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Abstract 

Bread quality and final crumb grain are reflective of the ability for wheat flour dough to 

retain and stabilize gas cells during the baking process. The visco-elastic properties of dough 

allow for the incorporation of air cells and expansion during fermentation and baking. The 

gluten-starch matrix provides the backbone support. However, following the end of proofing and 

during the beginning of baking, the structure weakens due to over-extension and expansion and 

the matrix begins to separate and eventually break down. Native wheat lipids, which are found in 

small quantities in wheat flour, provide a secondary support for gas cell stabilization because of 

their amphiphilic characteristics and ability to move to the interface and form condensed 

monolayers. The objectives of this research were to evaluate the influence of native wheat lipids 

on the rheological properties of dough and the microstructure of bread.  

Native wheat lipids were extracted from straight-grade flour and separated into total, free, 

bound, nonpolar, glycolipids, and phospholipids using solid-phase extraction (SPE) with polar 

and nonpolar solvents. Defatted flour was reconstituted using each lipid fraction at a range of 

levels between 0.2% and 2.8%. Dough and bread were made following AACC Method 10-10.03. 

Rheological testing of the dough and evaluation of the microstructure of the bread was conducted 

using small and large deformation testing, C-Cell imaging, and x-ray microtomography analysis 

to determine changes in visco-elastic properties and gas cell structure and distribution.  

Rheological assessment through small amplitude oscillatory measurements demonstrated 

that nonpolar, phospholipids, and glycolipid fractions had a greater interaction with both proteins 

and starch in the matrix, creating weaker dough.  Nonpolar, phospholipids, and glycolipids, 

varied in their ability to stabilize gas cells as determined by strain hardening index. C-Cell 

imaging and x-ray microtomograpy testing found that treatments containing higher 

concentrations of polar lipids (glycolipids and phospholipids) had a greater effect on overall loaf 

volume, cell size, and distribution. This illustrates that level and type of native wheat lipids 

influence the visco-elastic properties of dough and gas cell size, distribution, cell wall thickness, 

and cell stability in bread.  
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Bread quality and final crumb grain are reflective of the ability for wheat flour dough to 

retain and stabilize gas cells during the baking process. The visco-elastic properties of dough 

allow for the incorporation of air cells and expansion during fermentation and baking. The 

gluten-starch matrix provides the backbone support. However, following the end of proofing and 

during the beginning of baking, the structure weakens due to over-extension and expansion and 

the matrix begins to separate and eventually break down. Native wheat lipids, which are found in 

small quantities in wheat flour, provide a secondary support for gas cell stabilization because of 

their amphiphilic characteristics and ability to move to the interface and form condensed 

monolayers. The objectives of this research were to evaluate the influence of native wheat lipids 

on the rheological properties of dough and the microstructure of bread.  

Native wheat lipids were extracted from straight-grade flour and separated into total, free, 

bound, nonpolar, glycolipids, and phospholipids using solid-phase extraction (SPE) with polar 

and nonpolar solvents. Defatted flour was reconstituted using each lipid fraction at a range of 

levels between 0.2% and 2.8%. Dough and bread were made following AACC Method 10-10.03. 

Rheological testing of the dough and evaluation of the microstructure of the bread was conducted 

using small and large deformation testing, C-Cell imaging, and x-ray microtomography analysis 

to determine changes in visco-elastic properties and gas cell structure and distribution.  

Rheological assessment through small amplitude oscillatory measurements demonstrated 

that nonpolar, phospholipids, and glycolipid fractions had a greater interaction with both proteins 

and starch in the matrix, creating weaker dough.  Nonpolar, phospholipids, and glycolipids, 

varied in their ability to stabilize gas cells as determined by strain hardening index. C-Cell 

imaging and x-ray microtomograpy testing found that treatments containing higher 

concentrations of polar lipids (glycolipids and phospholipids) had a greater effect on overall loaf 

volume, cell size, and distribution. This illustrates that level and type of native wheat lipids 

influence the visco-elastic properties of dough and gas cell size, distribution, cell wall thickness, 

and cell stability in bread.  
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Chapter 1 - Literature Review 

Throughout history, bakery products have been a major part of the diet with much of the 

popularity being due to their nutritional value and the variety of goods found on the market.  

Bread was first discovered by the ancient Egyptians and today, it still remains as a widely 

consumed product that provides energy as well as other essential nutrients (Jacob 1944). In 2009, 

194.5 pounds of flour and cereal based foods were consumed per capita with 135 pounds coming 

from wheat-based goods (U.S. census 2009).  During 2012, total U.S. bread sales reached a high 

of $6260 million dollars and provided 633,000 jobs (American Bakers Association 2010; AIB 

International 2012). Through scientific advances, research has helped to improve quality and 

increase shelf-life by providing a better understanding of bread ingredients, dough composition, 

and final product quality.  

 1.1 Bread 

Bread is defined as “a yeast-leavened dough made from flour or treated flour that is 

hydrated by the addition of water, milk, eggs, and is leavened by yeast or a yeast by-product” 

(21CFR136.10). White pan bread can be made from a variety of different cereal grains, however, 

wheat is preferred as it contains storage proteins that form a continuous gluten network that traps 

air cells and affects loaf volume (Cauvain 1998). The dough, which is created by the addition of 

water and mixing, exhibits visco-elastic characteristics. Those extensible and elastic properties 

allow for easier dough handling and processing (Cauvain 1998). The visco-elastic characteristics 

of dough promote the incorporation and expansion of air/gas cells into the dough matrix. This 

influences the expansion of the dough during fermentation and proofing, ultimately affecting the 

final loaf volume and crumb. 

 1.1.1. The bread-making process  

Mixing serves two principle purposes in breading-making: to form and develop the gluten 

network and to evenly incorporate and disperse the ingredients throughout the system (Serna-

Saldivar 2010). Mixing determines initial size, amount, and distribution of air cells within the 

dough (Primo-Martin et al 2006). The mixing stage is the main determinant of initial air cell size 

and viscosity and this is based on the amount of energy applied and the type of mixer being used 
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(Salt et al 2006). Because of this, the addition of more pressure during mixing ultimately causes 

an increase in the number of air cells that are integrated into the dough (Mills et al 2003). The 

increase in air cells in the bread causes a drop in dough density at optimum mixing and “half of 

the total amount of air possible has been incorporated” (Hoseney 1985).  

Water is required for the formation of the dough and the amount is critical for creating 

optimum dough. The hydration of the gluten proteins results in the morphology of the polymers 

(Delcour and Hoseney 2010). Water causes these proteins to undergo a glass transition at room 

temperature, allowing for the conversion of proteins into a rubbery state (Delcour and Hoseney 

2010). For this state change to occur, the right environmental temperature and plasticizer (water) 

concentration is required (Delcour and Hoseney 2010). Dough that is mixed to optimum must 

have fully hydrated protein and starch. When properly hydrated, this is considered to be at the 

point where it can produce the best loaf of bread (Hoseney 1985). The addition of too much 

water results in longer mixing times as there is more water available for absorption and 

oversaturation of the flour (Stear 1990). Insufficient water reduces the ability for certain fractions 

of the flour particles to hydrate (Stear 1990; Delcour and Hoseney 2010). Temperature affects 

dough development and initial ingredient temperatures, mixing, friction, and solubilizing of the 

molecules all create heat during dough formation (Stear 1990). Temperatures >30°C can increase 

the ability to hydrate inducing starch granule swelling and causing changes in the physical 

properties of the dough (Stear 1990). Overall, optimal dough development is influenced by the 

required mixing time, water absorption, and temperature (Serna-Saldivar 2010). 

During the final stages of mixing, gluten proteins unfold due to the shear applied by the 

mixing pins and bowl (Stear 1990). This facilitates hydrogen and hydrophobic bonding while 

breaking internal disulfide bonds (Stear 1990; Delcour and Hoseney 2010). An optimal mixed 

dough can be divided into three different fractions: gluten structure in which starch granules and 

other compounds are dispersed, fractions that are water soluble and make up the liquid part of 

the dough, and air cells that were incorporated by mixing (Stear 1990). Once driven past the 

point of optimal mixing, the dough begins to lose its visco-elastic characteristics due to 

degradation of disulfide bonds and the connection of thiol groups with carbonyl groups that are 

present in the dough (Delcour and Hoseney 2010). Over mixing has shown to be influenced by 

oxidation as well as by the presence of the water-soluble components in the dough (Hoseney 

1985). 
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Following mixing, dough goes through fermentation. This allows the dough to relax in 

order to develop a network that is able to retain the air cells and for the yeast to become active 

and start producing CO2 gas (Belderok 2000). The dough is divided into balls of a predetermined 

weight and rounded. At this point, some of the gas created by the yeast is forced out of the dough 

(Belderok 2000). After fermentation, the dough rests for another 15-30 minutes (immediate 

proofing) and then moulded where it is sheeted and rounded into a cylinder fitted for the bread 

pan (Belderok 2000). The newly rounded cylinder is proofed one final time allowing for 

expansion in size to nearly 2X, before being baked (Belderok 2000).  

Punching and moulding release some of the carbon dioxide created during fermentation 

by dividing the existing air cells, creating smaller cells (Serna-Saldivar 2010). During the 

proofing stage, the dough undergoes changes in height and volume as well as texture and density 

(Serna-Saldivar 2010). Required proofing time is influenced by flour protein content, time, and 

desired loaf height (Serna-Saldivar 2010). The last step is baking (200-250°C, 12-45 min) and 

during the beginning stages, a final increase in volume occurs and the crust sets (Belderok 2000; 

Serna-Saldivar 2010). The increase in dough volume is created by more active yeast producing 

CO2 and the evaporation of water vapor, both resulting in expansion of the existing gas cells 

(Serna-Saldivar 2010). Also at this time, the starch gelatinizes (55-65°C), takes up most of the 

available water, and the gluten structure sets (Belderok 2000; Serna-Saldivar 2010). The gas 

cells continue to expand until the structure sets or until the cell wall begins to fail. At this point, 

the structure transforms from a foam to a continuous sponge (MacRitchie 2010). The crust also 

browns due to both chemical reactions of Maillard browning and caramelization (Serna-Salidvar 

2010).   

 1.2 Bread-making components  

The components that compose wheat flour provide the scaffolding and strength of the 

bread structure and are essential for maintaining air cells. Wheat is the only cereal grain that 

contains the specific gluten-forming proteins that allow for air cell incorporation while resisting 

coalescence, thus visco-elastic dough is a very important part of bread-making and production. 

Starch also plays a key part by serving as a filler in the protein matrix. Additionally, native and 

processed lipids are essential to maintain loaf volume and prevent gas cell coalescence during the 
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later stages of proofing and baking (Sroan et al 2009).  Each component is needed to produce and 

maintain quality loaves of bread with good loaf volume and crumb grain.   

 1.2.1. Gluten  

Gluten provides the basis, the structural backbone, and it is the gluten proteins 

specifically that “form the continuous viscoelastic network in the dough” (Singh and MacRitchie 

2001). It also serves as the network for which air cells are dispersed and held. In bread-making 

flours, the gluten protein makes up 80-90% of the total protein (Schofield 1987). Gluten consists 

of two protein families, glutenins and gliadins, which vary in their composition, but combined in 

equal proportions, give both viscous and elastic properties to dough (Schofield 1987; Singh and 

MacRitchie 2001). Gliadins are single chained polypeptides and have very similar molecular 

weight distributions. The glutenins are created by polymerization of glutenin subunits at a range 

of molecular weights (Singh and MacRitchie 2001).  Both proteins contain disulphide bonds, but 

the nature of the linkage is different with gliadin having intra-chain linkages, while glutenin has 

mostly inter-chain linkages (Schofield 1987).  

Gliadins and glutenins are not soluble in water, but are plasticized by water. Due to 

having non-polar amino acid side chains, solvents such as aliphatic alcohol, dilute acids, soaps, 

or ionic detergents are used as extractants (Schofield 1987; Singh and MacRitchie 2001). The 

gluten structure is highly dependent on the extent of bonding interactions between the polymers, 

specifically hydrogen, hydrophobic, and electrostatic interactions (Hamer and Van Vliet 2000). 

The resulting viscous and elastic properties of dough are important for gas cell incorporation and 

dough handling properties, both which are essential in bread-making (Schofield 1987). For 

dough to be elastic, the system must remain strong or have “continuity.” This is provided by the 

glutenin fraction, as it is likely to have more stable entanglements (Delcour and Hoseney 2010).  

The mechanism of how gluten creates the dough is not completely understood, but 

several models exist. One of these theories, the “linear glutenin hypothesis,” suggests that 

extending units of long chain peptides come together in a head-to-tail manner connected by 

disulphide bonds (Schofield 1987).  These connected chain units are thought to be able to extend 

under an applied strain. Once that strain is removed, they then return to their original 

confirmation (Schofield 1987). These disulphide bond linked polypeptides contain regions of α-

helix and β-turns and during mixing, these bonds are broken and become realigned, 
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strengthening the dough (Schofield 1987). Both components of the gluten protein have been 

found to be surface active where the gliadin fraction moves to the gas/liquid surface faster than 

does the glutenin, thus creating more pressure per area (Gan et al 1995; Primo-Martin et al 

2006). Although, both components of gluten have minimal solubility in water, proteins, in 

general, are best suited for movement to the interface as they can widely spread across its surface 

allowing for strong interactions between the phases (Primo-Martin et al 2006).  

Another model of how gluten functions in dough comes from polymer science and 

hypothesizes that long protein chains align at the gas liquid interface surface, with loops and tails 

that extend out into the other phases and then interact with other molecules (Singh and 

MacRitchie 2001). The glutenins would align at the interface and the extended loops and tails 

would become “entangled” with other compounds in the structure or form “bridges” with starch 

(Singh and MacRitchie 2001). The entanglements caused by glutenin would provide more elastic 

dough properties, due to greater interactions between the proteins, increasing the viscosity of the 

dough. The gliadin would create a more viscous, liquid like system (Singh and MacRitchie 

2001). The nature of the entangled network is highly dependent on size, shape, makeup, and 

amount of the specific polymers (Hamer and Van Vliet 2000). The “loop and train” model is a 

third theory of the gluten network. It suggests that the protruding loop or train subunits attached 

to the main linear chain actually interact with one another through hydrogen bonding. Some of 

these units will either be bound to one another (called loops) or connected and called trains 

(Belton 1999). When the loops are extended the proteins are more susceptible to moving over 

one another, but then can revert back to the loop-train equilibrium, providing elastic behavior 

(Belton 1999).  

 1.2.2. Starch 

Starch is also a very important component needed for the development of dough and the 

final bread. Found in the endosperm of the wheat kernel, starch makes up almost 70% of its’ 

mass (Blanshard 1987). When milling wheat flour, the goal is to remove as much of the 

endosperm as possible while minimizing the amount of starch damage during the process. Starch 

can be found in granular form as either polygonal or spherical in shape (Delcour and Hoseney 

2010). The molecular structure of the starch granules consists of long chains of glucose that are 

either linear or branched (amylose and amylopectin) (Zobel 1988). Each polymer group consists 
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of one reducing end (O-H group) with the linear chain of both amylose and amylopectin 

containing α-1-4 chain linkage (Delcour and Hoseney 2010). However, amylopectin differs from 

amylose in that it is also branched at some α-1-6 bonds creating a complex branched structure 

(Delcour and Hoseney 2010). Amylose is thought to exist in the amorphous region of the granule 

versus amylopectin located in the crystalline regions (BeMiller 2007).  

Native starch doesn’t swell when mixed with cold water and depending on the starch 

origin, it undergoes gelatinization or “irreversible swelling” when heated in water to a specific 

temperature (Schoch 1965). Once the temperature has exceeded the temperature at which starch 

gelatinizes, the granule swells and takes up water (BeMiller 2007). The water and heat alters the 

crystalline morphology. The hydrogen bonds between the polymers begin to break and more and 

more water is absorbed into the swelled structure eventually disrupting the crystalline regions 

(BeMiller 2007). This change in the granular order of the polymers due to water and heat is 

described as a “loss of birefringence” and causes irreversible swelling of the granules and the 

leaching out of amylose (BeMiller 2007). Together, these changes increase the viscosity of 

starch-water solutions (Primo-Martin et al 2007). External factors that can alter the rate or 

temperature at which gelatinization occur include salt, pH, sugar and the ratio of water to starch 

(BeMiller 2007).  

Starch interacts with sugar, lipids, proteins, pentosans, and water during the bread-

making process, and this is very important for the development of dough (Blanshard 1987). 

Starch plays a role in the overall bread quality as it affects final product characteristics such as 

“structure and texture of the final product” (Primo-Martin et al 2007). The changes in texture and 

structure are heavily influenced by the starch going through the above described transitions 

(Blanshard 1987). It is suggested that starch acts as “high loading filler” in the dough system 

(Singh and MacRitchie 2001; Delcour and Hoseney 2010). The functions of starch in bread-

making include diluting the amount of gluten so as to adjust the dough consistency, providing 

fermentable carbohydrates for yeast through the action of amylase, attaching and forming a bond 

with gluten and increasing the system’s elasticity and extensibility during gelatinization in order 

to allow for flexibility in the gas/air cell film (Hoseney et al 1971). In the crumb, starch creates 

regions that are amorphous after gelatinization, but as the bread cools and ages it becomes 

crystalline or retrogrades (Primo-Martin et al 2007).  
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 1.2.3. Lipids 

The wheat kernel is composed of approximately 2-4% total lipids that are found within 

the bran, germ, and endosperm (Pomeranz 1973). Most of the lipids are located in the germ, a 

fraction (8-15%) of the kernel that is removed during the milling process, followed by the bran 

and endosperm containing 6% and 8%, respectively (Pomeranz 1973). The germ contains 

approximately 80% of the total lipids with higher levels of free fatty acids, which are more 

sensitive to lipid oxidation and promote rancidity (Serna-Saldivar 2010). The total lipid fraction 

consists of primarily linoleic acid (Carr et al 1992). It makes up roughly 60% of the total lipid 

fraction and the wheat flour contains roughly 2.5% of total lipids (Carr et al 1992: Eliasson and 

Larsson 1993). During milling, triglycerides remain in the endosperm and can either be saturated 

or unsaturated (Sullivan 1940; Carr et al 1992).  

In general, the function of lipids in bread-making helps improve textural properties, 

mouth-feel, dough handling, loaf volume, and increase shelf life (Ponte and Baldwin 1972). 

Lipids come from both, natural or native lipids in the endosperm and from processed shortenings 

or liquid oils that are added during production. The lipids in the system act to help stabilize the 

air cells and prevent coalescence during the growth and expansion of the dough (Chung et al 

1978). Bread is considered to be foam and lipids act as “surfactants in stabilizing or destabilizing 

the foam structure during the expansion of the loaf,” thus acting as support and providing more 

stability to the foam (MacRitchie 1977). The lipids are influential in helping to maintain gas cell 

stability and loaf volume over time; however, the addition of up to 3% shortening has been 

shown to help increase final loaf volume and improve crumb softness (Pomeranz 1965; Chung et 

al 1978).  

 1.2.4. Native wheat lipids  

Although the amount of native lipids that are present in the flour is small, these 

constituents have a large effect on final bread quality. Lipids in the endosperm of the kernel 

consist of various fractions that are both functional and nonfunctional in the dough and bread-

making processes. Lipids in wheat can be classified as either simple or complex, meaning that 

they have either one or two structural components (simple) or greater than two structural 

components (complex) (Chung et al 2009). Further classification of lipids can be done based on 

the type of extraction used and location within the flour (Chung et al 2009).  For classification by 
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location, lipids can be separated into non-starch lipids, integral starch lipids, and starch surface 

lipids (Chung et al 2009). Figure 1.1. shows the classification of lipids found in wheat.   

From an extraction standpoint, the lipids can be classified in two groups, non-starch 

lipids or total lipids, which include all the starch lipids and surface starch lipids (Finnie et al 

2009). If the extraction process promotes the swelling of starch granules then these lipids fall 

under the category of total lipids because this includes those lipids that are tightly bound to the 

internal structure of the starch. However, if the technique doesn’t induce granular swelling then 

the lipids are categorized as being non-starch lipids as these lipids are not linked to the structure 

of the starch (Finnie et al 2009). The amyloplast is where the development of lipids are thought 

to originate, particularly, the polar fractions (glycolipids and phospholipids) (Morrison 1988). 

Lipids that are found inside the starch have been shown to be beneficial against starch 

degradation as they are inhibitors of enzyme degradation by phosphorylase, α and β-amylase 

(Morrison 1988). The complexing of amylose with lipids has also shown to slow the rate that 

degradation occurs (Morrison 1988).  

Classification by extraction also divides the non-starch lipids into “free” or “bound” 

fractions depending on the type of extraction solvent used (Finnie et al 2009). Free lipids are 

those lipids that can be separated using nonpolar solvents such as petroleum ether, hexane, and 

dimethyl ether, while the bound lipids are those that can be removed by using polar solvents such 

as chloroform, methanol, and water-saturated butanol (Hoseney et al 1969; Finnie et al 2009). 

The amount of free lipids extracted is dependent upon the technique used for the extraction, the 

temperature of the solvent, and the amount of moisture and particle size of the flour (Chung et al 

1977a; Chung et al 1977b; Chung et al 2009).  Both the free and starch lipids can further be 

classified as polar and nonpolar lipids and have the greatest impact on the quality of bread (Ohm 

and Chung 2002; Chung et al 2009). The removal of the lipids during extraction also has an 

effect on water absorption as it increases the amount of water needed by the dough (Chung et al 

1980c).  
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(Chung et al 2009) 

Figure 1.1. Wheat lipid classes in flour  

 1.2.4.1 Free lipids 

Free lipid composition consists of 0.8% free lipids of which 0.6% are nonpolar, while 

0.2% are polar (Hoseney et al 1970). The nonpolar and polar lipids are defined by their ability to 

mix with water as some of these lipids have functional groups that are water miscible (Carlson et 

al 1978).  Polar lipids are also more inclined to form “membrane-like” structures, whereas the 

nonpolar predominantly form drops that are similar to that of oil (Carlson et al 1978). The 

composition of polar lipids found in flour include: digalactosyldiglycerol (DGDG) 

monogalactosyldiglycerol (MGDG), N-acyl-phosphatidylethanolamine (NAPE), and 

phosphohatidylcholine (PC) (Pareyt et al 2011). The nonpolar lipid fraction, consist of  

triacylglycerols (TAG), diacylglycerols (DAG), monoacylgycerols (MAG), sterols, sterol esters 

and free fatty acids (Pomeranz 1973; Pareyt et al 2011). The polar lipids are a combination of 

glycolipids (galactolipids specifically) and phospholipids (Chung et al 1980a). Of the previously 

listed polar lipids, it is the MGDG and DGDG, which are found in the highest concentration and 

for the phospholipids, the PC and lysophosphatidylcholine (LPC) are the most common (Chung 

et al 1980a). Typically, phospholipids contain only one phosphorus group/mole, while the 

glycolipids contains 1-3 galactoses (Chung et al 1980a).  

During the mixing stage, the free lipids become “bound” to other constituents in the 

dough, thus reducing the amount of extractable free lipids (Chung and Tsen 1975). This decrease 
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in free lipids is linked to the interaction of protein and lipids or starch and lipids. This causes a 

reduction of greater than 50% in the free lipids during dough mixing (Chung and Tsen 1975). 

Early studies of the influence of lipids on the loaf volume and crumb grain through the removal 

(defatting) and re-addition (reconstitution) of extracted total wheat lipids, found that they do play 

an important part in maintaining and strengthening the foam structure of the dough (MacRitchie 

and Gras 1973). The polar lipid fractions had the greatest effect on loaf volume; specifically, the 

glycolipids having a galactose group attached (Chung et al 1982). These differences can be seen 

in Figure 1.2. The galactolipids provide the greatest improvement in loaf volume as well as 

dough development time (Chung et al 1982). However, reduced amounts of polar lipids caused a 

decrease in loaf volume due to a greater association of protein-protein interactions thereby 

influencing the air cell distribution and expansion (Chung et al 1980c).  The nonpolar lipids have 

a lower melting point than do the polar lipids and their crystalline state plays a role in 

maintaining air cell structure as phospholipids are most beneficial when they are in a “liquid-

crystalline” form (Pomeranz 1965; Leissner 1988). This phenomenon (improved loaf volume) 

was seen when polar lipids were added alone and when a combination of nonpolar/polar lipids 

fractions where added back together (Chung et al 1982).  

 

 

(MacRitchie and Gras 1973) 

Figure 1.2. Loaf volume distribution at varying lipid additions  
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Extraction studies determined that the glycolipids bind with both gliadin and glutenin 

through hydrophobic and hydrophilic interactions (Hoseney et al 1970).  The glycolipids interact 

with gliadin by hydrophilic bonding and to glutenin through hydrophobic bonding (Hoseney et al 

1970). Due to gliadin playing a bigger role influencing loaf volume, the interactions between the 

glycolipids and these proteins are more predominant in maintaining structural integrity of the 

dough (Hoseney et al 1970).  From a molecular viewpoint, glutenin has a greater availability of 

nonpolar side chains that can attach to the lipids (Pomeranz 1973). This allows for more 

association of lipids with the proteins because of the hydrophobic side chains (Pomeranz 1973). 

These interactions between lipids and proteins are not limited to hydrophobic bonding, but also 

include ionic, covalent, hydrogen, and Van der Waals bonding (Pomeranz 1973). During the 

beginning phase of the mixing process, most of the free lipids become bound and additional 

mixing time does not influence the amount of lipids that became bound (Chung and Tsen 1975).  

The nonpolar components of free lipids are detrimental to loaf volume when they are 

added back independent of polar lipids or even shortening (Daftary et al 1968). Adding 

individual subfractions of nonpolar lipids (steryl esters, triglycerides, diglycerides, and fatty 

acids) back did not improve loaf volume (De Stefanis and Ponte 1976). Loaves made with 

individual nonpolar fractions were similar to those in which total amounts of nonpolar lipids 

were added back (De Stefanis and Ponte 1976). Increasing the amount of nonpolar lipids, while 

maintaining the polar lipid amount constant caused decreases in loaf volumes even with polar 

lipids present (Daftary et al 1968). However, adding more polar lipids along with increasing 

amounts of nonpolar lipids reversed the negative effects of the nonpolar lipids (Daftary et al 

1968). The addition of free fatty acids decreased the loaf volume even more than did the other 

nonpolar fraction (De Stefanis and Ponte 1976). Particularly it was linoleic acid, which was the 

unsaturated fatty acid that had the greatest detrimental effect on loaf volume. De Stefanis and 

Ponte (1976) hypothesized that the influence of linoleic acid on loaf volume was due to their 

negative effects on both the gluten fractions and starch.   

 1.2.4.2. Bound lipids 

The non-starch lipids classification also includes 0.6% bound lipids that are made up of 

primarily polar lipids (Hoseney et al 1970). These groups of bound lipids are those non-starch 

lipids that are not “free, ” but connected to compounds other than starch (Chung et al 2009). 
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Following the extraction of the free lipids, non-starch lipids (not associated with starch granules) 

can be extracted with polar solvents (e.g. water saturated butanol) without requiring heating 

(MacRitchie and Gras 1973; Chung et al 2009). Starch lipids and starch surface lipids vary 

among the wheat varieties as lipid content is dependent on the “size and type of starch granule” 

present (Chung et al 2009). These differences are seen with the variations between A and B 

starch granule types as well as with fine, course, and intermediate shaped starch granules (Chung 

et al 2009). Starch lipids also vary in soft versus hard wheat (Finnie et al 2009). Bound polar 

lipids aren’t as effective in maintaining and improving loaf volume as are the free polar lipids 

(Daftary et al 1968; Hoseney et al 1970).  

 1.2.4.3. Starch surface lipids 

Starch surface lipids are bound lipids attached to the surface of the granule. These lipids 

are also strongly bound to gluten proteins and are a factor in distinguishing between flours from 

hard and soft wheat (Chung et al 2009). Typically, starch surface lipids are found in higher 

concentrations in soft wheat starches (Chung et al 2009). The surface components of the starch 

influence the rheological properties of the dough, particularly at the lamellar liquid-crystalline 

phase (Larsson et al 1997). Glycolipids are found in higher concentrations than other lipids on 

the surface of the starch and the main compounds are DGDG, MGDG, PC, and 

lysophosphotidylcholine (LPC) (Finnie et al 2009; Finnie et al 2010). During mixing, polar lipids 

are removed from the surface of starch and incorporated into the gluten matrix (Finnie et al 

2010).  

 1.2.4.4. Starch lipids 

Starch lipids are those lipids that are found inside the granules. The abundance of these 

lipids are often directly and positively correlated to the amount of amylose in the starch 

(Morrision 1988). Internal starch lipids can only be extracted by solvents (water saturated 

butanol) that are heated to 95-100°C, which induces starch gelatinization (Morrision 1988). The 

most common lipid classes here are the phospholipids with LPC and PC being the most prevalent 

(Galliard and Bowler 1987; Finnie et al 2010).  Lipids within starch are often associated with the 

forming of amylose-lipid complexes (Delcour and Hoseney 2010). This occurs naturally in the 

starch granule or with unbound free lipids following the initiation of pasting or gelatinization of 

the starch (Delcour and Hoseney 2010).  
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The amylose-lipid complex is susceptible to leaching following hydration and heating of 

starch as it undergoes gelatinization (Morrison 1988). The presence of polar and nonpolar lipids 

during the gelatinization process influences the pasting properties of the starch during heating 

(Medcalf et al 1968). The readdition of polar lipids to defatted starch reduced the viscosity 

during pasting, while the addition of the nonpolar lipids reduced the paste viscosity initially, but 

resulted in higher peak pasting values than the defatted control (Medcalf et al 1968). The initial 

reduction in the pasting curve due to the presence of polar lipids was thought to be due to the 

binding of these lipids with starch, thus reducing the initial hydration of the starch granules 

(Medcalf et al 1968). Because the water is easily absorbed into the starch granule and nonpolar 

lipids are less likely to bind with components in starch, the nonpolar lipids cause an increase in 

the viscosity (Medcalf et al 1968).  

 1.2.4.5. Lipid interactions 

Lipid-glutenin complexes that form during dough making have the greatest effect on 

mixing tolerance and mixing time especially in the presence of high levels of polar lipids (Chung 

et al 1980a). Interaction between lipids, proteins, and starch are affected by their polarities 

(Chung and Tsen 1975).  The protein-protein interactions that form following the defatting 

process change during the reconstitution process as the addition of the lipids cause the 

intermingling of the polar fractions between the protein-protein bonds (Chung et al 1979). 

Defatting and reconstitution studies with protein showed that the addition of total lipid as 

opposed to nonpolar and polar fractions independently had greater interaction with protein, 

which suggests that the combination of both fractions together had a greater association with the 

protein (Chung et al 1979).  

The increase in lipid-protein binding is influenced by the amount of work or mixing 

applied to the dough, as a more severe mixing action causes an increase in bound lipids (Daniels 

et al 1966). However, over-mixing causes a reduction in lipid binding (Pomeranz 1973). Marion 

et al (1987) also suggested that lipids, specifically phospholipids that bind during mixing, are not 

actually bound to the gluten phase, but rather these lipids are mixed in and are “physically 

embedded” in the gluten. The binding is associated with the friabilin or puroindolines, 

specifically PIN-A, one of the proteins associated with endosperm softness, which is a strong 

interaction with polar lipids (Dubreil et al 1997; Finnie et al 2010).  
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 1.2.5. Shortening 

The addition of shortening to the bread formula improves dough handling characteristics 

during production, enhances the ease of slicing, loaf volume, texture, crumb structure, and 

increases the shelf-life (Chung et al 1981). When shortening was added to defatted flour, there 

were both a positive and negative effect depending on the type of native lipid fractions remaining 

in the flour (Chung et al 1980c). Polar or total lipids must be present in order for shortening’s 

beneficial effects to be seen in a good quality bread flour (Chung et al 1980b; Chung et al 

1980c). On the other hand, dough made from a flour of lower quality or lower protein content, 

shortening improves overall volume (Chung et al 1980b). In control flours (non-defatted), the 

addition of up to 3% shortening has shown to increase the overall loaf volume (Chung et al 

1980c). As the amount of total lipids were lowered, slight volume increases result from the 

addition of shortening (Chung et al 1980c). However, shortening only caused a minimal increase 

in loaf volumes as the greater quantity of total lipids were removed (Chung et al 1980c).  

Shortening is functional only up to a specific threshold when a certain amount of total 

lipids are removed. If nonpolar lipids are only added then there are no benefits from adding 

shortening (Chung et al 1980c). The polar lipid fraction works synergistically with shortening to 

help stabilize and maintain the foam structure and bubbles in the dough (Chung et al 1980b). 

Only small additions of polar lipids are needed in combination with shortening to increase or 

restore loaves to their original heights (Pomeranz et al 1968).  It has been suggested that the 

addition of shortening in the absence of polar lipids may prevent protein-protein interactions and 

rather act as blocking agents for these type of interactions (Chung et al 1980b).  During the bread 

production process, shortening promotes continued gas cell expansion at higher temperatures, 

thus allowing for a longer period of dough extensibility (Junge and Hoseney 1981). 

 1.2.6. Air cells  

The internal crumb structure and loaf volume are highly dependent on the amount of gas 

cells incorporated into the dough system (Junge et al 1981). Fine grain is associated with many 

small cells incorporated during mixing (Junge et al 1981). Loaf volume, defined by the dough 

expansion capacity, is dependent on the air cell network and dough’s rheological characteristics 

following mixing (Gandikota and MacRitchie 2005; Sroan et al 2009). Expansion capacity is 

described as the maximum amount of growth the air cells can undergo without failing and when 



    
15 

this point is reached the loaf volume stops rising (Sroan et al 2009). This final growth is 

completed during the end of proofing in doughs made from flours with smaller loaf volume 

potential and at the start of baking for flours that have large loaf volume potential (Sroan et al 

2009). The increase in air cell size, biaxial expansion, and the internal pressure causes a resulting 

strain on the dough (Sroan et al 2009).  

Carbon dioxide produced by the yeast is not capable of creating the cells needed for the 

crumb. Instead, this happens during the later stages of mixing when the gas cells are incorporated 

and subdivided to create the bread crumb (Baker and Mize 1941). The rate that air cells are 

incorporated during mixing is greatest as the dough approaches optimal development (Baker and 

Mize 1946). Expansion of the dough does not occur until the dough has been fully saturated with 

gas formed by yeast fermentation. This process is regulated by the temperature and pH of the 

dough (Delcour and Hoseney 2010). The gas diffuses into the air cells and remains within the 

aqueous phase due to over saturation of the system caused by the fermentation process (Hoseney 

1984). The greater rate in gas production causes an increase in the speed of cell expansion 

(Hoseney 1984). In order for cells to nucleate (or to be lost) from the system, the internal 

pressure of the cells must be higher than the surface tension and the viscosity of the dough (Gan 

et al 1990). The pressure that is created within the newly formed air cell is a result of the radius 

and the interfacial tension of that particular cell (Hoseney 1984).  

For foams, there is little to no effect of surface tension on the incorporation of air cells 

during mixing (Salt et al 2006). In foam systems, the energy input throughout mixing affects the 

size distribution of the incorporated bubbles and the resulting rheology (Mills et al 2003). The 

means to hold and maintain gas cells within a foam system has been described by the formation 

of a gel-like layer that can support the lamellar phase, which consists of proteins or other surface 

active groups that provide dough elastic properties (Mills et al 2003). Another mechanism is 

described best by the Gibbs-Marangoni process in which stabilization comes from surface active 

constituents such as surfactants or emulsifiers (Mills et al 2003). These surface active 

components can move from a higher concentration to a lower concentration when the lamellae 

has broken down. This restores the differences in the lamellar regions that have weakened (Mills 

et al 2003).  

