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I. INTRODUCTION

Impedance pneumography is a technique used to study breathing
patterns and lung function by means of impedance measurements across the
thorax. During respiration the impedance across the thorax changes for a
variety of reasons. Air entering and leaving the lungs changes the resis-
tivity of the medium; expansicn and contraction of the thoracic wall muscles
changes the resistivity of muscle fibers, and blood circulating in the
capillaries in the lungs causes variatiens in their resistivitiss. Addi-
tionally, the thorax ccutains complicated distributions of bone, fat and
membrane. The thoracic wall is highly conductive compared with the other
tissues of the thorax other than the heart.

Impedance measurements are made by placing electrodes on the surface of
the thorax and measuring the impedance betwean them during respiration. The
impedance is expressed as the ratio of the wvoltage applied to the current
that flows between the electrodes. There are several methods used to make
impedance measurements: the two-electrode techaique, the four—electrede
technique, and the three-electrcde or guard ring technique. All these fech-
niques are described by Cooley [1] and shown in Fig. 1.1. 7ZThe two- and
four-electrode techniques have disadvantages 2f low czurrent penetration and
large thoracic wall impedance effects {1}. 1In crder to make significant
studies of respiratiom, current penetraticn of the Iung must be achieved.
The guard ring technique is used to focus the current from the central
impedance measuring elesctrode through the lung tissue so that the measurenent

of the impedance can be restricted to only a central core of tissue |21.
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It is the objective of this research effort to investigate the current
pathways arising in guard ring electrode systems. The iﬁpedance pneumograph
described by Schmalzel et al. [3] uses the guard ring technique to inject
a constant current from the central electrode. The ratio of the potential
developed between the central electrode and the reference electrode and the
constant current is the impedance of the pathway through which the constant
current flows.

This research effort uses a highly simplified medeling approach :o
analyze the current pathways. Initially the thorax is represented by an
infinite layer of a homogeneous medium cf finite thickness. The sclution of
the field problem is then extended to a 2-layered configuration with dif-
ferent conductivities representing the thoracic wall and the remaining
thoracic tissue. Parameter variations pertaining to electrode dimensions and
relative potentials between the central electrode and the guard ring ars also

investigated.



II. SINGLE-LAYER MODEL

Electrostatic Analysis: The single-layver medel is shown in Fig. 2.1. The

medium consists of an infinite layer of thickness d and conductivity ¢. The
reference electrcde is an infinite ground plane. This represents a worst
case condition as a finite size reference electrode will channel the currert
through a sma2ller core. This will be discussed later. The potential on the
center electrcde is Ve and that on the guard ring is Vg. The impedance

-

poeurograph [31 injects 2 constant curreat through, and detects the poterntial

e

rr

cn, the center electrode. However, from a2 field esguation peint of view,
is simpler to keep the potential on the center electrode comnstant and detect
the current injected. It will be shown that cthe two approaches are
equivalent.
The field equation to be solved is Laplace's equaticn
7%y = 0 (2.1)
where V is the potential at any point in the region. Assuming cylindrical

coordinates (r,3,z) Laplace's equation can be rewritten as

2 2
~ ¥ 1 ""11 7
13 _ B L 8V  BV¥ayg, (2.2)
T 3r ar 2 a2 2
r 236 3z

Due to axial svmmetry about the axis of the center electrode, variations of

2 2
potential with § are nil and hence 3°V/3¢” = 0. Laplace's eguation then

reduces to

3 3y, 3%
ar T 3’ T 2 .
2z

M=

€2.3)

The solution to the above equaticn is the petential at any point in the

region under considerationm, which is shown in Fig. 2.3ibh.
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Figure 2.1, Single-Layer Model.



The boundary conditions which must be imposed are

V=0 at z=d (all 1) | (2.4)
v=v, at z=20 (0 < r < a) (2.5)
Vv = Vg at z =20 (b <r < c) (2.8)
AV
L 0 at z=20 (a<r<b, c<rc<mw=), (27D

The last condition arises from the fact that current flowing normal to the
boundary at z = 0 outside the electrodes is zero. The Fourier-Bessel
integral representation of the solution for the potential in the mediun is
V(r,z) = J“ élﬁ&l e U2 Jo(ur)du + [” Elé!l et? Jo(ur)du (2.8)
0 ‘0
where A'(u) and B'(u) are unknown functions to be determined from the boun-
dary conditions and JO is the zero-order Bessel function of the first kind
[4-6].
From Eq. (2.4), V{(r,d) = 0. Therefore,

A'(u) e—ud 4 3' (u) eud

=0
u u
or
-ud
A'(u)e . :
' T R . A 2.
B' (u} 53 . (2.9)
e
Substituting Eq. (2.3) into Eq. (2.8), yields
oo ~ud
o N A'(u) -uz 7 A'(w) e e uz
V(r,z) = Jo m—— Jo(ur)du + jQ ——E——-;EE— Jo(ur)du
d-uz -ud+uz
A'(u) e - e =
[b m [ od ] Jo(ur)du s (2.10)
‘0 =
Now let
A () = stk (2.11)



Substituting Eq. (2.11) into Eq. (2.10), it follows that

d-uz - (ud-uz)
A(u) e - e
V(r,z) = [ ] J.(ur)du
10 all 4 20y e 0™
or
Titrz) J{: Ai“) Si‘;l;s;'(i;z) Toturddu . (2.12)

It is clear that Eq. (2.12) satisfies the boundary condition in Eq.
(2.4), i.e., V(r,d) = Q.

The unknown function A(u) must be determined from the remaining boundary
conditions. From the condition in Eq. (2.5)

V{r,0) = Ve (0 <r<aj. (2.13)

Substituting Eq. (2.13) in Eq. (2.12),

ri(—“l panhilod) T Garydu = ¥ © <5 <a) . (2.14)
0 u 0 e -
From the condition in Eq. (2.6),

v(r,Q) = Vg (b<rc<e} . (2.15)
Substituting Eq. (2.13) in Eq. (2.12),

)

| AW L onh(ud) T, (ur)du = V b<r<e) . (2.16)

fQ u 0 g
Now from Eq. (2.12),

av(r,z) _ 3 = A(u) sinhu (d-z) 5

3z T3z u cosh ud JO(UUdU

0

Interchanging the order of differentiation and integration yields

3V (r,z) { cosh u{d-z)
= - ——————————————————— Ly ]
——SZL—* JD A(u) —osh ud Jo(ur)du . (2.17)

From the condition in Eq. (2.7) for a <t < b



v(,0 _ 4 {a «r<h) . (2.18)

3z
Substituting Eq. (2.18) into Eq. (2.17) yields
J” -A(u)JO(ur)du =g (a<r<hb). (2.19)
0
Equation (2.18) also applies to the region ¢ < r < = by virtue of the con-

dition in Eq. (2.7), so that

=,
o
o
0
—

r” -A(u)JG(ur)du =90 {(c <1 < =)
-0

Equations (2.14), (2.16), (2.19) and (2.20) are four integral equations
that must be sclved to obtain the function A(u).

In order to transform the quadruple integral eguations into the form
described by Kiyono, et al. [8] and Cooke [9], Egs. (2.14) and (2.16) are

rewritten as

E%ﬂ [1+h@ P Qde=v,  (0<r<a) 2.21)
and

Jf: ALE“) [1 + h()]Ilundu = v, (b<r<c) (2.22)
where h{u) = taph{ud) - 1 . {2.23)

The set of quadruple integral equations to be solved are Zgs. (2.193-(2.22).

Summarizing these:



jﬂ Alw) 1+ h(u)]JO(ur)du
o U

Jm A(u)JO(ur)du =0
0]

0

Jm A(u)JO(ar)du =0

0

The solution of these gquadruple integral

r“i—“) 1+ h(w) 13, Cur)du -

- ¥, 0 <r<a)
{a < < h)

v (2.24)
= Va (h <r <c)
{r =) « |

)

equations is treated in Chapter III.



III. THE SOLUTION OF QUADRUPLE INTLEGRAL EQUATIONS

The treatment in this chapter follows that of Kiyono and Shimasaki [8]
and includes the relevant details. In this chapter the quadruple integral
equations (2.24) are analytically reduced to numerically solvable forms since
a closed form solution cannot be cbtained. They are reduced to a pair cf
Fredholm integral equations.

Reproduced here for convenience, the set of Eq. (2.24) is

j{: ALE“) [1+ b lJyluridu =V (0 <r<a) (3.1)
| A(uW)JI.(ur)du = 0 (a<r<h) (3.2)
g G

J Alw) [1+ hu)]J.(uar)du = V (b <r<ec) (3.3)
g U 0 g

rn A(u)J.(ur)du = @ {r » ¢} . (3.4)
1o 0

Equations (3.1) and (3.3) correspond to potentials on the electrodes where
as Egs. (3.2) and (3.4) correspond to the derivative conditions in the regions
between and bevond the electrodes.

It is convenient to define a potential function £(r) and a derivative

function g(r) as follows:

N . _ "

{ 1+ h(wiJ (ur)de = £(r) (2.5}
lg U G

fm A(u)Jo(ur)du = o(r) . {(3.6)
‘0

£(r) and g(r) are split into four functions for the four regions as follows:



f(r) = fl(r) and g(r)
£(r) = £,(r) and glr)
f(r) = £5(r) and g(r)
£(r) = £,(r) and g()

Now from Eqs. (3.1) and (3.3)

fl(r) = Ve and

and from Eqs. (3.2) and (3.4)

g,(r) =0 and

gl(r)
g8, (r)
g3(r)

ga(r)

f3&)

gﬁ(r}

il

(0 <r

(a<r

(b

A
r1

(c

A
L8

a)

b)

c)

(3.7)

(3.8)

(3.9)

(3.103

(3.11)

(3.12)

fz(r) and fa(r) are the unknown potentials in the regions a < r < b and

¢ < r < =, respectively. Similarly gl(r) and gB(r) are the unknown deriva-

tive functions in the regions 0 < r < a and b < r < ¢, respectively.

Since

interest is in the current distributions, and since the current density is

proportional to the derivative (with respect to z} of the potential, the

solution is constructed to yield gl(r) and g3(r).

terms of the functions £ and g become

rm A(u)Js(ur)du = 0 = g, (1)
- 0 2

#00

[ A
ig ¢

=

jo A(u)Jo(ﬁr)du =0 = ga(r)

1+ h(u)}JO(ur)du = fl(r)

(u) (1 + h(u)]JO(ur)du = f3(r)

Equations (3.1)-(3.4) in

@=<r

{a<r

(b <r

{c <1

a)

b)

e

=)

(3.13)

L)
L
—
B
St

(3.15)

(3.16)

i3

The technique used to reduce these guadruple integral equations is as rollows:

An expression is ohtained for A(u) in terms of the function g(r) and this



expression is substituted in the equations involving f(r). The equations
are then simplified to yield known forms, the solutions of which are given
in Appendix A.

Applying the Hankel Inversion Theorem [7,10] to Eq. (3.6) yields

0

Afu) = u} yg(y)JO(uy)dy . (3.17)
Q
Therefore,
a fb o
A(u) = u[ v8; (I (uyddy + v vg, (7)J (uyddy + uj v84 (¥)1,(uy)dy
jo )a = b
+ ur yg, (¥) 3, (uy)dy . (3.18)
c

However, gz(y) and ga(y) are both zero by Eq. (3.12). Therefora,

ra
A(u) = uj ygl(y)lo(uy)dy + u
0

C

.«03(}’)3’ (Uvidv . (3.19)

;
{
i
i

‘b

This expression for A(u) is used to simplify the equations involving f(r).

Expanding the left hand side of Eq. (3.3) yields

r” A(u) J (ur)du + fm alw)

-0 ‘0

h(u)J (ur)du = £(r) . (3.20)

Substituting for A(u) from Eq. (3.19) into the first term of Egq. (3.20)

-
fm Fg r rc '
[ A gienan s | s 03gney + | vey ) Ig iy | I ends -
0 Ip o ‘v |
(3.21)
Changing the order of integration om the right-hand side of Zq. (3.21), wvields
poo a [~
) Au) J . (ur)du vg, (y)dy f J o (ur)J,(uyldu
c 0
+ [ yg3(y)dy ! JD(ur)JO(uy)du . (3.22)

Jb -0
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Defining L(r,y) as

L(r,y) = Jo(ur)JO(uy)du (3.23)

i
i
!

-0

and noting that Noble [11] has shown that

A rmln(r,y) ds
L(r,y) = = " (3.24)
m jo NV RN v
Eq. (3.22) becomes
ra c
Jm Sikw) Jglur)du = J vg, (¥)L(x,y)dy + { vgy(y)Llx,yidy . (3.25)
o “ 0 = ‘b

Each of the terms on the right-hand side of Eq. (3.23) is simplified

separately. Using Eq. (3.24) in the first term on the right of Eq. (3.25)

yields
(a a r; pmin(r,y) ds
yg, )L(r,y)dy = [ YE, 7Y 1= | | dy -
g 7oL R (r2-sy T2 2 21T
(3.286)
Note the general result
b pnin(r,y) it a
J dy ; ds = | ds i dy + J ds J dy (2T
a ‘ Ja ) a

for the field of integration shown in Fig. 3.1 [7]. The first term pertains
to the shaded region above the dotted line and the second term pertains to

the shaded region below the dotted line. Applying the result (3.27) to

1
0

(3.26) where the field of integration, 0 < r < a, is shown in Fig. 3.2

2 2 [F A ra vgy (v)dy
v8, (¥)L(r,y)dy = = ¢ ; i > (3.28)
lqg 771 T g (rZ_SZ);IZ ig (Y2“52)1'2
since the range of y here is the shaded area (0,a). Let
@ vg;(yldy
T v R A S
-3}

Ig (v



|
S=Y
b
r \Y
a
0 a b o
Figure 3.1l. Field of Integration for Eq.(3.27).
S A
3=V
¢
b
a
N B
0 a b c
Figure 3.2. Field of Integration for the

Region (O<rea.
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Therefore Eq. (3.28) becomes

ea r Gl(s)ds

2. .2
s

£3+30)
0 (z2- )1/2

2
Jo ygliy)L(r,y)dy b [

Similarly, the second term on the right hand side of Eq. (3.25) becomes

c 2 (¢ [ERED s
8, (¥)L(r,y)dy = = yg,(y)dy |
]b 3 T fy 703 is (rz_sz 1/2(y2_52)

1/2

(3.31)
Now the range of y is the (b,c) shaded area in Fig. 3.2. Again

applying Eq. (3.27)

c r C L (y)dy
5 2 f ds f Y83 \Y
v8, (¥)L(z,y)dy = — : (3.32)
[b 3 "1y P2 ly (Rt
jc V83(}’)"1’!
Let | 7 3173 - G3(s) (3.33)
‘8 (y=8")

From Appendix A the solutions to the integral equations (3.29) and (3.33)

are
24 [3 sGl(s)ds
¥E; (pl = =i 2 e | 5 (3.34)
1 T dy Ps (SE_Y_)l/Z
and
54 I€ sG3(s)ds
YE () === | mm————e (3.35)
3 T dy (SZ_Y_)1,2

Substituting Eq. (3.35) into

Ly
fal
P
(V]
o
r
S

~

fc t ds (€ 1
vg.(y)L(r,y)dy = —J =
5 o3 T Lo (e2-s2) /2 Jy (y2-g2y102

22 [r ds ¢ t(vi-s
o (£2-s5172 1y (22252 (£ 22y

(3.37)

as shown in Appendix B.

