. a (where a is any element of G) arex c- m ill.
in the group H^ = ^a^ a

2 , ..., a
±_1^

for i = 1, 2, ..., m, while H. consists
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i *1 t
2

fc

i
of the p elements a. a_ ...a. (t, = 1, 2, ..., p; k = 1, 2, ..., i).

THEOREM k: Every subgroup H of order p in a group G of order p is con-

s+1
tained normally in a subgroup of order p where s s < m.

Proof: Use the notation of Theorem 3. If H does not contain a^ , then it

will be shown that |H, a. "I is the subgroup required. Since this is generated

by a subgroup and an element of G it is necessarily closed and is hence a sub-

group of G by Lemma 1. By closure Ha^ = a JH and Hh = hH where IS j < p and

h is an element of H. Therefore (a.'1 )'" Ha^ 3 = H and h Hh = H which proves

that H is normal in JH, aA . Since a^ is of order p t

|H, a^ = H \J Ea^ U Ea^
2

\J ... U Ha^""
1

and is hence of order p
S+1

. If H con-

tains a
1 , a

2 , ... f a. - but does not contain a. it will be shown that [h, a.A

is the required subgroup. Again by Lemma 1 this is a subgroup of G. Now

a
i

h aJi is in H. , by Corollary 1 of Theorem 3 and hence in H since

H CH. This says by closure of H that (a."
1)^.^ = H. -h"^ = H and againx-j. x i i-l °

h Hh = H. Therefore since (a
±
~

)
J = (a. J )~ the normality is established.

Now a
±

is in E^ , by Corollary 1 of Theorem 3 and is hence in H. Therefore

JH, a.j=HU Hai U Ha^U... U Ha^-1
and is of order p

S+1
.

In particular taking s = m - 1 the following corollary results.

COROLLARY 1: Every subgroup H of order p in a group G of order p
m

is

normal in G.
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NUMBER OF SUBGROUPS OF A GIVEN ORDER

s rn
LEMMA 2: The number of subgroups of order p in a group G of order p

where G is Abelian of type (1, 1, ..., 1) is equal to

/in ..win \ / m 2>. / m s-lx
(v - Imp - r>Hp - p ;...lp - p ; .

e c; o "2 e o ^*1

(p - l)(p - p)(p - p )..o(p - P )

Proof: By Definition h all elements of G other than the identity are of

order p. Hence a subgroup of order p is of type (1, 1, ..., 1) also but in

this case with s l's. By Theorem e, a subgroup of G of order p has s genera-

tors of order p. The first generator a., can be chosen from G in p
m

- 1 dif-

ferent ways. The group a, contains p - 1 elements of order p. Hence there

remain (p - l) - (p - l) = p - p elements of order p so that the second gen-

erating element a_ can be chosen in p
m

- p different ways. The group ?sl , a
p
l

2
contains p - 1 elements of order p so that the remaining elements of order p

are (p -l)-(p - l) = p -p in number. Thus the third generating ele-

ment can be obtained in p - p different ways. In the same manner the fourth

generating element can be chosen in p - p^ different ways. The process is

continued until the sth and final generating element may be chosen in

p - p different ways. Hence the number of choices of the ordered set of

s generators which give rise to a subgroup of order p
S

is

/•m lV a w m 2 N , m s-^ „
t>p - iAp - pAp - p ;...(.p - p ;. By the same method an ordered set of

generators of a given group of order p
S

and type (l, 1, ..., l) may be selected

in (p - l)(p - p)(p - p )...(p - p
~

) different ways since this group has
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s generating elements. Therefore the number of subgroups of G of order p

is the quotient of these two numbers and the lemma is proven.

THEOREM 5: If P is the order of the greatest common subgroup D of the

subgroups of order p in a group G of order p , G contains (p - l)/(p - l)

subgroups of order p
~

•

Proof: Let IL , H_, ..., H be the subgroups of G of order p " and hence

of index p. Then by Corollary 1 of Theorem 4, each H. is normal in G. Set up

the homomorphism G -»G/H. and the homomorphism G -^G/D. Let a be an arbitrary

element of G, b. the corresponding element of G/H. and b the corresponding ele-

ment of G/D. Since each H. is of order p ~
, G/H. is of order p and hence

b. P = e, where e is the identity element of G/H., for all i = 1, 2, ..., r.

Therefore aP is in H. for each value of i and aP is in D. Thus note that D

contains the pth power of every element of G since a is arbitrary. Since aP

is in D, the corresponding element bP is the identity element of G/D. Each

G/H
i

is of order p and hence Abelian by Corollary 2 of Theorem a. Therefore

by Corollary 2 of Theorem g, H
±

contains the commutator subgroup a. of G. Thus

D contains a . By Corollary 1 of Theorem g, G/D is Abelian. Sirjce it is

always true that bp = e for any element a of G to which b corresponds, it

follows that every element of G/D is of order 1 or p. Thus G/D is of type

(1, 1, ..., 1). The order of D is p and hence the order of G/D is p
m~d

. By

Lemma 2, G/D contains (p
" - l)/(p - l) subgroups of index p. By the homomor-

phism G-3>G/D, to each subgroup of index p in G/D there corresponds one and
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only one subgroup of index p in G. Therefore the number of subgroups of

index p in G/D is the same as the number of subgroups of index p in G. There-

fore the number of subgroups of index p in G is (p - l)/(p - l).

The following corollaries were proven in the proof of the theorem.

COROLLARY 1: The pth power of every element of G of order p is in D.

COROLLARY 2: The group G/D is Abelian of order p
m"d

and type (l, 1, ..., l)

where d is the order of D.

It will be noted that if G is Abelian of type (1, 1, ..., l) the only ele-

ment common to the subgroups of G of order p " is the identity of G. Thus D

ml
is of order p = 1 and d = 0. Therefore the number of subgroups of order p

in G is (p - l)/(p - 1) = p + p
"'*

+ ... + p + 1. This proves the following

corollary.

