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Abstract 

In vitro digestibility of starch in sorghum grains differing in endosperm hardness and 

flour particle size was assayed by an Englyst resistant starch (RS) method. The starch 

digestibility increased as the particle size of flour decreased, but no significant difference in 

starch digestibility was observed among sorghum flours milled from grains with different 

hardness. To further understand the digestion of starch in sorghum, the effects of protein on 

starch digestion and amylose content in starch were determined. pH value was a factor affecting 

protein digestion since protein digestibility was higher at pH 2.0 than that at pH 1.3. Protein 

hydrolysis increased with time of pepsin treatment, leading to an increased starch digestion. RS 

content was 10.61-29.54% in native sorghum flours and 8.47-26.28% in isolated sorghum starch. 

The amounts of γ-kafirins extracted increased with time of pepsin treatment while α- and β-

kafirins decreased. The starch in sorghum flour with median hardness had a higher amylose 

content (23.9%) than the starch in hard and soft flours (~21%), which gave lower starch 

digestibility. Protein digestibility decreased after cooking while starch digestibility increased. 

Sulfhydryl groups decreased after cooking, indicating that disulfide bonds formed between 

protein molecules and may have formed a barrier for enzymes to access and digest starch. 

Confocal laser scanning microscopy (CLSM) showed that the protein matrix was less evident 

after pepsin treatment. As a result, starch digestion increased after protein matrix was removed. 
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CHAPTER 1 - INTRODUCTION 

STARCH DIGESTION PROPERTIES 
Starch is classified into rapidly digestible starch (RDS), slowly digestible starch (SDS) 

and resistant starch (RS) according to the rate of glucose release and its absorption in the 

gastrointestinal tract (Englyst et al, 1992). RDS is the portion digested within 20 minutes and 

SDS is digested between 20 and 120 minutes.SDS is believed (Englyst et al, 1992) to be slowly 

but completely digested, leading to a slower entry of glucose into the blood stream and lower 

glycemic response. RS can not be digested in the small intestine and is left in the colon. Englyst 

et al (1982) defined RS as that starch that remained after enzymic hydrolysis, resists digestion in 

the stomach and small intestine, and ferments in the large intestine. The concept was improved 

by EURESTA (Asp, 1992) as the total amount of starch, and the products of starch degradation 

that resists digestion in the small intestine of healthy people. The amount of RDS is positively 

correlated with the glycemic index (GI) of food products (Englyst et al, 1999). It has been 

suggested that the content of RDS and SDS can be used to predict the GI of cereal-based food 

products (Englyst et al, 2003). 

GI represents the level of the postprandial glucose rise in blood as compared to a 

reference food or glucose (Jenkins et al, 1981). Long-term intake of foods with a high GI has 

been shown to be associated with obesity and related chronic diseases of diabetes and 

cardiovascular disease (Ludwig, 2000). Dietary carbohydrates, such as starch, effect on human 

health are important, because they provide 45-65% of the total caloric intake (Dietary Guidelines 

for Americans, 2005). Thus, starch in food is important for healthy diets, and the starchy food 

with less refined and less processed should be increased in the diet since it leads to a low GI 

value. 

The digestion process of starch is catalyzed by amylolytic enzymes which are comprised 

of pancreatic α-amylase and the intestinal brush border glucoamylases, maltase-glucoamylase, 

and sucrose-isomaltase (Nichol et al, 2003). The activities of these enzymes affect the rate of 

starch digestion. SDS is slowly digested and is related to its substrate property. Ferguson et al 

(2000) revealed that some native cereal starches with semicrystalline A-type structure contain 

high levels of SDS, more than 50% in maize and sorghum starches. A number of studies on raw 
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cereal starches showed that the slow digestion property is affected by their biosynthesis (James et 

al, 2003), structure (Buleon et al, 1998 and Tester et al, 2004), physicochemical properties 

(Oates, 1997), and enzymatic hydrolysis (Tetlow et al, 2004). Zhang et al (2006a) reported the 

side-by-side digestion mechanism and layer-by-layer digestion pattern of slow digestion property 

of native cereal starches. The crystalline and amorphous regions of starch granules were evenly 

digested through a mechanism of side-by-side digestion of concerntric layers of semicrystalline 

shells of native starch granules. Enzymatic hydrolysis requires the binding of amylolytic 

enzymes to starch molecules. 

After slow digestion, RS is left in the colon and fermented by colonic bacteria. Hence, RS 

has potential for prebiotic applications and has physiological benefits which are associated with 

disease prevention. Fermentation of RS produces short-chain fatty acids (SCFA), such as acetate, 

propionate, and butyrate. These products lower the overall pH of the colon, induce 

chemoprotective enzyme activity, and hinder growth of harmful colonic bacteria. Thereby, RS 

plays a role in protecting against colorectal cancer (Burns and Rowlands, 2000; Ferguson et al, 

2000; Topping and Clifton, 2001; and Wollowski et al, 2001). Other benefits of RS consumption 

include lowering of plasma cholesterol and blood lipids, as well as improved glucose tolerance 

(Vanhoof and De Schrijver, 1998 and Voragen, 1998). 

STRUCTURE AND CHEMICAL BASIS OF SORGHUM FLOUR 
Sorghum is one of the most important cereals in the world (Hamaker et al. 1986) and the 

main food for people that live in the semi-arid tropics of Africa, Asia and South America 

because of its tolerance to drought conditions (Elmalik, 1985). It is known that, among the 

cereals, the starch in sorghum flour is relatively low in digestibility (Rooney and Pflugfelder, 

1986 and Elkin et al, 2002). Thereby, sorghum could therefore be a potential source of RS. 

Different digestibilities depend on different cereal sources (Aarathi et al, 2003), indicating the 

intrinsic factors could be the nature of cereals themselves, such as compositions and structure. It 

is suggested that low starch digestibility in sorghum is associated with structure of sorghum flour 

(Aarathi et al, 2003). 

ENDOSPERM CHARACTERISTICS 

The endosperm of sorghum is composed chiefly of storage parenchyma cells filled with 

starch granules embedded in a continuous matrix of protein (Watson et al, 1955). It contains 
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regions of both floury and horny endosperm. Starch is the major component of sorghum flour. 

According to the type of starch in their endosperms, the sorghum grains can be classified into 

waxy and non-waxy. Starch consists of amylose, a linear glucan with α-1,4 linkages, and 

amylopectin, a highly branched glucan with α-1,4 and α-1,6 linkages. Non-waxy sorghum 

contains starch that is composed of approximately 25% amylose and 75% amylopectin, whereas 

starch in waxy sorghum is almost 100% amylopectin (Sikabbubba, 1989). Non-waxy sorghum 

starch is highly resistant to enzymatic digestion, whereas waxy starch is highly susceptible to 

enzyme digestion (Sullins and Rooney, 1975). In non-waxy sorghum flour, there is a high 

concentration of protein bodies in the peripheral endosperm area, while the protein bodies are 

more evenly distributed in waxy sorghum flour (Fig. 1.1).  

The higher the content of amylose, the lower is the digestibility of starch (Aarathi et al, 

2003). Previous study have shown that there are apparent differences in the digestibility of 

amylose and amylopectin (Goddard et al, 1984). The possible reason is that amylopectin has a 

larger surface area and is highly organized, leading to the formation insoluble aggregates 

(Aarathi et al, 2003). 

 

 

 

Non-waxy 

 

 

 

 

 

 

 

Waxy 

 

Figure 1.1 Light and scanning electron photomicrographs comparing the endosperm 

structure of non-waxy Kafir and waxy Kafir (Sullins and Rooney, 1975). Left, peripheral 

endosperm; right, central endosperm. 
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STARCH GRANULE ORGANIZATION 

Buleon et al (1998) demonstrated that starch granule organization has different levels of 

structure related to enzymatic hydrolysis: granular structure, superamolecular structure, and 

molecular structure. Granular structure mainly includes shape, size, and porosity. There are pores 

and channels within starch granules.  Porosity is considered as the basis for their inside-out 

digestion patterns. Channels are the main route of enzyme penetration and the central cavity area 

is the starting point of enzyme digestion (Benmoussa et al, 2006). For example, in a sorghum 

mutant with relative high protein digestibility, the channel density of isolated starch is more 

pronounced than found in normal wild type lines. Fig. 1.2 shows the changes of pores and 

channels during digestion. These authors also found a collapsed “doughnut-shaped” structure in 

isolated starch from a unique sorghum mutant and the granules were digested rapidly, which 

indicates that amylases appeared to have fast access to the collapsed-appearing starch granules. 

