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Identi�cation in Models of Gasoline Pricing

Abstract

This paper presents evidence that the price of oil does not respond contemporaneously to shocks to the

US gasoline market. We �nd no support for the hypothesis of feedback from the US gasoline market to the

price of oil, justifying the identi�cation of impulse response functions by applying a Choleski decomposition

(see, e.g., Kilian (2010)). Our results have implications for tests of asymmetric gasoline price responses and

forecasting models of the price of crude oil.

1 Introduction

The relationship between oil prices and retail gasoline prices has been the subject of much research. An

important application has been the �rockets and feathers� literature that has tested for di�erent responses

of retail gasoline prices following oil price increases and decreases.1 Following the early work of Borenstein,

Cameron and Gilbert (1997), it is common to model this relationship using a variant of an error correction

model such as

∆gast = α+

k∑
i=1

γi4gast−i +

k∑
i=0

βi∆oilt−i + θzt−1 + εt. (1)

where gast is the price of gasoline in period t, oilt is the price of oil in period t, and zt−1 is the deviation

from a cointegrating relationship between the two variables. Equation (1) can be generalized to allow for

asymmetry by allowing the β coe�cients to be di�erent for positive and negative values of ∆oil (see Kilian

and Vigfusson (2011)).

As emphasized by Geweke (2004), in spite of the complications caused by feedback from the price of

gasoline to the price of oil, most of the literature has treated the price of oil as exogenous. He suggests

three tools that can be used to investigate the possibility of feedback: simultaneous equations methods that

rely on exclusion restrictions; restrictions on the dynamics, as in the macroeconomics vector autoregression

literature; and feedback decomposition.

This paper uses the heteroskedasticity-based estimator introduced by Rigobon (2003) to estimate a model

that allows both the price of gasoline and the price of oil to be endogenous. Once we have the estimates of

our model, it is straightforward to test for feedback. We �nd no evidence against the null hypothesis of no

feedback from gasoline prices to crude oil prices.

1See e.g. Godby, et al (2000), Bachmeier and Gri�n (2003), and Verlinda (2008).
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In addition to the rockets and feathers literature, feedback from the price of gasoline to the price of

crude oil matters for oil price forecasting models. See Alquist, Kilian, and Vigfusson (2012) for a review of

the literature on oil price forecasting. Shocks to the demand for crude oil have driven oil price �uctuations

in recent years (see Kilian (2009), Hamilton (2009), and Kilian and Murphy (2012, 2013) for evidence and

discussion). In this paper, we ask whether variation in US gasoline prices has a contemporaneous e�ect on

the price of crude oil. For example, one may expect higher demand for US gasoline to be re�ected not only

in higher prices at the pump, but also in higher oil prices. Our results suggest that this feedback is negligible

in the short run, making it appropriate to treat contemporaneous movements in the price of gasoline as a

response to crude oil price changes.

2 Model and Identi�cation

Our baseline model is a vector error correction (VEC) model of gasoline and oil prices:

∆gast = αg +

k∑
i=1

γi4gast−i +

k∑
i=0

βi∆oilt−i + θgzt−1 + εgt (2)

∆oilt = αo +

k∑
i=0

δi4gast−i +

k∑
i=1

ωi∆oilt−i + θozt−1 + εot (3)

where εgt and εot are uncorrelated structural shocks to the gasoline and oil markets, respectively. The oil

and gasoline price data were downloaded from the Energy Information Agency website. The data are daily

frequency covering the period June 2, 1986 to June 5, 2012. gas is the natural logarithm of the New York

Harbor Conventional Gasoline Regular Spot Price FOB. oil is the natural logarithm of the Cushing, OK

WTI Spot Price FOB. The lag length was chosen by minimizing the SIC for the reported results, but we

have done all of the analysis with the lag length selected by minimizing the AIC, and it had little e�ect either

qualitatively or quantitatively. The error correction relationship estimated using the Johansen method is

zt = gast − 1.13oilt.

We also report results for a VAR model in levels2 and a VAR model in di�erences.