COROLLARY 3: If G is Abelian of order p
m

and 'of type (1, 1, ..., l) the

number of subgroups of order p
1"" is p

m~ + p
m~ + ... +p + l.

COROLLARY k: The number of subgroups of order p
~ in a group of order

p is congruent to one modulo p.

Proof: This corollary becomes apparent when it is noted that

/ m-d v ,, v m-d-1 ra-d-2
(p - i;/(p - i) = p + p + ... + p + l.

THEOREM 6: The number of subgroups of order p
S

in a group G of order p
m

is of the form 1 + kp where k is a non-negative integer.

Proof: By Theorem h the number of subgroups conjugate to a subgroup H

of G is equal to the index of the normalizer K (Definition j) of H in G.

However any subgroup of G is of order a non-negative power of p and hence the

index of K is a non-negative power of p. If H is not normal in G, then K / G
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and the index of K is a positive power of p. Thus the number of subgroups

conjugate to any subgroup not normal in G is a multiple of p. For a particu-

lar subgroup of order p which is not normal in G, there are associated with

it those subgroups conjugate to it. This set of conjugate subgroups (includ-

ing the particular one in question) is a multiple of p in number. Each sub-

group conjugate to a group of order p is also of order p . Therefore the

number of subgroups of order p not normal in G is congruent to mod p. It

thus suffices to show that the number of subgroups of order p normal in G is

congruent to 1 mod p to prove the theorem.

s
By Theorem 3» G contains at least one normal subgroup of order p .

Denote the subgroups of order p normal in G by E., H_ t ..., H . Let K.. , K_ t

. . . , K be the subgroups of G of order p .By Corollary 1 of Theorem k

these are all normal in G. By Corollary k of Theorem 5 the number of these

is congruent to 1 mod p. That is r e 1 mod p. It suffices to show that

t = 1 mod p. Let a. be the number of subgroups H.. , H_, . .., H which are in

K where i = 1, 2, ..., r. Let b. be the number of subgroups K , K_ $ ..., K

each of which contains H. where j = 1, 2, ..., t. Then the number of cases in
J

which a group of order p is in a group of order p~ is a, + a. + ... + a ,
1 d. r

The number of cases in which a group of order p " contains a group of order

p is b
1

+ b
2

+ ... + b
t

. Thus 5l+ a
2

+ ... + a = b + b
2

+ ... + b . The

subgroups of G of order p " containing a given subgroup H . are the subgroups
J

of G corresponding to subgroups of index p in the homomorphism G->G/H..
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The number of subgroups of index p in G/H . is congruent to one modulo p by
J

Corollary k of Theorem 5. Thus b. S 1 mod p. Therefore

a_^ + a_ + ... +a —1 + 1 + ... +1 mod p or equivalently

a, + a_ + ... + a St mod p. By Corollary 1 of Theorem k and Corollary k of

Theorem 5 the number of normal subgroups of order p in any given group of

s+1
order p is congruent to one modulo p. It will be assumed that the same is

true for groups of orders p
S

, p
S

, . .., p
m~

, and by induction prove it true

for the group G of order p . By the assumption the number of normal subgroups

of order p contained in K. is congruent to one modulo p. These subgroups in-

clude the a. subgroups contained in K. and normal in G and certain other sub-

groups L, L
2 , ..., L of order p which are normal in K. but not normal in G.

Since K. is normal in G, K. contains every subgroup conjugate to any of the

groups L^, L_, ..., L . Hence as in the beginning of the proof of this theorem,

u = mod p. Therefore a. s 1 mod p. Thus a^+a
p +...+a— r mod p.

Combining this with the previously shown fact a^ + a^ + ... + a = t mod p,

t« r mod p is obtained. It was shown that r = 1 mod p and hence t = 1 mod p

and the theorem is proven.

It is now possible to prove the following theorem which is an extension,

of a sort, of Sylow's Theorem (Theorem b) and is due to Frobenius.

THEOREM 7: If G is any group whose order is divisible by a prime-power

p (s > 0), then the number of subgroups of order p
S
in G is of the form 1 + kp.

Proof: Let p be the highest power of p contained as a factor in the

order of G. By Theorem b there exists a subgroup of order p
m

contained in G.
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Call it G1# If a given subgroup of G of order p is not normal in G, then by

the first part of the proof of Theorem 6 it is transformed by the elements of

G
1

into a set of conjugates whose number is a power of p and hence this number

is congruent to mod p. By Theorem 6, the number of normal subgroups of

order p of G is congruent to 1 mod p. Thus the number of subgroups of G of

, s .

order p xs congruent to 1 mod p or is of the form 1 + kp.

PRIME-POWER GROUPS CONTAINING ONE SUBGROUP OF A GIVEN ORDER

LEMMA 3: In a group G if b
_1

ab = a
11

, then b~
r
ab

r
= a

11
where a and b

are elements of G, n is a given fixed positive integer less than the order of

a, and r is any positive integer.

Proof: If r » 1, the conclusion and hypothesis are identical equations

„

It will first be shown that the lemma is true if r = 2. Since b^ab = a
11

,

2
(b ab) = (a

n
)
n

. This is equivalent to b~ a
n
b = &

1

. Thus by substitution

for a
11

, b"
1
(b"

1
ab)b = a

11

and b"
2
ab

2
= a

11
. Now assume the statement to be

-1 n 1 ti
1""1

r, r,
r_1

true for r - 1. Now b ab = a implies that (b ab) = (a ) which is

,
r_1 ~r r-1

= b^^'ab*equivalent to b" &
n

b = a
11

. By the induction hypothesis, &
n

- ^ r-1^- r~^

r
in which case it follows that b~

r
ab

r
= a

11
and the lemma is proven by induc-

tion.