15



Substituting Eq. {(3.30) and Eq. (3.37) into Eq. (3.25) yields

G, (s)ds r
A(u) 2 (F 1 242 SEML. | .
J.(ur)du = —-J ~—> 533+ O J
E e "0 "o lsHME T o (Ph?
5 2 2.1/2
. j ; t')(b -s )2 73 G3(t)dt (0 <r<a). {3.38)
b (t —s“)(t b™)

Now substituting for A(u) from Eq. (3.19), the second term of Eg. (3.20}

becomes

4 C -1
r= Aw) h{u )J (ur)du = rn[ j ygl(y)JO(uy)dy + f yg3(y)J (uy}ds ;%(uﬁjn(ur)du
Jo Jo o o ¢

‘b
r" @ -
= j h(u)JO(ur)du | yg1(y)10(uy)dy + i h(u)JG(ur)du
0 g "t ‘o
rc
. j vy (y)Jgluyddy . {3.39)
b

Define the quantity I(t,u,a) by

q (¢ (yu)dy
I(t,u,a) = d—J e (3.40)
a (t -y )
From Appendix A the solution to this integral equation is
2 ¥ I(t,u,a)
= ——At,Usad = 2 . (3.
= f 7 .2.1/2 9 = Jpw (@=eld
a (y7-t7)

Using Eq. (3.51)
a ra 'y
3 i I(t 0)
f ygl(Y)JO(.U-Y)dY T J ¥8; (y)dy } ——,’E‘-LE:’.I—P dt .
0 0 0 (y -t7)™'°
The region of integration is shown in Fig. 3.3. Interchanging the order

of integration and inserting appropriate limits vyields

vg, (y)J, (uy)dy = — I(t,u,0)dt | —5 5575



Figure 3.3. Field of Integration for Eqg.(3.42).

v A

it

Figure 3.4, Field of Integration for Eg.{3.43).
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a
=2 [ 1te,u,006, (B)at (3.42)
T g 1
by Eq. (3.29). Similarly,
C Cc N
J Yg3(y)J0(uy)dy = %-{ ygB(y)dy f —£§EL%L%%§ dt . (3.43)
b ‘b b (y™-t7)

The region of integration is shown in Fig. 3.4. Again interchanging the

order of integration and inserting the appropriate limits yields

[ vayspenay = 2 [ 1¢ [ T80
vg,(y)J. (uy)dy = = I(t,u,b)dt —_—
p 2037700 Ty J+ (s2-t2y172
5 fC
= :-f I{t,u,b)G,(t)dt . (3.44)
T b 3
Substituting Eqs. (3.42) and (3.44), Eq. (3.39) becomes
re ra
Jm Alw) hR{u)}J.(ur)du = E-J h(u)J,. (ur)du J G, {(e)I(t,u,0dd:r
u 0 il 0 1
0 4] 0
2 e _
+ = h(u)J.(ur)du { G.(t)}I{(t,u,b)dt . (3.43)
ﬂ jO 0 jb 3

Equation (3.38) is developed for the region 0 < r < a and Eq. (3.45) holds
for all r. The left-hand sides of Egqs. {(3.38) and (3.43) are the terms on
the left-hand side of the first integral equation (3.13). Substituting from

Eqs. (3.38) and (3.43) into Eq. (3.13) yields

2 [F 6p(s)ds I ds T i G (tYdE = Mie)
= | 5 = ! G, el TR 5 JLe)de = M(r
T o @ey 2 T T g G AT by 2oty (ripty e T3
(0 <r <a) (3.46)
where
2 [?
M) = £,(x) - :-jm h(u)JyQuridu | G, (£)I(t,u,0)de
" Jo fg 1
2 © e
== | h(u)Jo(ur)du 5 G3(£)I(t,u,b)dt N (3.47)
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Rewriting Eq. (3.46)

2 [F ds { 2 [¢ t(bz 2)1/2 }
£ ——=—— 4G, (8) += (t)dt} = M(r)
T Jo (r2-52y1/2 Ty 2o o2y (21172 €3

(0 <r<a). (3.48)

This is a known form of integral equation. Referring to Appendix A, Eq.
(3.48) is an integral equation of the type (A.8); hence the solution is of

the form (A.9). Therefore,

2.1/2

fC 2 g -
Gyl ¥ %j{ o 777 G5(0de = ¢ r{ r};(r;dli
b (t7-s) (2pD) 112 ‘0 (7=t}
(0<s<a). (3.49)
Substituting for M(r) from Eq. (3.47)
F
d_Js M (r)dr Eg_r‘ BigfE)eE 54 B rdr F’h( LT fana
5 )y 22y l/2 " &8 | QI T2 T T ds [ (2 2,172 [, et
a S
24 f rdr
. [ G (£)I{t,u,0)dt - = — | —5 5173 (” h(u)J.(ur)du
jg 1 T ds |, (s 3 2)1/2 s 0
c
J G3(t)I(t,u,b)dt
b
Interchanging orders of integration
d 5 pM(r)dr R (¢ Eylridy A 2
Bt | il fot/ S g . 7 o “ .
e jo (52-r2)1/2 }0 ( > }1/2 }g Cl(t)dt T g h{u)I(t,u,0)du
- (_i_ JS w T{C o (t)dt 2 {m h(u)I(t b)du
2 3 =] b g s,
ds Q (S__rZ)]./-. !b 3 f JO

rs rJO(ur)dr

g (32-r2 172



Using Eq. (3.40) yields

d J‘s M (r)dr 4 (S rfl(r)dr f»a . ) r
-— —_— = —— —_— - (£)dt « = h(u)I(t,u,0)I(s,u,0)du
0 (SZ_rZ)IIZ ds }O (52_r¢)l/2 lo 1 ™ o
c
- j G3(t)dt P e rm h(u)I(t,u,b)I(s,u,0)du . (3.50)
b ™o

Substituting Eq. (3.50) into Eq. (3.49),

a c 1/2

2 2 t(h )
G,(s) + j G, (t)dt » = fm h(u)I(s,u,0)I{t,u,0)du + f G (t)dt[}
1 o 1 T Jq 3 m (tz_sz)(:z_ 2

o«

f N oa (S :fl(r)dr
J h(u)I(t,u,b)I(s,u,O)di}= d J
0

0 (52_r2)1/2

+
E R

=

(0 <s < a). (3.51)

Now let

=

f h(u)I(s,u,0)I(t,u,0)du (3.52)
0

]

:—IIM

Kll(s,t)

and

2 2 1/2

2 1/2

z t(b -

K,,(s,t) =
13 T (t 2_ 2)(t

) .y fw h(a) I€s,a,0)I(t,u,b)du + (3.53)

Therefore, Eq. (3.31) becomes

c

r r
}b K13(S,C)G3(t)dt 39 |

a
Gl(s) + JO Kll(s,t)Gl(t)dt +
This is the first Fredholm integral equation.

So far Eqs. (3.13), (3.14) and (3.16) have been used. The next step
is to use Eq. (3.15). The simplifications (3.20)-(3.25) still hold but the
region now is b < r < ¢. Beginning from Eq. (3.26)

a _ {a pm1n(r,y) 16 '

o B
vg, (WL(r,y)dy =, vg, (¥) 17, —=dy .
g T Ly 77197 [F 45 (2oa2y 12,2 2172




Applying the result (3.27) to Eq. (3.55) where the field of integration,

b <r < ¢, is shown in Fig. 3.5 yields

a a a d

2 ds 2 ye {y)dy
yg, (y)L(r,y)dy = = J = - ,
jo 1 Tl (22 g (222

since the range of y here is the shaded area (0,a).

Substituting from Eq. (3.29)

a 2 {a Gl(s)ds

Similarly Eq. (3.31) becomes

min{r,y) =
[c Jc (-2 f ds i
vg, (y)L(r,y)dy = 2. (y) |= | = ldy
}, 73 , TE L | O L 1
(3.57)

Now the range of y is the (b,c) shaded area in Fig. 3.5. Again applying

Eq. (3.27) to Eq. (3.57)

e [T ds ¢ ¥g,(y)dy
v2, (¥)L(r,y)dy = = VE J 3 2
Jb > " Jb (rz-s“)l/' s (yh—sz)l/"
. g_{b ds fe Yg3(y)d3
T Jo (£2-s2) L2 i N
Using Eq. (3.33)
ic 5 [T G3(5)ds 2 o .
{ove. (P)L(r,y)dy = = e o = ey
Jy 773 Ty (22 T Tl (212

(C Yg3(y)dy
i {3.38)

b (y2sy L2

Substituting Egqs. (3.56) and (3.38) into Eq. (3.25) yields



s ]
sS=y
e
f A
‘D -
a
\\ =
0 a b ¢

Figure 3.5.Field of Integration for the

Region b<r<c



23

u 0 LA (r2_ 4)1/2 b (r2 52)1/2
b e vg.(y)dy
2f ds J 3 .
W) (b<r<ec). (3.59}
0 (2-s2y 12 |y (5252172

The left-hand sides of Egs. (3.59) and (3.45) are the terms on the left-hand
side of the integral equation (3.15). Substituting Egqs. (3.59) and (3.45)

into Eq. (3.153) yields

a G,(s)ds r G,(s)ds b e vg,(yldy
%( > °1/2+%J ; 1/?+%§ 3 l;’Zj T
Io (r™=s7) b (r'-s - 0 (r -37) b (y -s7)
2 ¥ 2 2 7 s
+ = h{u)J.{ur)du G, (£)I(t,u,0)dt + = | h{u)J_ {ur)du
™ g 0 jo 1 ™ JD a
c ,
. j G3(t)I(t,u,b)dt = f3(r) (b<r<e). (3.60)
b

Rearranging to obtain a known form of integral equation

T G3(s)ds

g—J —_—— = N(r) (b <r <c) {3.61)
Ty (1:2—32)M2

where with a change of variable to avoid confusion

N(r) = £,(r) -2 {a ¢y GLde g_jb at fc yg3(z)iv
3 T JO (r e )l/- o 0 (r "'t )1/2 ‘b (Y -t ) /...
p % .
- ;-JO Gl(t)dt Iy h(u)l(t,U,O)JD(ur)du
2 [© e
- ?J Gy(E)dE | n(w)I(t,u,0)T,(ur)du (3.62)
m by

Referring to Appendix A, Eg. (3.61) is an integral equaticn of the type (A.B),

hence the solution is of the form (A.9). Therefore,

S b
. (s) = d { ri(f)drﬁ
3 ds J L1/2
‘b (s -r°)

(b <s<e). (3.63)



Substituting for N(r) from Eq. (3.62)

4 Js PN(r)dr  _ d_ ( rf (r)dr 24 Js sl (a Gl(t)dt
o
ds b (s 2 2 1/2 ds j B (a2 2)1/2 T d b (SZ_rZ)l/Z jo (r2_t2]l/2
_2d s rdr jb dt fc ygB(y)dy
T ds Jb (s - )1/2 0 (z 2 Lk )l/ Jb ( » )1/2
24 [° rdr Ja [‘
R et B =ty o G, (t)dt h(u)I(t,u,0)J,(ur)du
T ds Iy (52_r2 1/2 0 1 0 0
24 f° rdr Jc 7 .
- == —5 177 G,.(t)dt | h(u)I(t,u,b)J. (ur)du . (3.64)
T s |y (2212 3 fe 0

Simplifying term by term, the second term on the right-hand side of Eq.

(3.64) is
) 2.9_.[8 i Ja Gl(t)dt . 2 fa ez » 4 [s rdr
T d b (SZ_IZ)lIZ 0 (rZ_CQ)l/E T JO ds b (sz—rz)llz(rg—t2)¢f2

) (3 6 (£)s (b2-£2)1/2

m jO (52_ 2)( 2, Z)le

(3.65)

as shown in Appendix B. The third term on the right-hand side of Eq. (3.64)

is
24 % zar [ dt ¢ Y83y
2 2.1/ 7 2 2 7
T ds Jb (s2-p2y1/2 }o (2o 2y 5y v _e2y1/2
5 C b -
= - @3)2 [ G,(e)de — L,ES 5173 j {b 5 » dx
‘ ‘b (t7=b" ) -b ) 0 (t -X )(s -x )

(3.66)
as shown in Appendix B. The fourth term on the right-hand side of Eg.

(3.64) 1is



Gl(t)dt f: h(u)I(t,u,O)JO(ur)du_

5 (3 d s rJO(ur)dr
& = f Gl(t)dt fm h(u)I(t,u,0)du - a9 J

0 0 b (sz--rz)l’/2
2 a
;< f G, (£)dt r h(u)I(t,u,0)I(s,u,b}du (3.67)
0 0

by Eq. (3.40). Similarly rearranging and again using Eq. (3.40), the

fifth term on the right-hand side of Eq. (3.64) is

2 d (s rdr fc L
— e ——re G, (t)dt | n(u)ilt,u,b)J.(ur)du
2 »
T ds jb (SZ_rh 1/2 b 3 jo 0
B ~ )
= - = G,(t)dt ! h(u)I(c,u,b)I(s,u,bl)du . (3.58)
T b 3 jO

Substituting Egs. (3.65)-(3.68) into Egq. (3.64), Eq. (3.63) becomes

s rf. {(r)dr ea ¢ 2 2.1/2
Gy(s) = %E'f 5 7k j Gy [k {%’ o e 2 1/2} a
b (s"=-r7)~"' 7 0 (s“-t°) (s“-b°)
& f ts ;b bz—x2 )
- e 4B : | — dx} dt
Jy &1 )2 22 by 2y 2y

a e
= J G, (t) {% [w h(U)I(t,u,O)I(s,u,b)du} dt

RN I i 1
- u3(t) = 1 h(u)I(t,u,b)I(s,u,b)dur dt (b < 5 < c) .