The punching and moulding steps also add no new air cells to the dough. These steps 

instead increase the number of cells in the dough by dividing and splitting existing cells into 
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smaller, dispersed bubbles (Baker and Mize 1941; Gan et al 1995). The growth in volume is 

caused by size expansion of each gas cell and not by the incorporation of more cells (MacRitchie 

1977). In some cases, the cells will expand so much that separation is only by a small film layer 

(Primo-Martin et al 2006). Gas cells are maintained within the dough matrix through the 

presence of compounds with functional groups that allow them to move to the cell interface 

(Primo-Martin et al 2006). This phenomenon occurs because these compounds can lessen the 

potential for air cells to come together, coalesce, or undergo Ostwald ripening, thus stabilizing 

the cells in the system (Primo-Martin et al 2006). Carbon dioxide produced during fermentation 

and proofing move into the air cells that were incorporated during mixing. The air cells expand 

and grow causing internal pressure that inflates the incorporated air bubbles creating a system 

where the gas can be roughly 75% of the overall volume (Gan et al 1995: Salt et al 2006).  

During this expansion, cell walls may stretch causing them to be pushed together to a point 

where the thin wall fails and two gas cells become one (Salt et al 2006).  

 1.2.7. Aqueous phase of dough  

Water influences dough formation as it is needed for the hydration and solubilization of 

flour as well as for chemical and physical reactions to occur. The addition of varying levels of 

water can cause the formation of two liquid phases within the dough if the appropriate amount of 

water is present (MacRitchie 1976a). If there is not enough water then only one liquid phase is 

created. One of the phases is the liquid phase and this is where chemical and physical changes 

occur within the dough by fermentation. It also allows for the expansion of air cells during the 

rest of the baking process (MacRitchie 1976a). It is this phase where the air cells are 

incorporated and expansion happens due to fermentation (Sahi 1994; Primo-Martin et al 2006). 

Sahi (1994) described the development of this aqueous phase as when “there is a surplus of water 

above what is needed to hydrate the dry components (i.e. protein, pentosans, starch, etc) during 

mixing.” At least 35% of the total dough weight of water is required for hydration of the proteins 

to allow for entrapping air and gas expansion during fermentation within this phase (Gan et al 

1995).  

Mixing determines the distribution of the ingredients and flavor constituents within this 

liquid phase (MacRitchie 1976a). MacRitchie (1976a) described the structure and composition of 

the liquid phase, which is continuous in the dough, as being based on the “equilibrium between 
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the solutes present in the liquid phase and corresponding solid phase.” The make-up of this liquid 

phase or liquor is comprised of a combination of components including non-starch 

polysaccharides, lipids and proteins as well as malto-oligosaccharides, and arbinoxylans (Salt et 

al 2006). The combination of these varying constituents in the liquid phase helps to promote 

stabilization of air cells and provides much of the dough structure allowing for the growth of the 

dough during fermentation, proofing, and baking. 

 1.2.8. Aqueous phase formed by lipids and water 

The interaction of polar and nonpolar lipids with water plays an important role in 

understanding lipid functionality within a complex system such as dough. In this type of a 

system, polar lipids will more readily bind with water while nonpolar lipids will not (Carlson et 

al 1978). Looking at the internal phase behavior of wheat lipid-water interactions using x-ray 

diffraction, Carlson et al (1978) observed the phase behavior of this system and illustrated it 

using a ternary diagram (Figure 1.3). Both the nonpolar and polar lipid fractions make up the 

corners of the triangle. For this model, sufficient amounts of water must be present in order to 

hydrate the lipids and the ratio of nonpolar to polar lipids influence changes in crystalline phase 

behavior. Several different phases are seen including both an oil phase and a water phase that 

contained no polar lipids and two phases that consisted of a combination of lipids and water. The 

lipids + water combinations formed are described as an L2-phase and a liquid-crystalline phase. 

Depending on the water concentrations when added back with total extractable lipids (containing 

both polar and nonpolar), an oil phase formed on top and at lower concentrations of water. Two 

distinctive liquid-crystalline formations were created: hexagonal-liquid crystalline and lamellar-

liquid crystalline (Carlson et al 1978).  
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(Carlson et al 1978) 

Figure 1.3. Ternary phase diagram of wheat lipids in water 

 

The lamellar liquid crystalline phase is formed with varying compositions of lipids. 

However, increasing the quantity of water causes a conversion to an L2 phase. These phases (L2 

and lamellar-liquid crystalline) are bilayers and the thicknesses of these complexes are dependent 

on the ratios of nonpolar and polar lipids (Carlson et al 1978). The greater the amount of polar 

lipids present in the layer causes a reduction in the thickness due to the ability to orient tightly. 

Nonpolar lipids, which are hydrophobic, must be oriented differently to avoid contact with water 

(Carlson et al 1978). Also, the varying types of polar lipids will cause or form different liquid-

crystalline configurations, hexagonal liquid-crystalline or lamellar liquid-crystalline, with water 

(Carlson et al 1978). MGDG will form hexagonal configurations while phospholipids and 

DGDG form lamellar configurations (Carlson et al 1978). The L2 phase that is created by native 

wheat lipids is unique in that the oil layer is created only when extra water is available (Carlson 

et al 1978). This layer is made through the melting of the other two crystalline forms (hexagonal 

and lamellar) by the addition of heat (Carlson et al 1978). The formations of these crystalline 

phases influence dough rheological properties as the lamellar crystalline phase create “films at 

the interphase between starch/water, oil/water, and air/water” while the hexagonal phases create 

“aggregates” (Carlson et al 1978).  
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Carson et al (1979) studied the interaction and phase behavior of wheat lipids extracted 

from gluten and water. Similar to the wheat lipid-water ternary diagram determined by Carlson 

et al (1978), the gluten lipid-water combinations also produced four different phases: oil phase, 

water phase, L2 phase, and lipid-crystalline phase. Within the liquid-crystalline region, the 

solubility of the nonpolar lipids were directly correlated with the amount of water added, thus as 

water content increased, the more nonpolar lipids were dissolved into the system. Also, the 

addition of salt to the system caused a reduction in the amount of nonpolar lipids dissolved 

(Carslon et al 1979). The opposite was seen in the wheat lipid-water system for the nonpolar 

lipids as the water content increased, less nonpolar lipids were dissolved (Carlson et al 1978; 

Carlson et al 1979). The presence of salt in the gluten-lipid system caused a reduction in 

thickness of the lamellar liquid-crystalline phase (Carlson et al 1979). The liquid phase (L2) 

overall was smaller in the gluten-lipid system as compared to the wheat lipid system (Carlson et 

al 1979).   

From the understanding of both of these complex systems (gluten-lipid-water and lipid-

water), the lamellar liquid crystalline phase had the greastest effect on the baking characteristics. 

This was mainly due to surface active constituents that act at the air/water or oil/water interface 

(Carlson et al 1979). In dough systems, these lipids are able to move to the gas/liquid interface 

creating a “monolayer,” where they expand and stretch, which reduces the overall interfacial 

tension and promotes the stabilization of the air cell (Gan et al 1995). The lamellar-liquid 

crystalline phase easily assembles in small groups (liposomes) at the interface following the 

mixing of water with the flour (Gan et al 1995). The lamellar liquid-crystalline formation, which 

has a configuration more like shortening or structured lipid, is able to diffuse between the phases 

easier than the hexagonal liquid-crystalline arrangement (Gan et al 1995). These layers of lipids 

that are compacted together move to the surface of the gas/liquid layer throughout all stages of 

the bread development, making it better suited for gas cell stabilization (Gan et al 1995).  

 1.2.9. Role of native wheat lipids in bread 

Sahi (1994) found through electrical conductivity testing, that this film lining the phase of 

the gluten-starch matrix is a “continuous phase throughout the dough instead of being in discrete 

droplets.” It was confirmed that there is an interface in which both protein and lipids are present 

and that more protein at the interface, provides more elastic behavior to the dough (Primo-Martin 
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et al 2006). Gan et al (1990) found, indirectly, that a “liquid film” layer that aligned the air cells 

and the gluten-starch matrix preventing gas loss or cell coalescences. This layer formed as an 

independent interface between the air cells and the liquid phase and contained components that 

were able to align at the interface due to their surface activity. A combination of proteins, lipids, 

pentosans, and other surface active compounds make up this film and they are able to move to 

that interface and give it stability over time (Gan et al 1990; Sahi 1994). During the later stages 

of proofing and baking when cell expansion is the greatest, the network begins to stretch then 

these surface active agents play the most functional role (Gan et al 1990; Gan et al 1995). 

Without this film, if breakdown or excessive stretching weakens the network, the gas cells would 

be more susceptible to migrating towards one another or becoming lost to the environment (Gan 

et al 1990). The breakdown or separation of the thin liquid film appears to be the cause of the 

loss of gas cells to the environment during the later stages of proofing (Gan et al 1995). The 

polar lipids have shown to be able to interact to form a lipid bilayer, which consist of the 

lamellar liquid-crystalline phase and thus can move to the interface surface creating what is 

known as a lipid monolayer (Gan et al 1995).  

The proteins can stabilize at the air/liquid interface because of their visco-elastic 

properties and ability to maintain integrity through expansion and movement of air cells (Sahi 

1994).  Lipids, on the other hand, exhibit or act by a mechanism described as the 

Gibbs/Marangoni effect that is premised on the amount of lipids initially present (Primo-Martin 

et al 2006). This effect describes the shifting of the components in the film due to the pressure at 

the interface, moving them to or from areas where they come into contact with other dispersed 

droplets (MacRitchie 1976b). This mechanism that lipids use to stabilize the film has a greater 

surface tension than that produced by the fermentation of CO2, which allows it to maintain and 

prevent coalescence of cells (Sahi 1994). The combination of protein and lipid films is the most 

effective in securing and maintaining gas cells within the network (Sahi 1994). The maintenance 

of this liquid monolayer is dependent on several factors including “film viscosity, shear 

resistance, and elasticity” of the dough (Gan et al 1995).  

Originally, Gan et al (1990) based the theory of liquid lamellae from SEM images of 

gluten-starch matrix during the various phases of dough development (1990). Sroan et al (2009) 

reevaluated this hypothesis and determined that native lipids formed a film that stabilized the air 

cells and supported the gluten-starch matrix. Using two soft wheat varieties with protein contents 
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between 9% and 10%, native wheat lipids were extracted and reconstituted back into the flour. 

The resulting dough and bread were evaluated using C-Cell imaging and biaxial extensional 

rheology (Sroan et al 2009). The addition of different levels of native lipids produced similar 

results to those of MacRitchie and Gras (1973), which was a decrease than increase in volume 

upon lipid type and addition.  

It was also found that when flour lipids were added back in varying concentrations, the 

number of gas cells and their elongation did not vary widely, thus concluding that it is the 

expansion of the cells rather than the number, which influences loaf volume (Sroan et al 2009). 

Biaxial extensional rheology testing showed that the addition of the total native wheat lipid in 

varying amounts to defatted flour did not have any effect on the dough visco-elastic properties 

even if there was a greater variation between loaf volumes (Sroan et al 2009). This indicated that 

native wheat lipids did have a stabilizing affect due to their ability to migrate to the interface and 

that was independent of dough rheology (Sroan et al 2009).  

The type of lipid also affects the monolayer created at the interface. This is why the polar 

lipids are more functional than are the nonpolar lipids in terms of gas cell preservation (Sroan 

and MacRitchie 2009). The nonpolar lipids consisting of the fatty acids, are more inclined to 

form expanded monolayers upon the surface, which are more elastic in nature and do not release 

easily from the monolayer (Sroan and MacRitchie 2009). It is the benefit of the condensed 

monolayers that are formed by the polar lipids (DGDG) that provide “elastic restoring forces,” 

which help to withstand changes in the liquid lamellae brought about by alterations to the 

interface caused by expansion or external forces on the dough (Sroan and MacRitchie 2009). The 

condensed monolayer is a compacted layer of surface active components with the polar groups 

facing outward towards the water and the nonpolar hydrocarbon groups are protected inside and 

face the air cells (Sroan and MacRitchie 2009). 

Cell elongation helps to determine the durability of the gluten-starch matrix during the 

expansion of dough (Gandikota and MacRitchie 2005). “The greater elongation is associated 

with greater tolerance to distortion before rupture” (Gandikota and MacRitchie 2005). Sroan and 

MacRitchie (2009) saw minimal changes in elongation when the different total lipid 

concentrations were added, indicating that there was little to no influence on the rheological 

properties of the gluten-starch matrix by the addition of lipids. The addition of lipids also didn’t 

cause any differences between the biaxial extensional rheology tests providing no evidence that 
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native wheat lipids affected the rheological properties of the gluten-starch matrix. These results 

only concluded that the lipids were surface active and form a compressed monolayer at the 

interface that holds air cells and prevents coalescence (Sroan and MacRitchie 2009).  

 1.2.10. Solvent extraction of lipids 

Defatting and reconstitution studies of native lipids in flour typically are used to provide 

a better understanding of the native wheat lipids. Factors that influence the extraction of those 

lipids from flour include: genetic history and composition of the wheat being studied, the flour 

yield during the milling process, amount of moisture, flour particulate size, and extraction 

procedures (Chung et al 1982). For optimum extraction the parameters that need to be optimized 

are “time and temperature of extraction, type of extractor, and solvents used” (Chung et al 1982).  

Separation of lipids from flour has been conducted with a variety of different chemicals 

and varying methods of extraction. However, one of the key evaluation metrics for the extraction 

technique is the ability to defat and reconstitute the lipids without excessive damage to the flour 

(i.e. proteins, starch, and lipids). This allows breads to be baked and produce loaves that are 

comparable to the control, without a solvent effect (MacRitchie and Gras 1973). MacRitchie and 

Gras (1973) utilized a combination of techniques involving a batch extraction through filters and 

a soxhlet system to conduct initial extractions of flour. In that study, solvents were allowed to 

evaporate from the defatted flour while the solvent + lipids underwent evaporation using a rotary 

evaporator and nitrogen flushing (MacRitchie and Gras 1973). The solvents were compared for 

effectiveness in extraction and those that were used in the experiment included: petroleum ether, 

benzene, chloroform, dichloromethane, ether, ethyl acetate, acetonitrile, water saturated n-

butanol, acetone, ethanol, and combinations of blended chemicals. All the solvents either 

reduced loaf volume or increased mixing time, but the authors found that the chloroform and 

petroleum ether produced loaves that were similar to the controls (MacRitchie and Gras 1973).  

Ponte and De Stefanis (1969) also conducted total lipid extractions using an ethanol 

benzene combination and a batch extraction technique where the solvent and flour were blended 

three times and filtered through a Büchner funnel. The lipids were further separated into polar 

and nonpolar fractions using silica gel and diethyl ether. The nonpolar fractions were extracted in 

silica gel with diethyl ether-petroleum ether (90:10 v/v) and blended with the lipids in a 12:1 

(v/w) ratio. Following the elution from the gel, the lipids were dried under nitrogen (Ponte and 
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De Stefanis 1969). The polar lipids were eluted from the same gel following the nonpolar lipids 

using methanol and all fractions were nitrogen dried (Ponte and De Stefanis 1969).  

Pomeranz et al (1966) used Skellysolve B (hexane) to extact lipids from sixteen different 

varieties of wheat with a goldfish extractor. Specifically, water saturated n-butanol was blended 

with the lipids at varying concentrations with a Stein Mill and evaporated with nitrogen Using 

silica acid column chromatography, the lipids extracted were fractionated into their polar and 

nonpolar components using a chloroform-methanol solution and then quantified with thin layer 

chromatography. This technique was able to distinguish between the polar and nonpolar lipid and 

had good separation between fractions while being able to differentiate between the wheat 

varieties. 

Hoseney et al (1969) determined the influence of solvents on extraction of free and bound 

lipids. The fractions were characterized by extraction in either nonpolar solvents (petroleum 

ether) or polar solvents (water saturated-n-butanol).  Total lipids were extracted with water 

saturated n-butanol using a soxhlet system and then blended using a Stein Mill. The nonpolar 

lipids were separated using silica acid chromatography and the polar lipids underwent two 

repeated extractions in petroleum ether and then with water saturated n-butanol, followed by 

differentiation with thin layer chromatography. From this study it was determined, that although 

water-saturated n-butanol does an effective job in extracting lipids, it is detrimental to loaf 

volume and characteristics of the bread. This solvent has also been shown to interact with other 

components in flour, such as the starch binding, breaking down the gliadin component of the 

gluten, as well as stopping the yeast from producing CO2 (Hoseney et al 1969).  

Further investigation and understanding of extractions techniques for native wheat lipids 

was conducted by Finney et al (1976) who used a series of solvents to determine their effect on 

baking quality. Benzene, chloroform, methanol, water saturated-1-butanol, and 95% ethanol 

were the solvents blended with the flour in a Stein mill at room temperature. After the extraction, 

lipids were re-dissolved in petroleum ether following the solvent evaporation. Another series of 

lipids were blended with solvents independently, in petroleum ether, n-hexane, n-heptane, and 

acetone and then evaporated off using a soxhlet system. Using thin layer chromatography, 

nonpolar and polar lipids were also fractionated with a chloroform-methanol-water solution. The 

nonpolar solvents (n-hexane, n-heptane, and petroleum ether) didn’t remove as many of the total 

lipids from the flour as did the more polar solvents (benzene, chloroform, acetone, water 



    
24 

saturated-1-butanol). Methanol and 95% ethanol proved to be the most effective at removing the 

most polar fractions; however, they didn’t remove as many total lipids as the previously 

mentioned polar solvents did. The nonpolar solvents also weren’t as successful in removing the 

polar lipids (glycolipids and phospholipids) when analyzed with thin layer chromatography. The 

different solvents did have altering affects on the mixing time and loaf volumes. Solvents 

typically cause an increase in mixing time and some don’t allow for optimal dough development 

reducing the overall loaf volumes.  

Chung et al (1977a) continued to determine the optimum method for extractions using 

varying apparatus that can remove the solvents from the flour. This research evaluated the 

differences between two soxhlet systems (a vacuum and a standard system) with different 

solvents to determine the optimum method for extraction. The soxhlet system utilized a 

condenser and a boiling flask to evaporate the solvent with a vacuum hooked up to the system, 

which decreased the pressure within the system. Solvents used in this experiment included 

hexane (Skelly B), benzene, acetone, and 2-propanol. The solvents were added to the flour (500 

grams flour/ 2.8 liters solvent) and this blend was placed in the soxhlet for twenty-four hour 

extraction and then extractions were repeated on the same sample in order to achieve optimum 

system extraction for each solvent.  

For the soxhlet with the vacuum system attached, a larger quantity (1000 grams) of flour 

was used and evaporation was conducted at a pressure of 9-10 inches of Hg. It took double the 

time to extract in the vacuum system than the regular soxhlet system. Following the soxhlet 

methods, the lipids were extracted in petroleum ether for quantification and fractionated using 

silica acid chromatography in methanol and chloroform. It was shown that more lipids could be 

removed from flour by the standard soxhlet method better than the vacuum method and more 

polar lipids were extracted due to the increase in solubility of the solvent. However, there was an 

effect of both solvent and system on extraction. It was found that the vacuum soxhlet was able to 

extract more polar lipids as compared to the increased amount of total lipids that the regular 

soxhlet system extracted. This shows that the more polar solvent (2-propanol) in the vacuum 

soxhlet system would be a better system to remove lipids in further studies.  

Following the evaluation of soxhlet system, Chung et al (1977b) also asscessed the 

techniques of extraction, solvent, and temperature on the removal of lipids from flour and their 

influence on bread making potential in defatted and reconstitution studies. For this study, a water 
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bath with a connected shaker and compared to a regular soxhlet system. The procedure for the 

water bath, which only agitated the samples in a horizontal direction, had the samples in a 1:8 

(w/v) ratio of flour to solvent and was shaken in the water bath for 2 h. In addition, 3 min 

shaking by hand step was used every 15 min to accommodate for the horizontal mechanical 

motion. The solvents that were used again were the same as in the previous study (Chung 1977a) 

and the temperatures of the water bath was adjusted depending on the solvent, ranging between 

30°C and 75°C. Solvents were filtered and removed through a Büchner funnel and evaporated 

off under pressure and stored frozen. The solvents were also blended with flour and subjected to 

evaporation using the standard soxhlet system with changing temperatures based by solvent 

boiling points. These results concluded that solvent solubility, extraction temperature, and 

method used increased the lipid extractability. The soxhlet appeared to have a better overall 

extraction for almost all the solvents, except with the hexanes, but it was determined that the 

shaker method slightly improved crumb grain. However, the soxhlet was more detrimental to 

flours of better baking quality while using the 2-propanol for extraction. This solvent improved 

the quality of the breads made from lower quality flours.  

Greenblatt et al (1995) conducted a series of extraction on free and bound lipids from 

starch and flour by doing a hexane extraction of free lipids (1:10 w/v ratio) and using propan-2-

ol: water solution (90:10) for the bound lipids. The bound lipids were separated into fractions by 

a combination solution (4 ml) of hexane, ethyl acetate, and acetic acid (95:5:0.2) and then 

fractionated using solid-phase extraction (SPE). Noncharged lipids were eluted first followed by 

glycolipids using a solution (5 ml) of tetrahydrofuran, acetonitrile, and propan-2-ol (35:35:30). 

Finally, the phospholipids were washed through the SPE cartridge with a 35:65 ratio of 

acetonitrile and methanol. More recently, Finnie et al (2009) modified this method for the 

extraction of free and bound lipids to extract surface starch lipids from within the bound 

fractions. This was conducted by adding 90:10 ratio of isopropanol: water solution to the final 

stage of the bound lipid extraction technique from starch. Following a vortexing step the samples 

were heated and centrifuged (4,800 x g) and then the solvent was evaporated off with nitrogen 

and then placed in chloroform (1 ml).  
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 1.3. Rheology 

Rheology is the study and measurement of the change in a material due to the application 

of an external force (Belton 2005). Typically, a mechanical force is applied and is measured as 

stress or “force applied per unit of area,” and strain, which is the deformation caused by the 

applied force (Belton 2005). This deformation or strain is already applied at varying rates over 

time and the results can be used to determine rigidity, viscosity, strength, firmness and durability 

of a material (Dobraszczyk and Morgenstern 2003). Rheology is used to provide a better 

understanding of a material’s physical properties, molecular structure, and behavior during the 

processing (Dobraszczyk and Morgenstern 2003). In practice, this type of testing evaluates 

changes in deformations particularly those associated with compression and tension 

(Dobraszczyk and Morgenstern 2003). 

The factors that influence dough’s rheological characteristics include “the properties of 

the continuous matrix, the volume fractions, the shape of fillers, and the adhesion between filler 

and matrix” (Larsson and Eliasson1997). The dough components that are most influential on 

rheological characteristics are also important for maintaining the structural network of the dough 

(Primo-Martin et al 2006). Through the blending and hydration of ingredients and incorporation 

of air, a visco-elastic matrix is formed. Certain rheological testing techniques such as those that 

evaluate large deformation or extensibility provide a better understanding of the dough’s baking 

properties (Dobraszczyk and Salmanowicz 2008). Differences in extensional properties of dough 

typically have been evaluated using the Kieffer dough testing rig while strain response 

evaluation has been done utilizing bubble inflation testing (Dobraszczyk and Salmanowicz 

2008). From these tests, strain hardening and bubble failure were the most important factors for 

evaluating baking and expansion properties of dough. 

The expansion of dough will apply both stress and strain on the gluten air cell walls 

(Sroan et al 2009). There is an initial strain that occurs due to the internal pressures of air cells 

expansion and causes the cell walls to thin in varying directions (Sroan et al 2009). If the stress is 

greater in the thinner cell wall areas than is the strain, the thinner cell wall area will stop 

expanding and this, in-turn, will cause thinning towards the thicker sections of the internal cell 

walls (MacRitchie 2010). This response is strain hardening and can be described as “a localized 

increase in stress in response to the strain; resisting the failure of the gas cell walls” (MacRitchie 

2010). Breakdown of cell walls in dough are resisted by the “elongation or strain hardening and 
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this property can be measured under large deformation biaxial extension” (Dobraszczyk 2004). 

The balance between the stress and strain during the expansion process helps to maintain gas 

cells and structural integrity, which is essential for loaf volume (Sroan et al 2009). Strain 

hardening is influenced by many characteristics of the dough, external energy, and the degree to 

which it is applied (MacRitchie 2010). Finally, strain hardening provides an estimate of cell 

expansion by providing information on the highest amount of inflation that can occur without 

breakdown (Sroan et al 2009). 

 1.4. X-ray Microtomography (XMT) 

The importance of the cellular structure in bread lies with the incorporation and 

distribtuon of air cells. It is the microstructure, which “qualifies the size and the morphology of 

the arrangement of the solid and gaseous phases in a cellular material” (Maire et al 2003). X-ray 

microtomography (XMT) is a non-invasive technique that allows the visualization of cellular 

microstructure, even dense solids, by the reconstruction of 3-D images of a material (Babin et al 

2006).  The technique utilizes an x-ray source that sends x-rays through a sample that has been 

placed in the path of the beam and the energy is either absorbed or transmitted through the 

specimen (Salvo et al 2010).  

The energy that is transmitted is collected by a camera and used to create projections of 

the sample. Typically, many projections are accumulated as the sample is rotated 180-360° in the 

beam. These projections, also known as scans, are used to build the image. Contrasts in the 

image are based on how the x-ray is absorbed at those various locations. To obtain a good 3D 

image, there must be sufficient transmission, a large enough number of projections, and the 

background noise must be corrected by first imaging a flat field without a sample being present 

(Salvo et al 2010). Common measurement determined from 3D imaging include, global density, 

air cell size distribution, and cell wall thickness (Maire et al 2003).  

This technique has been used to evaluate the microstructural properties of bread crumb to 

determine the relationship between air incorporation, expansion, and cell structure. Babin et al 

(2006) looked at the changes in gas cell expansion during proofing. XMT images were taken 

every 10 min over 2 to 3 hours. It was determined that during the initial stages of the proofing, 

air cell growth was unrestricted, cells expanded freely, and average cell wall thickness was 

relatively similar throughout the dough (Babin et al 2006). As proofing continued, cells begin to 
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be closer to one another, making them more susceptible to integration and coalescence creating 

larger cells. During the later stages of proofing, as the cells become more enlarged, cell wall 

thickness changed at different rates (Babin et al 2006).  

Tubin-Orger et al (2012) also evaluated dough with varying ingredients and different 

water levels during the last phase of proofing to determine changes in the internal dough 

structure. The ingredients and water resulted in differences in the amount and size of the bubbles 

during proofing (minimum of 157 min). At this stage, gas cell shape was not spherical due to 

what was believed to be steric hindrance. These results also found that bubbles at the end of 

proofing were more than 75% of the volume within the dough and the voids were linked to one 

another with a cell wall thickness of <5μm. The authors were unable to determine if the surface 

active liquid lamellae separated the cells as they estimated the size of the layer to be smaller than 

the sensitivity of the XMT (<5μm). 

Wang and Bell (2011) utilized microCT XMT scanning to follow the changes that occur 

within the linkages of the dough network over time and how those changes affected 

characteristics of the bread. They found that the breadcrumbs were connected and this 

connection was influenced by a series of single cells that were within the dough matrix and were 

either considered to be opened or closed. Lampignano et al (2013) utilized XMT to look at the 

physical properties of bread made with durum wheat and the impact of yeast content on this 

process. This study observed that yeast was very influential on development and expansion of air 

cell in bread. This follows the idea that cells were either concave in shape based on the “total 

pore structure” signifying connections or convex, which had divided linkage between one 

another (Lampignano et al 2013). The results from these test samples were concave with more 

separated film structures creating thinner cell walls. These authors also correlated cell size to 

bread textural properties and found that smaller cell size required a greater force needed to 

compress the bread slice resulting in bread that was slightly denser in texture. Another study 

showed changes in bread texture following production using XMTand this showed how the air 

cell structure changed over time (Besbes et al 2013). These authors also found that the cell walls 

begin to get thinner as the cells grew during fermentation until they finally ruptured. Baking 

temperatures were more influential on the final air cell size (diameter) rather than the walls 

(Besbes et al 2013).  
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 1.5 Scope of the Study  

 

The influence of native wheat lipids on final baked product performance has been shown 

to be very important for stabilizing gas cells, structural support within the dough, and overall loaf 

volume. The incorporation of air cells during mixing and expansion of these cells during 

fermentation and proofing are critical for quality as they provide the characteristic mouthfeel, 

texture, and crumb grain to the loaf. It has been thoroughly studied and recognized that the 

gluten-starch matrix is the main backbone and structural support of the dough. However, during 

the later stages of proofing and the beginning of baking, the dough extends leaving gaps where 

gas cells can migrate towards one another, making larger cells. Previous research has determined 

that amphiphilic compounds such as polar lipids are able to move to the interface and stabilize 

gas cells where the gluten-starch matrix has broken down. The molecular structure of polar lipids 

can be oriented to form compressed monolayers, which allow for alignment between the gas 

cells and the interface. However, the influence of polar lipids on dough rheological properties 

and changes in gas cell size, stability, and distribution are not fully understood.  

 1.5.1. Objectives 

To better understand lipid functionality, the objectives of this study were to evaluate the 

influence of total and fractionated varieties of native wheat lipids and concentration on the 

rheological properties of dough and on the microstructure of bread. Testing was conducted using 

total nonstarch native wheat lipids and total nonstarch lipids that were fractionated into nonpolar 

and polar groups. In addition, free and bound lipid fractions (containing combinations of both 

nonpolar and polar lipids) were also evaluated. Lipids were added back in at the level in which  

they were extracted or at varying concentrations.  

 1.5.2. Chapter 2-Extraction and Fractionation of Native Wheat Lipids 

Chapter 2 describes the methodology that was used to conduct the extraction and 

fractionation of native wheat lipids from straight grade flour. In addition, it explains the analysis 

procedure and quantitive results for the type and concentrations of lipids found within each 

fractionated group extracted.  
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 1.5.3. Chapter 3-The Influence of Native Wheat Lipid Fractions on the Rheological 

Properties of Dough and Gas Cell Structure and Distribution in Bread 

In Chapter 3, the effects of native wheat lipids on the rheological properties of dough and 

the gas cell size and distribution of bread were tested.  The visco-elastic properties of dough 

were evaluated by small and large deformation testing on flours containing nonpolar and polar 

lipids fraction or total nonstarch lipids. In addition, bread microstructure was assessed through 

C-Cell imaging and by x-ray microtomography (XMT), which was performed at two different 

levels (macro-whole loaf and micro-center section) (Figure 1.4). For XMT testing, nonpolar 

lipids were either added back to flour at the same concentration as they were extracted or at 

varying concentrations based on a predetermined standard.  Polar lipids were added to flour 

either as fractionated glycolipids or phospholipids based on the intial level found naturally in the 

flour or as unfractionated polar lipids at different concentrations based on a preset amount. Table 

1.1 shows an overview of the research for Chapters 3 and 4. For more specifics on the 

experimental design please refer to each chapter.  

 

 

Figure 1.4. Multi-scale analysis of the microstructure of bread 
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 1.5.4. Chapter 4-The Effects of Varying Concentrations of Wheat Lipids Fractions 

on the Microstructure of Bread 

In chapter 4, total nonstarch lipids (reconstituted), free, bound, nonpolar, and polar lipids 

were extracted and added back to flour at increased levels based on predetermined standards of 

each lipid type. The microstructure, specifically, changes in volume, gas cell size, and 

distribution were evaluated using the C-Cell and XMT (micro) to determine how the varying 

lipid concentrations influenced changes in the bread. 
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Table 1.1. Experimental approach for Chapters 3 and 4 

Section Variation Lipid Type 
Dough development Rheology Analytical 

baking 
C-Cell 

X-ray 

Microtomography 

Mixograph Mixolab Small Large Macro Micro 

C
h
ap

te
r 

3
 

Type 

Control x x x x x x x x 

Defatted x x x x x x  x 

Total lipids  x       

Nonpolar   x x x x x  

Glycolipids   x x x x x  

Phospholipids   x x x x x  

Nonpolar 

0.6%-2.5% 
    x x  x 

Polar 

0.2%-0.6% 
    x x  x 

C
h
ap

te
r 

4
 

Amount 

Control x    x x  x 

Defatted x    x x  x 

Reconstituted 

1.4%, 2.8% 
    x x  x 

Free 

0.8%-2.5% 
    x x  x 

Bound 

0.6%-2.5% 
    x x  x 

Nonpolar 

0.6%-2.5% 
    x x  x 

Polar 

0.2%-0.6% 
    x x  x 
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Chapter 2 - Extraction and Fractionation of Native Wheat lipids  

 2.1 Introduction  

Lipids found naturally in wheat make up a very small fraction (2-3%) of the overall 

composition of the kernel (Chung et al 2009; Finnie et al 2009). Wheat lipids can be divided into 

various classes based on the extraction solvent polarity or by location within the wheat kernel 

(germ, aleurone, and endosperm) (Chung et al 2009). For many applications, specifically those 

related to baking, lipids found in endosperm (flour) that remains after milling, have been shown 

to play an important role in stabilizing gas cells within the dough and improving loaf volume by 

providing a secondary support to the gluten-starch matrix (MacRitchie and Gras 1973; Sroan et 

al 2009). The endosperm lipids can be broken down into either total nonstarch lipids or starch 

lipids and are differentiated by their linkage to the starch granule (Chung et al 2009). Nonstarch 

lipids do not require gelatinization of starch for extraction. On the other hand; starch lipids do 

require granular swelling to be extracted (Chung et al 2009; Finnie et al 2009).  

Nonstarch lipids can further be divided into free and bound lipids based on solvent 

polarity used for extraction (Chung et al 2009). Free lipids can be extracted with nonpolar 

solvents (hexane, ether) and bound lipids using polar solvents (water-saturated butanol, 

isopropanol-water, chloroform-methanol) (Chung et al 2009; Finnie et al 2009). The free lipids 

are separated into either polar (PL) or nonpolar lipids (NPL), which consist of glycolipids and 

phospholipids or fatty acids, triacylglycerides, and sterol esters, respectively (Chung et al 2009). 

The bound lipids are predominately glycolipids and phospholipids (Finnie et al 2009). It is well 

known that the polar lipids offer the most functionality and greatest benefit to bakery products 

due to their ability to move to the gas cell interface because of their surface-active properties 

(MacRitchie and Gras 1973; Gan et al 1990). The objective of this work was to extract total 

nonstarch, free, and bound lipids from flour and to fractionate nonstarch lipids into nonpolar 

(NPL), glycolipids (GL), and phospholipids (PHL) for lipid classification and use in subsequent 

dough and baking studies.  
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 2.2. Materials and Methods  

 2.2.1. Flour  

Kansas grown, hard red winter wheat was milled into straight grade flour at the Hal Ross 

Flour Mill at Kansas State University (Manhattan, KS). The flour was produced at 73% 

extraction with a protein content of 10.36%, ash of 0.55%, and starch damage of 7.1% (AACCI 

Method 76-31.01) (AACCI 2014). Following milling, samples were collected into 2.3 kg (50 lb) 

bags and placed into -18°C freezer storage until utilized for analysis. 