LEMMA k: If a group G of order p contains only one subgroup G of order

p ,
where s is a given positive integer less than m, then G is a cyclic

s
group

and any element a of G not contained in G
g

is of order p
S+t

where t is a posi-

tive integer.
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Proof: Let a be the element of G not contained in G . Assume that the
s

s+1
S
l

order of a is less than p . Let the order of the element a be p • Then

< s
n S s since a = e would have to be in G . The group {a} is a subgroup

. s

s
l

s
l
+1

of G of order p and is contained in a subgroup of G of order p which in

s1+2
turn is contained in a subgroup of G of order p , and hence by repeated ap-

plication of Theorem +
,

{a.} is contained in a subgroup of G of order p . This

subgroup obviously contains the element a and hence is not G . However by
5

the hypothesis G is the only subgroup of G of order p . Thus the assumption
s

s+1 s+t
that the order of a is less than p is false and the order of a is p where

s+t
t is a positive integer. Hence ap = e and this is the smallest positive

s+t t s t

power of a such that this is true. However a? = (a? )
p and hence aP is

s s
of order p and generates a subgroup G of order p . Thus by the hypothesis

Lie group \af }
of the theorem the cyclic group [af ) must coincide with G and G is a cyclic

s s

group

.

LEMMA 5: Let G be a subgroup of G where G is the only subgroup of G

of order p and G is of order p (0 < r < m). Let G be a non-cyclic sub-

r+1
group of G v/here G is of order p . Let G be contained normally in G

Then if b^ is an element of G not contained in G there exists a positive

integer g and a non-negative integer k which is prime to p such that b, P = b^

-1 1+ 1
r_1

and b.. Db.. = b p where b is a generating element of G .
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Proof: By Lemma *f, G is cyclic and hence contains a generating element

b of order p . Since b- is an element of G n which is not contained in G
1 r+1 r

and G^ is a normal subgroup of G there exist positive integers i and j such

that b
1
~ bb

1
= b and b p = b J

. Assume that j is not divisible by p. Then

the order of \? would be p
r

since G = (b^ is cyclic and of order p
r

. This

P r r+1says that b^ is of order p which says that b is of order p since

r r+1
^b
l ^

= b
l

= e and this is the leas '

t positive power of b. such that this

is true. However since G is not cyclic, \> cannot be of order p
r+1

. Hence

j = gp where g is a positive integer. This proves the first part of the lemma.

Let h^ be the least positive integral power of b
1

such that b q is per-

mutable with b. Thus b^bb^ = b. By Lemma 3, the relation K ob. = b
1

.q .q r
implies that b

1

"qbb
i
q

= b
X

. Therefore b
X

= b and iq = 1 mod p
P

since bP = e,

By Theorem i, in the group Sb, b-J the element b is one of a complete set of

q conjugates and q is a positive power of p. Since b P = bJ
, b~ Jbb J = b

implies that b
1

~pbb
1
P = b and hence q < p. Since q is a positive power of p,

p = q. Thus ip = 1 mod P
r

. Assume that i b 1 mod p
r

. Then h
-1
bb = b and

the group [b, b^ would be Abelian of type (r, l) since b is of order p
r

and

b
1

is in G^
+1

implying that b
1

would have to be of order p by theorem e. This

group would then contain an element b
±

of order p and not occurring in {b\ .
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r+t
By Lemma k if b.. is not in G its order must be p where t is a positive in-

r
teger. Thus a contradiction is reached from the assumption that i =. 1 mod p

and hence i^ i mod p . However i^ ~ i mod p for all positive integral i by

Theorem j. It has also been shown that i* Si 1 mod p . Thus i = 1 mod p. Hence

i is of the form i = 1 + kp where u is chosen so that k is prime to p. (i.e.

all powers of p are factored out of h if i s 1 mod p were written as i = 1 + hp.)

Note that u may be equal to one. It is less than r since i^fel mod p . It is

greater than by definition of congruence. Now

ip = (i + kp
u
)* = i + kP

u+1
+ y*p(p - Dk2

P
2u

+ ... + kVu
.

By noting that p
u

divides all terms of the expansion except the first and

r-1
that i' si mod p it is apparent that u = r - 1. Thus b ~ bb_ = b ^ .

LEMMA 6: If a and b are two elements of a group G of order p and are

"1 n
such that b ab = a where n is a given positive integer, then for any integral

/ 2 Ts

x and for all positive integral r, (a^)
1" = b*a

n+n + **'+n ;
.

Proof: The hypothesis b^ab = a
n

implies that (b
_1

ab)
X

= (a
n

)

X
which is

~1 x iix x, nx
equivalent to b a a = a or a d = ba . Now

b~
T
U*b)

r
= b

1-r
(b-

1
a
X
b)(a

X
b)

r"1

'

* b^Lb-V^^bJ [a^*-2

= b
2-r[x(n2+n)][aXbJr-2

= b3-{Ax(n2+fl+1)
b] [*\

r"3
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• • •

, -1 x(n
r~ +n

r~ +...+n+l) ,
= b [a J b

/ r r-1 2 x
,x(n +n +...+n +n) ^

= a

r x(n+n
2
+ +n

r
)

Therefore (a b) = b a
***

which proves the lemma.

THEOREM 8: If a group G of odd order p contains only one subgroup G
s

s
of order p , where s is a given positive integer less than m, then G is a

cyclic group.

Proof: Let p be the largest number which is the order of an element of

G and let b be an element of G which is of order p . Then £b^ is either identi-

cal with G or by Theorem k is contained normally in a subgroup G . of order

r+1
p .In the first case where r = m, G is cyclic and the theorem is proven.

r
In the second case G is non-cyclic since bP = e and the other generator

is of order p. It will be shown that the second case cannot exist.