(3.69)

Rearranging,



2 2.1/2
Gy (r)de [—% 25(3 = 7
0 T (s%-t%) (s°-b9)

ra

G4(s) +J +

f” h(u)I(t,u,O)I(s,u,b)d;]
0

Ak

1j2

5
ts rb b'—x2

4 J.c 6. (oae |2
B o U7 B2 AT g (L o

dx

2 Jm ] 4 fs rf3{r)dr
+ = h(a) ILE,4,8) Lig,u,b)da | = 52| —5537
T g ds)y (s2-p5)1/2
(b <s<e). (3.70)
Let
2 2.1/2 o
2 s(b™-t7) 2 . .
K, .(s,t) = = + = h{u)i(c,u,0)I{s,u,b)du (3.71)
31 it (52_t2)(52_b2)1/2 i jO
and
b 2 2
. 2.2 ts f b -x
K (S:t) = (-—) B 5 179 3 ; A 5 dx
33 T 222 21 lg (£2-x2) (s2-x2)
+ % (m h(u)I{t,u,b)I(s,u,bidu . (3.72)
<0

Substituting Eqs. (3.71) and (3.72) intc Eg. (3.70) yields
gl e | e G | e b S
3 Jg 31 Jy, 733773 35 fy (el gy1i2
(b < s <) . {3.73)
This is the second Fredholm integral equation. Thus the quadruple integral
equations (3.13)-(3.16) have been reduced to a pair of Fredhelm inregral
equations (3.54) and (3.73). These Fredholm integral equations cannot be

analytically solved for the functions G, (s) and GB(S); hence thev will be

resolved using numerical methods discussed in Chapter IV.



IV. NUMERICAL METHODS

To recapitulate, the pair of Fredholm Integral equations that must

be solved are

a c g (s tE (n)dr
Gl(s) + f Kll(s,t)Gl(t)dt + '{ Kl3(s’t)c3(t}dt = s ; —3 3.1/2
0 b ‘0 (s7-r")
(0 < s <a) (4.
and
a e g s rij(Ddr
i = = — |
G3(s) + f K31(s,t)Gl(t)dt + j K33(s,t)u3(t)dt ds |, T2 2172
0 b b (s -r )
(b < s < ¢} {4
where the kernels are:
2 [©
K,,(s,t) = = h(u)I{s,u,0)I{t,u,0)du , (4.
11 T }0
2 2.1/2 o
2 t(b“=s%) Z |
K,,(s,t) = = — = + = h{u)I{s,u,0)I{t,u,h)du , (4.4
13 T ey (22 T T g
2_21/2
KBl(S’t) = % 5 Séb ; )7 172 + i | h{w)1{t,u,NI{s,u,b)du , (4.
T(sT=tT)(s"-bT) " " -0
5 _ 2.2 ts fb bz-xz dx
K338:8) = @ “5 5972 3 2172 ), T72,2 7
(t™-b7 ) " T{sT-b") ‘0 (£T=x")(sT-x"}
3
+ = : h{u)I(t,u,b)I(s,u,bldu . (&,
i ;O

The kernels are now further simplified. By Eq. (3.40)

-t yJD(yu)dy
—37 3177 °
dt |, (t__?“}l/_

Therefore,

t-a
o

(4.

(4.



By Watson [14]

d ‘Tl’t I
I(t,u,0) = dt \;E Jlfz(ut) . (4.9)
Now
2 ,
Jl/Z(Ut) il b sin(ut) . (4.10)

Substituting Eq. (4.10) into Eq. (4.9)

Tut

r— I
I(t,u,0) = B l s J_E_ 51n(ut{J

cos(ut) . (4.11)

Using Eq. (4.11) in Eq. (4.3) yields

(s t) = %j h{u)cos(su) cos(tu) du . (4.12)

Similarly Eq. (4.4) becomes

o ) t(bz_ 2)112 , \ -

1{_'3gs,t) e + - h(w)I{t,u,bicos(su} du (4.13)

- (t -5 )(t —b ) ‘0
and Eq. (4.5) becomes

l/°
Ky (5,8) = = — (b 1t %r R(u)I(s,u,b)cos(tu) du . (4.14)

(s -t )(s 0

The first term on the right hand side of Eq. (4.6) can be simplified as follows:

(_2_)2 ts !rb b"'-x2 de
T H I ILGEI g (T (L
- 32 ts {'sz—b‘ J"b dx __to=p” [P ax )
™ 2,172, 2 2 2”72 2 '
(tz—b )lf {(s™=b )112 Lsz-t 0 52—x s —tq '}D tz—xz_.!



From standard tables

&2 ts jb brex’
2 2 2 2 .2 B
@l 2HME g (1 Px) E-xh)
_ (3)2 ts [ z-b [1 s+x!b]
T ety 22,2172 2 2 |2s s—xiOJ
_ tz-b2 ‘3 & t+x b
2 .2 |2t & t=x
s -t
_ 2 [ s -b g StB L t+b ‘e
= _E t J <h = S f 53 log t—bf . (4.12)
(5 -t ) £2-p2 ys™-b
Using Eq. (4.15), Eq. (4.6) becomes
e o
¢ 2
% 5.t = 2 1 {t I/52_13 log stb _ /tZ_bZ Tog t+b]
3 s | g e
33 R s=b ~ %y 2.2 t=b/
+2 fﬁ h(u)I(t,u,b)I(s,u,b)du . (4.18)
40

The integral equations (4.1) and (4.2) may be reduced to a set of simul-
taneous linear equations by using the Legendre-Gauss quadrature formulae.

The following discussion relates to the quadrature formulae [135,16].

b
Integrals of the form | f(x)dx can be approximated by the formula
‘a
b n
J f(x)dx = } AE(x,) (4.17)
a i=1 -

where the xi‘s are the pcints or nodes and Ai‘s are the weights or
coefficients of the formula. If f(x) is a polynomial then n points and
coefficients can be found to make Eq. (4.17) exact.for all polyncmials of
degree < 2n-1. These points and coefficients are tabulated for the interval

-1 < x < +1. They are computed using Legendre polynomials [16].



Nodes and coefficients on the intervals (a,b) can be calculated from

the tabulated values on the interval (-1,+1) by suitable transformations.

e "
J f(e)de = ) A f(t,) ., (4.18)
a i=1 * %
[b (l
The integral j f(t)dt must be converted to the form | f(x)dx.
a -=1
Let t =px+ q (4.19)

Substituting at the upper limit t=b and x=1, and at the lower limit t=a

and x=-1, vields

b=p+g
a=-p+gq
_ b-a _ b+a
p="z amd 9=

Equation (4.19) then becomes

- £ (4.20)
Therefore,
b 1 .
f f(t)de = j f[tb+a} t (b-a)x] . b:a .
a -1 <& 2
& N b=2
Ty 8T (4.21)
-1
where g(x) = f(t).
By Eq. (4.17)
* 5
G) dx = ] A¥g(x,)
1 * T

where A*'s are the coefficients from the tables for the interval
(=1,+1) and the xi's are the nodes for the same interval.



Therefore,
1 b-a % b-a
f g(x) - f—z—)dx = E (—E—JAi g(xi) 3 (4.22)
-1 i=1

Substituting Eqs. (4.18) and (4.22) into Eq. (4.21) vyields

° S b-a 2 b-a

Loafe) = 1 Camelx) = ] COIMEE)

i=1 i=1 i=1
Therefore the transformed weights Ai and nodes ti are

(b+a) + (b-a)xi

b-a
= ———YA% e
Ai ( 5 )Ai and ti 3 . (4.23)

The nodes of the Legendre-Gauss formula are symmetric about x=0 and the
coefficients are all positive and have the same values on the (-1,0) and
(0,+1) segments.

Integrals on the interval (0,=) are approximated by the Laguerre-
Gauss quadrature formula

fm e ¥ f(x)dx =
0 i

o~

. AE(x) (4.24)

The integrand must have an exponentially decaying envelope. If £(x)
is a slowly varying function then the Laguerre-Gauss formula is quite
effective and 15 ~ 20 points are sufficient. The nodes X and weights Ai
of Eq. (4.24) are available from tables [16].

In order to diminish rounding errors, a2 suitable transformation has

been suggested by Cooke [13].

For b<s<e,
-
lat s = bsecd , ds = bsecza sinBds and 0 <3 < sec ~(e/b) {(4.23)
2
H(3) = G3(bsec8)sec”a (4.286)
and
F(8,u) = sing I(bsech,u,b) . (4.27)



Now from Eq. (3.11), fl(r) and f3(r) on the right-hand sides of Egqs. (4.1)
and (4.2) are equal to Ve and Vg respectively. Taking the right-hand

side of Eq. (4.1)

£
a Js r_l(r) i = g__fs rve i
— = .S
ds 0 (SE_rZ)l/_ ds 0 (SZ_rZ)IIZ
. d 2 2,172 %)
B ve ds [_(S —r) EGJ
- v 4
= N e
= v (4.28)
e
Similarly the right-hand side of Eq. (4.2) becomes
4 (s rf3(r)dr 4 rs Vv
Sl e S S - P
| 9 J
ds Iy (S__rZ)l/Z ds 5 (52~r2)1/2
d 1 2 2.1/2 !S]
=V — I=(s"-17) '
g ds |bj
i A [o 2 2000
Vg s t(h -b7) j
s
=V (4.29)
2
g (7__b2)1f2

The Freholm integral equations and the kernels are now transformed according
to Eqs. (4.25)-(4.27). Using the transformation (4.25) and Eq. (4.28) in
Eq. (4.1) yields

sec—l(c/b)

Kl3(s,bsec¢)G3(bsec¢)bsec2¢sin¢d¢ =Y

a
Gl(s) + J'O Kll(s,t)Gl(t)dt + J( "

a

(0 <s<a). (4.30)

Let 213(5,8) = sineKIB(s,bseca) . (4.31)



Using Eq. (4.13) in Eq. (4.31)

2 2.1/2 .
T13(S’6) - %_ stege(bz s % 251ng ) + % Jm h{u)I(bsect,u,b)sindcos(su)
" (b“sec”5-57) (b sec " 8-b") ]
Using Eq. (4.27)
2 (b;_SZ)l/Z 2
T,,(s,8) == + = h{u)F{6,u)cos(su) du (4.32)
13 T 2 2 2 T
(b"sec”8-8") 0

Using Eq. (4.31) and (4.26), Eq. (4.30) becomes

-1
sec {c/b)
Kll(s,t)Gl(t)dt + b{o T13(5,$)H{¢)d¢ = Va (0 < s < a)

a

G,(s) + f
- 0

{(4.33)
Similarly, using the transformation (4.25) and Eq. (4.29) in Eq. (4.2)

yields

=g |
a sec " (c/b)
KBl(bsece,t)Gl(t)dt + j K33(bsec6,bsec¢)G3(bsec¢)

G,(bsech) + j
- 0

0

V_ bsecd .
(0 <95 < see "(a/b)). (4.34)

2
« bsec ¢sinddd = =79
(bzsec26_b2)L,_

F

Multiplying by sin§ and using Eq. (4.26)

a
sinScosze H(g8) + { sindK,, {(bsect,t)G, {t)dt
Is 31 1

+ j bsinesin¢K33(bsec8,bsec¢)H(¢)d¢ = ?g

Q

(0 <8 < sec_l(c/b)). (4.35)

Let T(S,S) = sinGKEl(bsecG,s) (4.36)

I3
From Egs. (4.13) and (4.14) it is obvious that

- (
Kls(S,t) KBl\t,S)

33

du .



Therefore,

sinBKlB(s,bsece) = sinSKsl(bsece,s)

and hence from Egs. (4.31) and (4.36)

= =1 )/
le(s,e) T3l(8,a) (4.37)
Let
T33(e,¢) = bsinesin¢K33(bsece,bsec¢) . {4.38)
Substituting Eq. (4.16) into Eq. (4.38) yields
2 bsin@sin¢ Jsec78 -1 secS+1
Tl =0y g 3 }bse‘” "~ 3 & Seco-1
b {sec 8-sec +) ﬁsec $-1
seczé—l sec¢+l}
- bsec8 j——— log g—zg::y
sec 5-1 € .
+-% b fm h{u)I(bsec2,u,b}siné I(bsecs,u,b)sinadu .
' 0
Using Eq. (4.27)
2 2
2 “a &/
T33(6,¢) = :E-———E—l—-—f— {sinzsseQSIOg EEE_;LE - sin2¢sec¢log EEEEELE}
7 sec 8-sec $ sin"g/2 sin“$/2
+ g'b {m h{u)F(8,u)F(3,u)du
T Jg
- 4 secgsin ¢log(tan $/2) - 38c3513291qg(tan 5/2)
2 2 2
m sec Z2-sec 9
2 F"
+ ;- h{uw)F(5,u)F(3,u)du . (4.39)
) O

When 8 = 9 the first term on the right in Eq.

Using L'Hospital's rule

{4.3%9) is an indeterminant form.