                              
Figure 1.2 Scanning electron micrograph of isolated starch from normal sorghum four 

(Benmoussa et al, 2006). A & B are undigested sorghum flour; C & D are sorghum flour 

after 30 min digestion; and E & F are after 1 hour digestion. A, C, and E are 1000× 

magnification, while B, D, and F are 2500× magnification. 
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The supramolecular structure includes the crystalline type, perfection of crystallites, 

degree of crystallinity, the arrangement of crystalline and amorphous materials, which are called 

growth rings, and organization of crystalline and amorphous lamellae in the hard shell of the 

growth rings (Buleon et al, 1998). The growth rings are arranged in concentric layers from the 

center to the surface of the starch granules. Depending on the source of starch, different levels of 

structure may govern the hydrolysis pattern and rate of enzyme reaction. For example, both 

crystalline type and the surface property of potato starch are associated with its resistance to α-

amylase hydrolysis, whereas the supramolecular structure is normally the major controller for 

enzymatic hydrolysis of native cereal starches (Oates, 1997). 

The molecular structure includes the fine structure of amylopectin and amylose. 

Amylopectin is the organizer of starch granules and the major component in normal cereal 

starches, so its fine structure determines the crystalline type and its perfection in native starch 

granules.  

PROTEIN MATRIX AND COMPOSITION 

There is a protein matrix encapsulating the starch granules in flour (Fig. 1.3). Sullins et al 

(1971) reported that the increased feedlot efficiency of reconstituted sorghum grain fed to steers 

was directly related to the partial breakdown to the protein matrix, especially that in the 

peripheral endosperm area of the kernel. The reason is that the accessibility of starch to 

hydrolysis by glucoamylase was influenced by the protein matrix (Lichtenwalner et al, 1978). 

Protein composition of the protein matrix is important to understand this influence. 

Kafirins (sorghum prolamins) are the most abundant protein in sorghum, making up ≈70–

80% of the total endosperm protein (Hamaker et al, 1995). They have been classified according 

to structure, molecular weight, and solubility characteristics into α-(MW 25,000 and 20,000), β- 

(MW 20,000, 18,000, and 16,000), and γ-kafirins (MW 28,000) (Shull et al, 1991). α-Kafirin is 

the major sorghum storage protein, making up ≈80% of total kafirins and  ≈60-70% of the total 

protein in the endosperm (Watterson et al, 1993). α-Kafirin is enclosed in protein bodies 

surrounded by  γ-kafirin, and to a lesser extent β-kafirin. The amino acid compositions of β- and 

γ-kafirin are ~ 5 and 7 % cysteine, respectively, which makes them unique (Shull et al, 1991). 

Among the sorghum proteins, γ-kafirin is highly disulfide-bound in mature grain, and was found  

to be more resistant to digestion than α-kafirin, especially after cooking (Oria et al, 1995), 

whereas α-kafirin is highly digestible both before and after cooking (Hamaker, unpublished data, 
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from Aboubacar et al, 2001). It was suggested that γ-, and to a lesser extent β-kafirins, form a 

disulfide-bond enzyme-resistant layer at the periphery of protein bodies that restricts access by 

proteases to the easily digestible α-kafirin (Choi et al, 2008). Fig. 1.4 shows the difference 

between protein bodies structure of normal and high-digestibility sorghum line. Oria et al (2000) 

conducted immunocytochemistry analysis and found the similarities in localization of α- and β-

kafirins within the protein bodies of high-protein digestibility and wild-type lines. However, in 

the high protein digestibility lines, γ-kafirin was located at the base of the folds of the protein 

bodies instead of at the periphery, as is characteristic of wild-type lines. 

 

                           
Figure 1.3 Confocal laser scanning micrographs of sorghum floor, green: protein, dark 

orange: starch (Choi et al, 2008).  

 

During development, kafirins are synthesized and deposited inside the rough endoplasmic 

reticulum to form protein bodies. Within the protein body, the kafirins are distributed in a 

nonhomogeneous fashion. Immunocytochemistry showed that α-kafirin is located in light-

staining areas mainly in the interior of the protein body, and β- and γ-kafirin are found in dark-

staining areas inside and at the periphery of the protein body (Shull et al, 1992). Protein have 

been found to line the channels that lead into the interior of sorghum granule (Han et al, 2005). 

Those proteins could interfere with inward migration of α-amylase during digestion. 
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Enzymatic hydrolysis of starch granules is a solid-solution two-phase reaction in which 

the enzyme needs first to diffuse toward and bind to the solid substrate, and then to cleave the 

glycosidic linkages (Zhang et al, 2006b). Thus, the accessibility to the protein matrix affects the 

reaction rate by enzyme diffusion. However, the mechanism of protein matrix affecting digestion 

of starch under different cooking conditions is not well understood. 

 

            
Figure 1.4 Protein bodies structure of wild-type (A) and high-protein digestibility (B) 

sorghum lines (Oria et al, 2000). 

 

FACTORS AFFECTING SORGHUM STARCH DIGESTIBILITY 
It is known that starch digestibility is affected by the plant species, the extent of starch-

protein interaction, inhibitors, the physical form of the granule, and the type of starch (Rooney 

and Pflugfelder, 1986). Tannins are the inhibitors of sorghum starch digestion. Chibber et al 

(1980) reported that the presence of tannins lowered the digestibility of sorghum grain. 

Prolamins (i.e., the kafirins), alcohol soluble proteins, were found to lower sorghum starch 

digestibilities when in high amounts in the grain (Axtell et al, 1981).  

As discussed in the previous section, any chemical or enzyme which has effect on the 

disintegration of protein matrix could increase starch digestion. For example, sodium bisulfite 

can cleave intra- and intermolecular disulfide bonds and thus disrupt the protein matrix (Fig. 1.5), 

so starch digestion is improved after treatment with 10 mM sodium bisulfite (Choi et al, 2008). 
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Pepsin has a similar effect by hydrolyzing the protein matrix. There is a lower amount of protein 

in flour after 2-hour pepsin treatment than before (Fig. 1.6). 

 

 
Figure 1.5 Comparison of protein matrix before and after sodium bisulfate treatment, 

green: protein, dark orange: starch (Choi  et al, 2008). 

 

 
Figure 1.6 Comparison of protein matrix before and after pepsin treatment for 2 hr, green: 

protein, dark orange: starch (Choi et al, 2008). 
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Processed grain has been demonstrated to improve feed utilization and nutrients (Theurer, 

1986). Sorghum is often for processed before being used as a feed. The processing methods 

include steam-flaking, early harvest ensiling (high moisture), popping, exploding, roasting or 

micronizing, and fermentating (Hale, 1980).  Processing methods employ proper combinations of 

moisture, heat and pressure, in order to improve the rates of in vitro amylolytic attack of starch in 

cereal grains by both ruminal microbial and pancreatic enzyme sources (Theurer, 1986). Kernel 

hardness, kernel size and rate of water uptake are among the important factors (Rusnak et al, 

1980). 

Cooking conditions are studied most among all the factors affecting sorghum starch 

digestibility. Cooking of cereal starches brings about certain changes, e.g., physical and chemical 

disruption, gelatinization of starch granules, and protein matrix collapse (Aarathi et al, 2003). 

Other physicochemical factors have been advanced as possible causes of the observed restricted 

protein and starch digestibility in sorghum. The most important factor seems to be cross-linking 

of the storage proteins (kafirin) in the endosperm (Zhang and Hamaker, 1998; Duodu et al, 2003; 

Ezeogu et al 2005).  

