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Abstract

Future technologies such as cognitive radio require flexible and reliable hardware
architectures that can be easily configured and adapted to varying coding parameters. The
objective of this work is to develop a flexible hardware encoder and decoder for low-density
parity-check (LDPC) codes. The design methodologies used for the implementation of a LDPC
encoder and decoder are flexible in terms of parity-check matrix, code rate and code length. All
these designs are implemented on a programmable chip and tested.

Encoder implementations of LDPC codes are optimized for area due to their high
complexity. Such designs usually have relatively low data rate. Two new encoder designs are
developed that achieve much higher data rates of up to 844 Mbps while requiring more area for
implementation. Using structured LDPC codes decreases the encoding complexity and provides
design flexibility. The architecture for an encoder is presented that adheres to the structured
LDPC codes defined in the IEEE 802.16e standard.

A single encoder design is also developed that accommodates different code lengths and
code rates and does not require re-synthesis of the design in order to change the encoding
parameters. The flexible encoder design for structured LDPC codes is also implemented on a
custom chip. The maximum coded data rate of the structured encoder is up to 844 Mbps and for
a given code rate its value is independent of the code length.

An LDPC decoder is designed and its design methodology is generic. It is applicable to
both structured and any randomly generated LDPC codes. The coded data rate of the decoder
increases with the increase in the code length. The number of decoding iterations used for the
decoding process plays an important role in determining the decoder performance and latency.
This design validates the estimated codeword after every iteration and stops the decoding process
when the correct codeword is estimated which saves power consumption. For a given parity-
check matrix and signal-to-noise ratio, a procedure to find an optimum value of the maximum
number of decoding iterations is presented that considers the affects of power, delay, and error

performance.



FLEXIBLE ENCODER AND DECODER DESIGNS FOR

LOW-DENSITY PARITY-CHECK CODES

by

SUNITHA KOPPARTHI

B.E., Andhra University, 2000
M.S., Louisiana State University, 2003

A DISSERTATION

submitted in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Electrical and Computer Engineering
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas
2010
Approved by:

Major Professor
Don M. Gruenbacher



Copyright

SUNITHA KOPPARTHI

2010



Abstract

Future technologies such as cognitive radio require flexible and reliable hardware
architectures that can be easily configured and adapted to varying coding parameters. The
objective of this work is to develop a flexible hardware encoder and decoder for low-density
parity-check (LDPC) codes. The design methodologies used for the implementation of a LDPC
encoder and decoder are flexible in terms of parity-check matrix, code rate and code length. All
these designs are implemented on a programmable chip and tested.

Encoder implementations of LDPC codes are optimized for area due to their high
complexity. Such designs usually have relatively low data rate. Two new encoder designs are
developed that achieve much higher data rates of up to 844 Mbps while requiring more area for
implementation. Using structured LDPC codes decreases the encoding complexity and provides
design flexibility. The architecture for an encoder is presented that adheres to the structured
LDPC codes defined in the IEEE 802.16e standard.

A single encoder design is also developed that accommodates different code lengths and
code rates and does not require re-synthesis of the design in order to change the encoding
parameters. The flexible encoder design for structured LDPC codes is also implemented on a
custom chip. The maximum coded data rate of the structured encoder is up to 844 Mbps and for
a given code rate its value is independent of the code length.

An LDPC decoder is designed and its design methodology is generic. It is applicable to
both structured and any randomly generated LDPC codes. The coded data rate of the decoder
increases with the increase in the code length. The number of decoding iterations used for the
decoding process plays an important role in determining the decoder performance and latency.
This design validates the estimated codeword after every iteration and stops the decoding process
when the correct codeword is estimated which saves power consumption. For a given parity-
check matrix and signal-to-noise ratio, a procedure to find an optimum value of the maximum
number of decoding iterations is presented that considers the affects of power, delay, and error

performance.



Table of Contents

S o T U= PSSRSO X
LIS OF TADIES ...ttt e st sttt sre e be e beeneenre s Xiv
ACKNOWIBAGEMENTS ...ttt se bbbt XVi
DT [ or: £ o] o TSP P PP PRPRO XVil
CHAPTER 1 - INEFOQUCTION ...vviieiesit s ettt 1
I\ [ (V= [0 o SRR PRR 2
1.2 LITEratUre REVIEW .....ecueiiiieeie ettt sttt et are et et sneente e st e sneenteeneenneennas 4
1.2.1 Encoder IMplementation ..........ccvouiiiiieiie it 4
1.2.2 Decoder IMpIementation.............cceiiiieiiieiie et re e 6

1.3 ACCOMPIISNIMENTS. .....ciiieiiieiee bbb 8
1.4 Organization Of DISSEITALION ...........cceiiiieieieite i 9
CHAPTER 2 - Low-Density Parity-Check COOES..........ccciviieiieiicieiicse e 10
20 I = Voo To [ 1T OSSR 10
2.1.1 GENEIIC ENCOUING.....ctiiiiiiieiieieie ittt bbbttt 11
2.1.2 EFfICIENT ENCOOING .....viiiiiieiieieie ettt bbb 12

p N B L ToTo 1o L[ oo RSP STRS 14
2.2.1 Logarithmic Message Passing Algorithm ..........cccccovoieiieie i 15
2.2.2 Minimum SUM AIGOTTTRML......ooi s 17
2.2.3 Modified Minimum Sum AlGOrithm...........cooiiiii e 18
2.2.4 Other Decoding AlQOrIthMS........ccviiiic et 18
CHAPTER 3 - Design Tools for FPGA and ASIC Implementation ...........cc.cccoeveveiieieececnee. 19
BB N § (=] = @ = LSS 19
3L L COMPIIALION. ...ttt 21
312 SIMUIBLIONS ...ttt et b e et st e sreebeenee e 21
3.1.3 POWET ANGIYSIS ..eveiiiiiiit ettt a e e na e 22

T O 1o (< ot OSSR 23
B2 L RTL COMPIIEE ..ottt bbbt 25
32,2 ENCOUNTET ...ttt b ettt b ettt e et e e e b e e et e e be e e b e e ene e e b e e nbeeanneens 26

Vi



BB IMALIAD ... 27
CHAPTER 4 - Encoder Design for Randomly Generated Low-Density Parity-Check Codes .... 30

g I g T o Lo L= D T=T] o o USRS 30
4. 1.1 PrEPIOCESSING ..cveeuveurereetestestesieeseeseesesse sttt besbe e st eseess e s e b e nb e bt ab e e b e e se e s e e b et e b e nbesbesneebeas 31
4.1.2 Hardware IMpIementation ...........cccoiieiieiieii e 34

4.1.2.1 Multi Clocked INNEr ProdUCT .........cccooiiiiiiiiiieie s 35
4.1.2.2 Single Clock INNEr ProdUCT..........ccoveiieieiiesieeecie e 36

A o (TS | PSP 36
CHAPTER 5 - Encoder Design for Structured Low-Density Parity-Check Codes...................... 41

5.1 Structured LDPC COUES. ......cuuiuirieiriiieie ettt sttt sttt s e sae st sbesbesneeneas 41

5.2 DeSign MethodOIOgY ........cc.uiiiiiiiiiieie e 43

5.3 Hardware IMpIementation ............cooiiiiiiiiiinisie e 44
5.3.1 ComMPULALION OF V..o et 44

5.3.1.1 Vector-Vector MUltIpliCatioN............ccccviiiiieiiciccece s 45
5.3.1.2 Computation OF €y .......cceviiiiiiiiiiiii 45

5.3.2 Computation Of Parity BiILS .......cccoeiiiiiiiiiiiieeee e 46

5.4 RESUIES ...ttt bbbttt bbb renreene s 46
CHAPTER 6 - Flexible Multi-Code Rate and Multi-Code Length Encoder for Structured Low-
Density Parity-CheCk COUES.........couiiiiiiiiee s 51

6.1 DesSign MethOdOIOgY ........ccuiiiiiiiiiieie e 51

6.2 Hardware Implementation ............cccooouiiiiiieic et 52
6.2.1 Storing Base Parity-Check Matrices for Different Rates of LDPC Codes................... 52
6.2.2. Parity-CheCk MAariX........ccoiiiiieieie e 55

6.2.2.1 MUITIPIICALION. ..o 57
B.2.2.2 DIVISION ....etiitiitieiieie ettt ettt sttt e ettt s s et et et et benrenre s 59
6.2.2.3 Computation OF Hy....ooovoiiiiciece e 61
6.2.2.4 Latency for the Computation OF H.........coocoiiiiiiiiee e 62
6.2.3 CompuLation O €p ........cviiiiiiiiii 64
6.2.4 COMPULALION OF V.o e et aee s 66
6.2.5 Computation Of Parity BILS ........cccoiiiiiiiiieiic e 67
6.3 Results of the Flexible Structured Encoder Implemented on an FPGA .........cccccocviiinnne 67

vii



6.4 Implementation of a Flexible Multi-Code Rate and Multi-Code Length Structured Encoder

ON AN ASIC ... n e nne e 70
CHAPTER 7 - Decoder for Low-Density Parity-Check COdEs............cccorvririieiieienencnesesieniens 73
7.1 Study of LDPC DeCoder PArameters .........ccooeiueieerieiiesieesieeeeseesieseesieesse e sseessesnessseesees 74
7.1.1 Decoding AIGOrItRM .....c.ooiiecc e 74
7.1.2 DeCoder ArCHITECTUIE .....cviieieie e 75
7.1.3 QUANTIZALION ...ttt sbe et e ne e be et e eneenreeeeenee e 75
7.1.3.1 QUANLIZALION OF (..iviiiieiicic e 75
7.1.3.2 Quantization of Log-Likelihood RatiOS ............cceieiieiiiiiiiiiieecec e 76

7.1.4 Maximum Number of Decoding Iterations............cccccevveveiiieieese e 77

7.2 Design and Implementation of LDPC Decoder on FPGA........ccocooviie e 78
7.2.1 QUANTIZATION ...ttt e e st e sre e teeneesbeeteaneesneeneeenee e 78
7.2.1.1 QUANTIZALION OF @..cuviiiiiiiiicee e 78
7.2.1.2 Quantization of Log-Likelihood RatioS..........ccceieieiininiiiriciecec e 79
7.2.1.3 Conversion of Log-Likelihood Ratios from One Form to Another Form of
REPIESENTALION. ... .c.viieieiireie ettt et e e et e e e e ae e st e e teeseesbeebeaneesreers 80

7.2.2 Initialization Of DECOUEr PIrOCESS .........cicviiiiiieieierie et 81
7.2.3 CheCk NOGE PrOCESSING .....c.veiiiiiiieiie sttt 82
7.2.4Variable NOUE PrOCESSING .....cveviiirieitesiesiieiesieeee ettt 85
7.2.5 ENd Of DECOUING PrOCESS .....cveiviiiiieiieeie sttt sttt sbe e sre e 86
AR = ol Lo [ SOOI 87

T (=11 ] TSR 88
7.4 Optimization 0f DeCOder Parameters. .........cooviiiiiiiieieie e 90
7.4. 1 ErroneoUS COUBWOITS ......uveueerieieiesie st sie st eesee e ettt besae st sbesne s e 90
7.4.2 DECOUET DEIAY ......ccveiiieeecieeete ettt ettt e e nre e 92
7.4.3 DECOUBT ENEIQY ..ottt bbbttt e bbb 92
T.4.4 OPUIMIZALION ...ttt bbbttt b et bbb b 95
CHAPTER 8 - CONCIUSION......tiiiiiiiieitieee sttt sttt sbe e 101
BLL FULUIE WOTK ... ettt ettt sttt sbe et nne e 103
CHAPTER 9 - RETEIBNCES ....ouviivie ettt sttt te ettt steesae st e steenaesneesraenaesreenseennens 104
Appendix A - Design of a Convolutional Encoder in Verilog HDL ..........ccccoiviiiiiiiiiiins 110

viii



AL CoNVOIUTIONAI ENCOUE ...t e ettt e e e e e e e e e eeeeeeeeeaans 110

Appendix B - FPGA Implementation using QUAIUS..........c.cccueruerieireresieseesie e e see e 112
B.1 Creating @ PrOJECT.....c.oiiiieiiitisii bbb 112
B.2 Compilation 0f the ProOjJECt ..........ccviiiiiii s 114
B.3 TimiNg SIMUIALION .....coiiiiiei et ns 115
B.4 POWET ANAIYSIS.....ciiiieiiecie ettt e te e e s e te et e e teenaenneens 119

Appendix C - ASIC Implementation using CadenCe...........ccerveieririiinieieeeee e 122
C.LINTEAE SBTUP .t b ettt nn bbb 122
C.2 Synthesis of Verilog HDL Modules in RTL Compiler........cccooeviviiieiiene e 123
C.3 Place and Route using Cadence ENCOUNLET ...........cccueiieieieeiie e 125
C.4 Verification Of the DESIGN ......c.eiiiiiiiie e 136

Appendix D - Quantization of Log-Likelihood Ratios in Decoder Implementation.................. 141



List of Figures

Figure 1.1: Comparison of bit error probability of error correcting codes. .........ccccccvvvvevveviereenne. 3
Figure 2.1: Parity-CheCk MAatriX. ..o 10
Figure 2.2: Tanner graph representation of parity-check matriX. ..........cc.ccoovriieieieienincnineen 11
Figure 2.3: A parity-check matrix in equivalent lower triangular form. ...........cccccviviiviieinens 12

Figure 2.4: Parity-check matrix in approximate lower triangular form, Hpyre, and its division of
SUD-MIALIICES. ..ttt ettt et e st e st se e s b e s be e st e sreenteeneesneenbeeneeas 12
Figure 2.5: Subgraph of Tanner graph showing message passing from variable node to check

000 [OOSR 14
Figure 2.6: Subgraph of Tanner graph showing message passing from check node to variable

0o TSP 14
Figure 3.1: Logic element architecture on the Stratix FPGA. ... 19
Figure 3.2: Design fIoW inN QUANTUS...........ociiiiieii et re e 20
Figure 3.3: ComPilation FEPOM. ........oiuieii et be e sreesre e e 21
Figure 3.4: TImINgG SIMUIALIONS. ......c..oiiiiiiiieie e 22
Figure 3.5: PowerPlay power analyzer design FlOW. ..........cccceiiiiiiiiniiiiecee e 23
Figure 3.6: PowerPlay power analyzZer SUMMATY. ........cccoeieeieiiieieesieeieseeseesee e sre e seesnee e 24
Figure 3.7: ASIC design FIOW. .......ooiiiice et 24
Figure 3.8: Design flow in RTL COMPIIET ..o 25
Figure 3.9: Design FlOW iN ENCOUNTET. ........oiiiiiieieiesiese e 26
Figure 4.1: Overview Of the LDPC €NCOUET. .......cccveiuieiiieie et 31
Figure 4.2: Application of greedy algorithm A on H...........ccoooiiiiiiice e 32
Figure 4.3: Distribution of number of one's in each row of P, matrix for an irregular H of size

504 X 1008, .. .eeueerierieieiteete e s te e e et et et e e st e st e st et e e et e e rear e ReeRe R e eRe et et et e naenrenrenreeneans 34
Figure 4.4: Complete system of the generic eNCOUEr. ..........cvevviiiiiiie i 35
Figure 4.5: Circuit for multi clocked inner product (MCIP). ......cccoiiiiiieiiicece e 35
Figure 4.6: Circuit for single clocked inner product (SCIP)........cccocoiiiiiiiiiincieie e 36
FIQUIe 5.1: ENCOOING PrOCESS. ...c.vitetirtiitestieteeieie ettt sttt ettt b e bttt et bbb b ene e 44
Figure 5.2: Overview Of eNCOUING PrOCESS. ....ccivieiiieiieeiiie e esieesieesiee e s e ereesraesae e e eaeesree s 44



Figure 5.3: Logic elements vs. code lengths for different code rates. ........cccccevvvveviieiciieeseennnns 48
Figure 5.4: Complete structured encoder SYSIEM.........cccvciviiieieiie e 48
Figure 6.1: Overview Of the NCOTING PrOCESS. .......covirviriiriirieieieri ettt 52
Figure 6.2: Computation of V using (a) row parallelization method and (b) column parallelization

METNOM. ... et b e bbbt e bbb 53
Figure 6.3: Storing base parity-check matrices, Hy, for different code rates.............ccccceevvevnennens 55
Figure 6.4: Finite state machine for the multiplication module.............ccccooviiiieiiiii i 57
Figure 6.5: Hardware block diagram for the multiplication module. .............ccooeiiiiiiiiinnnne 58
Figure 6.6: Finite state machine for the division module. ...........ccccceviiieiiecicce e 59
Figure 6.7: Hardware block diagram for the division module.............cccccoviiiiiiiiiiiiccccecees 60
Figure 6.8: Computation of an element of Hy, hyj), from an element of Hyy, hpagij). coovviviininnns 62
Figure 6.9: Computation of a column of Hy from a column of Hp1. .oooveeviiiiiiiiccc 63
Figure 6.10: COMPULAtION OF €p....c.cviviiiiiiiicii e 65
Figure 6.11: CompuULation OF V. .....ooiiiice e 66
Figure 6.12: Complete system of the flexible multi-code rate and multi-code length structured

I o O s ot o[- PSSR 69

Figure 6.13: Synthesized flexible multi-code rate and multi-code length LDPC structured
encoder in Cadence RTL COMPIIEL. .....c.ooouiiiiiiccece e 70
Figure 6.14: Layout view of the flexible multi-code rate and multi-code length LDPC structured
encoder iN CadenCe ENCOUNTEL..........cuiiieiiee ettt nae e 71

Figure 6.15: Layout view of the flexible multi-code rate and multi-code length LDPC structured

encoder inN CadenCe ICFB. ... 72
Figure 7.1: BER vs. SNR performance using different decoding algorithms. .............c.ccccooeeee. 74
Figure 7.2: QUANLIZALION OF (.. .c.viiiiiiiiiecieee e 76
Figure 7.3: BER vs. SNR performance for different quantization levels of log-likelihood ratios.

............................................................................................................................................... 77
Figure 7.4: BER vs. SNR for different values of maximum number of decoding iterations........ 78
Figure 7.5: Conversion of 2's complement to sign magnitude representation..............cccccceevunnne. 81
Figure 7.6: Conversion of sign magnitude to 2's complement representation. .............c.cccccveeee 81
Figure 7.7: Computation of magnitude of check node values. ............ccccoovriiiniiinienenc e 83
Figure 7.8: Computation of sign of check node values. ..........ccccoccveviiiiiiiii i 83

Xi



Figure 7.9: Computation 0f CheCk NOUE VAIUES. ..........cocveiiiieiiiie e 84

Figure 7.10: Computation of variable N0 VAIUES. ............ccceeviiieiieie e 85
Figure 7.11: DesSign Of LDPC JECOUEN. .......cveieiiieieeiiesiesieeeie et 87
Figure 7.12: Complete deCOUBI SYSEM........ciiiiiiieieerie st 89
Figure 7.13: Histogram of decoding iterations required by codewords for varying SNR. ........... 91
Figure 7.14: Surface plot of f for varying SNR, Iteryax and Weights..........cccccevvvveiieiciieinennns 98
Figure A.1: A 1/2 rate convolutional encoder with constraint length 7............cccoeiiiiniiinnnn. 110
Figure B.1: The main QUartus I diSPIay. ........cccoeriiiiiiiiiicee s 112
Figure B.2: Creation 0f NEW PrOJECL. .....cviiiee ettt 113
Figure B.3: Adding design fileS. ........covv i 113
Figure B.4: Choose the device family and a SPecCifiC deVICe. ..........cccovvreriniiiiiiieie e 114
Figure B.5: Other EDA tools can be SPecified. ... 114
Figure B.6: Summary of the project SEttiNGS. ........ccvviiieiieiiiie e 115
Figure B.7: Flow summary of the compilation report. ............cccoveviiiveeie s, 115
Figure B.8: Creating vector waveform file. ... 116
Figure B.9: Waveform editor WINAOW. ...........cooiiiiiiiiiiiicee e 116
Figure B.10: Insert node or bus dialog DOX........c.coveiiiiiiiciesic e 117
Figure B.11: Selecting nodes to insert into the waveform editor. ..........ccccccoeeviviviiicce e, 117
Figure B.12: SIMUIALOT SEEEINGS. .....ooviiviiieiiieiieieie bbb 118
Figure B.13: Timing SIMUIAION FEPOIT. .......c.viiiiiiiieiesc e s 118
Figure B.14: Creating .Saf file.........cooiiiiiiee e 119
Figure B.15: PowerPlay power analyzer toOl. ............ccovoiieiiiieie e 119
FIQUIE B.16: POWET SEEHINGS. ....eovivetiitiitieiieii ettt ettt bbb 120
Figure B.17: Add power INPUL FIl. ........ooiiiieiee s 120
Figure B.18: PowerPlay power analyzer SUMMArY..........cccoeiieiierieiiese e 121
Figure C.1: Synthesized convolutional encoder in RTL Cadence. ........ccccccevvevveveciesieciie s, 123
Figure C.2: BaSIC deSIGN IMPOIT. ....ocuiiiiiiiiiiieieiee et 126
Figure C.3: Advanced desSign IMPOTT. ........ccoueiiiriiiiiise e 126
Figure C.4: After Importing the deSIgN. ........cooiie i 127
Figure C.5: SPecCify floorplan. ..o 127
Figure C.6: ATEEr FIOOIPIAN. ... 128

xii



1o 0T O Ao (o I 1o PSSR 128

Figure C.8: After adding MNGS. .....oiieiicieiieie et ste e sneens 129
FIQUIE C.9: AT SEIIPES. ...ttt bbbttt b b 129
Figure C.10: After adding SIIPES. ......coiieiieieieieit et 130
Figure C.11: SPECIAl FOULE. .. .eceiieieieeee et et te e eneenns 130
Figure C.12: ATter SPECIAl FOULE.........covi it 131
FIQUIE €132 PIACE. ...t bbbttt nb s 131
Figure C.14: After placing CellS. ..........cooiiiiiiiie s 132
Figure C.15: NANOROULE. .......eciiiieiieeie ettt ste et et be e esae e e snaesteeneesneens 132
Figure C.16: AFter NANOROULE............cii ettt e reenes 133
FIQUIE C.L7: A FIHHIEE. ... 133
Figure C.18: After adding FIHIErS. ..o s 134
Figure C.19: VEerify CONNECLIVILY. ......ccuiiiiiicie et 134
Figure C.20: VErITY gEOMEIIY. ....cvi ittt et sne e 135
Figure C.21: GDS XPOIt FOMM. ...c.voiiiiiiiieeeiee e 135
Figure C.22: Stream N TOMM. ....oeiiii et 136
Figure C.23: User-defined data fOrm. ..........cov oo 136
Figure C.24: OPtIONS TOMM. .....cviiiie ettt 137
FIQUIe C.25: DRC TOIMMN. ...uiiiiiiiiiieeitee bbbttt 137
Figure C.26: IMPOrt VErilog iN. ......oouiiiiiiiiiciee e 138
Figure C.27: SCREMALIC VIBW. .....c.viiviiiiiieiteeie ettt ettt sttt s re et ste e snee e 139
Figure C.28: EXIFACIEU VIBW. .....ccuviiviiie ettt sttt ettt st ste e sne e 139
FIQUIE C.29: LS. bbbt bbbttt ettt bt 140

Xiii



List of Tables

Table 1.1: Coding schemes for different Standards. ............cccceoiveveiieiiieie s 3
Table 2.1: Steps for computation of parity bitS P1 and Pa. ....ccooveeeieiiiiiiee e 13
Table 4.1: Density (nunber of one's) of H, Py and P, Matrices........c.cccovvvveiie i, 33
Table 4.2: Synthesis results of encoder implementation using MCIP on Stratix EP1S80F1508C5.

............................................................................................................................................... 37
Table 4.3: Synthesis results of encoder implementation using SCIP on Startix EP1S80F1508C5.

............................................................................................................................................... 37
Table 4.4: Synthesis results of complete encoder system using MCIP and SCIP implemented on

StratiX EPLSBOFL508CS. .....cuviviiieieiiciesieiee ettt sttt be b e eneane e 39
Table 4.5: Synthesis results of LDPC encoder designed DY Lee. .........cocevvrinieiieienenenesesenns 39
Table 5.1: Synthesis results of structured encoder using LDPC codes defined in 802.16e.......... 47

Table 5.2: Comparison of information data rate without 1/0O serialization of our proposed
structured encoder with the encoder presented by Kim..........cccooveiiiiiiiiicic e 49

Table 5.3: Comparison of coded data rate with I/O serialization of our proposed structured

encoder with the encoder presented DY Kim. ..o 50
Table 6.1: Rate select values for different COde rates. ..........ccooevvrereiiiiniesiseee s 56
Table 6.2: Length select values for different code lengths. ..., 56
Table 6.3: Number of clock cycles required for computation of H; from Hy; for different code

51T OO PP UPRTTPRP 63
Table 6.4: Synthesis results of the flexible encoder for structured LDPC codes. ..........cccoveueee. 68
Table 6.5: Latency involved in computation of H for different code rates..........cccccccoevveviennnne. 68

Table 6.6: Synthesis results of flexible multi-code rate and multi-code length LDPC encoder in

Cadence RTL COMPIIET. ..o 71
Table 7.1: QUANTIZATION OF (. ...c.eiiiieie s 76
Table 7.2: Quantization of 10g-11keliN00d ratios. ..o 77
Table 7.3: LOOK UP tADIE TOT 0. ..cvviieie s 79
Table 7.4: Quantization of 10g-likelihood ratios. ...........ccocveiiiiiic i 80
Table 7.5: Synthesis results of the LDPC deCOUET. .......c.ceciiiiieiieiii et 88

Xiv



Table 7.6: Synthesis results of LDPC decoder of code length 1024 and code rate 1/2 in Cadence

I I 00 o o | =T OSSR 90
Table 7.7: Erroneous codewords, errors, for varying SNR and Iteryax.....ccoovvvevereninencnennnn. 92
Table 7.8: Decoder latency, delay, for varying Iteryiax. .« cooerereerienrenienieie e 92
Table 7.9: PowerPlay power analysis report of the decoder of size 64 x 128.............cccccvevveennne. 93
Table 7.10: Energy (pJ) required for varying SNR and Iteryax. . ccoeerveereeriveresieeseeresieseesiesneenns 94
Table 7.11: Weighing coefficients of error (« ), energy, (£), and delay (3). .c.ccoceevvvvevvevieennnne 96
Table 7.12: Minimum f corresponding to Iteryax, SNR and weights. ..., 97
Table D.1: QUANtIZAtION OF (0. ...cc.eeiieiiiiice e re e 141
Table D.2: Quantization of 10g-likelin00d ratios. ...........cocuiiiriiieieiei e 142

XV



Acknowledgements

I would like to first express my deepest appreciation for the technical guidance,
invaluable suggestions and support given by my advisor, Dr. Don M. Gruenbacher. I would like
to thank Dr. William B. Kuhn and Dr. Balasubramaniam Natarajan for serving on my committee
and also for their guidance and suggestions during my doctoral program. | am grateful to Dr.
Daniel A Andresen for serving as an outside committee member. My special thanks to Dr. Itzhak
Ben-Itzhak for serving as an outside chairperson.

