/A

MODULE DECLARATION
GENERATOB/

by
JOSEPH }'IBRERS

B. S., San Jose’ State University, 1976
A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1985

Approved by:

Major Professor

LID All202 99L7kL1

7667
. Rd
/qf5 Master's Report on
/ A Module Declaration Generator
|52
2
Ce &
chapter 1 e Overview LR B BN B BE B RE AR BN AR B BE BE BN DR BN BN BN AR BN BN BN NY RN B BN BE NE BN BN AN N]
1'1 Introduction.-....'..-l..l......'..l..l.'..-.. llllllllllllll
1.1.1 The Software CrisiS..cccecenccccacescococcannonsoses
1.1.2 Automating Programmer ActivitieS...ceeecee... W
1.1.3 Automatic Program GeneratorsS...ccceeececceecancscses
1.1.4 Common CharacteristiCS..ccicercsccancccas SR & B S
1.1.5 The Module Declaration Generator.icececescecescesascos
Chapter 2 - Project RequirementsS....cceveeeeeoccesacnannan cesessea
2.1 I OdUCETON e a o srepmsnmnin o 8 3 sirarmaane v » W aiEeE-e § & »PEEEaEE o b o
2.1.1 Requirements of Input..... L .
2.1.2 Requirements on Qutput....cccvvenveens &4 § RATRAEGE ¥
20103 Chﬂ.l"aCterist1CS............... ---------------- *se s s 0w
Chapter3-PTOjECt DESign ---------------------- LRI I A B I B B B B A B RN A I)
3.1 Introduction. L B B B B B B RN B BN OB RN B BN B BN RN RN BN BN NE NN BTN R RN BN RN N
3.2 The Module Declaration Generator Input......... Coreemseeh s
3.3 The Module Declaration Generator Output...cceeeeeceeccccen e
3.4 The Module Declaration Generator Program Design........ T
Chapter 4 - The Imp]ementation---........-... ----------------- *e
4.1 General OVervieW..eeeeceoceocesconsessccsnnnnas vio & B SWNTHETE § o
4.2 MDG Module Input...ceceecececcnccns SR 5 3§ SRSIRES R § SRR § 8
4.3 MDG Modu1e outputooooonoono- lllllllllllllllll 9 &% 0 0 e b e -
4.4 MDG Operation.ceceveeceecnces v g 8 ST § 8§ ST § § R ——

27

4.5 10 Mapping and Type Mapping.cccecceeceenascosceascasccnacnns 30

4.8 LMYt IONS. sawwvmwus s s o s smuns v 8 P — § & 8RR o 8 ST 32
Al TESEING s & o v sviemasvad & & § § SWeeaieEs ¥ & 5 8 VOBUHEE § 5 ¥ SRONNEE § 33 SR 23
4.8 RESUTES . iiieiensesesoasnaesscsssssssssosssasasascasaanssnns 34
Chapter 5 - Conclusions and EXteNSiONS....ceeeeieescssannssanraanns 35
Bed: CONCTUSTONSS s wemmenes s § § voaessmes § 5 § s SRR LT TR R PP PR 35
5.2 AQVANTAGES..teresreeetstssetstasessnnstscensancssasesnonennns 36
B3 TASRAVERTAGOS v v conans s v sawnnmress & s 4 PEESEEES § § FESPEENE 5 8 B3 36
St EXEENSTONS S o5 1 s vmwaenus v b s SEMETRS 5 § 2 AVGEERE S B) SREETEES § 3 B Ao 37
RE O ENCES .t cncveacnscnesnsnsasasstceaessorsssnssnesssesnassanesoss 39
o] o= g To I G« 41
A.1 Input File Specifications and EXamplesS..ueeeeeeeenesnnonanss 41
A.l.1 Data Dictionary BNF...ieeeiieeeneeseeesocscnnennnnns 42
A.1.2 Data Dictionary File EXample...eeeeerennrnnrannannas 43
A.1.3 ERA Requirements Specification BNF....eeveeeenuennan 46
A.1l.4 ERA Requirements Specification Activity Block File
EXAMP TR s svnmmen v & 5 5 swwemaus § § 3 Resemas § § sammeed 5o a 47
ADPRTE TR B svwainiin i 6 9 5 adaiiidid + & § o S ammntiin o & § matce aaom Ceseecitennanae 48
B.1 I/0 Mapping..... Gt e e esersesaesasae et te o anatannanas 48
Appendix Ky o yassvwwes v o 5 s 5 5 § 5 RERESTRES § § § PRI 5 § 5SS £ 3 49
C.l Type Mapping...eeeeeeeeeeneenneenenns S 0 » =imsnseiniete o = & afeneeresese v n 5 49
ApPENdTIX Duvererennnereennncnnoeanannns s e § AR 8 RS E 8§ 50
DI User Instructions:cssemsmuss sy oamsmensss s somaavis s ¥ s asvseans s i 50

-3 -

B.lsl Bun InSEructlonScessweses s s s smenens 5 ¥ ywmeme o 5 § 5 cwse D0
Dili2 User MesSages. : cuswwsan s 5 5 mesond ¢ & » sweesees s § suass o B2
D.1¢3 Samp]e OUtDUtIl‘ﬁ.‘t.!‘.“.i‘t'--!.‘. ® » e 599 %83 e 55
Appendix E.veeeviosnesnnossncccacsssacensncncaasssanosasscnnnassras 56
E«l Program SpeeiTICatToN. ¢ s s swwwnn ¢ 5 5 swwmes & 5 § 5 smwmees § 3 4 owwas 56
Appendix F llllllllllll 8 4% e % s ones de buo e @ 9 9 & @ u e B e PP eSS P st 68
F.l Program Source Code.....uriiieenrnrenceneecenanaaasonaaannnes 68

- iii -

LIST OF FIGURES

Figure 1. Project OVerview.iieeeeeeeeesesceseasassacscnncononcnns 13

Figure 2. Hierarchy Diagram....coeeeecenn SHEE § § RS . . 24

= Iy =

Acknowledgment

To my wife, Elizabeth for her patience, understanding,
support, and love while I completed the requirements for
this Degree.

To my mother and father for instilling in me the desire to
learn.

To Mick and Mary Beth Cole for their friendship and efforts
which made my five summers in Kansas enjoyable and
productive.

To Dr. and Mrs. David A. Gustafson for their guidance and
kindness.

To Ms. Clare E. Wherley who gave me the opportunity to
attend Kansas State Univerisity.

Chapter 1 - Overview

1.1 Introduction

This project developed a Module Declaration Generator (MDG) from an
Entity Relationship Attribute (ERA) Requirements Specification. This
project is one of many software tools designed and developed as part
of a research project conducted at Kansas State University's Computer
Science Department during the summer of 1984. The overall project is

intended to address the software development technology of the future.

1.1.1 The Software Crisis

During the 1960's the manpower costs of programming new information
systems increased so0 rapidly the term "Software Crisis" was coined.
Despite massive research and development efforts to advance the field
of software engineering technology the trend continued 1into the
1970's. In the United States the software industry still suffers from
insufficient reliability and poor maintainability of software
products, frequent overruns in development costs, and high rates of
personnel turnover <Kim83>. The United States Department of Defense

(DoD) initiated the STARS program; the STARS program goal is to

improve productivity while achieving greater system reliability and

adaptability <Mar83>, <Dru83>.

Japan, having achieved phenomenal technological advances through the
60's and 70's, is trying to extend its success via a national research
and development project, the Fifth-generation Computer System project
<Tre82>. Their project is intended to represent a unification of four
currently separate areas of research, namely knowledge-based expert
systems, very-high-level programming langquages, decentralized
computing, and very-large-scale integration (VLSI) technology <Tre82>.
One of the key technologies being given considerable amount of
attention is software engineering. The Japanese Government intends to
push Japan into the forefront of computer system technology by 1990

<Kimg83>.

1.1.2 Automating Programmer Activities

One of the primary thrusts of both the United States and the Japanese
efforts is to reduce the cost of producing software through automation
<DouB83>. One of the objectives of the DoD STARS program is an
automated support environment; this environment comprises tools to

provide automatic support of the tasks occurring during the entire

system 1life cycle, providing generic automated tools and automated
tools oriented towards specific management practices, methodologies or
applications <Dru83>. In Japan, much research and development is also
being done 1in this area. The VYokosuka Electric Communication
Laboratory (ELC) is one of many organizations developing a variety of
new software tools. 0One tool ELC is developing is PAL (program
automation language), a system design language that automatically
generates an executable program from a description of its data

structure specifications <Kim83>.

Though radical changes in the way computers work will be essential to
break the programming bottle neck, a number of years will be required
before this approach bears fruit. The principles of computer-system
design for the past three decades has remained largely static, being
based upon the von Neumann computer, a sequential control-flow
computer. This computer contains a low-level machine language in which
the instructions perform simple operations on simple operands; the
memory is organized in 1linear fixed-sized cells. The von Neumann
computer incorporates a processor, communications and memory with
sequential, centralized <control of computations and primitive

input/output capability. The Japanese believe this concept has

contributed significantly to the '"software crisis". Their fifth-
generation computers are expected to be available in the 1990's; these
computer systems will provide three basic functions: the intelligent
interface, knowledge-based management, and problem-solving and
interface functions. the intelligent interface will support
conversations with a computer and can be described as being analogous
to traditional input/output channels and devices; the conversation
will be in the form of speech, graphics and natural languages. The
knowledge-based management function 1is to be capable of retrieving
information needed for a problem solution not only from mere files of
uniform content but also from files containing collections of facts,
inferences and procedures <Kan83>, <TreB82>. This function is to be
accomplished through an integration of main memory, virtual memory
facilities and a file system. The problem-solving and inference
function is regarded as equivalent to the traditionmal computers'

central processing unit (CPU) but much faster <Tre82>.

Present efforts are aimed at developing automatic program-generator
tools using very-high-level programming languages capable of
generating entire high-Tevel lanquage algorithms from a simple

statement about the purpose or behavior of a program. Some of these

tools use relationships between the data groups to determine the
sequence 1in which procedures are to be performed; these tools depend
upon data-flow languages. Data flow languages are collectively termed
“nonprocedural"”; by allowing the user to merely state what is to be
performed rather than as with conventional lanqguages how to perform
the program, they provide improved programming methodologies <Ler82>,

<TreB2>.

In data-flow programming the compiler program uses the data group
relationships to determine the sequence of procedures by analyzing the
statements entered; the availability of the input data triggers the
execution of the task or operation to be performed <Ler82>,
Functional languages such as Pure Lisp and predicate logical languages
such as Prolog are two of the best developed classes of very-high-
level languages; these Tlanguages are well suited for programming
knowledge-based expert systems <Tre82>, Data flow programming and
very-high-level programming languages are the basis for many new

automation program-generation systems.

There are some computer scientists that question whether the problems

raised by the software explosion can be solved by automatic program

generation with existing computer hardware and object Jlanguages; the
translation from a specification into a high-level lanqguage into
machine lanquage code may prove to be too slow and cumbersome.
Redesigning computers and languages may be more effective than merely

automating existing practices <Ler82>.

