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1. INTRODUCTION

Time series connected with ph::‘fii-c:a] cccurances mzy often appear tc
repeat themselves at fixed time intervals. This type of trend is referred to
as cycli.c or oscillatory behavior. The very nature of surrounding events
may dictate some ty-pe of .cycle. Thus there is 1ift1e question abcut the appli-
cability of harmonic analysis.

It is reasonable th;t we de’scriBe cyclic events with functions that are
themselves cyclic. We are then led to the use of trigonometric functions and
Fouriei series analy'sis;. The {irst section of this p.aper is a review of class-
ical Fourier methods in tﬁe approximation of'a-halytic functi.o-ns by infinite
sums of trigonometric terms. o |

Early work in the area of harionic analysis concerned itself with the
idea that cyclic behavior was often obscur‘e‘d by random variation within the
process. Schuester was the first to devise a scheme for ferreting ocut these
"hidden periodicities'. Hotelling, Wicksell and others attacked its use on
the grounds that mcre time series were the result of erratic shocks than were
the result of cyclic factors and thus variation in the form of irregular jerks
would be more prevalent than variation in the form of smooth harmenics.
Schuester's idea of the periodogram persisted, however. It was used more
in theory than in practice because of the great amount of computational labgr
involved.

The popularity of the periodogram diminished in the early 1950's only

to be revived in the last part of the decade when the topic of spectral analysis



becamm of inlevest, The weigbled pericodogyory was scenio by a

1

astimets of the spectral density function and Fouriar rvela
to exist between the new spzotral funclicns and the sample autocovariaie
fu_nction, the sample anto correlation {functiva, ete.

Taus the periodogram z1'd Fourier analysis have agair becoms useful.

Furthermore, modern computing techniques have made its use ag & rescarch

tool much more traciable.



2. FOURIER ANALYSIS: A METHODS AFFPROACH

The method of appreximating the value of a function at a point by using

2 power series expansion, such as a Taylor or MacLaurin series, is well
known. Power series, however, are not always practically applicable.

Many times in statistical work we find trends which are in some sense oscill-
atory. When this is the case we usuzlly resort to an infinite series of trigo-
n‘ometric functions in order that we m;ay approximate the values of the trend
function. Leonhard Euler (1707-1783) was the ﬁ.rst. to recognize the fact that
an analytic function can be represented by an infinite serics of sines and co-
sines. However, the real pioneering work in'this field was done by J. B. J.
Fouricr. In 1822, he published '""Theorie analytigue cle; la chaluer'". This
| publication made popular what is now <nown as-Fourier series analysi-s. We
'will define a Fourier series expansion to be a series of t'he form

a .
(a cosnx+ b sin nx).
n n

i

el
2

n=1

Not all functions posse ssrvalid TFourier expansions. Fortunately, however,
expansions do exist for a wide class of functions arising in experimental work.
Every function which has a valid Taylor series expansion also has a valid
Fourier series expansion. Also some functions for which there exist no con-
vergent Taylor expansions can be routinely expressed in a Fourier series.
Without stating exactly under what conditions a valid Fourier expansion will

exist we can state what is, for our purposes, the fundamental theorem of

Fourier scries analysis.
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Theorem: If f{x) is a single—falued Tfunction Whi{:h has a derivative through-
out the interval -a £ x £a except for a finite number of points at which it has
 finite disccntinunities, and if f{x + 2a) = f(x) then £(t) can be represented by
means of a Fourier series. This theorem is a slight modification of one
attributed to Dirichlet. See Reddick and Miiler (1955) for the a proof of this
theorem.

The simplest of all Fourier series are those associated with functions
whose periods are of length 27. We shall consider this type of function first
" and th'en'by means of a simple transformation generalize ;\‘)ur results to func-
tions with any finite'rperiod.

2.1 Derivation of the Constants

We have stated in effect that under certain conditions a function f(x}

can be expanded in a series of the form

~n

a &=

o 5 '
5= + b (an cos nx+bn €OSs nx).

n=1
Naturzlly then the ép;e stion arises as to how to determine the coefficients
a ,a_and bﬁ for all positive integral values of n.
o n r

The coefficients of a Fourier series may be calculated using the fol-

lowing equations

wot2a
(a) a =—£—— 3 f(x) cos nx dx forn=0,L,2,.--
n T
€
82
1 ctim
{b) B = — { f(x) sinnxdxforn=12,--"
n LA .



a

O 8 s
-—2—~+a cosxta_cos2ut e + a2 CcOS ¥

1 2 n

+b sinx+b_sin2x+ .+« +b sin nx:
1 2 n

1s uniformly convergent to f{x) iﬁ the closed interval fromc s x £ c + &

The derivation of the equatic:ns {1) is relatively straight forward as
can be sesen from the following.

First since we know that (2) is uniformly convergent for c s x < ¢ + 27
and that sin nw and cos nw are periodic functions we have that th;e series {2) is
c_:onvergen‘a: for all r(-;al v.a-,luu.es -of ., Wé ;an, therefc’:re find the integral of f{x)
by integrating (27) term by term. .o _ , 7 g

ctlm Cd i a_ ctam
S _f(x)dx:—g -z-fdx-l-S" alrcosxdxﬁ----

c c- p c

+ 21 ctlm
+SQ' a cos nxdx+5 bl sin xdx + ++ -
n
c

C

ctlw X ,
+S bn sin nxdsx.