I would like to thank my parents and sister for their unconditional love, encouragement
and support throughout my life. I am grateful to my husband, Satish, for his support, cooperation
and being there for me whenever needed. | thank my in-laws for their support.

| thank all my friends Ali, Samer, Shilpa, Lutfa, Shekhar, Shama, Mandar, Gayathri,
Murali, Seemanti and Jeet for their support and companionship during my stay at KSU. | owe my
special thanks to Lakshmi, Prasad and their kids (Abhinav and Ananya) for welcoming me into
their home. 1 would also like to thank Anupama, Praveen, Samatha and Harish for making my
stay at KSU a pleasant one. | appreciate the faculty families Muthukrishnan’s, Krishnaswamy’s
and Pahwa’s for welcoming us (me and Satish) into their homes, helping and advising us
whenever needed.

I would like to thank Sharon and Sam for helping me whenever needed. | thank Dr. Tom
Pearson for giving me an opportunity to work at USDA as a research assistant. | am very grateful
to Dr. Kameran Azadet for giving me an opportunity to work at LSI Corporation as an intern.
Finally, 1 would like to thank Electrical and Computer Engineering department for providing

partial support through teaching assistantship.

XVi



Dedication

To
Mom, Dad, Sister
and
Husband

XVii



CHAPTER 1 - Introduction

Channel coding theory began when Shannon applied probability theory to study the
communication system. Shannon showed that for a given transmission rate less than or equal to
channel capacity, the errors induced by the noisy channel can be reduced to a desired level by
using a proper coding scheme [1]. Channel codes that can detect and correct the errors occurred
during the transmission through a communication channel are called error correcting codes.
Channel coding minimizes the effect of channel noise by using a channel encoder and decoder at
the transmitter and receiver respectively. The channel encoder encodes the message bits by
adding redundant bits to generate each codeword. The channel decoder in the receiver exploits
the redundant bits in the received codeword and retrieves the actual message bits. Forward error
correction (FEC) is a system of error control for data transmission. FEC codes detect and correct
errors without requiring retransmission. Low-density parity-check codes (LDPC) are a type of
FEC codes used for error detection and correction.

Low-density parity-check codes were invented by Gallager [2], [3]. LDPC codes have
recently received much attention because of their efficient decoding algorithm, excellent error
correcting capability and their performance close to the Shannon limit for large code lengths [4].
LDPC codes are proposed as an optional code in many IEEE standards. In [5], Europe’s DVB
standards group has selected LDPC codes due to their superior performance over Turbo codes
for next generation digital satellite broadcasting. LDPC codes have already been verified and
adopted by digital video broadcasting (DVB-S2) satellite broadcast and 10-Gbit Ethernet-over-
copper system specifications [6]. LDPC codes are widely being considered as next-generation
error correcting codes for many real applications such as telecommunications and magnetic
storage.

The objective of this work is to develop a flexible hardware encoder and decoder for
LDPC codes. The design methodologies used for the implementation of a LDPC encoder and
decoder are flexible in terms parity-check matrix, code rate and code length. The following
section presents the motivation behind this work. The current state of LDPC encoder and
decoder implementations in hardware is presented in the next subsection. Finally the

accomplishments of this work and organization of the thesis are illustrated.



1.1 Motivation

Future wireless systems need extremely fast and flexible architectures to support varying
standards, algorithms and protocols with high data rates. Software radio is a widely proposed
solution for these systems [7]. A software radio is a wireless communication device in which all
of the signal processing is implemented in software. By simply downloading a new program, a
software radio is able to interoperate with different wireless protocols, incorporate new services,
and upgrade to new standards [8]. Cognitive radio (CR) is the next step in the evolution of
software-defined radio (SDR). The cognitive radio concept was invented and presented by J.
Mitola [9, 10]. It takes SDR's ability to adapt to changing communication protocols and
frequency bands and adds a new dimension which is the ability to perceive the world around it
and learn from experience [11, 12] and adapt to optimize the use of available resources.

The two primary objectives of the cognitive radio are to provide highly reliable
communication whenever and wherever needed and to utilize the radio spectrum efficiently [13].
Cognitive radio is able to work in different frequency bands and various wireless channels and
supports multimedia services such as voice, data and video [14]. Cognitive radio is a new
paradigm in wireless communication that holds promise for new and better services to many
markets, including public safety, military etc. Based on both current and previous channel
characteristics, the radio would know what to do, where to go and how to make the operating
changes without the user’s intervention and without interfering with other communication
equipment. Some of the radio’s other cognitive abilities include determining its location, sensing
spectrum use by neighboring devices, changing frequency, adjusting output power or even
altering transmission parameters and characteristics [15-17].

Hence, there is a need to develop appropriate hardware which can be easily configured
and adapted to varying coding parameters. The future of cognitive radio primarily depends on
the availability of flexible and reliable hardware architectures. In this thesis, an attempt is made
to develop a flexible and reliable architecture which would aid the future development of
cognitive radio.

Any radio with the capacity to jump around the spectrum optimizing for power, range
and required data rates, will, at the very least, require an extremely flexible RF front end [18].
The technical means to dynamically assign or utilize spectrum involves: (1) highly adaptive
modulation and coding techniques (2) multidimensional/hybrid multiple access techniques (3) a



spectrum and resource aware MAC/link layer (4) flexible networking and (5) spectrum

awareness and multilayer resource management [19]. Coding techniques used in different

wireless standards are shown in Table 1.1. Convolutional codes, Reed-Solomon codes, Turbo

codes, Low-density parity-check (LDPC) codes are some of the common error correcting codes

currently being used in different standards and their bit error probability is shown in Figure 1.1

[20].
Table 1.1: Coding schemes for different standards.
Parameter IEEE 802.11a IEEE 802.11n DVB-T IEEE 802.16
E Reed-solomon | Reed-solomon-
rror . . .
correctin Convolutional Convolutional codes, convolutional
g codes /LPDC codes | Convolutional codes, LDPC
codes ;
codes codes (optional)
Net data rate Up to 54 200 49.8-131.67 | Excess of 120
(Mbps)
1/2, 2/3 , 3/4, 1/2, 2/3, 3/4,
Code rate 1/2, 2/3, 3/4 5/6 5/6, 7/8 1/2, 2/3, 3/4
-==. No coding
64-state convolutional code
. 2"%_state convolutional code
"se. —p= Reed-Muller/Reed-Solomon |
& Turbo Code, N=65,536
= @~ Irregular LDPC Code, N=10" |
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Figure 1.1: Comparison of bit error probability of error correcting codes [20].

Reviewing the work reported in this research area and industry, LDPC codes are found to

be the leading error correcting codes. Most of the architectures for encoding and decoding of
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LDPC codes are based on regular or structured LDPC codes. However in [21], it was shown that
properly constructed irregular LDPC codes can approach the channel capacity more closely than
regular LDPC codes. And also, most of the work in the literature shows that the LDPC encoder
and decoder are implemented with fixed parameters such as fixed code rate and code length. But
cognitive radio as explained earlier requires flexibility in both code rate and code length. Hence,
there is a need for designing a flexible LDPC encoder/decoder. Also, high speed encoder and
decoder are necessary as applications require more bandwidth. The focus of this work is to
develop hardware for LDPC encoder and decoder that are flexible in terms of code rate and code
length for a reconfigurable radio. The designs are applicable to both structured and any randomly

generated regular and irregular LDPC codes.

1.2 Literature Review

In the following subsections, the current state of work published in the hardware
implementations of both the encoder and decoder for LDPC codes are presented.

1.2.1 Encoder Implementation

The major drawback of LDPC codes is its high encoding complexity, in spite of the better
performance and lower decoding complexity. The complexity is referred to the number of
operations required per bit. A straightforward implementation of an LDPC encoder has
complexity quadratic in the code length whereas turbo codes can be encoded in linear time. Even
though LDPC codes are difficult to implement due to high encoder complexity, recent
developments have led to more efficient encoder structures which are typically limited in their
encoding rates.

A variety of encoder architectures have been presented in the past. Richardson showed
that the encoding complexity can be reduced from O(n®) to either linear or quadratic. For
example, a (3, k)-regular code of length n requires about 0.017°n? + O(n) operations [22]. The
parity-check matrix is initially transformed into an approximate lower triangular form. Then
encoding is performed on the approximate lower triangular form of the parity-check matrix using
the greedy algorithm.

Zhang et al. [23, 24] proposed a systematic efficient encoding scheme by effectively
exploiting the sparseness of its (3, k)-regular LDPC codes. A design approach is presented by

Zhong in [25] for a LDPC system hardware implementation by jointly conceiving irregular code
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construction and VLSI implementations. The encoding algorithms in [23-25] are similar to that
of Richardson’s greedy algorithm [22], except that these algorithms do not contain any back-
substitution operations because of the structural property of their parity-check matrices. To take
the advantage of the parity-check matrix structure in [23-24], the parity-check matrix is
transformed into an approximate upper triangular matrix rather than lower triangular form.

In [26], Echard introduced as ensemble of quasi-regular low-density parity-check codes
called as =m rotation LDPC codes. In [27], Kim presented high-performance parallel
implementations of an encoder and decoder for a parallel concatenated parity-check class of
LDPC codes. In [28], Miles implemented a radiation tolerant encoder in 0.25 p CMOS based on
a novel method for deriving regular gquasi-cyclic LDPC codes. These encoding methodologies
assume a particular structure for the parity-check matrix such as regular, quasi-regular and
parallel concatenated LDPC codes. Hence the encoding methodologies developed are applicable
to those particular LDPC codes and cannot be used for other structured or non-structured LDPC
codes.

In [29-33], a hardware design of an efficient LDPC encoder was described based on the
method proposed by Richardson and Urbanke in [22]. In [29], the encoder for code length of
2000 bits and rate 1/2 has a coded data rate of 45 Mbps. The coded data rate can be increased to
410 Mbps by implementing 16 instances of the encoder on the same device. In [30-32] an
implementation of a real-time programmable irregular LDPC encoder as specified in the IEEE
P802.16E/D7 standard was presented. The encoder is implemented on a reconfigurable
instruction cell architecture and has a data rate from 10-19 Mbps. The design presented has a
maximum data rate of 78 Mbps with the use of pipelining and multiple cores. In [33], a LDPC
encoder is implemented for structured LDPC codes as defined in both IEEE 802.16e and IEEE
802.11n. An architecture for a structured LDPC encoder has been presented that supports IEEE
802.11n [34].

An encoder and decoder for LDPC codes defined in IEEE 802.16e are developed and
their coded data rate is dependent on the clock frequency at which they run [35]. The basic
encoder and decoder area is 20 K and 125 K gates respectively. The LDPC encoder core in [36]
provides a complete encoding solution for the codes defined in IEEE 802.16e. A major feature of
the core is that it has an extremely low latency and the encoded packet is available at the output

in seven clock cycles. The coded data rate is equal to the clock rate of the encoder.



Most of the encoder methodologies presented above assume some kind of structure for
the parity-check matrix. Also the encoder design parameters, the code rate and the code length,
are fixed. Hence there is a need to design a LDPC encoder that is flexible in terms of parity-
check matrix, code rate and code length for cognitive radio.

1.2.2 Decoder Implementation

Several algorithms are proposed for LDPC decoding. LDPC codes which can approach
Shannon’s limit by using an iterative decoding algorithm called belief propagation. This
algorithm is also called as sum-product algorithm or message passing algorithm [37]. By using
log-likelihood ratios (LLR) as messages (logarithmic message passing algorithm) the hardware
implementation has become much easier when compared to the message passing algorithm. The
implementation complexity is further reduced by simplifying the process for updating check
nodes, which is the most extensive part of the message passing algorithm. This algorithm is
called the min-sum algorithm [38]. Later on, several algorithms were introduced by modifying
the min-sum algorithm [39-41] to bridge the gap in the performance between the min-sum and
message passing algorithms.

A LDPC decoder can be implemented using serial, parallel or partially parallel
architectures. In [42], a fully-parallel irregular LDPC decoder is synthesized using 0.18 pm
CMOS technology and achieves a data rate of 1 Gbps for code length of 648 and rate 5/6. In
[43], a 1024-b, rate-1/2 LDPC decoder is implemented using a parallel architecture. The design
achieves a coded data rate of 1 Gbps. This performance is achieved by exploiting the inherent
parallelism and rapid convergence of the message passing decoding algorithm. In [44], a 1/2 rate,
2048 codeword, (3, 6) regular LDPC code has been analyzed. The data rate and complexity
analysis is performed for the VLSI implementation of an LDPC decoder using both fully and
partially parallel architectures. In [45], the decoder is designed using a serial architecture and has
a moderate data rate. The decoding algorithm proposed in their paper belongs to the class of min-
sum with a correction factor. The correction factor is updated from the log-likelihood ratio
values. The decoder is peripherally connected to the embedded PowerPC processor of a Xilinx
Virtex-1l Pro FPGA and is managed by the processor. This method of hardware/software
implementation provides the maximum flexibility for the development and rapid prototyping of

the hardware-based simulator system.



In [46], a parameterized decoder that supports the LDPC code in the IEEE 802.16e
standard, is presented which requires code rates of 1/2, 2/3 and 3/4, with block sizes varying
from 576 to 2304. The decoder is synthesized with Texas Instruments’ 90 nm ASIC process
technology, with a target operation frequency of 100 MHz, 15 decoding iterations, and the
maximum data rate is up to 256 Mbps. Similar flexible multi-rate multi-code length structured
LDPC decoder is designed in [47-49]. The IP core in [50] provides a hardware efficient
implementation of an LDPC decoder for IEEE 802.16e. The design covers the entire
IEEE802.16e LDPC specification and implements an early stop detection function. The data rate
of the decoder is dependent on the clock frequency. The decoded throughput is up to 168 Mbps
for a Virtex-4 with a -12 speed grade.

In [51] the energy consumption of a quantized LDPC decoder is computed. It is shown
that the energy consumption of the decoder increases exponentially with the number of
quantization bits. A new architecture is proposed in [52] which reduces memory access, hence
power consumption, without sacrificing performance. It is shown that through an interconnect-
driven code design approach, coupled with a dynamic addressing scheme and an optimized
version of the BCJR algorithm for computing reliabilities, power savings of up to 85.64% can be
achieved [53]. A low-power real-time decoder that provides constant-time processing of each
frame using dynamic voltage and frequency scaling is presented in [54]. VLSI architectures for
low-density parity-check decoders amenable to low-voltage and low-power operation are
investigated in [55]. In this paper, highly-parallel decoder architecture with low routing overhead
is described. Dynamic power is reduced by using an efficient method to detect early convergence
of the iterative decoder and terminate the computations.

The performance of the LDPC decoder depends on various factors such as the decoding
algorithm, the architecture, the quantization of log-likelihood ratios and the maximum number of
decoding iterations. The maximum number of decoding iterations used for the decoding process
determines the data rate and latency of the LDPC decoder. After performing maximum number
of decoding iterations, the codeword is then estimated. Most of the decoders presented above do
not estimate the codeword and check its validity after each iteration. In order to save decoder
power consumption and to decrease the latency, a decoder design that verifies the codeword after
each iteration and stops the decoding process when the estimated codeword is correct is needed.

In [55], the parity of the normal variable-to-check messages is checked after each iteration. If the



parity check is satisfied then the codeword is estimated at the beginning of the next iteration and
the decoding process is stopped. In [42], the codeword is estimated after every iteration but it is
validated in the next iteration. These two decoder designs in [42] and [55], take an additional
iteration to stop the decoding process after the decoder decoded the correct codeword. An
attempt is made to find an optimum value for the maximum number of decoding iterations for a

given parity-check matrix and SNR by minimizing the error, delay and energy.

1.3 Accomplishments
In this section the important contributions of this thesis are presented. As shown in the
previous sections, current hardware implementations of LDPC encoders and decoders use either
cyclic, quasi-cyclic or some regular pattern in the parity-check matrix, H. In this work, both an
LDPC encoder and decoder are developed that are flexible in terms of parity-check matrix, code
rate and code length. Here is a list of the significant contributions of this work.
1. A generic encoder is designed and tested for any randomly generated LDPC codes.

Two new encoder designs were developed that achieve much higher data rates
while requiring more area for implementation. The designs developed can be used for
both structured and any randomly generated regular and irregular parity-check matrices
as they are independent of the structure of the LDPC codes.

2. An encoder for structured LDPC codes is designed and tested.

An encoder architecture that adheres to the structured LDPC codes defined in the
IEEE 802.16e standard was developed. The design methodology with minor
modifications can be used for other similar structured LDPC codes defined in different
standards.

3. A flexible multi-code rate and multi-code length LDPC Encoder is designed and tested

A flexible encoder design that accommodates different code lengths and code
rates has been developed. This design methodology does not require re-synthesis of the
Verilog code to change the encoder parameters (code length and code rate). This design
methodology developed with minor modifications can be used for other similar structured
LDPC codes.

4. A LDPC decoder for randomly generated LDPC codes is designed and tested



A decoder design methodology that is independent of the structure in the LDPC
codes has been developed and implemented. Hence it is applicable to both structured and
any randomly generated regular and irregular LDPC codes. This design validates the
estimated codeword after every iteration and stops the decoding process when the correct
codeword is estimated which would save the power consumption.

5. Optimum value of the maximum number of decoding iterations

The maximum number of decoding iterations plays a major role in determining
the decoder performance and latency. A procedure/method is presented to find an
optimum maximum number of decoding iterations for a given parity-check matrix and
SNR.

1.4 Organization of Dissertation

A brief introduction on LDPC codes is presented in chapter 2. In this chapter, various
encoding and decoding algorithms are presented. In chapter 3, the design tools Altera Quartus,
Cadence and Matlab, used in the implementation of LDPC encoder and decoder are presented.
The two design methodologies used for the encoder design implementation for randomly
generated LDPC codes along with the results are presented in chapter 4. The encoder design
methodology, the implementation and the results for a structured LDPC codes are discussed in
chapter 5. In chapter 6, the design methodology, hardware implementation and the results for a
flexible multi-code rate and multi-code length encoder for structured LDPC codes are presented.
In chapter 7, the decoder design methodology, hardware implementation and results are
presented. For a given parity-check matrix and SNR, an optimum maximum number of decoding

iterations are evaluated.



CHAPTER 2 - Low-Density Parity-Check Codes

In this chapter, low-density parity-check codes are introduced and the details of encoding
and decoding algorithms are presented. LDPC codes were invented by R. G. Gallager [2][3].
LDPC codes are linear block codes specified by a parity-check matrix, H, which is sparse. There
are two types of LDPC codes, regular and irregular LDPC codes. Regular LDPC codes are
defined by parity-check matrices with a fixed number of non-zero entries (usually 1’s) in each
row and column known as row weight, w,, and column weight, w,, respectively. Irregular LDPC
codes are defined by parity-check matrices having a variable number of non-zero entries in each
row and column. In general, irregular LDPC codes have better error-correcting performance than
that of regular LDPC codes. In this work, Mackay’s parity-check matrices [56] for both regular
and irregular LDPC codes are used. LDPC codes can be represented using a bipartite graph, also
called as Tanner graph, where one set of nodes represents the codeword, also known as variable
nodes, and the other set of nodes, called check nodes, represents the parity check constraints.
Messages are passed between check and variable nodes along the edges, L(r;) and L(q;). Each
edge in the Tanner graph corresponds to a ‘1’ in H. An example of a 4 x 8 rate 1/2 parity-check
matrix is shown in Figure 2.1. Each row of the parity-check matrix represents a check node and
each column represents a variable node. Check node ‘j’ is connected to variable node ‘i’ if the
corresponding element h;; of H is 1. The Tanner graph representation of the parity-check matrix

in Figure 2.1 is shown in Figure 2.2. In this work, parity-check matrices that are binary is

considered.

11100000
H = 00011100
/1120010010
01 001001
Figure 2.1: Parity-check matrix.

2.1 Encoding

Encoding of LDPC codes uses the following property
Hx =0, (2.1)

where vector x represents the codeword, H is the parity-check matrix, and 0 is a zero vector. The

codeword x consists of information bits, s, and parity bits, p. Parity bits are computed from the
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information bits. Two of the common encoding methods are presented in the following
subsections.

Check nodes (Cy)

L(Gi)  Cs

/g

— C7
-—

—}66
‘—YG

— 64

L(I’ji) — ;11
Variable nodes (Vy;)

Figure 2.2: Tanner graph representation of parity-check matrix.

2.1.1 Generic Encoding

Let H = [H; H;] be the m x n parity-check matrix with sub-matrices H; and H; having the
dimensions m x k and m x m, respectively. For the remainder of this thesis, these dimensions are
not explicitly designated. The most straight forward encoder implementation requires three steps.
In the first step, the parity-check matrix, H, is transformed to an equivalent lower triangular form
as shown in Figure 2.3. The second step is to take the codeword, x, and split it into it’s k
information bits, s, and it’s m parity bits, p. i.e.,x=[s p]. In the third step, the parity bits p are
obtained by solving Equation 2.1:

Hx" =07,

S
[Hlmxk H 2 ]|: o i| = O-rrnxl ’
pmxl

H,s+H,p=0or p=H, H,s. 22)
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n

Figure 2.3: A parity-check matrix in equivalent lower triangular form.
In [29], it is stated that transforming the parity-check matrix into lower triangular form
using Gaussian elimination requires about O(n®) operations. Since the transformed parity-check

matrix is no longer sparse, the actual encoding requires O(n®) operations. More precisely the

actual encoding requires nz(gj XOR operations where r is the code rate.

2.1.2 Efficient Encoding

Richardson and Urbanke [22] showed that linear time encoding is achievable through
careful linear manipulation of LDPC codes. Using row and column permutations only, the
parity-check matrix is transformed into an approximate lower triangular form, Hpr, as shown in
Figure 2.4. The parity-check matrix is still sparse and T is in lower triangular form with ones
along the diagonal. The gap, g, is made as small as possible because the encoding complexity is

upper-bounded by n + g?[22].

1 1
Y Al B'}l-llg m-g
m H = = fF---- L--1--

Hpre
Figure 2.4: Parity-check matrix in approximate lower triangular form, Hpr, and its

division of sub-matrices.

The encoding procedure is as follows: The codeword x is given by x=[s p, p,], where s are

information bits and p; and p; are parity bits of length n-m, g and m-g, respectively. Equation
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2.1 can also be represented as Hpex' = 0" and is solved to compute the parity bits. This

I 0
expression is pre-multiplied by { S I} to obtain

o 2 2

2

(2.3)

For binary parity-check matrices, Equation 2.3 can then be separated into two equations as

shown below
As+Bp, +Tp, =0, and (2.4)
(ET *A+C)s+(ET 'B+D)p, =0. (2.5)
Let ¢ = ET 'B + D, and assume that ¢ is nonsingular, the parity bits are given by
p, =¢(ET "A+C)s, and (2.6)
p, =T *(As+Bp,). (2.7)

The steps used to compute the parity bits are summarized [22] in Table 2.1.
Table 2.1: Steps for computation of parity bits p; and p..

Step No. Computation of p; Computation of p,
1 As As
2 T 'As Bp.
3 ET As As + Bp;
4 ET "As + Cs T *(As + Bp,)
5 ¢ H(ET *As + Cs)

In [22], it is found that by using this method, the encoding complexity is either linear or
quadratic but quite manageable. For example, a (3, k)-regular code of length n requires about
0.017%n? + O(n) operations. The complexity of the encoder is still manageable for large n since

the 0.017°n? is a very small number. The encoding complexity for all optimized irregular LDPC

codes is linear because the expected gap, g, is actually of the order less than Jn, and the required

amount of preprocessing is of order at most n*2.
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2.2 Decoding

Message passing [37] is an iterative algorithm commonly used in decoding LDPC codes.
Each iteration of message passing consists of updating outgoing messages from both variable
and check nodes. In one half of the iteration, each variable node, V;, passes all its information to
each of the connected check nodes, Cy;, excluding the information the receiving check node
already possesses. Consider the sub-graph of the Tanner graph shown in Figure 2.2
corresponding to the first column of H and is shown in Figure 2.5. An example of message
passing between Vp; to Cy3is shown in Figure 2.5. The check node Cn3 receives information from
the channel, y;, and the extrinsic information node V,; received from check nodes C,; in the
previous half iteration. In the other half iteration, the information is passed from check node to
variable nodes excluding the information the receiving variable node already possesses. Figure
2.6 shows the sub-graph of the Tanner graph in Figure 2.2 corresponding to the first row of H.

Cns

Y b I
an

Figure 2.5: Subgraph of Tanner graph showing message passing from variable node to

check node.

Figure 2.6: Subgraph of Tanner graph showing message passing from check node to

variable node.
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An example for passing the information from C,; to Vp3 is shown in Figure 2.6. The
variable node V3 receives the information from C,; which it received from variable nodes Vp;
and V2 in the previous half iteration. After each iteration, the decoder checks if the estimated
codeword satisfies Equation 2.1. If the decoder finds the correct codeword then the process is
stopped. If not the process of decoding continues until the estimated codeword satisfies Equation
2.1 or reaches the maximum number of decoding iterations.

Using this message passing algorithm, LDPC codes can be efficiently decoded. This
message passing algorithm is also known as sum-product algorithm. Since the direct
implementation of the message passing algorithm will result in high hardware complexity due to
a large number of multiplications, a logarithmic message passing algorithm is used to reduce
complexity. The logarithmic message passing algorithm allows all of the multiplications to be
converted into additions, making it more easily implemented in hardware. In fact, both message
passing and logarithmic message passing decoding algorithms realize the same decoding rule.
The summary of the logarithmic message passing algorithm is presented in the following

subsection:

2.2.1 Logarithmic Message Passing Algorithm
Before presenting the summary of the logarithmic message passing algorithm, an
overview of the notation used is presented below:
e R : The set of column locations of the 1°s in the j row of H.
e Rji: The set of column locations of the 1’s in the jth row of H, excluding location i.
e C;: The set of row locations of the 1’s in the i column of H.
e Cj;: The set of row locations of the 1’s in the i™ column of H, excluding location j.
e y: Received codeword corresponding to the transmitted codeword x.
e ¢: Estimated codeword.
o Pi:Prci=1y).
e be{01}.
o (@ij(b): probability that c¢; = b given the information from all neighboring check nodes,
except check node at position j.
e Tr;ji(b): probability that j™ check Equation being satisfied given c; = b and information from

all variable nodes except from the variable node at location i.
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e Qjj(b): probability that c; = b given the information from all the check nodes.

pr(c, =01 y,)
o L(G)=log| i ==Yl
) w(m@=HmJ

° L(rji) = |Og(rji (O)}

(0
e L(qgy) = log (Z‘—()]

Q,(0)
OLi:| et
@) w[9®]

The steps for the logarithmic message passing decoding algorithm are as follows:

Step 1: The messages originating from variable nodes, L(q;j), as shown in Figure 2.2 are
initialized using

me=um=§é, (2.8)

where y; is the received code word and o is variance of the channel noise.
Step 2: The messages originating from check nodes, L(r;j), as shown in Figure 2.2 are computed
from L(q)

L(rji) = Haij R4 ;(o(ﬂij) (2.9)
ieRjy; ieRjy
where o =sign(L(q;)), B; =1L(q;)| and ¢(z) =-log(tanh(z/2)) = Ioggi J_ri (2.10)
Step 3: L(q;) = L(c;) + Zc: L(r;)- (2.11)
Jeliyj
Step 4: L(Qi) = L(Ci) + Z L(rji)' (2.12)
i€G
Step 5: for Vi, the codeword is estimated from L(Q)
¢ :{1 _if L(Q,) < o_ (2.13)
0 if L(Q,)=0

Step 6: The decoding process is stopped
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if GH' =0 (2.14)
or the number of decoding iterations = maximum number of decoding iterations
else

repeat starting from step 2.