T33(6,8) = - iz-(l —-% sin"8)cos5log(tan 3/2) - fi‘cosze
2
+ ;—b f“ h(u)F(8,u)F(3,u)du (4.40)
Q

Substituting Egqs. (4.36) and (4.38) into Eq. {(4.35) vields

2 ra {sec_lfcfb}

, 5 - 5 3 _

sinfcos™5 H(B) + jo 3l(a,t)Cl(t)"t + JO T33(3,¢)H(¢)d¢ Vg

(0 <3 < sec-l(c/b)) . (4.41)
1 T T (3
To compute the kernels Ty30 T3q and T33, F{2,u1) has to be evaluated.
As shown in Appendix C

o

F(3,u) = Jo(bu) - (bu)tan® } Jl(bu secScosd)de {(4.42)
0]

Now the equations that have to be solved on a digital computer are:

ra {sec—l(c/b}
Gl(s) - 110 r(ll(s,t)Gl(t)dt + bJo T13(s,¢)H($)d¢ = ve (0 < s < a)
(4.43)
) ra sec*l(c!b)

sinfcos™@ H(3) + }0 T31(3’t)Gl(t)dt + fo T33(9,¢)H(¢)dé = Vg
(0 <85 < sec—l(cfh)) s (4.44)
Kll(s’t) £ f‘ h(u)cos{su) cos(tu) du , (4.43)

T ‘O

2 2.1/2 <
(b™=-s7) %, h{u)F(8,u}cos(su) du ,

=g

2 2 2
{(b"sec"6-57)

(4.486)

35



36

_ 4 5ec¢sin2¢log(tan 8f2) - sec@sinzelog(tan 5/2)

2 2
sec 9 - sec 9

=

+ % b F h(u)F (8,u)F(s,u)du , (4.47)
' 0
T33(8,a) = - %E (1 - %-sinzﬁ)coselog(tan §/2) - fi cosze
2 X .
+ ;-b fw h(u)F(8,u)F(5,u)du , (4.48)
0
and
g
F(6,u) = Jo(bu) - (bu)tant f Jl(bu secfcoso)dd . (4.49)
0]

The 20-point Legendre-Gauss quadrature formula is used on the interval
(0,a) and the 15-point Legendre-Gauss quadrature formula is used on the
interval (O,sec—l(c/b)).

Hence, Eqs. (4.43) and (4.44) are resolved into a set of 35 simul-
taneous equations. The function Gl(s) is solved for 20 discrete wvalues
of s in the interval (0,a) and the function H(3)} is solved for 15 discrete
values of 3 on the interval (O,sec-l(c/b)). The kernels of the Fredholm
integral equations have (0,~) integrals. These can be computed by the
Laguerre-Gauss formulae as follows:

From Eq. (2.23)

n{u) tanh{ud) - 1

L]



In order to make the (0,=) integrals in the form of Eq. (4.24), let

- = dx = X :
2ud = x , du = 74 and us=353 - {4.51)
Substituting in Eq. (4.50)
-X
h(u)du = =2e —=e g

2d(1 + e %)
B e dx . (4.52)

d{l + e )

Using the transformation (4.51) and Eq. (4.32) the kernels now become

- = \
K. .(s,t) = = f“ x (-1 cos(——)cos{2 « dx , (%53}
44 Tl T Gare ™) 4
2 2,12 _ _ 1
T13(s,6) = T31(6,5) =-1% (g 52) 5 +% e x[————l:{-—fF(S,,’d)cos{ —)dx ,
(b sec 8-5") T d(1l+e )J
(4.54)
2 2
4 secysin $log(tan $/2) - sechHsin 8log(tan 5/2)
T (83¢) 2 —
33 2 2 ,
b sec 3 - sec
wel =
- % b r e "’———l_x JF(G,%)F(%%N}{ , (4.55)
' 0 d(1+e ) -
. Ay L G 1 . 2. N 5 /9 2 2.
T33(8,9) = - -:i- (1 - 5 sin 8)cos5log{tan £/2) - F cos &
I
2 = -1 ) _
FEH ] e et nih Eoands B Sde (4.56)
bl -’O d(l+e-x)J 2d 2d
and
X bx 8 234
F(a,ﬁ) = JO(—.-ZE) - 54 tand I Jl(i-a- secdcosd)dd (4.57)
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The 24-point Laguerre-Gauss formula is used to evaluate the (0,») integrals.

Writing Eqs. (4.43) and (4.44) in discrete form in order-to solve them

using the computer program in Appendix D yields

20 15
GAD) * le 1 (8(D), ()6 (DAY + b 21 T4 (8(1),0 (RNBEW(EKS = ¥,
I=1to 20, (4.58)
2 2%
sin(8(1))eos” (BINK(D) + | Ty, (8(1),t(I))6, (A
J=1
15 _
+ Kgl T35 (8D, KNEEWE =V I=1to 15 (4.59)

where A and W are the weights of the 20-point and 15-point Legendre-

Gauss formulae respectively,

S(I) =-% (1 + X(I)) where X(I)'s are the nodes of the 20-point formula,
(4.60)
t(J) =-% (1 + X(3)) where X(J)'s are the nodes of the 20-point formula,

{4.61)

-1
6(1) EEE-——E—(Eﬁjl-(l + Y(I)) where Y(I)'s are the nodes of (4.62)

the 15-point formula,

and

-1 .
sec (c/b) where Y(K)'s are the nodes of
$(K) 2 2+ ¥XK) the 15-point formula. (403

From Egs. (4.53)-(4.537)

24 1yX(
§ -EK(L‘ cos(S(ééx(L))COS(ESi%ELLAJP(L) (4.64)
L=1 d(l+e ")

A |

Kll(s(l),t(J)) =

where P(L)'s and X(L)'s are the weights and nodes of the 24-point
Laguerre-Gauss formula,
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35

2 2. ..1/2
. 2 (b"-S7(1))
T, (S(I),5(K)) = T, (4(K),S(I)) = =
13 3L " (8%sec?(5(K)) - S2(I))
% E —“—F(qﬁ(K)‘ —K(L))co (—-—-——-———b(I)M“))P(L)
T 121 d(1+e X)) d
(4.65)
. 2,
T33(G(I),¢(K)) _ EE-SEC(@(K)%Sin (@(K))lq%(tan $(K)/2)
T sec (H(I)) - sec”(a(X))
4 sec(8(I))sin’(6(1))log(tan 5(I)/2)
" sec? (8(1)) - sec? (5(K))
+2 8 2% — = F(a(D) X(L))F{q:(x) XL so 1)
T A aQe X)) o8
(4.66)
& 1.2 i o 2 2,
T33(8(I),8(I)) = - —E'(l - 5 8in"(8(I)))cos(8(L))log(tan 8(I}/2} - =5 cos™(8(I))
i - <
y 24 1 X (L) X(L)
+<b ) —= F@),S53OF (D), =539P(L) ,
T L=l d(l+ K(L)) 2d 2d
.67
and
: 15 .
ro(n), 58 = 5 EELY LB nany) T R secs (D coss 00w )
P P M:l L .
(4.68)
where
o (M) = egl) 1+ YeD] (4.69)

and W(M) and Y(M) are the weights and nodes of the 15 point Legendre-Gauss
formula. The computer program in Appendix D is used to solve for the

unknown functious Gl(s) and H(5).



Relationships to calculate the current are now derived. The electric

field in the z direction is given by

@
<

o o — £,
Ez - oz (4
By Eq. (2.17)
3V _r cosh u(d-z)
3z (r,z) jO - A(u) Soohoad JO(ur)du i (4.

In the z=0 plane at the position of the electrode and guard ring and by

.70)

7L)

Eq. (3.6)
3V [~
— (r,0) = - A(u)J, (urjdu = -g(r). (4.72)
3z JO 0]
Using Eq. (4.70) current density is given by
] =gE = -g 3WV(r,2) (4.73)
z z az
where d = conductivity of the medium.
The current flowing in an annulus of radius r and width dr in any plane
z =1z is
dI = 2wr szr
]
= =2nor éléELEl dr . (4.74)
3z
Hence, the total current flowing from the central electrode which is in the

plane z=0 is

a' ~
I = -27c ! T 32;5;91 dr .
e ‘o 2z
Using Eq. (4.72)
a
Ie = 2mg | rg(r)dr

<@
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However, in the region (0,a), g(r) = gl(r) by Eq. (3.7). Therefore,

m

Ie = 27ag jo rgl(r)dr . {(4.75)

Substituting Eq. (3.34) into Eq. (4.75) vyields,

ar 5 4 {a sGl(s)ds 1
ZTI'D’JE—— —————— i dr
oL ™ dr Jr (SZ*rZ 1/24

a a sG,(s)ds
- Jr FE‘—I o it Jdr : (4.76)
i r (

(]
]

3 1
0 h-dr s.._1_2)./2

a sG,(s)ds
L

Let }r(—STrz—)—-m= P(r)

Therefore,
a sGl{s)ds

- {SZ_rZJlIZ

4

,r y
er P'{(r) .

Substituting in Eq. (4.76)

et
i

a
= =4g f P'(r)dr
‘0

= -4a[P(r) ]}

Mra G, (s)ds 1a
= =4g] | ——————
5 7
Ljr (s“-rz)l'%JO

a

= 4g |

j?o G, (s)ds . (4.77)

Normalizing with respect to the conductivity ¢

ra
I,.= = 4J Gl(s)ds : £4.78)
0

I
&,
eN g
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Twenty discrete wvalues of Gl(s) have been computed. The normalized current
flowing from the center electrode can be ccmputed using ﬁhe 20-point
Legendre-Gauss formula.

20

I G (D)A(D) (4.79)
=1 =

IeN = 4 :

where A(I)'s are the weights.
Equation (4.79) is incorporated in the computer program in Appendix D. The
total current supplied by the guard ring is similarly calculated. Analogous
to Eq. (4.75)
P
Ig = 27q Ib rg3(r)dr 5 {4.80)
Substituting Eq. (3.35) for rg3(r) and simplifying in & manner similar to
that used to obtain Egq. (4.77) vields

I = -4g| | S

e sG3(s)ds ]c
!
L}r (s“-r 2 b

|
2.1/
Therefore,

e sG3(s)ds

I =¢4%g | ——m—m——r. (4.81)
g o (s2p2y172

Since the interval here is (b,c) the transformations of Eq. (4.23) and

(4.28) are used. Therefore,

sec-(C/D) bsecs G3(bsec8}bseczﬁsin8de
I = 4o |
g JO (bzseczﬁ - bz)l/2
;sec—l(clb)
= 4ch J H(8)ds . (4.32)
0

Once again normalizing the guard ring current with respect to the conduc-

tivity ¢ yields



sec—l(cfb)

I )
1gN = EE = 4b f H(3)ds . (4.83)
0

Fifteen discrete values of H(8) have been computed. The normalized current
supplied by the guard ring is computed by the 153-point Legendre-Gauss

formula:

15

I..=4b } H@W() (4.84)
eN I=1

where W(I)'s are the weights.
Equation (4.84) is incorporated in the computer program in Appendix .
The impedance of the path through which the total center electrode

current flows is given by

Z. = T . (4.83)

Note that the center electrode current, the guard ring current, and the
impedance have been obtained without explicitly scolving for the functiom
A(u) in Egqs. (3.1)-(3.4). As stated before, the purpose of this research
effort is to establish the current pathways. This is done by computing the
radius, R, through which the total center electrode current flows, at
different planes (0 < z < d) in the layer.

From Eq. (4.74) the total current flowing within a radius R in any

plane z=z is

T ow e | o saBl 5 (4.86)
z } 3
Q0
From Eq. (4.71)
WV(r,z) _ _ - . cosh u{d-z) el :
*—gzL—— } Afu) Teosh ud Jo(ur,du F (4.87)
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To obtain the current flowing in the z=0 plane the function A(u) is not
explicitly required. However, for all other planes z=z the function A{u)
is needed to obtain 3V{r,z)}/3z. From Egq. (3.19)

a

T

C

Ygl(y)JO(udey + Jb YgB(Y)JO(uy)dy : (4.88)

By Eqs. (3.42) and (4.11)

a a
5
J y8, (¥)J5(uyddy = + J G, (£)I(t,u,0)de
0 0
2 2 , )
== G,(t)cos(ru)dr . (4.89)
i JD 1

Also, by Eq. (3.44) and the transformations (4.25)-(4.27)

[= 2 [©
yg3(y)J0(uY)dy = j I(t,u,b)G,(r)det
‘b b :
-1
5 [sec {(c/b) 5
= ;—J G3(bsece)1(bsec6,u,b)bsec Gsinfd#8
i
5 rsec—l(c!bJ
=2 H(8)F(8,u)dd . (4.90)
i1 jO

Substituting Eqs. (4.89) and (4.90) into Eq. (%4.88) yields,

=L
Alw) rsec ~ (c/b)

i = b | . .
& — | GTCt)cos(tu)dt =z H{(s)F(8,u}ds . (4.901)
u T i s
0 +Q
Using the transformation u ='§E as in Eq. (4.531}

&) “Lie/v)
Alss ra sec (o
r2d 2 |7 A e 2b X ...

== G Hdr + = 8)F(8,5-)d8 .
” = l(t)cos d}dt - H{8)F( 2d)ab
2q G 0

Therefore,



X -1
AGS) a sec ~(c/b)
2a° .1 f2{ tx 26 : X
= 55 {“ Jo Gl(,t)cos(zd)dt o )Q H(G)F(S,E)de .
(4.92)
Returning to Eq. (4.87)
(d-z) -u(d-z)
oV (r,z) _ rm et +
2z ) AW 5d, -ma  Jplurldu
Q e + e
-ud, 2ud-uz uz
e (e + e )
= - Adw) Jo(ur)du
J: eud(l " e-2ud) 0
<0 -2ud, 2ud-uz uz
0 (1 +e )
Using the transformation of Eq. (4.31) yields
X G o B &8
A7) ~-x 2d 2d
_.__;3"’5‘;’ z) _ _ r zid e (e _: 2 1,GDdx . (4.93)
a (1 +e ™)
Substituting Eq. (4.93), Eq. (4.86) becomes,
x ] =2
R = A -x,° 2d 2d
L
IZ = 27 a( i | sz e (e = te ) .ID(%)d}:!dr .
o Ueo (1+e 5 .
Interchanging the order of integration,
x x - 22 22
e A 2 24, (R
I =210 % ;‘3 e e ) oax | r I,Gdr
- ‘0 ‘ (1 +e™ ‘g -
X g = o= B2
e o 4
. 258 e Py R i ar . xrx
=21 o 5 = dx J ke ), 5d Jg(ﬁJd(ﬁ)
0 (L+e™) 0 -

Let
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Therefore,
> A( ) - %% %% 2d. 2 %%
I = 2m0 jo e” zid (e - "'xe ) 4x G J el (q)dq ,
e ) 0
from standard tables,
Xz XZ
e A M, N i 282 Ex%l
Iz = 27g f: e 2d a+ e-x) x {qu(q)]O /
B ( ) < - gg xz
= 276R JO X { x2d (e - ;_‘x} Iy (—))rd ” (4.95)

The normalized current flowing through a radius, R, in any plane z=z is

X <o X2 X
I Al 2d 2d
I =% | e® 28 e te 5y . SNux . @498
zN a X -X 124
0 1+e

This current is computed by the 24-point-Laguerre-Gauss guadrature formula.