C

We know that

ct2m

ctidw 1
g\ sinnxdx=——E— COS Nx =0 nfo0
L, C c

(3)

and

n

ctiw 1 ct2w
cos nxdx = =~ s5in nx =0 nfE0
c c



All we have left then is

ctlw ctiw
S f(x}dx=3 a f2dc=a 7w
o o

C- C

Thus

ct2m
a = — f(x) dx
&) ™

€

Therefore equation (la) gives us the value of 2 if we setn = 0.
.o i

If we let Sn = -—29- + Z (aj cos jx + bj sin jx),wé'ha_ve that for any
n=l

¢ > 0 there exists an integer N > 0 such that '{f(x} - Sn(x} }< € whenever n = N
since Sn{x} convergeé to flx). Also, since ,cos n;;,f: 1 for all real values of

n and x, we have that

’

|£(x) cos nx - S_(x) cos e |<| fix) - 5_(x) [< e

whenever n 2 N, This means that Sn(x) cos nx converges to f{x) cos nx and

thus we integrate term by term as was done previocusly.

ctléw +2w a - petiw
f(x) cos nxdx ZSC -—;— cog nx e +S a, ¢os x cos nxdx + - -
& c c ;

n

ct2 3 ctlw
+ g a c0s nadxt see +S b.1 sin x cos nxdx + - -
c c

ctl2m
+S‘ bn sin nx cos nxdx + = - - ) {4)
Lo

.We can use the relations in (3} in addition to the following identities:



ctin
sin mx cos nedx = 0
c

ctdn
cosmxcosnxdx =0 m#n

C

ctl2r 5 )
S cos nxdx =7 nf 0
c
to reduce (4) to

ctln
S 1) cos nxdx = a
c

which can be written as

n

1 ctZm
a = — S f{x) cos nxdx.
™
: c

This completes the derivation of rzlation (la).
In order to derive (1b) it is only necessary to multiply f(x) and S (x)
FoE : _ n

by sin nx and argue as before to show that
1 ctim
b = — g f(x) sin nxdx

Thus the equations (1) are valid.

In the experimental cé.se where a curve is to be fitted to a finite
number of points the cosfficients are determined by the same equations with
the integral signs replaced by summation signs. Note that if we have- N
pointe it is only necessary to calculate N/2 terms in order to have a perfect

fit. This is the Fourier anzlogue to the well known fact that N points can be .



fitted exactly by an (N - 1)th degree equation.
A Fourier series gives the value of a functicn, f, at a point, x, to be
A 1 :
lim '—z-- [f(x+€)+f(x-€)]
g0
Therefore, if a function, f(x) has a "jump'' discontinuity at some
point a, then the Fourier series representing f(x) will give a value half-way

- +
between f{a ) and f{a ). For example the Fourier representation of

|
o

f(x) = x <0

Il
ot

f(x) x>0

will be equal to —;- at the point x = 0.

It is of interest to note that some functions can be represented by a
series of sines alone or a series of cosines alone, In other words, either
all of the & 's or all of the bn's will vanish for some se ries.. In general,

the an's will vanish whenever {{x) is an odd function, i.e., f{-x) = -f(x). In

this case

2 T’CJ”‘
b & — f(x) sin nxdx.
n T y

In a like manner, if f{x) is an even function (f(-x) = f(x}) then the

b 's will all be equal to zero and
n

> ctar
& B S f(x) cos nxdx
n T "

Thesz relations are important in that their use considerably reduces the

lakbor involved in computing the coefficients.



2.2 Change of Interval

It is obvious that the previous observations cover only » very narrow
class of functions. Namely, those whose period is exactly 27. In order to
make Fourier series generally useful a way must be found to extand the
range of coverable periods. Fortl‘mately, this can be done by means of a
sirhple transformation. Given a function f(x) in an interval of length 2L,
-L=x<s L. We can _transfor_m 'the fun_ction in x to a new function in = whose

period is 2w. The transforrmation

e o
ol 7 0
changes the interval to -m <z < .

Now, f(x) = E(E) which is function of z and can be represented by
T

a Fourier series. That series is

L
f( z)=a/2+a cosz+ -+ +a cosnzt -
T (o} 1 n
+b sinz+-.-+-+b sinnz+ +.-
1 n .

and is valid when -7 <z £ 7.

If we now apply the given transformation we have the following re-

ault:

3 27X nmwx
f(x)—"—-—;—+a1_cos—1g—+azcos T +---+ancos T

+ e

sin —?—Trf— + s+ + b sin i
L n

P X
+ M
b1 sin bz

is valid for the range -L < x < L,
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The coefficients, the an's and bn's can be computed from relations

similar to those previously used

=]
1 Lz 1 nmx
LT - TR
an - 8‘ o cos nzdz T y {x) cos T dx

@
1 L )
b = — j f(-—z) sin nzdz = ——-—g f(x) sin
n ™ ~ T

The above may be obtained directly from (1) by substituting for z in

(6)

cos nz the quantity on the right hand side of ('5)-, ”usi-ng the fact that f(x) =

f( . ), and noting the Jacobian dz = -—-;— dx.
™

In many cases the labor of computing the Fourier expansion can be
avoided by using a combination of known series. In short if we are given a

/

function such as
2
flx} =x +4x+ 11

we caﬁ find tables {e.g., C.R.C. table srpages 374-376) giving the expansions
of xz, x, and 1. Then the expansions can be multiplied by the proper con-
‘stants and added to get the desired series. Thus the F-ourier transform.is
a linear operator.

It is not necessary that the function under consideration be harmonic
“in order that Fourier approxitnations be applicable. Finite intervals cf non-
hartnon_,ic functions are representable in a Fourier series., Note, however,
that the series thas obtained is valid only within the limits described.