2.2.2 Minimum Sum Algorithm

The minimum sum algorithm is also called as Min-Sum algorithm and is essentially the
same as the logarithmic message passing algorithm. The Min-Sum algorithm follows the same
exact steps as that of logarithmic message passing algorithm except for step 2 which is modified.

The following function

% Z(o(ﬂij) (2.15)

iR},
is approximated by the simple expression given below
min
ieRy, Pi (2.16)

i.e., the minimum value of ,Bij . This substitution is due to the fact that ¢(z) is maximum when z

is minimum and also go((p(Z)) = Z . Therefore,

_ min min
P i(;j\igo(ﬂij) =99 iERj\i :Bij _iERj\i :Bij, (2.17)

and the resulting step 2 becomes

min
step2: L(1i) = [e 'EieR.\. ﬂu} (2.18)
ji

"ERj\i

where o;; = sign(L(q;))and B =1L(@;) |-
Min-Sum algorithm simplifies the check node computation because there is no need to
compute ¢ of the variable node values. Using Min-Sum algorithm may reduce the chip area for

the implementation when compared to logarithmic message passing algorithm because ¢ which

is typically implemented using look up table (LUT) in hardware is no longer required.
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2.2.3 Modified Minimum Sum Algorithm

The modified minimum sum algorithm is similar to the minimum sum algorithm expect
for a small modification in step 2 of the Min-Sum algorithm procedure. The bit error rate
performance of the decoder is degraded due to the approximation shown in Equation 2.17. To
improve the decoding performance, the step 2 of the Min-Sum algorithm is again modified as

shown below and is called as modified minimum sum algorithm.

min
step2: L) =| [ 1 & .(ieR-\. ij_kj (2.19)
jhi

ieRj\i

where o = sign(L(q;)), £; =|L(q;)| and k is a constant value.

2.2.4 Other Decoding Algorithms

Bit flipping and layered decoding algorithms are some of the other LDPC decoding
algorithms. The BER performance of these algorithms is inferior to the performance of the
message passing algorithm. A brief summary of these algorithms are presented below.

Gallager’s bit flipping algorithm is used for decoding binary symmetric channel [20]. As
shown in Figure 2.2, there are two sets of nodes: check and variable nodes. For a received
codeword, parity check is performed on each check node. For each variable node, the check
nodes that are connected to this variable node and failed the parity check constraints are counted.
The codeword bit associated with the variable node that has the largest number of failed parity
checks is flipped. This process is repeated until all the parity checks are satisfied or a stopping
condition is reached.

The layered decoding algorithm is a variation of the standard message passing algorithm
[57]. The parity-check matrix consists of shifted identity sub matrices that are concatenated in
horizontal layers. The message passing algorithm is performed on each horizontal layer and the
updated a posterior probability messages are passed between the horizontal layers [46]. Because
of this optimized message scheduling the algorithm convergence rate is doubled [58].
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CHAPTER 3 - Design Tools for FPGA and ASIC Implementation

In this chapter, the design tools used to accomplish this work are introduced. Quartus,
Cadence and Matlab are used for the implementation of both the encoder and decoder of LDPC
codes. The encoder and decoder of LDPC codes are implemented on field-programmable gate
arrays (FPGA) using Altera Quartus. A flexible multi-code rate and multi-code length encoder
for structured LDPC codes is also implemented on an application specific integrated chip (ASIC)
using Cadence. Matlab is used to analyze, simulate, preprocess and generate Verilog hardware

description language (HDL) modules for all of the encoder and decoder designs.

3.1 Altera Quartus

A FPGA is a reprogrammable integrated circuit which is usually designed using a HDL
or schematic entry. For larger designs, using a HDL is easy and more appropriate. A FPGA can
be typically used to implement any logical function that an ASIC could perform. The ability to
update/modify the functionality of the design is a huge advantage in a FPGA when compared to
an ASIC. FPGAs contain programmable logic components called logic array blocks (LABs). In
the Altera Stratix FPGA device the logic array consists of LABs, with 10 logic elements (LES) in
each LAB. An LE is the smallest unit of logic providing efficient implementation of user logic
functions. The LE provides advanced features with efficient logic utilization. Each LE contains a
four-input look up table (LUT), which is the function generator that can implement any function

of four variables as shown in Figure 3.1 [59].
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Figure 3.1: Logic element architecture on the Stratix FPGA [59].
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The flow for the implementation of a design in Quartus Il is shown in Figure 3.2 [60].
The desired circuit is specified by using a HDL such as Verilog HDL or VHDL. In this work,
Verilog HDL was used exclusively. This design is synthesized into a circuit that consists of logic
elements and memory blocks provided in the FPGA. The synthesized circuit is tested to verify its
functional correctness. When checking functional correctness, simulation timing issues are not
considered. The fitter tool determines the best placement of the synthesized LEs into the targeted
FPGA device. It also chooses routing wires in the chip to make the required connections between
the specific LEs being utilized.

Design entry
(Verilog HDL)

A 4

Synthesis

A 4

Functional simulation

A

%igncorrect?

n
>

Fitting

\ 4

Timing analysis and simulation

Timing requirements met?

Programming and configuration

Figure 3.2: Design flow in Quartus.
The next step is timing analysis, during which propagation delays along the various paths

in the fitted circuit are analyzed to provide an indication of the expected performance of the
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circuit. The fitted circuit is tested to verify both its functional correctness and timing. The
designed circuit is implemented in a physical FPGA chip by programming the configuration
switches that configure the LEs and establish the required wiring connections. The compilation,

simulation and power analysis on a design in Quartus are presented in the following sections.

3.1.1 Compilation

The Verilog HDL code is processed by several Quartus Il tools that analyze the code,
synthesize the circuit, and generate an implementation for the target FPGA chip. These tools are
controlled by the application program called the compiler. Once the design is created in Verilog
HDL, it needs to be compiled in Quartus. Compilation converts the design into a bitstream that
can be downloaded into FPGA. The most important output of compilation is a SRAM Object
File (.sof), which is used to program the device. The compilation also generates other report files
such as timing, area, etc., that provide information about the code as it compiles. Figure 3.3 is an

example of the compilation report.
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Figure 3.3: Compilation report.

3.1.2 Simulations
A designed circuit can be simulated in two ways: functional and timing simulations [61].

Functional simulations are used to verify the functional correctness of the designed circuit and it
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is assumed that the logic elements and interconnection wires have zero propagation delays of the
signals. This takes much less time, because the simulation can be performed simply by using the
logic expressions that define the circuit. In timing simulations, all propagation delays are taken
into account and thus exhibiting the actual behavior of the design when implemented on the
FPGA device. In this work timing simulations are performed on the encoder/decoder designs
compiled in Quartus. The encoded and decoded codeword obtained from timing simulations are
compared with the codeword obtained using Matlab for verification. Figure 3.4 shows an

example of timing simulations.
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Figure 3.4: Timing simulations.

3.1.3 Power Analysis

Power plays an important design consideration as the designs grow larger and process
technology continues to shrink [62]. Power consumed by the design compiled in Quartus can be
analyzed using the PowerPlay power analysis tool. There are two PowerPlay power analysis
tools: PowerPlay early estimator spreadsheet and PowerPlay power analyzer. PowerPlay early
estimator spreadsheet can be used during early design stages and gives a rough estimate of the
power consumption. The PowerPlay power analyzer tool offers improved accuracy over the
PowerPlay estimator spreadsheet since it examines actual device resource usage, place and route
information and information on activity rates of all signals in response to a specific input

stimulus. Its accuracy is further improved by adding realistic timing simulation vectors.
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PowerPlay power analyzer tool provides both static and dynamic power consumption
estimates. Static power is defined as the power consumed regardless of signal/data activity.
Dynamic power is the additional power consumed due to data switching activity or toggling. The
design flow of PowerPlay power analyzer is shown in Figure 3.5. The PowerPlay power analyzer
requires the design to be synthesized and fitted to the target device. The PowerPlay power
analyzer directly reads the waveforms generated by a design simulation. The static probability
and toggle rate for each signal is calculated from the simulation waveform and is stored in a
signal activity file (.saf). The summary of the PowerPlay power analyzer compilation report is as
shown in Figure 3.6, which consists of the estimated total thermal power dissipation of the
design. The total thermal power includes dynamic, static and 1/O thermal power dissipation. The
compilation report also includes a confidence metric that reflects the overall quality of the data
sources for the signal activities.
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Signal External
activity file stimulus

A

\ 4

PowerPlay
analyzer

\ 4

Power analysis
report

Figure 3.5: PowerPlay power analyzer design flow.

3.2 Cadence

An application specific integrated circuit is an integrated circuit customized for a
particular use. In this work, Cadence is used for an ASIC design because it is widely used in the
industry. Using Cadence, an ASIC can be designed from textual description Verilog HDL to
layout without using any additional softwares. An ASIC design is performed using the standard

cell library provided by Virginia Polytechnic Institute and State University [63]. The advantage
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of using a standard cell library is to save time. Using a predesigned and pretested standard cell
library also reduces the design implementation risk. In this work, an ASIC implementation of the
structured encoder is performed using Cadence. The design flow of an ASIC implementation in
Cadence is as shown in Figure 3.7. The Verilog HDL design is first synthesized in Cadence RTL
Compiler. The synthesized design then goes through place and route using Cadence Encounter.
The final layout of the design from Cadence Encounter can be imported into Cadence ICFB and

where design rule checks are performed.
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Figure 3.6: PowerPlay power analyzer summary.
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Figure 3.7: ASIC design flow.
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3.2.1 RTL Compiler

RTL Compiler is used to synthesize design in Verilog HDL. The RTL Compiler design
flow is shown in Figure 3.8 [64, 65]. After invoking RTL Compiler, the Verilog HDL files are
first read and checked for syntax and synthesis policy checks. Then the design is built using
generic components. The library search path and library that will be used for the design synthesis
needs to be specified. The design is read and creates HDL independent objects in HDL-
intermediate format and stores it in a design library. During elaboration the top-level design is

bound with all the designs and packages.
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Compiler

Read Verilog
HDL files
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report

Figure 3.8: Design flow in RTL Compiler.

At this stage of the design, additional constraints are applied. The constraints typically
include defining any clocks. Other constraints like operating requirements, setup/hold times, 1/O
delays, etc., are specified. The design is synthesized during which logic optimization is
performed. The design is mapped to actual gates from the target technology library, producing a
circuit that hopefully meets the requirements. If the design is successfully synthesized, then it has

25



been fully mapped to gate-level. The generated mapped design can be used by Cadence
Encounter to place and route the design. Finally the timing, power and area of the design can be

analyzed using the tools in RTL Compiler.

3.2.2 Encounter

After the design is synthesized in RTL Compiler, Encounter is used to perform automatic
placement and routing of the synthesized design. A place and route (PNR) tool takes a gate-level
netlist as the input and determines how each gate should be placed on the chip. The design flow
in Encounter is as shown in Figure 3.9 [66]. Encounter is invoked and the design synthesized in
RTL Compiler is imported. A Floorplan is performed on the imported design. Die size and core
margins of the chip are specified. The die size is chosen such that the router would have enough

space to be able to place all the metal interconnects and any buffers needed during optimization.
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Figure 3.9: Design flow in Encounter.
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The next step is power planning. Power rings and stripes are configured. The width of the
power lines are determined by the size of the chip. Wider lines are used for bigger designs.
Sroute is performed to do the final power routing. Standard cells are placed in the design. The
design is routed using NanoRoute. Filler cells are added to allow the wells to be at the same
potential. Connectivity and geometry of the design layout are verified. The design should pass
these tests. The foundry needs the design in GDS format. Next, the design is exported to a GDS

file during which a new Verilog netlist based on placement and routed design is generated.

3.3 Matlab

Various design and performance evaluation aspects of LDPC encoding and decoding
algorithms were performed using Matlab. In the encoding algorithm, the codeword generated
from Matlab is used to validate the codeword obtained from the encoder implemented on FPGA.
Encoder for randomly generated LDPC codes is developed using Richardson’s greedy algorithm
[22]. According to greedy algorithm, the parity-check matrix should be transformed into lower
triangular form for the encoding process. This step is called as preprocessing of parity-check
matrix. The encoding process is further simplified and the details are presented in chapter 4. Two
matrices P, and P, are computed for the encoding process. The preprocessing of parity-check
matrix and the computation of matrices P, and P, are performed in Matlab.

The decoder performance is based on several decoder parameters such as decoding
algorithm, quantization of the log-likelihood ratios, and maximum number of decoding
iterations. The decoder simulations are performed in Matlab using different decoding algorithms.
Based on the simulation results, the decoding algorithm that gives the best BER performance is
chosen for decoder hardware implementation. Different quantizations of log-likelihood ratios
and non-linear function ¢ used in the decoding process are evaluated using Matlab. Simulations
are also performed in Matlab by varying the maximum number of decoding iterations for the
decoding process. Based on these simulation results the quantization of the log-likelihood ratios
and maximum number of decoding iterations for the decoding process are chosen. The details
and the results of the simulations are presented in chapter 7.

Matlab is also used to generate Verilog modules required for the implementation of
encoder and decoder of the LDPC codes in hardware. The encoder and decoder of LDPC codes

are designed to have flexibility in code length and code rate. In order to incorporate this
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flexibility, the Verilog HDL module parameters have to accommodate the updates and/or
changes. Therefore, Matlab script to generate a generic Verilog module was written. Based on
the desired LDPC codes, the code length and code rate are selected and the corresponding
Verilog HDL modules can then be generated by running the Matlab script. The Verilog HDL
files are written using the fprintf (write data to text file) command in Matlab. Following is an
example script to generate a Verilog HDL module which implements a 1/2 rate convolutional

encoder with variable constraint length.

Example: Matlab file to generate Verilog HDL module to design a 1/2 rate convolutional
encoder with variable constraint length.

clear all; clc;

% Example: 1/2 rate convolutional encoder with constraint length 7
% Parameters needs to be changed based on desired convolutional encoder
N=7,

g0=[64310];

gl=[65430];

% open the file with write permission

fid1l = fopen(‘convEncoder.v','w');

% write the required data to the file

fprintf(fid1,'module convEncoder(n, k, clk, reset);\n");
fprintf(fidl,'parameter N = %d;\n',N);

fprintf(fidl,'input k, clk, reset;\n");

fprintf(fidl,'output wire [1:0] n;\n’);

fprintf(fidl,'reg [N-1:0] pO;\n’);

fprintf(fidl,'always@ (negedge reset or posedge clk)\n");
fprintf(fidl,'if (~reset)\n’);

fprintf(fid1,\tp0 = {(N){1"b0}};\n");

fprintf(fidl,'else\n’);

fprintf(fid1,\tp0 = {k, p0[%d-1:1]};\n\n",N);

fprintf(fid1,'assign n[0] = );

for i = 1:length(g0)-1
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fprintf(fid1,'p0[%d]™,g0(1));

end
fprintf(fidl,'p0[%d];\n",g0(length(g0)));
fprintf(fidl,'assign n[1] =");

for i = 1:length(gl)-1
fprintf(fidl,'p0[%d]™,g1(1));

end
fprintf(fid1,'p0[%d];\n\n",g1(length(gl)));
fprintf(fid1,'endmodule\n’);

% close the file when finished
fclose(fidl);
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CHAPTER 4 - Encoder Design for Randomly Generated Low-
Density Parity-Check Codes

In general, encoder implementations of LDPC codes are optimized for area due to their
high complexity. Such designs usually have relatively low data rate. In this chapter, two new
encoder designs are presented that achieve much higher data rates while requiring more area for
implementation.

In this chapter, two encoder design methodologies and their implementation results are
presented. The key aspects of the design are summarized as follows:

e The efficient algorithm presented in 2.1.2 is used to develop a hardware implementation
of faster encoders for LDPC codes. The specific efficient algorithm is the greedy
algorithm A presented by Richardson and Urbanke in [22].

e The encoder designs are independent of code length, code rate and structure of the parity-
check matrix. Hence these designs can be used for both structured and any randomly
generated regular and irregular parity-check matrices.

e The encoder uses a direct implementation which sacrifices area for increased speed, but
this is necessary as applications require more bandwidth.

e The design is implemented using Mackay’s regular and irregular LDPC codes [56]. For
this purpose, 1/2 rate regular LDPC codes with code lengths of 256, 512 and 1024 and
1/2 rate irregular LDPC codes with code lengths of 504 and 1008 are considered.

e One of the designs achieves encoding rates of up to 844 Mbps. Both of the designs

presented can fit on FPGASs currently available.

4.1 Encoder Design

An overview of the LDPC encoding process is shown in Figure 4.1. The encoding
process consists of two steps. In the first step, the parity-check matrix is transformed to
approximate lower triangular form, Hyre. FOr any given parity-check matrix, this step needs to be
performed only once and hence this step can be performed offline in software such as Matlab. In
the second step, hardware encoding is performed. Since the codeword is obtained using the
modified parity-check matrix, it needs to be rearranged to obtain the final codeword with regard

to the original parity-check matrix.
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Figure 4.1: Overview of the LDPC encoder.

4.1.1 Preprocessing

In preprocessing, the parity-check matrix is first transformed to approximate lower
triangular form, Hyre. This processing requires the following three steps:

1. Any variable node (i.e., any column in H) which is connected to a degree-one (i.e.,
rows of H having one non-zero element) check node (i.e., row in H) is declared to be known. For
any given H, each column in H is declared independently to be known with probability (1-«) or,
otherwise, to be an unknown (erasure). The (1-a)l known columns are then reordered to form the
leading columns of the matrix H as shown in Figure 4.2 (a) where I is the number of columns.

2. Assuming that the residual matrix, H , has rows of degree-one, the columns connected
to degree-one rows are then identified. Let these columns be ¢; .. ¢k and let ry, ... r¢ be the
degree-one rows such that c; is connected to r;. These new known columns and their associated
rows are ordered along a diagonal as shown in Figure 4.2 (b).

3. Furthermore, step 2 is repeated until all the degree-one rows are exhausted. If this
procedure does not stop prematurely then the row gap is (1 — @)l and the column gap is (1 —r —
a)l as shown in Figure 4.2 (c). If the procedure terminates before all columns are exhausted then
the remaining columns are reordered to the left. Let the remaining columns be &l then the column
gap is (1 — a + 8)l and the row gap is (1 — r — a + d)I. For a given parity-check matrix, H, this

preprocessing needs to be performed only once. Hence this step is performed in Matlab. The
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obtained Hpre is divided into sub-matrices as shown in Figure 4.2 (d). All these matrices are
sparse and T is lower triangular with ones along the diagonal.
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(a) Parity-check matrix after the application of first step in greedy algorithm A.
Q1-al al

'y

r

i
[N
o

071
C1 C a-nl

Ik

\4

(b) Parity-check matrix after the application of second step in greedy algorithm A.
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(d) The parity-check matrix in approximate lower triangular form, Hy, and its division of
submatrices.
Figure 4.2: Application of greedy algorithm A on H.
The parity bits are computed using Equations 2.6 and 2.7, which can also be written as

shown below in Equations 4.1 and 4.2. The parity bits p, and p,, are obtained by multiplying
information bits, s, with matrices P; and P-.
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p, =4 (ET *A+C)s
=Ps, where P, =¢(ET *A+C). (4.1)
p, =T *(As+Bp,)
=T ' (As+ B¢ (ET *A+C)s)
=T Y(A+Bg*(ET'A+C))s
=P,s,where P, =T *(A+ B¢ *(ET *A+C)). 4.2)
Only the P, and P, matrices are required for encoding LDPC codes. For the computation of the
P and P, matrices, the inverse of ¢ matrix, i.e., (-ET *B + D)™ is used. Therefore the ¢ matrix
has to be non-singular. If ¢ is singular, then the columns of B are swapped with the columns in A
until ¢ matrix is non-singular. This complete process, transforming H to approximate lower
triangular form, Hyre, and obtaining matrices P, and P, is performed in Matlab. While a smaller
gap, g, is suggested as outlined in [22], here it is only necessary that g > m/2. This is because
both P; and P, work independently and concurrently, so making one considerably more compact
than the other does not lead to an encoder which is faster.
Once the P, and P, matrices are defined in Matlab, the next step is to find the best way to
store these matrices on the chip. For doing this, matrices P; and P, are computed using Matlab

for both regular and irregular parity-check matrices of different sizes. The number of one’s in

each matrix is shown in Table 4.1.

Table 4.1: Density (nunber of one's) of H, P; and P, matrices.

H No. of one’s in H No. of one’s in P No. of one’s in P,
Irregular parity-check matrix
252 x 504 2014 15878 15839
504 x 1008 4033 63359 63493
Regular parity-check matrix
256 x512 1536 14638 14456
512 x 1024 3072 52279 56871

From Table 4.1, it can be observed that the matrices P; and P, are not sparse. For example, the
distribution of number of one’s in the rows of a P, matrix for an irregular parity-check matrix of
size 504 x 1008 is shown in Figure 4.3. This indicates that approximately 220-290 one’s are in
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every row vector of P,. While a sparse representation for the P, and P, matrices can be utilized,
it is more efficient to use a dense representation of the matrices due to the dense properties of the

matrices themselves.
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Figure 4.3: Distribution of number of one's in each row of P, matrix for an irregular H of
size 504 x 1008.

4.1.2 Hardware Implementation

The Hardware implementation of the encoder, as shown in Figure 4.4 and Equations 4.1
and 4.2, is to multiply the information bits, s, with matrices P; and P, to obtain parity bits p; and
p2 respectively. The multiplication and addition in binary system can be performed with an AND
gate and an XOR gate respectively. The length of information bits is n-m. The encoder assumes
that the information bits are available and the latency involved in reading the information bits is
not considered. Therefore, a serial input interface is used to read the information bits and it
requires n-m clock cycles. The information bits are read using a faster clock Clks and the
encoding is done using a slower clock, Clk.

Matrices P; and P, are stored on logic elements in arrays so that the data can be retrieved
simultaneously for all rows. This will help to reduce the latency involved if the matrices are
stored in the onboard RAM. To maximize the parallelism, matrix-vector multiplication is

performed by a multiple vector-vector multiplications (inner product) in parallel. Each vector-
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vector multiplication can be performed in two ways. The first method, multi clocked inner
product (MCIP), requires m clocks to compute one inner product while the second method,
single clocked inner product (SCIP), computes the inner product in a single clock.

S

n-m

7>
Generic i

Clk, > encoder ¢

Clke D>

Figure 4.4: Complete system of the generic encoder.

4.1.2.1 Multi Clocked Inner Product

In this method the inner product of vectors In; and In,, each of length m, is performed
one bit at a time as illustrated in Figure 4.5. Bit-wise multiplication is performed on each clock
cycle with a single AND gate, and a running single-bit sum, Out, of the products is achieved
using a single XOR gate. If vectors In; and In; are stored in m-bit shift registers, then this method
requires m clock periods to calculate their inner product. Multiple instantiations of this inner
product module may be implemented in parallel on all the arrays of matrices P; and P, to obtain
the parity bits p; and p,. Therefore, the coded data rate is determined by the minimum period of
the shift register clock, Clk.

In; [m-1 o0 o0 0

MUX
' D

| Q Out

Clky ——>

In; Im-1 o0 o0 0

Figure 4.5: Circuit for multi clocked inner product (MCIP).
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4.1.2.2 Single Clock Inner Product

This method is similar to the multi clocked inner product except that the inner product is
done in a single clock cycle. The illustration of this method is shown in Figure 4.6. In a single
clock, as shown in Figure 4.6, all pairs of bits from vectors In; and In, are ANDed and the output
of each AND gate is XORed to obtain the inner product, Out. This procedure may also be
performed in parallel on all arrays of matrices P, and P,. The coded data rate of this method is
determined by the maximum propagation delay from any bit in In; and In, to the output, Out.
This delay will set the minimum period of the encoder clock, Clk.

Iny|m-1 o o o 0

° ° ° Out
[} [ ] [ ]
In,| m-1 o o 0

Figure 4.6: Circuit for single clocked inner product (SCIP).

After obtaining the parity bits p; and p, using either of the above methods, the
information and parity bits are rearranged to obtain the final codeword with respect to the actual
parity-check matrix, H. The number of clock cycles required for a codeword using the multi
clocked inner product (MCIP) method is equal to m + 1 where the m clock cycles are required to
compute the inner product and the additional clock is required to rearrange the codeword bits.
When single clocked inner product (SCIP) is used the number of clock cycles required for
codeword is two where the inner product is obtained in one clock cycle and the codeword bits

are rearranged in the second clock cycle.

4.2 Results

As described in section 3.3, Verilog modules for these encoder designs are generated
using a Matlab script. The Verilog modules are then synthesized using Quartus and implemented
on a Stratix EP1S80F1508C5 FPGA. A computer is used to send the information bits to the
FPGA and to read each resulting codeword from the encoder. For verification, the hardware
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encoder output is then compared to the corresponding codeword generated by Matlab. A
comparison of the performance of both design strategies was achieved by implementing each
version for different types and sizes of rate 1/2 parity-check matrices. As discussed previously,
preprocessing was performed on each H using Matlab. This is not a major concern because this
step is performed only once for a given parity-check matrix. The actual hardware encoder results
are shown in Tables 4.2 and 4.3. The maximum clock speed shown is that of the encoder clock,
Clke. The coded data rate and latency calculations are based on the internal encoder design and
not on any special 1/0O limitations.

Table 4.2: Synthesis results of encoder implementation using MCIP on Stratix

EP1S80F1508CS5.
Encoder implementation using MCIP
H , Clk Coded data rate | Latenc
LE'S T CPC (MHz) | (Mbps) i
Reg 128 x 256 2014 129 | 76.65 152.12 1.683
Reg 256 x 512 6580 257 | 60.73 120.98 4.232
Reg 512 x 1024 | 22978 | 513 | 46.02 91.86 11.147
Irreg 252 x 504 7485 253 | 69.73 138.9 3.628
Irreg 504 x 1008 | 28459 | 505 | 51.57 102.94 9.793

Table 4.3: Synthesis results of encoder implementation using SCIP on Startix

EP1S80F1508C5.
Encoder implementation using SCIP
H LE’s CPC ( I\(zﬁ; ) Cod(zg glg’g rate Laétﬁgcy
Reg 128 x 256 1143 2 31949 40.9 6.26
Reg 256 x 512 3508 2 262.4 67.18 7.62
Reg 512 x 1024 | 12664 2 | 318.47 163.06 6.28
Irreg 252 x 504 5450 2 |23855 60.12 8.38
Irreg 504 x 1008 | 22249 2 | 316.56 159.54 6.32
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The encoder implementation using both methods MCIP and SCIP assumes that all input
data bits are available for encoding, so any serialization delay factor is not included in the results
shown in Tables 4.2 and 4.3. The important observation here is that using a SCIP encoder has a
huge advantage in terms of data rate and latency over the MCIP encoder. This is somewhat
expected for the defined architecture of each system. Another interesting observation is the
difference in area for each design. One would normally expect the MCIP to require fewer LEs,
but the converse is actually true. This is due to the implementation of huge multiplexer’s
required by MCIP in the FPGA. May be SCIP encoder required fewer LEs than MCIP encoder
due to the statically defined P; and P, matrices. It is observed that increasing the code length
decreases the clock speed. Also an irregular LDPC code takes considerably more area than a
regular LDPC code. Again this can be attributed to a difference in potential optimization for the
two different codes as they are defined in Py and P..