Thus assume that {b] is a normal subgroup of G . Let b
n

be an element

of G which is not contained in \bj. Then by Lemma 5 there exists a non-

1 1+k
r-1

negative integer k which is prime to p such that b ~ bb = b P
. Then

i . . 2 ,p>

applying Lemma 6, (b^)5 = b-^b
+1 +, ** +x

where x is any integer and

r-1
l = 1 + kp . Now

i + i
2

+ ... + ip = (1 + kp
r_1

) + (1 + kp
r_1

)

2
+ ... + (1 + kp

r_1
)
p

.

Since every term in which k is of degree 2 or greater of the expansion of this
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T T
equation is a multiple of p and b is of order p it becomes apparent that

(b*b )
P = b Pb

x [p+(l+2+"* +P'lkp J = b Pb
x Lp+1/zp(p+l)kp J .

By hypothesis p is odd and hence 1/2(p+l) is a positive integer and 1/2(p+l)k is a

positive integer h. Therefore (b^) 5 = b
]

pb
x(p+hp

' = b^b*5 since b is of

order p . By Lemma 5 there exists a positive integer g such that b* = b° .

Taking x = -g and using the last two equations yields (b °b. ) = b pb °^ = e.

However b °b, is not in fb] . By Lemma ^f, b~°b_ must be of order p or greater.

Since it was just shown to be of order p or less a contradiction is reached and

hence only the first alternative indicated earlier is possible and G is cyclic.

LEMMA 7' The solutions to the equation a 5= 1 mod 2 are aS+1 mod 2

r—1 r—1 r
and a ~ + 1 mod 2 " the latter of which is the same as a ~ + 1 + 2 mod 2 .

2 r 2 r k
Proof: If a Si mod 2 then a -1=0 mod 2 or a - ISO mod 2 and

r—

k

a + 1 = mod 2 where S k < r a Adding 2 to both sides of the first of the

latter two equations yields a + 1 =" 2 mod 2 . Let h = min(r - k, k) . Then

a + 1 = mod 2 and a + 1= 2 mod 2 . Thus 2=0 mod 2 and 2 divides 2„

This means that k is equal to 0, 1, r - 1, or r. Considering all possibilities

r r—1
yields a = + 1 mod 2 and a=7+ 1 mod 2 . This proves the first part of the

theorem.

r—1 r r—1If a 3 + 1 mod 2 when as + 1 mod 2 , then a = + 1 + 2 j for some

odd integer j. Hence j = 2n + 1 for some integer n. Thus

a = + 1 + (2n + l)2
r'1

= + 1 + 2
r-1

+ 2
r
n and a 5 + 1 + 2

r_1
mod 2

r
.
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THEOREM 9: If a group G of order 2 contains only one subgroup G of
S

order 2 , where s is a given positive integer greater than 1 and less than m,

then G is a cyclic group. If G contains only one subgroup G of order 2, then'

G is either a cyclic group or a group of the type defined by the relations

2
m-l

2 2
m-2

b = e, a = b , a ba = b (m > 2).

Proof: As in Theorem 8 let 2 b.e the largest number which is the order

of an element of G and let b be an element of G which is of order 2 . Then {b}

is either identical with G or by Theorem 4 is contained normally in a subgroup

r+1
G of order p . In the first case where r = m the theorem is proven. In

2
r

the second case G is non-cyclic since b = e and the other generator is of

order 2. It will be shown that the second case cannot exist if sS 2. This

will prove the first part of the theorem.

Thus assume that (b] is a normal subgroup of G _ . Let b.. be an element

of G . which is not contained in {b}. Then by Lemma 5 there exists a non-

r-1
negative integer k such that b ~ bb = b . Then applying Lemma 6,

2 7> h
/.x, A 4,x(i+i +i +i ) , . . , . -.r-L
l.b d.jJ = b- b where x xs any integer and i = a + 2 Tc. As in

Theorem 8,

i + i
2

+ i
3

+ l
k S k + Uk){k + l)2

r"1
k 54+ (10k) (2

r~1
) 5=4 mod 2

r
.

Since b is of order 2
r

it follows that (b^b ) = b b
X

. By Lemma 5 there

exists a positive integer g such that b = b S
. Taking x = -g and using the

last two equations yields (b
-
^) = b b" S = e. Thus b~°b is an element of
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order at most k which is not contained in {b\. By Lemma k, b"^ must be. of

order 2
r+1

or greater. Since it was just shown to be of order 2 or less a

contradiction is reached if s £ 2 in which case G is cyclic and the first part

of the theorem is proven.

Now consider the second part of the theorem in which case G has only one

2 . .

subgroup G of order 2. By Theorem k the only group of order 2 containing

only one subgroup of order 2 is the cyclic group. If m = 2, G coincides with

G. Thus G has been shown to be cyclic unless m > 2. Hence it will be assumed

that m > 2. Let 2
r

be the largest number which is the order of an element of

G and let b be an element of G of order 2
r

. As before if r = m, G^ and G coin-

cide and the theorem is proven. Thus assume r < m. The group (b} is a normal

subgroup of a group G " of order 2
r+

by Theorem *f. Let b be an element of

G of order as small as possible and such that it is not in (b"U Since the
r+1

restrictions on b and b.. are the same as in the first part of the proof with

the additional restriction that b.. is of minimum order, as before there exists

a positive integer g such that (b"Sb ) = e while b"gb is not in \b\. Hence

b~^b n
is of order not greater than k. Since it was assumed that b^ is of min-

1 *-

imum order consistent with the fact that it is in G _ and not in \b] and since

b~°b, is in G , and not in {b"\ and of order not greater than k. it follows
1 r,+l * •»

that b
n

is of order not greater than *f. However if b.. is of order less than *+

this contradicts the results of Lemma 4 since £b] is of order 2 and greater
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2 2
r

2
than 2. Thus b, is of order k and b_ is of order 2. Note that (b ) = e

-r-1
r 2

and since b is of order 2 , b is of order 2. By hypothesis G contains

only one subgroup of order 2. Hence b = K and b^ is in \bj. Since ^bj

is a normal subgroup of G there exists a positive integer i such that

?