For exa.rdple the function
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f{x) = =

can be transformed to 2 trigonometric saries if we restrict curselves to

some finite range, say -7 s x < w. The resulting series is (for n odd)

4 1
f(x):__-l.-r_—-———-[COS}:'i'-—l-— cos 3x + — cos Sxt ...
2 m 2 2
3 B
P + 7
—5 cos nx vee ]
n

. Note first of all that all of the sine terms, the bn's, have vanished
since f(x) = x is an odd function. Secondly, the series converges tc f(x) = x
" only within the prescribed range. Graphically, the result of our trigonome-

tric series would appear as in Figure 1.

~

Figure 1
Obviously the resultant harmonic function is not valid out of the range

-

-T S X = 7.

It has been noted that the width of the interwval of approximation can
be changed by a linear transformation. Similarly, a transformation of the

form z = mxtk will transform any finite interval a; €z =a, to any other
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int : Lx < A
111erva1bl x bZ

2.3 Transformation of a Triangular Density Function

As an example of the Fourier transformaticn process consider the

triangular probability density function
Hx) =1+ xforall-l1=sx<0
flx) =1-xforalld<x=<l
f(x) = 0 elsewhere

Assume, now, thére exists a convergent Fourier sequence for the

given function in the interval -1 £ x <1. It will be of the form

a . €
f(x) = ———29— %, (;sa.n cos nx + bn sin nx)
n=1 '

In order to compute the constants, we use the equations given in (6);

To find a we commpute,
1

0 .
a =S {1 + x) cos O-xdx-i-g (1 - x) cos 0-xdx
0
2 0
0 : 1
=g (l+x)dx}+S(l—x)dx
=1 0
1 1
= —_t — =1
g " 2
& 1
= which is called the first ouricr approx-

2

We have then that -—-29-

imation.

Continuing, now, to find al, az, I an, e



0 1
a :5' (1 + x) cos wxdx +S) (L - x) cos wxdx

i 1 0
0 0 1 : 1
=j cos wxdx +5 x cos wxdx +j cos wxdx —J' x 208 wxdx
o =1 0 0
2
=df7 .

The general term may be written

0 1
a = g‘ {1+ x) cos nwxdx +S {1 - x) cos nrxdx
n -1 0

Following the above proceedure we obtain

1 B 1 . e
a = — gin nmux ; + e——ee—— cos nwx + nw sin nux
n nmT 2 2
= -1 n T x = _]_
1 ] 1 1 _
+ — sin nmx - ———— cos nux + or sin nx
nmw - 2 2
x=0 n x=0
S0 b e (1 () 40 e (<™ - 1)
%a 2 A 7 2 “
n T n T
More succinctly,
2 5
4/n"n , whenever n is odd
a = 0, whenever n is even and n # 0

1, whenn =0,

Since the given function is even we expect that all of the bn's swill be

equal to zero. To verify this we compute
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1

0
b = f (1 + x) sin nrxdx +§ (1 - x) sin amedx
n
-1 0 .
performing the desired operations yields
n ntl
2 2 (-1} (-1
= @ sk ey ) it . .
P mr Tar t 22 T ¥
n now

0 for all values cf n,

Thus we have, for n odd, that the series

COSsS NTX

5 = . + & s x + 5 cos 3 + + :
) g e g e O Z 2
T 9w n T

is the Fourier transform of the given probability density function. Then,

since we have selected a transfc rmable function, Sr'l converges to f(x) every-

where in the range.
£

Gfaphical repregentation of the successive approximations to f(x) look:

like:

o IO 2
Figure 2

{a) the first approximation, f(x) = 1/2.

1 4
{L} the second approximation, f(x) = i * ~5 €98 X
T

For this particular exawple, the transformed Feurier series converges

to f{x) very rapidly.
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A by-product of Fourier analysis is the fact that we can deriyve some
interesting arithmetical relations from them, In the example given, for
. instance, the value cf f at zero is 1. Since § is uniformly convergent to
n

f(x) everywhere in the interval -1 £x <1 and

_ 4 o s+ 1) w5
6, % 7 Z

" (2i + 1)°
we have that
1 4 1 1 1
g ok o (Lt b $ e bwsw i
3 p B E Yag )
T
1 4 < 1
z 2 (Z z)
. : i+
= i:O(Z,l - 1§
2 1
ol + — — T e e .
T /8 ={(1 3 + z + )
fe % .1 '
T = A e AP o I PR
or T 3{1 5 55 + & )

Thus we are provided with an e:cf:ression for m which is immediately
.appllcable to maclr;ine computatioﬁ.
Fourier series analysis provides us with a useful approximation to
variocus functions, In statistical titne series analysis it becomes even more
ﬁsefal in that the cyclic properties of a Fourier series often correspond to

harmonic variations within the series io be studied.