 2.2.2. Defatting and reconstitution of lipids from flour 

The native lipids found in wheat were removed from flour in order to determine 

functionality during the bread-making process. Using a series of solvents, the lipids were 

removed and added back at concentrations that were found through previous studies to be the 

standard amount of lipids found within the wheat flour (Chung et al 2009). By removing and re-

adding the lipids to the flour, a better understanding was determined of which fractions are the 

most beneficial for loaf volume and overall bread quality and what levels have the greatest 

impact on the bread.  

 2.2.2.1. Non-starch total lipid extraction 

Total lipid extraction was conducted following the method of MacRitchie and Gras 

(1973). This technique utilized batch extraction of 200 g of flour mixed with 400 mL of 

chloroform (Fisher Scientific-Pittsburgh, PA) using a stir bar on a stir plate at 950 rpm for 3 min. 

The samples were filtered through a Büchner funnel with Whatman #1 paper (Fisher Scientific, 

Pittsburgh, PA) and the procedure was repeated 2X. The resulting lipid/chloroform solution was 

transferred to a round-bottom flask and the solvent removed by a Rotavaporator (R-114, Buchi 

Labortechnik AG, Switzerland) at 50°C. Following solvent extraction, the sample was re-

suspended in 11 mL of chloroform and transferred to a 16 mL vial. The solvent was evaporated 

by drying with nitrogen, weighed, and stored under N2 at -15°C until further testing. Extractions 

and evaporations were conducted at room temperature (25°C ± 5). The extracted flour was 

spread onto parchment paper and left overnight at room temperature to allow for any remaining 

solvent to evaporate.  
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 2.2.2.2. Free lipid extraction 

Free lipids were extracted following the method of Greenblatt et al (1995) with a few 

modifications to accommodate a different sample size. Seventeen gram aliquots of flour were 

mixed with 170 mL hexanes (1:10 w/v) each (Fisher Scientific, Pittsburgh, PA) in glass 

centrifuge bottles and gently agitated on a shaker (Shaker 35, Labnet International, Inc., Edison, 

NJ) at speed 6.5 for 30 min. Samples where then centrifuged (CU-5000, Damon/IEC Division, 

ThermoFisher Scientific, Waltham, MA) for 5 min at 38000 rpm and filtered through Whatman 

#1 paper (Fisher Scientific, Pittsburgh, PA) with a Büchner funnel. The lipid/hexanes solution 

was transferred to a round-bottom flask and the solvent evaporated off at 50°C by a 

Rotavaporator (R-114, Buchi Labortechnik AG, Switzerland). The samples were re-suspended in 

11 mL of chloroform, transferred to a 12 mL vial, and dried using N2. Samples were frozen 

under N2 at -15°C until used for further testing. The flour (which now only contained bound 

lipids) was allowed to dry overnight at room temperature and then used in the bound lipid 

extraction.  

 2.2.2.3. Bound lipid extraction  

Bound lipids were removed from the flour following Greenblatt et al (1995) with changes 

to accommodate differences in sample size. Lipids were removed in a 90:10 2-propanol-water 

solution (Fisher Scientific, Pittsburgh, PA) at 1:6 ratio of sample to solvent. Seven grams of flour 

was added to 42 mL of solvent and gently agitated on a shaker (Shaker 35, Labnet International, 

Inc., Edison, NJ) (speed 6.5) for 15 min then centrifuged (Sorvall Legend X1R, ThermoFisher 

Scientific, Waltham, MA) for 15 min at 10,000 x g. After centrifugation, solvent-lipid solution 

(supernatant) was filtered through Whatman #1 paper (Fisher Scientific, Pittsburgh, PA) with a 

Büchner funnel and the solvent evaporated at 57°C using a Rotavaporator (R-114, Buchi 

Labortechnik AG, Switzerland).  The bound lipids were re-suspended in 11 mL of chloroform 

and transferred to a 12 mL vial, nitrogen flushed and frozen under N2 at -15°C until needed for 

further testing.  

 2.2.2.4. Lipid fractionation: nonpolar, glycolipids, and phospholipids 

Total lipids (see “total lipids extraction”) were fractionated into nonpolar, glycolipids, 

and phospholipids, using solid-phase extractions (SPE) and solvents of different polarities. The 

method was adapted from Yasui (2012) with changes based on the desired sample size. All lipids 
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were fractionated using a vacuum manifold (Phenomonex, Torrance, CA) with attached silica 

based cartridges (2g/12mL) (Phenomenex, Torrance, CA) as the separating medium. The 

manifold’s vacuum pressure was set at 10 inches Hg (± 5 inches Hg). All cartridges were first 

conditioned with 12 mL of methanol and 2 mL of chloroform and those solvents were discarded.  

 2.2.2.4.1. Nonpolar lipids (NPL) 

Total lipid samples were removed from the freezer and allowed to come to room 

temperature (15 min) before fractionation. Two milliliters of chloroform was added to each 

sample and then vortexed (Fisher Vortex Genie 2, Fisher Scientific, Pittsburgh, PA) to re-

solubilize the nitrogen-dried lipids. Sample vials (12 mL) were placed under each silica cartridge 

(4 cartridges for each lipid sample) and the lipid/chloroform solution added to the cartridges in 1 

mL increments until all of the lipid-solvent solution had been added. Nonpolar lipids were eluted 

using 4 mL of chloroform-acetone solution (4:1 v/v) (Fisher Scientific, Pittsburgh, PA) added to 

each individual cartridge. The glycolipids and phospholipids were retained on the stationary 

phase. The eluents, which were deep yellow in color, were nitrogen dried and frozen under N2 at 

-15°C.  

 2.2.2.4.2. Glycolipids (GL) 

Following nonpolar lipid fractionation, glycolipids were eluted using 4 mL of acetone-

methanol solution (9:1 v/v). The eluents were nitrogen dried and frozen under N2 at -15°C. These 

samples were lighter yellow in color and contained most of the carotenoids that were in the 

cartridge.  

 2.2.2.4.3. Phospholipids (PHL) 

Phospholipids remaining on the stationary phase were eluted using 5 mL of methanol 

with eluents collected into 8 mL vials, nitrogen dried, and frozen under N2 at -15°C. These 

samples no longer contained carotenoids and were snowy white when dried.  

 2.2.3. Lipid Profiling 

Compositional analysis of each lipid fraction was analyzed by tandem mass spectroscopy 

at the Kansas Lipidomics Research Center Analytical Lab at Kansas State University. Polar lipid 

classification within each lipid fraction was conducted following the procedure by Xiao et al 

(2010). Each lipid fraction was extracted independently with five replicates of each lipid type 
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tested. Samples were combined and diluted onsite into a dilution series of: 5-10mg/mL for each 

sample fraction analyzed.   

 2.3. Results  

The same flour was used for all lipid extractions. A respresentative sample of that flour 

was separated, not used for the lipid extractions, and was labeled as the “control.” Total lipid 

extraction was performed on the flour to provide “defatted” flour, which contained no nonstarch 

total lipids. This was used for reconstitution for later studies. Table 2.1 shows the polar lipid 

composition of each lipid fraction extracted from 200 g of flour that was later used as the 

defatted flour. The polar lipids quantified in the analysis included: monogalactosyldiglyceride 

(MGDG), digalactosyldiglyceride (DGDG), phosphatidylglycerols (PG), 

lysophosphatidylglycerols (LysoPG), lysophosphatidylcholines (LysoPC), 

lysophosphatidylethanolamines (LysoPE), phosphatidylcholines (PC), 

phosphatidylethanolamines (PE), phosphatidylinositols (PI), phosphatidylserines (PS), and 

phosphatidic acid (PA)  

The total lipid fraction contained the highest content of total polar lipids (0.24g/200g) 

(0.12%) followed by GL with 0.06 g/200 g (0.03%). Specifically, the polar lipids, MGDG and 

DGDG, were found in the highest concentrations across all lipid fractions tested with both total 

lipids and glycolipid fractions having the highest of both levels of these polar lipids. Because 

NPL, PHL, and GL were separated initially from the total lipids through SPE, recovery of the 

polar lipids, MGDG and DGDG, were the highest in both total and GL lipid fractions. MGDG 

levels were greater than all lipid groups evaluated with the highest recovery for the total lipids 

(0.12g/200g), followed by bound (0.03g/200g), and then the GL fraction at 0.02g/200g. Both 

PHL (0.01g/200g) and free (0.01g/200g) had the lowest quantity of MGDG. DGDG was also 

extracted in large amounts from this flour with the highest concentration being in the total lipid 

extraction at 0.09g/200g. In the GL fraction, it was found to be at 0.03 g/200g and at 0.01g/200g 

or less in the other independent lipid fractions extracted. In addition, the phospholipids, 

particularly PC (0.02g/200g), were present at higher concentrations in the total lipid fraction 

compared to other phospholipid groups. Overall, the polar lipids within each extracted lipid 

groups were found in relatively small amounts (levels of thousandths or ten-thousandths of a 



    
45 

gram), but both phospholipids and glycolipids were present within all fractions tested. For 

further classification of the polar groups found in each fraction refer to Appendix B.  

Finnie et al (2009) determined that the galactolipids are predominantly located on the 

exterior surface of the starch granule and phospholipids are more concencentrated inside the 

starch granule. Also, polar lipids in the total lipid fraction (combination of both free and bound) 

are DGDG, MGDG, PC, and LPC (Finnie et al 2009). The starch lipids mainly consist of 

phospholipids with the most common being LPC, LPE, LPG, with LPC and LPE having the 

highest abundance (Finnie et al 2009; Pauly et al 2013). Even though the recovery was in much 

smaller quantities, the results shown here were comparable to those found during lipid profiling 

conducted by Finnie et al 2009. The process of milling typically causes polar lipids naturally 

found in the endosperm and nonpolar lipids from the aleurone and germ to be blended into the 

flour (Pauly et al 2013).  

 2.4 Conclusion 

The procedures conducted in this chapter for lipid extraction were successful in removing 

and separating total nonstarch lipids, free, bound, NPL, GL, and PHL lipid fractions from the 

tested flour sample. The recovery of polar lipids in the tested flour was lower for all fractions 

except in the total nonstarch lipids and the GL lipids fractions in which the highest polar 

fractions were MGDG and DGDG. Phospholipids were also recovered at lower concentrations 

than glycolipids in the sample with the highest concentrations of PC. Overall, these extraction 

techniques recovered polar lipids and provided defatted flour, which was used for baking in the 

following chapters.  
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Table 2.1 Mean composition and levels of polar lipids found in control flour 

Lipid 

Typea 
Lipid Fractions 

 Total Lipids Bound Free PHL GL 

 g/200gb % g/200gb % g/200gb % g/200gb % g/200gb % 

MGDG 1.20E-01 6.00E-02 3.00E-02 1.00E-02 1.00E-02 6.37E-03 1.00E-02 6.5E-03 2.00E-02 1.00E-02 

DGDG 9.00E-02 5.00E-02 1.00E-02 5.50E-03 1.00E-02 5.54E-03 1.39E-03 6.95E-04 3.00E-02 2.00E-02 

PG 3.98E-04 1.99E-04 9.41E-05 4.71E-05 3. 90E-05 1.95E-05 1.92E-05 9.58E-06 1.20E-05 6.00E-06 

LPG 2.03E-04 1.02E-04 7.77E-05 3.88E-05 3.33E-05 1.66E-05 3.79E-06 1.90E-06 1.55E-05 7.76E-06 

LPC 1.60E-03 8.00E-04 8.81E-04 4.40E-04 2.31E-04 1.15E-04 6.22E-05 3.11E-05 2.78E-07 1.39E-07 

LPE 1.37E-04 6.85E-05 6.32E-05 3.16E-05 1.94E-05 9.71E-06 1.67E-05 8.35E-06 5.47E-07 2.74E-07 

PC 2.00E-02 1.00E-02 4.14E-03 2.07E-03 2.38E-03 1.19E-03 2.08E-03 1.04E-03 6.91E-06 3.46E-06 

PE 1.35E-03 6.74E-04 3.47E-04 1.73E-04 1.62E-04 8.11E-05 2.00E-04 9.99E-05 9.93E-06 4.97E-06 

PI 6.67E-04 3.33E-04 6.60E-04 3.30E-04 1.47E-04 7.36E-05 2.10E-05 1.05E-05 2.41E-05 1.20E-05 

PS 2.37E-04 1.18E-04 3.67E-05 1.84E-05 5.27E-05 2.64E-05 4.68E-06 2.34E-06 4.45E-06 2.22E-06 

PA 1.97E-03 9.86E-04 5.44E-04 2.72E-04 2.65E-04 1.33E-04 1.33E-05 6.67E-06 4.29E-05 2.14E-05 

Total PL 

Lipids 

2.40E-01 1.20E-01 4.00E-02 2.00E-02 3.00E-02 1.00E-02 2.00E-02 1.00E-02 6.00E-02 3.00E-02 

aMonogalactosyldiglyceride (MGDG), digalactosyldiglyceride (DGDG), phosphatidylglycerols (PG), Lysophosphatidylglycerols 

(LPG), Lysophosphatidylcholines (LPC), Lysophosphatidylethanolamines (LPE), phosphatidylcholines (PC), 

phosphatidylethanolamines (PE), phosphatidylinositols (PI), phosphatidylserines (PS), and phosphatidic acid (PA)   
b Amounts (g) of polar lipids found in each lipid fraction extracted from 200 g of flour (n=25)  
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Chapter 3 - The Influence of Native Wheat Lipid Fractions on the 

Rheological Properties of Dough and Gas Cell Structure and 

Distribution in Bread 

 3.1. Introduction  

The dough network is a very complex system consisting of many components. Together, 

they allow for the entraptment of air cells during mixing and expansion of these cells during 

fermentation. Within this system, a combination of proteins and starch form the gluten-starch 

matrix or the backbone structure, and two other internal phases; a gas phase filled with gas cells 

and a liquid phase that surrounds these cells (Turbin-Orger et al 2015). Within these phases, 

smaller molecules such as arabinoxylans, pentosans, and lipids containing surface-active 

functional groups are able to align around the cells to help maintain their stability over time 

(Turbin-Orger et al 2015). Because of the expansion and growth of these gas cells, especially 

during the later stages of proofing and the beginning of baking, the gluten-starch matrix 

weakens, leaving gaps in the structure where gas cells can migrate towards one another (Gan et 

al 1990). A secondary support system, liquid lamellae comprised of amphiphilic molecules such 

as lipids, helps the gas cells to stay in place (Sroan et al 2009; Sroan and MacRitchie 2009). Gas 

cell stability is very important as it is essential for the development of the dough microstructure, 

which is the basis for the crumb, texture, and sensorial properties of bread.  

The roles of wheat lipids in bread-baking have been thoroughly studied and evaluated as 

they influence dough and the properties of bread (Hoseney et al 1969; Hoseney et al 1970; 

Hoseney et al 1972; MacRitchie and Gras 1973; Chung and Tsen 1975; De Stefanis and Ponte, 

Jr. 1976; Chung et al 1982; Ohm and Chung 2002; Sroan et al 2009; Gerits et al 2014). The 

classification of wheat endosperm lipids is based on solvent polarity used for extraction (Chung 

et al 2009). Specifically, nonstarch lipids are those that are not associated with the starch granule 

and do not require starch gelatinization for extraction (Finnie et al 2009). In contrast, starch 

lipids are tightly linked to the starch granule. The starch must undergo gelatinization in order to 

extract them (Finnie et al 2009). The nonstarch lipids can be broken down into free and bound 

lipids, where both contain a combination of polar and nonpolar lipid types (Chung et al 2009). It 
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has been recognized that polar lipids have a positive impact on loaf volume as compared to 

nonpolar lipids, which are damaging (MacRitchie and Gras 1973). Free polar lipids have the 

greatest effect on the loaf volume and air cell stabilization while a smaller influence is seen with 

the addition of bound polar lipids (Hoseney et al 1969). Nonpolar lipids have an overall negative 

effect on bread, causing a decrease in volume and quality of the crumb (Daftary et al 1968; 

MacRitchie 1977). Nonpolar lipids can be found only in the “bulk phase” of the dough and 

provide no influence at the interface (Li et al 2004). 

Polar lipids, specifically glycolipids and phospholipids, stabilize air/gas cells due to their 

amphiphilic functional groups (consisting of both water-loving and water-hating components). 

Their structure can be oriented into a compressed monolayer at the interface (Sroan and 

MacRitchie 2009). This provides the additional layer, or lamella, that helps to control and 

prevent gas cell migration due to the loss or deterioration of the backbone structure (Sroan et al 

2009; Gerits et al 2014). Once some of the gluten matrix is displaced due to continued 

expansion, polar lipids are able to move into the interface and provide support even when there 

are high internal pressures in the dough during development (Paternotte et al 1994). The polar 

lipids are the most beneficial in improving and maintaining loaf volumes because of their higher 

melting points and their ability to withstand higher pressures without breakdown as compared to 

proteins (Pomeranz et al 1966; MacRitchie and Gras 1973; Keller et al 1997). However, 

condensed monolayers can be converted into detrimental expanded monolayers by high 

temperatures, the addition of higher levels of unsaturation to the lipid molecule, and by 

decreasing the overall chain length (MacRitchie 2010). The level of added polar lipids can also 

negatively affect loaf volume, as too much or too little can have a competing effect between one 

another or proteins (MacRitchie 1977).  

The visco-elastic wheat flour dough is unique in that it can be extended allowing for gas 

cell expansion. This is important for final loaf quality and the interior crumb grain (Tronsmo et 

al 2003: Salvador et al 2006). The dough network’s properties are dependent on changes in the 

structure and orientation on a molecular level and this, in turn, is linked to the macroscopic 

properties (Jekle and Beker 2015). The connection between the micro and macro structure of 

dough can provide a better understanding of viscoelastic properties and the internal gas cell size 

and distribution of dough and bread (Jekle and Beker 2015).  
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The basis for the rheological properties of dough is the creation of bonds either covalent 

or noncovalent (Skerritt et al 1999). More specifically, it is the connections between the gluten 

proteins, gliadin and glutenin, and starch that are the main contributors to dough structure as well 

as the changes in its viscoelastic properties (Miller and Hoseney 1999; Gómez et al 2011). This 

interaction is highly dependent on mixing and the hydration of both the proteins and starch 

granules (Jekle and Beker 2015). During mixing, the high molecular weight proteins contained in 

the gluten change in concentration and orientation and starch granules become imbedded into the 

newly formed matrix (Skerritt et al 1999; Tronsmo et al 2003). Mixing causes lipids to bind to 

the gluten proteins forming “lipoprotein complexes.” Specifically lipids containing galactosyl 

groups (monogalactosyl diglyceride and digalactosyl diglyceride) become linked either by 

hydrophobic or hydrophilic interactions (Hoseney et al 1970). In the end, the structural basis for 

dough is a combination of protein-protein, starch-starch, starch-protein, with contributions from 

minor components such as the water-soluble fractions and lipids (Tronsmo et al 2003).  

Sroan et al (2009) evaluated the presence of native wheat lipids as “surface active 

compounds” and their influence on dough rheology. This work found that the lipids didn’t affect 

the dough’s bulk rheological properties, but confirmed their role in the formation of the liquid 

lamellae and stabilizing air cells over time. Due to the lipid’s inability to influence cell 

elongation and changes in biaxial rheology, the total, polar, and nonpolar fractions had no affect 

on the overall rheological properties of the gluten-starch matrix (Sroan and MacRitchie 2009). 

Other researchers found that lipids on the surface of starch affected the interactions between the 

starch and gluten in wheat dough (Miller and Hoseney 1999). 

Many studies have been conducted on the rheological properties of dough and how both 

small and large deformation affect the dough’s visco-elastic characteristics (Smith et al 1970; 

Dreese et al 1988; Weipert 1990; Campos et al 1997; Miller and Hoseney 1999; Tronsmo et al 

2003; Watanabe et al 2003; Agyare et al 2004; Silwinski et al 2004a; Silwinski 2004b; 

Georgopoulos et al 2006; Salvador et al 2006). Small and large deformation rheological testing 

measures the changes in both the microstructure and macrostructure of dough (Tronsmo et al 

2003). Small deformation tests can provide a better understanding of the interactions between 

compounds such as starch and protein or protein and protein and how these connections affect 

the viscous and elastic properties (Tronsmo et al 2003). This testing utilizes the application of 

small amounts of strain and stress, but is unique in that it maintains the integrity of the sample 
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(Weipert 1990). Because the development of dough is dependent on moisture, work energy, 

temperature, flour quality and composition, and ingredients, understanding functionality at the 

microstructure level is essential (Campos et al 1997). Both the storage (G’) and loss modulus 

(G”) can be determined from small deformation testing, providing a better understanding of the 

elastic and viscous components of dough (Agyare et al 2004). Much work conducted on wheat 

flour properties have illustrated that for wheat dough the storage modulus (G’) is larger than the 

G” (loss modulus) indicating that dough behavior is more elastic in nature than a flowing liquid 

(Létang et al 1999).  

 Large deformation testing shows the changes that occur during the processing steps of 

dough development reflecting how applied work (energy) affects dough structure (Sliwinski et al 

2004). This testing evaluates changes based on dough stretching and elongation as opposed to 

shear stress and strain (Dobraszczyk and Roberts 1994). The technique provides a better 

representation of what differences in fermentation and dough processing can do to the structural 

integrity of dough. These test showed that glutenin exhibits more elastic surface properties than 

does gliadin (Dobraszczyk and Roberts 1994; Li et al 2004). 

 Also in larger deformation analysis, measurements of strain hardening helps to provide a 

better understanding of the dough’s ability to hold air cells (MacRitchie 2010). Specifically, 

strain hardening is thought to occur due to the presence of “entanglements” created from gluten 

polymers that have specific molecular weight distributions that form secure linkages between 

one another (Sroan et al 2009). As the gas cells continue to grow and expand, the outer cell wall 

layer of the structural matrix begin to stretch to the point of excess thinning until a breakdown 

occurs allowing for gas cell movement (MacRitchie 2010). However, if there is equal change 

between the stress and the strain of the dough matrix at the thinned point, then this part becomes 

stabilized and expansion of the gas cells continue around the thicker part of wall (MacRitchie 

2010). Strain hardening is influenced by the make-up of the dough and the amount and rate of 

the force applied (MacRitchie 2010). Glutenin has been shown to be the biggest contributors to 

strain hardening because it “can form entanglements” as compared to gliadin, demonstrating 

more viscous behavior (Li et al 2004).  

The Mixolab measures mixing, pasting, and enzymatic activity of complex systems under 

specified temperature constraints and provides a basis for understanding visco-elastic properties 

of dough (Bonet et al 2006). Water and flour are blended and kneaded together by two mixing 
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blades and real time torque measurments can be determined at each stage of an applied 

temperature ramp (Bonet et al 2006). This method helps to provide analysis of chemical and 

physical changes that occur within the dough (Bonet et al 2006). 

In addition to understanding the function of lipid addition on dough properties, the 

evaluation of how these compounds influence air cell distribution and stability in the final 

product also is very important. Most techniques used to view the internal structure of a sample 

are limited to their harsh sample preparation and invasive methodology (Babin et al 2006). C-

Cell imaging and x-ray microtomography (non-invasive) are two techniques that can be utilized 

to determine varying properties of the structure within an aerated system (Trinh et al 2013).  C-

Cell imaging utilizes two-dimensional (2D) analysis by capturing an image of the sample with a 

camera and this equipment can provide information on “cell wall thickness, size, position, and 

elongation of the cells” (Whitworth et al 2005). This view provides measurements of the sample 

on macro scale. X-ray microtomography can provide a better internal view of the sample through 

the use of 3-D image analysis (Moreno-Atanasio et al 2010). Samples are scanned into slices 

through the absorption of x-rays and the image slices are reconstructed into a 3-D image 

(Moreno-Atanasio et al 2010). This particular technique provides a microscopic view of the 

interior structure of an aerated product and allows for measurement of gas cell thickness, 

distribution, and size (Moreno-Atanasio et al 2010). Both of these techniques have been widely 

used as methods for viewing parameters related to gas cells in aerated food products (Falcone et 

al 2004; Falcone et al 2005; Babin et al 2006; Lodi and Vodovotz 2008; Alvarez-Jubete et al 

2010; Moreno-Atanasio et al 2010; Besbes et al 2013; Cafarelli et al 2014a; Van Dyck et al 

2014; Villarino et al 2014).   

Native wheat lipids are important for air incorporation and stability, both of which 

influence dough rheological properties and final product quality (Gertis et al 2014). The 

preservation of gas cells allows for expansion of the dough and is essential for crumb 

development and overall loaf volume (Gerits et al 2014). However, the effects of lipids on the 

rheological properties of dough aren’t fully understood. To better understand wheat lipid 

functionality, especially on dough rheology and microstructure, the objectives of this study were 

to evaluate the effects of wheat lipid fractions (nonpolar, phospholipids, and glycolipids) on the 

rheological properties of dough using small deformation (dynamic oscillatory) and large 
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deformation (Kieffer Rig) testing and on the gas cell structure and distribution of bread through 

C-Cell imaging and x-ray microtomograhpy.  

 3.2. Materials and Methods  

 3.2.1. Flour  

Kansas grown, hard red winter wheat was milled into straight grade flour at the Hal Ross 

Flour Mill at Kansas State University (Manhattan, KS). The flour was produced at 73% 

extraction with a protein content of 10.36%, ash of 0.55%, and starch damage of 7.1% (AACCI 

Method 76-31.01) (AACCI 2014). Following milling, samples were collected into 2.3 kg (50 lb) 

bags and placed into -18°C freezer storage until utilized for analysis.  

 3.2.2. Defatting and reconstitution of lipids from flour 

For the methodology and techniques for the defatting and reconsitituion of the varying 

lipid types from flour please refer to Chapter 2.  

 3.2.3. Physical and chemical properties of wheat flour 

 3.2.3.1. Moisture analysis 

Moisture analysis was conducted in triplicate on both control and defatted flours 

following AACC method 44-15.02 (AACCI 1999).  

 3.2.3.2. Mixograph 

Flour absorption and mix time for the control and defatted flours were determined using 

the 35 g mixograph (AACCI Method 54-40.02) and Mixosmart software (National 

Manufacturing, Lincoln, NE) (AACCI 1999). The control flour was measured once at 59%, 60%, 

60.5%, and 62% absorption and the defatted flour was assessed once at 59%, 62%, 64%, and 

65% absorption (See Appendix A). Based on the mixograph curves, absorption and optimum 

mix time was evaluated during a practice bake to determine mixing times and water absorptions 

that would produce the best loaves for each flour treatment. The results from the practice bake 

were used for the actual treatment baking.  
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 3.2.4. Mixolab  

Mixolab (Chopin Technologies, Villeneuve-la-Garenne, France) analysis was conducted 

on control, defatted, and two reconstituded flours containing level variations (50% and 100%) of 

total lipid addition added to 100 g and 200 g defatted flour. The Mixolab testing was performed 

as a one-way statistical treatment structure with 4 levels (control, 0%, 50% and 100%). of lipid 

treatments. All samples were evaluated without the addition of yeast and four replicates of each 

tested treatments were evaluated. The procedure followed the Chopin+ protocol consisting of an 

initial mixing step where flour and water were blended at a constant temperature (30°C) followed 

by an increasing temperature until 90°C and then cooling to 50°C. The temperature ramp was set 

at 4°C /min and broken into 4 stages starting with dough development (8 min), protein reduction 

and starch gelatinization (15 min), combined time for setback (7 min) and starch gelling (10 

min), and cooling (5 min). The software analysis was set at a 14% moisture basis and the test 

was conducted for the control (8.9% moisture content) at 57.8% absorption and the defatted 

samples (9.3% moisture content) were tested at 57.7% absorption. 

 3.2.5. Dough development 

Dough for rheological testing was made from flour containing various lipid fractions 

following AACCI method 10-10.03 (AACCI 1999). Modification to the method included the 

exclusion of shortening and treatment sampling of the dough was done prior to the bake step. 

Pup-loaves (100 g) were made from control flour containing all native lipids, and from defatted 

flours consisting of nonpolar, phospholipids, and glycolipids fractions. Flours were based on 

14% moisture and flour weights for each treatment loaf were determined following AACCI 

method 82-23.01(AACCI 1999). Flour absorptions and mixing times were optimized using the 

mixograph results and during the practice bake prior to doing treatment testing. The dough was 

fermented and proofed in a fermentation cabinet (National Manufacturing, Lincoln, NE) at 86°F 

(± 5°F) at a 92-95% relative humidity. The dough was fermented for 90 min with a punching 

step at 52 min and at 77 min using a double rolled sheeter (National Manufacturing, Lincoln, 

NE). Following the fermentation, dough was rounded using a moulder (National Manufacturing, 

Lincoln, NE), panned, and proofed for 39 min.  
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 3.2.6. Dough rheology (small amplitude oscillatory measurements) 

The visco-elastic properties of control, defatted, and defatted flour samples containing 

NPL, GL, and PHL were analyzed using a StressTech HR Rheometer (ATS RheoSystems, 

Bordentown, NJ) where stress, frequency and temperature sweep testing was performed. Dough 

samples (100 g) were made following the AACCI method 10-10.03 (Please refer to section 3.2.9 

for full procedure) without shortening. The control dough was optimized for absorption and mix 

time using the mixograph and through a practice bake to determine optimum levels (see section 

3.2.5). The control dough contained 60.5% absorption and was mixed for 3 min 30 sec and the 

defatted dough was mixed at 64% absorption for 4 min. Samples were evaluated “after mixing,” 

which didn’t include fermentation or proofing steps. The “proofed” samples underwent 

fermentation for 90 min followed by panning then proofing for 39 min. Treatments were 

prepared and had to be transferred to the rheometer. The after mixing samples were carried in a 

steel bowl covered with aluminum foil and the proofed dough were panned and brought to the 

rheometer also covered in aluminum foil. Small pieces (2.5 ± 0.5 g) of dough were taken from 

the larger sample following mixing then pressed biaxially in a pasta press (0.5 cm) (Tipo Lusso 

Sp 150, Imperia Titania, Torino, Italy). For the proofed dough, loaves were cut 2.5 cm deep 

using a baker’s knife and a 2.5 g (±0.5 g) piece was removed from the center and pressed 

biaxially using the pasta press. Dough samples were put onto the lower plate of the rheometer, 

covered with two metal plates to minimize drying, and allowed to equilibrate and relax for 5 min 

before any testing was conducted. Stress and frequency sweep testing were setup as a completely 

randomized 5 x 2 factoral design with 5 levels of lipid treatments by 2 processing treatments. 

The temperature sweep testing was conducted as a one-way statistical treatment structure with 5 

levels of lipid treatments.  

 3.2.6.1. Stress sweep testing -linear visco-elastic region (LVR) 

The linear visco-elastic region (LVR) was first determined for all treatments using 

oscillation stress sweep (RheoExplore Ver 5.0.40.9, Rheologica Instrumentation, Bordentown, 

NJ) at 25°C. The rheometer was set to a 2 mm gap and the gap zeroed between every sample 

test. A serrated parallel upper plate apparatus (P-25 serrated plate) was used to conduct all the 

rheological testing. The system was set for measurement “to gap” reading with a max load force 

of 2.00E+1 N.  The serrated plate was stopped 0.1 mm above the gap setting to trim excess 
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dough. Following trimming, mineral oil was added to the edges of the dough to prevent moisture 

loss during the run and the sample was allowed to relax for 900 s before the stress sweep test was 

performed. The stress sweep frequency was 1 Hz, measurement interval 20 sec, delay time 1 sec, 

FFT at 512. The stress was applied between 1-100 Pa and 60 data points were recorded per run. 

The control, defatted, and all lipid treatments were tested to determine the LVR for both after 

mix and proofed. From the LVR, the optimum stress was determined to be 40 Pa. This was used 

for the rest of the testing on all samples. Three replications were conducted on each independent 

dough treatment (n=15). 

 3.2.6.2. Frequency sweep testing 

Utilizing the 40 Pa stress (above), frequency sweep testing (RheoExplore Ver 5.0.40.9, 

Rheologica Instrumentation, Bordentown, NJ) was performed under constant stress conditions. 

All dough was prepared in the same way as for the LVR testing and each treatment tested after 

mixing and proofing. Samples were evaluated at a constant temperature (25°C). The dough was 

subjected to frequency sweeps between 0.1 and 100 Hz. The load force was set to 2.00E+1 N, 

measurement interval at 20 sec, delay time at 1 sec, and FFT at 512. Testing recorded 100 points 

between the set frequencies and each of the dough treatments were analyzed at least in triplicate 

replications (n=21). 

 3.2.6.3. Temperature sweep testing 

Temperature sweep testing (RheoExplore Ver 5.0.40.9, Rheologica Instrumentation, 

Bordentown, NJ) was conducted on each treatment sample across a temperature range of 25°C to 

95°C. All dough was prepared the same way as for the stress and frequency sweep testing except 

that samples were evaluated only after mix. The rheometer was set to a 2.5 mm gap and the gap 

was zeroed between every sample test. A serrated parallel upper plate apparatus (P-25 serrated 

plate) was used to conduct all the testing and the plate was stopped 0.1 mm above the gap setting 

to trim excess of the sample. Mineral oil was added to the edges of the dough to prevent moisture 

loss during the run and the sample relaxed for 900 s before the test. The max load force was set 

to 2.00E+1 N, frequency 1Hz, 40 Pa stress, and FFT at 512. Testing was conducted over 4440 s 

with 148 points recorded for each run. A minimum of three replicate runs were conducted on 

each treatment (n=21).  
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 3.2.7. Dough Rheology (large deformation) 

 3.2.7.1. Biaxial extension (Kieffer Rig) 

Extensional testing of dough was performed using a TAXT-Plus texture analyzer 

(Texture Technologies, Hamilton, MA) with a Kieffer extensibility rig. This technique evaluated 

dough extension through uniaxial motion (Dunnewind et al 2004). Nonpolar (4.5 % ± 0.2), 

phospholipids (0.45 % ± 0.3), and glycolipids (2.5% ± 0.3) fractions were added back to 100 

grams of flour and the flour was left to dry overnight to allow solvent evaporation. Flour 

amounts for each 100-gram dough were determined based off of 14% moisture basis. 

Absorptions and mix times were the same as for the other rheometer treatments. Samples were 

mixed in a 100 g pin mixer bowl and dough was stopped 30 secs before reaching optimum mix 

time (Control- 3 min; defatted and lipid treatments 3.5 min). Following mixing, 10 g of dough 

was removed from the larger dough ball and gently pulled into a rectangle. The dough was 

placed on an oiled, plastic mold that contained small grooves were strips of small plastic were 

laid in each groove. Enough dough was used to cover 5 grooves on the mold that made 5 small 

strips of dough. A rectangle solid block was put on top of the dough and then the mold was 

inserted into a metal press. Excess dough was cut off of the edges of the mold following being 

pressed and allowed to equilibrate for 30 min.  

Texture analyzer settings were setup for gluten extensibility testing (Kieffer Rig), using a 

preset sequence within the TAXT-Plus software (Exponent Stable Microsystems, Version 6, 1, 5, 

0, Texture Technologies, Hamilton, MA). The test mode was set for tension, pre-test speed: 5.00 

mm/sec, test speed: 3.30 mm/sec, post-test speed: 10.00 mm/sec. The target mode was set for 

distance: 75 mm, trigger type: Auto (Force), trigger force: 5.0 grams and results were shown as 

distance (mm), force (gram), and time (sec). Extensibility measurements were taken by placing 

dough in between two plates while a small hook caught and stretched the dough as it moved 

upward vertically until the dough had reached its breaking point. Five strips were measured for 

each dough with 3 independent dough treatments measured from the control and defatted 

samples and 4 independent dough treatments for all the lipid samples (n = 90). The raw data was 

collected from each curve and a macro setup in the texture analysis software was used to 

determine force and distance measurements from each treatment. This testing was designed as a 

one-way treatment structure with 5 levels of lipid treatments.  
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 3.2.7.2. Strain Hardening  

Strain hardening values were calculated from the uniaxial measurements of force and 

distance raw data obtained from the Kieffer rig testing. Equations and calculations were 

conducted in accordance with Abang Zaidel et al (2008).  