X
A(EEJ

is calculated at the 24 nodes, X5 by Eq. (4.92).
It is difficult to seolve Eq. (4.96) directiy for the radius, R, through

which the current IZN = IeW flows. Hence the computer program in Appendix

D is written to calculate Izﬁ at different discrete values of R and linear

interpolation between the radii, for the current above and below IeN’ is
carried out to solve for the radius through with the amount of current
equal to the center electrode current flows.

Rewriting Eqs. (4.92) and (4.96) in the form of Eq. (4.24) vields

K(I))

|-

[ s (9]

s 2
£ GI(J)cosfgﬁilzizij

A(T) +

AGEZh
St H(K)F (9 (K) ,-

(I 2 L

II 10

A, W(K)|

w

(4.97)
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where t(J}, A(J), 6(K) and W(K) are defined in Eqs. (4.38)-(4.63) and
X(I)'s are the nodes of the 24-point Laguerr=—Gauss quadrature formuls
which is used to evaluate Eq. (4.96). Also,

X(I)z X(I)z

(D), | X(1) - 2
I, = 2m 20 fe - e ) S EOR gy s
zN L TR | 1 4 o KAL) j Y1 2d |

where the P(I)'s are the weights of the Laguerre-Gauss cquadrature formula.

The computer program in Appendix D incorporatas Egqs. (4.97) and (4.98).

It must be noted that the function F(S,%Ei is repeatedly required for the

computation of the integrals and from Egs. (4.537) and (4.68) since zero-order
and first-order Bessel functions are involved, its computation takes con-

siderable computer time. To increase the efficiency of the computer program

F(B,%EJ is first computed at the 13 points of 3 on the interval (0,sec-l(c/b))

and the 24 peoints of x on the (0,=) interval. These values are then used
in routinely computing the kernels of the two Fredholm integral equations.

Symmetry of the kernels T,,(s,9) = TBl(S,s} is also utilized in increasing

i3

the efficiency of computation.



V. TWO-LAYER MODEL

The single layer model discussed in Chapter II obviously oversimplifies
any representation of the thorax. However, the main purpose it serves is
to set up the mechanics of solving quadruple integral equations which are
basic to the formulation of the multi-layvered representation. The model
is now extended to two layers as shown in Fig. 5.1. The layer closest to
the guarded electrode represents the thoracic wall and correspondingly has

a higher conductivity o, as compared to the rest of the tissue in the

1
second laver, which has conductivity Gy Parameters pertaining tec the
first layer have subscript 1 and those pertaining to the second layer have

subscript 2.

The boundary conditions pertaining tc the model of Fig. 5.1 are:

Vz(r,d) =0 (all 1) (3.1)
Vl(r,O) = Ve, (0 <r < a) (5.2)
Vl(r,O) = Vg (b <r < ¢) (5.3}
BVl(r,O)
—— 0 (a<r<b and {(c <r <=, (5.4)

At the interface of the two layers the potentials are equal. Therefore,

V. (r,2) =V

i by . (5.5}

5
The currents flowing normal to the interface are equal also. Stating

this condition in the form of Eq. (4.73)

BVl(r,i) 3V, (r,L)

9 3z - r:r2 3z . (5.6)

The field equation to be solved is again Laplace's Eq. (2.3). From the

general form of the sclution (Eq. (2.8)), apvlying condition (5.1), which
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Figure 5.1. Two-Layer Mcdel.



is the same as condition (2.4), the solution for Vz(r,z) is the same as

that in Eq. (2.12);

_ A(u) sinh u(d-z)
Vz(r,z) = f; " —osh ud Jo(ur)du (5.7)
v, (r,z)
2eere r” cosh u(d-z) -
and — =, = Jo - A(u) “cosh ud Jo(ur)du . (5.8)

Eqs. (5.7) and (5.8) are used to obtain the potential and current distribu-
tions in the second layer. Again assuming the gemeral solution of Eg.
(2.8), and solving for the potential in the first layer,

= D' (u) omuz

E'(u) uz
JO u -

e J . (ur)du . (5.9)
u 0

Vl(r,z) Jo(ur)du + J

0

B{u) - Cﬁﬂleui

; B(u) + C(u)]e-ui

and E'(u) = [ >

Lat D'(u) = [
{5.10)
Therefore,

C{u)

~
fg u

Vl(r,z) = f: Eéﬁl cosh u(z—i)JO(ur)du + sinh u(z-Z)JO(ur)du

(5.11)

and

o

jm B(u)sinh u(z-L)JO(ur)du +
0

Evl(r,z) '
la

3z

C(u)cosh u(z-l)JO(ur)du ;

(5ad2)
Applying condition (5.5) to Egs. (5.7} and (5.11) yields

o . . =
A(u) sinh u(d-2) Jo(ur)du _ j

| B(u)
Jg u cosh ud ‘o

u

Jo(ur)du ;
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Therefore,
B(uy = Alw)sinh uld-t) (5.13)
Now applying conditions (5.6) to Egs. (5.8) and (5.12) yields
9y JZ C(u) Jo(ur)du =0, jz-- A(u) E%%EEHE%ZEL JO(ur)du .
Therefore,
cw = - g2 Alueohaleo) 614

1

Substituting Egs. (5.13) and (5.14), Eqs. (5.11) and (5.12) become

(”_fg A(u) cosh u(d-2)

_ A(u) sinh u{d-3)

Vl(r,z) - J: u cosh ud GREh u(z—ﬂ)JO(ur)du - }0 g, u cosh ud
« ginh u(z-z)Jo(ur)du 4 (5.15)

and

3V, (r,z) . g 3

1" _ fm ginh u(d-%) . . o cosh u(d-i)
iz - JO Aa) cosh ud sinh u(z £)J0(ur)du a cl Alw) cosh ud

. cosh.u(z-E)JU(ur)du . (5.16)

Equations (5.15) and (5.16) are used to obtain the potential and current

distributions in the first layer. One the surface of the first layer.

- a
Ay - | A(u) .sinh u(d-f)cosh uft , “2 cosh u(d-2)sinh ul
Vl(r,D) B jO 3l [ cosh ud ¥ 1 cosh ud ] jO(ur)du
(5.17)

and
v, (r,0) - g

1777 . sinh u(d-%2)sinh u? "2 cosh u(d-1)
— jg {=Adu) cosh ud 5 Alu) ool a cash uR]JQ(ur)du »

{5.18)



A reasonable check for the correctness of Eqs. (5.17) and (5.18) can be

made by making o, = in which case Egqs. (5.17) and (5.18) reduce toc the

2 T qh
form of Eqs. (2.14) and (2.19).

Let
AQn) [-sinh u{d-2)sinh uf - Eg-cosh u(d-2)cosh uf] = -D(u) . (5.19)
cosh ud a, , ;

Substituting Eq. (5.19), Eq. (5.18) becomes,

avl(r,O) oo

— = Jf -D(u)J, (ur)du (5.20)
0
and Eq. (5.17) becomes
vy = | 29 1 4 new) 19 ur)d (5.21)
1 (s = Jo - u) }Jy{ur)du , i
where,
D(u)[1 + h(u)] = Al [sinh u{d-%)cosnh ul + Sﬂ cosh u{d-%)sinh uil
cosh ud '° = N = Sl :
(5.22)

Substituting for D(u) from Eq. (5.19) and solving for h(u) vields,

_ g

| sinh u(d-%)cosh uf + ;g cosh u{d-L)sinh u

! 1

. 5,

L§inh u{d-£)sinh ui + E—-cosh u{d-2)cosh ul_|
1

h(u) -1. (5.23)

|
l
|
i

[

Again if g, 31» h(u) = tanh(ud) - 1 as in Egq. (2.23). The above manipula-
tions are carried out so as to mold Egqs. (5.17) and (5.18) into the form
of Eq. (2.24) which is readily solvable by the methods of Chapters III

and IV. All other parameters are obtained by analogous methods too. From

Eqs. (5.20) and (5.21) and the conditioms (5.2)-(5.4)



Jm 28 1 4 n@ Ty (ur)da = £ (5.24)
0
and fm D(u)JO(ur)du = g(r) . {(5.25)
0
where,
f(r) = fl(r) = Ve (0 <r < a) (5.26)
= f3(r) = Vg (b <r <&g) 3.27)
g(r) = gz(r) =0 {a <Tr<h) (5.28)
= gé(r} =Q {c <<=} . (5.29)

These are analogous to Eqs. (3.53)-(3.12). The quadruple integral equations
analogous to Egqs. (3.13)-(3.16) that can be solved by the methods of

Chapters III and IV are

r PLS). vy 4 Bu) 15 Gurdds. = E.0r) 0 < r < a) (5.30)
0 u Q 1 —

=)

| D(u)J. (ur)du = 0 = g, () (a<r<b) (5.31)
Is 0 2

IRICY [ 4 Glulid. farddu = £.6e) e e g (5.32)
Jog u a 3 / ¢

f D(w I (ur)du = 0 = g, () (e ¢ <) (5.33)
lo

and h{u) is given by Eq. (5.23).

Let

Q

s

.34)

1]
o
~
wn



From Eq. (5.23)

h{u) =

-~ .
I(l+k)eud + (l—k)eUd — 34t + {krl)e-ud + 2ui _ (k+l)e_ud—)_ .

Lat1)e% + (em1)ed ~ 29 4 ey T 290 4 nyenud

) 201y ~ 2% _ o (t1)e™
Ger1ye™ + (e-ye™ ~ 2R g gerye™S T 28 4 gaye™
I f 2(1-ke?™d T 2 54k
T | er1) # Gel)a P 4 (enya 2 ¥ 200 gy, 2l |
r =
-2ud | 20-k)e™ = M _ a4k s
- e | —2ul —2ud + 2ul T ¢ e
L) + (k-1)e % + (k-1)e™” + (ktl)e 7
Again using the transformation of Eq. (4.51) yields
- - x 7
el a-kye® = 4 g |
R{u)di = d ! -xe/d -x + x2/d -x | dx .
L (+k) + (k-1)e + (k-1)e + (I+k)e |
(5.36)

Hence, in computing the kernels given by Egs. (4.53)-(4.56) instead of the

term e 6—~—:l———), Eq. (5.36) is used. Now the Fredholm integral Egs.

d(1+e ™)
(4.43) and (4.44) are solved for G,(s) and H(8) by the computer program in
Appendix D with the new h(u) functiom.

By Eq. (4.78) the current from the center electrode is

-

ra
=4 | G, (s)ds (5.37)
Jg 1

o

g ™

=

[

and by Eq. (4.83) the current supplied by the guard ring is

I, ;sec_l(c!b)

Ly o= J H(g)ds . (5.38)
= 1 Q

Analogous to Eqs. (4.91) and (4.92) and by comparing Eqs. (3.13)-(3.16) with

Egs. (5.30)-(5.33)

L
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-1, .
) 1 sec " (c/b)
-2 JD 6, ()cos(euar + 22 Jfo H(8)F(5,u)d8 (5.39)
and
DGE') a sec-l(c/b)
2d” 1 [2 2y f )
vanl EE-{; fo Gl(t)coségg)dt + Fh-jo H(&)F(B,%E)da] . (5.40)

From Eg. (5.19)

D(u)ecosh ud

A = ; i 41
(a) sinh u(d-i)sinh uf + k cosh u{d-2)cosh ui (5.41)
By using the same transformation x = 2ud as betfore
A D(E—)r cosh = 7
2d” _ " 2d’ Z * (5.42)
X X 1 oiph X 2Vsinh X X (a-; x24T )
[_sinh 73 (d-2)sinh 53t k cosh ¥ (d-2)cosh g

By Eq. (4.86) 3V/5z is required to obtain the current in any plane. For the
current in the first laver 3Vl(r,z)/32 is required and for the second layer
avz(r,z)faz.

Relationships to calculate the current st any plane z=z are now derived.

The current flowing within a radius R in the first layer is given by

I, = =027 f r ——— dr (5.43)

fR EVZ(r,z)

- = B FE 5. 4
I22 022n J r Y T (5.44)
0
By Eq. (5.16)
W) r A(u) B ud+uz-2ul B ~ud+uz
——= e L(l—k)e U oe #k)eTHE - (1) eV
) JO 2(eu +e ¢ )

— — T 7
+ (1-k)e St i J.(ur)du
| g



oV, (r,z) -2ud r _
1az _ Jm e giz)f (l_k)EZud+uz 2up (l+k)62ud-pz _ (l+k)euz
0 2(1+e ) =
+ (1-k) e‘“z+2“£] Jy(ur)du
Again using the transformation of Eq. (4.51)
- 4 Xz
av_(r,z) e * AGE—) % & = o X - =
. r————fg— [(l—k)e 4% asige 20
0 4d(1+e 7)
Xz _ Xz XL
>
- @k)e® + @-kye M 4 13 2Ly g . (5.45)

53)
J 024
Substituting Eq. (5.43) into Eq. (5.43) and following the steps of Egs.

(4.93)-(4.93) results in an equation analogous to Eq. (4.953)

3 x4 Xz
AGS) r x + 22 - X2 X = 5
Izl = -cle fw e'x{ id l_x l(l-k)e a4 (1+k)e 2d
o\ (1+e™) L
XZ XZ X2
b3 o e o B
L,y .2d 2d 7 Td |, xR} ,
- (1+k)e + (1-k)e JJ].(T?-&_)] dx . (5.46)

The neormalized current flowing through a radius R in any plane z=z in the

first layer is

X Xz x& Xz
i . AGYD + 22 x - 2
g2 R r x [ id 1 ]—(H{)e 273 g 2d
N Y1 ‘0 L3 (1+e )
Xz ¢ B .
2 ) ’
- aHge?d + g-rye 224 g @Byl gy (5.47)
Tited

Comparing Eq. (5.8) with Egq. (4.87) and following the steps that lead to

Eq. (4.95) yields,

" - X Xz
A(T) 2d 2d 3
= 247 (e + e ) xR |
I . =21 o.R exf I3y dx . (5.48)
22 2* } " x Qe 1 !
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Normalizing again with respect to o the total normalized current flowing

l!

through a radius R in any plane z=z in the second layer is

I x x - = X
2 Al 2d . 2a
IZN=G_Z=2ﬂkR‘mex{ id (e _:e )Jl(%‘%}dx. (5.49)
2 1 0 (1+e™ %)

Equations (5.47) and (5.49) are incorporated in the computer program of
Appendix D, the (0,) integrals being evaluated by the 24-point Laguerre-
Gauss formula.