3. HARMONIC ANALYSIS: THE SEARCH FOR HIDDEN PERIODICITIES

Time series are usually considered to be constituted of three add-

itive parts. They are:

a) The sccular or long term movement

b) The cyclic or vibratory movement about the secular trend

¢) The random variation, often called the irregular component;

The primary emphasis of this paper is with part b), the oscillatory.
behavior. We shall adopt Kendall's terminologyiwith' reference to the two
terms ''cyclic" and "oscillatory'". Cyclic and its derivatives will denote the
dgterministic situation in which a series is strictly a function of time. In

essence "

St:st-]-w=5t+aw:-.. = s v

for some W. Oscilla.-tory will refer to the situation in which random \fariation
is als.o present.
As has been mentioned in Section 2, most functions can be represented
" as the infinite sum of a series of sines and cosines. The periodic nature of
trigonometric functions .sugge sts their use in the analysis of oscillatory —
fluctuations., One miight say that a function of time, say x(t), can be

represented as the sum of infinitely many harmonic terms of the farm
A cos (awt/a) + B sin (nnt/a).
n n

The périod of each harmonic is 2a/n and the amplitude is RIl = A_+ Bn 8
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Thus the periods associated with a2 Fourier series are

- The early work in statistical harmonic analysis was concerned with {:.he
problem of determining the constituent periodicities of a time series. Thus
the idea of Fourier series representation was intuitively appealing. Obviously
the series of periods given above does not include every possible period. If
we consider the Four-ier se.que'nce' to be a sample from the set of all possible
periods we can say that the sample is sparse in the large pério&s and dense
for small periods. Hoﬁever, H. H. Turner {1913} showed that if an isclated
period exists between two Fourier periods the signs of A and B will ch_anée
from one period to the next. Despite the complicétion mentioned above

Fourier series form the basis of most statistical harmonic analysis.

"3.1 The Additive Property of the Iniensities

One advantage of Fourier representation lies in the following relationship,

R2+RZ'+--'+RZ=?_02.
1 2 n

Which can be proved, following Davis (1941), in the following manner

1 %I nwt ¥ nwt
T : o 2 T
' n=1 n=1 '

That is, approximating f(t) with the first N terms of a Fourier expansion,

B s 3 ;
also called the N Fouriler approximation,

T.et the right hand side of (7) be f (t) and consider the integral of the
n
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square of the difference

1 - . il
1= — 51 (£6) - £ ()" at

2 2
(£°(1) - 268 £_(8) + £ “(6)) at

It
Dair--
1 :
] P

Note that

. 5 b a ' o = o 4
1 . mywt .  nwt 1 mmt nut
—_— y sin | cos cos dt = 0,nfm
a a a a a a

-a -a

it
&
B
I
8

We now have
1 = B 1 2 2 2 2

e i = e G ¥ 1L
1 ag 90 at (ZA +ROHR, 4 Rn)

2 2
where R = A + B
: n n n

. 2
Since [f(t) - fn(t):l we have that

-—z—j f(t)dtZ——-—A ZR
i

The equalii, sign will hold for all functions of integrable square if N = =,

This result is known as the Bessel inequality, We then have immediately that

i,

2 1 2
2a ) LB Ll kW L

- 2
X(A ¥ B )= i Rn
11_ 1

I I
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’ 1 ; . y
since 5= Ao is the mean of f(t). Finally we bave

which is the desired result.
" 2. :

The graph of y = Rn is called the periodogram. Its use in the deter-
mination of hidden periodicities was suggested by Sir Arthur Schuester in the
last decade of the nineteenth century. His work was meotivated by the sus-
picion of periodic behavior in the physical phenomena; sunspots, terrestrial

magnitism, and earthquakes,

3.2 Reaction of the Intensities to a True Period
The term periodogram is micleading since y a function of frequency. The
periodogram reaches its maximum wvalue in the neighborhood of the true

period. - This can be illus.trated: by the following argument. Consider a har-

monic function of the form
£(t) = A sin (kt + B),

Then the Fourier approximation to £(t) yields the following values for An and

B,
n

1 o nywt
A = ———S f(t) cos T at
n a . a

1 = nrt
= — y A sin [kt + B) cos a‘ dt

a
a

A . nwt
= g (sin kt cos B + sin B cos kt) cos = dt
ea
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a
. nt A .
sin kt cos > dt + — sin B 57 cos kKt cos S dt
a a

a

:iwsﬁj’
a

a
-a
a
= - cos 3 5 (sin (kt +
-a
a
-a

A T b e - T
la a
"
PO I 35‘ Pl B 200N & opE Vi~ S0 3] @8
2a a a

nmt

nmt : . ; :
Since sin (kt + ) and sin (kt - —;r——) are odd functions the first integral is

equal to zero and we have that the above is egual to

nnt ‘ = nwt

in (kt + ——— = ‘sin (kt - —— t=a
® - sin > ) lt=a n ( = )
A= 2 A B n ¥ nm
= 2 k + el t=-a k- — t=-a
- a a

sin{ka + o) , sin(ka - nm) )

:ASIHB( ka + nw ka - nw

\

Similarly we can solve for Bn

wat i
a

.l PERLE
B -"'--—j f(t) sin
a .
-a

1 a
ol 5\ A sin (kt + B) sin
-a_ s

A - nnt o nwt
= — 5 sin kt cos B sin ;'- dt +S sin B cos kt sin E dt
a
-a -a

5 )
¢ . nmnt
dt + -——A sin 8 S. cos kt sin 1
2a
-a

nmwt

= -—f-‘f- ces ﬁ\ sin kt sin

i
t wt
= __f"_ cos ;357 {cos(kt - n;r } - cos (kt + %_)) dt
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a
A ; s t : 7

+ — sin 8 y sin ( s kt) - sin (n-rt + kt) dt
2a a , a

a

As before, the second integral vanishes and

a
B = ';é' cos B f (cos(kt - 27 ) - cos(kt + 210) dt
n ik _ ~ A -

sin (ka - am) ) sin(ka + nm)
ka - o ka + n7w )

AcosB(

Thus the periodogram

RnZ Y AZ (sina(ka, + nw) gt Sinz(ka - nw)

ka + nm)%
{ka + nm) (s, « s

- 2 cos 2B

~in (ka.r + nw) sin (ka - nw) )

ka) - (nw)