The extent of starch gelatinization is dependent on the amount of water present, cooking 

time and temperature (Leach, 1965 and Williams and Bowler, 1982). The little and more slowly 

the starch swells, the less the starch gelatinization occurs (Davis, 1994). Chandrashekar and 

Kirleis (1988) reported the effect of protein on limiting starch gelatinization in sorghum. It was 

suggested that the presence of protein bodies around starch granules may restrict granule 

swelling and starch gelatinization and as a result reduce the susceptibility to enzymatic attack 

(Aarathi et al, 2003). This may be partially responsible for the low digestibility. Also, the protein 

cross-linking involves the cysteine-rich γ- and β-kafirin species at the protein body periphery 

(Oria et al, 1995), which could impede the starch granule gelatinization and the subsequent 

digestibility (Chandrashekar and Kirleis 1988; Zhang and Hamaker 1998; Ezeogu et al 2005). X-

ray diffraction patterns found that there is A-type pattern in raw starch with typical peaks which 

was not shown in cooked starch (Shin et al, 2004). It is mostly due to the fact that cooked starch 

is mainly composed of amorphous regions. 

Both starch hydrolysis (Ezeogu et al, 2005) and protein hydrolysis (Duodu et al, 2002) 

are restricted in sorghum, especially when the grain is wet cooked.  
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Increased energy of cooking caused the collapse and matting of the sorghum vitreous 

endosperm matrices (Ezeogu et al, 2008). Fig. 1.7 shows the collapse of protein matrix after 

cooking.  

 
Figure 1.7 Comparison of protein matrix before and after cooking, green: protein, dark 

orange: starch (Choi et al, 2008) 

 

Disulfide bonding and an increase in β-sheet structure of protein occurred with cooking 

and at the same time, disulfide bonding increased and was the greatest in the vitreous endosperm 

(Ezeogu et al, 2008). Because an increased disulfide-bonded protein matrix limits the expansion 

of the starch granules, amylase access is limited, too. As a result, cooked sorghum flour has low 

starch digestibility compared to cooked maize flour (Ezeogu et al, 2008). When sorghum was 

cooked, the matrix of a hard endosperm type appeared as convoluted (weblike or sheetlike) 

sheets with protein bodies buried in the matrix (Chandrashekar and Kirleis 1988). The starch in 

vitreous endosperm was hydrolyzed more slowly than that in floury endosperm (Ezeogu et al, 

2005). In contrast, the effect of cooking is different in the floury endosperm in that the protein 

matrices expanded and broke up to some extent. The protein matrix of a soft endosperm sorghum 

expanded to a greater degree and gave a more open structure on cooking (Chandrashekar and 

Kirleis 1988). These effects were a consequence of expansion of the starch granules through 

water uptake during gelatinization (Hamaker and Bugusu, 2003).  
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If sorghum flour has already been treated with chemicals or enzymes to disintegrate the 

protein matrix, the effect of cooking is more interesting. Oria et al (1995) used electron  

 
Figure 1.8 Electron micrographs of uncooked and cooked sorghum. (Oria et al, 1995). 

(A) uncooked flour without pepsin digestion (arrow indicates protein body degradation); (B) 

uncooked flour after 120 min of pepsin digestion; (C) cooked flour without pepsin digestion; (D) 

cooked flour after 120 min of pepsin digestion. CW, cell wall; PB, protein body; S, starch. Bar 

=1μm. 

 

micrographs to determine the influence of cooking (Fig. 1.8). The protein bodies were embedded 

in a dark staining protein matrix. The protein bodies had concentric rings, many dark inclusions, 

and dark staining projections that extended from the periphery of the protein body to the interior. 

There were granules remained in uncooked sorghum flour (Fig. 1.8 A), because 

amyloglucosidase and α-amylase only partially digested the starch granules. After digestion with 
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pepsin, most of the protein matrix was digested away, and the protein bodies were extensively 

pitted at their surfaces (Fig. 1.8 B). Many protein bodies were almost completely digested with 

only a core or central fragment remaining. Fig. 1.8 C indicated that protein bodies in the 

undigested sample of cooked sorghum looked similar to the uncooked ones. Protein bodies were 

embedded in a dark staining protein matrix with dark staining inclusions and projections. After 

pepsin digestion, however, the majority of the protein bodies were unaffected by pepsin and no 

pitting was observed (Fig. 1.8 D). The protein bodies in both undigested and digested samples 

appeared more fibrous than those in the uncooked samples. 

OBJECTIVES 
The objectives of this work were to study the digestion profile of starch in sorghum 

grains differing in endosperm hardness and flour particle size, to determine the difference in 

digestion of starch with and without pepsin treatment, and to analyze the enzymatic kinetics and 

structural changes after cooking of sorghum flours. Ultimately, we hope to understand how 

protein matrix affects digestion of starch in sorghum and develop methods to control the 

digestion of starch in sorghum flour. 
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CHAPTER 2 -  MATERIALS AND METHODS 

MATERIALS 

SORGHUM FLOURS 

Sorghum flours were generously given by Dr. Scott Bean in Grain Marketing Production 

Research Center (GMPRC), USDA-ARS, Manhattan, KS. They were grown at Nebraska in 2002. 

All of them contained normal starch and no tannin. The three sorghums had hardness values of 

93.4, 75.1 and 61.4, respectively, as measured by the single kernel characterization system 

(SKCS) (Bean et al 2006). Both the hard sorghum and soft sorghum were red grain samples 

while the median one was a white grain sample. The hard sorghum had an average 25.4 mg of 

kernel weight and 1.6 mm of kernel diameter, median sorghum 27.3 mg and 2.1mm, and the soft 

sorghum, 28.9 mg and 1.7 mm. Each sorghum was milled on a Udy mill with either a 0.25, 0.5, 

or 1.0 mm screen. Based on their hardness and particle size, these 9 sorghum samples were 

abbreviated as follows: HS – hard and small, HM – hard and median, HL – hard and large, MS – 

median and small, MM – median and median, ML – median and large, SS – soft and small, SM – 

soft and median, and SL – soft and large. The information of the samples is shown in Table 2.1. 

COOKED FLOURS 

To prepare cooked samples, sorghum flour (~0.6 g) was weighed and placed in a 45 mL tube. 

Water was added to make 50% water content. Samples were cooked in a water bath at 90°C for 

30 min. The cooked samples were cooled to room temperature. Before digestion, the cooked 

samples were homogenized by hand using a spatula. 

CHEMICALS AND REAGENT 

Fluorescamine (catalog # F2332) was purchased from Invitrogen Co., Eugene, OR; 

Ethanol (catalog # E200, 111000200, 111ACS200, 111USP200) was purchased from Pharmco 

Inc., Brookfield, CT; 

5,5’-dithiobis 2-nitrobenzoic acid (DTNB) (catalog # 117540050) was purchased from Acros 

Organics, Geel, BELGIUM; 
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Table 2.1 Hardness, particle size, protein content, total starch and moisture content of 9 

sorghum flour samples 

Sample 

Grain 

Hardness 

Value 

Flour Particle 

Size (µm) 

Protein Content 

(%) 

Total Starch 

(%) 

Moisture Content 

(%) 

HS 

93.4 

87.88 

9.22±0.01 88.46±2.74

9.11 

HM 227.94 10.84 

HL 305.90 11.00 

MS 

75.1 

88.48 

9.19±0.01 81.12±2.51

9.48 

MM 197.94 10.77 

ML 311.65 11.42 

SS 

61.4 

89.43 

8.99±0.05 86.18±1.82

10.20 

SM 190.94 10.75 

SL 298.08 11.41 

 

The following chemicals were purchased from Sigma-Aldrich (St. Louis, MO): 

Pepsin, catalog # P-7000; 

Pancreatin, catalog # P-7545; 

Gum Guar, catalog # G-4129; 

D-(+)-Glucose, catalog # G-7528; 

Amyloglucosidase, catalog # A-7255; 

α-Amylase, catalog # A-3176; 

Ethylenediamine Tetraacetic Acid (EDTA), catalog # E-5134; 

Sodium Dodecyl Sulfate (SDS), catalog # L-5750. 

The following chemicals were purchased from Thermo Fisher Scientific Inc. (Pittsburgh, PA): 

Hydrochloric Acid (HCl), catalog # A144-212; 

Potassium Hydroxide (KOH), catalog # P250-1; 

Acetic Acid 1N Solution, catalog # SA36-1; 

Acetonitrile, catalog # A21-1; 

Urea, catalog # U15-500; 
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Tris (Tromethamine), catalog # T393-500. 