1.1.3 Automatic Program Generators

Automatic program generators are taking the mystery and drudgery out
of the art of programming computers. The process of automatically
generating a program given a formal specification of its variable
input and output groupings will probably require much more basic
research <0ouB83>. A limited form of automatic programming is presently
possible but these automated tools are still surrounded by other
manual activities; these manual activities constitute bottlenecks by
consuming manpower and producing errors. The Model language developed
by the automatic program generation project of the Moore School of
Electrical Engineering at the University of Pennsylvania is an example
<Ler82>. This automatic programming generator <creates the program
through a series of separate steps. After accepting statements from a

user a compiler analyzes and categorizes each statement identifying

variables and conditions. A graphical representation of the
dependencies of each variable upon the others. The graph shows which
variables must be calculated first and which variables are
subdependents. The compiler searches for ambiguities in the variable
names and incompleteness and inconsistencies in variable definitions.
The user will resolve such errors. The compiler creates a f]ow chart
of the program once an error free specification is prepared. The flow
chart will detail the sequence of program steps; the compiler attempts
to optimize the efficiency of the program by consolidating iterations.
Each block of the flow chart is translated into high-level 1lanquage
code <Ler82>. Although automatic programming does relieve the

drudgery of programming manual user interfaces are still required.

The purpose of many software tools is to minimize the time and effort
required to turn the requirements into executable code. Some of the
manufacturers of automatic program generators claim the generators
improve productivity of trained programmers by more than ten times,
although their users have a more conservative estimates. Program
maintenance is much easier because the program structure is consistent
from application to application. Much of the disagreement stems from

the notion programmers only code; very little of the programmers time

is spent in actual coding but in communication with others on the

project, system design and testing <GlaB83>.
1.1.4 Common Characteristics

Although module generators differ widely in what languages and
applications they are used some common characteristics exist. Module
generators require the user to 1ist inputs, outputs and Jocal
variables. They accept the user request in a formal framework. Unique
and consistent definitions of the variables is required. Since some
module generators automate existing practices, they use existing

hardware.

Some generators accept the user requests through preset frameworks.
APG (a program generator) interrogates a user who answers a series of
gquestions in English <Hag75>. An application generator, TAGS, requires
a user to describe an application by answering prompts by picking
items from menus and filling in blanks <Gla83>. Model, discussed
above, accepts sets of egquations, matrix and vector expressions and
operations such as matrix multiplication <Ler82>. Currently, most
module generators accept user requests through a formal preset

framework.

Module input/output is handled by requiring a wuser 1list inputs,
outputs and local variable names. Following the data flow
architecture concepts, the module generators wuse the data group
relationships to determine the sequence of procedures; the
availability of the 1input data 1is required before the task or

operation can be performed <Tre82>.

Unique and consistent definition of the data elements is required. As
explained above in the Model 1language discussion, the source
specification must be error free; ambiguities, different data assigned
the same name, must not exist. A1l variables must have complete and

consistent definitions.

Some generators automatically translate the user input into
programming code needed to perform the application. The Model system
discussed above generates either PL/1 or COBOL. Another module
generator generates FORTRAN programs <Cro83>. MAPSE (minimal Ada
programming support environment) a programming support environment
within the STARS program, is being expanded to automate the Ada

programming process <DruB83>.

10

1.1.5 The Module Declaration Generator

In this project the user will enter the module requirements through an
ERA specification. The ERA will support the formal specification
requirement. The ERA as used here is a formal specification
consisting of a set of frames (see ERA BNF). A group of frames will
compose an activity frame. Each activity frame will be entered

singularly.

The entities from the ERA will be matched against a data dictionary
file which will contain all entities reguired by the application.
Relationship frames designated as 'input', ‘'output' or ‘'uses' will
serve as the vehicle for user input. Each entity name will precisely
match an entity name being held in the data dictionary (see Appendix -
Data Dictionary BNF). The entity interrelationships are described

within the data dictionary.

The entities will be mapped through a data dictionary to produce the
data declarations and definitions required for the module. The entity
definition held within the data dictionary will determine the data
declaration or data definition required during the transformation into

the modules' declaration code.

11

A file containing the framework for an executable PASCAL program will
be generated. This file will be a UNIX* text file and will contain a
program header, comments describing the activity, comments containing
the user 1input entity descriptions, variable declarations, constant
definitions, data type definitions and the PASCAL 'begin' and 'end.'

statements.

* UNIX is a Trademark of AT&T Bell Laboratories

12

Chapter 2 - Project Requirements

2.1 Introduction

The module declaration generator should minimize the programming
effort required to produce software. The amount of manual effort
should be reduced by automating some of the manual functions normally
required to produce a module. As with some software tools the purpose
of the module declaration generator should be to minimize the time and

effort required to turn the requirements into executable code.

The design of small, singular-function modules should be encouraged. A
small and singular-function module is less cumbersome to test and
debug than multi-function bulky modules. The manual effort for
maintenance should be reduced with a large assemblage of small modules

rather than one large complex module.

13

Data Dictionary

Module
Declaration
Generator

Messages
ERA
Activity
Block
Source
File

Figure 1. Project Overview

2.1.1 Reguirements of Input

A standard user input format should be employed. A user is better able
to communicate the module regquirements if the input format is
consistent rather than in a state of flux. As discussed above one of
the bottlenecks in software development is the manual interfaces; care

must be taken to keep this interface standard and simple but formal.

14

A centralized repository of data definitions and declarations should
be employed. Using a centralized repository should reduce the
ambiguity of entity names and ensure completeness and consistency in
the entity interrelationships. The repository should contain a 1ist of
entries; each entry should contain a complete specification of the
entity including 1its symbol name as it appears in the requirements
specification, a description, a data specification and any informative

information such as a constant value if the entity is a constant.

The user should omly have to specify the input/output requirements
once. By specifying these requirements only once manual effort is
reduced and chance for error from the manual interface is also

reduced. The consistency of the requirements will also increase.

2.1.2 Requirements on Output

The name of the module generated should be similar to the name used in
the requirements specification. This will add continuity for the whole
application during the design, testing, implementation and maintenance
operations. The use of ambiquous or vague names could be reduced. The
effort required to locate a malfunction or a module requiring a change

should be reduced.

15

The format of the module framework should be standardized.
Standardization tends to increase communication among programmers.
The output module framework code should be uniform, carrect, complete
and compilable. When produced manually code too often contains time-
consuming errors. When code is not uniform, programmers are reluctant
to increase the number of modules in a program and instead increase

the size of an existing module <Cro83>.

The entity names generated by the module declaration generator should
be similar to the symbol name as it appears in the repository and the
requirements specification. This will add continuity to the

application’s operation.

Consistent data structures for the entities should be generated. The
interrelationships of the data must be preserved. For interfacing
modules to communicate data with minimum errors the data structure

must be consistent.

2.1.3 Characteristics

The module declaration generator itself should be maintainable and

flexible. The MOG program should be composed of small, singular-

16

function modules; simple algorithms and a top-down structure should be
required. The MDG should use standard and generic functions and
subroutines when possible. Comments should be included for all global
variables and to explain subroutines. Variable names should be
meaningful and if used for a similar task have consistently structured

names.

The MDG should be portable to other UNIX operating system
environments. The portability is a function of the language in which
the MDG is written. C language should be used. C is powerful, concise
and a machine-independent language. Commands are simple and structured
programming methodology 1is supported with Tooping (for, while
statements), with case selection (switch statements) and with
decision-making control (if then else) statements. In a standard UNIX
environment a C program can be recompiled and executed under an other

operating system (CP/M-86) <Rif83>.

The intent of the module declaration generator should be to minimize
the effort to transform the requirements specification into a useful
module framework; at the same time the MDG itself should be easy to

use, flexible, maintainable, reliable and relatively portable.

17

Chapter 3 - Project Design
3.1 Introduction

The module declaration generator project s objective is to develop a
method of accepting standardized user information and minimize the
effort required to transform this information into a framework for a
PASCAL program. This module declaration generator projecf will have
two input files and produce two output files. This module declaration
generator project will use as input an ERA Requirements Specification
Activity Block and a data dictionary file, an entity data repository.
User input and output requirements will be accepted through the
Activity Block from the ERA. The entity interrelationships will be
supplied through the data dictionary file. The cutput will consist of
a UNIX text file containing the framework for a PASCAL program and
user messages to be displayed on the user s display device. The

output framework will be a compilable PASCAL program.
3.2 The Module Declaration Generator Input

The module declaration generator will have two input files, the ERA

Requirements Specification file and the data dictionary file. The use

18

of the ERA Requirements Specification will accomplish many of the
project requirements. All1 wuser input will be standardized with a
formal input framework; the input/output requirements need only be
specified once. The ERA Activity Block Header, "Activity

activity-name ", will supply the name to be used as the npame of the
generated module. The input specification line(s), "input : symbol-
name", will supply the symbol name(s) of the input variable(s); the
output specification line(s), "output : symbol-name", will supply the
symbol name(s) of the output variable(s). The symbol names entered
through the ERA Activity Block will be individually mapped through the

data dictionary file.

The data dictionary is the central repository for data about the
entities contained on the ERA Specification. This data will include
information necessary to understand the relationship of the entity and
its use within the organization. The symbol names of the data
dictionary entities will be the same as supplied from the ERA
Requirements Specification. The entity interrelationships will be
described through a hierarchy of symbol declarations, which are the
keywords of the data dictionary. The sequence of these declarations

is important to the proper generation of the data type declarations

19

for the module being generated. As show in the hierarchy figures (see
I/0 Mapping and Type Mapping}, the data dictionary keywords “PASCAL",
"USAGE", "TYPE", "RANGE", “VALUES", and "COMPOSITION" play an
important roll in determining the proper variable data declaration
construct and ensuring the compilability of the output framework
praogram. Each entity is to be searched for individually in' the data

dictionary.

When the keyword "PASCAL" 1is associated with a entity the data
definition is to be used as supplied. This feature will enable the
MOG to generate PASCAL declarations more complex then the intended

scope of the project at hand.

The keyword "USAGE" is to signify the intended usage of the entity.
This keyword will indicate the entity could be used as an array,
string or constant. The usage keyword will assist the interpretation

of the entity.

Where as, the "TYPE" keyword will describe the data type of the
entity. The MDG will be able to discover whether the entity is to be

used as a type character, real, integer, or enumerator.

20

And the keyword "RANGE" will signify the actual range of an array. The
actual starting and ending values of the array will be noted in this
keyword., If the entity is a double array, both sets of values will be
described. The MDG will be supplied with the information required to

construct the array with know values.

The data dictionary keyword "VALUES" will describe the actual value of
a constant entity. As the MDG forms the PASCAL module declarations
the defined constant value is to be established within the PASCAL

format.

The “COMPOSITION" keyword will declare which other entities compose
the entity being declared. This keyword will enable the MDG to further
define those entities. The MDG should be able to search the data
dictionary file for each of these entities and locate and format their

declarations.

Using these data dictionary keywords, the MDG should be able to
precisely define the entities as entered from the ERA Specification in

a manner consistent with other users of the data dictionary..

21

3.3 The Module Declaration Generator Output

Two outputs will be produced from the module declaration generator: a
UNIX text file and screen messages returned to the user’'s display
device. The UNIX text file generated is to contain the framework of
an executable PASCAL program. This file is to contain (in this
sequence) a PASCAL program header, the ERA Activity Block in comments,
the entity descriptions as they were located in the data dictionary,
all PASCAL constant ("CONST") definitions, all PASCAL data type
("TYPE") definitions, all the PASCAL variable ("VAR") declarations,
the PASCAL "begin" program statement, the PASCAL program body area,

and the PASCAL "end." program statement.