If one wants to consider both encoders under a serial input stream then an input shift-
register needs to be added to both the MCIP and SCIP encoders. The latency in reading the
information bits is m/Clks. Let the encoding clock frequency be Clke, which is equal to the
maximum clock frequency of the synthesized designs shown in Tables 4.2 and 4.3. The latency
of the complete system, shown in Figure 4.4, is the maximum value of [m/Clks, CPC/CIke],
which becomes CPC/Clk. for MCIP encoder and m/Clks for SCIP encoder. Therefore the coded
data rate is equal to mxClk, /(CPCxcode rate) for MCIP encoder and Clk¢/(code rate) for SCIP
encoder. The synthesis results of the complete generic encoder system using MCIP and SCIP are
shown in Table 4.4. It can be observed from Tables 4.2 and 4.4 that the MCIP encoder coded
data rate is not affected by I/O serialization. However, coded data rate of the complete encoder
system using SCIP becomes limited by the speed of the shift register, which in this case is
422.12 MHz.

The coded data rate decreases with the increase in the size of the parity-check matrix for
the MCIP encoder whereas it is independent of the size of the parity-check matrix for the SCIP
encoder. This encoding process is not restricted by the properties of the original H matrix, and it
is also completely flexible with respect to code length and code rate. Hence it can encode any
LDPC codes. Although the implementation is based on H matrices that are binary, it can be
extended to matrices that belong to higher order fields. All of the designs presented can fit on

FPGASs currently available.
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Table 4.4: Synthesis results of complete encoder system using MCIP and SCIP
implemented on Stratix EP1S80F1508C5.

Complete system of Complete system of
’ MCIP encoder SCIP encoder

Latency | Coded datarate | Latency | Coded data rate
(Hs) (Mbps) (Ms) (Mbps)
Regular 128 x 256 1.683 152.12 0.303 844.24
Regular 256 x 512 4.232 120.98 0.606 844.24
Regular 512 x 1024 11.147 91.86 1.213 844.24
Irregular 252 x 504 3.628 138.9 0.597 844.24
Irregular 504 x 1008 9.793 102.94 1.194 844.24

Both of the implementations presented here provide a significant increase in coded data
rate compared to the design presented in [29]. Lee in [29] implemented an encoder on a Xilinx
Virtex-11 XC2V4000-6 using Richardson and Urbanke’s encoding algorithm. Table 4.5 shows
the implementation results for various encoders presented in [29] with code lengths ranging from
500 to 8000 bits for rate 1/2. In order to compare the results of the encoder presented in [29] to
our design [67], the slices (smallest unit of logic in Xilinx) required by the design in [29] need to
be converted to logic elements. Xilinx Virtex-11 XC2V4000 FPGA has 23040 slices [68] and its
equivalent Stratix logic elements are 57600 [69]. Therefore, 1 slice of Xilinx is approximately
equal to 2.5 logic elements. The number of approximate logic elements required by the encoder
presented in [29] is also included in Table 4.5.

Table 4.5: Synthesis results of LDPC encoder designed by Lee [29].

H Coded data rate Slices Equivalent
(Mbps) LEs
250 x 500 50 562 1405
500 x 1000 48 682 1705
1000 x 2000 45 870 2175
2000 x 4000 40 1340 3350
4000 x 8000 34 2148 5370
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In order to maximize the coded data rate, the design presented in [29] uses multiple
instances of the encoder, which is not required in our design [67]. In [29], for code length of
2000 and code rate 1/2, it is shown that by using 16 encoder instances instead of one encoder
instance the coded data rate is increased from 45 Mbps to 410 Mbps which requires 16906 slices.
In this case, the equivalent logic elements are 42265. To get a higher data rate, the design
presented in [29] also requires large area for its implementation.

From Tables 4.4 and 4.5, it can be observed that for code lengths of 500 and 1000, the
coded data rate of our designs is greater than the design presented in [29]. The coded data rate of
the encoder implemented using MCIP method is greater than or equal to twice the coded data
rate of the design in [29]. The encoder implemented using the SCIP method has a very high
coded data rate approximately 17 times the coded data rate of the design presented in [29].
Although the required area for our design is significantly larger, its use in high-speed

applications would not require the parallelization that other designs propose.
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CHAPTER 5 - Encoder Design for Structured Low-Density Parity-
Check Codes

In the previous chapter, a LDPC encoder for randomly generated LDPC codes was
presented. Due to the randomness in the LDPC codes, the encoder implementation requires large
area. The use of structured LDPC codes decreases the encoding complexity and also provides
design flexibility.

In this chapter, the encoder design and its hardware implementation for structured LDPC
codes are described.

e An encoder architecture is presented that adheres to the structured LDPC codes defined
in the IEEE 802.16e standard. The encoder supports codes with rates 1/2, 2/3, 3/4 and 5/6
and code lengths ranging from 576-2304.

e The coded data rate is equal to 844, 633, 562 and 506 Mbps for code rates 1/2, 2/3, 3/4
and 5/6 respectively. For a given code rate, the coded data rate is constant for varying
code lengths.

e The design methodology is flexible in terms of both the code rate and code length. Hence

the design can also be used for similar structured LDPC codes defined in other standards.

5.1 Structured LDPC Codes

The parity-check matrices defined in the IEEE 802.16e standard are used for the encoder
implementation. Standard IEEE 802.16e¢ defines LDPC codes as a set of one or more
fundamental LDPC codes. Each of the fundamental codes support code lengths from 576 to 2304
with code rates of 1/2, 2/3 A, 2/3 B, 3/4 A, 3/4 B and 5/6. The parity-check matrix, H, is of size
m x n, where m is the number of parity-check bits in the code and n is the length of the code. The
parity-check matrix H is expanded from a base parity-check matrix, Hy. The size of Hy, is m, % ny
where m, = m/z, n, = n/z = 24 and z is an integer greater than zero. The value of m, varies with
code rate of the LDPC codes. Its value is equal to 12, 8, 6 and 4 for code rates of 1/2, 2/3, 3/4
and 5/6. A parity-check matrix is obtained by replacing each -1 in Hy with a z < z zero matrix,
each 0 with a z x z identity matrix, and any element greater than zero with a z x z permutation
matrix. The permutation matrix is an identity matrix that has been circularly right shifted by the

associated value specified in Hy,.
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Hp, and can be partitioned into two matrices, Hp; and Hp,. Matrix Hp; has size m, % ky and
corresponds to the systematic bits with k, = n, — my,. Matrix Hp, has size m, x m, and
corresponds to the parity check bits.

Hb :[Hbl Hbz] (5.1)
Hy. can further be partitioned into Hpza and Hyop as shown Equation 5.2. Column vector Hyp, has
odd weight, and it has 3 elements whose value is greater than or equal to zero. All other values in
the vector are equal to -1. The top and bottom elements of Hy, are assigned equal shift sizes
(hp(0) = hy(mp-1)), and the third element, is located anywhere in the middle of the vector. Matrix
Hpap has a dual diagonal structure with each matrix element at row i, column j equal to O for i =

andi=j+ 1and -1 elsewhere.

Hb2 :[HbzaE Hbe]

h,(0) 0
: -1
. 0 0
| hy() .
. 0 0 (5-2)
. -1 0
_hb(mb -1) O_

An example of the Hp; and Hp, matrices for code rate 2/3 B give values of h, and are
shown in Equations 5.3 and 5.4 respectively. In this case, my is 8, n, is 24 and k, = n, — m, = 16.
Unlike the efficient encoding method where the parity-check matrix is transformed into lower
triangular form, here the base parity-check matrix need not be transformed into lower triangular

form because of the dual diagonal structure of Hy,.

(5.3)




(95 0 -1 -1 -1 -1 -1 -1]
-1 0 0 -1 -1 -1 -1 -1
-1 -1 0 0 -1 -1 -1 -1 (5.4)
1 -1-10 0 -1 -1 -1
-1 -1-1-10 0 -1 -1
-1 -1-1-1-10 0 -1

b2 —

% -1 -1 -1 -1-1-120

5.2 Design Methodology

Using structured LDPC codes considerably simplifies the encoder and makes the design
straightforward compared to other encoders. A modified version of the generic encoding method
described in 2.1.1 is used for hardware implementation of structured LDPC codes. Encoding of

LDPC codes also uses the property H,x" =0", where x and Hy, is the base parity-check matrix.

S
Codeword x may be split into the information bits, S, and parity bits, p, i.e., X' :{p} The size

of Sisk, x 1 and the size of pism, % 1, so

H,x" =0"
S T
becomes [Hy, Hy]| [=0".
P (5.5)
Expanding and solving for p one finds
HblS+Hb2p:0 (56)
p=Hy HyS. (5.7)

Matrix Hy, ' is no longer sparse when compared to Hy,. Therefore, direct implementation of
Equation 5.7 has high encoding complexity. However, the parity bits are easily solved by
exploiting the dual diagonal structure of the Hp, matrix, which is explained in subsection 5.3.2.
Let the product of matrices Hy; and S be denoted by V. Therefore, for modulo 2 operations,
Equation 5.6 can also be written as
H,p=H,S=V. (5.8)
The parity bits, p are obtained by solving
H,p=V. (5.9)

43



5.3 Hardware Implementation

The encoder implementation is performed in two steps. First step, the product of matrices
Hp: and information bits, S, is computed and is denoted by V. In the second step, the parity bits,
p, are computed by solving Equation 5.9. As will be explained in section 5.3, computation of V
and p each require a time period of t. Therefore the encoding process is done in a period of 2t as
shown in Figure 5.1. To reduce the time period required for the encoding process to half of its
time period, the two steps required for the computation of V and p can be performed in a pipeline
fashion as shown in Figure 5.2. First, V is computed for the first set of information bits. Then the
parity bits, p, are computed. During the computation of p for the first set of information bits, V is
computed for the second set of information bits simultaneously. This pipeline implementation of
the encoder increases the encoding data rate by decreasing the time required for the encoding

process.

Computation of V
for the first set of
information bits

Computation of p
for the first set of
information bits

Figure 5.1: Encoding process.

Computation of V
for the first set of
information bits

Computation of V
for the second set of
information bits

Computation of p
for the first set of
information bits

Computation of p
for the second set of
information bits

Figure 5.2: Overview of encoding process.

5.3.1 Computation of V

The first step in the encoder implementation is the computation of V, the product of
matrix Hp; and vector S. This can be obtained by vector-vector multiplication of each row in Hp;
with the column vector S. To maximize the efficiency, vector-vector multiplication is performed

in parallel.

44



5.3.1.1 Vector-Vector Multiplication
The matrix Hp; is a sparse matrix with each element representing a zero matrix, identity
matrix, or permutation matrix of size z x z. The inner product, v;, an element of the vector V, is

obtained by multiplying the ith row in Hy; with S as shown

S0
S1
Vi = [hbl(i,o) hbl(i,l) hbl(i,kb—l)] : (5.10)
Sky-1
=Nyyi.0)S0 + Nory S+ + Mg 1S
k,—1
= Zep“j) (5.11)
j=0
0 if hy, ) =1
where i) = oo S5 =18 If gy =0, (5.12)

s (hy) if Ny ;) =N,

The product of hyygj), an element in Hy1, with s;, a vector in S, is denoted by ey j). It is defined as
shown in Equation 5.12, where s;j(hy) is the circular right shifted version of the vector s; and the
circular right shift value is defined by hyyij). An additional clock cycle is required to add all the
elements of e, to obtain v. In modulo 2, v is obtained by performing an XOR operation on all the

elements of e,

5.3.1.2 Computation of e,

Vector e, is defined as the product of the z x z matrix hy; and a z x 1 vector s as shown in
Equation 5.11. Each s;j(hp) is obtained by circular right shifting the vector s; by a particular shift
value, hp, defined by hyj) . If the value of hy is greater than z/2, then a circular right shift is
performed on s; and the number of shifts required to obtain the corresponding ey j) is equal to hy
— z[2. If the value of hy is less than z/2, then a circular left shift is performed on s; and the
number of shifts required to obtain corresponding ey is equal to hy. If a shift is performed on

each clock cycle, then the computation of e, requires z/2 clock cycles.
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5.3.2 Computation of Parity Bits
The second step in the encoding process includes the computation of parity bits. Equation

5.9 can be rewritten as shown in Equation 5.13. Solving, we get h,(0)p, + P, =V,, P, + P, =V;,
s M (D) P+ P+ Py =V - (M=) p, + P, 4 =V, ;. Adding all of these equations
results in p, =v, +Vv, +---+V, . po can be computed in a single clock cycle by XORing all the

elements of v. Once p, is obtained, the remaining parity bits can be computed by using the

following expressions: p, =v, +h,(0)p,, p, =V, + p, etc., where h,(0)p, is now the shifted
version of pp whose shift value is defined by h,(0). The h,(0)p, is computed using the method
described in above subsection 5.3.1.2. This procedure would require z/2 clock cycles. Once p,
and ¢, p, are obtained, they can be used to compute the values of the remaining parity bits.

This step can be performed in a single clock period.

h,(0) 0 e ] [ Vol
00 -1 [N A
: 0 O : :
hy (J) . =L (5.13)
0 O
: -1 0 :
_hb (mb _1) JL pmb—l_ _Vmb—lj

5.4 Results

Verilog modules are again generated using a Matlab script as explained in section 3.3. A
hardware implementation was performed on an Altera Stratix EP1S80F1508C5 FPGA using
Quartus Il for synthesis. The synthesis results for different code lengths and code rates are shown
in Table 5.1. In Table 5.1, variable z, represents the size of the sub-matrix in the base matrix, Hy,
and is equal to n/24. Column LE denotes the number of logic elements required for the
implementation of the encoder on the FPGA, while CPC represents the number of clock cycles
required per codeword for encoding. CPC is equal to the maximum number of clock cycles
required for computation of V and p. The computation of V requires z/2 + 3 clock cycles in which
z2/2 clock cycles are required to compute e,, and three clock cycles are required for loading and

processing the data and computing V. Computation of p requires z/2 + 3 clock cycles, in which
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one clock cycle is used for computing po, z/2 clock cycles are required to compute h, (0) p,, and

the remaining two clock cycles are required for loading the data and computing the remaining
parity bits. Hence this method requires z/2 + 3 clock cycles. Clke in Table 5.1 represents the
encoder clock. From Table 5.1, it is observed that increasing the code length increases LEs and
CPC. Synthesis results of LEs required for different code lengths and code rates is shown in
Figure 5.3. The coded data rate is equal to m x Clk, /(CPC x code rate).

Table 5.1: Synthesis results of structured encoder using LDPC codes defined in 802.16e.

Code rate 1/2 Code rate 2/3
Coded Coded
. z LE (I\C/I: Iliez) data rate LE (I\C/I: II£|(82) data rate
(Gbps) (Gbps)
576 | 24| 3391 | 192.23 7.38 4039 | 176.71 6.78
960 | 40 | 5100 | 159.57 6.66 6056 | 169.2 7.07
1440 | 60 | 7012 | 164.83 7.2 8080 | 158.25 6.9
1920 | 80 | 8924 | 148.72 6.64 10408 | 153.73 6.87
2304 | 96 | 10339 | 148.41 6.70 12008 | 141.02 6.38
Code rate 3/4 Code rate 5/6
Coded Coded
n |CPC LE (ﬁ ﬁ;) data rate LE (I\allﬁez) data rate
(Gbps) (Gbps)
576 15 4421 | 189.07 7.27 4295 | 193.23 7.54
960 | 23 | 6593 | 170.88 7.13 6400 | 174.52 7.28
1440 | 33 | 8749 | 165.73 7.23 8472 | 161.47 7.04
1920 | 43 | 11063 | 152.18 6.8 10704 | 147.43 6.59
2304 | 51 | 12727 | 152.65 6.89 12306 | 150.69 6.8

For any code rate and code length the coded data rate varies from 6.3 to 7.5 Gbps. These
calculations are based on the internal encoder design and not on any special I/O limitations. The
encoder implementation assumes that all input data bits are available for encoding, so 1/0
serialization factors are not included in the results. In order to consider the encoder

implementation under 1/O serialization, a shift register needs to be added as shown in Figure 5.4.
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The data rate thus becomes limited by the speed at which the shift register can run, Clks, which is
422.12 MHz.

13000

12000 - —#*— Code Rate 1/2
—©— Code Rate 2/3
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—8— Code Rate 5/6
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Figure 5.3: Logic elements vs. code lengths for different code rates.
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Figure 5.4: Complete structured encoder system.

The latency of the encoder considering I/O serialization is the maximum of [m/Clks,
CPC/CIke] which is m/Clks. The coded data rate of the encoder considering 1/O serialization is
equal to Clks/(code rate). Thus, the coded data rate value is constant for different code lengths.
The coded data rate is equal to 844, 633, 562 and 506 Mbps for code rates 1/2, 2/3, 3/4 and 5/6
respectively. The design methodology of our proposed encoder accommodates different code
lengths and code rates. The encoder design presented can easily fit on FPGA’s and has a
significant high information data rates. This value is significantly high when compared to the
coded data rate of the encoders presented in [32] and [33].
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In [32], an encoder is implemented on a reconfigurable instruction cell architecture which
is an ultra low power, high performance, ANSI-C programmable embedded core. The encoder is
implemented using Richardson and Urbanke’s algorithm and LDPC codes defined in IEEE
802.16e. The encoder data rate achieved without pipelining is in the range from 10 to 19 Mbps
while with pipelining it is in the range from 26 to 47 Mbps. The encoder data rate can be
increased to 78 Mbps by using multiple cores.

In [33], an LDPC encoder is implemented based on Richardson and Urbanke’s method
using LDPC codes defined in IEEE 802.16e and IEEE 802.11n. Their method is based on a
semi-parallel architecture using cyclic right shift registers and XORs. The information data rate,
which is equal to the product of coded data rate and code rate, is computed for different code
lengths and is shown in Table 5.2. The LEs required for the implementation of our proposed
structured encoder [67] and the encoder in [33] is also shown in Table 5.2. The coded data rate of
1/2 rate LDPC codes defined in IEEE 802.16e with 1/O serialization of our proposed structured

encoder compared with the encoder in [33] is shown in Table 5.3.

Table 5.2: Comparison of information data rate without 1/O serialization of our proposed

structured encoder with the encoder presented by Kim [33].

Information
Code length Encoder design data rate LE
(Gbps)
[33] 1.55 1265
576 Our proposed
structured encoder [67] 3.69 3391
[33] 1.41 2078
960 Our proposed
structured encoder [67] 3.33 5100
[33] 1.41 2835
1440 Our proposed
structured encoder [67] 3.6 7012
[33] 1.26 3657
1920 Our proposed
structured encoder [67] 3.32 8924
[33] 1.25 4305
2304 Our proposed
structured encoder [67] 3.35 10339
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From Tables 4.5, 5.2 and 5.3, our proposed structured encoder has highest data rate when
compared with the encoders presented in [29], [32] and [33] but requires more area when
compared to encoders presented in [29] and [33]. With the increase in the length of the
codeword, the coded data rate of our proposed design is constant and is equal to 844 Mbps for
code rate 1/2 whereas the codeword data rate of encoder presented in [33] decreases as shown in
Table 5.3.

Table 5.3: Comparison of coded data rate with 1/O serialization of our proposed structured
encoder with the encoder presented by Kim [33].

Code lenath Our proposed structured encoder Reference [33]
) coded data rate (Mbps) coded data rate (Mbps)
768 844 462
1536 844 416
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CHAPTER 6 - Flexible Multi-Code Rate and Multi-Code Length
Encoder for Structured Low-Density Parity-Check Codes

Design methodologies presented in chapters 4 and 5 can be used for different code rates
and code lengths. However, the design has to be re-synthesized in order to change the code rate
or code length of the LDPC codes. In this chapter, the design of a flexible encoder for structured
LDPC codes is presented. The design methodology and the implementation results are provided.
The key contributions of the flexible multi-code rate and multi-code length encoder for
structured LDPC codes are presented below:

e A single flexible encoder that accommodates multiple code lengths and code rates of
structured LDPC codes defined in IEEE 802.16e standard is designed which does not
require re-synthesis of the Verilog code in order to change the encoder parameters (code
length and code rate).

e The flexible encoder for structured LDPC codes is implemented on both an FPGA and
ASIC.

e The coded data rate of the synthesized encoder is 844, 633, 562 and 506 Mbps for code
rates 1/2, 2/3, 3/4 and 5/6 respectively. For a given code rate, the coded data rate is
constant for varying code lengths.

e The same design methodology with minor modifications can be used for other LDPC

codes with structure similar to those specified in IEEE 802.16.

6.1 Design Methodology

The encoder implementation is similar to that explained in chapter 5 except that the
parity-check matrices for all different code rates have to be stored on chip in order to design a
flexible encoder. In this method, a flexible encoder is developed using structured LDPC codes
defined in the IEEE 802.16e standard. Depending on the desired code rate and code length the
corresponding parity-check matrix is computed on chip from its base parity-check matrix and is
stored on chip which is used for the encoding process. This design methodology accommodates
the code rates 1/2, 2/3, 3/4 and 5/6 and code lengths ranging from 576-2304 bits.

The encoder implementation is performed in four steps as shown in Figure 6.1. It is

assumed that the user specifies the desired code rate and code length. In the first step, H is
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computed from its corresponding Hp, and is stored on the chip temporarily for the encoding
process until code length or code rate of the LDPC codes is changed. In the second step, the
inner product, e,, of the elements of Hy; and S are computed. In the third step, V is calculated
which is the product of matrices Hp; and S. Parity bits are computed from V by solving Equation
5.13 in the final step.

Computation Computation Computation
> L — C
S of e, of V — of p
H

Figure 6.1: Overview of the encoding process.

6.2 Hardware Implementation

Hardware implementation of each of the blocks shown in Figure 6.1 is presented in this

section.

6.2.1 Storing Base Parity-Check Matrices for Different Rates of LDPC Codes

In the IEEE 802.16e standard, there are a total of six different base parity-check matrices
corresponding to the six different code rates: 1/2, 2/3 A, 2/3 B, 3/4 A, 3/4 B and 5/6. All six Hy’s
are stored on chip to design a flexible encoder accommodating all different code rates. In
general, the base parity-check matrices are sparse in nature. As described in section 5.1, Hy can
be split into two matrices Hp; and Hy,. Because of the sparse nature of Hpz, only the non-negative
elements are stored on the chip instead of all the elements in the matrix. In the encoding process,
the V matrix is computed to obtain the parity bits. V is obtained by vector-vector multiplication
of each row or column in Hy; with the column vector S. The inner product, e,, of the elements of
Hp1, and S is obtained by circularly right shifting a block of S, vector s, by a particular shift value
determined by hyi, So a shift register is needed to compute e,. More details of the encoding
process are presented in the next subsection. First, the best method to store Hy for efficient
encoding is explored.

To maximize the efficiency, vector-vector multiplication is performed in parallel. V can
be obtained using two methods as shown in Figure 6.2. In Method I, row parallelization, as

shown in Figure 6.2 (a), vector-vector multiplication can be performed on each row, R, of Hy;
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and vector S to obtain an element in V. This process can be performed in parallel on all rows of
Hp: simultaneously to obtain all the elements of V. In Method II, column parallelization, as
shown in Figure 6.2 (b), bitwise multiplication is performed on each column, C, of Hy; with a
block of S, vector s of size z x 1, in parallel and then all the product vectors are added to obtain
V. All the base parity-check matrices for different code rates are evaluated to determine the best

method for the implementation of vector-vector multiplication.
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Figure 6.2: Computation of V using (a) row parallelization method and (b) column
parallelization method.

In the base parity-check matrices for all different code rates there are a maximum of 6
and 18 non-negative elements in each column and row respectively. Computation of V using row
parallelization method would require 18 instantiations of a shift register whereas using column
parallelization method would require only 6 instantiations of a shift register. Computation of V
by using the row parallelization method would require the entire vector S, while only a block of S

of size z x 1 is required when column parallelization method is used. Implementation of the
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column parallelization method would require less area than the row parallelization method while
the latency involved in reading the information bits is also decreased. Hence for computation of
V, the column parallelization method is chosen.

To design an LDPC encoder that is flexible with code rate, six base matrices of Hpy;
corresponding to code rates 1/2, 2/3 A, 2/3 B, 3/4 A, 3/4 B and 5/6 need to be stored on the chip.
To store each Hp; using sparse representation, six non-negative elements per column of Hy; are
required. The information needed to store an element is its location (i.e. row number) and its
value. The maximum value of an element in Hp; is 95 which require 7 bits for representation.
Matrix Hp; for code rates 1/2, 2/3, 3/4 and 5/6 has 12, 8, 6 and 4 rows respectively, which require
4 bits for its representation of a maximum value 12. Therefore, a total of 11 bits are used to
represent an element in Hp;.

Each column of Hy; is stored in an array. The values are stored in registers instead of
RAM modules available on an FPGA so that the same design can be implemented on an ASIC
without any modification. Each element in this array represents the concatenation of all the non-
negative elements in each column of Hy;. As mentioned above, there are a maximum of 6 non-
negative elements in each column of H and each element in H requires 11 bits for its
representation. Therefore the size of an element in the Hy; array is 66 bits. As an example, to
store Hy; of code rate 2/3 B requires: non-negative elements in the first column of Hy, located at
row locations 1, 3, 5 and 7, and their corresponding values are 2, 10, 23 and 32 respectively. This
can be denoted as (1, 2), (3, 10), (5, 23) and (7, 32). Six elements are stored per column. If any
column has non-negative elements less than 6 then the remaining elements are denoted as (0,
127). The size of the Hy; array is equal to the number of columns in Hy,. For code rates 1/2, 2/3,
3/4 and 5/6 the size of the Hy; array is 12, 16, 18 and 20 respectively. For example, the size of
Hp:1 with code rate 2/3 is 16 x 1 where an element in Hp; is 66-bits long.

The Hp, matrix for all different code rates has the same pattern except for the location of
non-negative elements in its first column. The first column in Hy, has 3 non-negative elements.
Two of these non-negative elements are located on the top and bottom of the first column and are
assigned equal shift values. The third non-negative element is located anywhere in the middle of
the column. Also one of the non-negative element’s shift value is equal to zero. For the encoding
process, a non-negative element with shift value greater than zero is only needed from the first

column of Hp,. Therefore, one non-negative element’s shift value and its location are stored
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instead of the entire first column. For all possible code rates and code lengths its corresponding

scaling value is computed and is stored in a look up table.