Sodium acetate trihydrate (NaAc) (catalog # 71188) and sodium tetraborate anhydrous (catalog # 

71997) were purchased from Fluka Chemical Co. (Milwaukee, WI). 

D-Glucose Assay Kit (catalog # K-GLUC) and Amylose/Amylopectin Assay Kit (catalog # K-

AMYL) were purchased from Megazyme International Ireland Ltd. (Wicklow, Ireland). 
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METHODS 

ANALYSIS METHODS 

Particle size was determined by Laser Diffraction Sizing (LDS) using a Beckman/Coulter 

LS 13 320 Laser Diffraction Particle Size Analyzer (Beckman/Coulter Particle Characterization, 

Miami, FL) (Wilson et al, 2006). Protein was determined by nitrogen combustion using a 

nitrogen determinator (Leco FP-528, St. Joseph, MI), according to AACC Approved Method 46-

30 (AACC 2000). Nitrogen values were converted to protein content by multiplying by 6.25. 

Total starch (TS) was determined by glucose determination after dissolving in KOH solution 

(Englyst et al 1992). The moisture content was determined by using AACC Approved Method 

44-15A (AACC 2000). 

PEPSIN TREATMENT, ISOLATION OF STARCH FROM SORGHUM FLOUR, AND 

PROTEIN DIGESTIBILITY 

The pepsin treatment initially was performed based on the procedure of Englyst starch kit. 

Sorghum (~0.6 g) was weighed and placed into a 45 mL tube with 50.0 mg guar gum. Pepsin 

solution was prepared by dissolving 50.0 mg pepsin in 10.0 mL 0.05M HCl. Pepsin solution (10 

mL) was added into each sample and the mixtures were incubated in a water bath of 37°C for 30 

min. We found that pH was 1.3 when pepsin (50 mg) was dissolved in 10.0 mL of 0.05M HCl 

solution. Pepsin preparation was modified by dissolving pepsin with 0.01M HCl (pH 2.0) instead 

of 0.05M HCl (pH 1.3) because pH 2.0 is the optimum pH for pepsin (Schlamowitz and Peterson, 

1959). Incubation time was extended to 2 hr., 3 hr., and 4 hr. to determine the differences of 

starch and protein digestibility with different pepsin treatment time. Sodium acetate buffer (10.0 

mL of 0.25M) was added to terminate pepsin treatment. The treatment was also terminated at 15 

min., 30min., and 1hr., of incubation. All the samples with 6 different pepsin-treatment times 

(15min., 30min., 1hr., 2hr., 3hr., and 4hr.) were centrifuged at 1000g for 10 min. The supernatant 

was kept to determine nitrogen values for protein digestibility. The residues were freeze-dried 

and used for further analysis, such as protein digestibility determination, starch digestion, HPLC 

analysis, and confocal micrographs. The sample with 4-hr pepsin treatment was used as isolated 

starch because there was less than 0.5% of protein left. 
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STARCH DIGESTION TEST 

Starch digestibility was determined by a modified Englyst method (Englyst et al 1992) to 

measure total starch and different starch fractions - RDS, SDS and RS, in each sample (~0.6 g) 

with and without pepsin digestion prior to the starch digestion. Glass beads (~8.4 g) were added 

into the mixtures for digestion. At the same time, the control was prepared with 50.0 mg gum in 

20.0 mL 0.1M NaAc buffer (pH 5.2) and standard was prepared with 50.0 mg guar gum in 20.0 

mL glucose standard solution (1.25 g glucose in 50.0 mL 0.1M NaAc buffer). To all the samples, 

control and standard were added 5.0 mL enzyme solution, and the tubes were shaken in a water 

bath of 37°C at 90 stroke/min. At 20 and 120 min interval, 250 µL of mixture was taken and 

transfered into 10.0 mL 66.6% ethanol solution, mixed well immediately and centrifuged at 

1000g for 5 min. Supernatant (100 µL) was taken for colorimetric determination of glucose 

concentration at 510 nm by a D-glucose assay kit from Megazyme (Wicklow, Ireland). RDS (dry 

basis) content was calculated with the glucose concentration of 20 min interval (D20) by the 

equation of “0.9×D20× (25+ weights)/dry weight/1000×100”. The glucose concentration of 

120 min interval (D120) was applied into the same equation “0.9×D120× (25+weight)/dry 

weight/1000×100” to obtain digestible starch. Digestible starch measures RDS and SDS. SDS 

was estimated by the difference between digestible starch and RDS. RS was calculated by the 

difference between total starch and digestible starch. 

AMYLOSE CONTENT DETERMINATION 

Amylose content was determined by a Megazyme Amylose/Amylopection Assay Kit 

using a ConA method. Sorghum flour (~0.1 mg) was weighed into a 10 mL screw capped sample 

tube. DMSO 1 mL was added to the tube while gently stirring at low speed on a vortex mixer. 

The tube was capped and heated in a boiling water bath until the sample was completely 

dispersed. The contents of the sealed tube was vigorously mixed at high speed and then placed in 

a boiling water bath again and heated for 15 min., with intermittent high-speed stirring on a 

vortex mixer. 2 mL of 95% (v/v) ethanol was added with continuous stirring after the sample 

was stored at room temperature for approximately 5 min. A further 4 mL of ethanol was added 

and tube was capped to invert for mixing. The sample was placed at room temperature for 15 

min to precipitate starch. The starch pellet was obtained by 5-min centrifugation at 2,000 g and 

draining away the ethanol. Two mL of DMSO was added to the starch pellet with gentle vortex 
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mixing and the sample was placed in a boiling water bath for 15 min with occasional mixing to 

ensure that there were no gelatinous lumps. Concanavalin A (Con A) solvent (4 mL) was 

immediately added with thorough mixing upon removing the tube from the boiling water bath. 

The contents were washed repeatedly with Con A solvent to a 25 mL volumetric flask. The 

quantitatively transferred contents were diluted to volume with Con A solvent. Sample was 

transferred to a 2.0 mL Eppendorf ® microfuge tube with 1 mL and to another 10 mL tube with 

0.5 mL. Sodium acetate buffer (4 mL, 100 mM, pH 4.5) and 0.1 mL of amyloglucosidae/α-

amylase enzyme solution were added into the 10 mL tube and the mixture was incubated at 40°C 

for 10 min. This solution was transferred to a glass test tube with 1.0 mL and 4 mL GOPOD 

reagent was added with mixing. The absorbance at 510 nm was measured after incubation at 

40°C for 20 min. and recorded as Total Starch Absorbance.  

Con A solution (0.50 mL) was added into the Eppendorf ® tube. The tube was capped and 

gently mixed by repeated inversion. The sample was centrifuged at 14,000 g for 10 min after 1 hr 

incubation at room temperature. The supernatant (1 mL) was transferred to a 15 mL centrifuge 

tube and 3 mL of 100 mM sodium acetate buffer (pH 4.5) was added. The sample was mixed and 

heated in a boiling water bath for 5 min. to denature the Con A. The sample was transferred into 

a water bath at 40°C to equilibrate for 5 min. 0.1 mL of amyloglucosidae/α-amylase enzyme 

mixture was added and the sample was incubated at 40°C for 30 min. After incubation, the tube 

was centrifuged at 2,000 g for 5 min. The supernatant (1.0 mL) was taken into another tube and 4 

mL of GOPOD reagent was added. The sample was incubated at 40°C for 20 min. and measured 

absorbance at 510 nm recorded as Amylose Absorbance.  

Amylose content was calculated as follows, 

 
Where 6.15 and 9.2 are dilution factors for the Amylose and Total Starch extracts respectively. 

HPLC ANALYSIS 

Kafirins were extracted from 100 mg of sample with 1 mL of 60% tertiary butanol 

containing 0.5% sodium acetate and 2% beta mercaptoethanol (Ioerger et al, 2007). Samples 

were heated at 80°C for 2 min to deactivate any enzymatic activity in the samples. Proteins were 



 19

analyzed using a Poroshell C8 column (5 μL injection) on an Agilent 1100 HPLC system with 

solvent A being 0.1% triflouracetic acid (TFA) (w/v) in water and solvent B acetonitrile plus 

0.07% TFA (w/v). The separation was achieved using a linear gradient of solvent B from 45 to 

60% over 19 min. Column temperature was maintained at 50°C with a flow rate of 0.7 mL/min. 