The variable names in the generated framework are to be similar to the
symbol names found in the ERA Specification Activity Block (and within
the data dictionary). This naming convention will aid in debugging,
testing and maintenance; a consistent flow of data can then be mapped

through the program generated with this module declaration generator.

The user’'s messages should display the ERA Requirements Specification
Activity Block as entered and messages appropriate for the proper

operation of the module declaration generator. These messages should

22

indicate the name of the UNIX text file containing the PASCAL program
generated and error messages associated with the non-performance of or

completion messages of the MDG module.

3.4 The Module Declaration Generator Program Design

The module declaration generator is to be written in C Language on a
UNIX operating system. A Top-down structure and modular functions are
to be employed. Algorithms should be designed to be simple and easily
understood. The subroutines are to be documented with useful comments
to enable an understanding of the routine being performed. A1l
variables wused in the MDG program are to be described with useful
comments. The names of these variables are to be meaningful;
variables with similar uses are to have unigue but similarly
constructed names. Generic functions are to be employed and must
remain consistent throughout the program. Standard input/output
routines are to be utilized wherever and whenever appropriate; file

and character string manipulation functions should be similar.

23

Chapter 4 - The Implementation

4.1 General Overview

The implementation of the MDG project at Kansas State University
occurred during the 1984 summer semester. This MDG project was a part
of an overall software tool prototype project intended to automate
software development tasks. This Module Declaration Generator is
responsible for the generation of a ccmpilable framework for a PASCAL
program from a standardized input specification, the ERA Requirements

Specification.

The MDG project was developed on a PLEXUS minicomputer running a UNIX
operating system. A demonstration of the MDG project capabilities and
functions was displayed upon the Kansas State University Perkin-Elmer

8/32 minicomputer also running a UNIX operating system.

The MDG project consists of one C Language module and one shell in
which to execute the program. The program is approximately 950 lines
of code and contains 11 subroutines (see Figure 2). A Top-down
structured design and implementation was wutilized to develop this

program. Small singular-function routines were developed. The names

24

of the subroutines and variables were chosen to be meaningful to their

function or use; the names of similar subroutines and variables are
similarly named but have unique names.
Figure 2. Hierarchy Diagram
MAIN

read Write get load have have have have check

lines lines dd type pas type usa com ent

get read check

line dd ent

25

This project can be used as a Software tool to generate the framework

for a compilabte PASCAL program.

4.2 MDG Module Input

The MDG module expects an ERA Requirements Specification Activity
Block and a Data Dictionary file as input. The ERA Activity Block
will specify the input and output entities for the activity and the
data dictionary will serve as a data base for information about each

entity.

The ERA Activity Block must 1in the format described in the ERA
Requirements Specification BNF (see Appendix - ERA BNF). The use of a
standard specification will minimize development effort by requiring
the user to specify the input and output entities only once for each

PASCAL program to be generated.

The Data Dictionary supplies the information about the entities
entered on the ERA Activity Block (see Appendix Data Dictionary
Example). Each input and output entity which can be 1included on an
ERA Activity Block will be described in detail within the Data

Dictionary file. The format of the Data Dictionary file is described

26

in the Appendix Data Dictionary BNF.

Each entity is individually located within the Data Dictionary file.
If an entity is composed of other entities, these additional entities
are in turn located within the dictionary. Each entity is to be
declared oniy once with in the PASCAL framework; a check to prevent

duplicate declarations was included.

4.3 MDG Module Qutput

The MDG module will generate user messages and when correctly
executed, generate a UNIX file. These messages will advise the user
about the operation of the MDG and the file name of the UNIX text file
containing the PASCAL framework. The file name will be accepted
through the execution statements or the execution shell (see Appendix

- Run Instructions).

The UNIX text file will contain the framework of an executable PASCAL
program. The file contains (in this sequence) a PASCAL program header
statement, the ERA Activity Block in comments, the entity
descriptions as they were located in the data aictionary, all PASCAL

constant ("CONST"} definitions, all PASCAL data type (“TYPE")

27

definitions, all the PASCAL variable ("VAR") declarations, the PASCAL
"begin" program statement, the PASCAL program body area, and the
PASCAL "end." program statement. The ERA Activity Block will be
included as comments to the framework as are descriptions of the
entities located in the Data Dictionary. The framework generated upon
the successful completion of this MDG will be compilable. This file
can then be detailed with the PASCAL logic to perform the activity

required.

User messages will be generated describing the success or failure of
the MDG. These messages will keep the user informed as to the
operation of the MDG. During the testing of this MDG, these messages
were generated instantly. This implies the performance of the MDG is

very adequate.

4.4 MDG Operation

After reading the ERA Activity Block, using subroutine "readlines",
the MDG will begin to generate the UNIX file. The Activity Block name
will be used as the PASCAL procedure name. The ERA Activity Block

will be included as comments within the framework generated; this will

28

assist in the documentation of the individual modules. The entity
names will be stored in an internal table to be used later for

matching the Data Dictionary.

Messages will be relayed to the user. The user will receive messages
describing the Activity Block entered; in this way the user can verify
the correct input ERA Activity Block was entered, without waiting to

review the output framework.

Each entity entered will be located in the data dictionary. The Data
Dictionary will be read from the beginning for each entity using
subroutines "getdd" and “readdd". This will allow the entities to be
entered 1in any sequence or be composed of any other entity. When
there is a match in the "NAME" keyword, the MDG will continue to
gather related information about the entity until another "NAME"
keyword is discovered. The related information is obtained form other
Data Dictionary keywords to be used in the I0 Mapping and Type Mapping
processes. If an entity is composed of other entities, these entities
are added to an entity table using subroutine "loadtype",and will in

turn be located within the Data Dictionary.

29

As the entities are matched to the Data Dictionary, the subroutine
"writelines" generates the lines of the framework. After all entities
in the entity table have been evaluated and their PASCAL declarations
composed and generated, the PASCAL "begin" and "end." statements are

generated.

When the MDG's task is completed a message indicating the name of the
UNIX text file generated is issued to the user. This will allow the
user to immediately enter the framework and begin to compose the

PASCAL logic required to perform the specified task.

The user will be sent messages indicating the successful completion of
the MDG. Messages indicating error conditions are also generated, if
required. If the input is unexpected or data is not matched to the
Data Dictionary, meaningful error messages will be returned to the
user indicating the problem preventing the successful completion of

this MDG (see Appendix - User Messages).

30

4.5 [0 Mapping and Type Mapping

The I0 Mapping and Type Mapping functions ("havepas", "havetype",
"haveusa", and "havecom") will enable the MDG to compose the PASCAL
Language decTarations from the Oata Dictionary file data. Each entity
submitted from the Activity Block must be declared within the PASCAL
framework. The 10 Mapping and Type Mapping will determine the type of

entity.

The 10 Mapping function will first locate the entity using the keyword
"NAME". The "DESCRIPTION" keyword 1is next to be located; this
description is used in the framework as informational comments. If
the "PASCAL" keyword exists, the subroutine "havepas" will use the
information found to format the PASCAL type declaration and write to
the framework file. The next entity is ,in turn, located in the Data
Dictionary. If this "PASCAL" keyword 1is not present than other

keywords will be located.

The MDG will attempt to locate the next keyword "USAGE". I[f Tlocated,
the MDG will determine if the entity is a constant or an array using
subroutine "haveusa". [f the entity is a constant a "“VALUE" keyword

will be located; this keyword will indicate the actual value of the

31

constant. I[f the entity is an array a "RANGE" keyword will be located
which will indicate the range of the array. At this point in the
process an additional situation is present. If the range of the
entity 1is another entity, the newly found entity will be stacked on
the entity table for Type Mapping and the declaration is formatted and
written to the framework file. If the range is a data type (real,
integer, etc) the declaration is formatted and written to the

framework file.

If the keyword "USAGE" was not located, a search for the keyword
"TYPE" will be initiated. I[f found, the "TYPE" keyword will inform
the MDG of the entity's data type. Subroutine "havetyp" will process
this information. The type could be another entity in which case the
newly located entity will be entered in the entity table for Type
Mapping. [f not another entity, the entity could be of real, integer
or another defined type. In either case the declaration will be

formatted and written to the framework file.

If none of the above keywords have been Jlocated, a search for the
"COMPOSITION" keyword will be initiated. This keyword will be

processed in the subroutine "havecom", and will indicate the entity is

32

a record and contains other entities. These new entities will be added
to the entity table for Type Mapping and the declaration will be

written to the framework file.

Type Mapping is very similar to the [0 Mapping. Other than the
"DESCRIPTION" keyword process, all other keyword searches and
processes are required; the same subroutines will be executed as in
the I0 Mapping. This was decomposed 1into a separate function to

enable recursive routines to added at a later time if required.

4.6 Limitations

The MDG program can be easily expanded to operate under a different
set of specifications. This project, being a part of a Software Tool
Prototype, is flexible enough to allow for modifications to the input
files if required; Only modifications to the MDG source code "define"
statements should be required. These established limitations allowed
the project to be shown feasible and the development to be

accomplished within a reasonable time schedule.

The definitions of the MDG input and output specifications can be

adjusted to accommodate format or size modifications. Presently, the

33

maximum length of an entity name, including the $ sign, is established
at twenty-five (25) characters. Up to twenty (20) lines of thirty-
five character text of the ERA Activity Block will be read. One
hundred (100) lines of sixty (60) character text will be read from the
Data Dictionary. The maximum length of a Data Dictionary keyword was
established at thirteen (13) characters. The output PASCAL module
name will be no longer than twenty (20) characters and each 1line of

PASCAL code will be no more than 80 characters.

By changing the MDG program "define" statements found in the beginning
of the source code, (see Appendix Program Source Code), the MDG can

accommodate format and file size modifications.

4.7 Testing

The testing of the MDG project consisted of running numerous ERA
Activity Blocks of various types through the MDG program. The PASCAL
compiler was applied to the generated framework to verify the
correctness of the declarations generated. No cases of this failure

have been discovered.

34

Samples of the PASCAL program framework output generated using this
MDG as well as samples of the ERA Activity Block and the Data

Dictionary used as input are included in the Appendix of this report.

4.8 Results

The MDG generates a compilable framework for a PASCAL program. With
the addition of the PASCAL Tlogic code, a workable program can be
developed to accomplish the goals of the Activity Block. The MDG
shows flexibility by allowing modifications to the input and output
limitations to be easily applied to the "define" statements as
required. As a software tool this MDG is useful to the development of
PASCAL modules by automating the manual effort required to generate

the PASCAL module.

35

Chapter 5 - Conclusions and Extensiocns

5.1 Conclusions

A1l requirements of this project were satisfied. The Module
Declaration Generator was developed; the use of which will reduce the
manual effort to develop PASCAL modules by requiring the user to input
the specification only once. The MDG is written in C Language and

runs on a UNIX operating system.

The MDG reads the ERA Activity Block and the Data Dictionary. These
standardized 1input files contain the information about the entities
required to complete the declarations for a PASCAL program. Keywords

are utilized to perform the declaration function.

The PASCAL program framework 1is generated. This framework is
compilable. A programmer can complete this module by adding the logic

with which the module can perform its specified task.