6.2.2. Parity-Check Matrix

The base parity-check matrix is defined for the largest code length (n = 2304) for each
code rate. The set of shift values, hy ), in the Hy are used to determine the shift sizes, hyj, of H
for varying code lengths of the same code rate. Each H, has n, columns equal to 24, and the
expansion factor z; is equal to n/24 for code length n. For example, code length n equal to 2304
has the expansion factor z; of 96. For code rates 1/2, 2/3 B, 3/4 A, 3/4 B, and 5/6, the shift sizes,
hyj), of H for a code length corresponding to expansion factor z: are derived from hygj by
scaling hy jy proportionally as
<0

Noiys Moy <
ha.jy = {hb(i,nzf g >0 (6.1)
Z, '
where [ w] denotes the floor of w and zo = 96. For the code rate 2/3 A, the shift sizes, hy ), of H
for a code length corresponding to expansion factor z; is defined using the modulo function
No s Ny <0
h) = b(i,i)* 'b(i,J) _ (6.2)
. mod(hy; ), Z¢ ), hyj) >0

For any given code rate and code length, the parity-check matrix needs to be computed

only once. All six Hyp; matrices are stored on the chip as shown in Figure 6.3.

Base matrices
for all code rates

| Rate 112 Hy | Required H
66, Hp
3 Rate 2/3 AH / ) ) 66
slzﬁ:it — > 7—, | Implementation| |-/ H
| Rate 2/3B Hj | 7” of Equations
! 6.1and 6.2
| Rate 3/4 A Hj |

| Rate 3/4 B Hy |
| Rate5/6 Hy |

Length select

Figure 6.3: Storing base parity-check matrices, Hy, for different code rates.
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Based on the desired code rate and code length, the rate select and length select inputs are
chosen. Rate select values for different code rates are shown in Table 6.1. The length select input
is equal to n/24 where n is the code length and length select values for varying code lengths are
shown in Table 6.2.

Table 6.1: Rate select values for different code rates.

Code rate | Rate select
1/2 001
213 A 010
2/3B 011
3/4 A 100
3/4B 101
5/6 110

Table 6.2: Length select values for different code lengths.

Code length | Length select
576 0011000
672 0011100
768 0100000
864 0100100
960 0101000
1056 0101100
1152 0110000
1248 0110100
1344 0111000
1440 0111100
1536 1000000
1632 1000100
1728 1001000
1824 1001100
1920 1010000
2016 1010100
2112 1011000
2208 1011100
2304 1100000
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The required H is computed from its corresponding Hy using Equations 6.1 and 6.2 as shown in
Figure 6.3. Equations 6.1 and 6.2 are implemented using simple multiplication and division

modules.

6.2.2.1 Multiplication
The multiplication of two unsigned binary integers, In; and In,, each of length 7 bits
creates a product, Out, of length 14 bits. The finite state machine of the multiplication module is

shown in Figure 6.4.

reset

S1

templ = 14°b0,
temp2 = Iny,
Out = 14°b0,
ct=4’b0

S2

if Iny[ct] =0
templ = templ
else
templ = templ + temp2
end
temp2 = temp2 << 1,
ct=ct+1

Figure 6.4: Finite state machine for the multiplication module.

The multiplication process is controlled by the input, start, as shown in Figure 6.4. If the
input, start is 0 then the machine stays in state S1 where all the values used in the multiplication
process are initialized. When start is equal to 1, the multiplication process begins by loading the
inputs Iny, multiplicand, and In,, multiplier. The variable temp2 is assigned the value of the
multiplicand, In;, and counter ct is initialized to zero and then the state machine is moved to state

S2. In state S2, the multiplier bit located at ct is obtained. If Iny[ct] value is 1 then the variable
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templ is added to temp2 and the sum is assigned to templ otherwise templ remains the same.
The ct is incremented by 1 and temp2 is shifted left by one bit. If the value of ct is less than 7
then the state machine remains in the same state S2. Otherwise, it is moved to state S3. In state
S3, the product, Out, is assigned the value of temp1l and the multiplication process is stopped.
The hardware block diagram of the multiplication module is shown below in Figure 6.5.

Multiplicand
0 Ing

IR

et Shift Left
A ct=ct+1
| .
[ 2
14 9
) 4 14 ot
v . .
\& 0 £ Multiplier
Ino[ct]
141,

Inner product
1P 14’ ”
v
[ .
Register C
G——
Clk 14
reset

Out

Figure 6.5: Hardware block diagram for the multiplication module.
First step is to initialize all the values. Since the product is 14-bit long, the most significant bits
of the multiplicand, In;, are assigned 7 zeros. For every clock cycle, the multiplicand, Ing, is
shifted left by one bit and the counter ct is incremented by 1. The multiplier, Iny, bit located at ct

controls the multiplexer output. The multiplexer output is assigned the output of shift register A
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or 14-bit zeros when the Iny[ct] is equal to 1 or O respectively. The inner product, IP, is obtained
by adding the multiplexer output and the product, Out, of the register C. This multiplication
module requires 7 clock cycles to obtain the final product, Out.

6.2.2.2 Division
The division of two unsigned binary integers, In; and In,, each of length 14 bits creates a
quotient, Q, and remainder, R, each of length 14 bits. The finite state machine of the division

module is shown in Figure 6.6 and its hardware block diagram is shown in Figure 6.7.

reset

s1
temp =
{14°00, In},
Q= 14’b0,
R = 14°b0,
ct=4d13

S2

R = temp[27:14]

ifR> In,
Qlct] = 1°bl
R=R-1In,

temp[27:14] =R
else

Qlct]=1"b0
end
temp =temp <<1

ct=ct-1

Figure 6.6: Finite state machine for the division module.
The division process is controlled by the input, start, as shown in Figure 6.6. If the start
input is 0 then the machine stays in state S1 where all the values used in the division process are
initialized. When start is equal to 1, the division process begins by loading the inputs Iny,

dividend, and In,, divisor. The variable temp is assigned a value equal to the concatenation of
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Figure 6.7: Hardware block diagram for the division module.
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14-bit zeros and In;. The counter ct is assigned a value equal to 13 and the state machine is
moved to the state S2. In state S2, R is assigned a value equal to temp[27:14]. If R is greater than
or equal to In, then the Q bit located at ct is assigned a value of 1 and R is assigned a new value

equal to R-In,. The temp[27:14] bits are reset with the updated value of R. If R is less than In,,



then the Q bit located at ct is assigned a value of 0. The variable temp is shifted left by one bit
and ct is decremented by 1. If the value of ct is greater than or equal to zero then the state
machine remains in the same state S2 otherwise it is moved to state S3. In state S3, the division
process is stopped and the quotient and remainder are obtained.

First step in the hardware block diagram of the division module as shown in Figure 6.7 is
to load inputs dividend, Ins, and divisor, Iny in left shift register A and register B respectively.
Variable ct is assigned a value of 13. For each clock cycle, Iny, is shifted to the left by one bit.
The 14 most significant bits of the left shift register A is equal to the remainder, R, of the
division module. For every clock cycle, R is compared with In,. If R > In, then output of the
comparator, sel, is assigned a value equal to 1. Otherwise, sel is assigned a value of 0. Register
C stores the quotient value where Q[ct] is equal to sel. The output of the multiplexer is assigned
to the 14 most significant input bits of the left shift register A. The output of the multiplexer is
equal to R-In, or A[27:14] when the value of sel is 1 or O respectively. For every clock, counter,
ct, is decremented by one. When ct reaches a value of 0 then the division process is completed.

This module requires 14 clock cycles to produce the quotient, Q, and the remainder, R.

6.2.2.3 Computation of H;

As explained in section 6.2.1, only the elements of Hp; whose values are greater than or
equal to zero are stored on the chip. From Equations 6.1 and 6.2, each element of parity-check
matrix is computed from the base parity-check matrix and is implemented as shown in Figure
6.8. For code rates 1/2, 2/3 B, 3/4 A, 3/4 B and 5/6 the Hy is computed using multiplication and
division modules using Equation 6.1 as shown in Figure 6.8. For a desired code rate the
corresponding base parity-check matrix element, hyyj), is multiplied with the corresponding
expansion factor, z;, and this product is then divided by z, = 96 to obtain the value of the element
in Hy, hygj). The value of the element hyg ) is equal to the quotient of a division module. For code
rate 2/3 A, the modulus function in Equation 6.2 is implemented using a division module as
shown in Figure 6.8. For a desired code rate the corresponding base parity-check matrix element,
ho1g,j), IS divided by the corresponding expansion factor, z;, to obtain the value of the element in
Hi, hygj. The value of the element hyj is equal to the remainder of the division module. Based

on the desired code rate an appropriate select value is chosen as shown in Figure 6.8.
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Figure 6.8: Computation of an element of Hy, hyj), from an element of Hpy, hpgj.

The element of H; obtained using Equations 6.1 and 6.2 is either equal to the quotient, Q,
or the remainder, R, of the division module as shown in Figure 6.8. The quotient and remainder
obtained using the divison module presented in subsection 6.2.2.2 are each of length 14 bits. The
element value in any H; does not exceed 96 and therefore 7 bits are sufficient to represent its
value. Therefore, 7 least significant bits of the quotient and remainder are sufficient and are only
used for the computation of the elements of H;.

There are 6 non-negative elements in each column of Hy; as explained in subsection
6.2.1. Therefore 6 instantiations of the design that computes an element of H; as shown in Figure
6.8 are required to compute all the six elements that are located in each column of Hj. In one
clock cycle, elements located in a column of Hy, h;, is computed from corresponding elements in

each column of Hyy, hpy, as shown in Figure 6.9.

6.2.2.4 Latency for the Computation of H

For the computation of a single element in Hy; from its corresponding Hp; requires 23
clock cycles i.e., 8 clock cycles to perform multiplication and 15 clock cycles to perform
division. This is the case for code rates 1/2, 2/3 B, 3/4 A, 3/4 B and 5/6 whereas for code rate 2/3
A computation of an element of Hj requires 15 clock cycles because it only requires the division
operation. The number of clock cycles required for the computation of all the elements in H;
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from Hy; is shown in Table 6.3. The number of elements in Hy; array is equal to the number of
columns of Hp;. For code rates 1/2, 2/3, 3/4 and 5/6 the number of elements in Hy; array are 12,

16, 18 and 20 respectively.
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Figure 6.9: Computation of a column of H; from a column of Hy;.

Table 6.3: Number of clock cycles required for computation of H; from Hy,; for different

code rates.

No. of No. of clock cycles Total No. of clock

Code rate elements in required per cycles required for

Hyi array element in Hy; array computation of H;
1/2 12 23 276
213 A 16 15 240
2/3B 16 23 368
314 A 18 23 414
3/4B 18 23 414
5/6 20 23 460
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The total number of clock cycles required for the computation of all the elements of Hy from Hy;
is equal to the number of clock cycles required per element in Hp; array times the number of
elements in Hy; array.

Only one element value of H, is required for encoding process. Its value for different
code rates and code lengths is computed and stored in a look up table which can be obtained in
one clock cycle. Therefore the total number of clock cycles required for obtaining H is equal to
the total number of clock cycles required for computation of H;. The latency involved in the
computation of H is equal to product of the total number of clock cycles required for

computation of H and time period of the clock.

6.2.3 Computation of g,

The first step in the encoder implementation is the computation of V, the product of matrices
Hp: and S. The matrix Hj is a sparse matrix with each element representing either a zero matrix,
identity matrix or permutation matrix of size z x z. Vector e, is defined as the product of an
element of H;, hy, which is a matrix of size z x z, and an element is S, s, which is a vector of size
z x 1. The product vector, e, is obtained by circularly right shifting the vector s by a particular
shift value determined by h;. As shown in Equation 6.3, e, is equal to 0 or s (itself) or s; if hy is

equal to -1 or O or f respectively.

0, if h, = -1,
e, =hs=1{81ifh =0, (6.3)
s, ifh, = f.

Vector s; is the circular right shifted version of the vector s and the circular right shifted value f
is defined by h;.

Figure 6.10 shows the computation of e,. The code length of the LDPC codes varies from
576-2403. The base matrix has 24 columns. Therefore the size of each element in the base
matrix, z, vary from 24 — 96 (i.e., 576/24 - 2304/24). In order to accommodate different code
lengths of LDPC codes, the size of the shift register is chosen to be 96. The shift register is
hardcoded for all possible shift values (0-95), so that the circular right shifted version of s is
obtained in one clock cycle. This kind of implementation will occupy more area than a single
shift register, but will ultimately achieve high encoding data rates. In one clock cycle, a 66-bit
element from H; and a 96-bit block of s are read. Depending on code length, the size of s may

vary from 24-96. If the size of s is less than 96, then the remaining bits are assigned zeros. As
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shown in Figure 6.10, six circular right shift operations are performed by six shift registers in
parallel whose shift values and locations are obtained from an element of H;. Each of the e,
obtained from the circular right shift register is assigned to one of 12 outputs of the
demultiplexer based on its location (row number). For example, if the row number is equal to 3
then e, is assigned to the third output of the demultiplexer. All of the demultiplexer outputs are

added to obtain the inner products ep1, €y, ..., €p12.
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Figure 6.10: Computation of e,,.
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6.2.4 Computation of V
The third step in the encoding process is the computation of V, the product of matrices Hp;
and S. An element of the vector V (v;) is obtained, from

12if coderate=1/2

k 16if coderate=2/3
vi=>e, wherek =1 (6.4)
=i 18if coderate = 3/4

20if coderate=5/6

and is shown in Figure 6.11.

ep2[2] 5) g

€p12 [96]

ep2[1] 5 E g i

k
Counter
Clke +1 ——— Kk
reset ——————

Figure 6.11: Computation of V.
vi is obtained by adding the inner product (e,) 12, 16, 18 and 20 times for code rates 1/2, 2/3, 3/4
and 5/6, respectively. In modulo 2, addition is performed using the XOR gate.
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6.2.5 Computation of Parity Bits
The final step in the encoding process includes the computation of parity bits. Once V is
computed, parity bits are obtained by solving Equation 5.13. Solving Equation 5.13, we get

hy(O)Po + PL=Vo, Pr+P,=Vyy ooy N ()P + P+ Pja =Vjs o hb(mb_l)po_'_pmb—lzvmb—l'

Adding all the Equations, one obtains p, =V, +V, +...+V, The addition is performed by

my—1"
XORing all the elements of v. This is the case for all the code rates except for code rate 3/4 B.

For code rate 3/4 B, h,(0)p, =V, +V, +...+V, . Po is obtained by circularly right shifting the
sum of v, +v, +...+Vv, , by a value equal to z; — hy(0). This step can be performed in a single

clock cycle by using an additional shift register. Once po is obtained, the remaining parity bits

can be computed from solving the above expressions i.e., p, =V, +h,(0)p,, p, =V, + p,etc.,.

To obtain p, all the parity expressions shown above are hard coded in the design for all different

code rates. Hence parity bits are computed in one clock cycle.

6.3 Results of the Flexible Structured Encoder Implemented on an FPGA

A hardware implementation was performed on an Altera Stratix EP1S80F1508C5 FPGA
using Quartus Il for synthesis. Verilog modules generated from Matlab scripts were used for the
implementation. The results are shown in Table 6.4. Due to the restriction on the number of
input/output pins on the FPGA the code length is restricted to the range of 576-2016. The
number of logic elements required for the implementation of the encoder on the FPGA are
34,100 (43%). Of the two clock signals being used, CIk, is a faster clock used to compute the
required H; and is equal to 69.76 MHz. The other clock, Clk, is a slower clock used for the
computation of the parity bits and is equal to 27.23 MHz.

In order to accommodate all the code lengths (576-2304) on the chip the number of
output pins is reduced and the design is re-synthesized. To reduce the number of output pins,
sum of the parity bits is read instead of individual parity bits. It is observed that this design
occupies 40936 (52%) LEs which is more than that of the earlier design implementing only code
length from 576-2016. The increase in the LEs is due to the addition operation performed on the
parity bits. The clock frequencies Clk and Clk. are 77.10 MHz and 26.65 MHz respectively. It
can be concluded that if the design is synthesized on a larger chip with a large number of input

and output pins, then the encoder design with more code lengths can be accommodated. Also, the
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design would require less than 40936 LEs and operate with the same clock frequencies. The
lowest values of Clk and Clk. are considered for the coded data rate and latency computations.

In Table 6.4, CPC represents the number of clock cycles required per codeword for
encoding. CPC is equal to number of clock cycles required for computation of V and p. The
number of clock cycles required to compute V is equal to the number of columns in Hy, for a
given code rate. Computation of p requires one clock cycle. Hence this method requires 13, 17,
19 and 21 clock cycles for code rates 1/2, 2/3, 3/4 and 5/6 respectively. Column Clk. in Table
6.4 represents the encoder clock which can run at 26.65 MHz for any code rate and code length.

Table 6.4: Synthesis results of the flexible encoder for structured LDPC codes.

Code rate Clke CPC m Coded data rate
(MHz) (Mbps)
1/2 26.65 13 288 — 1152 1180 — 4724
213 26.65 17 384 — 1536 903 - 3612
3/4 26.65 19 432 -1728 808 — 3232
5/6 26.65 21 480 - 1920 730 — 2924

The latency involved in the computation of H from Hy is equal to product of the total
number of clock cycles required for computation of H and the clock time period. The latency
involved in computing H for different code rates is shown in Table 6.5. The synthesized Clk
frequency for computation of H is 69.76 MHz. So the time period of the clock is 14.34 ns. For
any given code rate and code length, computation of the required H is done only once. Therefore
the latency involved in computation of the parity-check matrix is not included in the coded data
rate calculations.

Table 6.5: Latency involved in computation of H for different code rates.

Code rate clgritsgfayug]r:/ g:cvgd(Lns)
172 3.958
W3A 3.442
213 B 5277
VA 5.037
34 B 5.037
5/6 6,596
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The coded data rate is equal to mxClk./(CPCxcode rate). The coded data rate decreases
with an increase in the code rate and increases with increase in the code length as shown in Table
6.4. For a code length of 576, the coded data rate ranges from 1180-730 Mbps for different code
rates. When the code length is increased to 2304, the coded data rate increases and is in the range
of 4724-2924 Mbps. These calculations are based on the internal encoder design and not on any
special 1/0 limitations. The encoder implementation assumes that all input data bits are available
for encoding, so serialization factors are not included in the results. In order to consider the
encoder implementation under serialization, a shift register needs to be added as shown in Figure
6.12. The coded data rate thus becomes limited by the speed at which the shift register can run,
Clks, which is 422.12 MHz.

S
n-m
—7>
Flexible n
structured +> c
Clks > encoder
Clk >

Figure 6.12: Complete system of the flexible multi-code rate and multi-code length
structured LDPC encoder.

The latency of the encoder considering I/O serialization is the maximum of [m/Clks,
CPC/CIke] which is m/Clks. The coded data rate of the encoder considering 1/O serialization is
equal to Clks/(code rate). Thus, the coded data rate value is constant for different code lengths.
The coded data rate is 844, 633, 562 and 506 Mbps for code rates 1/2, 2/3, 3/4 and 5/6
respectively. This value is significantly high when compared to a coded data rate of range 10-19
Mbps obtained for same LDPC codes [32]. From Tables 4.5, 5.3 and 6.4 it can be observed that
the proposed encoder has very high coded data rate when compared to the encoders in [29] and
[33]. In [29], for code length of 2000 and code rate 1/2, it is shown that by using 16 encoder
instances instead of one encoder instance, the coded data rate is increased from 45 Mbps to 410
Mbps which requires 16906 slices. In this case, the equivalent logic elements are 42265. The
coded data rate of our flexible structured encoder is equal to 844 Mbps which is more than twice
the coded data rate of the encoder presented in [29] while requiring less area than the encoder in

[29]. A single design accommodates different code lengths and code rates. Re-synthesis of the
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code is not required in order to change code rate or code length. The encoder design presented
can easily fit on FPGAs and has a high coded data rate. The flexible structured encoder is also

implemented on ASIC. The details are presented in the next section.

6.4 Implementation of a Flexible Multi-Code Rate and Multi-Code Length

Structured Encoder on an ASIC

Implementation of the flexible multi-code rate and multi-code length structured encoder
on an ASIC is performed using Cadence. An ASIC is designed using the standard cell library
provided by Virginia Polytechnic Institute and State University [63]. The same Verilog design
that is used for the FPGA implementation is also used for the implementation of the ASIC. The
Verilog design is synthesized in Cadence RTL by following the procedure presented in section
C.2 of appendix C. The synthesized design in RTL Compiler is shown in Figure 6.13. The
synthesized results of the flexible multi-code rate and multi-code length structured encoder are

shown in Table 6.6.

dence Encounter(R) RTL Compiler v07.20-5021_1 - /mni/hgfs/ldrive/cadence_encoder/desig
File Report Tools Preferences Window Help cadence

5
Logical | HDL / Schematlc]

StructuredEncoder paQaQEEaedE 7 7

ar\: [encoder]
PN [ParityMatrix]

StructuredEncader 1

Design is unmapped

Figure 6.13: Synthesized flexible multi-code rate and multi-code length LDPC structured
encoder in Cadence RTL Compiler.
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Once the design is synthesized it is then placed and routed in Cadence Encounter
following the procedure presented in section C.3 of appendix C. The final layout of the design in
Encounter is shown in Figure 6.14. The design is saved in GDS format. Figure 6.15 shows the
imported layout of the encoder in Cadence ICFB.

Table 6.6: Synthesis results of flexible multi-code rate and multi-code length LDPC

encoder in Cadence RTL Compiler.

Parameter Value
Code length 576 — 2304 bits
Code rate 172,213 A, 2/3B, 3/4 A, 3/4 B, 5/6
Technology 0.25 um
Gate count 116.5 K
Clock frequency 215.66 MHz
7 i SoC Encounter(TM) RTL-to-GDSII System 7.1 - /mnt/hgfs/ldrive/cadence_encoder/design - StructuredEncoder i E]@@‘
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Figure 6.14: Layout view of the flexible multi-code rate and multi-code length LDPC

structured encoder in Cadence Encounter.
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Figure 6.15: Layout view of the flexible multi-code rate and multi-code length LDPC
structured encoder in Cadence ICFB.
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CHAPTER 7 - Decoder for Low-Density Parity-Check Codes

LDPC encoder designs are presented in the earlier chapters. In this chapter a LDPC
decoder is designed in order to encompass the complete LDPC codec. The factors affecting the
LDPC decoder bit error rate (BER) performance are studied. Decoder design and its hardware
implementation are presented.

The key aspects of the LDPC decoder presented in this chapter are summarized as follows:

e Decoder design methodology does not consider any structure in the LDPC codes. Hence
it is applicable to both structured and any randomly generated LDPC codes.

e The decoder performance is affected by various design parameters such as the decoding
algorithm, the design architecture, the quantization of log-likelihood ratios and the
number of decoding iterations. All of these parameters are analyzed, and the best design
parameters are chosen based on BER performance.

e Several decoding algorithms are proposed for the implementation of a LDPC decoder.
From Matlab simulations, it is observed that logarithmic message passing algorithm gives
the best BER performance.

e A parallel architecture yields high data rate while a serial architecture yields low data
rate. In this work, the parallel architecture is chosen because of the desired high data rate.

e Different quantization of log-likelihood ratios is analyzed. It is observed that 6-bit
quantization yields an acceptable BER performance reducing the implementation
complexity of the design.

e The maximum number of decoding iterations affects the decoder BER performance and
the decoding latency. The optimum maximum number of decoding iterations is chosen
from BER simulations.

e For different SNR the number of decoding iterations required for the decoding process
varies. Also for a given SNR, different codewords require different number of decoding
iterations. Unlike other designs that perform fixed number of decoding iterations, the
estimated codeword is verified after every iteration in this design. The decoding process
is stopped when the correct codeword is estimated.
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e [For agiven SNR and parity-check matrix, the procedure to find an optimum value of the
maximum number of decoding iterations by minimizing the error, delay and energy is
presented.

e The coded data rate of the decoder is dependent on the length of the codeword. Its value
increases with increase in the code length. The design is applicable to both structured and

any randomly generated regular and irregular LDPC codes.

7.1 Study of LDPC Decoder Parameters

The performance of the LDPC decoder depends on various factors such as decoding
algorithm, architecture, quantization of log-likelihood ratios and maximum number of decoding

iterations. Mackay’s parity-check matrices [56] are used to evaluate all these decoder parameters.

7.1.1 Decoding Algorithm

Sum product algorithm, minimum sum algorithm and modified minimum sum algorithm
are some of the primary algorithms used for decoding LDPC codes, and they were explained in
section 2.2. In this subsection, a decoding algorithm that gives better BER performance is
explored. All the decoding algorithms are implemented in Matlab. The simulation results of BER

performance for varying SNR are shown in Figure 7.1. It can be observed from Figure 7.1 that

0

10
10" d
& 10°) 1
= 3
—¥— Theoretical
10°L | —*— Sum Product __
—+—Min Sum ]
—»—Modified Min Sum
10-4 1 1 1 1
0.5 1 1.5 2 2.5 3
SNR (dB)

Figure 7.1: BER vs. SNR performance using different decoding algorithms.
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the performance of the modified minimum sum algorithm is comparable to that of the minimum
sum algorithm, and that the sum product algorithm gives the best BER performance. Hence the
sum product algorithm is used for decoder implementation. However, the implementation
complexity of the sum product algorithm is high when compared to min-sum algorithm as

discussed on section 2.2.2.

7.1.2 Decoder Architecture

A serial architecture for the decoder implementation is efficient in terms of hardware
resources but yields low data rate. Using a parallel architecture yields high data rate at the
expense of large hardware resources. In this work, a parallel architecture is chosen for the
decoder implementation because of the desired high data rate.

7.1.3 Quantization

Because decoders are implemented using digital logic, quantization is present on the log-
likelihood ratios as they are passed between the check and variable nodes of the Tanner graph.
This will also influence the BER performance of the LDPC codes, and is one of the most
important factors that influences the hardware implementation of the decoder. If more bits are
used to represent the log-likelihood ratios, then the performance of the decoder is increased
because of the improved accuracy. However, this will also increase the number of logic elements
required for the implementation of the decoder. It also slows down the decoder process and
increases latency. In this subsection, the number of bits required without compromising

performance and latency is evaluated.

7.1.3.1 Quantization of ¢

The quantization of ¢ is important in determining the corresponding quantization of log-

likelihood ratios. ¢ is a non-linear function and is defined below, but a linear approximation with

a sufficient number of levels can still provide a performance close to that of the double precision
case.

e’ +1

e’ -1

Figure 7.2 shows the quantization effect on ¢ (z). From Figure 7.2, it can be observed that double

@(z) =log (7.2)

precision ¢(z) is approximately zero for z equal to 3.5. Therefore, 2 bits are chosen to represent
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the integer part of z. ¢(z) is computed by varying the number of bits needed to represent the
fraction part of z from 1 to 4 and is shown in Table 7.1. From Figure 7.2, 5-bit quantization of
¢(z) provides performance close to double precision ¢(z). Therefore, 5-bit quantization is chosen

to represent ¢(z).