Kafirin subclasses in the chromatograms were identified by comparing results to that of Bean et 

al 2000. 

CONFOCAL MICROSCOPY 

Proteins were labeled using a fluorescamine dye according to the method of Bantan-

Polak et al (2001). Fluorescamine dye (300 μL, 0.1% (w/v)) was dissolved in acetonitrile 

followed by 50 μL of 0.1 M sodium tetraborate buffer, pH 8.0, and 150 μL of water. 

Approximately 50 mg of sample was weighed and added into the above solution. The samples 

were stained for 20 min and rinsed off with deionized water. 

The sample was observed using a confocal laser scanning microscope (LSM 510 META, 

Carl Zeiss, Munich, Germany). Excitation of fluorescamine-labeled proteins was at 360 nm. 

450/80 band pass filter was used to detect fluorescamine. Digital images were processed using 

Leica CM3050S Cryostat software (Carl Zeiss, Munich, Germany). 

DETERMINATION OF SULFHYDRYL GROUPS 

Free sulfhydryl group content was determined using the direct colorimetric method of 

Chan and Wasserman (1993). The experiment was conducted under dark conditions. A sample 

size of 30 mg in 2.5-mL Eppendorf® tubes was used. The reaction buffer consisted of 1 mL of 

8M urea, 3 mM EDTA, 1% SDS, 0.4 mM 5,5’-dithiobis 2–nitrobenzoic acid (DTNB) (Sigma), 

and 0.2M Tris-HCl pH 8.0 buffer. The samples were incubated at room temperature (~20°C) for 

30 min, with vortexing every 10 min After 30 min, samples were centrifuged at 7,200 × g for 15 

min, and the absorbance of the clear supernatant read at 412 nm after dilution with 0.2M Tris-

HCl buffer pH 8.0 containing 8M urea, 3 mM EDTA, and 1% SDS. Experiments for 

determination of sulfhydryl group contents were conducted in triplicate. 

STATISTICAL ANALYSIS 

SAS (SAS Institute Inc., Cary, NC) was used to conduct two-way analysis of variance 

(ANOVA) for determining significant differences among means of starch digestion values. 
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Statistically significant differences (P<0.05) among means were determined using a Tukey 

multiple comparison procedure. 
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CHAPTER 3 - RESULTS AND DISCUSSION 

EFFECT OF PH ON PROTEIN AND STARCH DIGESTIBILITY 

In the pepsin treatment experiments, when pH was 1.3, 6 to 20% protein was digested 

(Table 3.1 and Fig. 3.1). In contrast, when pH of 2.0 was used, 42 to 64% protein digested. These 

results suggest it is important to have pH of 2.0 during the pepsin treatment to ensure that large 

amount of protein is hydrolyzed. 

At pH 2.0, starch digestibility after the pepsin treatment increased (Table 3.2 and Fig. 

3.2), suggesting that the protein matrix affects the starch digestion. 

 

 

Table 3.1 Effect of pH on protein digestion of 9 native sorghum flour samples 

Sample 
Protein Digestibility (%) 

pH 1.3 pH 2.0 

HS 19.23±0.05 64.19±0.18 

HM 15.10±0.12 58.99±0.09 

HL 9.41±0.01 55.03±0.21 

MS 16.47±0.01 53.43±0.16 

MM 12.45±0.02 47.62±0.19 

ML 6.85±0.06 42.30±0.06 

SS 16.97±0.09 57.41±0.01 

SM 13.58±0.11 46.05±0.17 

SL 7.87±0.06 44.98±0.20 
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Figure 3.1 Effect of pH on protein digestion of 9 native sorghum flour samples. 

 

 

Table 3.2 Effect of pH on starch digestion of 9 native sorghum flour samples* 

Sample 
pH 1.3 pH 2.0 

RDS (%) SDS (%) RS (%) RDS (%) SDS (%) RS (%) 

HS 37.19±0.47a 44.33±1.13a 18.48±0.75a 37.74±0.36a 51.65±0.74a 10.61±0.55a

HM 22.66±1.26b 51.77±0.74b 25.57±1.00b 22.99±1.04b 58.92±0.64b 18.09±0.84b

HL 19.60±0.64c 49.53±1.22c 30.87±0.93c 20.13±0.27c 57.29±0.37c 22.58±0.32c

MS 34.44±1.05d 45.55±1.05d 20.01±1.05d 33.78±0.07d 51.25±0.19a 14.97±0.13d

MM 24.26±0.04b 46.26±0.96d 29.48±0.50c 23.59±0.74b 53.59±0.99d 22.82±0.86c

ML 16.26±0.46f 50.16±1.29b 33.60±0.87e 17.90±1.16e 52.56±0.52d 29.54±0.83c

SS 30.30±1.06g 51.55±0.19b 18.15±0.55a 31.28±0.92f 57.96±1.77c 10.76±0.84a

SM 30.93±0.86g 44.39±0.22e 24.68±0.53b 28.91±1.24g 51.47±0.35a 19.62±0.79b

SL 18.02±0.08c 53.44±0.45f 28.54±0.26f 18.68±0.49e 56.70±0.09c 24.62±0.29e

*Values are means±SD. Means not sharing a common superscript letter in a column are 

significantly different at p ≤ 0.05. 
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Figure 3.2 Effect of pH on starch digestion of 9 native sorghum flour samples (RS content). 

 

EFFECT OF PARTICAL SIZE AND HARDNESS ON DIGESTION 

Flour from the hard sorghum gave higher protein and starch digestibility than flour from 

median and soft ones. But there was no significant difference between median and soft flours 

(Table 3.3 and Fig. 3.3-3.5). 

Starch digestibility increased with the pepsin treatment (Fig. 3.3-3.5). RDS content was 

similar with or without the pepsin treatment (Fig. 3.4). The differences were almost less than 1%. 

RS content had large difference when pepsin treatment was applied (Fig. 3.3), ranging from 

3.39% to 9.14%. The sorghum flour with median hardness and small particle size had 24.11% of 

RS whereas RS was only 14.97% after pepsin treatment, indicating the starch digestibility 

increased after pepsin treatment. Compared with hard and soft sorghum flours, the median one 

had relatively higher RS content, which was 24.1-35.5%, compared to 19.0-28.4% in hard and 

soft flours. 

In agreement with previous work (Owsley, et al, 1981), decreasing particle size increased 

starch digestion (Fig. 3.3-3.5). 

Early studies has illustrated that decreasing sorghum particle size improves both starch 

and protein digestibility (Luce et al, 1970 and Lawrence, 1970). As a consequence, successive 

reductions in sorghum particle size increase nutritional value (Owsley et al, 1981). 
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Hardness or corneousness in sorghum and corn is related to protein content and 

continuity of the protein matrix (Rooney and Miller, 1982). The matrix may be continuous or 

incomplete and consists of glutelins in which starch granules and prolamine-rich protein bodies 

are embedded. In corneous endosperm, starch granules are smaller and the matrix nearly 

continuous. Floury endosperm cells tend to have more and larger starch granules surrounded by a 

discontinuous matrix with fewer protein bodies. The resistance to digestive action of the hard 

peripheral endosperm layer is largely responsible for low digestibility. In my results, the starch 

digestibility was lower in median sorghum than in hard and soft one. There must be another 

factor such as amylose content affecting more than hardness. It should be noted that the median 

sorghum was white grain, whereas the others were red grain. 