¢
v

Now let the frequency k = 2w/ p and note that the n corresponding to any par-
ticular trail period, pT,is equal to 2a/T. Using these transformations we

arrive at

siua 2nlal/p+ a/T) " sirfa 2wi{al/p - a/T)

2 2, A
& 47 (a/p +a/T) (afp - a/T)

. 8 EGE B sin 27 (afp + a/ T) sin 2+« (2/p ~ a/T) )

(alp + al/ Talp - a/t)

Leta/p=pand a/T =71

. B
i sin® 2w{W - T)

2 b
4 (ut ) (-7

2 2
2. A sin 2mw(u+ T)
B 18 s L | (



Vo

i o 1 ! =
+ 2 cos 28 sin .er(p; ) Zsﬁm 2m{ - T) )

=T
The dominating term is

o B
sin 2xu(1L - T)

2
(- )

Taking the derivative we find that the maximum occurs at 7= u. Then by

; : g Z
I.'Hospital's rule the maximum value is 47 . Further we have that the value

2 p ; . "
of R (T) is a maximum at the point T = y and its value is AZ. The periedo-

gram then will have peaks of height equal to the amplitude of the associated

harmonics.
- Since the sum of the Rn is equal to 20 we can consider the quantity

LB
Rn

n
; - 20-

i

| | th _ ,
called the.energy of the n  harmonic, to be a measure of the relative con-

N th AL - , ;
tribution of tha n  harmeonic te the variance of the entire system.

3.3 Consiruction of the Periodogram

In practice a periodogram is contructed in the fellowing manner. First
the data should be arranged in a set of equally spaced items. By previous

.rguments the function

&3]

RE(T) = ""12\T T

1.
]

will devulge the presence of any real periods in the data. Note that the N

term in front of the radical is, in a certain sense, a normalizing constant.
2 2 f
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Aand B are functicons of the various trial periods, That is,

o}

el

A = A{T) =

" X, sin {27t/ T)

[
1
flas

and

Bn = B{T) _ L Xt cos (ZTrt/T)--

£=1
These are the discrete analogues of the classical Fourier equations. They
can be used to fit a Fourier series to a discrete set of observations. The

data is then arranged ir rows of length T as follows., ({Called the Buys-Ballot

table)
- Table }_
z 3 2t
A1 Friz o BT
Lol DaTez amd 0t Byp
Xartl Fariz Fnres 0 0 7 N

where n +11is the lavgest multiple of T which is less than N. Sums are then

taken down the columnps zind denoted 1\/11, L’Ia, M3, g MT. We then compute
2 e f
A(T) = _!\T L Mt sin (2w/T) (3)
k=1



24

where N = (n+ 1)T.
As an example, consider a set of data presented by Davis (1935), (ina1}

where the following analysis also appears.

Table 2

Mean Weekly Freight
Lioz:iing (1, G00's)

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov, Dec.
1919 728 687 697 715 759 809 858 892 560 G667 807 758
1920 820 776 848 731 862 860 S01 68 969 1005 884 723

1921 705 683 692 706 757 765 751 8l0 841 929 761 683

1222 702 765 826 723 787 842 825 877 935 992 H4d K 838

1923 845 842 917 941 975 1011 936 1041 1037 1078 978 826
1924 858 908 916 75 895 906 894 974 1037 1091 975 847
1925 921 4905 924 941 968 989 986 1080 1074 1107 1024 883
1926 923 919 969 958 1037 1028 1049 1104 1148 1205 1068 504
1927 946 956 1002 975 1024 999 979 1062 1097 1115 556 834

1928 862 897 951 935 1002 985 9861058 1117 1175 1061 883

1929 B33 942 962 996 1051 1052 1033 1117 1135 1169 978 835

1930 837 876 883 912 914 930 395 938 931 950 798 680

1931 719 710 735 752 740 748 738 747 737 759 655 555

Hs
[#4]
U

1932 547 561 565 557 522 491 <483 525 577 634 549




U
~l!

Table 3

Sample Calculation of R(T) for T = 15

Data Arranged as in Table 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
728 687 697 715 759 809 858 892 960 967 807 758 820 776 848
731 862 860 901 968 969 1005 884 723 705 683 692 706 757 765
751 810 841 929 761 683 702 765 826 723 787 842 825 877 935
992 944 838 845 842 917 941 975 1011 986 1041 1037 1078 978 826
858 980° 916 875 895 906 894 974 1037 10§1 975 847 921 - 905 924
941 968 989 986 1080 1074 1107 1024 888 923 919 969 958 1037 1028

1049 1104 1148 Hmom,ﬂoom 904 @ﬁo. 956 1002 @qm 1024 999 .oqo 1062 1097

1115 956 834 862 897 951. 935 1002 985 986 1058 1117 1175 1061 883
893 942 962 996 1051 1052 1038 1117 pwwmAWHow mqm 835 837 876 883
912 914 930 895 938 931 @mo. 798 680 719 710 735 752 740 748
738 747 737 759 655 555 567 561 565 557 522 491 483 525 577

9708 9842 9752 9968 9914 9751 9943 9948 9812 9801 9504 9322 9534 $594 9514



Using (1) and {2) we compute R(1

A(13)

1l

ot
T aka

-

o+
1i

L DG

r.
1
i

r

5}

I » . e
: 158 availakle numbers «-apo

ol

i\:It sin {2xt/15) = -14, 1744

M, cos {2t/ 15) = 14,6379

26

If we were to carry on with these exceedingly laborious calculations the re-

sulting tabls would be

is B(T) ___RT) T
5 5. 70 32.45 16
6 6. 67 2077.69 17
7 4. 41 19.45 18
8 7. 07 49.97 19
9 14. 27 203.61 20
10 12,12 146,85 21
Ll 3.83 77.91 22
12 75, 28 5666, 44 23
13 7. B 62.00 24
14 8. 84 78.19 25
L5 20,38 415,18 25