Messages related to the operation of the MDG are sent to the wuser.
The wuser s advised of the success or failure of the MDG. The ERA
Activity Block and the output file containing the PASCAL framework are

displayed to the user.

36

5.2 Advantages

The use of this MDG can reduce the effort required to produce PASCAL
software. The amount of manual effort required is reduced by
automating the declaration functions normally required to produce a
module. The use of a Data Dictionary file will reduce data

specification errors, since all entities will be resident in the file.

The design of small, singular-function modules is encouraged. Each
ERA Activity Block will represent a small, singular-function module.

The MDG will present this information to the user.

The maintenance of modules produced using this MDG should be reduced.
Since all modules will use the same names for variables and the names
of these variables are the same as referenced with in the
specification, the programmer can easily determine which modules will

required modifications.

5.3 Disadvantages

There are two disadvantages to using the MDG. A1l entities must be

resident within the Data Dictionary and must be similarly referenced

37

by the ERA Requirements Specification. This is a large clerical task.
A1l known entities must be described with adequate detail for this
information to be useful to the MDG. Every interrelationship for the

entities must also be established.

The software functions must be specified using the ERA Reguirements
Specification. This 1is no small task either. Each process must be

decomposed into small, singular-function activities.

5.4 Extensions

This MDG produces the framework for a PASCAL program. The capability
to produce framework for other languages can be added. By expanding
the I0 Mapping and Type Mapping functions, the declarations can be

generated for the other languages.

The MDG has the capability to construct more complex structures. The
[0 Mapping and Type functions were intentionally 1imited to constrain
the scope of this project. To process more complex structures, these

mapping function could be executed recursively, if reguired.

This MDG accomplishes the first step in producing the PASCAL module.

38

The programmer must supply the logic to produce a functional module.
A study of PASCAL logic generation should be initiated to aid the

programmers logic code detailing effort.

The restrictions placed upon the MDG by the Data Dictionary and the
ERA Requirements Specification could reduced but not entirely
eliminated. By expanding the specification to include constant values
for entities uniquely required of the activity would eliminate the
search to the Data Dictionary file. Also, by allowing the Data
Dictionary to contain specialized usages of some entities would
enlarge the declaration capabilities; the specialized use could be
marked with a keyword matching the ERA Activity Block name. For
example, entities as dates can then be more meaningful; the data could
be calendar, or Julian. The date could be specified as month day year
or day month year. In this way more than one use of an entity can be

stated.

39

References

<Cro83> Cross, F.E.,

The Module Generator -

A Practical Definition for a Software Module,
Proc CompSac 83, pp. 121-133.

<Dou83> Douglas, John H.,
New Computer Architectures Tackle Bottleneck,
High Technology, June 1983, pp. 71-78.

<DruB83> Druffel, Larry E., Redwire, Samual T. Jr.,
and Riddle, William E.,

The Stars Program: Overview and Rationale,

IEEE Computer, Vol. 16, No. 11, November 1983,

pp. 21-29.

<G1a83> Glazer, Sarah,
Application Generators: Automating the Art of Programming,
Mini-micro Systems, May 1983, pp. 125-132.

<Hag75> Hagamen, W. D., Linden, D. J., Mai,

K. F., Newell, S. M., and Weber, J. C.,

A Program Generator,

IBM System Journal, Volume 14, No. 2, 1975, pp. 102-133.

<Kan83> Kahn, Robert E.,
A New Generation in Computing,
[EEE Spectrum, Vol. 20, No. 11, November 1983, pp. 36-41.

<Kim83> Kim, K. H.,

A Look at Japan's Development of Software
Engineering Technology,

[EEE Computer, Vol. 16, No. 5, May 1983, pp. 26-37.

<Ler82> Lerner, Eric J.,
Computers Software II Automating Programming,
IEEE Spectrum, Vol. 19, No. 8, August 1982, pp. 28-33.

40

<Mar83> Martin, Edith W.,
The Context of Stars,
[EEE Computer, Vol. 16, No. 11, November 1883, pp. 14-17.

<Rif83> Rifkin, Edward M., and Williams, Steve,
The C Language: Key to Portability,
Computer Design, August 1983, pp. 143-150.

<Tre82> Treleaven, Philip C. and Lima, Isabel Gouveia,
Japan's Fifth-Generation Computer Systems,
IEEE Computer, Vol. 15, No. 8, August 1982, pp. 79-88.

A.l

Appendix A

Input File Specifications and Examples

41

A.1.1 Data Dictionary BNF

<data_dictionary> ::= <definition> |
<definition> <data_dictionary>
<definition> ::= <definition_header> <definition_body>
<definition_header> ::= 'NAME : ' <entity_pame>
<entity name> ::= $ <word> $
<definition_body> ::= <attribute_desc> |
<attribute_desc> <definition_body>

<attribute_desc> ::= <attribute_word> <attribute_text>

<attribute word> ::= ‘DESCRIPTION: ' | 'COMPOSITION: ' |
'TYPE : '] 'USAGE z ']
'"VALUES + | 'RANGE : '
'PASCAL : ' | <capital word>

<attribute_text> ::= <word> | 'char' | 'array' | 'string'

'const' | <range> | '$' <word> '$'
<word> ::= <char> | <char> <word>
<char> ::= <lower case_char> | <symbol>
<symbol> ::= ' ' {underscore)
<range> ::= <number> <sp> <sp> <pumber>
::= <numeric> | <numeric> <numeric>

<number> ::

<pumeric> ::= 0| ... | 9

<lower case char> ::= a | ... | z | <numeric>

<capital_word> ::= <capital letter> |
<capital_Tletter> <capital_word>

<capital_letter> = A | ... | Z

<sp> s3= ' !

42

A.1.2 Data Dictionary File Example

NAME : $name_of_game$

DESCRIPTION: this is the name of the game to be continued
TYPE : Char

USAGE T array

RANGE : 01 20

NAME : $store_messaged

DESCRIPTION: the message returned from a *store* command
TYPE : char

USAGE : String

RANGE : 01 14

PASCAL : array [01..14] of char

NAME : Sretrieve_messaged

DESCRIPTION: the message returned from a *retrieve* command
TYPE : char

USAGE : string

RANGE : 01 20

PASCAL : array [01..20] of char

NAME : $area$

DESCRIPTION: a total outside surface, measured in sq units
TYPE : real

NAME : $pid

DESCRIPTION: the ratio of the circumference of a circle
DESCRIPTION: to its diameter

USAGE : const

VALUES : 3.14159

NAME : Sradius$

DESCRIPTION: any straight line from the center to the
DESCRIPTION: periphery of a circle or sphere

TYPE : real

NAME : Smove$

DESCRIPTION: the chess move to and from the computer
COMPOSITION: Sposition$ $comma$ $position$

NAME : $move_message$

DESCRIPTION: the message returned from after the *move* command
TYPE : char

USAGE : string

RANGE : 01 12

43

PASCAL : array [01..12] of char

NAME : $computer_move_message$

DESCRIPTION: the computer move message

TYPE : char

NAME : $board display$

DESCRIPTION: the view of the game board

TYPE : char

USAGE 1 array

RANGE : 01 2401 79

PASCAL : array [01..24] of array [0l1..79] of char

NAME : $comma$

DESCRIPTION: this is the character ',' (comma)

DESCRIPTION: this can be used as a word separator or in a record
USAGE . const

VALUES byt

NAME : $allwhite$

DESCRIPTION: the placement of the white pieces on the board
TYPE : Swhite$

NAME : Swhite$

DESCRIPTION: the placement of the white pieces on the board
TYPE : char

NAME : $black$

DESCRIPTION: the placement of the black pieces on the board
TYPE : Smove message$

NAME : Sposition$

DESCRIPTION: the value (rank) and piece designation of each piece
COMPOSITION: $piece$ $rank$

NAME : Spiece_position$

DESCRIPTICN: the board position of each piece

COMPOSITION: $piece$ $space$ $position$

NAME : $space$

CESCRIPTION: the value ' 40'

USAGE : const

VALUES : 0

NAME : Spiece$

DESCRIPTION: the designation of each piece

TYPE : enumerator

VALUES : kr,kk,kb,k,q,qb,qk,qr,p

PASCAL : (kr,kk,kb,k,q,9b,qk,qr,p)

NAME : Srank$

44

DESCRIPTION:

TYPE : enumerator

VALUES : A,B,C,D,E,F,G,H

PASCAL 5 [R,BEDEF.G.H)

NAME : $board matrix$

DESCRIPTION: this is the matrix of the board
TYPE : $piece$

USAGE : array

RANGE : 01 0801 08

PASCAL : array [01..08] of array [01..08] of char
NAME : $chess_board$

DESCRIPTION: this is the bcard lay-out

TYPE : $board matrix$

NAME : $board description$

DESCRIPTION: placement of the white and black pieces
COMPOSITION: $allwhited $black$

NAME : $status$
DESCRIPTION: the game status
TYPE : char

USAGE : string

RANGE 01 20

PASCAL : array [01..20] of char

A.1.3 ERA Requirements Specification BNF

<frame> ::= <frame_header> <frame_body>

<frame_header> ::= <function_header> <word> <NL>

<function_header> ::= 'Activity ¢!

<frame_body> ::= <relation> | <relation> <frame_body>

<relation> ::= <relation_type> <relation value> <NL>

<relation_type> :i:= ' input
! output

! uses
<word>

e 8 wa

<relation value> ::= <i o data name> | <text lines>

<i_o_data_name> ::= '$' <word> '$'

<word> ::= <char> | <char> <word>
<char> ::= <lower_case_char> | <symbol>
<NL> ::= '\n'

<symbol> ::= ' !

<lower _case char> ::=a [b | ... 1z [0l ... 9

<text_lines> ::= <word> | <word> <text>

46

47

A.1.4 ERA Requirements Specification Activity Block File Example

Activity : Initialize_board
keywords : standard board,initialize,place_pieces
input : $area$d
output : $store message$
required-mode : *START*
necessary-condition : last user command is $start$
assertion : The output beard is a correct representation
of the standard starting configuration for

chess

48

Appendix B

B.1 I[/0 Mapping

DESCRIPTIO

PRINT
DESCRIPTIO
(::)______ PASCAL
var: \

USAGE
const TYPE
array values
\ constant=
RANGE var:
TYPE

var:

45

Appendix C

C.1 Type Mapping

=1

TERE = USAGE
const TYPE
array VALUES compositio
\
constant=
RANG

E
\ TYPE =
type

TYPE =

50

Appendix D

D.1 User Instructions

D.1.1 Run Instructions

The Module Declaration Generator is a C Language program which will
execute in a UNIX environment. To execute the Module Declaration

Generator the following is required.

1. The name of the MDG program.

2. The name of the ERA Activity Block file.
This file will contain one (1) ERA Activity
Block for which a PASCAL program is to be
generated.

3. The name of the cutput file in which the
PASCAL program framework is to be placed.

4., The name of the Data Dictionary file.

Exampie :

a.out erain pasout.p ddfile

To simplify the execution of the MDG, the use of a shell could be

employed.

51

Example :

a.out <8$1 pasout.p ddfile

In this example of a shell “a.out" is the MDG program name. The MDG
program will accept “"ddfile" as input as well as a file to be named
when executed ,"$1". The "pasout.p" is the output file which will
contain the PASCAL program framework. This output file can be renamed

to something more meaningful by the user.