 

 

Table 3.3 Starch digestion of 9 native sorghum flour samples with different particle sizes 

and hardness* 

Sample 
RDS (%) SDS (%) RS (%) 

w/ pepsin w./o. pepsin w/ pepsin w./o. pepsin w/ pepsin w./o. pepsin

HS 37.74±0.36a 36.51±0.26a 51.65±0.74a 44.46±1.02a 10.61±0.55a 19.03±0.64a

HM 22.99±1.04b 22.47±0.29b 58.92±0.64b 51.27±0.40b 18.09±0.84b 26.26±0.35b

HL 20.13±0.27c 19.30±1.25c 57.29±0.37c 52.35±0.97b 22.58±0.32c 28.35±1.11c

MS 33.78±0.07d 32.85±0.42d 51.25±0.19a 43.04±0.87a 14.97±0.13d 24.11±0.64d

MM 23.59±0.74b 23.40±0.46b 53.59±0.99a 46.01±0.66c 22.82±0.86c 30.59±0.55e

ML 17.90±1.16e 16.85±0.09e 52.56±0.52a 47.64±1.28c 29.54±0.83e 35.51±0.68f

SS 31.28±0.92d 30.49±1.54d 57.96±1.77c 49.98±0.04d 10.76±0.84a 19.53±0.89a

SM 28.91±1.24d 28.27±0.12d 51.47±0.35a 45.44±0.59c 19.62±0.79b 26.29±0.36b

SL 18.68±0.49e 18.18±1.00e 56.70±0.09c 53.81±1.31b 24.62±0.29f 28.01±1.16c

* Values are means±SD. Means not sharing a common superscript letter in a column are 

significantly different at p ≤ 0.05. w/ pepsin = with pepsin treatment; w./o. pepsin = without 

pepsin treatment. 
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Figure 3.3 Comparison of RS content with and without pepsin treatment (pH 2.0) of 9 

native sorghum flour samples with different particle sizes and hardness. 

 

 
Figure 3.4 Comparison of RDS content with and without pepsin treatment (pH 2.0) of 9 

native sorghum flour samples with different particle sizes and hardness. 
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Figure 3.5 Comparison of SDS content with and without pepsin treatment of 9 native 

sorghum flour samples with different particle sizes and hardness. 

 

EFFECT OF COOKING ON STARCH DIGESTION 

Cooking affected both protein and starch digestion, decreasing protein digestion (Table 

3.5) but increasing starch digestion (Table 3.4 and Fig. 3.6-3.8). RDS content increased (Fig. 3.6 

and 3.9) when the samples were cooked, while SDS and RS content decreased (Fig. 3.7-3.8 and 

3.10-3.11), with or without pepsin treatment. Similarly to native sorghum flours before cooking, 

there were no significant difference in RDS content after cooking when pepsin treatment was 

applied (Fig. 3.4 and 3.12).  But the differences of RS and SDS content between with and 

without pepsin treatment increased when the flours were cooked (Fig. 3.13-3.14). The 

differences in RS content ranged from 10.5-15.5% after cooking. In comparison, before cooking, 

the range was 3.4-9.1%. As observed before cooking, the median sorghum flour had relatively 

higher RS content than hard and soft ones after cooking. 
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Table 3.4 Starch digestion of 9 cooked sorghum flour samples with different particle sizes 

and hardness* 

Sample 
RDS (%) SDS (%) RS (%) 

w/ pepsin w./o. pepsin w/ pepsin w./o. pepsin w/ pepsin w./o. pepsin

HS 56.01±0.39a 54.78±1.14a 39.13±0.87a 28.29±0.14a 4.86±0.63a 16.93±0.64a

HM 53.35±0.75b 52.05±1.08a 40.93±0.69a 30.65±1.22a 5.72±0.72a 17.30±1.15a

HL 52.17±0.84b 51.46±0.05a 38.59±0.55a 27.96±0.51a 9.24±0.69b 20.58±0.28b

MS 50.86±1.34c 48.94±0.61b 43.92±1.37b 30.35±0.42a 5.22±1.35a 20.71±0.52b

MM 46.97±0.43d 45.55±0.79c 42.76±0.84b 30.92±0.16a 10.27±0.64b 23.53±0.48c

ML 41.99±0.88e 41.03±0.21d 45.48±0.19b 34.98±0.76b 12.53±0.53c 23.99±0.49c

SS 49.11±0.61c 47.43±0.46b 42.88±0.48b 33.23±0.17b 8.01±0.55b 19.34±0.33b

SM 46.94±1.13d 45.63±0.94b 43.37±0.22b 34.15±0.59b 9.69±0.67b 20.22±0.77b

SL 44.13±0.91e 43.55±0.84b 46.67±0.54b 36.18±0.38c 9.20±0.73b 20.27±0.61b

* Values are means±SD. Means not sharing a common superscript letter in a column are 

significantly different at p ≤ 0.05. w/ pepsin = with pepsin treatment; w./o. pepsin = without 

pepsin treatment. 

 

 
Figure 3.6 Comparison of RDS content before and after cooking with pepsin treatment of 9 

sorghum flour samples with different particle sizes and hardness. 
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The particle size had little effect on starch digestion after cooking (Table 3.4), comparing 

the effect in native sorghum flours. There was no difference of starch digestibilities with 

different particle sizes of sorghum flours after cooking. Because the starches in sorghum flours 

were gelatinized when cooked and had to be homogenized before starch digestion, the particle 

sizes for cooked samples were no longer the original particle sizes of sorghum flours. 

 

 
Figure 3.7 Comparison of SDS content before and after cooking with pepsin treatment of 9 

sorghum flour samples with different particle sizes and hardness. 

 
Figure 3.8 Comparison of RS content before and after cooking with pepsin treatment 

treatment of 9 sorghum flour samples with different particle sizes and hardness. 
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Figure 3.9 Comparison of RDS content before and after cooking without pepsin treatment 

of 9 sorghum flour samples with different particle sizes and hardness. 

 

 
Figure 3.10 Comparison of SDS content before and after cooking without pepsin treatment 

of 9 sorghum flour samples with different particle sizes and hardness. 
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Figure 3.11 Comparison of SDS content before and after cooking without pepsin treatment 

of 9 sorghum flour samples with different particle sizes and hardness. 

 

 
Figure 3.12 Comparison of RDS content with and without pepsin treatment of 9 cooked 

sorghum flour samples with different particle sizes and hardness. 

 



 31

 
Figure 3.13 Comparison of RS difference of with and without pepsin treatment between 

native and cooked sorghum flours. 

 

 
Figure 3.14 Comparison of SDS difference of with and without pepsin treatment between 

native and cooked sorghum flours. 

 

EFFECT OF COOKING ON PROTEIN DIGESTIBILITY 

In the Englyst test, the pepsin treatment was 30 min., and the differences in protein 

digestion between cooked and native sorghum flours were small (Table 3.5 and Fig. 3.16). When 
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the digestion time extended from 30 min to 2 hr., digestion of protein in cooked sorghum was 

much lower than that of protein in native flours (Table 3.5 and Fig. 3.15).  

 

Table 3.5 Protein digestibility of 9 sorghum flour samples before and after cooking* 

* Values are means±SD. 

 

 
Figure 3.15 Protein digestibility of 9 sorghum flour samples before and after cooking        

(pepsin treatment: 37°C for 2 hr). 

 

Pepsin treatment 2 hr 30 min 

Sample Native Cooked Native Cooked 

HS 64.93±0.95 47.28±1.17 64.19±0.18 58.76±0.11 

HM 63.67±0.67 49.12±0.43 58.99±0.09 56.71±0.20 

HL 63.08±0.41 48.34±0.95 55.03±0.21 52.00±0.18 

MS 65.11±1.04 45.67±0.69 53.43±0.16 54.30±0.09 

MM 63.93±0.84 44.39±0.18 47.62±0.19 45.65±0.10 

ML 64.27±1.99 44.37±1.33 42.30±0.06 43.49±0.06 

SS 58.26±0.64 39.22±0.47 57.41±0.01 55.84±0.14 

SM 58.03±0.35 41.78±0.68 46.05±0.17 48.37±0.29 

SL 57.44±0.27 40.22±1.08 44.98±0.20 44.21±0.12 
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Figure 3.16 Protein digestibility of 9 sorghum flour samples before and after cooking 

(pepsin treatment: 37°C for 30 min.) 

 

PROTEIN HYDROLYSIS 

Data above (Table 3.5 and Fig. 3.15-3.16) indicated the possibility of incomplete protein 

digestion during pepsin treatment. We decided to extend treatment time to achieve complete 

protein digestion. Samples were treated by pepsin for 3 and 4 hours to compare with the results 

of 30 min and 2 hours (Fig. 3.17). After 4 hr pepsin treatment, protein was almost all hydrolyzed. 

The samples after 4-hr pepsin treatment were used as isolated starches. The protein content in 

isolated starches was around 0.5% (Table 3.6). 