The function A(gg)/x is evaluated from Egs. (5.40) and (5.42). All the
current distributions can now be obtained for the two-layer model. Results

and conclusions of both models are discussed in Chapter VI.



VI. RESULTS AND CONCLUSIONS

Using the formulations for the guard ring model several computer runs
were made. The effects of variations in a selected set of parameters of
the system were studied. The main parameters under study were the design
of the guard ring and the relative potentials between the center electrode
and the guard ring. The radius of the center electrode "a'" was always kept
at 1 cm and the potential on the center electrode was one volt for ease of
comparison. With respect to the design o¢f the guard ring, the effect of the
gap between the center electrode and the guard ring and the effect of ths
width of the guard ring were studied. The potential on the guard ring was
varied with respect to that on the center electrode and its effect on the
flow of current from the center electrode was observed.

In the Introduction it was mentioned that the impedance pneumograph
described by Schmalzel et al (3) injects a constant current through the
central electrode. This current flowing through the impedance of its path
develops a potential between the central electrode and the tefersnce
electrode. This potential is sensed and its value divided by the constant
injected current is a“"measure of the impedance of the current pathway.

The sensed potential is buffered and fed to a wvariable gain amplifier which
drives the guard ring. The schematic is shown in Fig. 6.1.

Upon an initial observation it seems that the analysis of this research
effort differs from the principle that is followed in practice. The
analysis maintains a constant potential of ome volt on the center electrode
rather than maintaining a constant current flowing from the center electrode.
This approach is just for mathematical convenience! As the path of the

current flow varies the impedance varies, too. Therefore, if the potential
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Figure 6.1, Schematic of Guard Ring Drive.
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is kept constant then the current flowing from the central electrode
increases or decreases as the impedance decreases or increases respectively.
However, the problem is completely linear; therefore, the current can be
restored to a chosen value simply by increasing or decreasing the center
electrode potential without disturbing its pathway. This point will be

further explained after studying a few computer runms.

6.1 Single-Layer Model: Case One

The first case investigated is one with a relatively large gap between
the center electrode and the guard ring for the single-layer model. For
this design of the guard ring and the electrode the current flow for dif-
ferent potentials on the guard ring is observed. The results are tabulated

in Table 6.1.

Table 6.1. Single-Laver: Case 1
a=1lecm, b=3.0cm, ¢c=4.5cm, éd = 20 cm, Ve = 1.0V,

gap = b - a=2 cm, width of guard ring = ¢ - b = 1.5 cm.

v AV =V - Ve v Center Elec- Impedance Guard ring
g g Gain = =2 trode Cur- v Current I
Volts Volts v et T 7 = e cm—l gN

a eN N IeN Amps ohm
Amps ohm cm cm
1.00 0.00 1.00 1.444 0.692 17.851
1.20 0.20 1.20 0.309 1.236 22.056
1.40 0.40 1.40 0.174 5.735 26.261
1.44 0. 44 1.44 0.047 21.120 27.102
1.48 0.48 1.48 -3.080 -ve 27.943

From Table 6.1 it cam be seen that as the potential on the guard ring is
increased the current from the central electrode, Ieﬂ’ decreases and cor-

respondingly the impedance increases. A plot of the center =lectraode
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current versus the difference in potential between the center electrode and
guard ring is shown in Fig. 6.2. It can be seen that a ﬁinch—off potential
occurs. This occurs when the potential on the guard ring is increased to
the point where current flows directly from the guard ring to the center
electrode. All the current flow in the medium is then between the guard
ring and the ground plane with none between the central electrode and the
ground plane. Figure 6.3a shows a plot of the unknown function (A(x/2d))/x
versus x for the same potential on the center electrode anrd guard ring. A
very interesting explanation for this phenomenon of decreasing current or
increasing impedance with increasing guard ring potential can be obtained
from the plot of Fig. 6.3b. This is a plot of the contours of the current
from the center alectrode throughout the medium with the difference in
potential, AV = Vg - Ve, as a parameter.

First, if the center electrode had no guard ring the current would
spread out to an infinite distance at the ground plane. It can be seen
that the presence of the guard ring with the same potential as on the
center electrode (AV = 0) confines the current to a finite region about the
axis. Hence the guard ring does chamnel the current from the central
impedance measuring electrode so that the measurement of the impedance can
be restricted to only a central core of tissue. What is more interesting
is that increasing the potential on the guard ring results in a focusing effect,
i.e., narrowing the width of the current beam. It is precisely this effect
that produces the decreasing current and increasing impedance since the
narrower central core has a greater impedance.

The infinite ground plane is a worst case condition cf a finite size

reference electrode. With the reference electrode being of a finite size
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all current lines would have to terminate on it and the beam width would
then be narrower than what it is with an infinite ground plane.
Confirmation of the argument that the current can be kept constant
without changing its pathway by merely increasing the potential on the
center electrode is now made. Consider the case when AV = 0.44V. From
Table 6.1 with AV = 0 the center electrode current is IeN = 1.444 units.
The assumption to keep the current constant at l.444 units is made even for
a AV = 0.44V. Now, the impedance for AV = 0.44V is 21.120 units. Hence if
the current of 1.444 units flows through this impedance the potential om
the center electrode should be Ve = 1.444 x 21.120 = 30.497 units. AV =
0.44 means that the gain is 1.44 or Vg = 1.44 Ve. Now if Ve is increased
by a factor of 30.497 then Vg is increased by the same factor. This is
equivalent to multiplying both sides of the simultaneocus Eqs. (4.58) and
(4.59) by the same factor 30.497. If the coefficients of the unknowns,
Gl(si) and H(Si), are fixed then Gl(si) and H(Gi) are each multiplied by
the same factor 30.497. By Eq. (4.97), (A{x/2d))/x will increase by the
same factor 30.497 and by Eq. (4.98) the current in any plane at any radius
will increase by the same factor 30.497. Since the increase in current is
independent of the z plane or the radius, the current pathway will remain
the same. The same argument holds for the 2-layer model when it is applied
to the relevant equations. The pair of Fredholm integral equatioms (4.43)
and (4.44) are solved using this value of Ve while keeping the gain the
same at 1l.44, i.e., Vg = 1.44 Ve. The current contour is shown in Fig.

6.4. The impedance of the path is the same at 21.120 and if this contour

is compared with the one in Fig. 6.3b for AV = 0.44V it can be seen that the
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twe overlap. Hence the analytic technique of using a constant potential on
the center electrode is equivalent to the constant current injection
technique.

Having observed the focusing effect, different designs of the guard

ring were studied.

6.2 Single-Layer Model: Case Two
The second case for the single laver model consists of a narrow gap
guard ring of the same width as Case 1.

The results are tabulated in Table 6.2.

Table 6.2: Single-Layer: Case 2

(w2

~d

a=10c¢cm, b=1.25¢cm, ¢ = 2.75 cmn, d = 20 cm, Ue = 1.0V,
gap = b - a = 0.25 cm, width of guard ring = c - b = 1.5 cm.

v AV =YV - Ve v Center Elec- Impedance Guard ring
g g Gain = =2 trode Cur- v Current I
Volts Volts Ve rent 1 7 = _© cm—l gN

eN N IeN Amps ohm
Amps ohm cm cm
1.00 0.00 1.00 1.000 1.000 10.695
1.05 0.05 1.05 0.721 1.387 11.508
1.10 0.10 1.10 0. 442 2.264 12,322
) Q.15 1.15 0.162 6.154 13.136
1.16 0.16 1.16 0.107 9.376 13.299
1.17 0.17 .17 0.051 19.680 13.462
1.20 0.20 1.20 -0.117 -ve 13.950

Again, a plot of the center electrode current versus the difference in
potential AV is shown in Fig. 6.2. Figure 6.5a shows a plot of the unknown
function (A(x/2d))/x versus x. The current contours are shown in Fig. 6.5b
with AV as a parameter. It can be seen that for the narrower gap case

{gap = 0.25 cm) the pinch-off potential occurs at a lower value of AV than
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for Case 1. The focusing effect is more proncunced near the center electrode

but some spreading occurs at the far end near the ground plane.

6.3 Two-Layer Model: Case One
The following discussion relates to the two-layer model with different
guard ring designs. The Two-Layer: {(ase 1 uses a guard ring of the same
design as the Single-Layer: Case 1. The results of this case are shown in
Table 6.3.
-1

The conductivities used are g, = 1/400 ohm-l cm T, O,

1

1/2000 ohm

o {17]

Table 6.3. Two-Layer: Case 1.
a=1.0c¢cm, b= 3.0cm, ¢ = 4.5 cm, d = 20 cm, Ve = 1.0V, k=0.2, 2 = 2 cm,

gap = b - a= 2 cno, width of guard ring = ¢ ~ b = 1.5 cm.
Vg AV = Vg - Ve Eﬁ Center elec- Impedance Guard ring
Tales Volts Gain = Ve szoieICur- . - Ve cm_l Current IgN
Bt ten NI Amps ohm
Amps ohm cm cm

1.0 0.0 1.0 0.530 1.888 §.313

1.1 0.1 1.1l 0.146 6.852 10.628

1.2 0.2 1.2 -0.238 -ve 11.943

A plot of the center electrode current versus the difference in potential
AV is shown in Fig. 6.2. The pinch-off potential occurs between a guard
ring potential of 1.1 and 1.2 volts. Figure 6.6a shows a plot of the
unknown function (A(x/2d))/x versus x. The current contours are shown in
Fig. 6.6b. Once again the channeling of the current through a central core

of tissue is apparent with increasing potentials on the guard ring.
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6.4 Two-Layer Model: Case Two

This case is associated with a model which,possesseé a Narrow gap
between the central electrode and the guard ring. The design of the guard
ring is the same as the one in the Single-Layer: Case 2. The results are

shown in Table 6.4.

Table 6.4. Two-Layer: (Case 2
a=10cm, b=1.25¢cm, ¢ = 2.75 cm, d = 20 cm, Ve = 1.0v, k = 0.2, & = 2 cm,

gap = b - a = 0.25 cm, width of guard ring = ¢ - b = 1.5 cm.
v AV =V - Ve v Center elec- Impedance Guard ring
& = Gain = =2  trode Cur- v Current I
Volts Volts Ve rent I 7 = & -1 gN
SRE SaR NT1T Amps ohm
eN
Amps ohm cm cm
1.00 0.00 1.00 0.493 2.028 6.378
1.03 0.03 1.03 0.313 3.196 6.749
1.06 0.06 1.06 0.133 7.335 7.121
1.09 0.09 1.09 -0.047 -ve 7.492

A plot of the center electrode current versus the difference in potential
AV is shown in Fig. 6.2. The value of the pinch-off potential in this
case is seen to occur at a lower value of guard ring potential than in
the Two-Layer: <Case 1. Figure 6.7a shows a plot of the unknown functiom
(A(x/2d))/x versus x. The current contours are shown in Fig. 6.7b.

Similar to the Single-Laver: Case 2, there appears to be an increased
focusing effect near the central electrode and a slight spread at the far
end near the ground plane. The twc cases for the two-layer model studied
thus far view the two desirahle extremes, i.e., a large gap and a narrow

gap. The results show that cases between these two extremes will also have
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a focusing effect somewhere between that shown by the two cases; the degree

of which depends upon the relative size of the gap.

6.5 Two-Layer Mcdel: Cases Three and Four.

Another aspect of the guard ring design that was analyzed was the
effect of the width of the guard ring on the current contours for variations
in the guard ring potential. A broader guard ring is used for these cases.
Plots are given of the current contours for a large gap (Case Three) and for
a small gap (Case Four). Case 3 deals with a wide guard ring and a large

gap. The results of Case 3 are tabulated in Table 6.5.

Table 6.5. Two-Layer: Case 3
a=1.0cm, b=3.0cm, ¢ =5.5cm, d =20 cm, Ve = 1.0V, k

I

gap = b - a = 2 cm, width of guard ring = c - b = 2.5 cm.

v AV =V =7V v Center elec- Impedance Guard ring
g g € Gain = 15- trode Cur- v Current I
Volts Volts Ve cent T 7 = e cm‘l gN

eN N Ieﬂ Amps ohm

Amps ohm cm - cm
1.00 Q.00 1.00 0.352 2.835 11.252
1.08 0.08 1.08 0.030 33.226 12.475
1.12 0.12 1.12 -0.131 -ve 13.086

A plot of the center electrode current versus the difference in potential AV
is shown in Fig. 6.2. Comparing Tables 6.3 and 6.5 which are both for the
large gap case and from Fig. 6.2, it can be seen that pinch off with the
wider guard ring (Table 6.3) occurs for a smaller value of guard ring
potential that for the narrower ring case. Figure 6.8a shows a plot of

the unknown function (A(x/f2d))/x versus x. The current contours of Fig.
6.8b indicate that the focusing effect near the central electrode is similar

to the Two-Layer: Case 2 (narrower gap) but does not have the undesirable
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spread near the ground plane of the Two-Layer: Case 2. The last case
(Case Four) that was analyzed used the same width of the guard ring as in
Case 3 above but with a narrow gap like the Two-Layer: Case 2. The results

of Case 4 are shown in Table 6.6.

Table €.6. Two-Layer: (ase &
a=1.0cm, b=1.25cm, ¢ = 3.75 cm, d = 20 cn, Ve =1.0V, k=20.2, £ = 2 cm,

gap = b - a=0.25 cam, width of guard ring = ¢ - b = 2.5 cm.