Double Precision
—#—3 bit quantization
g 4 hit guantization q
—%—45 bit quantization
—+—F bit quantization

Figure 7.2: Quantization of ¢.
Table 7.1: Quantization of ¢.

Quantization | Integer | Fraction
3-bit 2 1
4-bit 2 2
5-bit 2 3
6-bit 2 4

7.1.3.2 Quantization of Log-Likelihood Ratios

Figure 7.3 shows the effect of quantization on BER performance for varying SNR.
Simulations are performed by using 1 bit for sign, 2 bits for integer part and varying number of
bits to represent the fractional part as shown in Table 7.2. The number of bits to represent the
fractional part is varied from 1 to 4 in increments of 1 and the simulation results are shown in

Figure 7.3. It can be observed from Figure 7.3, that the 6-bit quantization (1 bit for sign, 2 bits
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for integer and 3 bits for fraction) gives a comparable performance to that of double precision.

Hence 6-bit quantization is chosen to represent log-likelihood ratios.

Table 7.2: Quantization of log-likelihood ratios.

Quantization | Sign | Integer | Fraction
4-bit 1 2 1
5-bit 1 2 2
6-bit 1 2 3
7-bit 1 2 4
8-bit 1 3 4

10"

107+

BER

Sl K Double Precision
107 ¢ —e—4.pit quantization
—+—5-bit quantization
—6— 6-bit quantization
——7-bit quantization
—*— 8-bit quantization

10'4 1 1 1 1
0.5 1 1.5 2 2.5 3 35 4

SNR (dB)

Figure 7.3: BER vs. SNR performance for different quantization levels of log-likelihood

ratios.

7.1.4 Maximum Number of Decoding Iterations

The maximum number of decoding iterations determines the maximum latency of the
decoder. With an increase in the number of decoding iterations the performance improves at the
cost of increased latency. In this subsection the maximum number of decoding iterations required
is chosen based on the trade-off between performance and latency. Figure 7.4 shows the BER

performance when varying the SNR for different values of maximum number of decoding
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iterations. It can be observed from Figure 7.4, that a maximum of 20 decoding iterations can be

chosen for better BER performance without significant impact on the decoder performance.

10"

10°F

BER

107}

—e&— Max. Iter. 50
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—&—Max. Iter. 15
—8—Max. Iter. 10

1044 1 1 L 1
0.5 1 1.5 2 2.5 3 35 4
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Figure 7.4: BER vs. SNR for different values of maximum number of decoding iterations.

7.2 Design and Implementation of LDPC Decoder on FPGA

Once the required parity-check matrix is chosen all the parameters discussed above can
be obtained from simulations to help determine the best hardware implementation of the LDPC
decoder. The logarithm message passing algorithm presented in 2.2.1 is used for the decoder
implementation. In this section the details of the design and the hardware implementation of
LDPC decoder are described.

7.2.1 Quantization

The number of bits required to represent the log-likelihood ratios used in the decoding
process is presented in this subsection. This is the most important issue in hardware
implementation of the decoder because decoding performance and complexity are dependent on
the number of bits used to represent the log-likelihood ratios. The quantization of function ¢(z)

and the log-likelihood ratios passed between the check and variable nodes are presented.

7.2.1.1 Quantization of ¢
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In subsection 7.1.3.1, it is shown that 5-bit quantization is required to represent ¢(z)
without compromising much on performance and latency. From step 2 of the logarithmic
message passing algorithm it can be observed that ¢(z) is computed for positive values of z.
Therefore, it is sufficient to store the values of ¢(z) for only positive values of z. Implementation
of the log and tanh functions in ¢(z) requires a lot of hardware and has high complexity. As an
alternative ¢(z) is computed for different values of z, which are then stored in a look up table
(LUT). By using 5-bit quantization, the minimum and maximum positive values that can be
represented are 0 and 3.875 respectively, and z is varied from 0 to 3.875 in increments of 0.125
(=1/2%). Its binary equivalent representation ranges from 0 to 31 in increments of 1. Since ¢(2)
theoretically obtains its maximum value of infinity when z is equal to 0, the 5-bit quantized
version of ¢(z) is limited to 3.875. Therefore ¢(z) also varies from 0 to 3.875. The actual value,
binary equivalent and binary representation of z and ¢(z) when z is equal to 0, 1, 2 and 3 are
shown in Table 7.3. For all the values of z ranging from 0 to 3.875, the actual value, binary
equivalent and binary representation of z and ¢ (z) are given in Table D.1 in Appendix D.

Table 7.3: Look up table for ¢.

Actual Binary Binary
value equivalent representation
z ¢(2) z ¢2) z ¢(2)
0 3.875 0 31 00000 11111
1.000 0.750 8 6 01000 00110
2.000 0.250 16 2 10000 00010
3.000 0.000 24 0 11000 00000

7.2.1.2 Quantization of Log-Likelihood Ratios

In subsection 7.1.3.2, it is shown that 6-bit quantization is used to represent the log-
likelihood ratios without compromising much on performance and latency. The representation of
log-likelihood ratios is similar to that of ¢(z) but the extra 6" bit is used to represent the sign of
the message. 2’s complement notation is used to represent the log-likelihood ratios. The range of
the log-likelihood ratios using 6-bit quantization varies from -4 to +3.875 in increments of 0.125.

Its binary equivalent is -32 to +31. The actual value, binary equivalent and 2’s complement
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representation of certain log-likelihood ratios is shown in Table 7.4. For all the values of log-
likelihood ratios ranging from -4 to +3.875 its actual value, binary equivalent and 2’s
complement representation is given in Table D.2 in Appendix D.

Table 7.4: Quantization of log-likelihood ratios.

Actual Binary 2’s Complement
value equivalent representation
0 0 000000
1.125 9 001001
2.375 19 010011
3.625 29 011101
-3.125 -25 100111
-1.875 -15 110001
-0.625 -5 111011

7.2.1.3 Conversion of Log-Likelihood Ratios from One Form to Another Form of
Representation

During the decoding process, log-likelihood ratios passed between variable and check
nodes are in 2’s complement representation, while ¢(z) is in sign magnitude representation.
Hence there is a need to convert from one form of representation to another form. In this
subsection, the conversion of 2’s complement to Sign magnitude representation and vice-versa
are presented.

During check node processing, the received variable node values in 2’s complement
representation need to be converted to sign magnitude representation. This conversion is
performed as shown in Figure 7.5. If the MSB of the input is equal to 0 then the output, Out, is
equal to the input, In. Otherwise, the input bits, In, are inverted and 1 is added to convert the
input, In, into sign magnitude representation. The sign bit, sq, is the MSB of the input, In.

The check node values are in sign magnitude representation. These values need to be
converted back to 2’s complement representation for the computation of variable node values.
This conversion is performed as shown in Figure 7.6. If the input sq is equal to 0 then the output,
Out, is equal to the concatenation of bit sy and the 5 input bits, In. Otherwise, the output, Out, is

equal to the concatenation of sy bit and the 2’s complement of the input bits, In.
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Figure 7.6: Conversion of sign magnitude to 2's complement representation.

7.2.2 Initialization of Decoder Process

In the decoder implementation it is assumed that the initial log-likelihood values, L(ci),

are available to the decoder which is equal to _yz, , where y is the received code word and & is
o

the channel noise variance. These values are computed and quantized as shown in Table 7.4.
This step needs to be performed only once for a given codeword and is performed off-chip. If the
value of L(c;) is greater than +3.875 (its binary equivalent is 31) then its value is assigned to
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+3.875. Similarly, if the value of L(c;) is less than -4 (its binary equivalent is -32) then its value
is assigned to -4. As shown in step 1 of the logarithmic message passing algorithm presented in

2.2.1, the variable nodes L(q;) are initialized and is equal to L(c;).

7.2.3 Check Node Processing
Step 2 of the logarithmic message passing algorithm presented in 2.2.1 is to compute the
check nodes values. The check node values, L(r;;), are computed from the variable node values,

L(qij) as shown below

L(ri)=]]e; ¢ D oB;) (7.2)

iERj\i IeRj\i

z

e‘+1
el -1

where o = Sign(l—(qij NE B; =| L(qij)l and ¢(z) =log

The magnitude of the check nodes is obtained by computing

‘L(rji)‘ =@ Z(o(ﬁij) _ (7.3)
ieRj\;
The implementation of Equation 7.3 is shown in Figure 7.7. In this implementation ¢ is obtained
from the look up table in Table 7.3. The sign of the check node values can be found from as
shown below, and it is implemented in hardware as shown in Figure 7.8.
sign{L(r;;)}= Haij (7.4)
icR;y

Figure 7.7 shows the computation of the magnitude of check node values associated with
parity-check matrix of row weight w,. For regular LDPC codes the row weight w; is equal to a
constant value. Therefore, one implementation for a given w, would be sufficient for the entire
decoder. For irregular LDPC codes, w, can be different for each row and therefore several
different implementations for each w,, are needed for its decoder. Based on the type of LDPC

codes, one or more of these check node processing designs are implemented.
The magnitude and sign of a check node is obtained using the magnitudes and sign bits of

the other w, -1 check nodes, respectively, as shown in Figures 7.7 and 7.8. For a check node
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shown in Figure 7.7, the ¢ outputs of all the w, inputs are added excluding the ¢ output of its

input.
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Figure 7.8: Computation of sign of check node values.
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For example, the check node, In;, @ of Iny, Ins,.. Inw, are added to obtain I;. This resulting sum is
equal to the w-bit long, when w.-1 outputs of ¢, each of length 5-bit, are added. w is equal to
[log,(w,-1)x31 1 where [ ] denotes the ceiling function. This w-bit I, is truncated to 5 bits by
assigning a value of 31 when its value is greater than 31. The magnitude of the check node, In,
is updated by obtaining ¢ of I; and is assigned to output, Out;. The same procedure is followed
to update the magnitudes of the other check nodes as shown in Figure 7.7. From Figure 7.8, the
sign of the check node is obtained by ANDing all the sign bits of the w, check nodes excluding
its sign bit. For example, the sign of In; is obtained by ANDing Iny, Ins,.. Inw, and is assigned to
Out;. Similarly other check nodes sign bits are updated as shown in Figure 7.8. The check node
values are computed as shown in Figure 7.9 by combining the magnitude and sign bits computed

using Equations 7.3 and 7.4.

2’s 5 5 sign
complement magnitude 6
In, —S ! | p~ou
sign 2’s
magnitude complement
Magntude
) =TT ofcheck [T~ -
2’s 5 = = = node values [~ ~ 5 sign
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In, 5] | | Pouw
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magnitude complement
i Sign of g
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== wvalues [[T7
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2’s 5 5 sign
complement magnitude
Inw, gg l l 76;Outwr
sign 2’s
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Figure 7.9: Computation of check node values.
The received variable node values are first converted into sign magnitude representation

from 2’s complement representation. The magnitude and sign of the check node values are
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computed from Figures 7.7 and 7.8 and is converted back to 2’s complement representation.

These values are used for the computation of variable nodes.

7.2.4 Variable Node Processing

The variable node values are obtained from the check node values using step 3 of the

decoding algorithm in 2.2.1:

L(g;) = L(c;) + Z L(r;)

This is also shown in Figure 7.10 for LDPC codes with column weight w.
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Figure 7.10: Computation of variable node values.
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For regular LDPC codes the column weight w. is equal to a constant value whereas for an

irregular LDPC code column weights can be different for different columns. Depending on we,
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the design in Figure 7.10 is modified accordingly. Based on the type of LDPC codes, one or
more of these variable node processing designs are implemented.

Each variable node is updated by adding all the w, + 1 inputs excluding the input of the
node itself. When w; inputs, each of length 6-bits, are added this results in a sum equal to wy-bits
long. The value w; is equal is [ logo(w-1)x63 1 where [ | denotes the ceiling function. As shown
in Figure 7.10, a sign extension is performed on all the w, + 1 inputs. The number of bits
appended to the variable nodes is equal to w; where w; = w,-6. The updated variable node is now
of length wy-bits which also needs to be truncated to 6 bits. Truncation is performed by assigning
the variable node a value of 31 and -32 when its value is greater than 31 or less than -32,
respectively.

Step 4 of the decoding algorithm is computation of L(Q;) defined as
L(Q) = L(Ci)+ZL(rji). (7.6)
jec;
Step 5 is making the decision on the received codeword based on the value of L(Q;) and is

defined as

: :{1 if L(Q) <0 o

0 ifL(Q)=0 "
For all the values of i if the value of L(Q;) is greater than or equal to zero then the received bit of
the codeword is declared to be 0 or else 1.

Steps 4 and 5 of the decoding algorithm are also included in the computation of the
variable node values as shown in Figure 7.10. L(Q) is obtained using Equation 7.6 and its
implementation is similar to that of the variable node computation except L(Q) is obtained by
adding all the w, + 1 inputs. The codeword is estimated using Equation 7.7 and O, and Out in
Figure 7.10 represents the L(Q) and ¢ respectively. From Equation 7.7, the estimated codeword
bit, Out, is assigned a value of 0 if O, is greater than or equal to zero otherwise Out is assigned a

value of 1.

7.2.5 End of Decoding Process
After each decoding iteration a decision is made on the codeword. The estimated
codeword, €, is then verified by multiplying it with the parity-check matrix. If the resultant

vector is zero, i.e., H' =0, then the received codeword is decoded correctly or else the
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decoding process is continued. This process is continued until the received codeword is decoded

correctly or it has reached the fixed maximum number of decoding iterations.
The product of ¢H" is of size 1 x n and is hard coded in the design. An element of the
product of ¢H is obtained by multiplying ¢ with a column of H'. This can be implemented by

XORing the bits of € positioned at the corresponding locations of 1’s in each column of H.

7.2.6 Decoder

Figure 7.11 shows the decoder implementation. The decoder implementation consists of
four blocks which are initialization, computation of check and variable nodes and validation of
the estimated codeword.

Check nodes
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Figure 7.11: Design of LDPC decoder.
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Variable nodes are initialized from the received codeword. Using these variable node values,
check node values are computed in the first half of the decoding iteration. The design for the
computation of check nodes shown in Figure 7.9 is replicated m times to update the entire check
node values of the decoder.

The variable node values are updated in the other half of the decoding iteration from the
check node values. The design for the computation of variable nodes shown in Figure 7.10 is
replicated n times to update the entire variable node values of the decoder. After completion of a
decoding iteration, an estimate is made on the received codeword and is checked for validity. If
the codeword is decoded correctly then the decoding process is stopped. Otherwise, it is

continued till it reaches the maximum number of decoding iterations.

7.3 Results

A hardware implementation was performed on an Altera Stratix EP1S80F1508C5 FPGA
using Quartus Il. Verilog modules generated again from Matlab script are used for the
implementation. The design requires a large number of LEs because of the use of parallel
decoder architecture. Because of the restrictions on LEs a decoder with a small code length can
only be implemented on the available FPGAs. Decoders for code lengths 64 and 128 are
implemented on FPGA for a regular and irregular parity-check matrix of sizes 64 x 128 and 32 x
64 respectively. The results are shown in Table 7.5. With an increase in the code length the
number of logic elements required by the decoder also increases. Let the decoding clock
frequency be Clkg, which is equal to the maximum clock frequency of the synthesized designs
shown in Table 7.5. From section 7.1.4, the maximum number of decoding iterations (Iteryax) is
chosen to be 20. The latency of the decoder can be computed by Iterya/Clky and is shown in
Table 7.5. The coded data rate of the decoder can be computed from Equation 7.8 and is shown

in Table 7.5. The coded data rate increases with increase in the code length.

Ik
coded data rate = nx Clky (7.8)
Iter,,.,

Table 7.5: Synthesis results of the LDPC decoder.

H LE Clkqg Coded data rate Latency
(MHz) (Mbps) (Us)
Irreg 32 x 64 24384 36.48 116.74 0.55
Reg 64 x 128 49985 34.47 220.61 0.58
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These calculations are based on the internal decoder design and not on any special 1/O
limitations. The decoder implementation assumes that all input data bits are available for
decoding, so serialization factors are not included in the results. In order to consider the decoder
implementation under serialization, a shift register needs to be added. The complete decoder with
I/O serialization is shown in Figure 7.12. The coded data rate thus becomes limited by the speed
at which the shift register can run, Clks, which is 422.12 MHz. The latency in reading codeword
is n/Clks. The latency of the complete decoder system is equal to the maximum value of [n/CIks,
Itermax/Clkg]. For small code lengths the latency is equal to Iterya/Clky. Therefore the coded data
rate of the complete decoder is same as that of the decoder without I/O serialization and is equal
to nxlterpax/Clkg.

y 6,

Y

6n

(@Y

Generic / |
Clk, > decoder
Clkg >

Figure 7.12: Complete decoder system.

The LDPC decoder implementation on FPGA is restricted to small code lengths because
of the huge hardware requirement. The decoder coded data rate is directly proportional to the
code length. Therefore, implementing a decoder in an ASIC would accommodate decoders with
large code lengths and hence increases the coded data rate. An LDPC decoder with code length
of 1024 and code rate 1/2 is synthesized in Cadence RTL Compiler and the synthesis results are
presented in Table 7.6. The coded data rate of the decoder without 1/O serialization is 3.17 Gbps
which is much higher than the decoders presented in [42] and [43].
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Table 7.6: Synthesis results of LDPC decoder of code length 1024 and code rate 1/2 in

Cadence RTL Compiler.

Parameter Our proposed decoder | Decoder in [42] | Decoder in [43]
Code length 1024 648 1024
Code rate 1/2 Irregular 5/6 Irregular 1/2 Regular
Technology 0.25 um 0.18 um 0.16 pum
Gate count 820.3 K 842 K 1750 K
Clock frequency 61.89 MHz 111 MHz 64 MHz
Data rate 3.17 Gbps 1 Gbps 1 Gbps

7.4 Optimization of Decoder Parameters

In this section, an attempt is made to find an optimum number of maximum decoding
iterations for a given SNR based on erroneous codewords (error), energy required (energy) and

latency of the decoding process (delay).

7.4.1 Erroneous Codewords

In the earlier section 7.1.4, it was discussed that the maximum number of decoding
iterations (lteryax) plays an important role in the error performance of the decoder. The
maximum number of decoding iterations varies with the parity-check matrix and SNR. An
example parity-check matrix of size 64 x 128 is considered to show the affect of SNR on Iteryax.
Decoder simulations are performed in Matlab, and 1000 codewords are decoded for a given
SNR. Figure 7.13 shows the histograms of the decoding iterations required by the codewords for
varying SNR using a maximum of 50 decoding iterations. From Figure 7.13, it can be observed
that for low SNR (0.9844 dB), a large number of codewords (64 %) require 50 iterations whereas
for high SNR (2.9226 dB) only a few codewords (4 %) require 50 iterations. For all values of

SNR, the codewords that require 50 decoding iterations may still not be corrected. Number of
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erroneous codewords, errors, for varying Iteryax from 5 - 50 in increments of 5 are shown in
Table 7.7.
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Figure 7.13: Histogram of decoding iterations required by codewords for varying SNR.
From Table 7.7, it can be observed that the number of erroneous codewords decreases
with the increase in the maximum number of decoding iterations. This decrease in the erroneous
codewords is initially large and then flattens out with an increase in the maximum number of
decoding iterations. For example, at SNR equal to 0.9844 dB, when the maximum number of
decoding iterations is increased from 5 to about 20, the decrease in the erroneous codewords is
large. However, the decrease in the erroneous codewords is small when the number of decoding

iterations is increased from 20 to 50.
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Table 7.7: Erroneous codewords, errors, for varying SNR and lteryax.

lteryvax
SNR 5 10 15 20 25 30 35 40 45 50
(dB)
0.9844 946 | 780 | 703 | 678 | 664 | 654 | 647 | 645 | 644 | 643

1.289 890 | 684 | 604 | 574 | 554 | 541 | 538 | 533 | 529 | 529
1.584 806 | 513 | 438 | 403 | 396 | 388 | 381 | 376 | 375 | 369
1.868 732 | 425 | 337 | 309 | 300 | 293 | 289 | 284 | 280 | 278
2.411 505 | 204 | 156 | 133 | 126 | 119 | 116 | 112 | 112 | 109
2.9226 325 | 89 62 51 48 45 44 40 40 40

7.4.2 Decoder Delay

The latency involved in the decoding process for | number of iterations is equal to | x t,
where t is the time required for one iteration. From the decoder design, the time required for one
decoding iteration is equal to one clock period and from Quartus compilation report, t is equal to
29 ns. Latency is independent of SNR. The latency involved in the decoding process for varying
Itermax 1S shown in Table 7.8.

Table 7.8: Decoder latency, delay, for varying Iteryax.

Latenc
Iteryax (ns) y

5 145
10 290
15 435
20 580
25 725
30 870
35 1015
40 1160
45 1305
50 1450

7.4.3 Decoder Energy

Power analysis is performed using the PowerPlay power analyzer described in section
3.1.3 on the decoder implemented. For analysis, two codewords are considered at SNR of 0.9844
dB, where one codeword is not decoded correctly even after 50 iterations and the other codeword

is decoded correctly in 7 iterations. Power analysis is performed for a maximum of 20 iterations
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and the total thermal power dissipation, TTPD, core dynamic thermal power dissipation,
CDTPD, core static thermal power dissipation, CSTPD, and I/O thermal power dissipation,
IOTPD, are obtained from power analysis compilation report and is shown in the Table 7.9.
CSTPD is constant and is equal to 1395 mW.

Table 7.9: PowerPlay power analysis report of the decoder of size 64 x 128.

lter- _ Cod_eword corrected in 7 CodeV\_/ord not corrected in 51
ation Time Iterations (SNR 0.9844 dB) Iterations (SNR 0.9844 dB)

No. (ns) TTPD CDTPD | I0TPD TTPD CDTPD | IOTPD

(mW) (mW) (mW) (mW) (mW) (mW)
1 0-30 3699 2134 170 3459 1168 896
2 30-60 7717 5870 451 7149 5323 432
3 60-90 5690 4140 155 5226 3643 188
4 90-120 5214 3651 168 5142 3546 200
5 120-150 5212 3694 123 4802 3284 123
6 150-180 5256 3693 168 4649 3131 123
7 180-210 5445 3927 123 4441 2929 117
8 210-240 4966 3442 130 4356 2787 175
9 240-270 4517 3031 91 4328 2803 130
10 | 270-300 3221 1728 97 4435 2891 149
11 300-330 1662 146 91 4479 2922 162
12 | 330-360 1499 0.6 104 4598 3060 142
13 | 360-390 1486 0.1 91 4445 2901 149
14 | 390-420 1493 0.2 97 6984 5466 123
15 | 420-450 1486 0.3 91 4772 3165 213
16 450-480 1512 0.7 117 4772 3165 213
17 | 480-510 1486 0.1 91 4772 3165 213
18 | 510-540 1493 0.2 97 4772 3165 213
19 | 540-570 1486 0.18 91 4772 3165 213
20 | 570-600 1499 0.45 104 4772 3165 213
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From Table 7.9, it can be observed that TTPD is maximum after initialization because of
the high signal activity. The TTPD decreases with increase in the number of decoding iterations.
In the case when the codeword is corrected in 7 iterations, the CDTPD is negligibly small after
11 decoding iterations and the TTPD is almost equal to or little higher than CSTPD. The TTPD
decreases with increase in the number of decoding iterations for the codeword that did not
decode correctly after 51 iterations. The TTPD value reaches a constant value equal to 4772 mW
after 14 iterations. This is because the variable and check node message values become stagnant
after 14 iterations and the signals stop toggling.

From Table 7.9, the decoder average TTPD per iteration while decoding (Powgyn) and
idle (Pow,qie) are computed and are equal to 5462 mW and 1510 mW respectively. The Powgyn
and Powq are obtained from Table 7.9 using TTPD of the codeword that decodes correctly in 7
iterations. The Powgy, is obtained by averaging the TTPD during 7 decoding iterations (time
period of 0-210 ns). The Powqi iS obtained by averaging the TTPD when the decoder is idle,
i.e., after the decoder estimated the correct codeword. From Table 7.9, Powy. is equal to
average of the average of TTPD from 300-600 ns. The power dissipated during the time interval
of 210-300 ns is not considered in the calculations of Powg,, and Powqie because the decoder has
estimated correct codeword and has not reached an idle state yet.

The energy required by the decoder for a given SNR can be computed from Iteryax, the
average number of decoding iterations, the time per iteration and the power dissipation rate
during the decoding process. The energy required is computed from Eq. 7.9 and is shown in
Table 7.10.

Table 7.10: Energy (pJ) required for varying SNR and Iteryax.

IterMaX

SNR
(dB)
0.9844 | 795 | 1591 | 2386 | 3181 | 3977 | 4772 | 5567 | 6020 | 6244 | 6468

1.289 795 | 1591 | 2386 | 3181 | 3977 | 4772 | 5224 | 5448 | 5672 | 5896
1.584 795 | 1591 | 2386 | 3181 | 3977 | 4201 | 4424 | 4648 | 4872 | 5096
1.868 795 | 1591 | 2386 | 3181 | 3405 | 3630 | 3853 | 4077 | 4301 | 4525
2411 795 | 1591 | 2043 | 2267 | 2491 | 2715 | 2939 | 3163 | 3387 | 3611
2.9226 795 | 1248 | 1472 | 1696 | 1920 | 2144 | 2368 | 2592 | 2815 | 3040

5 10 15 20 25 30 35 40 45 50
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The average number of decoding iterations, Iteray, required for SNR values of 0.9844, 1.289,
1.584, 13868, 2.411 and 2.9226 dB obtained from Matlab simulations are 37, 32, 25, 20, 12 and
7 respectively.

Iter,,, x Pow,, xt, if Iter,,, < lter

_ M (7.9)
((Itery,, x Pow,,.) + ((Itery, — Iter,,, ) x Powy,)) xt, if Iter,,, > lter

run Avg

energy:{

7.4.4 Optimization

The following two cases are considered to find an optimum value of Iteryax for a given
SNR by attempting to minimize error, delay and energy.
Case I

The optimum value of Iterya for a given SNR is obtained by minimizing the error,
energy and delay. A function for a given SNR and Iteryax can be expressed in terms of error,
energy and delay and is shown as

f (SNR, Iter,,,,) = a xerror+ S xenergy+ y x delay (7.10)

where «, fand y are weighing coefficients of error, energy and delay respectively. For a given
SNR, all the values of error, delay and energy shown in Tables 7.7, 7.8 and 7.10 are normalized
by their respective maximum values. Numerically f(SNR, Iteryax) is evaluated by varying the
values of ¢, fand y from 0 to 1 in increments of 0.1 such that & + g+ = 1. For example, o =
0.1, #=0.2 and y = 0.7. The values of the weights ¢, £ and y are shown in Table 7.11. « is
incremented from 0 to 1 in steps of 0.1. For each value of «, yis decremented from 1-a to 0 in
steps of 0.1. Sis chosen such that the value isequal to 1 - « - .