 

 
Figure 3.17 Hydrolysis of protein in 9 sorghum flour samples with time. 
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Table 3.6 Protein content in isolated starches from 9 sorghum flours. 

Sample Protein content (%) Sample Protein content (%) Sample Protein content (%)

HS 0.44 MS 0.55 SS 0.52 

HM 0.53 MM 0.59 SM 0.48 

HL 0.57 ML 0.57 SL 0.55 

 

As a result of different protein digestibility at different pepsin treatment time, starch 

digestion was different, too (Fig. 3.18). The RS content decreased with increasing pepsin 

treatment time, but the decreasing rate was very slow. Most decrease occurred between 30 min to 

2 hr. During 2-4 hr of pepsin treatment, only sorghum flour with median particle size had a 

decrease in RS content, while the sorghum flours with small and large particle size had no 

difference in RS content (Table 3.7-3.9). On the contrary, the rate of protein digestibility was 

slower between 30 min and 2 hr but faster from 2 hr to 4 hr. Since the sample after 4-hr pepsin 

treatment was considered as isolated starch, the starch digestibility of the isolated sorghum starch 

(8.47-26.28% of RS content). There may be Zhang et al (2000b) reported that normal maize 

starch had RS content of 22.6%. Actually, Englyst test needs to be standardized upon different 

starches. 
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Figure 3.18 Resistant starch (RS) content and protein digestibility of hard sorghum flour 

with different particle sizes. red: RS content; blue: protein digestibility; ◆: small particle 

size; ■:median particle size; ▲: large particle size. 

 

 

Table 3.7 Starch digestion of 9 native sorghum flour after 2 hr protein digestion* 

Sample RDS (%) SDS (%) RS (%) 

HS 39.51±0.15a 51.88±0.46a 8.61±0.81a 

HM 25.04±0.94b 58.11±0.94b 16.85±0.05b 

HL 19.82±1.72c 58.93±1.06b 21.25±1.01c 

MS 37.15±1.37a 51.96±0.85a 10.89±1.21a 

MM 25.16±0.61b 55.26±1.78c 19.58±0.53d 

ML 20.74±0.21c 51.93±0.45a 27.33±0.78e 

SS 34.96±0.56d 59.54±0.95b 8.41±0.59a 

SM 28.14±0.95e 53.56±0.17d 18.30±1.09d 

SL 20.19±0.93c 57.22±1.11b 22.59±0.36c 

* Values are means±SD. Means not sharing a common superscript letter in a column are 

significantly different at p ≤ 0.05. 
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Table 3.8 Starch digestion of 9 native sorghum flour after 3 hr protein digestion* 

Sample RDS (%) SDS (%) RS (%) 

HS 38.28±0.21a 53.23±0.57a 8.39±0.43a 

HM 26.01±0.33b 58.07±0.61b 15.92±1.05b 

HL 20.53±0.85c 58.17±0.99b 21.30±0.73c 

MS 37.02±0.52a 51.41±0.36c 11.57±0.72a 

MM 25.89±0.63b 55.69±1.02d 18.42±0.56d 

ML 20.00±0.89c 52.31±0.51a 27.69±1.06e 

SS 36.36±0.26a 55.68±0.33d 6.96±0.18a 

SM 27.83±0.97b 53.64±0.53a 18.53±0.17d 

SL 20.84±0.69c 58.22±0.17b 20.94±1.32c 

* Values are means±SD. Means not sharing a common superscript letter in a column are 

significantly different at p ≤ 0.05. 

 

Table 3.9 Starch digestion of 9 native sorghum flour after 4 hr protein digestion* 

Sample RDS (%) SDS (%) RS (%) 

HS 39.15±0.77a 51.84±0.65a 9.01±0.43a 

HM 26.88±0.28b 57.83±0.38b 15.29±0.18b 

HL 19.47±0.93c 59.95±0.25c 20.58±0.31c 

MS 37.92±0.36a 51.19±0.02a 10.89±1.51a 

MM 26.13±0.48b 54.76±0.32d 19.11±0.49d 

ML 19.69±0.69c 54.03±0.85d 26.28±0.99e 

SS 37.82±1.09a 53.71±0.44d 8.47±0.41a 

SM 27.35±0.22b 55.02±0.29d 17.63±0.92d 

SL 19.96±0.53c 59.16±1.03c 20.88±0.05c 

* Values are means±SD. Means not sharing a common superscript letter in a column are 

significantly different at p ≤ 0.05. 

 

AMYLOSE CONTENT 

Amylose content in these samples is shown in Table 3.10. 
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Table 3.10 Amylose content in 9 sorghum samples with different particle sizes and 

hardness* 

Sample Amylose Content (%) 

HS 20.1±0.39 

HM 20.0±0.22 

HL 20.2±0.14 

MS 24.0±0.07 

MM 23.8±0.41 

ML 23.9±0.29 

SS 19.8±0.37 

SM 20.0±0.11 

SL 20.1±0.23 

* Values are means±SD. 

The flour from median hardness sample had the highest amylose content. The higher 

amylose content in median sorghum flour probably contributed to the higher RS content. 

However, Zhang et al (2006a) reported that amylose did not have a significant impact on the 

slow digestion property of normal maize starch. Since the composition of starch is amylose and 

amylopectin, high amylose content indicates low amylopectin content. As discussed previously 

in the introduction, the organized structure of amylopectin is associated with enzyme 

accessibility to starch granules and finally affects starch digestion (Oates, 1997). Starch 

digestibility would be high in samples with low amylopectin content. 

HPLC RESULTS 

There were 3 areas of protein selected in HPLC chromatograph, representing γ-kafirin, 

α/β-kafirin, and α-kafirin. α-Kafirin, the major sorghum storage protein, makes up about 60-70% 

of the total protein in the grain (Aboubacar et al, 2001). 

The percentage of the three areas is shown in Table 3.11. Compared with different 

particle sizes, γ-kafirin had a trend of increasing with pepsin treatment times (Fig. 3.19), while 

the other peaks showed decreased (Fig. 3.20-3.21), though there were several occasional 

exceptions. Compared with different hardness (Fig. 3.22-3.24), there was no significant trend for 

different proteins. As these samples were treated with pepsin prior to HPLC analysis, hydrolysis 
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of the proteins may have caused changes in elution times of some of the remaining proteins, thus 

interfering with quantification of the proteins. 

Table 3.11 Portion of α, β and γ kafirin in 9 native sorghum flours with different pepsin 

treatment time 

Sample Time (hr) 
Protein Fraction (%) 

γ-Kafirin α/β-Kafirin α-Kafirin 

HS 

0.25 21.99 55.56 22.46 

0.5 21.71 56.61 21.68 

1 22.39 56.46 21.16 

2 24.98 54.98 20.05 

3 25.54 54.29 20.17 

4 26.33 53.84 19.83 

HM 

0.25 21.10 56.73 22.18 

0.5 21.54 56.76 21.70 

1 22.06 56.42 21.53 

2 22.65 56.40 20.95 

3 23.66 55.36 20.98 

4 23.65 55.47 20.87 

HL 

0.25 23.14 55.30 21.56 

0.5 20.50 57.45 22.05 

1 21.24 57.10 21.67 

2 22.79 55.85 21.36 

3 22.83 56.30 20.88 

4 23.00 56.04 20.97 

MS 

0.25 18.20 57.63 24.17 

0.5 18.43 57.88 23.70 

1 17.60 58.63 23.76 

2 17.91 57.67 24.43 

3 15.99 56.41 27.60 
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4 22.08 55.05 22.86 

MM 

0.25 17.34 58.26 24.41 

0.5 17.29 58.48 24.23 

1 17.17 58.71 24.12 

2 17.99 57.64 24.38 

3 17.33 56.85 25.83 

4 21.37 55.46 23.17 

ML 

0.25 17.51 58.13 24.36 

0.5 16.94 58.67 24.40 

1 14.15 60.76 25.10 

2 14.84 60.25 24.91 

3 13.69 58.86 27.45 

4 17.27 58.74 23.99 

SS 

0.25 17.85 56.39 25.77 

0.5 22.19 52.86 24.94 

1 23.83 51.50 24.67 

2 19.67 55.72 24.60 

3 19.58 55.31 25.11 

4 20.19 55.52 24.30 

SM 

0.25 16.17 56.51 27.32 

0.5 21.21 54.47 24.32 

1 17.32 57.50 25.18 

2 21.53 54.48 24.00 

3 19.11 56.82 24.08 

4 20.56 56.13 23.31 

SL 

0.25 19.01 55.34 25.65 

0.5 20.35 55.28 24.37 

1 18.55 56.58 24.87 

2 17.00 58.11 24.88 

3 20.48 55.81 23.71 
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                                                        (A) 