b ~ bb. = b . By Lemma 3» b ~ bb^ = b . Since b.. is in {b} , b and b.. are

.2

permutable and b," Db^ = b. Thus b = b. Therefore i Si mod 2 . This is

true because b is of order 2 . By Lemma 7 the only solutions to this equation
«

r r—1 r r
are i = + 1 mod 2 and i s + 1 + 2 mod 2 . If i5 1 mod 2 , then

b.. bK = b and Jb, hSX would be Abelian of type (r, l) and would hence contain

the element b., of order 2 and not in {b] # This contradicts Lemma h,

r-1
r-1 r -1 +1+2

If i e + 1 + 2 mod 2 , then b.. bb- = b— . Taking r to be greater than

r-1
one and raising both sides of the equation to the 2 power yields

. -lK2
r-\

v
+2

r"1
+2

2r-2
,+2

r-1
b b b = b- = b-

2
r-l

since b is of order 2 and 2r - 2 > r when r > 1. However since b is its

2
r-l -r-1

own inverse it follows that b = b~ so that in either case

-1 2
r_1

2
r_1

S 2
1*"1

)
b, b b.= b which says that the group lb.. , b is a non-cyclic

Abelian group. It is obviously a subgroup of G since b.. and b are elements of

\h
±]

and \\f j
G. Since in this case b and \b ) are subgroups of G of order 2 by
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Theorem e, there is more than one subgroup of G of order 2. This contradicts

the hypothesis of the theorem and hence i^£.+ 1 + 2 mod 2 . Thus

r-1

is-lDod 2
r

. Hence b'^Tjb b"
1

when r > 1. If r = 1, b
1

"1
bb

1
= b-

+

-1 2
implies that b.. bb- = e since in this case b = e. This implies that b = e

and hence r / 1.

It is now necessary to show that r = m - 1. It will be remembered that

the case being considered here is r < m. Hence now it will be assumed that

r «c m - 1 and then a contradiction to this assumption will be reached proving

2
that r = m - 1. Since b is of order 2

r
and b, is in ?b|, Cb t b^ is of order

r+1
2 . Hence by Theorem k it is contained normally in a subgroup of G of order

r+2
2 . Let bp be an element of this subgroup Gj 2

such that bp is not contained
e

in ?b, b.."l . Since $b, b.."^ is contained normally in G _ it follows that

bp" jb, b^ bp\= |b, b \, However it is also true that bp \bjbp = \bj» for

if this were not true then there would exist some positive integer t such that

r-1
—1 2 t 2

bp b bp = b^b , remembering that b
1

is in (b). Squaring both sides of the

t 2 —1 2
equation yields (kb ) = bp b b

p
= e. Note that this is the least positive

power of b..b such that this is true. Hence jkb j is of order 2 and {b )

t 2
r~1

is of order 2. Since G contains only one subgroup of order 2, Kb = b

which says that b = b . This is a contradiction since b.. is not in £b}.



27

Since b? and b are in G _, the group Vb, ~bS\ is of order not greater

than 2
i

. Since b is of order 2 , b
?

must be in \Ja\, Now assume that b_

is in ^b] . Then b~ and b are permutable. Recall that in an earlier part of

the theorem it was shown that b, and b permutable along with b..
""

^b^b.. = b

imply that b. bb.. = b o In an exactly analoguous manner then b?
~ ob_ = b" .

Thus b
1

Db
1

= bp bb_ which is equivalent to b = b,b
? DD

?
b . This says

that b and bpb ~ are permutable and hence that }b, b_b ~ is a non-cyclic

Abelian group. Since b, b , and b are in G , the group fb, b~b ~
{ is of

r+2 r C -1^
order at most 2 . Since b is of order 2

, jb, bpb > is of order not less

than 2 . It is not of order 2
r

for if it were, b?b
~ = b

W
for some non-

negative integer w. This implies that b. = b b which cannot be true since b_

was so chosen that b
2

is not an element of fb, bSl . If jb, b_b
"1

< is of

r+1 C -1") f 2
r~^)

order 2 " then ib^ £ is of order 2. However (b $ is also of order 2.

2
r-l r-1

Since G contains only one subgroup of order 2, b = bpb or bp
= b b

which is a contradiction since b_ is not in £b, bul . If $b, b
?
b

~1
] is of

order 2
rH

, ^b^"
j
is of order 2 and jCb^ ) j is of order 2. Again by

the hypothesis of the theorem this implies that ^ph-,"
1

)

2
is an element of \b\.

If this is true, jb, b^" < is of order 2
r+

which is a contradiction of the
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sumption that jb, b-b" { is of order ^ • Hence in each case a contra-

diction is reached from the assumption that bp is in {b} . Now t>2
cannot

Z Zj. Zj. - .

be in {b} for if it were then since bp b. = bp and bp is in [bj, this would

imply by closure that bp is in ^b^ contrary to assumption. Thus k is the

least positive integral exponent of bp such that bp to this exponent is in

._ , p ?
^b}. Hence (b, b

?^
is of order 2 . Now bp and b are not permutable for

if they were then the Abelian group Sb, bpl and hence G would contain the sub-

S" 2
r_1

) <r 2)
groups (,b ) and [bp ? of order 2 contrary to the hypothesis of the theorem.

Since b
?

~*
(b^b- = ^b} there exists a positive integer j such that

2 .k

bp
-J
"bbp = b J By Lemma 3, bp~ bb

p
= b J and bp bbp = bJ

o Since b_ and b

2 , r h C t h
are not permutable, j 5=1 mod 2 . Since bp is in \b j , b

?
and b are permut-

h- r
able so that j ~ 1 mod 2 . By Lemma 7 the solutions of this congruence are

2 r 2 r—

1

2 / r3+1 mod 2 and j = + 1 mod 2 . It has been shown that j ^1 mod 2

Nov; j is an odd integer for if it were not then b
?

bb_ = b 1 for some pos-

itive integer k or equivalently bp "b b
?