Vg AV = Vg -V Eﬁ. Center elec- Impedance Guard ring

in = - G £t I

Volts Volts i Ve E:zieICur 7 = ve cm-l urrent gN
eN N IePq Amps ohm
Amps ohm cm ; cm

1.00 0.00 1.00 0.280 3.572 8.372
1.02 0.02 1.02 0.155 6.448 B.664
1.04 0.04 1.04 0.030 33,150 8.956
1.06 0.06 1.06 -0.095 -ve 9.249

A plot of the center electrode current versus the difference in potential
AV is shown in Fig. 6.2. It can be seen that pinch-off occurs at a value
of guard ring potential that is smaller than that for any other case for
the two-layer model. Figure 6.9a shows a plot of the unknown function
(A(x/2d))/x versus x. A plot of the current contcurs is shown in Fig.
6.9b. The focusing effect near the central electrode is quite pronounced
and there isn't an undesirable spread near the ground plane. From the four
cases for the tﬁn layer model it seems that the gap between the central
electrode and the guard ring affects the focusing in planes close to the
central electrode where as the width of the guard ring affects the focusing
near the ground plane. From all the cases discussed this far the Two-

Layer: (ase 4 seems to show the best channeling of the central impedance
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measuring electrode current so that the measurement of impedance is restricted

to only a central core. However, some practical difficulties might be

encountered.

6.6 Practical Aspects Associated with the Guard-Ring System

There are a few points to be discussed with respect to the practical
feasibility of the guard ring technique. As the current is focused the
impedance of its pathway increases. If the constant current impedance
pneumograph is used this means that the potential on the center electrode
that is sensed increases and the guard ring driven by the amplifier with
the adjusted gain also has an increased potential. Depending on the value
of the injected constant current and the impedance of the pathway, this
sensed and amplified potential can drive the amplifiers to saturation.
Cases with very low pinch-off potentials have a very small range over which
the guard ring amplifier gain can be varied. The best way to focus the
current is to vary the gain while observing the impedance signal. The gain
ought to be set for the maximum achievable impedance signal. Concurrent
experimental research on dogs at Kansas State University has confirmed the
presence of the focusing effect as is shown in the tracings of Figs. 6.10.
A constant current impedance pneumograph is being used in the experimental
effort. The tracings with the larger impedance signals are those with
gains (Vg/Ve) greater than unity.

A difficulty encountered in using a narrow gap between the center
electrode and guard ring is application of the electrodes. Conductive gel
has to be used to apply the guard ring and electrode and often the gel
spreads out to form a conductive path between_sghe electrode and the ring

on the surface of the skin.
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The analysis carried out in this research effort pertains to a static
system. During breathing the conductivity of the lung tissue is changing.
This means that the current pathway does not remain the same during
inspiration and expiration. As a result, the impedance signal observed will
not pertain to a fixed narrow central core. A question that needs to be
investigated is if the impedance signal can be fed back to increase the
guard ring potential and thus increase focusing when the current spreads
out due to a change in conductivity of the medium and wvice versa.

This research effort has established a method for solving the encountered
equations. OCther models caﬁ be developed by including inhomogeneities in
the media to represent other anatomical structures (e.g., heart and lungs).
A bounded medium of cylindrical, hexagonal or trapezocidal shape could also
be used to represent a more realistic medel of the thorax instead of the
semi-infinite model. There is in fact an endless number of models that
could be developed; however, the mathematical complexity and required

computer time to study more complicated models could be abominable.
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VIII. APPENDICES
APPENDIX A

This treatment on the preliminaries of Integral Equations is taken
from Sneddon [7] pgs. 40-42.
Many integral equations encountered are of the form

fx £(t)de
a [h(x)-h(t)]"

= g(x) (a < x < b) (A.1)

where 0 < r < 1 and h(t) is a strictly monotonic increasing function in

(a,b).

Consider the integral

JX h' (u)g(u)du _ (A.2)
a fhixyhiu 1"

Substituting (A.l) for g(u) and interchanging the order of integratiom, the
integral is equal to
x h' (u)du

it
J ¢ [h(w)-h() 1 [R(x)-h )] "

X
f £(t)dt (A.3)
a

From standard tables the inner integral has the value B(r,l-r)=wcosec(wr)
where B is the Incomplete Beta Function. Therefore
b

X ) f
J h (u)g(u)dlll_ = meosec(mr) | £(e)dr . (A.4)
a [h()-h(w)]"F a

Differentiating (A.4) the solution of the integral equation (A.l) is

b h'(u)g(u)du

a [h(t)-h()]*F

sinnr

f(t) = -

d - -
EE j!' (a < t -—')- (A‘J)

By a similar method it can be shown that the integral squation
°_ £(e)de

{ 3

Jx [R(E)-a) 1T

= g(x) {a < x < b) (A.8)



where 0 < r < 1 and h(t) is strictly monotonic increasing in (a,b), has
the solution

sintr d (
T dt J

h(u)g(u)du
¢ [h(u)-h(e) LT

f(t) = - (a < t < b), (A.7)

Consider the particular case h(u)=u2 and r=1/2. Substituting in (A.1)

and (A.5) the integral equation

x
{ ——§££%g%7§'= g(x) (a < x < b) (A.8)
{x"=t™)
has the sclution
_ 2 d t ug (u)du <
f(t)-—:ﬁ—EJ( 2 2.1/2 fa <t b) . (A.9)
a (t™=u")

2
Substituting h(u)=u”~ and r=1/2 in (A.6) and (A.7) the integral equation

fb £(t)dt
—— = g(x) (a < x <b) (A.10)
Ly (e2-45)172
has the solution
b
£(t) = - %a’i‘ J{ _%E(;)—clh;z (a <t < b). (A.11)
t (u™-t7)



APPENDIX B
Consider the integral
I = d JS r dr
ds b (32_r2)l/ ( )1/2
Let r2=u, therefore rdr=du/f2. Now
2
;=14 J B
2 ds 2 (—u2+u(s +t ) -s t2)1/2

b

From standard tables

H
[
r——-
U'l
',_l
~

2
. =1 -2b"+sz+t2
in G-*—jf—?f‘ﬂl
s -t

|
| o
0]

_ s@2oc2y1/2 |
(s2-c2y (s2-p2) 112

Consider the integral
& t:G (t)dt

v(z 2)

Let J —2'-“——1/:= P(y)

Then é— f
dy J

Substituting in (3.2)

(B.1)

(B.2)

(B.3)



B-2

On integrating by parts we have,

R=-2(—P® 5 _2[° yrdy
T (yz 2)1/2 T Jb (Y2_32)3f2

_ g_[ 1 jc tG (t)dt ]c ) g-j vd Jc tG3(t)dt

T (y2 2)1/2 (tZ 2)112 7 b (y2_82)3/2 - (t2_y2)l/2

Interchanging the order of integration for the second term

5 1 c tG, (t)dt
R==
T p2_g2yl/2 Jy (22p%y1/2
g 1% {t vdy
- =] tG,(x)dt | T . (B.4)
Ty 3 Iy (52-s2)3 2 (122172
From standard tables
2 .2.1/2
r ydy B o o Yk - 8.5)
b (52-a2)3 22—y H T (12e?) w252yl

Substituting (B.S5) into (B.4) we have,

. 2 1 = tG (t) - ﬁEE:EEl]dt
m (b2_52)1[2 It (t2 2)1/2 tz_sz
, e t7-s) %6, (e)ar
T b (e2-s?) (tob )l/' e
Now consider the integral
;.4 [P xdr r’ d_ e "33(3’)‘13’ —_—
ds Iy (s 1/2 ( 1/2 Jb (Yk E )1/2 :
Changing the variable t to x,
4 8 rdr e dx e 3'733("’7)dy
T jb (s2-r2y1/2 jo (rroxy /2 }b (?Z_XZ)]_jg . (8.8)



Using Eq. (3.35) and interchanging the order of differentiation and

integration,
;. J‘b i % d_J*S iy ) J'C . 1 Ed_r tGB(t)dt ;
0 ds b (SZ_rZ)I/Z(rZ_XZ)lIZ 5 (\ i )1/2 T dy (t ” )1/2
(B.9)
By Eqs. (B.l) and (B.6), Eq. (B.9) becomes
2 2.1/2
- Jb s(bZ“xz)llz . E-JC t(b™=x") G (£)dt
0 (SZ_XZ)( 2 h2)1/2 LAV N (t - )(t 2)1/2
b 2 2
‘ £s L. dx . (8.10)

2 {
D R R I N v PR RV j

b {(t™-b") 0 (tz—xz) (sz-xz)



APPENDIX C

Consider the integral

b (t2 Z)l/2
Lt P = Jo(yw dq = —25 1732
(t"=y"™)
2,172
dp = -uJ, (yuddy q = —(tz-y )l/ ;
Integrating (C.l) by parts
t t
2
L= -e2yH 25wl - uj 3, Gw Py ey
b b
2 .2.1/2 t 2 2.1/2
= (t ) Jo(yu) -u Jl(yu)(t -y7) dy .
b
d t yJO(yu)dy
e = 8 [F 2000
> d 2 2
Ly Sy )1/2
t
I(t,u,b) = %%—: t 73 (bu) -u f J (yu) d
(t b) b (r_
Now F(8,u) = sindI(bsecd,u,b)
Let t = bsecH in Eq. (C.3).
rbsach
F(8,u) = Jo(bu)—siné uj Jl(yu) bse;@dv 17z
b (b"sec“3-y7) <
Now let y = bsectcos@, with a new variable @ defined.
Then dy = -bsecfsin@dd.

Substituting in

F(s

t yJ (yu)dy
2

Eq. (C.4)

G
,u) = Jo(bu)+sin6 a ! Jl(hu sec2cos®)bsec?dy

9

{"3
Jo(bu) - bu tand

J, (bu secHcosd)dd .
JO =

2,1/2 ¢

{C.1)

£8s2)

(C.3)

(C.4)

(C:5)



OO0 OO O

OO O

O

OO

1J
23
25
30
40
50

it W

* A 3t

APPENDIX D

CIOMPUTER PRIGRAM TG S3LVE THE PAIR CF FREDHCLM
INTEGRAL EQUATIONS SET UP AS & 3ET 0OF 35 SIMULTANSIUS
EQUATICNS FX=CNST

D-1

B T L T B e e T e R S T T T bt P e

=

=

R R Y X I R T TR AN TR F I N I R SR A TN - A TS R AFRIFAE T TR FERRRER

DIMENSICN F{35,35),CNST{35),XL{20),AL(20),5L(20),0U(24),
1T13(20,15),THETA(15),CL(15),T33(15,15),XG(24),BES3{24),
2BL{15) s YL{15),AU(32),CURR(12,11,425)yR1L(23)4Z(1L1L},
3COEF{35935),VG(12)4ECURLI12),FL115,24),X1{24),R(24),0L1(24),
41BUF(8200)

QPEN PLOT LIBRARY AND FIX ORIGIN

CALL
CaLL
CalL

PLITS(IBUF,800D0)
PLJT(O-J!‘II-D!B}
PLOT (24259~Te54-31

FCEMAT (*0%,14)
FORMAT (1F10Q.5)
F3RMAT (I4)

FORMAT (1E13.7)
FOSMAT (lEl4.7)
FORMAT (5El15.5)

READ VALUJES OF CENTER SLECTRGDE RADIUS A, INNER
RADIUS OF GUARC-RING 3, JUTER RADIUS C, TOTAL
THICKNESS D,NUMBER OF LAYERS LAYR, THICKNESS OF
LAYER 1 FOR 2-LAYER CASE D1, CENTER ELECTRJIDE
VOLTAGE VE, GUARD=-RING VOLTAGE VG,CONDUCTIVITY RATIG
CON {CON=l. FOR 1 LAYER), RADII R1 AND PLANES Z=1

READ
READ
READ
READ
READ

25, LAYR
20,A4B4CyDyD14VELCCN
20,(VG({1),1=1,12)
2C0,(RI(I)4I=1,423)
20,1Z2(1),1I=1,11)

PHI=ARCOS(3/C)
Pl=4,=ATAN{ 1.}

READ VALUES 7F NOCES XL,YL,XG AND WS IGHTS AL,ABL,DL
OF THE 27-POINT AND 15-PJ3INT LEGENDRE-CGAUSS FORMULAS
AND THE 24-POINT LAGUERRE-GAUSS FORMULA RESPECTIVELY

READ
READ
READ
READ
READ
READ

40,(XLIT),I=1,20)
307(AL(I}QI=1v20‘
30,(YL{L),I=1,15)
30, {BLLI),I=1,15)
304, (XS I=1p2%)
30,(DL{T),I=1,24)

JSTAIN NIDES SL TRANSFORMED FROM THI (-1,+1) TD THE
(0,A) INTSRVAL AND NODES THETA AND WEIGHTS CL
TRANSFORMED FRCM THE (=l,+1) TO THE (0,PHI) INTERVAL

DT 60 1=1,29
60 SL(I)=A=(1.+XL(I))/2.



~

[ ]

00 70 I=1,15 D-2
THETA{ I)=PHI={1.+YLLI)) /2,
73 CLETY=PHI=SLII)/2.

JBTAIN BESSEL FUNCTIJNS TI COMPUTE

UNCTISN F
AND CTMPUTE FUNCTION H(J) CENITED E

THE F
AY R HERS
DG 100 I=1,24
XL{I)=(8%XG([})/(2.=D)
IF {LAYR.EQ.2) GO TO 80
P(I)==1./(Dx{1+EXP(=XG(1))))
GQ TO 89
30 R{IN=({(1e=COMI*EXP(XGII)=XGIII*DL/D)=(1s+CON))/UD=((1a+LTN)
L+#(CCM=-14) *EXP{=XG(I)*DL/D)+(CON=1.) =EXP{=XG{I)+XG(1})*D1/D)
2+{ 1. +CCON)Y=EXP(=XG(T1)))}
90 IF (ABS{X1({I)}.LE.3.) GO TQ S5
CALL BELO(X1{I),3EST(I})
GC TC 100
95 CALL BEL3(XL(I),3ES2(I)}
129 CONTINUE

LOCP TC COMPUTE FIRST 20 0wW3 AND FIRST 20 COLUMNS
JF THE MATRIX F (THE KERNEZL K11)

DD 1593 I=1,2)
S=SL{n)
CC 120 J=1,29
T=SL(J)
Y=0
CC 110 K=1,24%
110 Y=Y+R(K)*COS{S+XL(K)/B)=CAS{T&X1(K)/B)=DL (K)
Y=(2./P1)*Y
120 Fll.Jd¥=¥Y=AL{J)*A/2.
150 FII,I)=1la#F{1,1)
155 FCRQMAT ('0',10E13,5/"' ', 10E13.5/"' ',4EL13.5)

LOCP TO CSMPUTE THRE FUNCTICN F DENOTED HERE AS F1

DC 200 I=1,15
PL=THETALI)
DO 200 J=1,24%
P2=X1(J)
VAL=BESZ(J)
SUM=19
00 180 K=1,15
ARG=(P2/CCS(P1))*COS(PL*®(l.+YL(K))/2,.}
IF {ABS(ARG).LE.3.) GO TJ 170
CALL BEL!(ARG,BESL)
G0 TO 180
170 CALL BEL13(ARG,BES1)
180 SUM=SUM#P1*(3L(K)/2.)=3ES]
200 Fl{I,4)=VAL-P2=(TAN(P1)}=5UM

LOCP FOR THE FIRST 20 RDOWS ANC COLUMNS 21 TC 35
JF THE F MATRIX



o

DT 259 J=1,24% D-3
230 Tl=T1+#DL{N*{2./PI}=R3{J)*FL(I1,3)=COS(S=X1(J)/8)
TI3(KsI)=((2./P1)%SART(B=8=-5=S})/{{(B«3}/{CASITHETA(T})
1=2COS{THETA(I) ) )-S=S)1)+T1
200 FIK,I+20)=3=CLII)=T13(K, 1)

LOCP FCR ROWS 21 TO 35 AND FIRST 22 CCLUMNS OF
THE F MATRIX

DN 313 J=1,15
00 319 I=1,2)
310 F(J+20,11=T13(I,J)=axaL(])/2.