The plots of f for varying SNR, Iteryax and weights are shown in Figure 7.14. For each
SNR and Iteryax, the corresponding weights of the minimum value of f are shown in Table 7.12.
From Figure 7.14 and Table 7.12, it can be observed that when error is not considered i.e., « =0
then f is minimum and its value increases with increase in the lteryax. Fewer decoding iterations
would be optimum when latency is given priority. It can also be observed from Figure 7.14 and
Table 7.12, that when o = 1 then f decreases with increase in the Iterya and it obtains minimum
value for largest value of Iteryax. This means that when error is minimized the decoder requires

larger value of Iteryay.

95



Table 7.11: Weighing coefficients of error (a), energy, (8), and delay ().

Weights o B 4
1 0 0 1
2 0 0.1 0.9
3 0 02 | 08
4 0 0.3 0.7
5 0 0.4 0.6
6 0 05 | 05
7 0 0.6 0.4
8 0 0.7 0.3
9 0 08 | 02
10 0 0.9 0.1
11 0 1 0
12 0.1 0 0.9
13 0.1 0.1 0.8
14 0.1 0.2 0.7
15 01 | 0.3 | 0.6
16 0.1 0.4 0.5
17 0.1 0.5 0.4
18 01 | 06 | 03
19 0.1 0.7 0.2
20 0.1 0.8 0.1
21 01 | 09 0
22 0.2 0 0.8
54 08 | 0.2 0
55 0.9 0 0.1
56 09 | 01 0
57 1 0 0
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Table 7.12:

Minimum f corresponding to Iteryax, SNR and weights.

SNR Itervax
(dB) 5 [ 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50
0.9844 [fwn| 01 | 02 | 03 | 04 | 05 | 0.6 |0.684|0.682]0.681 | 0.68
a | 0 0 0 0 0 0 1 1 1 1
B| 0 0 0 0 0 0 0 0 0 0
y | 1 1 1 1 1 1 0 0 0 0
1289 |fwn| 01 | 02 | 03 | 04 | 05 | 0.6 |0.605|0.599 | 0.594 | 0.594
a | 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0
v | 1 1 1 1 1 1 0 0 0 0
1584 | fuin| 0.1 | 0.2 | 0.3 | 0.4 |0.491|0.481 | 0.473 | 0.467 | 0.465 | 0.458
a | 0 0 0 0 1 1 1 1 1 1
g | 0 0 0 0 0 0 0 0 0 0
y | 1 1 1 1 0 0 0 0 0 0
1.868 | fwin| 01 | 02 | 03 | 04 | 041 | 04 |0.3950.3880.383| 0.38
a | 0 0 0 0 1 1 1 1 1 1
g | 0 0 0 0 0 0 0 0 0 0
y | 1 1 1 1 0 0 0 0 0 0
2411 [fwin | 01 | 02 | 03 [0.263] 0.25 |0.237 | 0.23 | 0.222 | 0.222 | 0.216
a | 0 0 0 1 1 1 1 1 1 1
g | 0 0 0 0 0 0 0 0 0 0
y | 1 1 1 0 0 0 0 0 0 0
2.9226 | fwin | 0.1 | 0.2 |0.191 | 0.157 | 0.148 | 0.139 | 0.135 | 0.123 | 0.123 | 0.123
a | 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0
v | 1 1 0 0 0 0 0 0 0 0
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Figure 7.14: Surface plot of f for varying SNR, Iteryax and weights.
Case Il

In this case the optimum value of Iteryax for a given SNR can be found by minimizing
one of the parameters of error, delay and energy while constraining the other two parameters.
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1. For a given SNR, the optimum value of Iteryax can be obtained by minimizing error and
constraining the delay and energy as shown below
f (SNR, Iterpax) = min error (7.11)
such that delay < Tyin and
energy < Emin.
For a given set of values of Tni, and Emin, Itervax can be obtained from Tables 7.8 and
7.10 respectively.
2. For a given SNR, the optimum value of Iterya can be obtained by minimizing delay and
constraining the error and energy as shown below
f (SNR, Iteryax) = min delay (7.12)
such that error <P, and
energy < Emin.
For a given set of values of P, and Enin, Itervax can be obtained from Tables 7.7 and 7.10
respectively.
3. For a given SNR, the optimum value of Iteryax can be obtained by minimizing energy and
constraining the delay and error as shown below
f (SNR, Iteryax) = min energy (7.13)
such that delay < Ty, and
error < Pe,

For a given set of values of Tni, and Pe, Iteryax can be obtained from Tables 7.8 and 7.7

respectively.

There are always constraints on error performance, energy/power and delay to develop
designs for real time applications. Error and delay determine the quality of the performance and
the speed. Energy/power influence the battery power required. For example, to find an optimum
maximum number of decoding iterations for a given SNR of 1.868 dB, minimizing the error
when delay and energy are constrained to less than 600 ns and 4000 pJ respectively can be
obtained as follows.

For delay to be less than 600 ns, the corresponding Iteryax can be obtained from Table 7.8
and is equal to 20. The Iteryax when energy is less than 4000 pJ can be obtained from Table 7.10
and is equal to 40. In order to satisfy both delay and energy constraints Iteryax cannot exceed 20.

From Table 7.7, error is minimum for a given SNR and Iteryqy if it has less number of erroneous
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codewords. For SNR of 1.868 dB, error is minimum when Iteryay is 50. But for given constraints
on delay and energy, the minimum error occurs for Iteryax 0f 20. Therefore, Iteryay in this case is
20. Similarly Iteryax can be obtained for other constraints on error, delay and energy as
explained for cases | and Il. By repeating this procedure on other parity-check matrices, the

optimum value of Iteryax for that particular parity-check matrix at a given SNR can be obtained.
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CHAPTER 8 - Conclusion

Low-density parity-check codes are being used in many applications because of their
excellent coding performance. A flexible hardware encoder and decoder for LDPC codes which
would aid in the future development of cognitive radio are developed. The design methodologies
used for the implementation of both a LDPC encoder and decoder are flexible in terms of parity-
check matrix, code rate and code length.

In this work, four encoder designs are proposed yielding very high data rates. The
encoder designs presented can fit on currently available FPGAs. As the density and size of
FPGAs continue to increase and the demand from high-speed applications also increase,
encoders similar to this will become more commonplace. The data rate of these encoders is
restricted by the 1/O serialization required to convert between the serial data stream(s) and the
corresponding block processing.

Two of these encoder designs can be used for both structured and non-structured LDPC
codes. These designs are more efficient for small code lengths while requiring large FPGAs for
longer code lengths. The two other encoder designs are proposed for structured LDPC codes
because of their use in IEEE communication standards. Using structured LDPC codes decreases
the encoding complexity and also provides design flexibility. The same design methodology with
minor modifications can also be used for similar structured LDPC codes defined in other
standards. One of the structured encoder designs has flexibility in terms of both the code rate and
code length. This design methodology does not require re-synthesis of the Verilog code to
change the code rate and code length of the LDPC encoder. The design flexibility in both code
rate and code lengths can be utilized in a real time implementation of LDPC codecs for new
technologies such as cognitive radio which needs physical reconfigurability. A flexible encoder
design for structured LDPC codes is also implemented on both an FPGA and an ASIC.

In this work, a decoder is also designed for LDPC codes. The design methodology does
not consider any structure in the LDPC codes. Hence it is applicable to both structured and non-
structured LDPC codes. The decoder has to be optimized for BER performance, hardware
complexity, and power consumption. The maximum number of decoding iterations used for the
decoding process plays an important role in determining the decoder BER performance, latency

and power consumption. Most of the earlier decoder designs found to be available prior to this

101



work, always decode for a fixed number of iterations after which an estimate of the codeword is
calculated. This leads to unnecessary delay and power consumption, especially in higher SNRs
where the correct codeword is available within a few iterations. In [55], the parity of the normal
variable-to-check messages is checked after each iteration. If the parity check is satisfied then the
codeword is estimated at the beginning of the next iteration and the decoding process is stopped.
In [42], the codeword is estimated after every iteration but it is validated in the next iteration. So
these two methods would take an extra iteration to stop the process after the decoder decoded the
correct codeword. In our design, the codeword is estimated and checked for validity after every
iteration. In a clock cycle, a complete decoding iteration is performed; codeword is estimated and
is validated. The area required to implement this logic is very small when compared to the rest of
the design. The decoding process is stopped if the estimated codeword is correct; otherwise it is
continued until it reaches the maximum number of decoding iterations. This logic will decrease
the decoding latency which in turn saves the power consumed by the chip and increases the data
rate. The proposed decoder can be implemented on FPGAs for only small code lengths.
However, for large code lengths it is shown that the design can be implemented on an ASIC.
The major contributions of this work can be summarized as follows:

e A generic encoder is designed that achieves high data rates. This design methodology can
be used for both structured and any randomly generated regular and irregular LDPC
codes.

e An encoder is designed for structured LDPC codes defined in the IEEE 802.16e standard.
This design methodology can be used for other similar structured LDPC codes such as
IEEE 802.11n.

e A flexible multi-code rate and multi-code length LDPC encoder is designed for structured
LDPC codes defined in IEEE 802.16e standard accommodating code lengths ranging
from 576-2304 with code rates of 1/2, 2/3, 3/4 and 5/6.

e A LDPC decoder is designed that can be used for both structured and any randomly
generated regular and irregular parity-check matrices.

e Procedure to determine the optimum maximum number of decoding iterations for a given

parity-check matrix and SNR is presented.
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8.1 Future Work

Although significant advances have been made during this work, there are several areas

in which further investigation would be useful.

Decrease the latency involved in the computation of parity-check matrix from its
corresponding base parity-check matrix.

Base parity-check matrices, Hp;, of the structured LDPC codes are stored on the
chip to design a flexible encoder accommodating different code lengths and code rates.
Based on the desired code length and code rate, the parity-check matrix is computed from
its corresponding base parity-check matrix and is stored temporarily until the code rate or
the code length is changed. This step needs to be performed only once for a desired code
length and code rate. The latency involved in the computation of parity-check matrix may
affect the overall latency of the encoder when the code rate and code lengths are changed
frequently. The computation latency of H; can be reduced by using efficient
multiplication and division modules. Latency can be further reduced by computing all the
columns of H; in parallel.

Stopping the decoding process

During simulations, it was observed that some codewords are not corrected even
after performing the maximum number of decoding iterations. Identifying such
codewords and stopping the decoding process would decrease the power consumption of
the chip. Also this logic would decrease the decoding latency and increase the decoder
data rate.

A flexible LDPC codec system can be designed that could accommodate parity-check

matrices of different standards.
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Appendix A - Design of a Convolutional Encoder in Verilog HDL

A design created in Verilog HDL is used to illustrate the procedures to synthesize and
place and route a design in FPGA and ASIC using Quartus and Cadence respectively. In this
appendix, Verilog HDL design of a 1/2 rate convolutional encoder with constraint length 7 is

used to demonstrate these procedures.

A.1 Convolutional Encoder

Convolutional encoding is used in forward error correcting codes. Convolutional
encoding is a bit-level encoding technique where it calculates and adds the redundant bits for
every input data bit, based on the polynomials. A 1/2 rate convolutional encoder with constraint
length 7 with polynomials defined as g = 1111001 = (171)s and g = 1011011 = (133)s is
shown in Figure A.1.

g(O)

Data out

Data 1in
(k) V (n)

1
g()

Figure A.1: A 1/2 rate convolutional encoder with constraint length 7.

Design using Verilog HDL for convolutional encoder shown in Figure A.1 is as follows:
convEncoder.v

module convEncoder (n, k, clk, reset);

input k; // input to encoder

input clk, reset; // clock and reset for the encoder
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output [1:0] n; // outputs of the encoder
wire [1:0] n;

reg [6:0] po;

always @(negedge reset or posedge clk)
if (~reset)
po = 7'b0;
else
po = {k, po[6:1]};

assign n[0] = po[6]"po[4]*(po[3]"po[1]"po[0];

assign n[1] = po[6]"po[5]"po[4]"po[3]"*po[0];

endmodule
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Appendix B - FPGA Implementation using Quartus

Quartus software makes it easy to implement a desired logic circuit by using a
programmable logic device such as FPGA. In this appendix, the implementation of a design
specified by Verilog HDL in Quartus Il is presented as discussed in section 3.1. Graphical user
interface is used to invoke Quartus Il commands.

B.1 Creating a Project

Each logic circuit, or sub-circuit, being designed in Quartus Il is called a project. The
software works on one project at a time and keeps all the information for that project in a single
directory. Start the Quartus Il software and the main Quartus Il display is as shown in Figure
B.1. Procedure to implement the design in Quartus Il using Verilog HDL is illustrated by using
an example of the convolutional encoder presented in appendix A. New project needs to be

created to start working on a new design.

(EEEEIEEE T s 02 1T IR IR

ALIERAN
QUARTUS' 11

Version 9.0

[ [EFRa [ I (I

Figure B.1: The main Quartus I display.

New project is created by selecting File — New project wizard. A window pops up
requesting name and directory of the project as shown in Figure B.2. Choose the working
directory and the Verilog HDL file. The directory and the project name are assigned. The name
of the project and top-level design entity of the project are same. Click next and another window
pops up requesting the file name. Add all the files required for the project as shown in Figure

B.3. Choose next. A window pops up asking for device type in which the designed circuit is

112



implemented as shown in Figure B.4. Choose Stratix as the target device family. From the list of
available devices, choose the device called EP1S80F1508C5 which is the FPGA used on Altera’s
Startix board. Press next, which opens the window in Figure B.5. The user can specify any third-
party tools that should be used. A commonly used term for CAD software for electronic circuits
is EDA (Electronic Design Automation) tools. Since third-party tools are not being used nothing
is chosen in this window. Click next. A summary of the chosen setting appears in the screen

shown in Figure B.6.

What iz the warking directary for this project?

|C.\D ocuments and Settingsh 3 atishDesktopiconvE ncoder

what iz the name of this project?

||:DnvEnt:DdE||

“What is the name of the top-level design enfity for this project? This name is case sensitive and must
exactly match the entity name in the desian file.

|convEm:odel
Use Existing Project Settings ...

< Back. Mewt » | Firish ‘ Cancel |

Figure B.2: Creation of new project.

Select the design files you want ta include in the project. Click Add All ta add all design files in the
project directary to the praject. Mate: you can always add design files to the praject later.

File name: ‘convEncodeu v

File hame | Tupe |Library | Design entryésy [HOL wersion Add Al

il

ra N

Specify the path names of anw non-defaul libraries. User Libraries

< Back | Next > | Finish

Cancel |

Figure B.3: Adding design files.
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New'Project Wizard: Family & Device Settings [page 3'oi 1

Select the family and device pou want to target for compilation.

Drevice family Shaw in ‘Available device' list
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‘ J Pir count: Any -

Target device Gpesd grader |5 :|v
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* Specific device selected in Available devices' list I HardCopy compatible only
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EP1S40F1508C5 154 41250 831 3423744 14 12
EP1S60F1020C5 154 57120 782 5215104 18 12
EP1SE0F1020C5_HARD . 1.5 57120 782 5215104 18 12
EP1S80F1020C5 1.5¢ 79040 782 7427620 22 12 E
EP1S80F1020C5 HARD... 1.5¢ 79040 782 5EEA04E 22 12 7
EP1G60F 150605 15 7I040 1212 74arool 22 2l

o
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< Back, I Nesxt > Finish ‘ Cancel |

Figure B.4: Choose the device family and a specific device.

ew Project Wizard:"EDA Tool Settings [page 4 o E
Specily the other EDA tools - in addition to the Quartus |1 software - used with the project.

Design Entry/Synthesis

Tool name:

-

Simulation

Tool name: | <Mone>

Ll L]

-

Timing Analysis

Tool name: | <Mone>

[ENQEY

-

< Back Next > Finish | Cancel |

Figure B.5: Other EDA tools can be specified.

B.2 Compilation of the Project

Run the compiler by selecting Processing — Start compilation. As the compilation
progresses through various stages, its progress is reported in a window on the left side of the
Quiartus Il display. Successful or unsuccessful compilation is indicated in a pop-up box at the end
of the run. Clicking ok leads to the Quartus Il display in Figure B.7. In the message window, at

the bottom of the Figure, various messages are displayed. In case of errors, the relevant messages
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are shown. When the compilation is finished, a compilation report is generated. The flow
summary of the compilation report is shown in Figure B.7. For the implementation of

convolutional encoder on a Stratix FPGA chip requires 7 logic elements and 5 pins

-

New Project Wizard: Summary [ page 5 0 m

‘wihen pou click Finish, the project will be created with the fallowing settings:

Praject directany:
C:/Documents and Settings/Sunitha/convE ncoder)

Praject name: convEncader
Top-level design entity: convEncader
Number of files added: 1

Number of user libraries added: 0

Device assignments:

Family name: Shratiz

Device: EP1580F1508C5
EDA tools:

Design entry/syrthesis: <MNohex

Simulation <MNone>

Tirming amalysis: <Nohex

Operating conditions:
Core voltage: 1.5
Junction temperature range: 085 °C

Cancel ‘

<« Back |

Figure B.6: Summary of the project settings.
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i convEncoder &g M0 7 0 & Flow Summary
EHE Flow Settings
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EH Flow 05 summary Flow Status Successhul -Wed Mar 03 053841 2010
&8 Flowlog Quattus Il Version 50 Build 132 02/25/2009 51 FullVersion
= G nalysis & Syrthesis Revision Name convEncader
© G r Toplevel Entip Name  convEncoder
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Flow: [Corapilation E
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Figure B.7: Flow summary of the compilation report.

B.3 Timing Simulation
Timing simulations are performed on the design to check its behavior before

implementing the design on the FPGA device. Before the design can be simulated, it is necessary
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to create the desired waveforms to represent the input signals. All the inputs and outputs are
specified. Open the waveform editor window by selecting File — New. A window pops up as
shown in Figure B.8, choose vector waveform file and click ok. New waveform editor window

opens as shown in Figure B.9.

New @
SOPC Builder System [»]
=1 Design Files
AHDL File
Black Diagram S chematic File
EDIF File

State Machine File
Systeniverilog HOL File
Tel Sciipt File
Werlog HOL File
WHDL File

=1 Memon Files
Heradecimal [Intel-Fomnat] File
I emory Initialization File

=| Verification/D ebugging Files
In-System Sources and Probes File
Logic Analyzer Interface File
SignalTap Il Logic Analyzer File

Yector Wavefo
- Other Filez

AHDL Include File

Block Symbol File

Chain Description File

Synopsyz Design Constraints File

Text File

[v]

Figure B.8: Creating vector waveform file.

: (]
E'Wavefurvawf ,._,EE

@ Master Time Bar:|  7.5ns  +|*|Ponter| 164ns  Intervak| 859ns  Stat End:

[% A N Walue at
w0 @ ame Thns 7hns

@

100ns W0 |

B I ] £ [
Figure B.9: Waveform editor window.
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Set the desired simulation to run by selecting Edit — End Time and enter 200 ns in the

dialog box. To include the input and output nodes of the design click Edit — Insert — Insert

Node or Bus to open the window shown in Figure B.10. Click on node finder to open the

window shown in Figure B.11 or type the name of the signal in Name part of the Figure B.10.

M arne: || 0K |
Type: |INF'L|T ﬂ Cancel

Y alue type: |9-LEVB| ﬂ Mode Finder...
Radi: | Biinary -]

Busz width: |'|

Start indsw: |D

| Dizplay gray code count as binary count

Figure B.10: Insert node or bus dialog box.

-
Nude Finder w
Named: |" j Filter: |P|ns: al j Custornize: ‘ List Q |
Look in; | jJ I¥ Includs subentities | Cancel |
MNodes Found: Selected Modes:
| Name Assignments | T M ame Assighments | il
Il Unassigned It
-k Unassigned It
Dn Unassigned C
€ n[0] Unassigned T
o (1] Unassigned C
I reget Unaszsigned It
=
¥
<]
L4
< I 1l [)] < ] I [)]

Figure B.11: Selecting nodes to insert into the waveform editor.

In Figure B.11 select pins, all in filter and click List. Select the required pin under nodes
found on the left side of the window shown in Figure B.11 and click > sign to add the node to

selected nodes on the right side of the window shown in Figure B.11. Add each pin or make

multiple pin selections by simultaneously pressing shift button on the keyboard. Input nodes are

assigned a desired waveform by selecting the waveform name and right click — Value to assign
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desired value. Save the waveform file. Timing simulations can be performed by selecting
Assignments — Settings — Simulator settings as shown in Figure B.12. Choose timing as the
simulation mode and the waveform as the simulation input and click ok. Start simulation by
selecting Processing — Start simulation. The obtained simulated waveform is as shown in Figure
B.13.

Seltings —convencader E

Categony.
Gieneral Simulator Settings
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Libraries Select simulation optians.
Device
= DDe\r:;;lr;gg:emngs and Conditions Simulation mode: |T|m|ng j

Temperature Simulation input: |cor’vancoder.vwf #dd Multiple Files...

Compilation Process Settings

+

=I- ED, Tool Settings Simulation period
[SJESi?”_E i/ Synithesis " Run simulation until all vector stimul are used
imulation
Timing Analysis {* End simulation at 200 ne -
Formal Yerification
Physical Synthesis b Bl o -
B L] Glitch filtering aptions: |AU[D J
#- Analysis & Synthesis Settings More Settings.
Fitter Settings
#- Timing Analysiz Settings
Assembler
Dresign Assistant

SignalTap Il Logic Analyzer

Simulation Dutput Files
PowerPlay Power Analvzer Settings
S5N Analyzer Description:

Specifies the end time far simulatian,

Cancel

Figure B.12: Simulator settings.
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Figure B.13: Timing simulation report.
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B.4 Power Analysis

PowerPlay power analyzer tool of Quartus Il is used to perform power analysis. During

simulator settings the simulation output files are created as shown in Fig B.14. Check the

generate signal activity file u

of the .saf file. Signal activity file is generated when timing simulation is performed. PowerPlay

power analyzer tool is started by selecting Processing — PowerPlay power analyzer tool and is

shown in Figure B.15.
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Settings - convincoder E

=1 EDA Tool Set
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rfication

Signal Activity File Dptions
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Figure B.14: Creating .saf file.
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re B.15: PowerPlay power analyzer tool.
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Check the option use input file(s) to initialize toggle rates and static probabilities during
power analysis under Input file. Click add power input file(s) and a window pops up as shown in
Figure B.16. In this window, check the option use input file(s) to initialize toggle rates and static
probabilities during power analysis under select the power analyzer options. Click add and a
window pops up as shown in Figure B.17. Choose the file under file name and select signal
activity file under input file type and click ok. Click ok on power setting window. Power analysis
is performed by clicking start button on PowerPlay power analyzer tool. When power analysis is
finished a window pops up stating PowerPlay power analysis successful.

Categaiy:

General
Files
Libraries Select the pover analyzer aplions.
eeeeee
-1 Operating Setings and Candiians
Yaltage
Temperature
/- Compilation Process Setiings Fie name Type Entity
-1 EDA Tool Setings

Add
Design Enti/Syrthesis
[z |

[ Use input filefs) o niialize taggle rates and static probabiities during power analysis
Input Fiefs)

Simulation
Timing Analysis
Fomal Veriication

Physical Sprthesis < >
Busri svel - )
% Potform aitoh fils D f
+ Analysis & Synthesis Setfings e
Fitter Settings

% Tiring Anslysi Setings ™ “wite ut signal activities used during power analysis

Assambler

Design Assistant
SignalTap Il Logic Analzer [~ Wite signal activites ta report fle

Logic Analyzer Interface [~ ‘Wiite power dissipation by black ta report fle
=I- Simulator Settings

ot Vesiication Defaul taggle rates for unspecified signals

Simulation Dutput Files Dictault togale rate used for input 140 signals; [12.5 % =
PowerPlay Power Analyzer Settings
S5H Anshzer Diefault toggle rate used for remaining signals

@ Uss default value: [125 -4 -

(@)

0K Cancel

Figure B.16: Power settings.

-

Add new power input file ahd et properties.

File name: |convEncoder.saf

L]
=

E ntity: |u:onvE ricoder

Input File Type
{* Signal Activity File
" YCD file

™

[ = =
[ = =

ak | Cancel |

Figure B.17: Add power input file.
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Click on the report button on PowerPlay power analyzer tool to view the PowerPlay
power analyzer summary as shown in Figure B.18. Summary report consists of estimated total

thermal, dynamic, static and 1/0 thermal power consumption of the design.

‘5‘ ompilation’ Report™ PowerPlay Power AnalyzersSummary ;Eg

@ Flow Log Pl PowerPlay Power Analyzer Sumimary

+-&B] Analysis & Synthesis

+ SH] Fitter
+- 5] Assembler
= é@ Timing Analyzer
SEE summary
SHER settings
] ‘owerPlay Power Analyzer Status uccessful - Sun Mar :4E:
&HER Clock Sattings Summar PowerPlay Power dnalyzer 5 5 ful - Sun Mar 07 20:46:39 2010
B Parallel Cormpilation K i X
S Clack Setup: 'k Qua.rtys I Yersion 9.0 Buid 132 02/25/2009 5J FulVersion
S tsu FRevision Name convEncoder
tco op-level Entity Marme convEncoder
Top-level Entity M Encad;
S th Farmnily Stratix
f i) Messages Device EP1580F1505C5
=& 23 PowerPlay Power Analyzer Powsr Madels Final
gg :ug:mary = Total Thermal Power Digsipation 1537.92 miw'
? nas " Core Dynamic: Thermal Power Dissipation 0,38 mif
SHER Simulation Files Read N L
o ore Static Thermal Power Dissipation .00 i
SHEA Thermal Power Dissipal Corz Static Themal P b . 1395.00 miv!
S4B Thermal Power Dissipal 10 Thermal Power Dissipation 14255 miwd
55 Thermal Paveer Dissipal Power E stimation Confidence Medium: user provided maderately complete taggle rate data
SER Core Dynamic Thermal
+ 5[:] Current Dravwn From Yo
SHEA Confidence Metric Det:
B Signal Activities
@f‘y Messages
-
l( | 1] | (=]

Figure B.18: PowerPlay power analyzer summary.
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Appendix C - ASIC Implementation using Cadence

Procedure to synthesize and place and route a design in Cadence using an example is
presented. The design in Verilog HDL is synthesized using RTL Compiler. The synthesized

design is then place and route in Encounter.