 3.2.8. Flour reconstitution for microstructure bread analysis 

The lipid fractions were added back to defatted flour based on specific final 

concentrations (nonpolar (2.3 % ± 0.2), phospholipids (0.23 % ± 0.3), and glycolipids (1.3% ± 

0.3) needed for testing. For macro XMT testing (whole loaf), the samples were taken for analysis 

at Cargill Global Foods Research (Wayzata, MN) and lipids were fractionated into nonpolar, 

glycolipids, phospholipids. Each fraction was added back at the same levels at which they were 

isolated. Chloroform (2 mL) was added to each nitrogen-dried vial and was vortexed to re-

suspend the lipids (Fisher Vortex Genie 2, Fisher Scientific, Pittsburgh, PA). The resulting 

chloroform/lipid solution was added directly back into 200 g of defatted flour at the same 

concentration at which they were extracted then mixed using a pestle. The samples were dried 

overnight at room temperature and the flour was split into 100 g portions for baking. 

 For micro XMT (center section) reconstitution testing, lipid addition was based on the 

concentrations of each lipid fraction established from previous research (Chung et al 2009). 

Levels were increased to evaluate the full influence of each fraction. Defatted flour contained 0% 

lipids. Nonpolar lipids were blended in at concentrations of 0.6%, 1.2%, and 2.5% while polar 

lipids (combination of both glycolipids and phospholipids) were added at 0.2%, 0.4%, and 0.6%. 

For reconstitution, all samples utilized each bake day were removed from the freezer and 

allowed to come to room temperature (~1 h). Flour samples were weighed (100 g) and each lipid 

treatment was re-suspended into 2000 μL of chloroform and vortexed. Amounts were added back 

based on the desired concentration and taken from the 2000 μL chloroform + lipid samples with 

1000 μL or 200 μL pipettes. All samples were mixed into the flour and blended using a pestle.  

The reconstituted flour was air dried overnight to remove any remaining solvent.  

 3.2.9. Analytical baking  

Flours were baked as 100 g pup-loaves following AACCI method 10-10.03 (AACCI 

1995). Modification to the method included the exclusion of shortening in order to fully evaluate 

the influence of the lipid fractions on final product. Flours were based on 14% moisture and flour 
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weights for each treatment loaf were determined following AACCI method 82-23.01 (AACCI 

1961). Flour absorptions and mixing times were optimized using the mixograph results and 

during the practice bake prior to doing treatment testing. Loaves were made following a 90-min 

fermentation using a 4 min baking schedule. The dough was fermented and proofed (National 

Manufacturing, Lincoln, NE) at 86°F (± 5°F) at 92-95% relative humidity, punched twice at 52 

min and 77 min using a double roll sheeter (National Manufacturing, Lincoln, NE). Following 

fermentation, dough was rounded using a moulder (National Manufacturing, Lincoln, NE), 

panned, and proofed for 39 min. Loaves were baked for 24 min, then cooled for 2.5 h. Volume 

displacement was measured in accordance with AACCI method 10-05.01 (AACCI 1995). 

Following analysis and cooling, each pup-loaf was wrapped in Saran™ wrap, placed in a zip-

lock bag and frozen at -18°C until needed for further analysis. For the whole loaf testing, 8 

independent, replicate loaves were made for every treatment and for the center section 9 

independent, replicate loaves for each of the 7 treatments were baked for evaluation.  

 3.2.10. Bread macrostructure (C-Cell imaging) 

Treatment loaves were evaluated using C-Cell Imaging (Calibre Control International, 

Ltd, Warrington, UK) by cutting each loaf into 1.3 cm slices (±0.5 cm) with an electrical food 

slicer (Chef’s Choice, Int., Colorado Springs, Co.). Every fifth slice from the base end with the 

break and shred facing upward was used for evaluation. Images were taken with the break and 

shred located on the left side of the slice. Three loaves from each treatment were imaged using 

the system. Images were analyzed using C-Cell imaging software (C-Cell Version 2.0, Campden 

& Chorleywood Food Research Association Group, Gloucestershire, UK), which accompanied 

the equipment. Values determined for each treatment included slice area, number of cells, area of 

cells, area of holes, number of holes, volume of holes, cell wall thickness, and cell wall diameter.  

 3.2.11. Bread microstructure (x-ray microtomograhpy) 

 3.2.11.1. Macro testing (whole loaf)  

Total lipids extraction was conducted on 100 g samples of flour. Once removed from the 

flour, lipids were fractionated and quantified as nonpolar (NPL), glycolipids (GL), and 

phospholipids (PHL). Lipids were added back to flours at the same level at which they were 

removed. Average recovery of lipid fractions during the extraction process ranged between 0.2-
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2.0 g for NPL, 0.45-1.2 g for GL, and 0.1-0.35 g for PHL. Loaves were packaged and frozen in 

zip-lock bags at -18°C until transported on dry ice to Cargill (Wayzata, MN). Once on site, 

samples were stored at frozen temperatures (-18°C). The loaves were pre-wrapped in Saran™ 

wrap to prevent moisture loss during data analysis. Breads were removed from frozen storage 

overnight and allowed to come to room temperature (25°C ± 5°C) while still being fully 

wrapped. Samples were evaluated using an IMAGIX X-ray Microtomograph (North Star 

Imaging, Inc., Rogers, MN). Full pup loaves were placed on a base platform within the x-ray 

system and taped down to ensure the sample was secure throughout the testing. All sample 

measurements were taken at 42 kVs, 100 μA, 720 projections per sample, 4 ms delay, and the 

stage positioning at 52.3 mm (up/down) and 204 mm table magnification. All samples were 

analyzed at 61.4 μm resolution. Data analysis was conducted with exf-dr software, while excf-cr 

software (NorthStar Imaging, Rogers, MN) was used for viewing the images. Image 

reconstruction was done using exf-cf (NorthStar Imaging, Rogers, MN). The evaluation of 

binary images and data analysis of the reconstructed sample was done with Ctan software (CT 

Analyzer, Version 1.10.1.0 Skyscan, Bruker MicroCT, Kontich, Belgium) and provided data that 

included: air cell size, cell wall thickness, air cell distribution, total porosity, volume index 

(VOI), structure separation distribution, structure thickness distribution, object volume. Six 

replicate loaves for every treatment were analyzed. 

 3.2.11.2. Micro testing (center section)   

X-ray microtomography (XMT) analysis of the lipid treatments was conducted using 

Skyscan 1072 Micro-CT x-ray microtomograph (Skyscan, Belgium) for 0.6% NPL, 1.2% NPL, 

2.5% NPL and 0.2% PL, 0.4% PL, and 0.6% PL lipid treatment breads. Three independent 

loaves from every treatment were tested. Each treatment series was removed from the freezer 

and with the Saran™ wrap still in place, allowed to stand overnight in the retarder (4°C). Before 

XMT sampling the loaves were removed from the retarder (~40 min) and allowed to come to 

room temperature (25°C ±5) to reduce the effects of moisture evaporation during scanning. 

Bread samples were sliced into 1.3 cm slices (±0.5 cm) using an electrical food slicer (Chef’s 

Choice, Int., Colorado Springs, Co.) and every fourth slice was used for testing. From each slice, 

an 8 mm x 12 mm cube was cut out of the sample and placed in a plastic tube with matching lid 

to prevent the sample from drying.  The center section sample was securely mounted to the XMT 

base using a 13 mm two-sided foam adhesive disk. Once placed in the microtomograph, all 
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samples were allowed to equilibrate for 5 min. XMT images were taken at 41 kV, 102 μA, 1.8 

sec exposure, 15-16X magnification, stage position at 11.5 mm (±0.5), and 17.5-18.5 μm pixel 

resolution. Each treatment sample was rotated at 0.90 scan steps for a total of 180° rotation. 

Sample reconstruction was conducted using NRecon (Version 1.6.3.3 Skyscan, Bruker MicroCT, 

Kontich, Belgium). The x-ray scans produced 206, 2-D cross-sectional images for each sample, 

which was used to reconstruct 3-D structures of the each treatment to determine quantitative 

values for air cell structure and distribution analysis. The assessment of the binary image and 

data analysis of the reconstructed sample was done with CTan (CT Analyzer, Version 1.10.1.0 

Skyscan, Bruker MicroCT, Kontich, Belgium) and provided data that included: air cell size, cell 

wall thickness, air cell distribution, % total porosity, volume index (VOI), structure separation 

distribution, structure thickness distribution, and object volume.  

 3.2.12. Statistical analysis  

Multivariate analysis (ANOVA) was conducted using SAS (Version 9.3, SAS Institute 

Inc., Cary, NC) with comparisons between sample means using Tukey’s least significant 

difference (LSD) testing at a confidence level of 95%.  

 3.3. Results  

 3.3.1. Physical and chemical properties of wheat flour samples 

The physical and chemical tested parameters for both defatted and control flours (both 

macro and micro) are shown in Table 3.1. The macro and micro XMT testing was not conducted 

at the same time, so the physical parameters were evaluated for each different bake. The 

differences between bakes was due to changes in the environmental storage conditions and the 

time that it took to prepare the various lipid treatments. The variations between the treatments 

themselves (control or defatted) were associated with the properties of the flour rather than 

environmental conditions. For both tests, the moisture content for the defatted flour was lower 

than that of the control. This was due to lipid removal by chloroform extraction and drying of the 

flour overnight. Because of the greater moisture loss, the water absorption of the defatted flour 

was higher for both bakes than for the control. The defatted flour had an increased affinity for 

water because of the reduction in polar lipid-protein linkages caused by the lipid removal 

(Papantoniou et al 2004). The mixing time was also 30 seconds shorter for the control flour (3 
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min 30 sec) than for the defatted (4 min). The optimized mixographs used to help determine the 

mixing and absorption parameters for the micro XMT test bake are shown in Figure 3.1.  

 

Table 3.1. Physical and chemical characteristics of control and defatted flours 

Parameters Control 

(macro) 

Control  

(micro) 

Defatted 

(macro) 

Defatted  

(micro)  

Moisture content (%) 13.34 12.59 8.78 8.82 

Absorption (%)a 62.2 60.5 65.1 64.0 

Mix Timea 4 m 3 m 30 s 3 m 30 s 4 m 

aAbsorption and mix time were determined by mixograph testing and optimized during the 

baking process  

 

3.3.1 Mixograph  

 

 
       A. Control (60% abs)         B. Defatted (64% abs) 

Figure 3.1. Optimized mixograph results for sample flours used for testing 
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 3.3.2. Mixolab 

 
Figure 3.2 Mixolab results for control, defatted (0%), total lipids-100g (50%), and total 

lipids-200 g (100%)  
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Table 3.2. Mixolab parameters for control, defatted, and lipid treated flours 

Samplea 
C1 

(Nm) 

C2 

(Nm) 

C3 

(Nm) 

C4 

(Nm) 

C5 

(Nm) 
α β γ 

Control 1.08a (0.05) 0.45a (0.03) 1.57a (0.06) 1.97a (0.07) 3.08a (0.11) -0.025a (0.01) 0.27a (0.03) 0.044a (0.02) 

Defatted 1.17b (0.01) 0.47ab (0.04) 2.01a (0.32) 2.29b (0.11) 3.12a (0.14) -0.047a (0.03) 0.22a (0.12) 0.013a (0.03) 

Total 

Lipids-100g 
1.12ab (0.03) 0.57c (0.01) 1.81a (0.03) 1.59c (0.02) 2.73b (0.01) -0.044a (0.04) 0.24a (0.04) -0.18b (0.04) 

Total 

Lipids-200g 
1.13ab (0.02) 0.51b (0.03) 1.94a (0.47) 2.22ab (0.25) 3.23a (0.03) -0.058a (0.02) 0.22a (0.11) 0.021a (0.03) 

a Defatted (0% lipid addition), total lipids-100 g (50% lipid reconstitution), and total lipids-200 g (100% lipid reconstitution) 
bMeans in the same column with different letters are significantly different (p<0.05)  
cValues in parenthesis indicate standard deviations 
d (n=16) 

 

 

Table 3.3. Mixolab parameters for control, defatted, and lipid treated flours 

Samplea Amplitude (Nm) Stability (min) Setback (Nm) 
Mechanical 

weakening (Nm) 

Thermal weakening 

(Nm) 

Control 0.093a (0.01) 10.01a (0.18) 1.11 (0.06) 0.053 (0.02) 0.01 (0.01) 

Defatted 0.093a (0.01) 9.42b  (0.37) 0.83 (0.14) 0.17 (0.14) 1.07 (0.04) 

Total Lipids-100g 0.094a (0.01) 10.93c (0.10) 1.14 (0.02) 0.020 (0.01) 0.026 (0.01) 

Total Lipids-200g 0.090a (0.01) 10.13a (0.11) 1.01 (0.27) 0.025 (0.00) 0.062 (0.01) 
a Defatted (0% lipid addition), total lipids-100 g (50% lipid reconstitution), and total lipids-200 g (100% lipid reconstitution) 
bMeans in the same column with different letters are significantly different at (p<0.05)  
cValues in parenthesis indicate standard deviations 
d (n=16) 
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 The Mixolab helps to provide analysis of chemical and physical changes that occur 

within the dough (Bonet et al 2006). The phases of the Mixolab results show (C1) mixing, (C2) 

protein unfolding, starch gelatinization, (C3) setback, (C4) starch gel stability, and (C5) cooling. 

Figure 3.2 shows the Mixolab results for control, defatted, and total lipid-100 g of flour and total 

lipids-200 g of flour. No differences were found between test treatments for the mixing stage, 

protein unfolding/weaking, and the onset of starch gelatinization. However, as the starch started 

to gelatinize, there was an increase in the height of the curve (increased torque) for both the 

defatted and total lipids-200 g. Sun et al (2010) determined that defatting flour could delay the 

onset and speed of gelatinization. Tester and Morrison (1990) also determined that the removal 

of some of the lipids caused an increase granular swelling while Melvin (1979) observed higher 

pasting curves in wheat and corn starches with wheat lipids present. Note that the properties of 

and changes in starch (i.e. crystallinity, amylose and amylopection association, and amount of 

lipids) in defatted flour was dependent on the experimental conditions such as extraction solvents 

and temperature (Vasanthan and Hoover 1992).  

The curves from total lipid-100 g showed a drop during the starch gelling phase. 

Takahashi and Seib (1988) determined that adding additional lipids to wheat starch during 

pasting caused an increase in both the pasting peak and a higher setback peak due to amylose-

lipid complexing. The concentration of lipids in this flour was two times the amount found 

naturally in the wheat. This curve drop was likely due to starch complexing with lipids, 

particularly forming amylose-lipid complexes (Tang and Copeland 2007). During cooling, more 

lipids are able to interact with starch causing increased viscosity, but this is dependent on the 

type of lipids (Takahashi and Seib 1988). Blazek et al (2011) found that long and short chain 

fatty acids had differing effects on starch properties. The longer chain fatty acids caused a 

reduction in the formation of tight amylose-lipid complexes and altered the crystallinity and 

pasting properties of starch. Tang and Copeland (2007) found a dependence on water solubility, 

concentration, and type of fatty acids that could influence amylose-lipid complexing. Higher 

concentrations of water and short chain fatty acids prevented linkages to starch, but formed fatty 

acid micelles.  

Other parameters that are determined from the Mixolab curves include: (C1) torque used 

to determine optimum water absorption, (C2) torque used to determine protein breakdown at 

high temperatures, (C3) starch gelatinization or cooking stability at 90°C, (C4) starch gel 
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stability, (C5) starch setback. In addition α (protein weaking caused by applied heat), β (speed of 

starch gelatinization), γ (setback speed), and amplitude, which is a measure of elasticity of the 

dough (increased values indicate more elastic dough). Stability is a measure of the dough 

strength and a longer time indicates a stronger dough. Mechanical weaking and thermal 

weakening were also calculated for each of the treatments. Sun et al (2010) defined mechanical 

weaking as the “the torque difference between the maxium torque at 30°C and the torque at the 

end of the holding time at 30°C” and thermal weaking as the “difference between the holding 

time at 30°C and the minimum torque.” Setback was calculated as the difference between C5 and 

C4 (Sun et al 2010). Results for these parameters are shown in Table 3.2.  

For both 100 g (0.57 Nm) and 200 g (0.51 Nm) samples the addition of total lipids 

increased the torque needed for protein breakdown compared to both the defatted (0.47 Nm) and 

the control (0.45) samples. The addition of lipids required more energy for degradation due to 

lipid protein-binding (Gerits et al 2013). Lipid interactions with gluten proteins are hydrophobic 

or hydrophilic depending on the polarity of the lipids added (Gerits et al 2013). Gelatinization 

torque (C3) values were not signicantly different between any of the treatments. These results 

differ from those of Takahashi and Seib (1988) who observed changes in the pasting curves in 

the presence of excess water for defatted and lipid containing flours with the amylograph. The 

starch gel stability (C4) showed the greatest differences between defatted (2.29 Nm) and total 

lipids 100 g (1.59 Nm). Doubling the amount of lipids caused a change in the consistency of the 

sample. Again, this was likely related to the types of lipids in the total lipid fractions and the 

ability for amylose-lipid complexes to be formed (Blazek et al 2011). There was a significant 

difference between starch cooling torque (C5) values for the total lipids-100 g of flour (2.73 Nm) 

due to complexing of amylose and lipids. No significant differences were seen between the speed 

of protein weaking (α) or the starch gelatinization speed (β). However, there was a significant 

difference in setback (γ) as the total lipid-100 g was lower than all the rest of the treatments.  

All the doughs had lower amplitude values, which would indicate the dough exhibited 

greater viscous properties than elastic characteristics. However, none of the values were 

significantly different from one another. The total lipids-100 g of flour had the highest overall 

stabililty (10.93 min) with the defatted (9.42 min) having the lowest. Perhaps because the lipids 

were removed from the defatted sample this allowed for more protein-protein interactions and 

reduced lipid-protein interactions causing an increase in denaturation at higher temperatures. The 
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setback was lowest for defatted flour and highest for total lipids-100 g and these results were 

comparable to Sun et al (2010) who also determined higher differences between defatted and 

control samples. The mechanical weaking was lowest for both of the flours containing the lipid 

treatments and highest for the defatted (0.17 Nm). In this case, the protein-protein interactions 

appeared to have a strengthening effect on the dough. The control had the lowest thermal 

weaking measurement (0.01 Nm) while the defatted (1.07), total lipids-100 g flour (0.026 Nm), 

and total lipids-200 g (0.062 Nm) had a greater effect caused by temperature.  
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3.3.3. Dough development  

 

 

 

Figure 3.3. Changes in the dough during fermentation and proofing (Control) 
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Figure 3.4. Changes in the dough during fermentation and proofing (Defatted) 
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Figures 3.3 and 3.4 illustrate the fermentation and proofing stages of the defatted and 

control doughs. During fermentation both samples showed an increase in dough size. From 0 min 

to 52 min the dough diameter and height more than doubled in size. The defatted flour showed a 

greater increase in height (7.0 cm) than the control (6.0 cm). However, the control diameter (12.8 

cm) was wider than the defatted samples (12.0 cm). The defatted dough had more highly cross-

linked protein network due to the lipid removal than the control. During proofing, shown at 0 

min, 20 min, and 39 min, samples underwent two punching steps and a panning step. This 

oriented and aligned the cells into two different directions within the dough. Both the defatted 

and control samples increased in dough volume between 0 min and 20 min, as well as between 

20 min and 39 min. Less changes in the dough size and shape were seen during proofing likely 

due to punching and panning. These steps helped to distribute the gas cells and adjust the cell 

size.
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3.3.2. Dough rheology (small deformation) 

3.3.2.1. Stress sweep testing (LVR) 

 

 

Figure 3.5. Stress sweep results for storage modulus (G’) of dough containing lipid 

treatments tested after mixing and proofing 

 

Because bread exhibits both viscous and elastic characteristics, understanding the 

changes that occur in these properties during dough formation is important for final product 

quality. Rheological testing utilizes an applied force or deformation to simulate changes that 

occur due to small or large extension, compression, and properties based on the flour make-up. 

As ingredients are blended together during mixing, the applied work causes changes in the dough 

structure, during fermentation due to gas production, and at moulding and panning (Upadhayay 

et al 2012). Most of the work conducted on dough is done within its linear viscoelastic region 

(LVR) or “the region of stress where the strain varies linearly with stress.” (Macosko 1994; 

Campos et al 1997) Beyond this there is a change in the consistency of the sample, making it 

more challenging to interpret the results. This type of testing doesn’t affect the integrity of the 

dough sample, making the test “non-destructive” (Upadhyay et al 2012).  
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Figures 3.5 display the changes in the storage modulus (G’) as a function of stress 

between 1 Pa and 100 Pa for both after mixing and after proofing doughs with lipid additions. 

The LVR region for all treatments fell below 50 Pa (marked with an arrow), so 40 Pa was chosen 

for subsequent testing to ensure it was within the LVR. In non-yeasted, flour-water dough 

systems, Autio et al (2001) found the LVR region to be below 1 Pa and Gómez et al (2013) less 

than 5 Pa.  The various wheat flour tested by Hadnađev et al (2013) had LVR ranges between 10 

and 15 Pa. In this particular testing the LVR value determined was higher than other previous 

studies for wheat flour. This could be reflective of other factors including environmental 

conditions, protein content, and water absorption of the flour.  

For both after mix and after proofed stages, there was a decrease in the magnitude of the 

G’ as the applied stress increased for all treatments. Khatkar and Schofield (2002a) and Salvador 

et al (2006) found similar results where there was a decrease in G’ with an increase in the applied 

stress. The defatted samples exhibited the highest G’ values for both the after mix and proofed 

doughs. The NPL lipid treatments had the lowest values for both after mix and after proof. The 

PHL, GL, and control fell between these two extremes. At lower levels of stress, interactions are 

predominately between starch and starch whereas at large deformation the interactions are based 

on proteins (Song and Zheng 2007).  

 3.3.2.2. Frequency sweep testing  

Frequency sweep testing provides a measure of the strength and the structural 

characteristics of a sample as it relates to crosslinking within that system (Georgopoulos et al 

2006). In the case of dough, the structure is a combination of gluten proteins and starch that fills 

the spaces between the gluten proteins (Singh and MacRitchie 2001). This combination gives 

dough the viscous and elastic properties that can be evaluated during frequency sweep testing. 

The storage modulus (G’) measures the solid or elastic behavior of the compound while the loss 

modulus (G”) is indictative of the viscous properties (Khatkar and Schofield 2002a). The ratio of 

G” to G’ is tan δ. This is a measure of the influence of both the viscous and elastic properties on 

the system (Khatkar and Schofield 2002a). If a material has elastic behavior, G’ will be greater 

than the G” and vice versa if it is more viscous. The tan δ will be less than 1 if it is more elastic 

and greater than 1 if it is more viscous in nature (Khatkar and Schofield 2002a). Figures 3.6 

show storage modulus (G’) results for samples tested after mixing, after proofing, and the 

combination of after mixing and after proofing. Frequencies ranged between 0.1 Hz and 100 Hz 
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and stress was within the LVR at 40 Pa. The oscillatory rheological testing was conducted with 

active yeast so the dough underwent fermentation during both testing stages (after mixing and 

after proof). The fermentation process produces gas that increased the dough bubble size and it 

has been found that “the shear modulus is inversely proportional to bubble size” (Upadhyay et al 

2012). In this case, the results show very small differences between the magnitudes of the 

treatments between after mixing and after proofing, suggesting there was a limited influence of 

gas production on the storage modulus compared to those caused by lipid addition during these 

two phases.  

For all treatments, G’ increased as a function of frequency. This overall, is an indicator of 

a weaker dough. The higher magnitude is more associated with weaker doughs that contain 

larger amounts of starch compared to stronger flour (Khatkar and Schofield 2002b). Masi et al 

(1998), Khatkar and Schofield (2002b), Salvador et al (2006), Georgopoulous et al (2006), and 

Singh and Singh (2013) also showed similar increases in G’ at higher frequencies. Here the G’ 

suggests that the dough samples containing added lipid at both processing stages behaved more 

like an elastic-solid rather than a liquid. The defatted flour, both after mixing and proof, had a 

higher curve magnitude than any other treatments. All the curve magnitudes for G’ were lower 

than after mixing than proof. Georgopoulos et al (2006) found that defatting flour with various 

solvents caused an increase in the G’ frequency dependence and this was associated with higher 

amounts of friction between the starch granules.  

Defatting and reconstitution studies on soft wheat flours found that the starch 

congregated in “agglomerates and particles” following lipid removal and this caused a layer of 

protein to surround the starch particles, preventing full hydration of the starch (Papantoniou et al 

2004). During after mixing, the G’ of the NPL sample was much lower than any of the other 

treatments. The addition of free fatty acids found in the nonpolar lipids form complexes with 

themselves or starch and this influences the rheological properties of the dough (Khatkar and 

Schofield 2002a; Tang and Copeland 2007). Differences between the other lipids treatments and 

the NPL were lower following proofing. 
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(a)     (b)  

. (c) 
aNonpolar (NPL), phospholipids (PHL), glycolipids (GL); proofed (after proofing) 

Figure 3.6. Dependency of storage modulus (G’) on frequency (a) after mixing (b) after proofing and (c) both after mixing and 

after proofing  
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 (a)     (b) 

 (c) 
aNonpolar (NPL), phospholipids (PHL), glycolipids (GL); proofed (after proofing) 

Figure 3.7. Dependency of loss modulus (G”) on frequency (a) after mixing (b) after proofing (c) after mixing and after 

proofing together 
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Table 3.4. Slopes of the G’ and G” verus frequency values at 1 Hz  

Samplesa 

After mixing After proofing 

Slope G’ 

(Pa) 

Slope G” 

(Pa) 
G’ (Pa) G” (Pa) 

Slope G’ 

(Pa) 

Slope G” 

(Pa) 
G’ (Pa) G” (Pa) 

Control 0.23a (0.01) 0.23a (0.01) 
6683.47a 

(460.10) 

3540.70a 

(300.63) 
0.22a (0.01) 0.22a (0.00) 

6061.13a 

(403.2) 

3055.40a 

(157.64) 

Defatted 0.23a (0.01) 0.22ac (0.01) 
10977.87b 

(2158.70) 

5607.07b 

(1038.80) 
0.22a (0.00) 0.22a (0.01) 

8730.13b 

(1457.50) 

4307.53b 

(653.7) 

NPL 0.22a (0.01) 0.21bc (0.01) 5260.98a 

(590.60) 

2713.30a 

(254.6) 
0.21a (0.01) 0.21a (0.01) 

5425.37a 

(831.90) 

2719.40a 

(411.6) 

PHL 0.22a (0.01) 0.21bc (0.01) 
6472.90a 

(1259.2) 

3272.47a 

(622.00) 
0.21a (0.01) 0.22a (0.01) 

6558.40a 

(909.80) 

3231.67a 

(435.2) 

GL 0.21a (0.01) 0.20b (0.01) 6265.28a 

(1193.30) 

3158.10a 

(617.90) 
0.21a (0.01) 0.22a (0.01) 

5753.83a 

(987.90) 

2828.60a 

(551.20) 
a Nonpolar (NPL), phospholipids (PHL), and glycolipids (GL)  
bMeans in the same column with different letters are significantly different at a p<0.05  
cValues in parenthesis indicate standard deviations 
d (n=21) 
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(a)  
 

(b)  
a Nonpolar (NPL), phospholipids (PHL), and glycolipids (GL)  
b Error bars indicate standard deviations 

 

Figure 3.8. G' and G" values at 1 Hz after mixing (a) and after proofing (b) 
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Changes in the frequency dependency of G” as a function of the lipid presence for after 

mixing, after proofing, and both are shown in Figure 3.7. These results were similar to the G’ 

results in that there was an increase in G” for both after mixing and after proofing. The G’ curves 

were higher than the G” curves indicating that the dough had more elastic than viscous behavior. 

Salvador et al (2006) also found similar frequency sweep results for wheat flours tested at both 

25°C and 80°C. In the present work, the defatted sample had greater frequency dependence 

(slope) than did the other samples both after mixing and after proof. Again, the NPL possessed 

the lowest G” after mixing. The after mixing samples had a greater difference in the G”of the 

treatments than was the case for the proofed. The same trend was seen for G’. Comparing the G” 

after mixing and after proofing showed a decrease in the strength of defatted dough following 

proof. There was no change in the G” or the strength of the dough between the other treatments.  

Slopes and G’ values at 1 Hz are often determined in order to better understand the 

behavior of the treatment and control doughs. The slope is often between 0 and 2 and the closer 

the slope is to 0 the more rubber-like the behavior. While values closer to 2 indicate more liquid 

behavior. If the system contains a 3-D network, the slope value would be closer to 0 (Upadhyay 

et al 2012). Table 3.4 presents the G’ and G” slope values and the G’ values at 1 Hz frequency 

for all lipid treatments after mixing and proof. Figure 3.8 shows the comparison between the G’ 

and G” value at 1 Hz frequency for both after mixing and following proofing. The after mixing 

G’ values were higher than the G” values and this was also seen following proofing. The defatted 

samples were always higher for both G’ and G” after mixing and proofing than the other 

treatments. The slopes of all treatment’s G’ and G” were between 0.20 and 0.23. This suggests 

that the dough was an elastic solid rather than a viscous liquid and that the dough possessed a 3-

D network between its polymeric components. There were no significant differences between 

slopes of the treatments for G’ after mixing, G’ after proofing, and G” after proofing. The slope 

of G” after mixing showed a significant difference between the control (0.23 Pa), the NPL (0.21 

Pa), PHL (0.21 Pa), and the GL (0.20 Pa) lipid additions. The G’ and G” slopes after mixing 

were higher than the G’ and G” after proofing illustrating less elastic characteristics and 

frequency dependency at the later stages. 

Gandikota and MacRitchie (2005) found that “expansion capacity of dough based on gas 

cell structure and rheological properties occur at the end of mixing,” which would suggest why 

there was a bigger difference in the moduli slopes after mixing than following proofing. The G’ 
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and G” values for the defatted flour dough after mixing and proof was less sensitive to the 

frequency when compared to the control and the lipid added doughs. The defatted flour had 

higher G’ and G” both after mixing and after proofing.  This is evident in the frequency sweep 

graphs (Figures 3.6 and 3.7). This again, is most likely due to the strength of protein-protein 

interactions. Khatkar and Schofield (2002a) showed that gluten was less susceptible to changes 

in structure based on applied frequency compared to starch. Defatting and reconstitution studies 

of soft wheat flours used in cookies found that the starch congregated in “agglomerates and 

particles” following lipid removal, with the layer of protein covering the outside, preventing full 

hydration of the starch (Papantoniou et al 2004). 
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 (a)  

 

(b)  
 
a Nonpolar (NPL), phospholipids (PHL), and glycolipids (GL); proofed (after proofing) 

 

Figure 3.9. Phase angle (loss tangent) measurements (tan δ) for lipid treatment additions 

(a) after mixing (b) after proofing 
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The phase angle, or tan δ is the “ratio of the viscous and elastic response of samples 

tested (Singh and Singh 2013). The ratio between the two measurements show that when the 

sample has more elastic properties, the tan δ is less than 1 as compared to more viscous features, 

where the tan δ is greater than one (Khatkar and Schofield 2002a). For these specific lipid 

treatment results, there was a decrease in the tan δ curves with increasing frequency (Figure 3.9). 

The curves for both after mixing and after proofing data both fell below 1. This would signify 

more elastic or solid-like dough characteristics rather than liquid. Miller and Hoseney (1999) 

found similarities in gluten-starch systems where the tan δ curves fell below 1 for both high and 

low applied frequencies illustrating the elastic properties of the two components. There was little 

to no difference between the tan δ curves for the proofed dough while the after mixing defatted 

flour had a higher curve than the other samples. The difference in the defatted treatment as 

compared to the other samples is related to the increased storage modulus (G’) as the tan δ is a 

ratio of both G’ and G”.  
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(a)  

 

 (b)  
 

a Nonpolar (NPL), phospholipids (PHL), and glycolipids (GL)  

 

Figure 3.10. Dependency of viscosity on frequency (a) after mixing and (b) after proofing 
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Changes in the viscosity (Figures 3.10) based on frequency showed a decrease in the 

viscosity as the frequency increased. This was seen for all treatments at both processing stages. 

The defatted flour had higher values after mixing than did the other lipid treatments. However, 

this trend wasn’t seen for doughs after proofing. The proofed dough increased in stiffness as 

compared to the dough after mixing. This could be due to a strengthening effect from 

interactions and the formation of bonds between gluten and starch or other components in the 

system. Studies conducted by Lefebvre (2006) also showed a decrease in viscosity for starch 

samples with increased frequency. Besides having behavior that is nonlinear, dough 

demonstrates shear thinning or thixotropic properties (Weipert 1990). The dough is able to form 

complexes between starch particles creating a “continuous structure and this causes increases in 

the shear thinning (thixotropic) behavior of the dough” (Smith et al 1970). Complexes formed 

between starch granules create a “continuous structure and this causes increases in the shear 

thinning (thixotropic) behavior of the dough” (Smith et al 1970). The developments of starch-

starch or starch-protein interactions have also been shown to cause decreases in the linearity of 

the curve at higher frequencies (Khatkar and Schofield 2002a). 

 3.3.2.3. Temperature sweep testing 

The temperature sweep testing was performed between 25°C and 95°C, a range where 

dough, containing yeast, is converted to bread. In order to better understand the rheological 

properties of the dough under these conditions, it is imperative to first describe the baking 

process that is simulated. Following mixing, dough typically has a temperature of 27-30°C. 

During fermentation, the yeast has the highest amount of activity at 35-45°C, with an optimum at 

35°C (Pyler and Gorton 2009). The ability for the yeast to produce CO2 is reduced at a 

temperature near 43°C and then stops completely at 55°C (Cauvain 2012). Enzymatic activity 

within the dough, excluding alpha-amylase, will end at temperatures up to 60°C, and these 

enzymes will reduce the starch to dextrins or simple sugars (Pyler and Gorton 2009; Cauvain 

2012). The highest enzymatic activity is between 60°C and 70°C (Pyler and Gorton 2009; 

Cauvain 2012). Between 50°C and 60°C the first onset of color due to Maillard browning and 

caramelization happens, with thickening of the crust structure and a reduction in its elasticity 

(Pyler and Gorton 2009). Increase in volume or oven-spring begins and starch gelatinization 

takes place between 55-60°C all the way up to 85°C (Pyler and Gorton 2009; Cauvain 2012). In 

addition, changes in protein (gluten) linkage at 90°C occur by the creation of disulfide bonds 
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(Delcour and Hoseney 2010). At 95°C, the dough loses all its viscous properties and exhibit its 

greatest elasticity (Delcour and Hoseney 2010).  

 Storage (G’) and loss modulus (G”) versus temperature curves are shown in Figure 3.11. 

The elastic modulus (G’) curves decrease between 25°C and 75°C. However, the degree to 

which that occurs differently by treatment. The defatted and PHL samples had less temperature 

dependence compared to the GL, NPL, and the control. They showed the least loss in G’. The 

largest dip in the curves commenced at 55°C and lasted until ~75°C. Following this, G’ values 

began to increase for the NPL, control, and GL samples. The increase in the PHL and defatted 

samples G’ started at 65°C. The shapes of these modulus curves were similar to other tests 

conducted by Dreese et al (1988), Salvador et al (2004), and Agyare et al (2006). Dreese et al 

(1988) determined that the drop in viscosity was caused by the gelatinization of starch and “the 

magnitude of the change in G’ was proportional to the amount of starch present in the dough.” 