 
                                                            (B) 

 
                                                            (C) 

Figure 3.19 Comparison of 1st group of HPLC peak (γ-kafirin) with different pepsin 

treatment time in sorghum flours with different particle sizes (A: hard flour, B: median 

flour, C: soft flour) 
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                                                              (A) 

 
                                                               (B) 

 
                                                                 (C) 

Figure 3.20 Comparison of 2nd group of HPLC peak (α/β- kafirins) with different pepsin 

treatment time in sorghum flours with different particle sizes (A: hard flour, B: median 

flour, C: soft flour). 
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                                                                   (A) 

 
                                                                   (B) 

 
                                                                   (C) 

Figure 3.21 Comparison of 3rd group of HPLC peak (α-kafirin) with different pepsin 

treatment time in sorghum flours with different particle sizes (A: hard flour, B: median 

flour, C: soft flour) 
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                                                              (A) 

 
                                                               (B) 

 
                                                              (C) 

Figure 3.22 Comparison of 1st group of HPLC peak (γ-kafirin) with different pepsin 

treatment time in sorghum flours with different hardness (A: small particle size, B: median 

particle size, C: large particle size). 
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                                                               (A) 

 
                                                               (B) 

 
                                                               (C) 

Figure 3.23 Comparison of 2nd group of HPLC peak (α/β-kafirins) with different pepsin 

treatment time in sorghum flours with different hardness (A: small particle size, B: median 

particle size, C: large particle size). 
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                                                               (A) 

 
                                                                 (B) 

 
                                                                 (C) 

Figure 3.24 Comparison of 3rd group of HPLC peak (α-kafirin) with different pepsin 

treatment time in sorghum flours with different hardness (A: small particle size, B: median 

particle size, C: large particle size). 
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Table 3.12 Total area in HPLC graph of 9 native sorghum flours. 

Sample 
Digestion 

Time (hr) 
Total area Sample

Digestion 

Time (hr) 
Total area Sample

Digestion 

Time (hr) 
Total area 

HS 

0.25 96209.632 

MS 

0.25 91583.013

SS 

0.25 86956.978

0.5 88899.030 0.5 85646.783 0.5 85709.989

1 78639.035 1 74977.469 1 71506.955

2 69131.296 2 41600.972 2 59470.140

3 57817.445 3 30266.974 3 62893.876

4 57138.594 4 66020.973 4 59504.144

HM 

0.25 97749.152 

MM 

0.25 84582.612

SM 

0.25 47395.099

0.5 92393.657 0.5 85509.341 0.5 79368.455

1 79869.487 1 71803.437 1 78775.496

2 75973.022 2 39516.096 2 61558.438

3 64267.903 3 37928.950 3 62894.739

4 63450.230 4 50533.965 4 58708.389

HL 

0.25 90421.611 

ML 

0.25 80548.342

SL 

0.25 81208.330

0.5 92582.338 0.5 81433.327 0.5 80992.934

1 83050.606 1 77464.305 1 75066.821

2 71874.994 2 56273.788 2 74915.375

3 70485.890 3 49020.507 3 62158.901

4 63906.698 4 56998.119 4 
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                                                                    (A) 

 
                                                                    (B) 

 
                                                                    (C) 

Figure 3.25 Comparison of total area in HPLC graph of same hardness sorghum flours 

with different particle sizes (A: hard, B: median, C: soft). 
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                                                                    (A) 

 
                                                                   (B) 

 
                                                                   (C) 

Figure 3.26 Comparison of total area in HPLC graph of same particle size sorghum flours 

with hardness (A: small particle size, B: median particle size, C: large particle size). 
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CONFOCAL MICROSCOPY 

There was difference in starch digestion between samples before and after pepsin 

treatment (Fig. 3.27-3.33). The protein matrix was destroyed after pepsin treatment for 15 min. It 

was similar in the samples with pepsin treatment of 30 min, 1 hr, 2 hr, 3 hr, and 4 hr. The degree 

of disruption was no significant difference with different pepsin treatment time, because there 

was almost no protein left. The sample with 4 hr pepsin treatment swelled more than others (Fig. 

3.33). 

 
Figure 3.27 Confocal micrograph of hard sorghum flour with small particle size (HS) 

before pepsin treatment. Size bar = 20 μm. 
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Figure 3.28 Confocal micrograph of hard sorghum flour with small particle size (HS) after 

15 min pepsin digestion. Size bar = 20 μm. 

 
Figure 3.29 Confocal micrograph of hard sorghum flour with small particle size (HS) after 

30 min pepsin digestion. Size bar = 20 μm. 
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Figure 3.30 Confocal micrograph of hard sorghum flour with small particle size (HS) after 

1 hr pepsin digestion. Size bar = 20 μm. 

 
Figure 3.31 Confocal micrograph of hard sorghum flour with small particle size (HS) after 

2 hr pepsin digestion. Size bar = 20 μm. 
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Figure 3.32 Confocal micrograph of hard sorghum flour with small particle size (HS) after 

3 hr pepsin digestion. Size bar = 20 μm. 

 
Figure 3.33 Confocal micrograph of hard sorghum flour with small particle size (HS) after 

4 hr pepsin digestion. Size bar = 20 μm. 
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SULFHYDRYL GROUP CONTENT 

Table 3.13 Free sulfhydryl group content of native and cooked sorghum samples with 

different hardness* 

Sample 
Free Sulfhydryl Group Content (nmol/mg) 

Native Cooked 

HS 15.73±0.29 1.55±0.05 

MS 14.04±0.43 1.31±0.01 

SS 15.10±0.09 0.97±0.10 

* Values are means±SD and are expressed as nmol/mg of protein. 

 

Sulfhydryl group content decreased after cooking (Table 3.13), indicating that there were 

disulfide bonds formed during heating. The disulfide bonds connected the proteins in sorghum 

flour. The cross-linked protein strengthened the structure of protein matrix in sorghum flour. 

Digestibility of starch in cooked sorghum flour was lower compared to that of starch in cooked 

corn flour (Lewis et al, 2008) and wheat flours. However, in my work, digestibility of starch in 

cooked sorghum flours was higher than that of starch in un-cooked sorghum flours. Cooking 

gelatinized starch in sorghum, making it more susceptible to enzyme digestion. 
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CHAPTER 4 - CONCLUSIONS 

1.  Digestion of starch in sorghum was affected by the protein matrix. Low protein 

digestibility at pH 1.3 led to a low digestion of starch. When pH 2.0, optimum pH for 

pepsin, was used, higher protein digestibility was achieved, and led to higher starch 

digestibility. Protein hydrolysis increased with the time of pepsin treatment, leading 

to increased starch digestion. Confocal microscopy showed the protein matrix was 

disrupted after pepsin treatments, leading to the increased digestion of starch. 

2. RDS content of isolated sorghum starch was about 20-40%, SDS content was 51-60%, 

and RS was approximately 9-20%. They are similar with that of normal maize starch, 

which has a relative low digestibility among cereal starches. 

3. Amylose content was higher in sorghum flour with median hardness than that in hard 

and soft flours, causing lower starch digestibility.  

4. Protein digestibility decreased after cooking while starch digestibility increased 

compared to native sorghum flours. Sulfhydryl groups decreased after cooking, 

indicating the disulfide bonds formed between protein molecules and increased 

barrier for enzyme to digest starch.  

 

Future work is needed: determine particle size of sorghum flour after pepsin treatment; 

determine proximate composition of the 9 sorghum flours including ash, fat, and fiber; 

determine the RS level in starches with less than 0.3% protein; use confocal laser 

scanning microscopy to examine cooked sorghum flours after pepsin treatment.
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