Now to execute this shell, the user will key the shell name (in this
case the shell is named bonsai), a blank and the name of the ERA

Activity Block.

Example :

bonsai erain

The Module Declaration Generator will execute, generate the PASCAL
program framework and place it into the output file "pasout.p". The
user can rename the output file to something more meaningful. Note
the MDG will generate to the user a message indicating the name of

this output file (see Appendix - User Messages).

52

D.1.2 User Messages

During the execution of the Module Declaration Generator messages are
relayed to the user. These messages indicate the success or failure

of the MOG.

The following are examples of user messages returned from a successful

operation of the MDG:

Activity : Initialize_board

keywords : standard board,initialize,place pieces

input : Sarea$

output : $store_message$

required-mode : *START*

necessary-condition : last user command is $start$

assertion : The output board is a correct representation
of the standard starting configuration for
chess

will attempt to generate a pascal module

module file is here.p

The first nine (9) lines are the ERA Activity Block as read by the
MOG. These lines will also appear in the PASCAL program framework as

comments. The user can verify the completeness of the Activity Block.

53

The tenth Tline indicates the MDG will attempt to generate the PASCAL
module as requested. The ERA Activity Block has been determined to be

with in the the physical constraints of the MDG.

The eleventh line displays the output file name. This output file
contains the PASCAL program framework successfully generated by the
MDG. The name is known to the MDG, since it is one of the file names

required for execution (see Run Instructions).

Other messages can be relayed to the user; these messages indicate

either a system failure or a limitation of the MDG has been exceeded.

54

The following messages can be returned to the user:

Message

"cant open file" file_name

“input too big to print"

"attempted to find the era
activity information it
wds not found in the
expected location the
pascal module will not be
generated as requested"

"type format unknown®

"malloc error"

Reason Issued

The designated file could not
be opened.

The number of lines of the Activity
Block exceed the MDG limits.

The MOG could not locate the ERA
Activity Block.

The entity specified in the ERA
Activity Block was not correctly
specified in the Data Dictionary.

The MDG executed the malloc function
and was not successful.

I.l.3

p
{ Act
{
{
(
{
{
{

{

Sample Output

ivity

keywords :

input
output

-

rogram Initialize board (input,output);
: Initialize_board }

standard board,initialize,place pieces }
$aread)

: $store message$)

required-mode : *START* }
necessary-condition : last user command is $start$

assertion :

The output board is a correct
representation of the
standard starting configuration for
chess

{ $area$ DESCRIPTION: a total outside surface, measured

in sq units

{ $store _message$ DESCRIPTION: the message

var area : real;

returned from a *store* command

store_message : array [01..14] of char;

begin
{

end.

put the program logic here }

o]

56

Appendix E

E.1 Program Specification

Procedure name : Main
Input :

1. The ERA Activity Specification File.

2. The Data Dictionary File.
Qutput :

1. The PASCAL module framework file.

2. User messages.
Description :
The main procedure controls the processing flow of the MDG. This code
will execute the other subroutines which will read the ERA Activity
Block and the Data Dictionary. The main will also, execute the
subroutines formatting the PASCAL module framework and generating the

user messdges.

87

Subroutine name : readlines
Input :

1. The MDG maximum limit of ERA Activity Block lines.
OQutput :

1. 1ineptr - The pointers to the storage area of the ERA
Activity Block lines.

2. nlines - The number of ERA Activity Block lines read.
Description :
The readlines subroutine reads and stores the ERA Activity Block
lines. These 1ines will be wused to generate user messages and

comments in the PASCAL module framework generated.

58

Subroutine name : writelines
Input :

1. Tineptr - The pointers to the storage area of the ERA
Activity Block lines.

2. nlines - The number of ERA Activity Block lines read.
Output :

1. The user messages displaying the ERA Activity
Block lines.

Description :
The writelines subroutine writes the ERA Activity Block lines to the

Jyser's terminal,

59

Subroutine name : getline
Input :
l. s - A string of characters.

2. 1im - The maximum number of characters per line
of the ERA Activity Block to be read.

Output :

1. i - The number of characters of the ERA Activity
Block line read.

Description :
The getline subroutine reads the ERA Activity Block Tine one character

at a time and returns the number of characters read.

60

Subroutine name : getdd
Input :
1. es - The entity to be located in the Data Oictionary.

2. 1im - The maximum number of characters per line
of the Data Dictionary to be read.

3. ddired - The number of lines read and stored from
the Data Dictionary.

Output

1. ddptr - The pointers to the Data Dictionary lines
read and stored.

Description :

The getdd subroutine reads the Data Dictionary. Starting from the
beginning each time it is executed, this subroutine will match the
entity to the entity of the Data Dictionary keyword “NAME". When
matched the keywords "DESCRIPTION", "TYPE", "RANGE", "COMPOSITION",
"USAGE", "VALUES" and/or "PASCAL" belonging to this entity will be

stored for processing in another subroutine.

61

Subroutine name : readdd
Input :
1. 1im - The MDG maximum 1imit of Data Dictionary lines.

2. rs - The line of characters from the Data Dictionary
file.

3. pt2 - The pointer to the Data Dictionary file.
Qutput :

1. rs - The 1ine of characters from the Data Dicticnary
file.

Description :
The readdd subroutine reads the Data Dictionary file 1line by line

character by character.

62

Subroutine name : havepas
Input :
1. ddptr - The pointers to the Data Dictionary lines.

2. ddlred - The number of lines read and stored from
the Data Dictionary.

Qutput :

l. w - A switch used for loading variable or constant
data type entities.

2. rol - An array for storing the information found
in the Data Dictionary.

Description :

This subroutine searches the Data Dictionary lines stored for the line
with the keyword “PASCAL". When this keyword is located, the
information contained on this line is formatted for PASCAL declaration

generation.

63

Subroutine name : havetyp
Input :
l. ddptr - The pointers to the Data Dictionary lines.

2. ddired - The number of lines read and stored from
the Data Dictionary.

OQutput :

1. for-type - An array used for returning entities
used to define the entity being processed.

2. rol - An array for storing the information found
in the Data Oictionary.

Description :

this subroutine searches the Data Dictionary lines stored for the line
with the keyword "TYPE". When this keyword 1is Jlocated, the
information contained on this line is formatted for PASCAL declaration
generatiaon, If the entity is defined by other entities, those

entities are returned to be processed later.

64

Subroutine name : haveusa
Input :
1. ddptr - The pointers to the Data Dictionary lines.

2. ddlred - The number of lines read and stored from
the Data Dictionary.

Output :

1. for-type - An array used for returning entities
used to define the entity being processed.

2. rol - An array for storing the information found
in the Data Dictionary.

3. w - A switch used for loading variable or constant
data type entities.

Description :

This subroutine searches the Data Dictionary lines stored for the line
with the keyword "USAGE". When this keyword 1is located, the
information contained on this line is formatted for PASCAL declaration
generation. If the entity is defined by other entities, those

entities are returned to be processed later.

65

Subrgutine name : havecom
Input :
1. ddptr - The pointers to the Data Dictionary lines.

2. ddlred - The number of lines read and stored from
the Data Dictionary.

OQutput :

l. comptr - Pointers to entities used to define the
entity being processed.

Description :

This subroutine searches the Data Dictionary lines stored for the line
with the keyword "COMPOSITION", When this keyword is located, the
information contained on this line is formatted for PASCAL declaration
generation. If the entity is defined by other entities, pointers to

those entitfes are returned to be processed later.

66

Subroutine name : loadtype
Input :

1. for-type - Entities to be added to the array of
entities.

2. entypno - The number of entities in the array of
entities.

3. entyp - The pointer to the array of entities.
4, entline - The pointer to the ERA entity lines.

5. entno - The number of entities in the array of
entities from the ERA Activity Block.

OQutput :

1. Returns the number of entities in the array of
entities.

Description :
This subroutine loads the entities into the array of entities. This
array 1is processed sequentially to locate entity information in the

Data Dictionary.

67

Subroutine name : checkent
Input :

1. for-type - Entities to be added to the array of
entities.

2. entline - The pointer to the ERA entity lines.

3. entno - The number of entities in the array of
entities.

Qutput :

1. entypno - The number of entities in the array of
entities.

Description :
This subroutine checks the presents of an entity in the array of

entities to prevent duplicate entries.

F.l

Program Source Code

Appendix F

68

69

. ‘NOTLISQdWNQD. 88Ul wod auy japy
W IvdSvd., aup|sed auy4apg

SANIVA,. B1IL||BA By 4aps

" JO¥SN, 8L |esSn BuLy3pa

JONYYH, Ul jued BuL4apy

. JdAl., 2ul|dAy aul japy

INOT LdTHIS3Q. BuUl1SAap aul japy
M JWYN,. PU| (WRU auy japy

- sesn . BUL|DSN AUy jOps
| indyno . BUL 1IN0 3uy j8pe

w 3 3nduy . BulL |duyr duy jOp#

w AJyAL10y, AUl 3138 Buy jepg

216 Z1S4nq BuULApY

fw -1B)IBIBYD BUL | mMBU 4/ LU, U aul jeapg

/« NBIPIALEE auy| Bpon (eased 4o yIBuB| XBw 4/ N8 epoorsed auy jepy

fa (% BurpmpouL) Aweu AjLius ue o |+ UlBuA| Yew 4y Q7 |1ud 8au| japs
J# 100D BIPPR AL uL BuULl] 3pod (ed)sed B g0 yirBua| 4/ Ny ¥ urpsed auy 4aps
/% SPIOMABY 10(p 23PD Jo yrfua| 4/ £l Aaspp euy japs

/#AIRUOLIIID PIPD 40 BUl| YIBB Ul JBYT 40 Ugu XBW 4/ 00 ZIS|PP BuL jepsy
/w BUWRU paumiay 03 AUL | B3 40 338440 4/ vl djuy supyepy

/#BUIBU 3| NpOoW B U0y pAasn 34 0} SUAIIRIPYDI 10U NPW 4/ NzZ AWeUpOW 8l 4Bpy
/+AJBUOLIDLD BIBD WOJ 4 PRAL SAUL| |0 a1 YEW 4 f NnoL Yew|pp auy japs
f4UDL1B) 41 28ds Pud gy) WoL)y PEI L A0 O SBUL| AP 4/ nz SPUL| BuL 4Bep#
N 1IN autLdepy

1- 408 Buy japs

«cY OLPIS> Aapn|JuLy

/w AIRUOLIILPD RIBP B pead asie |8 wld sy Y.