Salvador et al (2006) determined that following the drop and increase in G’, the curves began to 

level off and reached the point where proteins begin to break down and the starch was fully 

gelatinized. 

 The curves also showed that the onset of starch gelatinization was earlier (lower 

temperature) for the defatted and PHL samples. This change was associated with the removal of 

lipids and the lower recovery of PHL extracted and re-added to the flour. Georgopoulos et al 

(2006) determined that the removal of lipids caused increase friction between the starch granules 

as well as decreased the gluten phase, thus increasing the speed of starch gelatinization. The NPL 

storage modulus (G’) curve was most similar to the control while the GL curve fell in between 

the defatted and the control results. There was a concentration effect with the GL and NPL as 

there were more total NPL lipids fractionated out and added back compared to what was 

recovered by the total GL.  

Due to the differences in type and level of lipids recovered in GL versus the NPL, the 

interactions with themselves, with starch, or with other compounds would cause changes the 

properties of the structural matrix. Tang and Copeland (2007) found that the chain length and 

amount of fatty acids were the limiting factor in creating starch-lipid interactions or lipid-lipid 

micelles and that these complexes would cause changes to the dough structure. At 75°C there 

was a sharp increase in the modulus for all treatments. Starch-lipid complexes that form during 

heating can alter the final viscosity of systems and the extent of this is dependent both on their 
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immiscibility in water and the amount of lipids present (Tang and Copeland 2007). In this study, 

each fraction (NPL, GL, and PHL) had varying concentrations of fatty acids at varying chain 

lengths.  Some were longer chained lipids (MGDG or DGDG). This could cause them to react 

differently within the system. Consequently, there was an increase modulus due to lipids forming 

starch-lipid complexes, interacting with water, or forming lipid-lipid micelles. Overall, the 

control had the largest initial lipid concentration. For the loss modulus (G”) the curve behavior 

was very similar to that of the storage modulus (G’). There was a decrease in the modulus 

starting at 25°C until 70°C, then a steep increase in the modulus following gelatinization. The 

magnitude of the G” slopes were slightly lower than those of G’. However, with the start of 

gelatinization and the increase of the moduli (70°C), the change was steeper than the G’ curves. 

This would suggest that the gelatinizing starch produced more viscous-liquid behavior at this 

temperature most likely due to the shear thinning or thixotropic characteristics of the starch 

(Smith et al 1970).  

The addition of NPL resulted in an additional peak in the G” curve (between 55°C and 

65°C) following the start of gelatinization. This lipid fraction showed greater interaction with 

starch granules. Li et al (2004) found (through the use of confocal scanning laser microscopy) 

that NPL lipids were attached to starch at the granule surface in forms of “lipid droplets” which 

could cause changes between the gluten-starch and lipid-starch matrixes. In contrast, polar lipids 

in dough were associated more with glutenin at gas cell walls and the gliadin fraction in the bulk 

phase of the dough (Li et al 2004). Also various fatty acids undergo a melt between 45°C and 

75°C (Reusch 2013), which could also provide explanation for the addition peaks on temperature 

sweep curves for lipid treatments. 
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(a)  

 

(b)  
 
a Nonpolar (NPL), phospholipids (PHL), and glycolipids (GL)  

 

Figure 3.11. Temperature sweep results for (a) storage (G’) and (b) loss (G”) moduli  
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a Nonpolar (NPL), phospholipids (PHL), and glycolipids (GL)  

 

Figure 3.12. Phase angle (tan δ) results for temperature sweeps of treatments with varying 

lipids 

 

The phase angle (Figure 3.12) curves for the all treatments were below 1 indicating the 

dough had more elastic, solid-like characteristics. Between 65°C and 85°C, there was an increase 

in the curves for GL, NPL, and the control lines compared to the PHL and defatted samples. The 

GL curve showed a large peak in the curve starting at 57°C and drops again at 80°C. For the 

control and NPL, this similar curve increase was not seen until 70°C and decreased at 85°C. This 

was related to starch gelatinization and interactions between starch-lipids displaying more fluid-

like properties. Changes in viscosity due to the addition of the lipid treatments are shown in 

Figure 3.12. The addition of the lipids caused changes in the gelatinization properties of the 

starch resulting in viscosity curves that were different for each treatment. The NPL addition 

showed viscosity behavior like the control, whereas the defatted, GL, and PHL did not. The NPL 

fractions showed to have the greatest affinity for starch as compared to the GL and PHL samples. 

Li et al (2004) found that GL and PHL lipid fractions formed both lipid-protein and lipid-starch 
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complexes. Following gelatinization starting at 55°C, the control had the highest drop in 

viscosity overall with a sharp increase again at 70°C. The defatted and PHL showed very little 

decrease in the viscosity following the earlier onset of gelatinzation (55°C), but then had an 

increase starting at 65°C.  The GL viscosity curve fell between the defatted and the control 

having a decrease in the viscosity between 55°C and 65°C and an increase at 75°C. The viscosity 

curves also showed the same order and similar curve behavior as those found in both the storage 

(G’) and loss (G”) moduli. 

 

 
 

a Nonpolar (NPL), phospholipids (PHL), and glycolipids (GL)  

 

Figure 3.13. Change in viscosity of lipid treatments as a function of temperature 
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3.3.3 Dough Rheology (large deformation) 

 3.3.3.1. Biaxial extension (Kieffer Rig testing)  

 

 
 

a Nonpolar (NPL), phospholipids (PHL), and glycolipids (GL)  

 

Figure 3.14. Kieffer Rig (uniaxial) extensibility testing results for lipid treatments  

 

Table 3.5 Kieffer Rig extensibility testing results for lipid treatments  

Samples Force -Rmax 

(g) 

Distance- Extmax  

(mm) 

Control 25.29a (4.89) 24.13a (4.78) 

Defatted 25.59a (3.56) 25.73a (5.58) 

NPL 15.73b (2.57) 22.00ab (4.84) 

PHL 22.45a (3.34) 18.39b (3.33) 

GL 16.75b (3.57) 22.77ab (4.90) 
a a Nonpolar (NPL), phospholipids (PHL), and glycolipids (GL)  
bMeans in the same column with different letters are significantly different at a p<0.05; (n=90)  
bValues in parenthesis indicate standard deviations 
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Large deformation testing is often used as means for evaluating changes that are related 

to extension and stretching as it is more representative of how the dough is treated during the 

bread making process. One of the most common extension tests is the Kieffer rig extensibility 

testing (large deformation), which gives uniaxial extensional measurements. Using uniaxial and 

biaxial testing, Sliwinski et al (2004b) found that gluten strength increased during extension 

primarly in the direction of the extension. Figure 3.14 shows the Kieffer Rig test results of dough 

containing varying lipid types and levels. The y-axis is resistance (including the Rmax or the 

“peak force or resistance to extension”) and the x-axis is the “distance of extension” (Extmax) 

(Nash et al 2006). Dobraszczyk and Salmanowicz (2008) were able to link Rmax values as a 

predictor of loaf volume. However, Extmax was not a very good predictor. Tronsmo et al (2003), 

Dunnewind et al (2004), Sliwinski et al (2004b), and Dobraszczyk and Salmanowicz (2008) who 

also studied wheat flour and gluten using large deformation testing found similar 

extension/resistance curves shape results. Figure 3.14 shows that more force was needed to 

extend and break the control, defatted, and PHL dough samples while the NPL and GL samples 

required less. The max extension distance was significantly lower for the PHL than for the 

defatted and control reflecting a weakening effect perhaps because of fewer protein-protein 

interactions and more protein-PHL interactions. The reduction in max force for NPL and GL 

were much greater than any of the other treatments. Thus, the lipid presence caused the tension 

resistance to be reduced but not the extensibility of the dough. 

 Table 3.5 presents the force/distance measurements from the extensibility curves (Figure 

3.14). The defatted flour dough required the most force (25.59 g) to break the dough, while NPL 

had the lowest (15.73 g). The control (25.29 g), PHL (22.45 g) and the defatted doughs had 

similar peak force measurements and were not significantly different than each other. The NPL 

(15.73 g) and GL (16.75 g) peak force were not significantly different. Dobraszczyk and 

Salmanowicz  (2008) determined wheat flour dough force measurements to range from 8-30 g. 

However, distance measurements were higher in extensibility to failure for that study. Those 

results ranged between 50 mm and 95 mm. The force measurements in that particular study 

coincide with the results shown in this study while the extensibility measurements did not. The 

results in this study are much lower in extensibility ranging between 20 and 27 mm. This could 

be an indicator of the overall quality of the dough suggesting that this current flour was a poor  

baking flour or that the addition of yeast had a weakening effect on the dough. Yeast and 
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fermentation have been shown to weaken the overall strength of dough, which contributes to 

lower overall force measurments (Chin et al 2005). The GL and NPL reduced the strength of the 

dough. It may be that the gluten phase of the defatted flour was changed due to either the 

combination of lipid-protein or lipid-starch complexes formed during mixing. 

 The control (24.13 mm), defatted (25.73 mm), GL (22.77 mm) and NPL (22.00) 

treatments had the largest Extmax and were not significantly different. The GL and PHL were not 

significantly different from the PHL (18.39 mm). The extensibility of the gluten proteins was 

weakened only by PHL. In conclusion, all dough extensibilities were approximately equal, but 

all the lipid treatments reduced the force for failure compared to the control or defatted flour. 

Thus, the addition of the lipids caused a reduction in the strength of the dough.  
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  3.3.3.2. Strain Hardening  

 

 
 
a Nonpolar (NPL), phospholipids (PHL), and glycolipids (GL)  

 

Figure 3.15. Stress-strain curves used for determination of strain hardening behavior of 

doughs with varying lipid treatments 
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Table 3.6 Strain hardening measurements results for lipid treatments  

Treatments 
Fracture 

strain 

Fracture stress 

(N/m2) 

Extensional 

stiffness (κ) 

Strain 

hardening 

index(n) 

Control 1.43a  (0.13) 
1,056,733.18a 

(169,586.56) 

106,802.25a 

(17,651.05) 
1.79ab (0.14) 

Defatted 1.36a (0.12) 
991,797.32a 

(156954.41) 

95,997.64ab 

(8,184.43) 
1.89a (0.12) 

NPL 1.35a (0.20) 
601,545.57b 

(149,346. 55) 

84,657.67b 

(9,474.02) 
1.61b (0.19) 

PHL 1.15b (0.14) 
713,589.50b 

(124,250.21) 

99,871.29a 

(8,912.63) 
1.95a (0.18) 

GL 1.34a (0.22) 
634,144.26b 

(128,087.79) 

86,795.86b 

(11,216.78) 
1.67b (0.24) 

 a Nonpolar (NPL), phospholipids (PHL), and glycolipids (GL)  
bMeans in the same column with different letters are significantly different at a p<0.05; (n=90) 
cValues in parenthesis indicate standard deviations 

 

 

From the uniaxial testing using the Kieffer rig, the conversion to biaxial testing was 

calculated to determine strain hardening following the work by Abang Zaidel et al (2007). The 

relationship between stress and Hencky strain can be determined by calculating strain hardening 

based off of the following equation (MacRitchie 2010):  

          σ = Κεn  

where σ is a representative measure of the stress, Κ is a constant value known as extensional 

stiffness, ε is Hencky strain and n the strain hardening factor (MacRitchie 2010). Higher values 

for n would signify more strain hardening and thus increased stability of the cell walls 

(MacRitchie 2010). A strain hardening number of (n) = 1 would be a linear curve, whereas a 

value of 2 corresponds to a more parabolic curve (Dobrasyzczyk and Robert 1994). If there is 

higher strain this will also affect the strain rate, as the strain will need to be greater for the cell 

walls to break down. Thus, the gas cell can undergo greater expansion before bursting 

(Dobrasyzczyk and Robert 1994). 

  Figure 3.15 illustrates the stress versus Hencky strain curves for the different lipid 

treatments. Both the control and defatted sample peaks were similar, indicating that these doughs 

had developed strong structural networks capable of holding and maintaining gas cells. It also 
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shows that there was minimal effect of chloroform extraction on the defatted sample’s structural 

properties as compared to the control. The PHL curve had similarities to the defatted and control 

samples; however the lengh was shorter. The minimal differences between the defatted and PHL 

curves could be related to a concentration effect with the PHL addition being too small to 

manifest any differences. In contrast, both NPL and GL resulted in strain hardening at much 

lower stress and strain values than the control, defatted, and PHL samples. The GL treatment was 

slightly higher than the NPL but both treatments showed reduced ability to produce dough that 

had similar cell wall stability as the other three treatments. Table 3.6 contains the strain 

hardening measurements based off of the stress-strain curves (Fig. 3.15). These values included 

fracture stress, fracture strain, extensional stiffness (κ), and strain hardening (n). The fracture 

stress and the fracture strain are the highest two values before the dough fails from both the 

stress and Hencky strain.  

 The fracture (failure) strain was only significantly different for the PHL (1.15) while all 

the rest of the treatments fell between 1.35 and 1.43. Dobraszczyk and Roberts (1994) reported 

similar results for failure strain values for samples tested at varying water levels. In this current 

work, failure stress measurements were significantly higher for both the defatted (991,797 N/m2) 

and the control (1,056,733 N/m2) compared to NPL (601,546 N/m2), PHL (713,590 N/m2), and 

GL (634,144 N/m2). The defatted and control samples’ cell walls could withstand a higher 

applied stress (force per area) than the dough with the added lipids. The PHL and GL doughs had 

higher fracture stress values than did the NPL sample. However, all three samples manifested 

weakening on the cell wall strength. This would support the finding by Sroan and MacRitchie 

(2009) that it was a combination of not only lipids, but also of mixed monolayers that help with 

the overall support of gas cells.  

 The extensional stiffness (κ) was not significantly different between the NPL  

(84,658), GL (86, 796), and defatted samples (95,998). The control (106,802) and PHL (99,871) 

were significant from all the treatments except for the defatted. Typically, higher extensional 

stiffess is an indicator of a viscous or rigid dough (Chin et al 2005). The strain hardening values 

were lowest for both the NPL (1.61) and GL (1.67), but were not significantly different from the 

control (1.79). The defatted (1.89) and PHL (1.95) were significantly different from GL, NPL, 

and the control. All the strain hardening values were above 1 indicating that the added lipids did 

not reduce cell wall strength. Because none of the values were significantly different from the 
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control (only lower) both the NPL and GL could stabilize gas cells similar to the control. Both 

the defatted and PHL treatments had higher strain hardening values suggesting that the cell wall 

matrix was stronger and less susceptible to failure over time compared to the other treatments. 

This could be reflective of more protein-protein or starch-protein interactions within the samples 

due to the removal of lipids.  

Sroan and MacRitchie (2009) also measured straining hardening of several soft and hard 

wheat doughs with varying polar and nonpolar lipid additions. The strain hardening values were 

higher for all those varieties than compared to this current study. However, their level of addition 

was much higher and the testing was done using biaxial methodology versus the uniaxial testing 

done in the current study. Their study also found higher strain hardening values for 60% NPL 

addition, comparable to the strain hardening index for their total lipid addition (Sroan and 

MacRitchie 2009). In comparison to these current results, there was lower values for the NPL 

and higher for the control. In contrast, Dobraszczyk and Roberts (1994) determined, from biaxial 

testing of flours with different water concentrations, strain hardening index results to be similar 

to those found in this current study.  

 3.3.4. Physical parameters of breads for XMT macro testing  

The analytical baking results are shown in Table 3.7 for XMT macro testing. The whole 

loaf breads, made for analysis at Cargill, had no significant differences in proof heights. The 

control bread had the highest proof height at 6.84 cm, followed by PHL (6.81 cm), GL (6.75 

cm), and NPL (6.70 cm). Because there were only small differences between the proof heights 

there was little to no influence of lipids. Loaf volumes (Table 3.7) were measured using rapeseed 

(volume) displacement following cooling. The control had the highest loaf volume at 754 cc, 

indicating that the flour used for baking was of poorer quality due to a lower volume 

measurement. This was significantly different from all the other treatments except the PHL (714 

cc). PHL and GL (706 cc) were also not significantly different from one another while the NPL 

loaves had the lowest average loaf volume (644 cc). The specific volume, which takes into 

account the weight of the loaves, was also determined for each sample. Again, the control had 

the highest specific volume (5.24 cc/g), but in contrast to the loaf volume, the GL treatments 

(5.04 cc/g) were not different from the control.  GL and PHL (4.93 cc/g) were not significant 

from one another. The NPL (4.56 cc/g) was also not significantly different from PHL loaves.  
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Table 3.7 Physical characteristics of whole loaf breads baked with different lipid 

treatments  

Treatment Proof Height (cm) Loaf Volume (cc) 
Loaf Specific 

Volume (cc/g) 

Control 6.84a (0.37) 754.38a (36.98) 5.24a (0.25) 

Nonpolar 6.70a (0.21) 643.75b (49.41) 4.56b (0.32) 

Phospholipids 6.81a (0.18) 714.36ac (8.21) 4.93bc (0.12) 

Glycolipids 6.75a (0.12) 705.63c (15.45) 5.04ac (0.09) 

aMeans in the same column with different letters are significantly different at a p<0.05; (n=24) 
bValues in parenthesis indicate standard deviation 

 

 3.3.5. Physical parameters of breads for XMT micro testing 

In addition to whole loaf testing, loaves were made from the control, defatted, and 

defatted flour that was reconstituted with 0.6%, 1.2%, and 2.5% NPL and 0.2%, 0.4%, and 0.6% 

PL. The PL fraction was the combination of PHL and GL. The PL addition was calculated from 

the amount of polar lipids extracted initially from the control flour sample used in this testing. 

Additionally, lipid concentrations were doubled and tripled. The highest concentration was 

chosen so as to not exceed the threshold to which the lipid addition could become detrimental to 

the final loaf volume (MacRichie and Gras 1973). The proof heights, loaf volume, and specific 

volume results are shown in Table 3.8. 

Comparing the average proof heights of the control and the lipid treatments, the 2.5% 

NPL (7.31 cm) had the lowest proof height. This was only significantly different from the 0.6% 

NPL at (7.90 cm). Loaf volumes ranged between 690 cc and 830 cc with the control (799 cc) and 

the 0.6% PL (829 cc) having the highest volumes. Both 1.2% NPL (708 cc) and 2.5% NPL (694 

cc) had the lowest volumes. The addition of higher amounts of NPL caused a decrease in volume 

while all the % PL increased with added concentration. The average specific volume decreased 

as the % NPL concentration increased. The control specific volumes fell in between the two lipid 

treatment additions at the varying concentrations.  
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Table 3.8. Average physical parameter measurements for center section breads baked with different lipid treatments 

Treatmentsa Proof Height (cm) Loaf Volume (cc) 
Loaf Specific Volume 

(cc/g) 

Control 7.83ab (0.36) 799.44ac (20.83) 5.36ab (0.09) 

NPL 0.6% 7.90a (0.11) 747.78bc (15.02) 5.09b (0.12) 

NPL 1.2% 7.61ab (0.42) 707.78b (39.77) 4.83b (0.39) 

NPL 2.5% 7.31b (0.49) 693.89b (57.05) 4.83b (0.42) 

PL 0.2% 7.62ab (0.60) 756.11ab (93.13) 5.34ab (0.46) 

PL 0.4% 7.73ab (0.38) 760.56ab (25.42) 5.25b (0.16) 

PL 0.6% 7.79ab (0.23) 829.44a(79.55) 5.84a (0.74) 

a Nonpolar (NPL) and polar (PL)  
bMeans in the same column with different letters are significantly different at a p<0.05; (n=84)  
cValues in parenthesis indicate standard deviations 
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 3.3.6 Macrostructure analysis (C-Cell) 

C-Cell analysis is a useful tool to determine changes in bread structure due to treatments 

that influence texture or sensorial characteristics of the final product. As provided by the C-Cell 

imaging guide, the following parameters and interpretation of these results are presented in Table 

3.9. The raw images and values measured from the C-Cell for the whole loaf treatments are 

shown in Figure 3.16, and Table 3.10, respectively 

 

Table 3.9 Structure parameters measured by C-Cell Imaging 

Parameter Definitiona 
Unit of 

measure 

Slice area 

Total area of a sample 

(reduced area measures typically correspond to reduced 

volumes) 

Pixels (mm2) 

Number of cells 
Number of distinctive cells found in the slice 

(larger #’s = finer cells) 
No units 

Number of holes Number of holes in a slice (higher #’s = more holes) No units 

Area of cells 
Area of cells as a percentage of slice area 

(greater % = open structure) 
% 

Area of holes 
Area of holes as a percentage of slice area 

(greater % = larger sizes of holes) 
% 

Volume of holes 
Total volume of all the holes in the slice combined 

(higher #’s = larger # or size of holes) 
Pixels 

Wall thickness Avg. thickness of cell walls (larger #’s = thicker walls) 
Pixels 

(mm) 

Cell diameter 
Avg. diameter of cells in the slice area 

(larger #’s = course, open structure) 

Pixels 

(mm) 

Cell elongation 
Average length to width ratio of the cells-no influence of 

orientation of the cells (values closer to 1 = rounder cells) 
No units 

aDefinitions adapted from the Baked Product Imaging System Analysis Guide, C-Cell Imaging 

(Calibre Control International, Ltd., Warrington, UK).  

 3.3.6.1. C-Cell macro XMT treatment analysis  

 The slice areas were significantly different between the samples. The NPL loaves had the 

lowest slice area (3744 mm2) while the control had the largest (4380 mm2). These differences in 

slice area were related to the differences in loaf volumes caused by the added lipid. However, the 
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number of cells was not found to be significantly different from one another (larger values 

indicating finer cells). The other parameters that were found to be different included area of 

cells, wall thickness, and cell diameter. For the area of cells, both the control (49.52%) and NPL 

(47.13%) where found to be significantly different from the PHL (48.40%), and GL (48.33%). 

These values were very close to 50%, which would be an indication of more open cell structure 

(overall higher volume).  

Both the control (0.39 mm) and PHL (0.38 mm) had cell wall thicknesses that were 

significantly different from NPL (0.37 mm) and GL (0.37 mm). Thus, the control and PHL had 

slightly thicker cell walls. The cell diameter for the control (1.47 mm) was significantly higher 

than all the treatments. The NPL (1.24 mm) had the lowest. None of the cell elongation values 

were found to be significantly different from one another. These values were higher than 1 

indicating less rounded cells and greater diversity in cell sizes. Sroan and MacRitchie (2009) 

found similar results (no differences in the number of cells), but cell diameters were different 

from one another due to the addition of polar and nonpolar lipids. Thus, the overall expansion 

and increase in loaf volume was more associated with the lipid treatments allowing for growth in 

the gas cell size rather than just being related to the number of cells (MacRitchie and Sroan 

2009). Gandikota and MacRitchie (2005) determined that the dough ability to expand relied on 

the combination of the number of cells present and the matrix’s ability to maintain those 

incorporated cells. The increase in the gas cell size for control, GL, and PHL sample would 

allow for more diverse cell size throughout the structure compared to NPL lipid addition. The 

NPL had smaller cell diameters, which inhibited expansion (Sroan and MacRitchie 2009). The 

higher the elongation the greater the stability during expansion and this would have an overall 

impact on the rheological properties of the dough (Gandikota and MacRitchie 2005). Because all 

the elongation values were similar to one another for all the treatments, lipid addition had little to 

no effect the strength of the cell walls.  
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        A. Control        B. NPL        C. PHL      D. GL 

a Nonpolar (NPL), phospholipids (PHL), and glycolipids (GL) 

Figure 3.16. C-Cell raw images of macro XMT samples with varying lipid treatments  
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Table 3.10. C-Cell analysis of macro XMT sample breads containing varying lipid treatments  

Treatment 
Slice Area 

(mm2) 

Number 

of Cells 

Number 

of Holes 

Area of 

Cells 

(%) 

Area of 

Holes 

(%) 

Volume 

of Holes 

Wall 

Thickness 

(mm) 

Cell 

Diameter 

(mm) 

Cell 

Elongation 

Control 
4379.83a 

(209.69) 

3807.67a 

(229.69) 

3.00a 

(1.01) 

49.52a 

(0.33) 

1.39a 

(0.59) 

38.10a 

(8.61) 

0.39a  

(0.00) 

1.47a 

(0.04) 

1.72a 

(0.01) 

NPL 
3743.67b 

(295.00) 

3932.67a 

(270.91) 

3.28a 

(1.29) 

47.13b 

(0.91) 

2.08a 

(1.42) 

35.45a 

(15.98) 

0.37b  

(0.00) 

1.24b  

(0.07) 

1.72a 

(0.01) 

PHL 
4129.83ac 

(152.96) 

3977.17a 

(131.87) 

3.76a 

(2.56) 

48.40c 

(0.46) 

2.28 a 

(1.63) 

41.15a 

(18.12) 

0.38c  

(0.01) 

1.37c  

(0.08) 

1.71a 

(0.01) 

GL 
4046.00bc 

(83.42) 

3974.17a 

(82.32) 

4.05a 

(0.29) 

48.33c 

(0.56) 

3.05a 

(0.97) 

48.97a 

(10.06) 

0.37bc 

(0.00) 

1.31bc 

(0.05) 

1.70a 

(0.00) 
a Nonpolar (NPL), phospholipids (PHL), and glycolipids (GL 
bMeans in the same column with different letters are significantly different at a p<0.05; (n=24)  
bValues in parenthesis indicate standard deviations 
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 3.3.6.2. C-Cell micro XMT treatment analysis  

 

A. Control    A. 0.6% NPL      B. 1.2% NPL          C. 2.5% NPL 

 

   A. 0.2% PL        B. 0.4% PL          C. 0.6% PL 

a Nonpolar (NPL) and polar (PL)  

Figure 3.17. C-Cell raw images of micro XMT sample slices for control, NPL (0.6%, 1.2%, 2.5%), and PL (0.2%, 0.4%, 0.6%) 

lipid additions  
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Table 3.11. C-Cell analysis of breads used for micro XMT analysis with varying lipid treatment additions 

Treatment 

Slice 

Area 

(mm2) 

Number of 

Cells 

Number 

of Holes 

Area of 

Cells 

(%) 

Area of 

Holes 

(%) 

Volume 

of Holes 

Wall 

Thickness 

(mm) 

Cell 

Diameter 

(mm) 

Cell 

Elongation 

Control 4130.33ab 

(91.66) 

3367.33c 

(108.56) 

4.11a 

(1.52) 

49.87a 

(0.23) 

3.79a 

(0.42) 

66.80a 

(5.09) 

0.40a  

(0.00) 

1.56ab 

(0.04) 

1.76a 

(0.05) 

NPL 0.6% 3914.33ab 

(148.00) 

3603.33bc 

(198.07) 

2.80a 

(1.27) 

48.27a 

(0.61) 

2.18a 

(1.68) 

46.03a 

(24.89) 

0.38ab 

(0.01) 

1.37ab 

(0.07) 

1.74a 

(0.04) 

NPL 1.2% 3664.33b 

(287.79) 

3264.33c 

(93.55) 

2.31a 

(0.99) 

48.97a 

(0.50)  

3.79a 

(3.78) 

64.90a 

(41.00) 

0.39ab 

(0.01) 

1.40ab 

(0.06) 

1.73a 

(0.04) 

NPL 2.5% 3761.00b 

(153.80) 

3298.00c 

(93.55) 

3.42a 

(1.29) 

49.47a 

(0.32) 

2.63a 

(1.75) 

52.73a 

(21.21) 

0.39ab 

(0.00) 

1.46ab 

(0.06) 

1.76a 

(0.05) 

PL 0.2% 4202.67ab 

(146.85) 

4062.33a 

(77.02) 

3.94a 

(0.29) 

48.93a 

(0.64) 

3.18a 

(1.87) 

53.40a 

(21.83) 

0.37b  

(0.01) 

1.32b 

(0.05) 

1.71a 

(0.05) 

PL 0.4% 4091.33ab 

(92.03) 

4109.00a 

(32.92) 

2.52a 

(0.18) 

48.70a 

(0.36) 

1.77a 

(1.30)  

41.83a 

(22.91) 

0.37b  

(0.00) 

1.31b 

(0.07) 

1.70a 

(0.02) 

PL 0.6% 4659.33a 

(686.07) 

3773.67ab 

(106.10) 

3.36a 

(1.66) 

50.27a 

(1.62) 

2.49a 

(1.99) 

54.70a 

(22.42) 

0.40a  

(0.02) 

1.63a 

(0.23) 

1.75a 

(0.03) 
a Nonpolar (NPL) and polar (PL)  
bMeans in the same column with different letters are significantly different at a p<0.05; (n=21)  
 bValues in parenthesis indicate standard deviations 
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 Figure 3.17 and Table 3.11 contain the C-Cell raw images of center sections and the 

value measurements of those breads. Slice area, number of cells, wall thickness, and cell 

diameter were signifcantly different between the treatments. The slice areas for the control, 0.2% 

PL, 0.4% PL, and 0.6% PL were larger than all the NPL treatments. Initially, the loaf volumes 

were also higher for the control and PL treatments than the NPL. The number of cells for the 

0.2% PL (4602) and 0.4% PL (4109) were significantly different and higher than all the other 

treatments including the control. The cell wall thickness was significantly greater for both the 

control sample (0.40 mm) and 0.6% PL (0.40 mm) than for the 0.2% PL (0.37 mm) and 0.4% PL 

(0.37 mm) reflecting thicker overall cell walls. The average cell diameter of 0.6% PL (1.63 mm) 

was significantly higher than that of 0.2% PL (1.32 mm) and 0.4% PL (1.31 mm) while all the 

rest of the treatments fell between these two extremes, which was a more course, open structure. 

The control had the second highest average cell diameter at 1.56 mm. Again, no significant 

differences in cell elongation were seen between these added lipid treatments either, thus the 

cells were not as round and more diversified in shape.  
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 3.3.7. Microstructure analysis of bread (X-ray microtomography) 

X-ray microtomography (XMT) is a very useful tool to evaluate aerated cellular products 

as it helps to provide a better understanding of internal microstructure without compromising the 

sample (Falcone et al 2004; Lim and Barigou 2004: Falcone et al 2005; Babin et al 2006; Bellido 

et al 2006; Vlassenbroeck 2007; Besbes et al 2013: Cafarelli et al 2014b; Van Dyck et al 2014). 

Note that no direct comparison can be made between the macro XMT and the micro XMT results 

as sample sizes (whole loaf and center section-12 cm x 8 cm cube) and magnification ranges 

were different for each XMT instrument. The center section testing resolution was 15.5 μm while 

whole loaf testing was conducted at 61.4 μm resolution. The lower resolution for the center 

section work allowed the determination of the tiniest possible air cell or pore measurement 

within the VOI of the sample. However, this measurement is limited to that specific sample size. 

Due to the small sample size, the view of the entire loaf can’t be evaluated without taking 

multiple images of the center section of the same loaf. In order to get the full loaf within the field 

view, the sample had to be moved farther away from the x-ray. This provided a better analysis of 

the cell and pore distribution in the whole sample, but some of the detail of the smaller cells was 

lost due to the distance from the x-ray source. Figure 3.18 shows the binary images of control 

samples for both micro and macro testing.  

 

(a)   (b)  

Figure 3.18. Binary images of the control sample for XMT macro (a) and micro (b) testing  
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3.3.7.1. XMT macro testing  

Figure 3.18 shows whole loaf XMT measures of cell wall thickness, gas cell size, 

cumulative cell wall thickness and cumulative gas cell size. Cell wall thickness distribution 

ranged broadly with thicknesses between 100-700 μm. There was little to no difference between 

the wall thickness distributions (Fig. 3.18a) for the NPL, PHL, and GL with the distribution 

(~37-42%) at 368 μm. The control had no clear peak. Most of the values were between two sizes, 

246 μm and 368 μm. The cumulative cell wall thickness distribution (Fig. 3.18b) showed little to 

no difference between the cumulative frequency for any of the treatment samples. Lipids had 

limited effect on the distribution of cell walls throughout the whole loaf. 

 Gas cell size curves (3.18c) showed a larger difference between the size distributions of 

the control and the three lipid treatments. The control curve peak was lower and broader than the 

NPL, PHL, and GL curves with fewer cells of 200 μm and 800 μm than GL, NPL, and PHL 

curves. The most frequent cell size was 400 μm for those lipid treatments. The control spread 

ranged between 0 μm and 790 μm, but had fewer cells between the 200 μm-400 μm. The GL and 

PHL had a slightly lower frequency of cells in the 390-400 μm range, but all the lipid treatments 

had the same distribution. The cumulative gas cell size distribution (Figure 3.18d) was shifted 

slightly to the right for the control loaf showing larger cell sizes in those samples as compared to 

the lipid treatments. The lipid additions appeared to have a greater influence on cell size than on 

cell wall thickness. This could be due to the lipids’ effects on the gas cell expansion and is 

reflected in the loaf volume (Sroan and MacRitchie 2009).  
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(a)   (c) 

  

(b)  (d) 

Figure 3.19 XMT loaf scans results for whole loaf samples for control, nonpolar (NPL), phospholipids (PHL), and glycolipids 

(GL) additions (a) cell wall thickness distribution, (b) cumulative cell wall thickness distribution, (c) gas cell size distribution, 

(d) cumulative gas cell size distribution.  
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Table 3.12 Macro XMT results for whole loaf breads containing varying lipid treatments  

Treatments 

Volume index 

(VOI) 

(um3) 

 

Solid 

volume 

(%) 

Fragmentation 

index 

(1/µm) 

Cell wall 

thickness 

(um) 

Gas cell size 

(um) 

Number of 

gas cells 

Total 

porosity 

(%) 

Control 1.57E14a 

(1.72E13) 

42.37a 

(2.95) 

-0.004 a 

(0.0002) 

369.40a 

(22.67) 

881.40a 

(24.10) 

210540.80a 

(34711.89) 

57.63a  

(2.95) 

Nonpolar 1.28E14a 

(2.59E13) 

51.45b 

(2.84) 

-0.006b 

(0.0007) 

389.75a 

(40.55) 

648.68b 

(37.64) 

74825.00b 

(45665.16) 

50.24b  

(3.85) 

Phospholipids 1.51E14a 

(6.40E12) 

44.12a 

(3.83) 

-0.005ab 

(0.0007) 

359.37a 

(39.69) 

699.85b 

(31.98) 

118243.67bc 

(34823.08) 

55.88ab  

(3.83) 

Glycolipids 1.52E14a 

(2.45E13) 

47.82ab 

(5.39) 

-0.006b 

(0.0015) 

394.22a 

(54.91) 

700.34b 

(58.41) 

169857.33ac 

(50700.87) 

52.18ab  

(5.39) 
aMeans in the same column with different letters are significantly different at a p<0.05; (n=24)  
bValues in parenthesis are standard deviations 

 

Table 3.13 Gas cell size percentile distributions for whole loaf breads with added lipids  

Treatments 
25% 

(um) 

50% 

(um) 

75% 

(um) 

95% 

(um) 

Avg. gas cell size 

(um) 

Control 392.95a (33.63) 650.83a (54.91) 
 1006.94a (33.63) 2112.11a (82.37) 881.40a (24.10) 

Nonpolar 317.22b (25.07) 501.42b (25.07) 757.25b (50.13) 1412.17b (102.74)  648.68b(37.64) 

Phospholipids 337.69ab (51.37) 532.12b (31.71) 849.35b (71.78) 1562.67b (108.10) 699.85b (31.98) 

Glycolipids 327.46a (31.71) 521.89b (51.37) 849.35b (81.61) 1575.90b (163.22) 700.34b (58.41) 

aMeans in the same column with different letters are significantly different at a p<0.05; (n=24) 
bValues in parenthesis are standard deviations 
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 XMT results for whole loaf samples are shown in Table 3.12. No significant differences 

were seen between the volume of interest (VOI) for any of the samples. The solid volume (%) 

within the VOI was significantly larger for the NPL samples (51.45%) than the control (42.37%) 

and PHL (44.12%). Curvature of the gas cells, determined from the fragmentation index found 

the control and all lipid treatments to be negative and very small in value. This indicated 

concavity with a connected pore structure. No significant differences were seen between the 

average cell wall thickness of any of the samples and the control. However, the average gas cell 

size (structure separation) measurements were significantly different. The control (881 μm) was 

significantly larger than all three treatments. The number of objects (amount of gas cells in a 

sample) was significantly higher for the control (210540) than for both NPL (74825) and PHL 

(118242), but not than the GL (16985). The combination of the reduction in the number of cells 

and the average gas cell size within the whole loaf, would suggest that the lipid treatments, 

specifically NPL influenced the abililty for the dough to stabilize and allow for expansion within 

the gas cells and this would be reflective in differences in volumes and specific volumes of the 

loaves. Finally, the total porosity of the control sample was higher (58%) than those of the NPL 

(50%), PHL (56%), and the GL (52%).  