The presence of time t variables as regressors in the system (2) − (3) means there is an identi�cation

problem. One way to achieve identi�cation would be to assume δ0 = 0. That would be the equivalent

of identifying the impulse response functions by a Choleski decomposition on the reduced form residual

2The VAR model in levels is more robust, as it is consistent with the variables being stationary, nonstationary and coin-
tegrated, or nonstationary and not cointegrated, but it is ine�cient if there is a unit root. Our focus is on the vector error
correction model, because that is the model most commonly estimated in the existing literature.
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covariance matrix. While timing restrictions are common in the macroeconomic literature (Kilian and Vega

(2011)), imposing the assumption δ0 = 0 is hard to justify a priori. Geweke (2004) discusses other possible

solutions.3

Rigobon (2003) showed how heteroskedasticity in the structural shocks can be used to identify (2)− (3).

Consider the restricted system

∆gast = β0oilt + εgt

∆oilt = δ0gast + εot.

Letting β̂0 be the OLS estimate of β0, it can be shown (see e.g. Hamilton (1994, pp. 233-4)) that

plim β̂0 =
δ0σ

2
g + β0σ

2
o

σ2
g + σ2

o

,

where σ2
g = var (εg) and σ2

o = var (εo) . The OLS estimates of the coe�cients depend on the relative variances

of the shocks. If the relative variance of the oil market shock is large, for instance, the probability limit of

β̂0 is close to β0. Changes in the relative variances of the shocks εg and εo will therefore cause changes in

β̂0. Rigobon (2003) built on that logic to derive the conditions under which heteroskedasticity is su�cient

for identi�cation of the system with no further restrictions.

The system (2)− (3) can be rewritten in the reduced form:

∆gast = αg +

k∑
i=1

γi4gast−i +

k∑
i=1

βi∆oilt−i + θgzt−1 + egt (4)

∆oilt = αo +

k∑
i=1

δi4gast−i +

k∑
i=1

ωi∆oilt−i + θozt−1 + eot (5)

De�ne the reduced form residuals to be4

egt = εgt + aεot

eot = bεgt + εot

3One might be tempted to use a non-US oil price as an instrument for WTI. Borenstein, et al (1997) used Brent crude as an
instrument for West Texas Intermediate. That approach requires the assumption that oil prices are not determined in a global
market, as all oil prices would be a�ected by shocks to the US gasoline market otherwise. Bachmeier and Gri�n (2003) found
that OLS and IV gave nearly identical parameter estimates.

4We have normalized the structural shocks so that εgt has a one unit e�ect on ∆gast and εot has a one unit e�ect on ∆oilt.
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Under an assumption of homoskedasticity of εg and εo, we have

var (eg) = var (εg) + a2var (εo)

var (eo) = b2var (εg) + var (εo)

cov (eg, eo) = b [var (εg)] + a [var (εo)]

where var (eg) , var (eo) , and cov (eg, eo) can be replaced with their sample counterparts. This is a system

of three equations in four unknowns, so there is no way to estimate a and b without additional restrictions.

Now consider the case where there are two regimes for the variances of the structural shocks. Letting the

superscript denote the regime, we have

var
(
e1g
)

= var
(
ε1g
)

+ a2var
(
ε1o
)

var
(
e1o
)

= b2var
(
ε1g
)

+ var
(
ε1o
)

cov
(
e1g, e

1
o

)
= b

[
var

(
ε1g
)]

+ a
[
var

(
ε1o
)]

var
(
e2g
)

= var
(
ε2g
)

+ a2var
(
ε2o
)

var
(
e2o
)

= b2var
(
ε2g
)

+ var
(
ε2o
)

cov
(
e2g, e

2
o

)
= b

[
var

(
ε2g
)]

+ a
[
var

(
ε2o
)]

There are now six equations and six unknowns, a, b, var
(
ε1g
)
, var

(
ε1o
)
, var

(
ε2g
)
, and var

(
ε2o
)
. Under

heteroskedasticity, there is not an identi�cation problem, so no further assumptions are needed for estimation.