/w ‘a|hpow pejeasauab ayy uy o/

/+«SiIuduwon se aeadde ([ym UDL}RDLL08ds PIB B} o/

/e BIDNPOW |BISEA P L0y MuOmMBWR.y B AJRI3UAR pue a/

/¥ upgLiIrdgrnads paa ur peaa | M wrifioad s.y3 e/

/I ®/

/e S8y ydasor Jdoyine w/

/a o/

/e 2 Bpw aweu whd */

Po@Jnpaload uyew 8yl

70

/% seweu A33ua Byy o3 J9jujod

/¢ SpuomAewn pp jo Ayodeusayy Joy

/e B4B AYYy woly SBLILIUS JO JAgQuINu Ay}
/+« Buyays e jo yibue)

/» S304U08QNS 4/

/aPBUINTIAIL BUL| 3O BIEP 8y} N0 yjbua| auy|
/e AJEUDLIDLP BlBP WOL§ PE&J saUL| 40 JQU
/s Pee. sauyr| Jads eua 30 J8qunu

/» SUD{lRIR|DBD |edsEd 404 Buy s

/e ABile Awwnp @ SB pasn ag ||iM

F#03UL BUL AJLAL3I0E BYL | |tM PRpROD| A | 1M
/e dAJUB U} S3LILIUA 4O uBqQuNU

/e« dAjua Loy asejujod

/= dA} JDj S$B413|3uP Jo Aruue

/% S8Uii epo3 pdAy jo aanuwnu ey)

/e« dAY a0y Jssjujod

/e SBUL| BdA)} J0 Awviae

/¢« SOUL | 8PO3 3ISUOD JO JBQUNU Byl

S+ UDD 30y JBuynd

/% S8UL] ISU0D 40 Amaue

/s S8UL] BPDD ueA JO JALIWNL 8Yy)

/a JBA a0y aajuyod

f« SBUL| uPA o0 APlae

/% ®BUy| epol ayj

fe 8043 wouy Ay{iue 4o uinjes uoy

/#» Ojuy 8poY pp Burpro| J0y Aeuae

f+880 apo) |wosed J0) eweu A3 jus ayy

/+ S8weu Ajjpjue Buipro| a0} Aedaae

/s BWBU B)|NpoOw 404 ABide

/= BUL1 Pp 01 Jejuiod

/+ BUL| A)p3us eae 03 asjujod

/+ S8UL| D8ds eae ny adjujod

./ tjuad,
«/ ‘ytop
o/ toujue
./ tus s
2P OCF tzw o tzy fwo
w/ tyue |
L34 tpaJd|pp
./ tsauyu
o/ {[wew|sed]sed
Y4 1oz | 1awnp
s/ [0S lqunp
o/ toudAjua
o/ BBV
o/ t{og|dArua,
e/ toudAy
o/ (-5 1%
./ t{sauy | 1dAy,
«/ touuod
./ - 2
»/ sAauUL | |u0Do,
«/ foudea
./ Ay
*/ tlsauL | |aen,
" ‘(epoosed|8poo
./ tlae |edAy 1oy
o/ *l0s]ioa
w/ ' 13us |uweyu jus
n/ ‘[1jyve]eusad
w/ ! [eweupow | Zzpyd
w/ [vew|pp|aidpp,

.
»/ f|saui|]auyiue,
t(seuy | Jardeuy (g
tZ3ds "13d,

(nBu
£ w
WAeuaue,,
L 3ISU0D

Je3
vy
Uy
Jug
Ju}
UL
juy
jui
Jeyo
Jeyld
) {Th
U}
Jeyd
Jeyd
Ul
Jeys
jeys
juy
JByD
JBL4d
jug
Jeyd
Je' 2
Jeya
APYD
J1BY4y2
JRY3d
Jeyd
Jeyo
Jeys
JBYyD
JeYyd
ERNE
)
] |aBirey 2@YD
taBae juy
e *‘>6.e) uiew
0JXBw BuU| Japs
Araue Buyjapy
ISUDD BUL japy

71

fudniaa
t(.,u\pei1senbel se palvaauel aq 10u ({i% 3npow (eased a4y},)iivyad
t{,uNUO|3IBD0| Pal1dadxe AY3 UL punoy J0U sem 3|,.)i3upad
t(,uzunpIewaojuy AJLAL3OR BUB AYY) PULy 03 pejdwailr,) 4iutad
)
L1-NK:]
t(,vne|npow (eased v ajedaual 0) jdwejye (| ym,) p3uyard
/% BUL| DAds Bua 1S41y 03 s se.sedwod ¢/
(0 == ((cdhiur ‘|D)2ydeuiy "1S)dumaaIs)) gy
t(aup)iae ‘|s)Adduys
/e JBWING BUL]| AJLA108 UM | S SPRO| ./

t(wuvjurad o3 Big ooy 3nduy,)giugad

es|9
{

${ seup|u ‘J3daulL) sBauj|ajiam

/+ uorlentyioads pua Byl 40 81LaM ./
)
(0 =< ((Ss®up| ‘ujdauy|) seuy |pead = sauLlu)) 3¢
s pE8.J SBul| J0 JAQWNU 4/

/% B84l pue sau}| d8ds 03 sdajuiod sSUINIBL 4/
Jx UDLIRILJ2A0S Baa ay) $9J4015 pue SPEBS 4/

{

tuaniyey

t()Joaaed

([} |naBae * uysy 8114 usdo 3jued,)jjuyad
)
(Linu == ((.m. ‘|1]|aBdR)uBdoy = 13D)) 4}

/e« ¥ndino (3d Joy uvado 4/

/% SPLILIUE B)150dwon Jo daqunu 4/ fouwod jul

/w S3L1t3uB A}Lsadwod 03 asjujod 4/ fjwodwew | 3cuod, geyd

/s38u0n 8dA3 uea BULpPBO| U} YIJLMS B SE Pasn ./ t]ZIm Jeys
/ax YDIRW 03 JPwdOj BuUL| AJLALIIR SULRIUOD 4/ f(diur)LSe JdBYD

/e 3udd Jo uojpied0f B DyweuAp Joy paditnbalg .y Y()o0)| |BW, JBYD

72

fued =

fhas

[++«nujua |BuU} | Jud

t{edad 'juad)Adouzs

(1
R(0==(0

)
Inu =j((13ue)l0|jew = jued))

ujuatauy | Jua'erded) juaydayd)) 4

*.0\, =z)esad
‘wlownp=[4++Z}y Jeaad
(++w * 7-jjuaszy ‘diui=w) Jo0y
t0=2\
Y(6E ‘[1)4rdauy | ‘qunp)Adauass
)
(soufju>t) 3t
te+l

((o=i(dqur*] d8uy | s)duduIIS)RR(SAUL|USL)) B ym

)

(L-S8Ul|u>)R] ym
_Dn—

t(auypyduy *|s)Adoags

‘g=ouljus

flala “Trlaadauy g L) " u\Sy S% S%,'13d)juyady

‘(.Y (3nd3yno’yinduy),

(++} !SAupusy ip=}) Joy

‘Zpyd’ sweasboad, * u\S% S¥% S%. " 13d)3Jjuyady

/e PAYULId s} Buy | sapeay weasBoad NYISYd «/

1)gunp=]+4+2y 12pyd
(+4y Yg-Bweupowszy ‘djuy=}) 10}
‘0 = 2}
‘{1e'l0o]aydauy | ‘qunp)Adoulys

(

73

.0N.=[Zy |eaed
lutjawnp-[++2) |Paed

(+4m = Z_3uaszy "a_cquu Joy

‘0=Z}

Hee ‘It mdeuy) ‘qunp)Adoulys

]

(saugpusy) 3}

taag
CCO=i(diur 1]43d8uy | " [8)duUDIUIIS)RR(SBULIUSL)) BHUM

)

(1-s8upusL) B|Ltym

0=t

t(Buesn *|s)Adadys
/¢ }} SBU03IS puE o/
/+ @Uy| INdu) IEA WNJ4 BWEU AL JuUd BY) SBAOWSBJ 4/

fles
(
tauad = |+s0ujud)auL|jus
t{eand *jued)Adouss
}
((11nu =j((13ue)n0 8w = juad))
R(0==(0oulua‘auy|lua’edad)juandeyd))i
t.0N, =2t jesed
t{wlqwnp=|++Z} |eaed
(42w ' Z-1348>7) tdiup-w) a0y
tn=z4
(BE ‘[V].13deuy | ‘aqunp)Adoudys

}

(saupusy) 4y

tea
((O=if(dyup*[y]a3dout | *1s)dwdusIs)gR(SOUL[U>})) B Lym

(

)

(1-SBuUL|Uxy) B ym

‘o=t

t{auy3ino ‘|s)AdIuls

74

t(eweu jue '|8p02)Adau3s

t,0N. =[++Z})oweu jue
{
CL0N, = [Zt|eweu jua
((.un, == [zZw]aunp)) 44

lzw)quwrnp=[+4+Z | |weu jua
((.%, =ilzw|aqunp)) 44
(++7W !|-UB|S>ZW p=ZW) Law
‘((awnp)usiis)=ue|s
f{lwlauy jud ‘qunp)Adouys
'0=2Z}
(

([t 19ydpp ' |w]Buy|jus
tuun{ S% S% }.'13d) 43Ut udy
f(lv)43dpp f1ownp)Adouagys
}
((0==(AavpPp ‘auiysep ‘| |a3dpp)dwiuais)) 41t
)
(++} !'pPBAtPP> 'p=}) U0y
}
(0<paJ1pPR) 4}
t((padpp ‘zid ‘AGae ‘[w]Buijua ‘zis|pp '43dpp)ppiel)-pai|pp
}
(++w foujue >w :g=w) J0y
/e A3LIue ydea Joy peau S| Aseu0L3ILP Blep 8yl 4/
‘g=oudAjue

tp=oudAy
‘0g=0ouund
fp=oudeAa
{
(
fhes
(
tjued = [i4+0UIUB|BUYL|JUS
! (eaad ‘jusd)Adoays
)
((L1nu = ((LIue)ooj(mu = jusad))gg
(0==({ouijua‘au} |jua‘eaad) juaydaya})ii

75

‘[)a3dwod

(0 < (((23cdwad *

‘zysipp ‘JadppippiaB)-pad pp
}

(++f toumods(p=()203

(., pJo2B4g i, ‘' |9POI)IRIIIS

}

(N<OVWOT) 4§}

)
43dpp 'pa.u | pplWwoIsABY)-0UWO3)) J1L

/» W38y ssadnad paomAan NOTLITISOIWOD «/

it
‘oudAy

(0 < ((8dAr Joy

*(

toudA

(D<((PdAy 10y *

(0 <

(N=>310P) 41|

(ouju® ‘Bvu)lus’dAiue

ue ‘edA1 Joy)adAipeo|)=oudijua
(D<((®dA3 U043 UB 41S)=UA[S) 41
t((edAy Joj)uaiis)=ua|s
‘g=310p

)

'toad ‘uaydpp ‘pedpp)dAianey))4

/« W38yl ssa8d204d puomABY JdAL &/

(0=>310P) 4}

{oujue ‘*euyi|jue "dAjus
jus ‘8dAj Joj)edAjpeo|)z=oudijue
(0<((adA3 404)us|118)=UB|S)J}
t((edA) 404)ue|Jis)=ue s
‘g=)top
)
M ‘1o0a ‘aydpp ‘peapp)esnaAry))y
/% M0ayd ssacsoad poomdey JO¥YSN &/
(0 => 310P)41}
(

}

{(m ‘100 ‘u3dpp ‘pea|pp)sedsaey))ji
/+ M2A4D ssad0.d poomAav YISYd e/
t,A,=[D]m

tp=1t0p

‘0L=140p

76

tg=110p

_ }
(0 < ((2dA3 a0y
‘104 ‘oidpp ‘peuspp)dAissey)) s
/e M08UD SSAD04d pIoOMARY JdAL o/
(0=>310pP)Jt

t((oujus ‘aul|jua "dAjua ‘oudAjue
‘adA1 uoj)adAipeo|) =oudiius
(D<((®0A} Joj)ud|J38)=ud|S) 4}
f((adAL J04)ualdls)zuBl|s
‘p=31t0p