C.1 Initial Setup
Standard cell library developed at Virginia Polytechnic Institute and State University is
used to place and route the design. The standard cell library VTVT_TSMC250 design Kit is
downloaded from the following link http://www.vtvt.ece.vt.edu/visidesign/download.php. Unzip
the files and copy the directory named vtvt_tsmc250 release under your UNIX directory. The
cadence files are available under directory vtvt tsmc250 release/Cadence_Libraries for the
actual physical layout of the standard cells.
Cadence environmental variables need to be set up for verifying the design in Cadence Virtuoso
which is explained in the later section.
e Create a script file called cadence-script and include the text below in the file
setenv USE_NCSU_CDK
setenv CDK_DIR /cadence/tools/dfll/local/ncsu_rel_1.5.1
e Source the cadence_script by using following commands
/bin/csh
source /idrive/cadence_script
Following steps are performed before synthesizing the design:
e Move the standard cell library layout directory vtvt_tsmc250 into the cadence directory
(directory created to run the project in this example).
e Add the library to cadence library manager by adding the line below in the cds.lib file
INCLUDE /cadence/tools/dfll/local/ncsu_rel_1.5.1/cdssetup/cds.lib
DEFINE vtvt_tsmc250_nolabel ./vtvt_tsmc250_nolabel
e Copy vtvt _tsmc250.lib, wvtvt_tsmc250.lef, vtvt _tsmc250.tf, vtvt SocE2df2.map and
vivt_tsmc250_StreamIn.map into libs directory
e Copy display.drf from /cadence/tools/dfll/local/ncsu_rel _1.5.1/cdssetup/display.drf to the

current directory
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e Attach library vtvt_tsmc250 to TSMC_CMOS025_DEEP techfile by doing the following

steps:
" Invoke cadence
ictb
" In CIW — Tools — Technology File Manager —Attach
. Design Library: vtvt_tsmc250_nolabel
" Technology Library: NCSU_TechLib_tsmc03d
" The standard cell views are now available in the Library Manager

C.2 Synthesis of Verilog HDL Modules in RTL Compiler
In this section the steps followed to synthesize the design using RTL Compiler are
presented.
e Invoke RTL Compiler
rc —qui
e Run the script
File — source script — rc.tcl

The synthesized convolutional encoder design is shown in Figure C.1.
I

File Report Tools Freferences Window Help cadence

]
Logical | HDL Schematic
i~ o rlogaqQQEE gAY S 1o

2:oinput k;

3: input ck, reset;

4: output [1:0] n;

5: owire [1:0] nr

6: reg [6:0] polir

Toohr

§: always @(negedge rese
9: if {~resetjir

10 po = 7'bohr

11: elselr

12: po = {k, po[B:1]}hr

13: W

14: assign n[0] = ((po[6]"pol

15: assign n[1] = ({po[6]"po|

16: endmoduletr

B =
coder/design/convEncodery convEncoder 1

Design is mapped

Figure C.1: Synthesized convolutional encoder in RTL Cadence.

123



The script file used to generate the synthesized design is given below:
RTL script file rc.tcl

# Stepl: Specify Verilog HDL design files

# All HDL files, separated by spaces

set hdl_files {/mnt/hgfs/Idrive/cadence_encoder/design/convEncoder.v}
# The Top-level Module

set DESIGN convEncoder

# Set clock pin name in design.

Set clkpin clk

# Target frequency in MHz for optimization

set delay 100
tisskieiashaiaisdshiaisiaiaisainisisaiuisaiaieissiaisidiaiaisiaiaiaidaiaiaisiieiaiialel

# Target Library path is set

# NO further changes past this point

set_attribute lib_search_path

{/cadence/tools/dfll/local/ncsu_rel 1.5.1/lib/NCSU_TechLib_tsmc03d}
set_attribute library {/Imnt/hgfs/ldrive/cadence/libs/vtvt_tsmc250.lib}

# Verilog HDL files are read

read_hdl ${hdl_files}

# Design is elaborated

elaborate $DESIGN

# Apply Constraints

set clock [define_clock —period ${delay} —name ${clkpin} [clock ports]]
external_delay —input 0 —clock clk [find / -port ports_in/*]
external_delay —output 0 —clock clk [find / -port ports_out/*]

# Sets transition to default values for Synopsys SDC format, fall/rise

# 400ps

dc::set_clock_transition .4 clk

# Design is checked

check_design —unresolved
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report timing —lint

# Synthesis of the design

synthesize —to_mapped

# Analyzing and reporting

report timing > timing.rep

report gates > cell.rep

report power > power.rep

# Generating synthesized design
write_hdl -mapped > ${DESIGN}.vh
write_sdc > ${DESIGN}.sdc

puts “Synthesis Finished! «“

puts “Check timing.rep, area.rep, gate.rep and power.rep for synthesis results”

C.3 Place and Route using Cadence Encounter
Once the design is synthesized in Cadence RTL it is then place and route in Cadence
Encounter. The following steps are performed to place and route the design [67].
Step 1: Invoke Encounter: Invoke Encounter from the design directory by using the following
command
e encounter
Step 2: Import Design: Import the synthesized design by selecting the following options under
basic and advanced tab as shown in Figures. C.2 and C.3.
e Design — Import design
Basic tab —» Verilog Netlist: Files: convEncoder.vh
By User: convEncoder
Timing Libraries: Common Timing Libraries: vtvt_tsmc250.lib
LEF Files: vtvt_tsmc250.lef
Timing Constraint File convEncoder.sdc (optional)
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[~ Design Import (= )[=][x]
ou | ]

— Verilog Hetlist:

Files: |EunvEnzndervh

Top Cell: «- Auto Assign # By User |convEncoder

— Timing Libraries:
Max Timing Libraries |

Min Timing Libraries: |

Common Timing Librarles: [vivt_tsmc250.1l

LEF Files Ivtvl_tschSD lef

Timing Constraint File |cunvEncuder.sdc

ol | L

10 ssignmant File: |

Ok | Save.. | Load... | Cancel | Help | |

Figure C.2: Basic design import.

e Advanced Tab —» Power Power Nets: vdd
Ground Nets: gnd
Leave all the other fields as default. Click OK.

] Design Import BEE
Delay Calculation [ Power Mets: |vedd
o Ground Mets: [gnd
LA )
\POYCTS Togygle Rate Scale Faclur.l 1.0
Openfcoess
RC Exfraction
RTL
Sl Analysis
Timing
Yield
MMMC
¥
0K | Save.. | Load... | Cancel | Help |

Figure C.3: Advanced design import.
e After importing the design a window appears as shown in Figure C.4 showing the initial

floorplan.
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Design  Edit  Synthesis  Pafition  Floorplan  Power  Place  Clock  Route  Timing  S1 Verify  Tools  Help cadence
D[QAQAE 0O E [ S5 | @50 0| FEN G [pemwmnmy [~ —
b o] ] e [ 33 L [ W =[] [ AW

Tk

Q (11265,  168.22)

Figure C.4: After importing the design.
Step 3: Floor Planning: Depending on the size of the design the floorplan is specified. Figures.
C.5 and C.6 show the specify floorplan and after floorplan windows respectively.
e Floorplan — Specified Floorplan
Basic — Die Size by:  Width: 500, Height: 500
Core Margins by: Core to 10 Boundary
Core to Left: 38 Core to Top: 38
Core to Right: 38 Core to Bottom: 38

Click OK.

Basic || Advanced |

Design Dimensions
Specify By: 4 Size DiefI0/Care Coordinates
Core Size by: 0.9361980€
0.705405
0.699623
d0.5a
736
# Die Size by Width s00
Height 500
Care Margins by: 4 Core to 10 Boundary
Core to Die Boundary

Care to Left il Care to Top st}
Caore to Right: 35 Care to Bottom 3
Die Size Calculation Use: fax 10 Height 4 Min 1O Height
Floorplan Crigin at: # Lower Left Comer Center
Unit: dicron
K Apply Cancel Help

Figure C.5: Specify floorplan.
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nMer(TM) RTL-10-GDSII System 7.1 - /mny/hgfs/ldriv

6592,  183.58)

Q «

Figure C.6: After floorPlan.
Step 4: Power Planning: Rings and stripes are added. Windows for add rings and after adding

rings are shown in Figures. C.7 and C.8 respectively. Similarly windows for add stripes and
after adding stripes are shown in Figures. C.9 and C.10 respectively.

Power — Power Planning — Add Rings
Basic — Ring Configuration: Layer: Width: 10.8,

Spacing: 2.16

Click OK.

B Advanced | Via Generat
Nelgsy: [gnd vad
Ring Type
 Core i
* o Along /0 boundary
Block ring(s) around
User defined coordinats
Ring Configuration
Top. Bt Let: Right
Layer:  metall H metall H metalz metalz
widh 0. 108 108 108
Spacing: 215 216 216 z1d Update
Offsst - Cenler in channel  + Spesity
o8 108 108 o8
Option Set
Use option set Hs
oK Yariables Apply Defaults Cancel Help

Figure C.7: Add rings.
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SoC Encounter(TM) RTL-to-GDSII System 7.1 - /mny/hgts/Idrive/cadence_encoder/design - convEncoder

Design  Edit Synthesis Partiion  Floorplan  Power Place Clock Route Timing S| Verify Tools Help cadence

EEEEECEIRT S s R Y EEEY )
e ] wn) % /m e w52 1 R(k[i]=[4] [Eas

FPlan View
Module

Fence

Guide

obstruct [l
Region

atea Density
Instance

St Cell

Cover Cell
Block

10 Cell

Area 10 Cel
et |
Special Net
Terminal

Ruler

Text

Rel. FPlan

All Colors

W OW WM NN NN NN NNEEENN N

vield cell [
vield Map [
SDP Connect
Density Map [

J Q ( 23500,  6532)

I ARRRRRR R R R R

Tk

Figure C.8: After adding rings.
e Power — Power Planning — Add Stripes
Set Configuration: Layer: Metal2
Direction: Vertical Width: 10.8
Spacing: 2.16
Click OK.

Bavc | Advanced | Via Generstion |

oK Vanania: Apply Default Cancal Help

Figure C.9: Add stripes.
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SoC Encounter(TM) RTLo-GDSII System 7.1/ JIdrive/cadence_encoder/ - convEncoder

Design  Edit Synthesis Parfiion FEloorplan  Power  Place  Clock  Route  Timing S| Werify  Tools  Help cadence
BQQAEO 0|0 E BT 5 ¢ | @ 0|5 % |[peim s nvinory
In ks8] w18 % B[00 53] 1|8 g ¥|=% EAR

FPlan View
Module

Fence

Guide

obstuct [l
Region

Area Density
Instance

St Cell

Cover Cell
Block

10 Cell

Area 10 Cell
Net O
Special Net
Terminal

Ruler

Text

Rel. FPlan

Vield Cell  [FE
vield Map [
SOP Cannect
Density Map E

All Colors

W W W W W MWW W W [W o

WOW N W W NN N NN NNNE®ENEN|N<
L

Th

J a (7305, 1868)

Figure C.10: After adding stripes.
Step 5: Special Route: SRoute is performed to do the final power routing and is shown in Figure
C.11. Figure C.12 shows the routed design.
e Route
Route — Special Route
Click OK

Basic | Advanced | Via Generafion |

Metts): [gna vaa

Foute
W Block pins W Pod pins W Pad rings M Stendard cell pins M Stripes (unconnected)

Routing Control
Layer Changa Control
Top layer M5 Botom layer M1
 Shaigh conneciions and allow jogging Straight canneciions only Same lager rouling only
W Prefer siraight with layer change
® Prefer different layer jog

Prefer same layer jag

Area

Delete existing routes

Generale prograss messages [0

Extra conf fle

oK Apply Detaults Cancal Help

Figure C.11: Special route.
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Bl 5oCEncounter(TM) RIL1o-GDSII System 7.1 - /mnyhgfs/idrive/cadence_encoder/design - convEncoder

Design  Edit  Syrthesis  Partition  Floorplan  Power  Place  Clock  Route  Timing  SI Vernfy  Tools  Help éden(e
EEEEEEER S R L R
SRR DR ER R ERE

WO W<
OO (W

Q (24954,  224.59)

Figure C.12: After special route.
Step 6: Place: Design is Placed by filling the form as shown in Figure C.13. Change the view
form floorplan to physical view by selecting the appropriate view as shown in Figure C.14.
e Place
Place — Standard Cells

Chose Run Full Placement

# Run Full Placement Run Incremental Placement Run Placement In Floorplan kode

Optimization Options
H Include Pre-Place Optimization

Include In-Place Optimization

Mumber of Thread(s): |1 Set Multiple CPUL..

Ok Apply Mode Defaults Cancel Help

Figure C.13: Place.

e Set View option to Physical View
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Floorplan Physical View

- -

__ soC Encounter(TM) RTL-1o-GDSII System 7.1 - /mn/hgfs/Idrivejcadence_encoder/des gn - convEncoder
Design Edit Synthesis  Partiion Floorplan  Power Place Clock Route  Timing  SI Werify cadence

EAQAR0OME|2F]5 ¢ [@& 0L FES &|oomly e = ===
R EREE R T

FPian View
Module

Fence

Guide

obstruct [l
Region

tea Density
Instance

St Cell

Cover Cell
Block

10 Cell

Atea 10 Cell
et O
Special Net
Terminal

Ruler

Text

Rel. FPlan

vield cell [
vield Map [
SDF Connect |
Density Map [

v

Kol Help

LA R R REE I

IR R R RN REEERERREEREEILPS

Tk

J Q (53300,  524.09)

Figure C.14: After placing cells.

Step 7: NanoRoute: For global routing nanoRoute is used. Figures C.15 and C.16 show the
options chosen for NanoRoute and window after NanoRoute is performed respectively.
¢ Route
Route — Nanoroute — Route
Click OK

7 NanoRoute 7 7

Routing Phase

®  Global Route

W Detail Route Start Iteration default End lteration default
Post Route Optimization _{ Oplimize Via | Opiiize Wire

Concurrent Routing Features

W Fix Antenna Insert Diodes
Congestion Timing
W Timing Driven EEm 2 SMART.
5l Driven

Fost Route S
Litho Driven

Routing Control

Selected Nets Only  Bottom Layer derault Top Layer default
ECO Route
Atea Route

Job Control

W Auto Stop Batch

Wurber af Threadi(s) For Multiple Threaded:[1
Number of Thread(s) For Superthreadect |1
Number of Host(s) For Superthreadect [T

Set Mulfiple GPL.

OK Apply Atribute Mode Save Load Cancel Help

Figure C.15: NanoRoute.
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~50C Encounter(TM) RTLto-GDSII System 7.1 - /mnthgfs/idrive/cadence_encoder/design - convEncodes - -
Design Edit Synthesis Parion  Flooplan  Power Place Clock Roule Timing S| Verfy Tools Help cadence

[ERQRQE0 0| E | &9 5 | @& 60| FE S &[0 foue

All Colors

ENOREEREE Eala

FPlan View
Module

Fence

Guide

obstruct [l
Region

Area Density
Instance

St Cell

Cover Cell
Block

10 Cell

Area 10 Cell
et O
Special Net
Terminal

WOEOW N W NN NWE NN W

HE NN NN NN NN ENEN NN NN E<
|

Rel. FPlan

“ield Cell B8
wield Map 5
SOP Connect
Density Map B

J Q ( 47060, 51517)

Figure C.16: After nanoRoute.
Step 8: Place: Filler cells are added to allow all the wells to be at the same potential. Place
options window is as shown in Figure C.17. Figure C.18 shows design after placing the filler
cells.
e Place
Place — Filler — Add filler
Click OK

Add Filler Mo
Fer
Cell Name(s) [filler Select el
Frefi< |FILLER Oh
Ret
Power Domain Select ar
Mo DRC Inst
W Mark Fixed it
Co
Fill Area Elo
: select Filler Cells &
€
Selectable Cells List Cells List q
filer (T - | | ¢
QK
r
|
Add T
Delete (=
e
| [ | B
hd Juf
| < —— - |« —— -
Close

Figure C.17: Add filler.
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SoC Encounter(TM) RTL-to-GDSII System 7.1 - /mntfhgfs/|drive/cadence_encoder/design - convEncoder

Design Edit Synthesis Partion Floorplan  Power Place Clock Route Timing S| Verfy Tools Help cadence

2l a@ooaE-|&P)> ¢ [@& 00 |FMEN & oo Roue [= =0r===

R E RS Eale

FFlan View
Module

Fence

Guide

obstruct [l
Region

Area Density
Instance

HE NN NN NN N

Special Met
Terminal

]
2
]
o
WOEOWONE W NN NN NN NN NNENN<

S0P Connect W
Density Map B

+++++ %

Figure C.18: After adding fillers.
Step 9: Verify: Final layout of the design is verified. Design connectivity and the geometry are

verified by following commands. Design should pass selected tests. Connectivity and geometry

options are as shown in Figure C.19 and C.20 respectively.
e Verify
Verify — Verify Connectivity
Click OK.

. Verify Connectivity

Het Type
# all

Regular Only
Special Only

Hets
& All

Selected
Mamed:

Check.
H Open W UnConnected Pin W Unrouted Met

Connectivity Loop W Antenna W ‘Weakly Connected Pin
Geometry Loop Geometry Connectivity

Connect Pad Special Ports

Verify Connectivity Report: |convEncoder.conn.rpt File
Report Limits
Error:|1000 Warning: |50
Ok Apply Cancel Help

Figure C.19: Verify connectivity.
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e Verify —» Verify Geometry
Click OK.

€@ = veiyGeomey  |BOEE
s |

— Verification Area
4 Entire area

~ Specify

— Check
W Minimum Width W Minimum Spacing
W Minimum Area W Same Met Spacing
W Short I Geometry Antenna
W Cell Overlap | Off Routing Grid
W Insuficient Metal Overlap I O Manufacturing Grid
W MinHole W Implant Check
W Minimum Cut W Minstep

W Via Enclosure

All

Fin In Blockage

Same Cell Violations

Different Cell Violations

Qverlap of Pad Filler Cells

Overlap of Routing Blackages And Pins
Overlap of Routing Blackage And Cell Blockage

LLLL NN

ok | Apply | Cancel | Help ||

Figure C.20: Verify geometry.
Step 10: Export: The design is saved and its GDS file is exported. Figure C.21 shows the GDS
export form.
e Export GDS
Design — Save — GDS

Output Stream File: convEncoder.gds

Map File: vtvt_SocE2df2.map

Click OK.

™ Applications  Actions % @ Q g ‘a’
(] aaga
Output Stream File |convEncoder.gdd EI

Map File [vivl_SocE2diz.map I=l|

Library Mame |Des|gnL\b

W GDS Structure Name convEncader

| Aftach Instance Mame

| Attach Met Mame

I Merge Stream Files J I Uniguify Cell Names

_| Stripes |1

| Write Die Araa as Boundary

| ‘write abstract information for LEF Macros

Units 100 |

Mode  ALL _||

OK | Apply | Cancel | Help | |

Figure C.21: GDS export form.
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C.4 Verification of the Design
The layout of the design generated in Cadence Encounter is imported into Cadence icfb
to verify if the Encounter has properly generated the design. Also to check if the generated
design is DRC clean. Verification of the design is performed as follows:
The layout generated in the Encounter is imported into Cadence Virtuoso.
Step 1: Start Cadence icfb
Step 2: In the CIW — File — Import — Stream..
In the Stream In form fill the following as shown in Figure C.22.
e Run directory: .
e Input file: convEncoder.gds

e Library name: vtvt_tsmc250

Virtuoso® Stream In

0K Cancel | Defaults| Apply Help

User-Defined Data And Options User-Defined Data Options Set Fast Options

Template File Load | Save Browse...

Run Directory

Input File ‘ncoder feonvEncoder. gds, Browse...
Top Cell Hame

Output 4 Opus DB ASCI Dump TechFile
Library Hame vevt_tsme250

ASCIl Technology File Hame b Browse...
Scale UW/DBU 0. 00100000

Units # micron .- millimeter . mil

0
Process Mice Value 0-20

Error Message File PIPO.LOG Browse...

Figure C.22: Stream in form.
Step 3: Select User-Defined data:
Fill the details as shown in Figure C.23.

e Layer map table: vtvt_tsmc250_StreamIn.map

7 Stream In User-Defined Data

oK Cancel | Defaulis| Apply Help
Cell Name Map Table Browsse...
Layer Map Table - tsmcZ50_StreamIn. map Browse...
Text Font Map Table Browse...
Restore Pin Attribute ]
User-Defined Property Mapping File Browse...
User-Defined Property Separator
User-Defined SKILL File Browse...

Figure C.23: User-defined data form.
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Step 4: Select options:
e Fill as shown in Figure C.24. Click OK.

A pop-up message appears indicating that PIPO STRMIN completed successfully.

Stream In Options

OK | Cancel  Defaults| Apply Help

Report Bad Polygons

Snap XY to Grid Resolution
Convert Array to Simple Mosaic
Skip Undefined Layer-Purpose Pair

Convert Zero Width Paths to 4 lines ighore

Case Sensitivily preserve upper 4 lowe
Text Case Sensitivity # preserve . -upper . -lowe
Convert Nodes to dots 4 ignore

Keep PCells

Replace [] with <>

Merge Undefine Purpose to drawing

Precision Report [ |

Ignore BOX Record

Retain Reference Library (No Merge)

Do Hot Overwrite Existing Cell |

Filter Out Waming/Information Messages

Filter Out Unmapping Warning

Hierarchy Depth Limit 26
Maximum Vertices in Path/Polygon 1024

Rod Directory

Reference Library Order
Keep Stream Cells

Figure C.24: Options form.
Step 5: In the layout view, as shown in Figure C.25.

e Verify — DRC... and select OK. Design must be DRC clean.
_ e _ —_—

OK Cancel | Defaults | Apply Help

Checking Method # flat hierarchical hier wfo optimization

Checking Limit & full incremental by area
Coordinate 3el by Cursor

Switch Names Set Switches

Run-Specific Command File

Inclusion Limit 100¢ Limit Rule Errors 0
Join Hets With Same Name Limit Run Errors 0
Echo Commands L

Rules Fle divaDEC. ru]..‘g’.

Rules Library M  Techlib_tsmc03d

Machine # local remote Machine

Use Error Database

Figure C.25: DRC form.
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The synthesized design in Cadence RTL is imported into a schematic in Cadence icfb.
Step 6: Start Cadence icfb
Step 7: In the CIW — File — Import — Verilog...
Fill in the form as shown in Figure C.26.

e Target library name: convEncoder_design

e Reference library: vtvt_tsmc250 basic

e Verilog files to import: convEncoder.vh

e Import structural modules as: Schematic

e Power net name: VDD

e Ground net name: GND

i Verilog In
0OK Cancel Defaults Apply Load 3ave Help

ade_wavescan. Log
appOption. dat/
smnt /hgfs/Idrive /convEncoder

Target Library Hame convEncoder_desigr Browse
Reference Libraries vtvt_tsmc250 hasic

Verilog Fles To Import convEncoder . wh Add
-f Options il
-v Options Add
-¥ Options Add

Library Extension
Library Pre-Compilation Optiohs

Pre Compiled Verilog Library |

HDL View Hame hdl

Target Compile Library Hame E Browse
Compile Verilog Library Only

Ignore Modules File f Add
Import Structural Modules As schematic
Structural View Hames
Schematic | schematic Hetlist netlist
Functional | functional Symbol symbol]
Log Fle . fverilogIn. Log Work Area S
Hame Map Table feerilogIn. map. tahle

Ovenwrite Existing Views
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Figure C.26: Import Verilog in.
The synthesized design is shown in Figure C.27.
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Figure C.27: Schematic view.
To check if schematic and layout have the same netlist, LVS is run on both schematic and layout.
Step 8: Open both the schematic and layout views
Step 9: Extract the layout using Verify — Extract —» OK. The extracted view of the

convolutional encoder is shown Figure C. 28.
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Figure C.28: Extracted view.
Step 10: Open the extracted view and perform LVS by choosing Verify — LVS as shown in
Figure C.29.
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A pop-up window appears notifying successful completion or failure of the LVS.

In the LVS window click output to get the information regarding the LVS run.
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Figure C.29: LVS.
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Appendix D - Quantization of Log-Likelihood Ratios in Decoder

Implementation

In subsection 7.2.1.1 and 7.2.1.2, it is shown that 5-bit and 6-bit quantizations are
required to represent ¢(z) and log-likelihood ratios, respectively, without compromising much on
performance and latency. The actual value, binary equivalent and binary representation of z, ¢(z)
and log-likelihood ratios are shown in Table D.1 and D.2 respectively.

Table D.1: Quantization of ¢.

Actual Binary Binary
Value Equivalent Representation

z o(2) z o(z) z o(2)

0 3.875 0 31 00000 11111
0.125 2.750 1 22 00001 10110
0.250 2.000 2 16 00010 10000
0.375 1.625 3 13 00011 01101
0.500 1.375 4 11 00100 01011
0.625 1.125 5 10 00101 01010
0.750 1.000 6 8 00110 01000
0.875 0.875 7 7 00111 00111
1.000 0.750 8 6 01000 00110
1.125 0.625 9 5 01001 00101
1.250 0.500 10 4 01010 00100
1.375 0.500 11 4 01011 00100
1.500 0.375 12 3 01100 00011
1.625 0.375 13 3 01101 00011
1.750 0.250 14 2 01110 00010
1.875 0.250 15 2 01111 00010
2.000 0.250 16 2 10000 00010
2.125 0.125 17 1 10001 00001
2.250 0.125 18 1 10010 00001
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2.375 0.125 19 1 10011 00001
2.500 0.125 20 1 10100 00001
2.625 0.125 21 1 10101 00001
2.750 0.125 22 1 10110 00001
2.875 0.000 23 0 10111 00000
3.000 0.000 24 0 11000 00000
3.125 0.000 25 0 11001 00000
3.250 0.000 26 0 11010 00000
3.375 0.000 27 0 11011 00000
3.500 0.000 28 0 11100 00000
3.625 0.000 29 0 11101 00000
3.750 0.000 30 0 11110 00000
3.875 0.000 31 0 11111 00000

Table D.2: Quantization of log-likelihood ratios.

Actual Binary 2’s Complement
Value Equivalent | Representation
0 0 000000
0.125 1 000001
0.250 2 000010
0.375 3 000011
0.500 4 000100
0.625 5 000101
0.750 6 000110
0.875 7 000111
1.000 8 001000
1.125 9 001001
1.250 10 001010
1.375 11 001011
1.500 12 001100
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1.625 13 001101
1.750 14 001110
1.875 15 001111
2.000 16 010000
2.125 17 010001
2.250 18 010010
2.375 19 010011
2.500 20 010100
2.625 21 010101
2.750 22 010110
2.875 23 010111
3.000 24 011000
3.125 25 011001
3.250 26 011010
3.375 27 011011
3.500 28 011100
3.625 29 011101
3.750 30 011110
3.875 31 011111
-4.000 -32 100000
-3.875 -31 100001
-3.750 -30 100010
-3.625 -29 100011
-3.500 -28 100100
-3.375 -27 100101
-3.250 -26 100110
-3.125 -25 100111
-3.000 -24 101000
-2.875 -23 101001
-2.750 -22 101010

143




-2.625 -21 101011
-2.500 -20 101100
-2.375 -19 101101
-2.250 -18 101110
-2.125 -17 101111
-2.000 -16 110000
-1.875 -15 110001
-1.750 -14 110010
-1.625 -13 110011
-1.500 -12 110100
-1.375 -11 110101
-1.250 -10 110110
-1.125 -9 110111
-1.000 -8 111000
-0.875 -7 111001
-0.750 -6 111010
-0.625 -5 111011
-0.500 -4 111100
-0.375 -3 111101
-0.250 -2 111110
-0.125 -1 111111

144