Table 3.13 contains the 25%, 50%, 75%, and 95% percentile values for all whole loaf 

treatments using data from the cumulative distribution graphs (Fig 3.18d). For every percentile 

range, there was difference in gas cell size between the control and the lipid treatments. The 

control had larger gas cells across each distribution. However, in the 25th percentile range, both 

the PHL (338 μm) and the GL (327 μm) were not significantly different from the control (393 

μm) while the NPL (317 μm) was significantly different. At the higher percentile ranges (50%-

95%), the control was significantly larger at each level. The average gas cell sizes of the samples 

fell between the 50th and the 75th percentile. The GL and PHL loaves had very similar percentile 

gas cell averages to one another throughout all ranges while the NPL had the smallest gas cells 

overall.  
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(a)   (c) 

 

(b)  (d) 

Figure 3.20. XMT scan results for center section of bread slice for control, 0.6, 1.4%, and 2.8% nonpolar (NPL) and 0.2%, 

0.4%, and 0.6% polar (PL) (a) cell wall thickness distribution, (b) cumulative cell wall thickness distribution, (c) gas cell size 

distribution (d) cumulative gas cell size distribution.
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 3.3.7.2. XMT micro testing  

Figure 3.19 contains the cell wall thickness distributions (a), cumulative cell wall 

thickness distributions (b), gas cell size distributions (c), and cumulative gas cell size 

distributions (d) for center section testing the control and varying levels of NPL and PL. The cell 

wall thickness distributions had thicknesses starting at 30 μm to 400 μm. All NPL concentrations 

caused the thickness spread to increase compared to the control sample. In contrast, the addition 

of PL caused difference from the control only at the varying levels. This trend is also seen in the 

cumulative cell wall thickness distribution curves where there was a shift to the right (thicker) in 

the curves of NPL as compared to the control and PL. The gas cell size distribution curves 

showed the highest percentage of cells were between 0 and 2000 μm. Both the 0.2% and 0.4% 

PL samples had the highest portion of their cells 1000 μm or less. The cumulative gas cell 

distribution curves were shifted more by the addition of 2.5% NPL and 0.4% PL as the frequency 

of smaller gas cells (1.0-2.0 mm) increased.  

Table 3.14 presents XMT results for samples with varying levels of NPL and PL as well 

as the control. There were no significant differences between the VOI values or the percent 

object volumes for any of the treatments. Fragmentation measurements showed small, negative 

values, which suggested a connected, concave pore structure. There were significant differences 

between the average cell wall thickness as both 1.2% NPL (216 μm) and 2.5% NPL (204 μm) 

had increased thickness. The 0.6% PL (166 μm) had thickness close to that average cell wall of 

the control (166 μm). There were no significant differences in the average gas cell size in any of 

the samples. The 2.5% NPL (83020) had the highest number of gas cells and this was 

significantly different from all the treatments except for 0.6% PL (62005 μm). All the other 

number of gas cells were less than those two levels. Total porosity values were not significantly 

different from one another and ranged between 84% and 89%. Using cumulative gas cell 

distribution curve (Fig 3.19d) values were determined for 25th, 50th, 75th, and 95th percentile for 

all the treatments. They are compared in Table 3.15.  None of the gas cell sizes were found to be 

significantly different from any of the samples at any of the percentile ranges.  
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Table 3.14. XMT results for center section breads containing varying lipid treatments 

Treatmenta 

Volume 

index 

(VOI) 

(μm3) 

Solid 

volume 

(%) 

Fragmentation 

index 

(1/μm) 

Cell wall 

thickness 

(μm) 

Gas cell size 

(μm) 

Number of 

gas cells 

Total porosity 

(%) 

Control 

2.89E12a 

(2.20E11) 

12.07a 

(1.09) 

-0.00194ab 

(0.00) 

166.08a  

(6.38) 

2288.08a 

(418.49) 

36925.68a 

(6981.15) 

87.93a  

(1.09) 

NPL 0.6% 

2.62E12a 

(2.70E11) 

13.57a 

(1.43) 

-0.00154ab 

(0.00) 

185.56ab 

(3.72) 

2072.75a 

(335.54) 

48991.00a 

(123.12) 

86.43a 

 (1.43) 

NPL 1.2% 

2.84E12a 

(4.2E11) 

15.21a 

(2.53) 

-0.00278a 

(0.00) 

216.16b 

(27.83) 

2455.68a 

(533.40) 

50246.00a 

(9176.86) 

84.79a  

(2.53) 

NPL 2.5% 

2.41E12a 

(5.9E11) 

14.24a 

(3.21) 

-0.00130ab 

(0.00) 

203.55ab 

(11.24) 

2111.44a 

(1017.61) 

36773.00a 

(8896.91) 

85.76a  

(3.21) 

PL 0.2% 

2.58E12a 

(1.3E11) 

13.87a 

(2.42) 

0.00055b  

(0.00) 

171.49a 

(23.67) 

2016.95a 

(325.83) 

83020.33b 

(13147.28) 

86.13a  

(2.42) 

PL 0.4% 

2.34E12a 

(6.9E11) 

13.36a 

(5.62) 

-0.00053b 

(0.00) 

174.98ab 

(4.79) 

2109.87a 

(1182.73) 

44570.67a 

(5564.29) 

86.64a  

(5.62) 

PL 0.6% 

2.63E12a 

(3.0E11) 

10.98a 

(2.62) 

0.00277ab 

(0.00) 

166.46a 

 (6.25) 

2312.65a 

(460.11) 

62005.00ab 

(16213.52) 

89.02a  

(2.62) 
aNonpolar (NPL) and polar (PL) 
bMeans in the same column with different letters are significantly different at p<0.05; (n=21)  
cValues in parenthesis are standard deviations 
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Table 3.15 Gas cell size percentile distribution for center section breads at varying lipid treatments  

Treatment 25% 

(μm) 

50% 

(mm) 

75%  

(μm) 

95% 

(μm) 

Avg. gas cell size 

(μm)  

Control 678.02a (0.04) 2216.37a (0.40) 3766.12a (1.01) 5093.68a (0.51) 2288.08a (418.49) 

NPL 0.6% 617.79a (0.06) 1888.69a (0.50) 3553.80a (0.54) 4342.22a (0.71) 2072.75a (335.54) 

NPL 1.2% 682.52a (0.08) 2512.37a (0.68) 3895.06a (0.81) 5224.79 (1.03) 2455.68a (533.40) 

NPL 2.5% 703.14a (0.15) 2154.68a (1.08) 3435.39a (1.88) 4181.44a (2.11) 2111.44a (1017.61) 

PL 0.2% 454.39a (0.05) 1950.36a (0.65) 3490.80a (0.59) 4403.80a (0.39) 2016.95a (325.83) 

PL 0.4% 619.95a (0.19) 2194.14a (1.37) 3385.42a (2.08) 4218.10a (2.28) 2109.87a (1182.73) 

PL 0.6% 617.74a (0.14) 2247.12a (0.57) 3836.14a (0.77) 4931.18a (0.76) 2312.65a (460.11) 

aNonpolar (NPL) and polar (PL) 
bMeans in the same column with different letters are significantly different at p<0.05; (n=21)  
cValues in parenthesis are standard deviations 
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 3.4. Discussion  

The changes in the visco-elastic properties of dough at small deformation are mostly 

associated with starch, protein, and water (Khatkar and Schofield 2002a). The addition of starch 

to gluten decreases G’ promotes shear thinning behavior, and increases the elasticity of the 

sample (Smith et al 1970; Khatkar and Schofield 2002a, Song and Zheng 2007). Also the 

application of varying stress has shown to have a greater effect on starch and gluten than on 

gluten alone (Khatkar and Schofield 2002a). In general, starch is associated with “non-linearity” 

characteristics of the dough (Khatkar and Schofield 2002a). Protein’s viscous and elastic 

behavior is directly linked to the glutenin to gliadin ratio (Song and Zheng 2007). Higher 

glutenin levels are correlated to measured elastic properties while gliadin is associated with the 

viscous characteristics. The increased levels of these combined fractions in flour will create 

stronger dough with improved shear viscosity (Song and Zheng 2007; Delcour and Hoseney 

2007). Water also plays a role as it hydrates the system, fills in voids, and serves as a lubricator 

to reduce particle friction (Song and Zheng 2007). 

 In this study, Mixolab results showed that the addition of total lipids at both low and 

high concentrations had minimal effects on mixing behavior, protein weakening, and starch 

gelatinization. However, following gelatinization there was a difference between control and the 

other three test treatments in the applied torque needed for setback. The addition of total lipids-

100g flour caused changes in the dough that reduced the torque. In contrast, the total lipids-200 g 

flour had higher torque values than did the control. The reduction in torque was likely due to the 

complexing of lipid chains with amylose or lipids with lipids, forming amylose-lipid complexes 

or the creation of lipid-lipid micelles (Tang and Copeland 2007). The amylose-lipids complexes 

formed slowed the onset of retrogradation. The complexing of lipids prevented amylose from 

recrystallizing, which is a main component cause of retrogradation. The control sample was 

lower than both defatted and total lipids-200 g addition as defatting alters the gluten phase and 

can strengthen the protein-protein interactions.  

Stress sweep testing showed that increasing the applied stress caused a reduction in the 

moduli (G’, G”) for after mixing and proofing for all the lipid treatments with an LVR at 40 Pa. 

The defatted sample, however, was least affected by the applied stress at both processing stages. 
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The frequency sweep test showed that the moduli increased as the applied frequency increased. 

This would indicate that the dough exhibited elastic properties, which is often found in weaker 

flours containing higher starch content (Khatkar and Schofield 2002b). A larger change in the G’ 

and G” for both the stress and frequency sweeps were seen after mixing than after proofing. 

Mixing allows for the creation, interaction, and bonding between polymers. It promotes the 

transfer and alignment of the lipids within the dough structure. Gerits et al (2015) found that in 

order for compounds such as lipids to have an influence on dough properties, these constituents 

must be present at the beginning of mixing. Papantoniou et al (2003) determined that lipid 

fractions have the greatest effect on cookie dough structure when present at mixing.  

The increase in the G’ moduli of the defatted sample during the frequency sweep was 

likely due to starch having more friction between the granules because of the defatting process. 

Georgopoulos et al (2006) determined that the initial size of the gluten structure was reduced due 

to lipid removal. This could allow for greater interaction between starch or protein molecules, 

thus increasing the G’. Due to the lipid removal, the defatted sample had more protein-protein 

interactions. Gómez et al (2011) found increased levels of S-S or disulfide bond linkages during 

over mixing of dough. This causes an increase in G’ and decrease of tan δ, both associated with 

elastic properties of dough.  

The lipid addition promoted the interaction of starch with the PHL, NPL, and GL 

reducing the moduli that wasn’t seen with the defatted sample. The NPL fraction caused the 

biggest decrease in the G’ and G” moduli of all the added treatments. The sample containing GL 

and PHL additions were characteristically more like the control as the chain links of the lipid 

structures were able to form complexes with proteins and starch. Wilde et al 1993 and Tang and 

Copeland 2007 found that lipids could interact with both starch and proteins. For the PHL 

treatment, there also was a concentration effect, as this sample was more similar to the defatted 

flour treatment. Because there was a lower concentration recovery from the extraction process, 

less of an influence of these lipids were seen.  

Temperature sweep testing showed the greatest influence of starch as most of the 

differences between the treatments were across the temperature range of starch gelatinization. 

Initally, the G’ of all the samples dropped during heating. PHL and the defatted flour were the 

least affected. For those two samples, starch gelatinization started earlier than did the other three 

treatments. These treatments had viscosity curves that were higher sooner than the other three 
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samples. Defatting and reconstitution studies of soft wheat flours used in cookies found that the 

starch existed as “agglomerates and particles” following lipid removal, with the layer of protein 

covering the outside, preventing full hydration of the starch (Papantoniou et al 2004). The 

binding of GL and NPL with starch slowed the onset of gelatinization making those samples 

similar to the control. The lipids also melted at temperatures between 45°C-65°C causing 

additional peaks in the curves for the GL and NPL samples. This facilitated starch-lipid 

complexation. There were also changes in viscosity (increased) for all treatments. However, the 

full gelatinization of starch occurred at a higher temperature for the NPL and control samples. 

The temperature of gelatinization was higher for GL addition than for defatted and PHL addition. 

However, there was a greater increase in viscosity at a lower temperature for the GL than the 

control and NPL addition. From the changes in gelatinization temperature and viscosity caused 

by GL, this would support the findings of Hoseney et al (1970) and Tang and Copeland (2007) 

that there was an interaction of GL with both starch and protein.  

NPL addition caused the greatest changes to the characteristics of the dough. Samples 

conatining this fraction (NPL) had the lowest values for all rheological measurements. Because 

the behavior of the temperature sweep curves for the NPL resembled the control versus the 

defatted samples this would support the findings of Li et al (2004) who found that NPL was 

more associated with the starch than protein. NPL does not improve the loaf volume due to its 

inability to hold air cells as determined by MacRitchie and Gras (1973) because it does not form 

compressed monolayers at the interface. However, there still appeared to be an influence of the 

NPL on the overall rheological properties of the dough in contrast to the findings of Sroan et al 

(2009).  

During proofing and baking, visco-elastic properties of dough change due to growing gas 

cells and experience biaxal response to the stresses and strains. Dough is an elastic film with the 

ability to expand/extend in response to increases in gas production because it undergoes uniaxial 

and biaxial extensions (Sliwinski et al 2004). Extension testing showed that the addition of all of 

the lipid fractions weakened the dough. The fracture force values were all reduced compared to 

the control and defatted samples. There was less effect on dough extension except for the PHL, 

which caused the extension values to be reduced. The decrease in extensibility curves and values 

was indication of reduced strength of the dough. This could be due to interactions of lipids with 

proteins, lipids with starch, or lipids with lipids as shown by Tang and Copeland (2007).  
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The stress fracture and the elastic properties are related to crumb structure and have a 

direct positive correlation with the thickness of cell walls (Falcone et al 2004). Cell wall 

thickness is affected by “mechanical” properties of the dough (Falcone et al 2004). The stress-

strain measurements and strain hardening values in this current study were reduced by the 

presence of NPL, PHL, and GL. The control and defatted had the highest measured stress and 

strain values. The NPL continued to have lower values for all large deformation results except 

the fracture strain. PHL even though having reduced values, had similar fracture stress, 

extensional stiffness, and strain hardening index that closely resembled the control and defatted 

flours. The fracture strain was the lowest with PHL present, which was likely associated with the 

observed reduction in extensibility of the sample. Fracture stress values of the NPL samples were 

lowest, reflecting the least strength in the cell walls. This would decrease the ablity for gas cell 

expansion. GL and PHL showed more resistance to breaking and had higher fracture stresses. 

The NPL and GL resulted in reduced stiffness and loss of strain hardening. This suggests that 

these doughs wouldn’t provide cell wall stability comparable to the control, defatted, or PHL 

samples. In the case of the defatted flour, the removal of lipids did not inhibit the dough’s ability 

to expand because the gluten was still able to form a developed network and there were fewer 

interactions between polar lipids allowing for the development of more protein-protein 

interactions (Gan et al 1990; Paternotte et al 1994).   

Gas cell expansion does not occur in the same way for each bubble; however, the cells 

initially start as spheres and then due to pressures gradually convert in to polyhedral shapes (Van 

Vliet et al 1992). These changes in the gas cell size and shape results in expansion of the bread 

loaf. These present results found no significant differences in proof heights of the whole loaf 

treatments. The control was larger in volume than all of the other treatments. Even though the 

volumes of the lipid containing treatments were reduced, the GL and PHL samples resulted in 

loaves with volumes that were larger than the NPL. MacRitchie and Gras (1973) found during 

their early work studying the function of lipids in bread baking, that nonpolar lipids were 

detrimental to loaf volumes. The results of the present study are in agreement with these earlier 

findings. It was also shown that the presence of polar lipids was beneficial to loaf volume, but 

the level of addition is critical for this enhancement to occur (MacRitchie and Gras 1973).  

The center loaf volume testing showed that the addition of NPL and PL lipids did cause 

differences in the proof heights, suggesting a concentration effect of lipid addition. The largest 
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change was seen for the NPL; whereas, the PL didn’t have as large of an influence. Differences 

in proof height were reflected in final product volumes. The higher levels of NPL caused 

reductions in loaf volume while PL addition caused increases in loaf volume to the point that the 

volumes were higher than those of the control.  

These results were reflected in both C-Cell and XMT measurements. The C-Cell imaging 

of the whole loaf showed differences in the slice are, which was indicative of the changes in the 

overall volume of the samples. Both the NPL and GL were able to produce samples closer in size 

to the control than was the NPL. However, the number of cells within each loaf were not found 

to differ significantly.  This indicated that all samples had finer cells than the control.  Cell wall 

thickness was greater for the control than for any of the other treatments. This was also the case 

for cell diameters. The NPL loaves had thinner cell walls and the smallest cell diameters of all 

the treatments. Elongation values were larger than 1 for all the treatments suggesting that the gas 

cells were not limited to round shapes, but at a variety of sizes, thus better able to undergo 

greater expansion. When comparing the center loaf samples at varying lipid concentrations, the 

control and PL at all levels caused greater increases in slice area and number of cells than did the 

NPL. This again would be an indication of higher loaf volumes with larger ranges of finer cells 

for both the control and PL samples. Cell wall thickness was greatest for the control and 0.6% 

PL samples.  

The whole loaf NPL, GL, and PHL samples had thicker cell walls than the control 

samples and a lower number gas cells. The GL and PHL samples had thickness values close to 

the control and NPL had the lowest values. These differences were linked to changes in the 

overall loaf volume as the GL and PHL allowed for cell expansion bringing them closer to the 

control. The NPL samples had more limited expansion, a larger solid matrix, and fewer gas cells. 

The loaves (NPL) produced were denser and smaller in volume. The addition of varying levels of 

each of the lipid resulted in a wider distribution of cell wall thicknesses and gas cell sizes. Higher 

cell thickness distributions for the NPL at all levels than with the PL addition.  

The effect of NPL, GL, and PHL presence on the dough properties show that GL and 

PHL (which are the polar lipid) do influence the rheological properties of dough and the 

microstructure of bread, probably through their interactions with both starch and proteins. The 

PHL and GL can interact with both proteins and starch, which makes them more suited to move 

to stabilize gas cells and form amylose-lipid complexes. These lipids also can help to stabilize 
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gas cell walls, allowing for gas cell growth and expansion, thus providing support allowing for 

increase in loaf volume. This supports Gan et al (1990) and Sroan et al (2009) findings of the 

presence of a secondary liquid lamellae that helps to prevent coalescence of gas cells following 

the stretching of the gluten-starch matrix. Higher levels of PL lipids showed to have a greater 

influence on the structural matrix while NPL, on the other hand, was not able to provide stability 

to gas cells or prevent coalescence. The mechanism by which the polar lipids assist in stabilizing 

air cells is because of their ability to align themselves at the interface and surround gas cells. 

These lipids are most beneficial when the gluten-starch matrix begins to stretch and break down 

at the end of proofing and the beginning of baking (Gan et al 1990). This break down of the 

structure has been hypothesized as being caused by the over expansion due to internal pressures 

on the expanding gas cells (Gerits et al 2015).  

 3.5. Conclusion  

The influence of native wheat lipid fractions on the rheological properties of dough and 

the microstructure of bread was affected by type of lipid and the interactions with other 

components in the structural matrix. The addition of all the lipid treatments weakend the dough, 

but rheological testing showed the dough exhibited greater elastic than viscous behavior. The 

addition of polar and nonpolar lipids showed interactions between both lipids and proteins and 

lipids and starch. This reduced the strength and increased the viscous properties of the dough as 

compared to the defatted samples. C-Cell imaging and XMT testing determined changes in the 

structural make-up and gas cell distribution as the polar lipid fractions had more positive 

influence on the loaf microstructure and volume as compared to the nonpolar lipids. The ability 

of the polar lipids to move to the interface, forming the secondary lamellae is beneficial part for 

promoting gas cell stability, improving and maintaining the crumb grain integrity, and providing 

overall, better quality bread. Even though lipids do have the capabilities to be surface active and 

maintain gas cells, their function is not limited to stabilize just gas cells, but also as contributors 

to visco-elastic properties of the dough.  
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Chapter 4 - The Effects of Varying Concentrations of Wheat Lipid 

Fractions on the Microstructure of Bread  

 4.1. Introduction 

Bread quality is dependent on many characteristics including, color, flavor, texture, 

mouth-feel, size, and shape. Of these, loaf volume is crucial for consumer liking because it 

provides the structural basis, influences textural properties, and provides the basis for the internal 

crumb (Gan et al 1995). Bread can be best described as a sponge consisting of an internal phase 

of gas within a solid matrix of varying cell wall densities (Falcone et al 2004). Increase in dough 

and loaf volume is associated with the growth of individual air cells rather than an actual 

increase in the number of air cells (MacRitchie 1977). This in turn, affects the overall crumb 

grain, which is a result of the cell expansion and distribution in the dough matrix. The ability to 

maintain and stabilize gas cells within the internal structure of dough during the bread-making 

process makes wheat flour unique (Gan et al 1990). Overall, this combination of gas cells within 

the spongy, solid matrix constitutes the basis of the microstructure of the bread. The 

microstructure then can be fully characterized by features that include cell wall thickness, cell 

shape, crumb brightness, void fraction, and hardness of the crumb (Falcone et al 2004).   

During bread baking, the dough is subjected to a series of manipulations (moulding and 

sheeting) that cause changes in size and distribution of the air cells (Sroan et al 2009). Much of 

dough’s stability to this manipulation is associated with the gluten-starch matrix, which forms 

the backbone of the bread. It is this matrix that helps to create the physical barrier between air 

cells and prevents coalescence (Gan et al 1990). The proteins comprising gluten (glutenin and 

gliadin) are both “surface active” and can easily move to the gluten-starch matrix interface and 

help to stabilize and maintain expanding gas cells (Li et al 2004). Keller et al (1997) and Li et al 

(2004) determined that the gliadin fraction was the most “surface active” and was found at both 

the surface of the gas cell walls and in the “bulk phase” of the dough while glutenin was only 

found in the bulk phase. Because of the increased internal pressures during proofing and baking, 

the stability of the gas interface is only as strong as the amount of pressure that the compound 

(protein) at the highest concentration can withstand (Paternotte et al 1994). 
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It is well known that these gluten proteins form the backbone of the bread structure and 

are responsible for holding and maintaining air cells within the matrix and having the greatest 

influence on overall loaf volume (Chung et al 1980a; Delcour and Hoseney 2010). Although 

present in small amounts in the wheat kernel, native wheat lipids have also been shown to play a 

part in the stability of gas cells and loaf volume. Much research has been conducted and 

reviewed studying the influence of native wheat lipids on bread (Daftary et al 1968; Hoseney et 

al 1969; Hoseney et al 1970; Daniels et al 1971; Hoseney et al 1972; MacRitchie and Gras 1973; 

De Stefanis and Ponte 1976; Chung et al 1978; Chung et al 1980a; Chung et al 1980b; Chung et 

al 1982; Ohm and Chung 2002).  

Lipids in wheat differ between varieties. Their effects on baking quality have been 

associated with the type of wheat and the environmental conditions under which they are grown 

(Chung et al 1980b). The lipids are found throughout the kernel with the highest concentration 

being the germ. However, the endosperm (flour) also contains small amounts of lipid and the 

level can be dependent on the milling yield and kernel hardness (MacRitchie 1977). There are 

differences in the classes of lipids in flour starting with total lipids encompassing all lipids 

including those connected to the starch granule matrix (Finnie et al 2009). The procedure for 

total lipid extraction induces starch granule swelling, which is necessary to remove internal 

lipids. Non-starch lipid extraction does not promote starch granule swelling. However, this 

technique is unable to remove the lipids that are associated with the starch granule (Finnie et al 

2009).  Wheat lipids can be further classified into free and bound fractions and the distinctions 

between these classes are based on the polarity of the solvents with which they can be extracted 

(Finnie et al 2009). Polar solvents such as isopropanol: water, extract bound lipid, which 

constitutes 0.6% of all lipids (Hoseney et al 1969; Hoseney et al 1970; Finnie et al 2009). The 

remaining 0.8% consists of free lipids. They are commonly extracted in nonpolar solvents such 

as hexane or petroleum ether (Hoseney et al 1969; Hoseney et al 1970; Finnie et al 2009). 

During defatting and reconstitution studies of flour and lipids, MacRitchie (1977) found 

that adding low amounts (<0.1% by flour weight) of polar lipids caused a decrease in loaf 

volume while adding more restored the lost volume. This was explained as the lower levels of 

lipids added back prevented the protein from forming a complete layer on the surface of the 

interface that would allow it to provide stability (MacRitchie 1977; Patenotte et al 1994). 
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Techniques for fully understanding and interpreting the internal grain of bread and dough 

have been very limiting and usually require harsh sample preparation that can affect the integrity 

of the structure (Falcone et al 2004; Cafarelli et al 2014b). Typically, methods based on 

microscopy, light or electron, are the most common for evaluating the internal structure, but 

these techniques require harsh sample preparations through the use of chemicals or altering the 

sample by dehydration, gas removal, or even freezing (Falcone et al 2004). Another disadvantage 

to these techniques is the inability to look at more than one view of a sample (Cafarelli et al 

2014b). Bread structure is anisotropic, having different air cell sizes, formations, connecting 

links, and alignments in different directions (Falcone et al 2005; Cafarelli et al 2014a). This 

makes the ability to view and understand the internal structure much more difficult, especially 

when the method is limited to one stationary image or view of a sample.  

As an alternative to these methods, C-Cell imaging is used to determine and measure 

differences in quality of bread. This technique provides information on structural parameters of 

aerated food products by supplying information on crumb grain, slice area, cell wall thickness, 

and cell diameter (Cauvain 2013; Villarino et al 2014). C-Cell imaging utilizes a “monochrome 

framing camera” to take pictures of the sample using an internal lighting system that illuminates 

at lower angles from two directions inside a closed box to remove all other external lighting 

sources (Whitworth et al 2005) Light sources from the two different angles provide brightness 

contrast between the different components of the cell structure (Whitworth et al 2005). A two-

dimensional (2D) image is captured by the camera and provides information on “cell wall 

thickness, size, position, and elongation of the cells” (Whitworth et al 2005) 

In addition to C-Cell analysis, x-ray microtomography  (XMT) is another technique that 

offers a non-invasive means to provide three-dimensional imaging through “x-ray attenuation 

based off of the changes of density within a sample” (Cafarelli et al 2014a; Cafarelli et al 

20014b). The sample is analyzed by “x-ray projections that create ‘cross-sectional images’ as the 

sample is rotated creating a series of slices” that can be reconstructed into a 3-D image (Bellido 

et al 2006; Vlassenbroeck et al 2007; Cafarelli et al 2014b). These images provide a 

representation of the structure and air cell information of the whole analyzed sample.  One of the 

benefits of this method of analysis is minimal sample preparation (Falcone et al 2005). The use 

of x-ray microtomography (XMT) as a tool to better understand internal microstructure is being 

heavily utilized in many areas of food research (Falcone et al 2004; Lim and Barigou 2004: 
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Falcone et al 2005; Babin et al 2006; Bellido et al 2006; Vlassenbroeck 2007; Besbes et al 2013: 

Cafarelli et al 2014b; Van Dyck et al 2014). In contrast to C-Cell imaging, the XMT shows 

differences between cell structures on a micro scale versus the C-Cell on a macro scale. The 

objective of this research was to evaluate the effects of lipid fractions (total, free, bound, 

nonpolar and polar), at varying concentrations, on internal crumb grain and gas cell distribution 

to determine their influences on the microstructure of bread. 

 4.2. Materials and Methods 

 4.2.1. Physical and chemical properties of flour 

 4.2.1.1 Flour  

Kansas grown, hard red winter wheat was milled into straight grade flour at the Hal Ross 

Flour Mill at Kansas State University. The flour was produced at 73% extraction with a protein 

content of 10.36%, ash of 0.55%, and starch damage of 7.1% (AACCI Method 76-31.01) 

(AACCI 2014). Following milling, samples were collected into 50 lb bags and placed into -18°C 

freezer storage until utilized for analysis.  

4.2.1.2. Moisture analysis 

Moisture analysis was conducted on both control and defatted flours following AACCI 

method 44-15.02 (AACCI 1999). The moisture content for the control flour was determined to 

be 12.25% and for the defatted flour 8.76%.  

 4.2.1.3. Mixograph 

Following moisture analysis flour absorption and mix time for the control and defatted 

flours were determined using the 35 g mixograph (AACCI Method 54-40.02) and Mixosmart 

software (National Manufacturing, Lincoln, NE) (AACCI 1999). The control flour was measured 

at 59%, 60%, 60.5%, and 62% absorption and the defatted flour was assessed at 59%, 62%, 64%, 

and 65% absorption (See Appendix A). Based on the mixograph curves, absorption and optimum 

mix time was evaluated during a practice bake to determine mixing times and water absorptions 

that would produce the best loaves for each flour treatment. The results from the practice bake 

were used for the actual treatment baking. 
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 4.2.2. Defatting and reconstitution of lipids from flour 

For the methodology and techniques for the defatting and reconsitituion of the varying 

lipid types from flour please refer Chapter 2.  

 4.2.3. Analytical baking  

Flours were baked following AACCI method 10-10.03 (AACCI 1999). Modifications to 

the method included the exclusion of shortening to allow full evaluation of the influence of the 

lipid fractions on final product. Pup-loaves (100 g) were made containing control, defatted, 

reconstituted, free, bound, nonpolar, and polar lipids (flours were based on 14% moisture and 

weights for each treatment loaf were determined following AACCI method 82-23.01) (AACCI 

1999). The procedure included a 90-minute fermentation using a 4 min baking schedule. The 

dough was fermented and proofed in a fermentation cabinet (National Manufacturing, Lincoln, 

NE) at 86°F (± 5°F) and 92-95% relative humidity. The dough underwent two punching steps 

using a double rolled sheeter (National Manufacturing, Lincoln, NE) first at 52 min and the 

second at 77 min. Following fermentation, dough was rounded using a moulder (National 

Manufacturing, Lincoln, NE), panned, and proofed for 39 min. Baking was for 24 min followed 

by cooling for 2.5 h. Volume was measured in accordance with AACCI method 10-05.01 

(AACCI 2001). Following analysis and cooling, each pup-loaf was wrapped in Saran™ wrap, 

placed in a zip-lock bag and frozen at -18°C until needed for further analysis.   

 4.2.4. Bread macrostructure (C-Cell imaging) 

Loaves were evaluated using C-Cell Imaging (Calibre Control International, Ltd, 

Warrington, UK). Each loaf was cut into 1.3 cm slices (±0.5 cm) using an electrical food slicer 

(Chef’s Choice, Int., Colorado Springs, Co.). Every fifth slice from the base end with the break 

and shred facing upward was used for evaluation. Images were taken with the break and shred 

oriented to the left side. One slice from each loaf and three loaves from each treatment were 

imaged. Images were analyzed using C-Cell imaging software (C-Cell Version 2.0, Campden & 

Chorleywood Food Research Association Group, Gloucestershire, UK) accompaning the 

equipment. Parameters determined for each treatment included: slice area, number of cells, area 

of cells, area of holes, number of holes, volume of holes, cell wall thickness, and cell wall 

diameter.  
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 4.2.5. Bread microstructure (x-ray microtomography)  

X-ray microtomographic (XMT) analysis was conducted using Skyscan 1072 Micro-CT 

x-ray microtomograph (Skyscan, Belgium) for all treatments. Lipid types and levels included: 

control, defatted, 1.4% and 2.8% reconstituted (recon), 0.6%, 1.2%, 2.5% bound, 0.8%, 1.6%, 

2.5% free, 0.6%, 1.2%, 2.5% nonpolar (NPL), 0.2%, 04%, 0.6% polar lipids (PL), which 

included both phospholipids (PHL) and glycolipids (GL). Three independent loaves from every 

treatment were tested using XMT.  Each treatment series of loaves were removed from the 

freezer and with the Saran™ wrap still intact, allowed to set overnight in the retarder (4°C). 

Before XMT sampling the loaves were removed from the retarder (~40 min) and allowed to 

come to room temperature (25°C ±5) to reduce the effects of moisture evaporation during the 

scanning of the samples.  Bread samples were sliced into 1.3 cm slices (±0.5 cm) using an 

electric food slicer (Chef’s Choice, Int., Colorado Springs, Co.) and every fourth slice was used 

for testing. An 8 mm x 12 mm cube was cut from each slice and placed into a plastic tube with 

matching lid to prevent sample drying. The center section sample was securely mounted to the 

XMT base using a foam 13 mm two-sided adhesive disk. Once in the microtomograph, all 

samples were allowed to equilibrate within the chamber for 5 min. XMT measurements were 

done at 41 kV, 102 μA, 1.8 sec exposure, 15-16X magnification, stage position at 11.5 mm 

(±0.5), and resolution at 17 μm -18 μm. Sample reconstruction was conducted using NRecon 

(Version 1.6.3.3 Skyscan, Bruker MicroCT, Kontich, Belgium). The x-ray produced 206, 2-D 

cross-sectional images for each sample, which was used to reconstruct 3-D structures of the each 

treatment to determine quantitative values for air cell structure and distribution analysis. The 

assessment of the binary image and data analysis of the reconstructed sample was done with 

CTan (CT Analyzer, Version 1.10.1.0 Skyscan, Bruker MicroCT, Kontich, Belgium) and 

provided data that included: air cell size, cell wall thickness, air cell distribution, % total 

porosity, volume index (VOI), structure separation distribution, structure thickness distribution, 

and object volume.  

 4.2.6. Experimental design and statistical analysis  

The experiment was setup as a completely randomized (CRD) one-way factorial design 

containing 16 lipid treatments made on 4 baking days. The treatments were randomly assigned to 

4 different days, 3 loaves per treatment, 12 treatments per day with a total of 36 loaves made on 
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each bake day. Multivariate analysis (ANOVA) was conducted using SAS (Version 9.3, SAS 

Institute Inc., Cary, NC) with comparison between sample means using Tukey’s least significant 

difference (LSD) testing at a confidence level of 95%. 