=b l=e. Multiplying on the
-? 2*

-2 2 2
r_1

right by bp and the left by bp yields b .
= e which is not true. Thus

2 _ 2
3 +1 = mod 2. It is always true for any integer j that j == mod k or

2 2 2 2
3 as 1 mod *f. Thus j + 1^0 mod 4. Hence j is of the form j = - 1 + 2k

p
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2 r 2 r—

1

where k
p

is an odd integer. Thus j ^- 1 mod 2 and j ^ - 1 mod 2 .

Therefore j
2 s 1 mod 2

r~1
while j

2^ 1 mod .2
r

. Thus j
2

= 1 + 2
r_1

k where k

is an odd integer. Hence b ""Vb
2

= (b
1+2 k

3)
2

= b
2

. Thus b
2

and b
2

are
2 2

x -" 2

permutable and the group jb? , b (is Abelian with subgroups |b_ J and |b j

of order 2. Thus G contains more than one subgroup of order 2 contrary to

the hypothesis of the theorem. Thus the original assumption that r < m - 1

-in-1 p _m-2

is false and r = m - 1. Hence it is now known that b = e, a = b , and

a~ ba = b~ , taking a to be b.. . It now remains to be shown that this group

exists and is unique.

If this group does exist its elements are b a where u = 0, 1, ..., 2~-l

and v = 0, 1. If each element is multiplied on the left by b, another element

of the set is obtained and in fact a determinate permutation of all the elements

of the set is obtained, that permutation being

/b
U
a
V

\b a I

In like manner since a" ba = b~ implies that ab = b~ a, it follows that

/vu v \ ,,u-l v , -1 , u-1 v , -1 , , u-2 v , -2 , u-2 v
a(.b a ; = aob a = b ab a = b abb a = b ab a .

After a total of u steps one has a(b a ) = b"~ a . Hence multiplying each

element on the left by a also yields another element of the set as well as a

determinate permutation on the elements of the set, that being

/ b a

** ~
\ , -u v+1

,

\ b a
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(Associativity on the set has been assumed throughout although not specifically

stated.) It contains the identity as has been determined. Hence if it is

closed each element will contain an inverse so that closure remains to be shown

to show that the set is a group. It is closed since each element is a product

of powers of a and b and it is closed under multiplication on the left by a

and bo

It now remains to show that this group is unique. The elements of any

group G 1 determined by the hypothesis of the theorem must have the properties

listed above and be of the form a 1 b 1 where u = 0, 1, 2
t ...,2 "-1 and

v = 0, 1 and where a* and b* are the generating elements of the group G 1
.

However multiplying each element on the left by b' and a 1 respectively yields

the respective permutations

fb'
U
a'

v
\

d
(b'

U
a'

V
\

lb'
U+1

a'
V
/ lb«-V

V+1
J.

These are exactly the same permutations on the elements of G 1 which was ob-

tained upon the elements of G. Hence if the set of permutations generated by

p and <* has the same properties as G and G 1 then this set will be a group iso-

morphic to G and G 1
, and hence G and G' will be isomorphic to each other and

abstractly identical. Hence note that

(-js-1
. u v \2 /,u v x /,u v

b
u+1aV \h

u*2
aV V°V

which is the identity permutation. Also

/, u v \ 2 / u v
b a \ / b a

2
ex =

i , -u v+ll \ , u v+2
;

\b a / \d a
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Now note that

u v \ /Vu+1 v\ /,U V

^"1=
lb-Ua

V+1 bV j

=

\b-
U-V+1

-

and

<*

W I bV \ fb
u
a
V

Vb
U+1

a
V
J lb-

U
a
V+1

J

=

b^V^
Therefore °^~ = ft<^< or cx~ a^ = a~ . Thus $G»°<^ is a group isomorphic to G

and to G' and hence G is unique. It now remains to show this group contains

only one element of order 2. Since the order of b is 2 , z = 2 is the

only positive exponent of b less than 2 ~ such that (b ) = e. Thus if it can

be shown that (bya) / e for any integral y such that 0Sy52' -1, G con-

tains only one element of order 2 remembering that v = 0, 1 and that u = has

been considered. Now

(bya)
2

= byabya = by
"1

(ba)bya = by
~1

ab
y_1

a

2 2 p
m~^

and after y steps this becomes (bya) = a = b j£ e. This proves the

theorem e

PRIME-POWER GROUPS WITH A CYCLIC SUBGROUP OF INDEX p

THEOREM 10: If p is an odd prime and m > 2, there is one and only one

abstract non-Abelian group G of order p containing an element of order p ~
.

It is the group defined by

m-1 - . m-2
P vP -1, , 1+pa^ = b^ = e, a ba = b ^
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Proof: The reason for assuming m > 2 becomes apparent when it is noted

2
that there are no non-Abelian groups of order p and p by Corollary 2 of

Theorem a and Corollary 2 of Theorem 2 respectively.