R(T) R (T)
14,82 219,50
12,99 161. 77
19. 06 363, 27
3. 08 65. 24 -
6, 46 41,71
9. 81 g9b. 1%
11.36 129.13
17.69 312. 97
18.92 358. 08
B T 7.3535
&, 4 47, 21



A

It o erdsyad palrs (T, R{T)) were ploiled and Lines deaws b oot~

nect tha peints the resulting figure wouldd bz the perivdogram
]
\ ¥
) 5 /
Figure 3

Thus we have completed the construction of the pericdogram. Cb-
visusly the raomber of calculations involved malke it an exceedingly unappealing
device if a computer is not available.

3.4 Tests of Significance

In the example given, the periodogram certainly suggests l:ha axig-
tance of real harmonics of & and 12 months. If the p2aks of the_pcrio-iogram
had been loss pronounced, however, it would be difficilt to indicate which
hapenonics cere sighificant and which wers not. One fairly casy way is to
make uss of the previonsly mentionsd concept of energy. In short, we know

2

& ¢ ; 2
that the surm of the R is equal to 20 so the ratio of Ri to 20 would be the
11



. : . |
colative couteibution of the I Farraonic to the taetal varinace of the syatem.

In the exawmple given abovae the 5 and 12 munth harivonics together account

' rt ]' oz M . e n 1 1.
for akbout 16 = of the total variance. 7This method leaves sornething to be
desired at least from the classical point of view in fhat we still can't deter-

raine exacoly which perieds are itraportant. There are, however, several
It

matho:ds of hypothesis testing which take the more classgical approach,

Schuester (1893) presented a test of significance at the same time he
presented his original work on the periodogram. His argumeat is hased upon
the assumption of normality in the original observations. The A(T) and B(T)

are linear functions of norrmal observations and will thus themselves be nor-

mal, R, then is a chi-square random variable. Given this set of assump-

i
; : : 22 2 :
tions we define the Schuester probability that any R (T) will exceed le to

n
. -k
be equal toe , Or

%
P(Rz(T) >kR ) =e
m .

) ' Rr —'Loz
whare = o,
w m N

)

. -k
To apply this test we choose the G-level we want and set it equal to e thus
o ’ : 2
determining k, Then k times our calculated value of Rm serves as a lower
bound for our criiical region of size Q.
Using the Sclmester test of the preceding example we find that Rn hi
-5

excecding 1704 are sigrificant at the 5% level since e ~ = ., 05 (approximately)

2 . . 2 2 . b s S
and R = 568, R7{6) and B {l2) are seen to be significant.
m



3.4, 2 Wallap'ly Tast

Walker, in 1914, devised another test for the significance of pericds

based on the largest observed intensity.

2

The Walker probability ihat 2t least one intensily will exceed kR
; m
is given by

2 =1 -
P(R > kR 2):1-(1-L=31‘)N/‘Z
max m

The deriration of the above relation is based upon the Schuester

; 2 ; 2
criterion. The Schusster probability that any one R {7T) will exceed kRm

o 3 2
15, i (L - T} bs e probability that BOIT) is less thas kR_“. Then

—k N ’ 2 2
(1 - ) /Z s the probability that all of the Ri 's are less than }cRm since a

i

data set consisting of N points can be exactly fitted by N/2 cosine terms and
N . ; ' LMiZ . o
~—— sine terms, Finallyl - (l - e x) / is the probability that at least one

"ll
b

will exceed the given limait., 'Tables are available for the Wa - probability

; 2 ; )
hat at least orz of the R {T) will be greater than kR . When apoliad to the

m

data given earlier, the Walker criterion fer the significanca of a period at
the 5% lewvel is that R ( ) > (7. 4)(568) = 4203, where 7.4 is the necessary

. 2 £ s : e + : : '
tabla valus and R = 568, Only R(12) is seen as significant using this test.

ue

3.4.3 Fishezr's Test

Thea tests of Walker and Sn,hu estar assume not only that the observa-
tions are normally distributed but that the variance of the system is known.
If the variance is unknown other methods of analysis must be found,

Fisher, in 1929, presented the stztistic



T S
gt =10 [i3

Kk

TE7 2 “ e - 1.1 \_1 2

Where R is the maximuin of the squavced amplitudes and 25 s B s
fs "1
i=1

Thea the Fisher probability that o' will be loss than some given value of g is

ziven by

N K k
Pl <a) = Y (0® (5)0-krne

p;'.o

-1

1

where v is the largest integer less than —- and k is the largest number less

. N-1
than or egual to o

P

The test may be readily exteaded to the m  largest

(o]

f iha g' values

Ly
P-V sl
P{Gl < @) o= Il ‘I; {'lJ M(l" ‘1} -
e = (ra=1)! plic-p)! {p-m)!
'p::'ﬂ’.l

where the variables arc defined as beiorve,
3.4, 4 Hartley's Test

Hendall (1946) made the nhservetion, "all the tests we have described
hers are bascd on random novroal vériaticn the orviginal serie:; bul in pra-

ctice nobody would 2mibark on the labour of a periodogram analysis unless

he had satisfiod himself that the data were not randomi. It seems to me that

these Lests are off the main oint, being tests based on a hypothesis we have
already rejected. Thay are not without their usefulness, however. We may

assurne with sorne coufidence that if a partic ular intensity in the savies is

not shewn as significant on the hypothesis of random variation, it is not

i



sigaificiot vvhoea the series Is systzmatic, What does nob follow is that if one
intengity is significant then others must De so even if they exceed the signif-
icance values; for they ave not independsnt of the 2ignificant value, at least
for short caries, What we ougit to do, perhaps, is to extract the component
vwwhich is considered significant for the series and then analyse the remainder;
and so on as long a significant terms appear. DBut this is hardly a practical
computational possibility., Tests of significance in the periodogram as in the
correlogram remain undiscovered'.