The reduced form (4) − (5) can be estimated by OLS, the covariance matrix of the reduced form residuals

can be computed for both regimes, and the contemporaneous coe�cients a and b and the variances of the

structural shocks can be estimated by GMM. Inference is carried out using the �xed-design wild bootstrap

of Goncalves and Kilian (2004) with the Rademacher distribution as the pick distribution (Godfrey (2009)).

The key question is how one goes about identifying regimes in which the relative variances of the US

gasoline market and oil market shocks changed. We use the Gulf War period of August 1990 to February

1991 as regime 1 and all other observations as regime 2. The war period should have been a time when

most of the shocks were originating in the world oil market rather than in local gasoline markets. Both

the price of gasoline and the price of oil were a�ected during the war period, but that primarily re�ected

uncertainty about the supply of oil, not shocks to the US gasoline market. As the identi�cation strategy

delivers estimates of the variances of εg and εo in both regimes, we can formally verify that this choice of
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regimes for the heteroskedasticity is appropriate.5

3 Results

The estimated parameters can be found in Table 1. In brackets below the estimates of the coe�cients a

and b are p-values for tests of the null hypotheses H0 : a = 0 and H0 : b = 0. Bootstrap standard errors

are reported in parenthesis below the estimated variances. As identi�cation requires heteroskedasticity

of the structural shocks, we also report the ratio of the estimated variances of the structural shocks. In

brackets below the estimates are p-values for tests of the null hypotheses H0 : var
(
ε1g
)
/var

(
ε2g
)
≤ 1 and

H0 : var
(
ε1o
)
/var

(
ε2o
)
≤ 1.

It is clear that the variances of the structural shocks were di�erent in the two regimes. Speci�cally,

consistent with expectations, the variance of the oil market shock was seven times larger in the war regime

than at other times for the baseline (VEC) model. The bootstrap p-value for a test of the null hypothesis

that var
(
ε1o
)

= var
(
ε2o
)
is 0.00.6 As discussed above, identi�cation depends on changes in the relative

variances of the shocks through time, so there is no danger that the change in the variance of the gasoline

market shock is too small. The large increase in the variance of the oil market shock during wartime is

su�cient for identi�cation.

Shocks to the price of oil, as expected, have a large and statistically signi�cant positive same-day e�ect on

the price of oil. On the other hand, we �nd no evidence of contemporaneous feedback from the US gasoline

market to the price of West Texas Intermediate crude oil. The estimate of b is economically and statistically

insigni�cant. The sign is the opposite of what would be expected if gasoline demand shocks a�ected the

price of oil within the impact period. These �ndings are robust across speci�cations.

This �nding has important implications for empirical research on the relationship between gasoline and

oil prices. It implies that the responses of the price of gasoline to oil price shocks can be computed based on

recursively identi�ed econometric models in which the innovation to the price of oil is ordered �rst. More

generally, our analysis supports the common assumption that innovations in the price of oil may be viewed

as predetermined with respect to the U.S. economy.

5It is not necessary to specify all the di�erent heteroskedasticity regimes. Identi�cation requires only that there are di�erences
in the variances across the regimes we have selected (Rigobon (2003)).

6In none of the bootstrap replications was var
(
ε1o
)
< var

(
ε2o
)
.
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Table 1: Parameter Estimates

Parameter VEC VAR (levels) VAR (di�erences)

a 0.69 0.85 0.69

[0.00] [0.00] [0.00]

b −0.04 −0.05 −0.03

[1.00] [1.00] [1.00]

var
(
ε1g
)

6.16 0.80 6.29

(0.21) (0.08) (0.17)

var
(
ε1o
)

38.4 3.02 39.3

(0.09) (0.11) (0.96)

var
(
ε2g
)

3.90 1.31 3.89

(0.01) (0.05) (0.07)

var
(
ε2o
)

5.58 1.21 5.58

(0.03) (0.01) (0.02)

var
(
ε1g
)
/var

(
ε2g
)

1.59 0.63 1.62

[0.00] [1.00] [0.00]

var
(
ε1o
)
/var

(
ε2o
)

6.88 2.51 7.04

[0.00] [0.00] [0.00]
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