-)
(D<((®dAy 40y *m
Y104 'a3dpp 'pPAad | pR)RSNBARY)) 44
/» M2242 ssadoad paomAdN JOVYSN «/
(0 => 1L0P) 41
{
*0L=310p
)
(0 < ((m "tod ‘Jydpp ‘pe.u|pp)sedenay))ii
f» W2843 ssadosd pILOmADY VISV &/
_ ‘0=30p
!(eweyu jue ‘|8pod)3eduys
,0N, =[++2t]Pweu juse

(
t,on, = [Z\]eweu jue
((,uy, == [zw]auwnp)} 3t
tfzw]awnp=[++Zt |oweu jus
((.$. =ifzw]awnp}} 3}
}

(++Zw '|_vd|s>zZw Q=zw) J04
Y{(Qwnp)uaJis)=ua|s
f(|f)43dwos ‘qunp)Adouys
‘D=zt
}
(0<PeJIDPP) 3}

f((poJ pp ‘z3d ‘nAfie

77

(
A = |sanuaBRA]LdRA
(Lapod "a)Adoaays
O\, =|ua|s||apod
)
as|a
{
1(,.d0J48 30 (Pw,) Uy ad
]
(linu==((ua|s)l0||BW = A))4}}
t(.'pus . '1PpDn)Adaas
te=310p
(

(
(. . ‘lapod)Adouys
A = [++00dBA]IBA
(1epn2 ‘n)Adduys
.0\ =[ua1s]8p0od
}
as|a
{

t(.404a8 D0 |PW,)}j3u}ad

}
(LINU==(({Ua|5)J0| BW = A))}J}

‘((1epod)us|a3s)=zua|s

(.4, “18po2)ieduys

t(10s *|8pOd)3IeBDIIS

t{, ¢ , ‘|Apo2)3eIu}s
(
f(L0VUMOUNUN jewaDy adAy, '|ou)Adouss
}

(0=>310P) 4}

(

Y{(ouvius ‘aul|iua 'dAjue ‘oudAjue
.3a>u|gowumamgumo_uuocnxucc
(O<((PdAy 404)UB|.138)=UB|S) 4}
t((adA1 Jog)uBdis)zuals

78

(18pod 'a)Adauls
t,0N, = |uags|i8pod

as|@

‘(w1008 D0 jew,) g1y ad
]
(LIPU ==((ud|S)D0]| (8w = A)) 3|
((19podjua|[d3s)z=ua s
f(.!., ‘189po2)3edu3S
(104 'j8pol)3ieIa}Ss
(., ¢ . 'lBpo3)3eduys
}
((e=irtopP)Re(. A, ==[0]m)) 3L
/% SBUL| JBA S8J01S 4/

{

ted = —++OCCDUHCOU
‘(18po2 ‘ed)Adouls
1,0\, = [uas]|Aapon

as(9
(

)

(L1Nu ==((ua|s)20||Pw = &3)) 4|
f((1PPOD)Ud | JIS)=UB |8

H(uta f1BPOD)jEOMS

(104 "18pol2)ieduls

(., = . 'IBPOD)31BOU3S

f{.40008 Doj|jew) g uyad

)
((L=iv10D)98(,2,==[0ImM)) 4}
; /% S8ULL JUBISUOD SBJOIS 4/

P(,0NUMNUYUN jewaoy BdAy, ‘jo0a)Adouss
}
(D=>110P) 3}
{

79

(0 <« ((8dAy a0y *(ou ‘11dpp ‘pes|pp)dAjeney))si
(D=>110P) 41

*((oujua ‘*Bujjus ‘dAjuas

‘oudAjue ‘adA3” unj)adhipeo|)-oudAjua
(0<((adA1 J04)ud|11S)=ua|5) }}
f((adA) uojjua|iis)zuas
'6-iLop

=)
(Dei(PdAy oy 'm ‘|01 ‘J3dpp ‘peJdpp)esnaney)) it
(0 => 310P) 4y

(

‘oL=3top

)
(0 < ((m» *“101 *a3ydpp 'pRajpp)sedaney)) st
}
(0<P®JIIPP) 414
_ ‘o=3yop
t(euweu jue ‘apod)Adalgs
.0\, =|++Z})8weu jue

_ {
t,0\N. = |Zt]Bweu jus

(C.uy, == [zw]qwnp)) Iy
flZuw]ownp=] 44+ 2 ¢ | AWRL jJue
((.%. =ilzwjqunp)) 3}
}
(++ZWwW !|-ud|S>Zw Q=zw) 403
f((qunp)lualis)=ue|s
t((w]dAjue ‘qunp)Adaays

o=zt
f((pespp "Z3id 'ABue ‘|w|dAyus ‘zys|pp ‘' 1)dpp)ppiab)=pai|pp

(oudAjues>w)a|

A = | 4+0UlRBA | IPA

-_—E T~

80

}

(Ne((PdAY J0y ‘m ‘Joa ‘J3dpp ‘pau|pplesneaey))i

(0 => 310P) 3y

{

t0L=3t0p

)

(0 <« ((m ‘Loa *uadpp ‘padipp)sedaney))4}
. ‘0=13140p
t(aweu jua '|apod)ieduys
t O\, =[++Z\]|oWweu jue

{

t,0N. = |zt)dweu jua
((,uv, == [Zw|quwnp)) 3}

flzwlownp=| +4Z} |Pueu jua
((.$., =ilzw|qunp)) 3}
)
(++ZW f|-uB|S>Zw 'Q=Zw) 40y
f((qunp)us|d3}s)zua|s
t(If|3ydwod ‘qunp)Adiass
t0=2y
}
(0<P2J1DP) 3}
t{(pasipp ‘zid ‘aboe
‘[f)43dwos *zys|pp ‘+3dpp)ppiaB)=peJs(pp
]
(++f touwod>[!Q=()a03
t(. P10D3I =, '|OP0OD)IBIILS
}
(D<oUWOD) 44y
)|
(0 < (((23dwod *a3dpp ‘paJl|pp)unNdasey)=o0uwnl)) i
(0=>110P) 4}

(

t((ouwiud ‘aupyijua ‘dAjus
‘outdAjyuse .wazﬁnhcu_waxuﬁuu_unocnxuce
(N<((adA3 Jo3)uda3s)-ua|s) 4}
P((AadAy ao0j)uajays)zua|s
tg=30p
}

8l

t(.,'pua . “1#apod)Adouss
ti=3110p
(
(
(
Lo « '|8po2)Adaaas
ey = [++0udAhy|di)
‘(1epod ‘ey)Adougs
t,0N.=|uaSs | |9poD
)
as |9
(
f(.-d0048 20| BWw,)j3u}ad
)

{lLiNu==((ua|s)D0||ew = B})) 4}

(.'., '18p02)3eED]3sS
(104 "|Bpod)3edt1s
$(. . 'l18pod)3edsys

{

f(n0\UMOUNUN Jewaoy adAy, *|oa)Adaags

)

(0=>310P) 31

{

({1@pod)ud|uis)=ud(S

f((oujue ‘Bui|jue ‘dAjue
‘oudAjue *adAy soj)edAipeo))=oudAjue
(0<((8dA3 J0J)ud|J3S)=UB|S) 4}
tg=3140p
(0 < ((8dA3 J0y ‘Jos 'aydpp .nng_n:va>«a>mcuuw.
{0=>310P) 41}

f((oujue ‘sujjus 'dAjue
‘oudAjua *adAy aoy)eadhipeo|)=oudAjue
(D<((2dA3 uoj)udjuis)=ue|e) 4|
t{(adA)y aojjuajiis)=ua|s
tg=310p

82

t{10a ‘|28P02)3EIJIS
v T . '19p02)3BDULS

as|a

= [++0UUOD|UOD
lapas ‘en)Adaays
\, = |ua|s]|epoo

es|a

t(.20008 D0 jew,)$3utad
)
(11N ==((ua|s)Jo||Bw = BD)) 4}
f((1epod)ud|a3s)=ua s
t{.!. ‘19p0OD)3eD43S
‘(194 *|8pod)3iEdJ)s
t(, = . ‘19pod)3jEDdIlS
}
(.2.==101m) 4t
((L=i3VOP)RR(0-(LOJ)UB| 13S))4}
{
t(L0\NuUMOUNUN Jemanyg AdAy,, ' jod)Addass
}
(0=>110P) 41

{
1 = [++0udAy |dAy
|epo2 "e})Adouis
L0\, =(ue| 5] |ApOD

]

as|a

{
1(.,40448 20| (RW,)43uLad

)
(LInu==((uB|s)I0(|BW = B}))})}

e — @

83

‘(. Ppua, ‘L u\sY%,'|3d}gruiady

ML T ad) Jaupady

T faJey 21601 weuboud ayy nd). ‘LU\S%,. ‘13d)s3urady
t(.UN, 'L3d)sauiady

‘(. urBea, *‘,u\S¥,'13d)jruiady

(
Y[Jaen * L uvsY Lt1ad)daupady
(++} ‘0OudeAs) t1=}) J04
t{falien ' u\sy Jea, ‘Lid)43uLady
)
(Qg<ouaBeA) 4}
(
FOl)dAY L uNSY Ltradyzauady
(--1 '0=«ct !'Z-oudAl=1)u0y
t{j1-oudAy |dAy *unsy BdAy, " 3d)4rugady
}
(D<oudAy) g
(
Pl Juon t L uNS%h LL3d)jauLady
(++}+ fDUUDI>L fp=t) JOY
f(loluna ', u\s% 1SU0D, " 3d)$3upady
)
(0<cOuu0oDd) 41
(
faaw
(
{
(
tey = [++0udAy|diy
f{18pod 'e3)Adoays
t,0\, = |ua|s]||8poD
]
a8s|a
(
Y0, 40008 20| (Bw,)lyugad
}

(1ind ==((ue|s)20]||ew = e3)) 4}
f{(19pOIjua | 11S)=UB|S
(.Y, '19pDT)3IBII3S

84

(L1 |~Baw

. t(13yd) eso
\S% SI attd m_:qu:umuchwm

85

{
t(sPul u)uinial
{
/e d 03 a83uLod S81D1S 4/ td = |++S8U(U]I3IdBUYL |
/+« d 03 auy| sajdod ./ f(auy)| *‘d) Adoays
/%-1830BJBYD BU} |MBU dRZ 4/ .0\, = |[|-u8a||auy|
)
es |9
{
(L=-)uanieg
)
(11w == ((ua)aog|Pw = d)) 4}
/+ d Araae uoy aneds @jeI0((R 4/
s |8
{
H(1=-) uanyeq
}
{ S@uy|vew =< S8uy|u))y
(0 < ((vajxew ‘aui|)auy(iab = ua|)) | Iym
‘0 = s8uL|u
Pfuajpwew)] aup) ‘()d0)||ew, ‘de Jeyd
tsauy|u 'us| U}
}
!saul | xew juL
I» ealpP Afirioys Jads PUB 4/ f{laadeuy | JBYyI
/v SBULL WOLIP) L1 0RdS PUB pPeERL 4/ (SAUl|xew 'Jydeaul|)seul|peel