H. O. Hartley (1949) in response to Kendall's obszvvations presanted

a test for siznificance of the largest intensity. The test is for the maximum

ratio of tha quantity

1 2 2
F ‘T ——mn § {n - 2m - 1)/
o max 4 max
I. ? . + e [
for m € — (n - 1) and where 5 is the tu.r:ost obsarved latensity and R
2 max

i3 the residual swm of squares.

5

F iz distributed as an T distribution since it is the ratio of two
max '

independent chi-square randomn variates.
¥ @ ? % k
P(F SEF )= ,@v{s)(l ~exp {-s"F ]) ds

o

leviation of the owviginal

f.,,
Lo
b
o
o
]
a
W
=t
i
P

where § {g) i3 the distribution of the samp

yr

F

obscreations baued on v degraees of freedom, Since v =n - 2m - 1 the .
LYids

test has 2 and n - 2m ~ 1 degrees of freedom. The Hartley or F_ test has

been discussed at length in 2 pravicus Master's report by Backman {1963),



i

cosation of Resulis
he porvigdogram presents seveval practical probleras to the owvoeri-
mzater, One of which iz the tendency for false periods to he cbserved on

a

gither side of true peaks. Kendell's comm=ats on lack of independence under-
scove this point well. In practice these secondary harmonics ave usually
ignored with the nagging realization that they could be irue periods. A sec-

ond situation which can cause difficulty arises when the periodogram takes the

form indicated by Figure 3.

;“x 3:_,;‘;\33&

O L s ST

Figure %

In ¥igure 3 there s2oms to be only cae peak, yet the b_r;:adtheug—-
goests that two ol more periods may be super-imposed upon each other, Theref
are inexact methods of determining the expected width of a peak. In practice,
however, certain smoothing technigques are used which increase the resulv-
ability Jc the periodaguram,

Alzo, thare are sampling problems. The experimeater can nzver
discount the axistence of peviods less than or equal to the sammpling period or
pariods which are greater than or equal to on:-half of the total lengih of the

interval of obhscrvation.



Finally, theve is the previcusly rasationed characteristic of Four-

ier sequences, namely that they tead to densely test for short periods but

be ver

o}

As has been zeen, the periovdogram tends t v irregular in

appearance. Thus it is natural to consider what might happen if the data
were smoocthed by means of a moving average. The resulting system has a
much lower variance and thus the energy of some periods are amplified,
however, spurious results are often introduced. Thersfore, smoothing is
not used except when added resolvability is needed.

E. T.' Whittaker and G. Robinson (1940) have suggested a periodo-
gram in which the ordinates of tk= Schu_-e gter periodogram are replaced by

wWT) = \:‘FGZ (T)/ov;3
n

& .. 3 x " s W y ;
‘where 0 m{7l) is the variance of tte corrvesponding scquence of M, 's in the
. i
Puy's-Ballot table. Results cf the analysis of Whittaker-Robinson periodo-

ave been shown to be nearly always equal to those attaincd by the

Hany

2chuester method,

Paericdogram analysis in g,certain sense the harmonic analogue of
the analysis of variance. The energy or variance is atiributed to cyclic
effects. Thus, just as one might attribute some effect to 2 feed in the regular

AOV wa can test to see if the seascnal effect ig significant over time,



4, SPECTRAL ANATYSIS

faovgotion, Tew journal ariicles have been published on it since the 2acly
ninetacn-fifties. If was impractical during !ts popularity becanse of tha
inocdinate number of calculations that need to be pevfcrmed. By the time

cov-puting devices had become hizgh'y ophisticated iatevest in the periodo-

gram had waned, In a recent jourral article Jones (1965) indicates that the
periodogram approach to time series analysis is, with modern computes,

often the most efficient way to carry out a spectral or harmonic analysis, It
would thus not be suprising to see it reappear as an applied tool,

The presant importance.of the periodogram lies in the fact that it
v spectral analysis. The old idea of "the scheme of hid-
rviocdicities' differs litile from "An expression of the second moments
of an ensomble procesy in teTing of f:-e::p;éncjes” as spocitral aanalysis is
{1958). Also, the ceuncept of energy

vy Blackman and Tikey ¢

egaclier in this paper corresponds to the modzrn rdea of power.

4.1 Lack of Consistanc

Note that the periocdogram can be expressad in the follewing form

2
F
I ()= ==~
n( ) I
. , ; . ie ; .
asing the Euler relaticnship cos x+isinx =e . Then we can show, following

Hannan {1962) that the expactation

(L (M) = 4=5(\) {almost cverywhere)



el

[

and ncte

oy A _ 1 .,‘ N3 ift-s))
Bl I (0] = —— L[: Z z xls) x(t) e ]

T n

t=1l s=1

Assuming that the x(t) is stationary in the wide sense {covariance stationary)
we have
N N
w4 1 - v ylt-s i{t-s)A

Ely— L(N}= 5= ) ) i 2 B, N (11)

&7 n air da n

t=1l s=1
i f o 2 2 "
The double summation in {(11) contains n terms of which only 2n -1
are distinet. Therefore we may rewrite it as a single summation with the

ropeyr counting factor. That is
PTOL g

! 1 i | it
S ] T 8 e & ..il...,. X !
El— 1 (M) = 5= Z (1 - - (e e
t=l=m

which is the n  Cesaro mean for £{}).
Furthermore, we see from equation (11) that the periodogram ig the
Fourier transform of the sample autecovariance function.