 4.3. Results 

 4.3.1 Physical and chemical properties of flour  

 4.3.1.1. Moisture analysis  

The physical and chemical testing properties of both the defatted and control flours are 

shown in Table 4.1. The removal of lipids via chloroform extraction and the drying overnight 

caused the defatted flour to have lower moisture than the control. Papantoniou et al (2004) 

showed that defatted flour had an increased affinity for water caused by the reduction of polar 

lipid-protein reactions. The greater moisture loss, increased the water absorption needed for 

bread baking (64% vs 60.5%). The mixing time was also 30 sec shorter for the control flour at 3 

min 30 sec compared to the defatted at 4 min.  

 

Table 4.1. Physical and chemical characteristics of control and defatted flours 

Parameters Control  Defatted  

Moisture content (%) 12.59 8.82 

Absorption (%)a 60.5 64 

Mix Timea 3.5 min 4 min 

aAbsorption and mix time were determined by mixograph testing and optimized during the 

baking process. 
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4.3.1.2. Mixograph  

 

 
       A. Control (60% abs)         B. Defatted (64% abs) 

Figure 4.1. Optimized mixograph results for sample flours used for testing 

 4.3.2. Physical properties of dough and bread  

Proof heights, loaf volumes, and specific volumes (Table 4.2) were measured for each 

treatment and the average proof heights varied between 7.26 cm and 8.09 cm. The control 

average height was at 7.83 cm. Five of the treatment’s average proof heights were higher than 

those of the control (0.6% bound, 1.2% bound, 2.5% bound, 0.8% free, 0.6% NPL) while all the 

rest were smaller. The loaf volumes varied over a wide range (between 690 cc and 970 cc). 

There were 7 treatment loaf volumes that were greater than the control: 0.6% bound, 1.2% 

bound, 2.5% bound, defatted, 0.6% PL, 1.4% reconstituted, and 2.8% reconstituted. The specific 

volumes, which included loaf weights as part of the calculation, also had the same results as the 

7 treatments were greater than the control.  
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Table 4.2. Physical parameter measurements for breads baked with different lipid treatments 

Treatmenta Proof Height (cm) Loaf Volume (cc) Loaf Specific Volume (cc/g) 

Control 7.83bce (0.36) 799.44bdf (20.83) 5.36cdfg (0.09) 

Bound 0.6% 7.96bd (0.10) 851.11b (74.74) 5.91bd (0.58) 

Bound 1.2% 8.09b (0.35) 969.44a (58.33) 7.05a (0.43) 

Bound 2.5% 8.06bd (0.27) 967.78a (36.50) 7.08a (0.29) 

Defatted 7.82bce (0.18) 810.56bdf (40.03) 5.58befg (0.19) 

Free 0.8% 7.78ab (0.20) 747.22cef (33.27) 5.13ce (0.17) 

Free 1.6% 7.51ade (0.21) 755.00cef (21.36) 5.35cdfg (0.23) 

Free 2.5% 7.26a (0.58) 742.22cd (50.26) 5.35cdfg (0.54) 

NPL 0.6% 7.90bd (0.11) 747.78cef (15.02) 5.09ce (0.12) 

NPL 1.2% 7.61ab (0.42) 707.78c (39.77) 4.83c (0.38) 

NPL 2.5% 7.31ac (0.49) 693.89c (57.05) 4.83c (0.42) 

PL 0.2% 7.62ab (0.60) 756.11cef (93.13) 5.34cdfg (0.46) 

PL 0.4% 7.73ab (0.38) 760.55cef (25.42) 5.25cfg (0.16) 

PL 0.6% 7.79ab (0.23) 829.44be (79.55) 5.84bf (0.74) 

Recon 1.4% 7.67ab (0.23) 822.50bdf (32.84) 5.80bf (0.27) 

Recon 2.8% 7.51ade (0.24) 852.22b (34.11) 6.19b (0.24) 

aNonpolar (NPL), polar (PL), and reconstituted (Recon) 
bMeans in the same column with different letters are significantly different at a p<0.05; (n=144)  
cValues in parenthesis are standard deviations 
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4.3.3. Macrostructure analysis of breads containing varying lipids treatments (C-Cell) 

Table 4.3 contains the results of C-Cell analysis of the lipid treatments added at varying 

concentrations (For definition of C-Cell terminology refer to Chapter 3, Table 3.9).. The 

parameters that were associated with loaf volume and gas cell distribution include: slice area, 

number of cells, area of cells, average cell wall thickness, average cell diameter, and cell 

elongation. The C-Cell results showed only the area of holes (%) and cell elongation to not be 

significantly different from the other lipid treatments The slice area, which is related to the 

overall loaf volume, had values starting with the smallest at 3664 mm2 (1.2% NPL) to the largest 

area of 5278 mm2 (1.2% bound). The control slice area fell in the middle at 4130 mm2. Several 

of the loaves had slice area measurements lower than the control (~3600-4000 mm2). These were 

mostly those loaves containing free and NPL lipid additions that also had lower loaf volumes. 

The treatments containing 0.6% bound, 1.2% bound, 2.5% bound, defatted, 0.6% PL, 1.4% 

recon, 2.8% recon all had slice area measurements that were greater than the control.  

 Significant differences were also found with the number of cells (2900-4300). The 

defatted (4287), 0.2% PL (4062), and 0.4% (4109) had the highest number of cell values of all 

the treatments. The control number of cells was 3367 and this was lower than 0.6%, 1.2%, and 

2.5% bound lipid addition, 1.4% and 2.8% recon levels, and 0.6% NPL. The larger number of 

cell values correlate to finer cells in the slice, thus all the treatments above the control in this 

study had finer cells overall. Sroan and MacRitchie (2009) determined differences between the 

type and level of lipid additions for breads. For this current study, the addition of only polar 

lipids (0-200%) showed a decrease in the number of cells (2361 down to 1985) with increasing 

levels, except for 132% and 200% PL levels, which saw an increase in the number of cells 

(Sroan and MacRitchie 2009). This same trend occurred with the NPL lipid amounts (0-200%) 

as there was a decrease in the number of cells as the percentage of these lipids increased (Sroan 

and MacRitchie 2009). 

 The area of cells (%) were highest for 1.2% bound (51%), 2.5% bound (52%), 1.6% free 

(50%), 2.5% free (51%), 0.6%PL (50%), and 2.8% Recon (50%). All of these treatments had 

higher area of cells than the control (49.87%).  The cell wall thickness values ranged between 

0.37 mm and 0.42 mm. The 2.5% bound lipid loaves had the greatest average cell wall thickness 
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(0.42 mm), which was higher than the control (0.40 mm) while the defatted, 0.2% PL, and 0.4% 

PL had the lowest wall thickness (0.37 mm). Also, the 1.6% free, 2.5% free, and 0.6% PL had 

average cell wall thickness measurements that were the same as the control at 0.40 mm. All the 

other sample treatments fell below the control and above the lowest average thickness 

measurements of (0.37 mm). Pickett (2009) also found similar cell wall thickness ranges for the 

bread flour treatments tested (0.40-0.41 mm).  

 The addition of lipids caused differences between the average cell diameter 

measurements as the average diameter ranged between 1.31 mm and 1.76 mm. The defatted 

(1.31 mm) and 0.4% PL (1.31 mm) had the lowest values and 2.5% bound (1.76 mm) had the 

largest cell size. The control average cell diameter was at 1.56 mm, with 1.2% bound (1.74 mm), 

2.5% bound (1.76 mm), 1.6% free (1.57 mm), 2.5% free (1.60 mm), and 0.6% PL (1.75 mm) 

having larger sizes. The measurement of elongation is  “associated with greater tolerance to 

distortion before rupture,” by the cell walls (Gandikota and MacRitchie 2005). The cell 

elongation measurements ranged between 1.60 and 1.76 and with no significant differences 

between them. These results were similar to Sroan and MacRitchie (2009) who also found 

elongation measurements to be between 1.60 and 1.70. In addition, the cell elongation had values 

higher than 1, indicating most of the cells were not strictly round and varied in sizes. 
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 A. Control      B. Defatted       C. 1.4% Recon         D. 2.8% Recon 

 

 

         A. Bound 0.6%     B. Bound 1.2%      C. Bound 2.5% 

Figure 4.2. C-Cell raw images of control, defatted, reconstituted (Recon) (1.4%, 2.8%), and bound (0.6%, 1.2%, 2.5%) lipid 

additions  
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           A. Free 0.8%      B. Free 1.6%         C. Free 2.5% 

 

 

 A. 0.6% NPL      B. 1.2% NPL          C. 2.5% NPL 

Figure 4.3. C-Cell raw images of free (0.8%, 1.6%, 2.5%) and nonpolar (NPL) (0.6%, 1.2%, 2.5%) lipid additions  
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   A. 0.2% PL        B. 0.4% PL          C. 0.6% PL 

Figure 4.4. C-Cell raw images of polar (PL ) (0.2%, 0.4%, 0.6%) lipid additions 
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Table 4.3. C-Cell analysis of breads containing varying lipid treatments 

Treatmenta 

Slice 

Area 

(mm2) 

Number of 

Cells 

Number 

of holes 

Area of 

Cells 

(%) 

Area of 

holes 

(%) 

Volume 

of holes 

Wall 

Thickness 

(mm) 

Cell 

Diameter 

(mm) 

Cell 

Elongation 

Control 4130.33bc 

(91.66) 

3367.33bg 

(108.56) 

4.11ab 

(1.52) 

49.87abcd 

(0.23) 

3.79a 

(0.42) 

66.80a  

(5.09) 

0.40abd 

(0.00) 

1.56abcde 

(0.04) 

1.76a 

(0.05) 

Bound 0.6% 4266.00bc 

(208.89) 

3766.67cefg 

(277.14) 

1.79abc 

(0.87) 

48.97bcd 

(1.31) 

0.77a 

(0.38) 

28.93ab 

(12.10) 

0.39cd 

(0.02) 

1.46bcde 

(0.18) 

1.72a 

(0.07) 

Bound 1.2% 5278.00ab 

(129.55) 

3817.67ag 

(202.44) 

1.04bc 

(1.02) 

51.14ab 

(1.15) 

0.58a 

(0.50) 

24.30ab 

(18.87) 

0.41a 

(0.01) 

1.74ab 

(0.16) 

1.74a 

(0.09) 

Bound 2.5% 5131.33ab 

(187.40) 

3601.00defg 

(206.16) 

1.15abc 

(1.03) 

51.74a 

(0.21) 

0.65a 

(0.51) 

27.83ab 

(16.16) 

0.42ab 

(0.00) 

1.76a 

(0.01) 

1.71a 

(0.02) 

Defatted 4309.67bc 

(169.59) 

4286.67a 

(66.34) 

2.15abc 

(1.07) 

48.51cd 

(0.78) 

1.21a 

(0.85) 

33.17ab 

(15.50) 

0.37c 

(0.00) 

1.31ce 

(0.07) 

1.64a 

(0.08) 

Free 0.8% 3830.00c 

(63.41) 

3360.67bg 

(102.87) 

2.63abc 

(1.05) 

49.04bcd 

(0.55) 

2.21a 

(0.74) 

50.60ab 

(12.36) 

0.39cd 

(0.00) 

1.45cde 

(0.02) 

1.78a 

(0.05) 

Free 1.6% 3831.33c 

(122.66) 

3063.67b 

(140.30) 

0.89c 

(1.12) 

50.05abcd 

(0.46) 

0.52a 

(0.74) 

18.97ab 

(17.72) 

0.40abd 

(0.00) 

1.57abcde 

(0.08) 

1.78a 

(0.04) 

Free 2.5% 3838.33c 

(327.13) 

2947.00b 

(212.45) 

0.17c 

(0.20) 

50.64abd 

(0.15) 

0.08a 

(0.11) 

7.00b 

(4.94) 

0.40abd 

(0.00) 

1.60abde 

(0.04) 

1.74a 

(0.07) 

NPL 0.6% 3914.33c 

(148.00) 

3603.33defg 

(198.07) 

2.80abc 

(1.27) 

48.27cd 

(0.61) 

2.18a 

(1.68) 

46.03ab 

(24.89) 

0.38cd 

(0.01) 

1.37cde 

(0.07) 

1.74a 

(0.04) 
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NPL 1.2% 3664.33c 

(287.79) 

3264.33bd 

(258.09) 

2.31abc 

(0.99) 

48.97bcd 

(0.50) 

3.79a 

(3.78) 

64.90ab 

(41.00) 

0.39cd 

(0.01) 

1.40cde 

(0.06) 

1.73a 

(0.04) 

NPL 2.5% 3761.00c  

(153.80) 

3298.00bf 

(93.55) 

3.42ab 

(1.29) 

49.47bcd 

(0.32) 

2.63a 

(1.75) 

52.73ab 

(21.21) 

0.39cd 

(0.00) 

1.46bcde 

(0.06) 

1.76a 

(0.05) 

PL 0.2% 4202.67bc 

(146.85) 

4062.33ae 

(77.02) 

3.94b 

(0.29) 

48.93cd 

(0.64) 

3.18a 

(1.87) 

53.40ab 

(21.83) 

0.37c 

(0.01) 

1.32ce 

(0.05) 

1.71a 

(0.05) 

PL 0.4% 4091.33bc 

(92.03) 

4109.00ac 

(32.92) 

2.52abc 

(0.18) 

48.70cd 

(0.36) 

1.77a 

(1.30) 

41.83ab 

(22.91) 

0.37c 

(0.00) 

1.31ce 

(0.07) 

1.70a 

(0.02) 

PL 0.6% 4659.33ab 

(686.07) 

3773.67cefg 

(106.10) 

3.36ab 

(1.66) 

50.27abcd 

(1.62) 

2.49a 

(1.99) 

54.70ab 

(22.42) 

0.40abd 

(0.02) 

1.63abd 

(0.23) 

1.75a 

(0.03) 

Recon 1.4% 4361.00bc 

(277.18) 

3632.67cdefg 

(139.63) 

0.43c 

(0.34) 

49.93abcd 

(0.51) 

0.20a 

(0.18) 

10.43ab 

(5.89) 

0.39bcd 

(0.01) 

1.50abcde 

(0.07) 

1.70a 

(0.02) 

Recon 2.8% 4815.67ab 

(113.81) 

3939.00ae 

(63.38) 

0.85c 

(0.47) 

50.37abcd 

(0.06) 

0.38a 

(0.31) 

21.77ab 

(11.87) 

0.39bcd 

(0.00) 

1.55abcde 

(0.00) 

1.72a 

(0.01) 

a Nonpolar (NPL), polar (PL), and reconstituted (Recon) 
bMeans in the same column with different letters are significantly different at a p<0.05; (n=48) 
cValues in parenthesis are standard deviations 
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 4.3.4. Microstructure analysis of center pieces of bread containing varying lipids 

treatments (X-ray Microtomography) 

The benefits of XMT analysis for aerated systems stem from its ability to view samples 

without compromising their integrity and creating 3-D images from the initial “projections.” This 

is based off shadows, varying densities, and molecular weight of the tested sample (Moreno-

Atanasio et al 2010). Utilizing an x-ray source, more specifically, an x-ray cone beam, the 

sample is rotated within the field of view of the beam where photons are either absorbed or pass 

through the sample, then gathered and collected by the detector. The rays returned to the detector 

are converted to a digital image (Moreno-Atanasio et al 2010). The projections can then be 

converted into a 3-D image using algorithms in the analysis software (Moreno-Atanasio et al 

2010). Because bread is an open structure, the shape, size, and alignment of cells can be different 

from sample to sample or between types of bread. This microstructure influences overall crumb 

grain and texture (Cafarelli et al 2014; Van Dyck et al 2014). These changes in structure are 

caused during the breadmaking process, starting with mixing where air cells are incorporated, 

then fermentation by the growth of cell size, and finally where there is an increase in loaf size 

and cell wall separation when the bread sets (Besbes et al 2013).  

The parameters measured from the reconstructed images include: volume of interest 

(VOI), solid volume, fragmentation index, cell wall thickness, gas cell size, number of gas cells, 

and total porosity. The “VOI” or volume of interest is determined from the series of “binary 

images,” which eliminate undesirable background noise from the image (Van Dyck et al 2014). 

This value is the total area that was measured for each treatment. The rest of the measurements 

come from the area within the sample’s VOI (Brubaker-MicroCT 2014). The object volume (%) 

is the “average percentage of solids occupied in the VOI ” (Brubaker-MicroCT 2014). It 

constitutes the percentage of structure that is in the solid phase (Cafarelli et al 2014b). The 

fragmentation index is the degree of “concavity or convexity” of the cells. This is correlated to 

the connectivity (concavity) or the “isolated disconnection” (convexity) of the structure (Bruker-

MicroCT 2014; Pickett 2009: Cafarelli et al 2014). The value of the fragmentation index can 

either be positive or negative.  Smaller negative values are related to the connectivity (concavity) 

of sample and larger positive values related to discontinuities (convexity) (Cafarelli et al 2014). 

The structure thickness is a measure of the average cell wall thickness of the walls within the 
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region of interest (VOI) (Cafarelli et al 2014; Van Dyck et al 2014). Gas cell size is the average 

gas cell size found within the VOI (Cafarelli et al 2014). Number of objects measurement is the 

“total number of discreet binarised objects within the VOI where a discreet 3D object is a 

connected assemblage of solid (black) voxels fully surrounded on all sides in 3D by space 

(white) voxels” or simply stated, the number of gas cells (Bruker-MicroCT 2014). The total 

porosity is a percentage measure of all open and closed pores within the VOI (Bruker-MicroCT 

2014; Van Dyck et al 2014).  

Table 4.4. Structure parameters tested by X-ray microtomography 

Parameter Definition Unit of measure 

Volume index (VOI) 
Volume of sample used in 

XMT testing 
(μm3) 

Solid volume 
Percentage volume of solid 

structure in the VOI 
% 

Fragmentation index Measure of cell connectedness  (1/ μm) 

Cell wall thickness 
Average thickness of the cell 

walls 
(μm) 

Gas cell size Average size of gas cells  (μm) 

Number of gas cells 
Amount of gas cells in the 

VOI 
N/A 

Total porosity 
Percentage of void space 

within the VOI of the sample 
% 

 

In addition to the measurements listed above, gas cell size and cell wall thickness 

distributions from each tested sample were determined from the reconstructions and 3-D image 

analysis. Distribution curves for both gas cell size and cell wall thickness were plotted against 

the frequency (% appearance) at which specific cell wall thickness or gas cell sizes were found 

for each treatment. The gas cell size distributions were also converted to cumulative distribution 

curves to allow for determination of percentile measurements of gas cells at different frequencies 

(25%, 50%, 75%, and 95%).  
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(a)  (c)  

 

(b)  (d) 

Figure 4.5. XMT scan results for center section of bread slice for bound samples at 0.6%, 1.2%, and 2.5% addition (a) cell wall 

thickness distribution, (b) cumulative cell wall thickness distribution, (c) gas cell size distribution (d) cumulative gas cell size 

distribution 
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Bound lipids were added 0.6%, 1.2%, and 2.5%. The bound lipids extracted from the 

flour contained 0.04g/200g flour or 0.02% polar lipids total in the sample fraction. Figure 4.5 

shows the (a) cell wall thickness distribution, (b) cumulative cell wall thickness distribution, (c) 

gas cell size, and (d) cumulative gas cell size distribution as a function of frequency. Average 

cell wall thickness distributions were relatively similar for all treatments. All three curves had 

thickness ranges between 40 μm and 300 μm. The highest thickness frequency for all three 

treatments was 143 μm with 1.2% bound addition having the greatest percentage (24%) for that 

specific thickness. This was followed by the 0.6% addition at 24%, and 2.5% addition at 23%. 

Also, 1.2% bound had a higher frequency at 107 μm (23%). This trend wasn’t seen with the 

other two samples. The cumulative cell wall thickness curve for bound lipid addition showed 

only a small shift in distributions for the average cell wall thickness with the greater amounts. At 

the higher concentrations, the curves moved to the right indicating an increase in the wall 

thickness. However, the bound lipid additions at 0.6% and 1.2% had slightly thinner walls than 

did the 2.5% bound. It is important to note that the shift in the distribution was very small for all 

three samples. Overall, the addition of bound lipids resulted in minimal differences in both the 

cell wall thickness and cumulative cell wall thickness distributions indicating there was little to 

no effect of bound lipid addition on altering the thickness of the cell walls. 

The average gas cell size distribution curves for the three bound lipid additions showed 

tall, narrow peaks in the ranges of 0 μm to 1700 μm. This indicated that small gas cells were 

present in all three treatments. However, the highest concentration of bound lipids caused a 

decrease in the number of these smaller cells. Bound lipid addition at 0.6% had the highest 

frequency of cells (6.2%) at 428 μm while the 1.2% bound lipids had more gas cells of 518 μm at 

a lower frequency (5.0%). The 2.5% had the lowest peak percentage in this same small cell 

region with 4.3% being at a size of 536 μm. There was also a distribution of sizes that extended 

into the mid-range (2000-6000 μm), but these were all at a lower frequency than were the smaller 

cells. The average cumulative gas cell size curves shifted to the left with the addition of all levels 

of bound lipids to a larger population of cells below 1 mm in diameter. The 1.2% level also had a 

larger frequency of cells that were higher than 1.5 mm in diameter. The increased gas cell sizes 

would suggest either a larger number of cells were incorporated during mixing or these cells 

were able to undergo a greater amount of expansion, which would be reflective of an overall 

increased loaf volume.  
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(a)  (c) 

 

(b)  (d) 

Figure 4.6. XMT scan results for center section of bread slice for free samples at 0.8%, 1.6%, and 2.5% addition (a) cell wall 

thickness distribution, (b) cumulative cell wall thickness distribution, (c) gas cell size distribution, (d) cumulative gas cell size 

distribution. 
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Free lipids at any addition level (Figure 4.6a) resulted in greater diversity in the average 

cell wall thickness measurements. Of the free lipid fraction, only 0.03 g/200g (0.01%) were polar 

lipids. The thickness distribution ranged between 40 μm and 450 μm and both the 0.8% and 

1.6% treatment had a broader spread than did the 2.5% addition. Most of the 2.5% free were 

between 40 μm and 300 μm in thickness with a higher percentage (21.5%) of the distribution at 

141.27 μm. The 0.8% and 1.6% treatment resulted in a greater shift with the values falling 

between 141 μm and 177 μm at a lower frequency. In this case, the addition of free lipids did 

cause a difference in the cell wall thickness. The loaves with the highest level of free lipid 

addition had the thinnest cell walls. Average cumulative cell wall thickness distributions for free 

lipid additions (Figure 4.6b) showed 2.5% free lipid addition to have the the thinnest cell walls. 

The other two samples’ curves were shifted more to the right than the 2.5% curves, which 

indicates a higher frequency of thicker cell walls. A larger gap existed in the distribution starting 

at 50%, where the thickness values were 0.14 mm (free 2.5%), 0.17 mm (free 0.8%), and then 

0.21 mm (1.6% free). The free lipid had a larger effect on cell wall thickness and this was 

dependent upon concentration.  

 A difference in gas cell size distribution was found between the levels of free lipid 

addition (Fig. 4.6c). The gas cell size showed the biggest spread between 0 μm and 2000 μm. 

The 2.5% free had the widest distribution of cells between 0 μm and 2000 μm, while lower levels 

of free resulted in a range between 0 μm and 1350 μm. There was also a large peak extending 

between 3500 and 4000 μm (specifically 3772 μm) with the 2.5% free. This was not seen with 

the other two treatments. The 2.5% free lipid addition had the highest frequency (6.4%) of cells 

at 524 μm and at 3772 μm (5.37%). In contrast, the highest frequency cell size (51%) for the 

0.8% addition was at 419 μm and the 1.6% free addition (4.5%) at 524 μm. The 2.5% free lipid 

addition resulted in a wider range of gas cell sizes than the same fraction at lower inclusion 

levels. This suggested that the reduced level of polar lipids available to provide stability at the 

interface might have caused an increase in cell coalescence. The average cumulative gas cell size 

distribution shown in Figure 4.6d showed a considerable variation between the 2.5% free lipids 

and the other two lipid levels. The 2.5% free distribution was shifted much farther to the left than 

the other two samples indicating smaller cells. The biggest differences were seen beyond > 1.0 

mm cell size as the frequency of the distribution between 1 mm and 4 mm was much higher than 

that of the lower levels of free lipid addition. At 50%, the cells for the 2.5% level fall below 1.0 
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mm in size as compared to sizes for 0.8% (1.9 mm) and (1.6%) (2.5 mm). Overall, the addition 

of triple the original amount of free lipids caused the distribution of the cells to become much 

smaller than the other two treatment samples indicating a reduction in the amount of cell 

coalescence.  
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(a)  (c) 

 

(b)  (d) 

Figure 4.7. XMT scan results for center section of bread slice for nonpolar (NPL) samples at 0.6%, 1.2%, and 2.5% addition 

(a) cell wall thickness distribution, (b) cumulative cell wall thickness distribution, (c) gas cell size distribution, and (d) 

cumulative gas cell size distribution 
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The relationships between cell wall thickness distribution and gas cell size for the NPL 

additions (0.6%, 1.2%, and 2.5%) are shown in Figure 4.7. Cell wall thickness distributions were 

very broad with thicknesses between 40 μm and 400 μm. The 0.6% level had the smallest spread 

in the average cell thickness spread (40 μm-350 μm) with the highest frequency at 141 μm. The 

1.2% and 2.5% NPL had the highest frequency (16% and 17%, respectively) at 177 μm cell wall 

thicknesses. The 1.2% and 2.5% samples had lower frequency distribution than the 0.6%, at a 

wider range (40-400 μm). For these treatments the cell walls were thicker indicating a higher 

concentration of solids in the samples. This in-turn, would show that a change in the overall 

volume was caused by a reduction in air cell entrapment or cell expansion. The NPL fractions 

are known to contain higher levels of free fatty acids, which are detrimental to loaf volumes as 

they are unable to support and stabilize gas cells similar to polar lipids (MacRitchie and Gras 

1973). The average cumulative thickness distribution for NPL (Figure 4.7b) had thinner cell wall 

distribution for the 0.6% NPL than for the other two samples tested. Although the results only 

had small shifts between each distribution, the 1.2%, and 2.5% thickness distributions were 

closer to one another than the 0.6% NPL addition. Larger amounts of NPL caused a shift in the 

thickness distribution by creating breads with thicker cell walls. The addition of NPL reduced the 

dough’s ability to entrapt air cells during mixing or allow for volume expansion over time. 

The gas cell size distribution (Figure 4.7c) showed varying cell size frequencies that 

peaked between 0 μm and 2000 μm and again at 3500 μm to 5000 μm. The curve for the 2.5% 

had the greatest difference in frequencies between 1000 μm and 2000 μm while the lower two 

levels showed narrower peaks between 0 μm and 1500 μm. The 2.5% had the highest frequency 

of cells at 529.24 μm (5.2%) while the 0.6% (5.1%) and 1.2% (5.0%) had a larger frequency of 

cells at 424 μm. Also, all levels of the NPL had several cells that fell into the higher size regions 

between 3500-5000 μm. These peaks could be associated with one large cell causing an increase 

in the distribution at that size range or due to the deleterious effects of NPL not preventing 

coalescence over time. The increased level of NPL caused the widest spread in gas cell size 

distribution. The average cumulative gas cell size distribution (Figure 4.7d) illustrated that most 

the cell size distributions were relatively the same (30%) for the treatments as most of the cells 

were below 1.0 mm. Beyond 30%, there was a change in cell size for the lower level NPL 

addition. Lower levels of NPL had cells at larger diameters while the 2.5% NPL had a much 
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higher frequency of smaller cells. Thus, the expansion and size of the cells differed at the lower 

levels of NPL additions. 
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(a)  (c) 

 

(b)  (d) 

Figure 4.8. XMT scan results for center section of bread slice for polar (PL) samples at 0.2%, 0.4%, and 0.6% addition (a) cell 

wall thickness distribution, (b) cumulative cell wall thickness distribution, (c) gas cell size distribution, (d) cumulative gas cell 

size distribution 
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The PL addition caused very little change in the average cell wall thickness distributions 

and the average cumulative cell wall thickness distribution (Figure 4.8 a, b). The average cell 

thickness range for all three levels fell between 40 μm and 300 μm in thickness with all three 

treatments having the highest frequency at 143 μm. As the concentration of PL increased, there 

was a slight decrease in the frequency at 143 μm. The 0.6% PL samples contained the thinnest 

walls and the 0.2% PL addition the thickest. Most of the thickness fell below 0.15 mm and the 

separations between the curves only occurred between the samples once the thickness was 

greater than 0.2 mm. 

The average gas cell size distribution curves (Figure 4.8 c) determined that most of the 

cell sizes were below 2000 μm but there was an evident shift between the cell size distributions 

between the levels of PL addition. The 0.2% had the thinnest peak with the highest peak height 

within the cell range of 0.0 μm and 1300 μm. The addition of 0.4% PL shifted the peak slightly 

to the right and widened the overall range of the cells to 1860 μm. There was also a drop in the 

peak height (5.8%) for the 0.6% PL peak where most of the cells were at 438 μm. For the 0.2% 

PL addition the largest number of cells (7.6%) were at 328 μm cell size and the 0.4% PL (7.1%) 

showed a shift to the right for the peak height to 547 μm size. There was also a higher frequency 

of cells in the 4000-6000 μm range, but as stated previously, this could be contributed to one or 

two larger cells causing the skewed distribution or there could be a series of large cells in the 

sample. This in the end would affect both the textural properties and the microstructure. From 

the average cumulative gas cell size distribution curve (Figure 4.8 d) the cell distribution was 

found to be larger for 0.2% and the 0.6% PL addition as the 0.4% PL had a smaller amount of 

cells between the 1.0 mm-3.0 mm. In comparison the 0.2% PL and 0.6% PL addition levels had 

cell sizes more similar to one another. 
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(a)  (c) 

 

(b)  (d) 

Figure 4.9. XMT scan results for center section of bread slice for free (0.8-2.5%) vs bound samples (0.6-2.5%) (a) cell wall 

thickness distribution, (b) cumulative cell wall thickness distribution, (c) gas cell size distribution, (d) cumulative gas cell size 

distribution.
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The comparison of the free lipid concentrations versus bound lipid concentrations for cell 

wall thickness distribution, average cumulative cell wall distribution, gas cell size distribution, 

and average cumulative gas cell size distribution are shown in Figure 4.9 a-d. When comparing 

the average cell wall thickness distribution curves (Figure 4.9a), the range of thicknesses fell 

between 40 μm and 400 μm. All three bound lipid fractions showed narrower distributions (40 

μm -300 μm) than the free as the spreads of those curves were wider. The maximum heights of 

each of the three bound treatments had a thickness value at 142.86 μm. The 2.5% free also had a 

peak height occur at 143 μm but this thickness was at a much lower frequency (20%). The peak 

area also widen (280 μm-357 μm) more than all the bound treatments. The 0.8% free and 1.6% 

free had a much broader spread in the distributions ranging from 50-392 μm and thus, the free 

samples had thicker cell walls than the bound lipid samples. Average cumulative cell wall 

thickness distribution (Figure 4.9b) showed a greater difference and spread between free samples 

as compared to the bound lipid treatment addition. Most of the cell wall thickness distributions 

for the bound lipid additions fell below 2.0 mm. The free lipids addition showed to have greater, 

overall thicknesses as the spacing between the curves were much bigger than the bound. This 

illustrated that the free bread loaves had thicker cells walls at all levels than the bound lipid 

loaves did. 

For the gas cell size distribution (Figure 4.9c), most of the distribution for both the free 

and bound lipid addition fell between 0 μm and 1700 μm, with the exception of the 2.5% free. 

The 2.5% free had a large gas cell distributions ranging up to 2000 μm. Free lipid addition at 

0.8% (5.1%) and 1.6% (4.5%) and bound lipid addition at 1.2% (5.0%) and 2.5% (4.3%) all had 

cell sizes with the highest peak distributions at 524 μm. The 0.6% bound had the highest peak 

distribution (6.3%) of gas cells at 419 μm and the 2.5% free at 629 μm (6.5%). For all 

treatments, there was also a large distribution of gas cells that ranged between 3000-6000 μm. At 

this distribution range, a greater amoung of larger cells were located throughout the loaf matrix 

with the various levels of lipid addition. Overall, the 2.5% free showed the widest gas cell size 

distribution, while most of the other treatment had a narrower curve spread made up of smaller 

cells. When looking at the cumulative gas cell size distributions (Figure 4.9d), all the treatments 

were relatively close to one another in size distribution while consisting of a mixture of sizes. 

This was the case for both free and bound, except for the 2.5% free lipid samples. This particular 

curve was more isolated due to a larger distribution of smaller cells. 
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(a)  (c) 

 

(b)  (d) 

Figure 4.10. XMT scan results for center section of bread slice for all treatments at varying concentrations (a) cell wall 

thickness distribution, (b) cumulative cell wall thickness distribution, (c) gas cell size distribution, (d) cumulative gas cell size 

distribution. 
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 The distribution curves for cell wall thickness and gas cell size for all lipid treatments at 

all concentrations are shown in Figure 4.10. The cell wall thickness distribution curves varied 

depending on the treatments with most of the curves falling between 0 μm and 300 μm. The 

0.8% free, 1.6% free, 1.2% NPL, and 2.5% NPL curves were wider in distribution and extended 

outward from 0 μm to 400 μm. The control most frequent thickness fell in the middle of the other 

samples. The defatted, 2.8% recon, and 0.6%PL breads had greater frequencies at 141 μm 

thickness. The cumulative cell wall distribution showed similar trends. Most of the treatments 

fell close to the control with very limited shifts in the distributions. Again, 0.8% free, 1.6% free, 

1.2% NPL, and 2.5% NPL had larger values reflecting thicker cell walls than all the other 

treatments. The defatted, 0.6% PL, and 2.8% recon loaves had the thinnest cell walls of all the 

samples (farthest left on the graph). The control, 1.2% bound, and 2.5% bound were the most 

similar to one another. Their distributions were at the lower end of the plot, closer to the defatted 

and 2.8% recon. In this case, a larger number of thicker cell walls could be signs of a more 

compacted cell structur and reduced volume. 

The gas cell size distribution (Figure 4.10c) for all the lipid treatments existed in a 

narrower range of 0 μm -1000 μm. The 2.5% lipid addition of both the free and NPL had a large 

number of gas cells between 1000 μm and 2000 μm in size. The defatted sample had the highest 

peak (frequency 9.5%) at 419 μm followed by the 1.4% recon and 0.2% PL. The control, 1.2% 

bound, and 0.4% PL had shifts in the curve to 524 μm size while 2.5% NPL and 0.6% PL had the 

most gas cells at 629 μm. All the treatments were either equivalent in frequency or higher than 

the control except for 1.6% free and 2.5% bound. For all samples, excluding the defatted, there 

was also a group of cells between 4000 μm and 6000 μm. The cumulative gas cell size 

distribution curve also had diverse distribution of gas cell sizes throughout all the treatments. 

The control loaves size distribution fell almost directly in the middle with a large group of other 

lipid treatment being very close in distributions. The 2.5% free and defatted samples had the 

smallest overall gas cell size distribution On the other side, 1.6% free, 2.5% bound, and 2.8% 

reconstituted samples had greater gas cell size distributions than all the other treatments.  