Assume that m > 2 and let b be an element of order p in a non-Abelian

group G of order p if such a group exists. Since {b\ is cyclic and of order

m-2
p'~

, the element b^ is in (b] and is obviously the only element of )b\ of

m-2 m-1
order p as (b^ )^ = b*

1

= e. Thus ^bl contains only one subgroup of order

p. Therefore G is non-Abelian and hence non-cyclic by the contrapositive

statement of Corollary 2 of Theorem a. By the contrapositive statement of

Theorem 8, when s - 1 it is seen that G non-cyclic implies that G contains more

than one subgroup of order p. Thus G contains at least two elements of order

p. There is only one such element in ^b^ as was shown. Hence G contains an

element b.. of order p not contained in ^b). Now £b\ is normal in G by

Corollary 1 of Theorem k. This along with the fact that G is non-Abelian im-

plies that there exists a positive integer i such that b.. " bK = b where

T -PKi^p . By Lemma 3 it follows that b.. ^bb,^ = b . However since b, is

.p
of order p it is true that b "^bb, 5 = b. Thus b = b

1
. Since b is of order

p , iP = 1 mod p'~
. This implies that i^sl mod p. By Theorem j, ip = i

mod p. Hence i«l mod p. Then i can be written as i = 1 + kp where k is an

integer and s is an integer chosen so that k is prime to p. Considering the

definition of congruence and the fact that i ?£ 1 mod p
m

, it is apparent that

< s < m - 1.
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Now

2 2s
ip = (i + kP

s
)
p = i + kP

s+1
+ y2p (P - DkVs

+ ... + kpp
ps

.

By noting that p
S+1

divides all terms of the expansion except the first and

that iP s 1 mod p
1""1

it is apparent that s = m-2. Thus i = 1 + kp . By

Lemma J, b

,

-X
bb

X
= b

X
for any integer x. Now

v m.?,x m-2 , , , %, 2 2m-4 ,x mx-2x
i
x

= (1 + kp
m

)
X

= 1 + kxp + 1/zx(x - l)k p + ... + k p

Since m > 2, p"
5
"1

divides all terms of the expansion of i
X

except the first

.x m-2

two. Hence since b is of order p
m~

, b
X

= b
+ P

. Let x be such that

kxal mod p. Then

• x , /, , \ m-2 . m-2 . m-1 ... m-2

b
1

= bl+d+V )p = b1+P
+k

lP = b1+P

1
m~2 x

where le is an integer. Hence b
-X

bb
X

= b P
. Setting a = b

1
yields

-, , m-2
a oa = b p where a is of order p since b

1
is of order p. Then the group

(a, b} satisfies the defining relations of the conclusion of the theorem pro-

vided this group exists. It is of order p . If this group exists its elements

are a
U
b
V

where u = 0, 1, 2, . . . , p - 1 and v = 0, 1, 2, ..., p - 1. As in

Theorem 9 it suffices only to show closure of the set by a multiplication of

any element of the set by a and b in order to prove G a group. Also if this

is done determinate permutations of the elements will be obtained, and if these

permutations satisfy the previously determined properties satisfied by a and b

this will suffice to show uniqueness of the group and will thus prove the

theorem.



Multiplying a
u
b
v

on the right by b yields a^V* . This determines the

permutation

/aV
*

=

1 aV+
;

m-2 l+n
m"2

Since a ba = b p is equivalent to ba = ab p
, multiplying on the right

by a yields

m-2 -. ~.,~, m-2
u, v u,v-l/. N u,v-l ,1+p u,v-2 2+2paba = a b (ba) =ab ab ^ = a b ab

m-2

After v steps this becomes a

is

\V
a. = a

U+1
b
v(l+P

^ . The permutation determined

o< =
a
U
b
V

a
u+l

b
v(l+P

m-2
)i

Thus G is a group. Now

m-1 / a Id ,
U
b
V

u, v+p
,a b r

m-1
,a b

which is the identity permutation and

a b

,, m-2%p
u, v(l+p )*] \ u, v
a o / \a b

which is also the identity permutation. Now

u. v \ / u, v
a b 1 / a b

^ u,v
a b

«* =
1 aW L-v^^V la

u+1
b

("1)(1+?°"
2

V

and
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u, v
m-2 / a b

1+p

u+1, v(l+p )J
a b

a b \

.. m-2

Uv+1+p
I

' a b

/, m-2\ . m-2,
u+1, v(1+p )+l+p

\a b

m-2

Since (v + 1)(1 + p
m"2

) = v(l + p
m"2

) + 1 + p , ^ = «<$
P °r

cs" sol's & p and G is unique.

THEOREM 11: If ra > 3, there are four and only four non-Abelian groups of

order 2' each containing an element of order 2 .

Proof: Let b be an element of order 2 in a non-Abelian group G of

order 2
m

if such a group exists where m is greater than 3« Suppose the only

element of order 2 is the single element of order 2 in (b^ t that being the

_m-2
element b . Since G is non-Abelian it is non-cyclic by Corollary 2 of

Theorem a. The group G satisfies the hypothesis of Theorem 9 and since it is

non-cyclic it is the last type defined in Theorem 9 and was shown to be unique.

It remains to consider when G contains an element a of order 2 not con-

tained in £b}. By Theorem k, £b] is normal in G and hence there is an integer

.2

i such that a" ba = b where 1 < i < 2 ~
„ By Lemma 3t a"ba = b „ However

.2

a is of order 2 and hence b = b . Since b is of order 2 , i S 1 mod 2 .

Now i is an odd integer for if it were not, a" oa = b for some positive inte-

rn p
ger n. Raising both sides of the last equation to the power 2 " yields

.. _m—2 _m-l _m—

2

a~ b a = b = e which implies that b = e which is not true.

Thus i = 1 + 2 k for some positive integer s and some positive odd integer k.

*1 1 O l

Now s < m - 1 for otherwise a" ba = b " would imply that a and b are
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permutable which is contrary to the hypothesis that G is non-Abelian. Now

i -ISO mod 2.
"

o Hence

.2 , /., _s, v2 n -,s+l, -,2s, 2 _s+l/, ->s-l, 2\ _ , ~m-l
i -l=(l + 2k) -1 = 2 k = 2 k =2 (k + 2 k)=0 mod 2 o

2 2
Since k is odd and s < m - 1 either s = m - 2, ors=l and 2 (k + k ) s mod

2
""

. In the first case i = 1 + 2 ~ k. Thus l + 2~k<2~ which implies

that 1< 2' (2 - k). Hence since k is an odd positive integer, k = 1 and

i = 1 + 2 . In the second case, k(l + k) H mod 2 , but since k is odd

m—

3

m—

3

it follows that 1 + k = mod 2 . Thus k = - 1 + 2 t where t is an integer

m P
and i« -1 + 2 t. Now t is positive for if it were not k would be negative

which is not true. Now i < 2
m~ implies that - 1 + 2

m~ t < 2
m~ which in turn

implies that - 1 < 2 " (2 - t). The only possible values for t are t = 1 and

t = 2. Thus this second case gives rise to two subcases those being

o m i
pffl—1 _

i = - 1 + 2' " and i = -l + 2 „ In all three cases note that b =a = e.