¥ ig

regts the use of ihe

s

Phus we have ihe desived result., This suy

)
I

I

v

periodograra as an @siinaltor of £f1}), Iuwesere, Harnan further shows that

4!.\_. :1. Z

4 d i S
Var {1 (M} =40 + 4 . dg sin MNA
EL N




where k, is the fourth cuawmiant of [xt} And

4
4l 4 sin 3 ML+ AL) 2
; e dg 2 T T Ry sin 1/ 2N{\j+A )
Cou[LBd L B} = o ¥ S | oy ) m") +(sin T (1. ~% )2 )

From this result we see that I ()] bas variarce of ovder one aad the covar-

n
2 s -1 3 ;
iance of Ir(l\l) and In(kz) is of order N , Thus we have that the periodogram

i
iz not a consistant estimate of f{})., That is, its variance does not vanish as
N approaches infinity., This result explains the fact that the periodogram dces
not become more stahle =s the aroount of data increasss, However, the
covariance approaches 0 in the limit thus we have that In()\.l} and I ()LZ) are
n
nearly independent for large N. This lack of consistancy in the periodogram
4

has led to other methods of estimating the spectrum of a process.

4,2 Spectral Windows

I d Dar}%ell (1946) suggested that the per.icdogram be averaged over
ncighboring fraquercies in order to stabilize the estimate. This led to the
concept of the smoothed or integrated pericdogram. Wiener (1930) showed
that by averaging over S frequencies and letting S @ as N 2 = but at a slower

5 " ; - . ; ;
rate so that 3 -+ 0 a consistant estimate could be found. The new estimate
I :

of f{A) can be written in the form

J\a |
afd) I {A) dA
A= ;)\1 n

where ¢(}X) is the weighting function used in smoothing the periodogram,
Usually s{}) will be a lag function, that is, a function of {t - ). Recently the

Fourier transform #{\) has become popularized as the spectral window,
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Danicll's name has hesn zssociated with the most simple case, that va when

the averazing is done with agual weights. Daniell's window is ~iz0 called

the rectangular window, Other weighting {unctions have been sujgested by

e
l"‘a

Parzen, Blackman and Tukey, ot al, Some examples can be seen in Figure 3,

T e BT
P A

Figure 5

l '-_1[ =M
Daniell v =
' - Yol fu] >
iAol g <
Barilett w =4 Y
0 |ul>w
1 ; T
S+ gos = fafsm
Tukey . W=
0 !u] > M
: Z 3
i 16"1)4--'“, IISM
| ( M ”( % ) Al
. 2 w3 M- A
Parzen w = g(l - fﬁ—) " & < ]u[ =M
0 \u_l > M :
Thus the periodogram while is itself not a consistant estimnator of the spectral
density functicn, is the basic idea from which spectral estimates were de-

veloped and therveby retains its value to statisticians.
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h., CONCLIIS!

Histoziceliy tues pavicdozvram fracas iis origin to 152 late 189

21, Fis colcern was to datermine the poricdic

e

the work of Six Arthur Sahuces

structure of certain physical phenemenz, Hetelling and cthers raiscd o

1

ticns to the assumpiions underlying its use and thus the periodogram has boen
cne of the morce controversial subjects in statistical research.

As z practical teol it was 1111\&1&1(113? becausc of the numerous calcu-
lations inveolved. With the advent of moderr computing techaiguze, however,
the periodogram mey again become useinl in applied &
is simuilar to the a';lalysis- of variance since the ideas of pav:ei‘ or energy is
related to the concept of variance. Thi-s can be extended to the idea of
regression in that models can he coirnosed using the significant perieds,

One difficulty faced by experimenters is in testing for the signifi-
cance of periods, None of the available tests is acceptable to everyone,

Much work still needs to be done in the field of hypothesis lesting.

The periodogram is most important at ths present time because of
its relation to the anaiysis of the power spectrum. I is net a consistant
estimate of the spectral denéity function but some weighted averzges of it are.
The weighting functions are called spectral windows., Tk various shapes of

the windows give different churacteristics to the estimaters, Some create &

higher resolvability while others yield more stability.
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l situaticns can oe considered to be developing in time.

A

The usual idea of rogression is one of polynomial relationzhips, in our case,

with resgpect to tirse. The idea behind harmonic analysis and the periodo-
gram is that the relationsbip may be more adequately described in eyclic
tarms., Scheuster in 1893 opened the ficld by applying Fourier transforins to
data from the physical sciences. He presented his own test of significance as
did others in the ensueing years, none of which is completely acceptable.
Thus the computational difficulties coupled with the lack of really good tests
of significance combined choke off interest in the field. In the late 1950's
B-la_ckman and Tuksy popularized the field of spectral analysis in which the
pcriodogram was a basic element. Weighted averages of the p2riodogram
were known to give consistant estimates of the spectral deﬁsity function and .

“the older conecept of the eaergy associated with a frequency was analoyous to

OET SDROCIITUIML.

the nawer idea of the 2

a3

Interest has further been revived in the periodogram by the advent of
modern computing machines. The objective of this paper is to present the
old cencept of the periodogram as a tool for discovering "hidden peviedicities'

and then relate it to spectral analysis.