/e BUL| UDYLIRD 3| NA0S RIS BYY U} SI8]IJEIBYD JO WNU YBEW 4/
G/ u8|vew Bu\ jepy

! s8uy |pEBSJ BujInosansg

86

(
Iy]03deuy | f,uNS%,.) J1uyad
{++} tsdup > | ip=}) JOy
tEouy
)
tsauL |u jul

tl]1d3dauL |« JEBYD
(seut|u ‘J3deul|)Saul|B)}am

/a« JBSN BY) 01 Jads yHI By} SBILIM 4/

tS8uUL(83LJM BuLINOIgNS

87

t(1)uaniey
LON, = []s
(

)
(.uy, ==) 3y
'3 = e+t s

uUﬂ_.ff——m

(.U, =i 2)RR(408-,; (()JPUDIB6=D))BR(0< W |-=-)) B|Lym

/e

11y6Gua g

winyad

‘s 03Uy

auy |

0 = 4
v fo 3uy

186 5/

: |ui|1AB euy jnodaqnsg

88

t(au} |weu *‘s)Adaags
‘yeauq
(O==((u@|s 's *"s|)duduiis)) 4t
(0 <« ((Zi1d'wy S|)ppPRea.I=uUs |))a|ym

o=t

'((S)ua| 1}s)=ud S
t(sea ‘s)ieduys
t(au) (mweru ‘s)Adaays

(
(lL=)uaniaa
t()40428d
t([z]nBae " u\sy @14 wado jued,)syupad
}
(LI == ({4, ‘[Z)naBae) uedoy = zid)) 3
‘0 = paJ|pPP
tw o jul
tua) jul
‘ua s juy
Y oluy

t{gL]s1 4eyd
‘{625 aeyo
f()oo| |ew, JeYyD
‘Pps eYd

tpaJapp
fwy |
t])se
| 13dpPy
[1nBaey
1Z1d.

/w AJEUOLIDLD BlEP BY} pRAd | [|M

1uy

julL
Jeys
Jeyod
FL-TVE)
3714

w/

(raJ|pp *z3yd ‘ABae ‘s8 ‘wy| ‘Jydpp)ppieb

¢ pp3i1eB autinouaqng

89

t(padppluaniad
‘(z1d) 8s0(Dy

{
{
‘PP = [++paapplaidpp
t{s1 ‘Pp)Adolis
tLON, = |wil]s)
]
As|a
(
t{(1-)juanjye.
)
(Linu == ((wyya0irew = pp)} 34
((0==(Aaypp ‘auy|sed ‘s|)dwruasys)
|| (n==(Aaypp ‘Buy||eA ‘s|)dudulls)
|| (0==(Aaxypp ‘@upiepsn “s|)dwiuiys)
| (0==(Aaypp ‘Bui|urys ‘s|)dwdulls)
__ (O==(Aaxpp ‘Suiwn)y ‘s|)duiuviys)
|] (O==(Aaxpp "auy |dAy *s|)dwiuays)
11 (0=-(Aaqpp ‘auL|sap *‘s|)dwduays)) Jy
)

((O=i(¥ 'S 'S)0wdLIIS)FR(0«

((Z3d ‘wy

‘SINppRaJzuB|)))a| jym
(0 < us|) 3y

90

{
f(tyuanyen
t.0N. =t)82
0N =4t]S
(,UN.=2) 41
3= ++t|SI
(G UN L =i2)BR(400=i ((73d)2386=2))RB(0< Wil-=)) @]jun
t0=1}
tE'a uy
)
fwpp Uy
t[])s4 aeyn
tz3ds 3714
fe AJEUDLIDLD BIED PRAJ || IM 4/

(z31d'wy | *sa)pppead

¢ pppeE8.d B8ul}noaqng

91

H{(ZV)uanyaa

{
{

f,on.=lzElioa

wjoqwnp=(++24]104

g —_

a|s>w 0=z} 'Aeqpp=w) .04

H((1qunp)ua|ldls)=ua|s
(lvlardpp *jaunp)Adouis

}

((0==(Aexpp ‘auyised ‘|| |iydpp)dwiusis)) 4t

(++1

(™

)

tpea PR >y fg=1) a0y

‘o=w
‘0=zt
‘o=t
LA uHD_l
t1og]1guwnp Jeyd
‘ue|s jul
twrzetp Uy
}
[Im aeyo
‘palpp Jul
t{141dPpe teYD
1109 aeyd

‘tod 'aydpp ‘pau)pp)sedaaey

¢ sedasney auyinoaqng

92

}

(D<Zw) 3
t(APYPP-ud | S)=EW
‘{1ose ‘|ou)Adouys
fL.ON.=lZv)10ae

fwliownp z|+4+ZL] 10sE
as(@
{

taZW

.OPON, = [+s+Z2V]10DaE
H
(.%, == [w]iuunp)

(++w 'ud|S>w =z} 'Aewpp=w) J0y
t((lqunplua|ais)=ua|s
(1t]123dpp *qunp)Adauys
}
((D==(Aexpp ‘auy|dAr *[]23dpp)dwduais)) 414
}
(++} !PBJIPP >t !Q=}) 40}
t0=guw
to=zw
0=
t0=w
‘0=zt
to=1
[og)ioae aeys
1os) launp seyd
tuals juy
‘W tzw Cqw C‘w 'z Yy oaug

]

t|JadA3 a0y Jeyd
tpad|pp UL
t[143dppy Jeya
lhi1oa aeyd

(edA3 J0y *‘|ou ‘a3dpp ‘paapp)dAianey

! dAjeaaey BuUyINOIqgNS

93

tzw) yqunp

'L0N, = [1w]edA3y a0y
f++imw]adAy a0y

(++7W tgw > |w !Apqpp=zw ‘Q=|w)J04

NCASUFLELE]
{
{

94

S{w)iauop=[aszy | (02

(++W 'UB|S >Z} {0=ZL “Aawpp=zw) 40y
{(1qunpluad|J3s)=ua|s

t{{1)aydpp Cprnwop)Adoasys

}
((Oo==(Aexpp ‘sup|en ‘|t]J3dpp)dwduays)) 41t
}
(++} PRI PP >} !Q=1) JOy4
t.0,=10|m
]
(N==(G '3IsSuod "BI0D)dwoulIls) i
(
(
ffwliguwnp=[++Zt]BJ02
(++W 'u@|S>2y 0=zt ‘AsMpp=w) 40
f((1qunpludals)=ua|s
f([+]143dpp *Launp)Adaaas
}
((0==(Aeypp ‘'Bui|jesn ‘[)Jydpp)duwduays)) i
H
(++} 'PBIIPP >{ !0=}) JO4
FQ=w
‘0=zt
‘0=t

t|0G|eI0D Jeyd
‘1os|1gwnp aeyd
tloz) 1oy Jeys
‘ua s juy
twizpte 3u

)

t]|18dAy p03 Jeyd
LM aeyd
‘paapp 314}
t{143dppe Jeud
11104 deyd

(edA3 10y 'm *{0a 'sydpp ‘padipplesnaaey

1 ®wsSnaAaBy B\BU| Jn0AQNS

95

t0=2¢
as (8
. (193 "(0J4)3EDU3S
(0< (edA3 a0y ‘103 ‘uidpp ‘ped(pp)dAjaney) 41
f(, 40 [, ‘102)31R242S
{
tlw]qunp=|++ZL]10a
as|A
YL, =l ++Zb]102
(, , == [w]|lqunp) 4}
)
(++w tud|s >w !y=z1 ‘Aeypp=w) J0}
f((1qunpluslys)zus|s
(L 193dpp taqunp)Adougys
t{.] Ae

Jae, ‘|0a)Adouys

((O==(AadpPp ‘8u}|uel

(++t 'poupp >}

(0==(G ‘Aeuue

*lt]93dpp)dwauaisy) 3y

f(z)uanyau

(

}
}

‘O=¢) Jo4

)
‘eqo3)dwiuais) yt

(

96

{LiINU==((ZUua|$)J0| |BW = WOD)) 4!
'((10Je)ud|J3S)=2ZUB S

Lo =[2) 1oae

f.8, = [+4Z4]| 100ae

(

}
(.$.=zilw]jqunp)e|ym
1,8, = [++2t 1 100e
fad

tleswW]iQUNP = [+4Z1)| 0"

]

(. §,==|wjiqunp)j}

arw

}

(UA | S>w)e| Lym

‘({1qunpjua|iig)=us s

([t 123dpp

((0==(Aeypp ‘8ul|wo2

‘1aunp)Adaays

(- 3dwoa

)

‘14 1430Pp)0WdUIIS)) 4y

}

‘woa, Jeyl
()00 18w, JBYD
*[pgliode aeyd
‘[0S]1ownp Jeyd
1ZUB|S UB (S 3}
fzwwizty Uy

}

‘peJ|pp 1u}

‘[143dppe 2eyD

t[)1243dwoo, dey>s

‘a3dpp ‘peu(pp)lwodasey

! wosasey 8u}3Inoaqng

97

‘o=2Z}
Wod = | ++zw)a3dwod
(ioae "wod)Addiys

t(p)uanyaa
t(,4n 108 201w,) 43u}ad

as|a

f(Zw)uanyey

{

{

98

(

t{oudAjua)uiniad t

‘ejue =[++0udAiue |dAjue ;
‘(8dAy) J04 ‘e3ud)Adiuis
t,p\,=[us|s]edAy} Joy

)

As |8
f{(.40008 Dol ew,) $yuad

(lLINU ==((uUB|S)70| |BW = BIUB)}) J}

t((edAy uoj)ua|als)-ua)s
! (oudAjua)uunial

(n=jf(oujue *sui|jue ‘adA) J04)IuandIayd) 4t
t(oudAjue)uaniel £

=z(|tldAyue *8dAy Jol)dwiais) i

}
(++}1 foudAjue > ‘p=1)404

(D<oudAjum) 41

f()I0| | PUy aeyd

fus s juy

o 3ul

tejua, Jeyd

}

foujzue UL
taul | yud, JBYI
ftoudAiua jJuy
t[1dAjue, Jeyd
n__oamalLumLu:u

(pujua ‘euy|jue ‘dAjus ‘oudAjus ‘adAy uoj)sdAipeo)

t edAjpeo| auLjnouqng

99

(
f{zlfyuaniyal
{
{
teazf
(0==([Flauijrua ‘adAr 4oy)dwdais)
)
(++f * ouviues[:p=()Joy4
)
(0<oujua) 4}
‘o=2¥
tz0 ' 3wy
}

foujue juyg
{|Pupiyue, Jeyd
t[]adA3y a0y Jeyd
(oujue ‘suy(iue 'adA) J0j)3juaxdeymd

! jueyIeyd auiinoaqng

A
MODULE DECLARATION
GENERATOR

by
JOSEPH LIBRERS

B. S., San Jose’ State University, 1976

o —

ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfiliment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1985

ABSTRACT

The Module Declaration Generator is a software engineering tool for
implementing PASCAL modules. It inputs an Entity Relationship
Attribute (ERA) Requirements Specification Activity Block and a data
dictionmary repository file. It outputs a framework of an executable
PASCAL module with the data declarations required to handle the
modules' inputs and outputs. In addition, it includes the ERA Activity
Block and the input and output variable descriptions 1in a PASCAL

comment construct.

This Module Declaration Generator is written in C Language. It will

execute in a UNIX* environment.

* UUNIX is & trademark of AT&T Bell laboratories