In the case where i = 1 + 2 , aba = b since a~ = a. In the case where

m p i j.^
m~^ o m-2

i = - 1 + 2
m-% aba = b~

1+d
or (ab)

2
= b

2
. When i = - 1 + 2

m_1
,

-l+2
m_1

2
aba = b or (ab) = e. In each case the elements of G are b

U
a
V

where

m—

1

u=0, 1, 2, ..., 2 "-1 and v = 0, 1. It now remains to show that in each

of the three cases G exists and is unique.

1
pm-2

When aba = b , multiplying b a on the left by b yields the permutation

, u v
b a

* "\ „»v.
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Multiplying on the left by a yields

,u v . l+2
m-2

.u-1 v , 2+2(2
m-2

) u-2 v
.

ab a = b ab a = b ab a =

This determines the permutation

vu(l+2
m"2

) v+1
= b a

°i =

,. u v
'd a

vu(i+2
ra"2

) v+:
b a

)

1.

It is obvious that

2
m-l

2
/b a

vb a

Which is the identity permutation. Now

/ d a
om*\ =

f
, U V \ /, U V
b a \ /b a

/,u v
b a

u(l+2 "
) v+ll I , u+1 v u(l+2

m"2
) v+lJ

,b"
v ""

'a" "7 \b a / \b

and hence in the first case G exists and is unique.

_m-2 I
" $

i.u+1+2 v/

1+2'
m-2

When (ab) = b , multiplying b
U
a on the left by b yields the permuta-

tion

vu v
b a

Now

^ "
\ UU+1 V
\b a

-, ->m~2 , rom-2 . v v+1
r-J* vN / x.\vu+l v /.-1+2 \,u-l v vu ^ 2 -Da

a(b a ) = (ab)b a = (b ajb a = ... = b

This determines the permutation

fb
U
a
V

°< =

L(2
ra-2

-i) v+:

\b a
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m-1
2

/b a

<*>

b a /.

Now

(°^)
2

=

b a b a
rr2

^u^1""2
-!) v+ljl .u+1 v

b a / V b a

b a

vu(2
m"2

-l)+l v+3
lb a

VU v
b a

_m-2
» ,u+2 v
\b a

jn-2

and hence in the second case G exists and is unique.

When (ab) = e, multiplying b
U
a
V

on the left by b determines the permuta-

tion

b a

Now

$ \,u+l V
\b a /.

,,U Vv , , U-l V , -1 , U-l V , -u v+1
a(b a. ) - abb a =b ab a = ... = b a i

This determines the permutation

<^ =
b a

, -u V+lj
ib a

It is obvious that

2
m-l

= <* =

/b
U<^

\b a

Now

. U V \ / , U V
i
b a \ / b a

\ II , -u v+ll \ , u+1 v
,b a / vb a

712
b a

l,1-U v+lj
^b a

b a

\b a

Hence in the third case G exists and is unique. This proves the theorem.



39

ACKNOWLEDGEMENT

The author wishes to express his sincere appreciation to Dr. Richard L,

Yates for his patient assistance in the preparation of this report.



ko

REFERENCES

Burnside, W. Theory of Groups of Finite Order . Cambridge: University Press,

1897.

Carmichael, Robert D. Introduction to the Theory of Groups of Finite Order .

New York: Dover Publications, 1956.

Fuchs, L. Abelian Groups . Oxford: Pergamon Press, i960.

Hall, Marshall, Jr. The Theory of Groups . New York: The Macmillan Company,

1959.

Hilton, Harold. An Introduction to the Theory of Groups of Finite Order .

Oxford: Clarendon Press, 190o.

Kurosh, A. G. The Theory of Groups . New York: Chelsea Publishing Company,

1956.

Ledermann, Walter. Introduction to the Theory of Finite Groups . New York:

Interscience Publishers, 1957 •

Specht, Wilhelm. Gruppentheorie . Berlin: Springer-Verlag, 1956.

Zassenhaus, Hans J. The Theory of Groups .' New York: Chelsea Publishing
Company, 1958

o



PRIME-POWER GROUPS

by

GERALD CLARK SCHRAG

A. B., Bethel College, i960

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Mathematics

KANSAS STATE UNIVERSITY
Manhattan, Kansas

196^



Any finite group may be generated by a certain set of prime-power groups.

It is because of this that the theory of prime-power groups is very important

in the application of finite group theory. Thus many theorems which can be

proven about prime-power groups may be used to prove other theorems concerning

finite group theory in general.

It is the purpose of this report to present in a logical order some of

the basic properties of prime-power groups. The first section is concerned

with presenting some simple properties which are common to all prime-power

groups. These properties have to do with self-conjugate elements and normal

subgroups of any prime-power group.

It is often interesting and helpful to know how many subgroups of a given

order are contained in a given prime-power group. If not enough information

is given about the subgroups it still may be possible to obtain some informa-

tion about the original group. This original group is shown to be cyclic if

it is of an odd order and either cyclic or of only one other possible type

if it is of even order.

It is shown in the last section that if a non-Abelian prime-power group

contains an element of highest possible order such that it is not a generator

of the group, there is one and only one such group if it is of odd order and

exactly four such groups of even order provided the order of the group is

large enough.