LC3P FOR ROWS 21 T3 35 AND CCLUMNS 21 TJ 35 OF MATRIX F

D2 40C I=1,15
VALLI=TFETA(I)
D7 400 J=1,15
VAL2=THETA(J)
T2=0
D3 3273 K=1,2%
220 T2=T2+(2,/P1)=B=DL[K}*R(K}=FL{I +XI*F1(JyK)
IF (1.EQ.4) 30 T3 3220
T23(14J)=(4/(PI=PI )} )={SIN(VAL2)*TAN(VAL2)=ALTG(TANIVAL2/2.}
LI=-SIN(VALL)=TAN(VALL)}=ALOG({TAN(VALL/2.))) /1(1./(COS(VALL)
2xCOSIVALLY) I=(1./7(CIS(VAL2)=CAOS(VAL2}) ) I+T2
FII+20,J+420)=CLEJ)I=T33(1,4J)
GO TO 400
320 T32UT 4 d)=(-4./(PI=PI1})={1le~-045=SIN(VALLI®SINIVALL))
1=(COSIVALLY*ALOGITANIVALLI/2)))=(2./(PI*C[))*COS(VALL)
2=C3S(VALL)+T2
FII420,J+20)=CL(J)*T33(1,J)+#SIN(VALL)*COS (VAL1)=*COS(VALL)
400 CCNTINUE

LOCP TC SOLVE THE 35 SIMULTANECUS EQUATIONS FOR
THE DIFFERENT VALUES JF VG

Do 7CC L=1,12
M=1
BRINT 10,L
0G 410 I=1,29
410 CNST(I)=VE
D0 420 I=21,35
420 CNSTULIY=VG(L)
D0 4323 [=1,35
DO 430 J=1,35
430 COEF({I J)=F(1,yd)
CALL GELGICNST,CCEF,435,1,4J.021,1ER)
IF {TER.NELJ) GO 7D 820
440 FAEMAT (90',10EL13.5/% ',10E13.5/" ',10E13,.5/" '4,5E13,5)
45) FORMAT (*'Q',c20.101

THE SCLUTION CF THE 35 SIMULTANEJUS EQUATIONS IS
RETURNED IN THE CNST MATRIX

PRINT 440,(CNST(I),I=1,33)
LCCP T2 CALCULATE ThHE CENTZR ELZCTRCDE CURRENT ECUR

SUM=2



¢ o0

469

479

439

450

512

529

5443

553
569

0C 460 I=1,20
SUM=SUFM+AFALII)XCNST (1) /2.
ECUR([L)=4.*SUM

PRINT 450,zCURI(L)

SuMl=¢_C

DO 470 I=1,15
SUML=SUML+CLITI=CNST{1+20Q)
GCUR=4.=8%SUMI

PRINT 453,GCUR
RO=VE/ZCLRIL)

PRINT 450,R0

LCCPS TO CALCULATE THE UNKNOWN FUNCTICAS A{UIEDIW)

T2 52d J=1,24

SUM=0

SUML =0

DT 483 1=1,22

T=A=(1l.+XL(1)}/2.
SUM=SUM+A2AL(T)2CNSTI{II®(COSIT=X1{J)/R)}/2.
SUM={2,/P1)%=SUM

CC 490 I=1,15
SUMLI=SUMI+CLI{T)=CNST(I+20)=F1(1,4J)
SUMLI=(2.%R/PII*=SUM1

IF (LAYR.EJ.2) GO T2 510
AUCIY=(1a/02.%D) ) ={SLY+SUML)

G2 TO 520
DUCJ)I=(1./02.%D))=(SUM+SUML)
UP=CCSKHIXG(J)/2.)
ARGLl=X1(J}%{D-C1l)/3
ARG2=D1=X1{J1/3
DOWN=SINKHIARGL) =S INHIARG2Y+CSN*COSHIARG LY =COSH{ARGZ)
AULJ)=CUlJ)=UP/COWN

CONTINLE

PRINT 155,(4U0(1),1=1,2%)

LOOP TC CALCULATS THE CURRENT AT CIFFERENT =ADII R1,
AT DIFFERENT PLANES I=Z

DO 630 J=1,11

0C 590 I=1,23

T07T=0

DO 5843 K=1,24%

IF (LAYRGEQ.2) GO 7O 549
UP=EXPIXGIK)=XL{K)}=Z{J)/BI+EXP(XL(K)=Z(J)/B)
G2 T3 560

IF {J.CT.1) GO T2 550
UP=(1.-CON)*EXP(XGIK)} X1 (K}=Z2(J)/3-CLl*XG(K)/D)
I-(1a+CON)2EXPIXGIXK)I-X1(KI=Z{J)}/3)

UP= P = (1, +CIN)*EXP(XL(K)¥Z(J)/Bi+ (L —CON)*EXP(-X1(K)*Z(J)

1L/B+D1*XG(K} /D)

GC TZ 560
UP=EXP(XGIK)I=X1(K)I=Z(J)/3)+=XP{XL(KI*Z(J)/B)
COWN=1.+ZXP(-XG[X}}

ARG=X1(K1=R1{11}/8

IF {ARGeLE.3.) GC T2 570

CALL BEL1(A3G,BES)



OO

573
589

582

585
599

600

€40

700

719

GC TO 580

CALL 3E12(ARG,BES)
TOT=TCT+AU(X}=UP=3ES*DL(K)/ITWN
I[F (LAYR.EQ.2) GC T3 532
CURR(LyJyI)=2.%P[=2L (1} =TOT

GO T2 599

IF {J.GT.1) 53 TO 585

CURR({LyJy IV==PI*R1([)=TOT

GC TC 590

CURR(LyJy I)=CON%2,.,%PI=R1([)=*TOT
CCNTINUE

PRINT 155,(CURR{LsJs1),1=1,23)
PUNCH 50, (CURRILsJs 1), I1=1,23)
CCNTINLE

IF {ECUR(L).LT.QJ.) GC TO 710

PLCT CF THE FUNCTICN A(U} VS U

FIRSTV=O.C

CELTAV=2].0

CALL AXIS({04040e09"X*y=145.050.C+FIRSTV,DELTAV]

CALL SCALE(AU,+5.0524,1)

FIRST=d.0

CELTA=AU(25)

CALL AXIS(0.090.04*FUNCTICN A/X"91245409%0404FIRST,D2LTA)

XG{1) IS THE LARGEST NODE XGt24) IS THE SMALLzST ON
THE IMNFINITE INTERVAL

YO=AU(24) /DELTA
X0=XG124)/DELTAY

CALL PLOT(XJ,Y0,3)

DO 640 I=1,24
YO=AU(25-1)/DELTA
XJ=XG(25-1) /DELTAV
CALL FLCT{XD,Y0,2)
CALL PLCT(13409D.04-3)
CONTINUE

PLCT THE COMSTANT CURRENT CONTCURS

CALL FLCT(1J409=1.75,-3)

CLLL DLDT{"}.O!O-O?BJ

CALL PLOT(3.3,040,2)

CALL PLCT(043+04043)

CALL PLOT(0.3,+8.0,2)

WIOTH=2.%4/2.5

X0=A/2.5

CALL BECT(-XJ9-0s0625,3+0625yWI0TH+0.0,3)
X0=C/2.5

WICE=(C-8)/2.5

CALL RECT(-X04-0.0625,0.00254WI2E40.0+3)
X0=2/2.5

CALL RECT{X0y-04062590.06254WICE40.043)
CALL RECT(-3.048.,0y0.0625+64350.0+3)}
Ml=M-1

DO 3C3 L=1,M1

X0=4/2.5

CALL PLIOTIXJyGa0,3)

00 309 I=1,11

i



YYD O DY

PO TOY O

123

170

780

790

830

305
8J3

8193
829
833

D9 79C J=1,23 D-6
[F (CURR(L,1,J).GTL,ECUR(L)) GT T3 723
GG TC 799

IF (J.EQa1) GO T2 77¢
XR=[CURRILs I+ J)=-CURR{LI+J-1))/(R1(JI=-R1(J-1))
XDIF=ZCUR(L)-CURR(L,I,J-1)
XO0=XDIF/XR

XLEN=RLI(J-1)+X0
XCORD=XLEN/2.5
CNST(I)=-XCORD
YCRD=2Z{1)/2.5

GO T2 780

CNST(I)=—XCCRD
YORD=Z(1)/2.5

CALL PFLOT(XCORD,YSRI,2)
Nl=1

GC TC gQ0

CONT IMNUE

CCNTINUE

X0=A/2.5

CALL PLCT{-XxX2,40.0,:3)

D0 8C5 I=14N1
YORC=Z{I)/2.5

CALL PLCT(CNST(I),¥YCRD,2)
CCNTINUE

IF (LAYR,NEL2) GO T2 820
Y0=D1/2.5

CALL PLOTI(-3.0,+Y0,3)

CALL FLCT{3.0,Y0,2)

GO TD &30

FORMAT (° '74HIER=9I4'
PRINT 810,IER

CALL PLOT(0.340.0,595)

sToP

END

B A A A R R N R A R R A N R A A AN A AR R R AR I I AF T Y AKX
= =
*+ SURRJUTINE TO CCMPYTE THE ZERC 7RDER BESSEL *
= FUNCTICN JO{X) FOR (X.LE.3.) ®
= *

EE AR R R R R XA R ke ko ek R R AR R R R T AY AR A X I A IR

SUBRCUTINE 3EL3{X,8ES50)

A=X/2,
BESO=14-2.24599GT7%A%2+],25656208%(A%%4,)-,31538066%(A%%6,.)
BESO=RESO+.044447C=(A*%8,}-,003644=(A%=]0,)+,3002100x{Axx12.}
RETURN

END

AR AR A RN AR X AR A PR A A AN R AR AR R AR A ARk R R E xR A kT gw xR
o«

* SURRCUTINE TC CCMPUTE THE ZERQ CRDER BESSEL
x  FUNCTICN JOI(X) FOR (X«GT.3.)

*

W+ RO

P EFTFIEITRTELESS ST ET TR ES LSS SIS SIS SIS RS Rt R st S F

UTINE 3ELI(X,2ESD)
X



OO0

OO O0O00

D-7
FO=aT7GT38455={,TTZ=06)*A=(.552T74DE-02) =A% A=(,G512E=04) =4%2*]
FO=FO+{ . 1372375-02)%(4A*%4,)-(.T72305E-03)*(A%*5,)
FO=FO+(,14475E-03 )% Axx5,)
SO=X=.78539816-({.416063G7E-J1}*A-(.3954=-04)=A=A
SO=50+(4262573E-02) *A*A*A-(.54125E-03) F{A%x4,}
SI=50-(425233E=03)={A%x=5,)+{.13558E-23)=(A**6.)
BESO=FO=CCS(SQ}/SQRT(X)

RETURNA
END

B g S e s E R R PR R
=
* SUBROUTINE TOD COMPUTE THE FIRST CRDER BESSEL

#  FUANCTICN JItX) FIR {X.LZe3.)
%
R AR R R X R E R AN R R A T A R AR A E IR FE XTI R SR IR IR F I A s R X K xRS

w F o

SUBROUTINE 3EL13(X,BES1)

A=X/3,

AES 1=45-a56245GR5=A%A+, 21093573 +(A=*4,)~{.39542892~-21)
I*{a=%g,)
BES1=PESL+(+4%43319E-02)2(A=%3,1-(.317615=-03)*(a=x*1J.]
BES1=3ES1+(.1109E-04)*(A*=x12,)

BFESl=X*BES]

RETURN

ENC

ET R EE FAEY AR AR AR AR I XA AR X F LT RS AU X AT R AR R T E KRR IRFRIEEE

# *
* SUBROUTINE T2 COMPUTE THE FIRST CRDER BESSEL L
*  FUNCTICN J1(X) (X«GT43.) ®
* x

MR A R A AR AN E R IR AT e AR A T KA I N s R E R R I XA RIS YRR RE LI KN

SUBROLUTINE 3EL1(X,BESL)

A=3./X

Fl=. 79788456+ (4 156E-C5)=A+(,16555675-01)1*A=A+(,171J5E-03)*A
1*xA%xA

Fl=Fl={+249511E-02)={A=%4,)+(.113653E-J2) *(A*%5,)

Fl=F1=-{ .20033E-03)2(Aa%=5,)
S1=X=2.35619449+.1249G612=A+{.5650C-C4)*A=A-{.537873E~-32)+#A
1=A*A

S1=S14+(.74343E-Q03)=(A*x*4,)+(.758242-C3})={A==5,1}
S1=S1-(.29166E=-03) =(A*x*6,)

RESI=F1=COS{S1)/SQRTI{X}

RETURN

eND
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ABSTRACT

A simple modeling approach is investigated for the study of the guard
ring electrode system in impedance pneumography. Initially the thorax is
modeled as a semi-infinite layer with a guarded electrode on one surface
and an infinite ground plane on the other. The field equations are for-
mulated as quadruple integral equations. The solution of these equations
defines the current pathways in the medium.

The model is then extended to a two-layered medium which represents
the thoracic wall and the remaining thoracic tissue. The current pathways
through the media are investigated for different designs of the specialized

guard ring electrode system.