From the distribution curves, values for the eight parameters (VOI, object volume, 

fragmentation index, structure thickness, structure separation, number, and total porosity) are 

shown in Table 4.5. There were no significant differences between any of the VOI measurements 

for all treatments tested (2.19E12 μm3 to 3.05E12 μm3). The % solid volume also showed no 
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significant differences between any treatments. The 2.5% free and 2.5% NPL samples had the 

highest % solid volume (15%) and the 2.5% bound had the lowest percentage (9%). The NPL 

lipid addition had a greater amount of solids. The fragmentation index, which measures the 

connectivity of the sample, determined that all the samples had tightly connected structure as all 

the values were smaller than 1 (-0.00053-0.00315 1/μm). Some values were negative, which 

indicated concavity (highly connected). Cafaralli et al (2014) also found similar results (-0.001-

0.003 1/μm) for fragmentation index for French bread samples analyzed with XMT.  

The average cell wall thickness for each treatment sample was between 153 μm and 225 

μm. The 1.6% free lipid addition had the highest average structure thickness at 225.12 μm while 

the defatted (154 μm) and the 1.2% bound (154 μm) samples had the lowest average structure 

thickness. The samples containing 1.2% NPL, 2.5% NPL, 0.8% free, and 1.6% free had average 

cell wall thicknesses between 200 μm and 225 μm. These results were bigger than the average 

thickness values determined for white pan bread by Falcone et al (2004) (28.3- 77.4 μm) and for 

a variety of breads tested by Primo-Martin et al (2010) (85-90 μm). In addition lower average 

cell wall thickness results were seen by Falcone et al (2005) (248-600 μm), Besbes et al (2013) 

(240 μm), Cafarelli et al (2014) (521-986 μm),and Van Dyck et al (2014) (170-190 μm).  

The average gas cell size measurments ranged between 1590 μm and 2650 μm for the 

addition of lipids treatments, control, and defatted samples. There was no significant difference 

between the average gas cell size for any of the tested treatments. The 2.5% bound had the 

largest average cell size (2625 μm) and 2.5% free had the smallest size (1593 μm). These results 

were found to be higher than what were observed by Falcone et al (2005) (44 μm), Besbes et al 

(2013) (890 μm), and Cafarelli et al (2014) (375-450 μm). The number of gas cells differed 

between each sample treatment (36773-102661). Polar lipids added to bound, PL, and recon 

were significantly higher for the number of gas cells while the control, free, and NPL samples 

had the lowest. Total porosity measurements were found to not be significantly different for any 

of the tested treatments ranging between 84% and 91%. The sample with the lowest total 

porosity measurement was both the 2.5% free (85%) and 1.2 % NPL (85%). The highest total 

porosity was the 2.5% bound (91%). The total porosity results were very similar to those found 

by both, Primo-Martin et al (2010) (60-80%) and by Besbes et al (2013) (75-80%).  
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Table 4.5. XMT results for breads containing varying lipid treatments 

Treatment 

Volume 

index 

(VOI) 

(μm3) 

Solid 

volume 

(%) 

Fragmentation 

index 

(1/μm) 

Cell wall 

thickness 

(μm) 

Gas cell size 

(μm) 

Number of 

gas cells 

Total porosity 

(%) 

Control 
2.89E12a 

(2.20E11) 

12.07a 

(1.09) 

-0.00194ab 

(0.00) 

166.08c 

(6.38) 

2288.08a 

(418.49) 

36925.68b 

(6981.15) 

87.93a 

(1.09) 

Bound 0.6% 
3.05E12a 

(5.62E11) 

12.29a 

(1.00) 

-0.00054b 

(0.00) 

166.52c 

(14.48) 

2131.87a 

(293.62) 

67357.33ab 

(15042.24) 

87.72a 

(1.00) 

Bound 1.2% 
2.60E12a 

(2.01E11) 

9.50a 

(2.09) 

0.00177ab 

(0.00) 

153.95c 

(17.88) 

1904.60a 

(132.40) 

57317.00ab 

(10865.80) 

90.50a 

(2.09) 

Bound 2.5% 
2.80E12a 

(9.09E11) 

9.18a 

(0.31) 

-0.00082b 

(0.00) 

174.49bc 

(25.61) 

2625.24a 

(519.49) 

50027.33b 

(2095.28) 

90.82a 

(0.31) 

Defatted 
2.19E12a 

(2.16E11) 

14.93a 

(2.48) 

-0.00059b 

(0.00) 

153.25c 

(11.63) 

1206.96a 

(208.75) 

63657.00ab 

(9546.42) 

85.07a 

(2.48) 

Free 0.8% 
2.90E12a 

(2.32E11) 

13.67a 

(1.23) 

-0.00170ab 

(0.00) 

208.68ab 

(15.52) 

2372.15a 

(522.73) 

44550.68b 

(32117. 82) 

86.33a 

(1.23) 

Free 1.6% 
3.01E12a 

(1.16E11) 

10.95a 

(1.60) 

0.00118ab 

(0.00) 

225.12ab 

(27.46) 

2772.84a 

(324.48) 

52703.33b 

(17998.64) 

89.05a 

(1.60) 

Free 2.5% 
2.63E12a 

(9.01E11) 

15.21a 

(2.44) 

-0.00123ab 

(0.00) 

183.54abc 

(14.11) 

1593.01a 

(857.55) 

42727.33b 

(11627.76) 

84.79a 

(2.53) 

NPL 0.6% 
2.62E12a 

(2.68E11) 

13.57a 

(1.43) 

-0.00154ab 

(0.00) 

185.56abc 

(3.72) 

2072.75a 

(335.54) 

48991.00b 

(123.12) 

86.43a 

(1.43) 

NPL 1.2% 
2.84E12a 

(4.17E11) 

15.21a 

(2.53) 

-0.00278ab 

(0.00) 

216.16ab 

(27.83) 

2455.68a 

(533.40) 

50246.00b 

(9176.86) 

84.79a 

(2.53) 

NPL 2.5% 
2.41E12a 

(5.68E11) 

14.24a 

(3.21) 

-0.00130ab 

(0.00) 

203.55ab 

(11.24) 

2111.44a 

(1017.61) 

36773.00b 

(8896.91) 

85.76a 

(3.21) 

PL 0.2% 
2.58E12a 

(1.31E11) 

13.87a 

(2.42) 

0.00055b 

(0.00) 

171.49bc 

(23.67) 

2016.95a 

(325.83) 

83020.33ab 

(13147.28) 

86.13a 

(2.42) 
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PL 0.4% 
2.34E12a 

(6.78E11) 

13.36a 

(5.62) 

-0.00053b 

(0.00) 

174.98bc 

(8.29) 

2109.87a 

(1182.73) 

44570.67b 

(5564.29) 

86.64a 

(5.62) 

PL 0.6% 
2.63E12a 

(3.00 E11) 

10.98a 

(2.62) 

0.00277a 

(0.00) 

166.46bc 

(10.83) 

2312.65a 

(460.11) 

62005.00ab 

(16213.52) 

89.02a 

(2.62) 

Recon 1.4% 
2.51E12a 

(2.83E11) 

11.95a 

(2.28) 

0.00315a 

(0.00) 

179.39abc 

(11.94) 

2097.82a 

(404.48) 

102660.67a 

(28291.01) 

88.05a 

(2.28) 

Recon 2.8% 
2.66E12a 

(8.66E11) 

9.40a 

(0.76) 

0.00192a 

(0.00) 

157.89a 

(6.55) 

2589.90a 

(181.44) 

59073.67a 

(5348.29) 

90.60a 

(0.76) 
a aNonpolar (NPL), polar (PL), and reconstituted (Recon) 
bMeans in the same column with different letters are significantly different at a p<0.05; (n=48)  
cValues in parenthesis are standard deviations 
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Table 4.5 contains the percentile values for 25%, 50%, 75%, and 95% markers from the 

cumulative distributions curves (see above graphs) for gas cell size. Significant differences 

between the air cell size distributions were only seen at the 25th percentile. From this data it 

shows that 25% of the total volume was made up of cells ranging between 421 μm and 812 μm. 

The control had an average size at 678 μm. The biggest differences were that 25% of the center 

section bread made from defatted flour had an average gas cell size of 421 μm, which was 

significantly different from the 1.6% free cell sizes (792 μm), and 2.5% bound (821 μm). All the 

other treatments at this percentile range fell in between the defatted and 2.5% bound. At the 95th 

percentile, the highest average gas cell was 5792 μm (2.8% recon) with all the other treatments 

being below this size. Between the 25th percentile and 50th percentile the cell size more than 

doubled for all treatments indicating an overall growth and varying range of cell sizes within the 

center section of the different breads tested. Less expansion in cell size was seen for both the 

2.5% free and defatted samples as these treatments had the smallest gas cell size distribution at 

each percentile.  
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Table 4.6 Gas cell size percentile distributions for lipid treatments  

Treatment 
25% 

(μm) 

50% 

(μm) 

75%  

(μm) 

95% 

(μm) 

Avg. gas cell size 

(μm)  

Control 678.02ab (43.02) 2216.37a (395.11) 3766.12a (1011.56) 5093.67a (506.19) 2288.08a (418.49) 

Bound 0.6% 559.10ab (27.01) 2029.66a (370.52) 3546.71a (457.55) 3811.33a (916.59) 2131.87a (293.62) 

Bound 1.2% 656.23ab (87.34) 1716.50a (42.11) 3122.36a (294.28) 4051.00a (388.27) 1904.60a (132.40) 

Bound 2.5% 812.91b (174.94) 2582.70a (580.31) 4229.41a (801.26) 5623.13a (1136.57) 2625.24a (519.49) 

Defatted 421.83a (33.69) 854.44a (155.96) 1922.27a (370.29) 3022.02a (489.92) 1206.96a (208.75) 

Free 0.8% 743.02ab (281.73) 2212.71a (757.68) 3863.60a (941.40) 5168.03a (534.61) 2372.15a (522.73) 

Free 1.6% 792.37b (66.87) 2847.31a (382.87) 4494.91a (523.40) 5846.29a (1018.09) 2772.84a (324.48) 

Free 2.5% 559.40ab (37.66) 1476.10a (902.20) 2478.93a (1563.96) 2904.44a (1051.47) 1593.01a (857.55) 

NPL 0.6% 617.79ab (63.64) 1888.69a (542.43) 3553.80a (503.29) 4342.22a (705.17) 2072.75a (335.54) 

NPL 1.2% 682.52ab (809.91) 2512.37a (682.34) 3895.06a (81.53) 5224.79a (1032.72) 2455.68a (533.40) 

NPL 2.5% 703.14ab (146.98) 2154.68a (1084.45) 3435.40a (1879.83) 4181.44a (2112.50) 2111.44a (1017.61) 

PL 0.2% 454.39ab (54.10) 1950.04a (652.87) 3490.80a (589.62) 4403.80a (387.67) 2016.95a (325.83) 

PL 0.4% 619.95ab (189.49) 2194.14a (1365.27) 3385.42a (2076.93) 4218.10a (2277.73) 44570.67b (5564.29) 

PL 0.6% 617.74ab (137.91) 2247.12a (574.72) 3836.14a (767.16) 4931.18a (759.82) 62005.00ab (16213.52) 

Recon 1.4% 484.92ab (112.18) 2129.41a (433.67) 3520.78a (698.99) 4487.66a (691.17) 102660.67a (28291.01) 

Recon 2.8% 613.87ab (45.89) 2510.19a (337.37) 4357.90a (291.74) 5792.29a (515.84) 59073.67a (5348.29) 

a Nonpolar (NPL), polar (PL), and reconstituted (Recon) 
bMeans in the same column with different letters are significantly different at a p<0.05; (n=48)  
cValues in parenthesis are standard deviations
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 4.4. Discussion 

The expansion of dough during the bread-making process is essential for a quality 

product as it contributes not only to the overall size of the loaf, but also in the development of 

crumb grain, mouth-feel, and the overall texture of the product (Cafarelli et al 2014b;Van Dyck 

et al 2014). Because of the porous nature of the crumb grain, the incorporation of air cells and 

expansion of the dough is crucial for the final product. This is essential for changing the foam 

into a sponge through the setting of the structure during baking (Cafarelli et al 2014b). The 

shape, size, positioning, and linkage between the cells can all differ (Cafarelli et al 2014a). 

Because air cells are only incorporated during mixing phase, the continuous expansion of the 

dough is solely based on the production of CO2 from yeast, the doughs’ ability to hold and retain 

the CO2, the diffusion of gas into the incorporated air cells, and amount of gas cell coalescence 

(Cafarelli et al 2014a). Expansion is highly reflective of the dough’s abililty to retain gas within 

the matrix (Moore and Hoseney 1986). The development of the bread typically occurs in the 

configuration of a “dome” and the small, incorporated air cells that start as “cylindrical” in shape 

will continue to expand over time and the cell shapes will change due to the expanding pore 

volume (Cafarelli 2014a).  

From this study, seven of the tested treatments had loaf volumes that were close to or 

better than that of the control. These treatments included defatted, 0.6% bound, 1.2% bound, 

2.5% bound, 0.6% PL, 1.4% reconstituted, and 2.8% reconstituted. All the other treatments had 

lower loaf volumes than the control. The lower loaf volumes indicated that these lipid fractions, 

at all concentration levels, had no improving effect on the loaf volume. MacRitchie and Gras 

(1973) found that nonpolar lipids were detrimental to loaf volumes and results found in this 

study are in agreement with these earlier findings. NPL fractions typically contain higher 

concentrations of free fatty acids that combine with amylose to form amylose-lipid complexes, 

preventing them from being surface active (Gerits et al 2014). The NPL showed an increases in 

cell wall thickness suggesting less expansion or more coalescence making the structure denser 

with a higher percentage of solids in the sample.  

Comparing the 7 treatments, C-Cell analysis showed two factors that were related to 

higher loaf volumes: slice area and the number of cells. Slice area (mm2), which is a measure of 
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the total area of the sample, was higher than the control for all 7 treatments. In addition, the 

number of cells were also larger than the control for all 7 treatments and this would be an 

indicator of a higher number of gas cells or a reduced amount of coalscence in each loaf. The 

XMT measurements that linked the samples with increased loaf volumes were the number of 

objects and total porosity. These had values that were very close to or larger than the control. 

These common parameters for both XMT and C-Cell were both related to the 

incorporation of air cells that occurred during the mixing phase of the dough making process. 

The concentrations of polar lipids (specifically the glycolipids, MGDG and DGDG) known to be 

beneficial to loaf volume were higher in the six lipid treatments than in the NPL and free 

fractions (Daftary et al 1968; Chung et al 1982). From the lipid profiling analysis conducted at 

the KSU Lipidomics Research Center (refer to Chapter 2), the total lipids (recon) had the highest 

concentration of polar lipids (MGDG and DGDG) followed by the bound lipids, and the PL lipid 

fractions. MacRitchie and Gras (1973) determined that there was a concentration effect based on 

the amount of lipids added, which caused an increase in loaf volume. The key to maintaining and 

improving loaf volume is the dough’s ability to allow for air cell incorporation during mixing 

and the holding and stabilizing of these cells over time.  

In the case of the seven treatment flours, both proteins and polar lipids have surface 

active properties that allow them to move to the interface, hold, and stabilize air cells and both 

constituents are able to do this quite efficiently (Gan et al 1990). MacRitchie (1981) determined 

that moulding the dough caused changes in both cell size and the make-up of the interface. This 

in turn, allowed for the “desorable components to readily be forced out of the interface,” 

producing a more stable film (MacRitchie 1981). In this current study, the increased 

concentrations of polar lipids found in these fractions could easily move to the interface due to 

the high quanities and their amphiphillic functional groups providing greater stability to the 

smaller gas cells and preventing coalscense. This in turn, would increase the volumes of these 

loaves as the cells are less mobile in the matrix and can easily undergo expansion. The increase 

in loaf volume is a function of the “stability of gas and this is related to changing the 

composition of protein-lipid film at the air-aqueous interface” (MacRitchie 1981).  

The defatted flour resulted in a stronger structural network but did not affect the 

elongation of the cells measured by C-Cell, creating dough with a larger amount of smaller air 

cells with the greater ability to expand (Gandikota and MacRitchie 2005). The proteins and lipids 
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can stabilize gas cells either independently or synergistically. The increase in defatted volume 

compared to the control was likely associated with a greater amount of protein-protein 

interactions caused by the removal of the lipids. In this case, the linkage between the proteins 

provided the only support to gas cells due to no lipids being present to compete at the interface 

(Gandikota and MacRitchie 2005). If the polar lipid concentration is too low then this will limit 

their activity at the interface creating more protein-lipid interaction, which will hinder 

functionality (Gerits et al 2014). PL lipids added at the lower levels (0.2% and 0.4%) were not 

able to provide sufficient gas cell stability at the interface, but rather acted as a competitor to the 

proteins, reducing or impairing both component’s ability to maintain cells and allow expansion, 

thus lowering the overall loaf volume.  

The % bound and % PL additions had an improving effect. The higher levels of both 

fractions increased slice area, number of cells, number of objects, and total porosity values. The 

PL also caused the greatest changes in loaf volume and structure at 0.6% PL. MacRitchie and 

Gras (1973) determined that there was a threshold value for PL lipids and that a certain 

concentration had to be present before improvement could be seen in loaf volume. This, again, 

was due to competition with the proteins to move to the interface at the lower lipid 

concentrations in order to provide stability for the gas cells. Both of these treatments at all levels 

had cell wall thicknesses comparable to the control and were thinner than the NPL and free lipid 

addition. The solid volume was also less for bound and PL lipid additions indicating a greater 

percentage of air/gas rather than solids.  

Free lipid addition at all concentrations didn’t improve loaf volumes as compared to the 

control. This was associated with the amount of polar lipids found in the free fraction. This lipid 

fraction was lower in polar lipids, so even by doubling and tripling the level, the lipids weren’t 

able to produce loaf volumes to levels equal to the control. However, shifts in the cell size 

distribution and wall thickness were greater for the 2.5% free addition. Hoseney et al (1969) 

found that the addition of free polar lipids was more beneficial to loaf volume than that of bound 

polar lipids alone. However, bound polar lipids have higher concentrations of MGDG and 

DGDG, the two glycolipids that have the greatest effect on gas cell stability (Pauly et al 2013). 

This may have been the same case for the free lipid addition at the lower concentrations. In 

addition, free fatty acids are more able to move into the free lipid fraction especially during the 

initial lipid extraction and this would have caused more deleterious effects to loaf volume (Gertis 
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et al 2014). C-Cell data found a reduced number of cells with a higher average cell diameter, 

which would suggest that the free lipids weren’t as capable of stabilizing the gas cells over time, 

thus allowing for coalescence of gas cells.  

As stated previously, mixing incorporates lipids and free fractions can become bound 

caused by the hydrophilic and hydrophilic attractions between polar lipids and gliadin and 

glutenin (Hoseney et al 1970; Gerits et al 2013). Gerits et al (2013) found that the process of 

mixing dough actually changed the distribution of polar and nonpolar lipids in the free lipid 

fraction making them become more bound. This was also seen for the polar lipids associated 

with the starch granules. They too were bound to the gluten. If the flour contained enough 

moisture, the mechanical action of mixing was not needed for free lipids to become bound 

(Gerits et al 2013).  

The mechanism by which polar lipids assist in stabilizing air cells have been delineated 

by Gan et al (1990) as the formation of a secondary lipid lamellae made up of surface active 

compounds (i.e. polar lipids). They are able to align themselves at the interface and surround gas 

cells when the gluten-starch matrix begins to stretch and break down at the end of proofing and 

the beginning of baking. This break down of the structure has been hypothesized to be caused by 

the over expansion of gas cell and the internal pressure on the expanding cells (Gerits et al 2015). 

Sroan et al confirmed the presence of this secondary liquid lamellae as the secondary line of 

defense to prevent the coalescence of air cells following the stretching of the gluten-starch matrix 

(2009).  

The polar lipids ability to reach the interface is associated with its capacity to form 

condensed monolayers that are able to pack easily and align the air cells (Sroan and MacRitchie 

2009). This is opposed to NPL lipids, which can only form “expanded” monolayers that don’t 

easily align at the interface (Sroan and MacRitchie 2009). The polar lipids that are able to form 

condensed monolayers are able to organize into “liquid-crystal phases” that create ordered 

crystalline structures called “hexagonal I mesophases” that are better suited for emulsification 

properties and stabilizing gas cells at the interface (Gertis et al 2014). In the case of lipid 

treatments tested here, the polar glycolipids (MGDG and DGDG) and phospholipids found in the 

bound, PL, and reconstituted fractions were more suited to align in this conformation.  
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 4.4. Conclusion 

The influence of varying lipid types and levels on the microstructure of bread was highly 

influenced by composition of polar lipids initially found in each lipid fraction, levels of lipids 

added to flour, and the number of air cells that were incorporated during mixing. Defatted, 

bound, reconstituted, and PL lipid treatments containing higher levels of polar lipid 

concentrations of MGDG and DGDG were shown to have the most positive effect on producing 

loaves that were comparable to or higher in loaf volume than the control. Varying levels of all 

lipids fractions tested did show differences in both cell wall thickness distributions and gas cell 

size on both a micro (XMT) and macro (C-Cell imaging) testing scale. The only correlation 

between lipid treatments at all levels and the control were found between loaf volume, 

concentration of polar lipids contained in each lipid type, number of gas cells, and porosity of 

each sample. The ability for polar lipids to move to the interface, forming the secondary 

lamellae, is beneficial for promoting gas cell stability and improving and maintaining crumb 

grain integrity. This in turn, provides an overall finer crumb texture, increased loaf volume, and 

better quality bread.  
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Chapter 5 - Future Work 

1. In this study, one flour variety was used for treatment testing, therefore for future 

studies, evaluating other types of flours ranging in strength (weak or strong) would 

help to broaden the understanding of the influence of lipids, especially on the 

microstructure and cell distribution.  

2. The lipids were added to the dough and the final product was evaluated using XMT 

testing. Being that much of the mechanism for lipid functionality occurs after mixing, 

it would be beneficial to see the lipid influence and changes that occur in the dough 

during the stages of fermentation and proofing.  

3. Due to the complexity and depth of the experimental design, not all lipid varations 

could be tested with all equipment, thus more testing on all types of lipid varieties 

should be included for future work. Adding the free and bound lipids to both, the 

dough and whole loaf XMT analysis and with oscillatory rheology testing should also 

be included in further studies.  

4. For the extensional testing, varying the concentration of each lipid type would also 

provide a better understanding of how the level of addition influences strain 

hardening and cell wall strength.  

5. In addition, changing the hook speed during extensional testing, would also help to 

provide more information about the large deformation performance of doughs 

containing the different lipids.  
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Appendix A - Flour Mixographs  

 

Figure 5.1 Mixograph curves for control flour 

 

 

           A. 58% Absorption    B. 59% Absorption      C. 62% Absorption  
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Figure 5.2 Mixograph curves for defatted flour 

 

          A. 59% Absorption              B. 62% Absorption     C. 65% Absorption 
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Appendix B - Compositional Analysis of Lipids in Control Flour 

Table 5.1 Mean values for polar lipids found in control flour 

Lipid Names 
Polar Lipids 

(nmol/mg dry wt.) 

Galactolipids 

(nmol/mg dry wt.) 

Free Lipids 

(nmol/mg dry wt.) 

Bound Lipids 

(nmol/mg dry wt.) 

Total Lipids 

(nmol/mg dry wt.) 

DGDG (34:6) 0.002 0.002 0.009 0.013 0.002 

DGDG (34:5) 0.001 0.000 0.005 0.001 0.001 

DGDG (34:4) 0.077 0.011 0.022 0.008 0.005 

DGDG (34:3) 10.717 2.863 2.143 2.072 1.347 

DGDG (34:2) 43.447 12.242 8.930 9.595 5.622 

DGDG (34:1) 8.602 2.404 1.834 1.982 1.076 

DGDG (36:6) 1.342 0.237 0.216 0.261 0.130 

DGDG (36:5) 43.255 9.580 7.052 7.175 4.764 

DGDG (36:4) 300.672 67.147 49.934 51.867 33.813 

DGDG (36:3) 35.503 8.524 6.284 6.760 4.017 

DGDG (36:2) 8.516 2.121 1.598 1.681 1.040 

DGDG (36:1) 0.623 0.182 0.131 0.145 0.086 

DGDG (38:6) 0.063 0.032 0.000 0.006 0.000 

DGDG (38:5) 0.283 0.044 0.045 0.038 0.019 

DGDG (38:4) 1.357 0.286 0.214 0.236 0.143 

DGDG (38:3) 0.962 0.204 0.174 0.170 0.111 

Total DGDG 455.422 105.879 78.590 82.010 52.177 
      

MGDG (34:6) 0.000 0.000 0.024 0.009 0.000 

MGDG (34:5) 0.019 0.000 0.010 0.007 0.006 

MGDG (34:4) 0.225 0.003 0.018 0.007 0.013 

MGDG (34:3) 4.906 0.081 0.527 0.245 0.312 

MGDG (34:2) 15.407 0.291 1.584 0.803 0.936 

MGDG (34:1) 2.629 0.041 0.260 0.152 0.175 

MGDG (36:6) 1.750 0.006 0.190 0.123 0.112 
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MGDG (36:5) 70.489 1.101 7.158 3.531 4.182 

MGDG (36:4) 627.146 10.436 64.354 32.385 37.622 

MGDG (36:3) 66.259 1.162 7.315 3.556 4.281 

MGDG (36:2) 6.076 0.099 0.622 0.335 0.362 

MGDG (36:1) 0.428 0.001 0.049 0.034 0.044 

MGDG (38:6) 0.012 0.000 0.000 0.011 0.035 

MGDG (38:5) 0.205 0.005 0.005 0.019 0.036 

MGDG (38:4) 0.861 0.000 0.086 0.044 0.036 

MGDG (38:3) 0.859 0.001 0.076 0.045 0.047 

Total MGDG 797.269 13.227 82.276 41.305 48.198 
      

PG (32:1) 0.006 0.000 0.003 0.003 0.003 

PG (32:0) 0.031 0.018 0.031 0.044 0.041 

PG (34:4) 0.031 0.002 0.008 0.005 0.000 

PG (34:3) 0.011 0.010 0.001 0.008 0.011 

PG (34:2) 0.094 0.118 0.111 0.193 0.072 

PG (34:1) 0.023 0.017 0.034 0.047 0.017 

PG (34:0) 0.004 0.001 0.005 0.006 0.004 

PG (36:6) 0.001 0.001 0.000 0.001 0.000 

PG (36:5) 0.002 0.002 0.001 0.001 0.001 

PG (36:4) 0.018 0.031 0.064 0.045 0.026 

PG (36:3) 0.010 0.007 0.033 0.008 0.012 

PG (36:2) 0.014 0.004 0.008 0.011 0.016 

PG (36:1) 0.022 0.002 0.000 0.000 0.019 

Total PG 0.266 0.213 0.299 0.373 0.221 
      

LPG (16:1) 0.000 0.000 0.001 0.018 0.022 

LPG (16:0) 0.253 0.005 0.113 0.179 0.021 

LPG (18:3) 0.001 0.000 0.012 0.014 0.015 

LPG (18:2) 0.237 0.054 0.203 0.217 0.059 

LPG (18:1) 0.050 0.000 0.043 0.033 0.050 

Total LPG 0.541 0.059 0.371 0.462 0.167 
      

LPC (16:1) 0.001 0.000 0.003 0.011 0.002 
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LPC (16:0) 0.000 0.306 1.115 2.085 0.546 

LPC (18:3) 0.000 0.014 0.032 0.111 0.018 

LPC (18:2) 0.009 0.537 1.191 2.375 0.578 

LPC (18:1) 0.000 0.075 0.210 0.409 0.116 

LPC (18:0) 0.000 0.008 0.112 0.180 0.056 

Total LPC 0.010 0.938 2.663 5.171 1.316 
      

LPE (16:1) 0.000 0.000 0.000 0.000 0.000 

LPE (16:0) 0.010 0.077 0.088 0.125 0.053 

LPE (18:3) 0.000 0.001 0.000 0.008 0.002 

LPE (18:2) 0.011 0.191 0.129 0.242 0.055 

LPE (18:1) 0.000 0.023 0.025 0.033 0.014 

Total LPE 0.021 0.292 0.243 0.407 0.123 
      

PC (32:0) 0.000 0.126 0.214 0.189 0.126 

PC (34:4) 0.000 0.001 0.007 0.011 0.005 

PC (34:3) 0.000 0.331 0.296 0.306 0.178 

PC (34:2) 0.015 6.784 6.294 5.165 3.598 

PC (34:1) 0.000 1.477 1.564 1.427 0.981 

PC (36:6) 0.000 0.010 0.014 0.029 0.012 

PC (36:5) 0.000 0.606 0.416 0.455 0.256 

PC (36:4) 0.103 7.149 5.535 4.785 3.273 

PC (36:3) 0.016 3.479 2.653 2.531 1.574 

PC (36:2) 0.000 0.892 0.832 0.716 0.493 

PC (36:1) 0.000 0.056 0.130 0.105 0.066 

PC (38:6) 0.000 0.000 0.003 0.015 0.001 

PC (38:5) 0.000 0.000 0.009 0.011 0.002 

PC (38:4) 0.000 0.005 0.035 0.028 0.013 

PC (38:3) 0.000 0.051 0.090 0.082 0.051 

PC (38:2) 0.025 0.021 0.033 0.121 0.024 

PC (40:5) 0.000 0.000 0.006 0.007 0.001 

PC (40:4) 0.000 0.000 0.001 0.002 0.000 

PC (40:3) 0.000 0.000 0.005 0.004 0.002 

PC (40:2) 0.000 0.016 0.017 0.016 0.009 
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Total PC 0.158 21.007 18.156 16.003 10.663 
      

PE (32:3) 0.000 0.000 0.000 0.000 0.000 

PE (32:2) 0.001 0.000 0.002 0.002 0.000 

PE (32:1) 0.000 0.000 0.000 0.000 0.000 

PE (32:0) 0.000 0.000 0.001 0.001 0.000 

PE (34:4) 0.000 0.000 0.000 0.000 0.000 

PE (34:3) 0.002 0.031 0.020 0.030 0.011 

PE (34:2) 0.045 0.527 0.323 0.361 0.195 

PE (34:1) 0.000 0.051 0.038 0.039 0.022 

PE (36:6) 0.000 0.002 0.001 0.003 0.001 

PE (36:5) 0.011 0.104 0.051 0.075 0.031 

PE (36:4) 0.138 1.049 0.529 0.644 0.336 

PE (36:3) 0.028 0.261 0.137 0.155 0.085 

PE (36:2) 0.000 0.027 0.034 0.034 0.021 

PE (36:1) 0.000 0.000 0.001 0.001 0.000 

PE (38:6) 0.000 0.000 0.000 0.000 0.000 

PE (38:5) 0.000 0.000 0.000 0.000 0.000 

PE (38:4) 0.000 0.000 0.001 0.003 0.001 

PE (38:3) 0.000 0.010 0.006 0.002 0.002 

PE (40:3) 0.000 0.007 0.008 0.005 0.003 

PE (40:2) 0.013 0.108 0.090 0.045 0.048 

PE (42:4) 0.000 0.000 0.000 0.000 0.000 

PE (42:3) 0.000 0.007 0.005 0.001 0.001 

PE (42:2) 0.004 0.043 0.042 0.016 0.017 

Total PE 0.243 2.227 1.287 1.418 0.777 

      

PI (32:3) 0.000 0.000 0.000 0.000 0.000 

PI (32:2) 0.003 0.000 0.002 0.002 0.000 

PI (32:1) 0.027 0.001 0.002 0.004 0.000 

PI (32:0) 0.006 0.000 0.039 0.008 0.009 

PI (34:4) 0.001 0.000 0.001 0.000 0.000 

PI (34:3) 0.014 0.005 0.041 0.112 0.015 
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PI (34:2) 0.169 0.110 0.404 1.437 0.153 

PI (34:1) 0.154 0.028 0.056 0.151 0.012 

PI (36:6) 0.001 0.000 0.001 0.000 0.003 

PI (36:5) 0.002 0.002 0.034 0.047 0.010 

PI (36:4) 0.044 0.026 0.242 0.358 0.089 

PI (36:3) 0.019 0.009 0.120 0.145 0.039 

PI (36:2) 0.029 0.000 0.052 0.054 0.008 

PI (36:1) 0.015 0.003 0.002 0.002 0.001 

Total PI 0.485 0.185 0.996 2.321 0.340 
      

PS (34:4) 0.000 0.000 0.000 0.000 0.000 

PS (34:3) 0.000 0.000 0.000 0.002 0.000 

PS (34:2) 0.012 0.004 0.029 0.024 0.010 

PS (34:1) 0.013 0.002 0.002 0.002 0.000 

PS (36:6) 0.000 0.000 0.000 0.000 0.000 

PS (36:5) 0.000 0.000 0.001 0.001 0.001 

PS (36:4) 0.005 0.007 0.016 0.014 0.009 

PS (36:3) 0.003 0.002 0.002 0.004 0.002 

PS (36:2) 0.000 0.000 0.008 0.006 0.004 

PS (36:1) 0.002 0.000 0.000 0.000 0.002 

PS (38:6) 0.000 0.000 0.000 0.000 0.001 

PS (38:5) 0.000 0.000 0.001 0.000 0.000 

PS (38:4) 0.002 0.000 0.003 0.001 0.000 

PS (38:3) 0.000 0.000 0.001 0.002 0.001 

PS (38:2) 0.003 0.003 0.009 0.010 0.003 

PS (38:1) 0.000 0.000 0.000 0.000 0.000 

PS (40:4) 0.000 0.000 0.000 0.000 0.000 

PS (40:3) 0.000 0.001 0.004 0.007 0.002 

PS (40:2) 0.016 0.010 0.037 0.041 0.013 

PS (40:1) 0.010 0.010 0.000 0.002 0.007 

PS (42:4) 0.000 0.000 0.000 0.000 0.001 

PS (42:3) 0.002 0.000 0.009 0.002 0.003 

PS (42:2) 0.014 0.001 0.086 0.013 0.028 

PS (42:1) 0.005 0.001 0.034 0.002 0.006 
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PS (44:3) 0.005 0.000 0.087 0.001 0.016 

PS (44:2) 0.001 0.000 0.031 0.001 0.008 

Total PS 0.094 0.040 0.361 0.137 0.118 
      

PA (32:0) 0.003 0.000 0.010 0.008 0.006 

PA (34:6) 0.001 0.000 0.000 0.000 0.000 

PA (34:5) 0.000 0.000 0.000 0.000 0.000 

PA (34:4) 0.000 0.000 0.000 0.000 0.000 

PA (34:3) 0.022 0.000 0.058 0.057 0.026 

PA (34:2) 0.306 0.034 0.681 0.704 0.359 

PA (34:1) 0.068 0.001 0.128 0.118 0.070 

PA (36:6) 0.001 0.001 0.002 0.003 0.002 

PA (36:5) 0.050 0.001 0.103 0.117 0.052 

PA (36:4) 0.450 0.084 0.841 0.933 0.443 

PA (36:3) 0.154 0.019 0.301 0.305 0.163 

PA (36:2) 0.033 0.005 0.077 0.074 0.046 

Total PA 1.089 0.145 2.201 2.319 1.169 

Total Polar Lipids 1255.597 144.214 187.442 151.925 115.269 
aMonogalactosyldiglyceride (MGDG), digalactosyldiglyceride (DGDG), phosphatidylglycerols (PG), Lysophosphatidylglycerols 

(LPG), Lysophosphatidylcholines (LPC), Lysophosphatidylethanolamines (LPE), phosphatidylcholines (PC), 

phosphatidylethanolamines (PE), phosphatidylinositols (PI), phosphatidylserines (PS), and phosphatidic acid (PA) 
b n=25   
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