

FLEXIBLE ENCODER AND DECODER DESIGNS FOR

LOW-DENSITY PARITY-CHECK CODES

by

SUNITHA KOPPARTHI

B.E., Andhra University, 2000

M.S., Louisiana State University, 2003

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Electrical and Computer Engineering

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2010

Abstract

Future technologies such as cognitive radio require flexible and reliable hardware

architectures that can be easily configured and adapted to varying coding parameters. The

objective of this work is to develop a flexible hardware encoder and decoder for low-density

parity-check (LDPC) codes. The design methodologies used for the implementation of a LDPC

encoder and decoder are flexible in terms of parity-check matrix, code rate and code length. All

these designs are implemented on a programmable chip and tested.

Encoder implementations of LDPC codes are optimized for area due to their high

complexity. Such designs usually have relatively low data rate. Two new encoder designs are

developed that achieve much higher data rates of up to 844 Mbps while requiring more area for

implementation. Using structured LDPC codes decreases the encoding complexity and provides

design flexibility. The architecture for an encoder is presented that adheres to the structured

LDPC codes defined in the IEEE 802.16e standard.

A single encoder design is also developed that accommodates different code lengths and

code rates and does not require re-synthesis of the design in order to change the encoding

parameters. The flexible encoder design for structured LDPC codes is also implemented on a

custom chip. The maximum coded data rate of the structured encoder is up to 844 Mbps and for

a given code rate its value is independent of the code length.

An LDPC decoder is designed and its design methodology is generic. It is applicable to

both structured and any randomly generated LDPC codes. The coded data rate of the decoder

increases with the increase in the code length. The number of decoding iterations used for the

decoding process plays an important role in determining the decoder performance and latency.

This design validates the estimated codeword after every iteration and stops the decoding process

when the correct codeword is estimated which saves power consumption. For a given parity-

check matrix and signal-to-noise ratio, a procedure to find an optimum value of the maximum

number of decoding iterations is presented that considers the affects of power, delay, and error

performance.

FLEXIBLE ENCODER AND DECODER DESIGNS FOR

LOW-DENSITY PARITY-CHECK CODES

by

SUNITHA KOPPARTHI

B.E., Andhra University, 2000

M.S., Louisiana State University, 2003

A DISSERTATION

submitted in partial fulfillment of the requirements for the degree

 DOCTOR OF PHILOSOPHY

Department of Electrical and Computer Engineering

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2010

Approved by:

Major Professor

Don M. Gruenbacher

Copyright

SUNITHA KOPPARTHI

2010

Abstract

Future technologies such as cognitive radio require flexible and reliable hardware

architectures that can be easily configured and adapted to varying coding parameters. The

objective of this work is to develop a flexible hardware encoder and decoder for low-density

parity-check (LDPC) codes. The design methodologies used for the implementation of a LDPC

encoder and decoder are flexible in terms of parity-check matrix, code rate and code length. All

these designs are implemented on a programmable chip and tested.

Encoder implementations of LDPC codes are optimized for area due to their high

complexity. Such designs usually have relatively low data rate. Two new encoder designs are

developed that achieve much higher data rates of up to 844 Mbps while requiring more area for

implementation. Using structured LDPC codes decreases the encoding complexity and provides

design flexibility. The architecture for an encoder is presented that adheres to the structured

LDPC codes defined in the IEEE 802.16e standard.

A single encoder design is also developed that accommodates different code lengths and

code rates and does not require re-synthesis of the design in order to change the encoding

parameters. The flexible encoder design for structured LDPC codes is also implemented on a

custom chip. The maximum coded data rate of the structured encoder is up to 844 Mbps and for

a given code rate its value is independent of the code length.

An LDPC decoder is designed and its design methodology is generic. It is applicable to

both structured and any randomly generated LDPC codes. The coded data rate of the decoder

increases with the increase in the code length. The number of decoding iterations used for the

decoding process plays an important role in determining the decoder performance and latency.

This design validates the estimated codeword after every iteration and stops the decoding process

when the correct codeword is estimated which saves power consumption. For a given parity-

check matrix and signal-to-noise ratio, a procedure to find an optimum value of the maximum

number of decoding iterations is presented that considers the affects of power, delay, and error

performance.

 vi

Table of Contents

List of Figures ... x

List of Tables ... xiv

Acknowledgements .. xvi

Dedication ... xvii

CHAPTER 1 - Introduction .. 1

1.1 Motivation ... 2

1.2 Literature Review ... 4

1.2.1 Encoder Implementation .. 4

1.2.2 Decoder Implementation .. 6

1.3 Accomplishments .. 8

1.4 Organization of Dissertation ... 9

CHAPTER 2 - Low-Density Parity-Check Codes .. 10

2.1 Encoding ... 10

2.1.1 Generic Encoding ... 11

2.1.2 Efficient Encoding ... 12

2.2 Decoding ... 14

2.2.1 Logarithmic Message Passing Algorithm .. 15

2.2.2 Minimum Sum Algorithm .. 17

2.2.3 Modified Minimum Sum Algorithm .. 18

2.2.4 Other Decoding Algorithms ... 18

CHAPTER 3 - Design Tools for FPGA and ASIC Implementation .. 19

3.1 Altera Quartus ... 19

3.1.1 Compilation .. 21

3.1.2 Simulations .. 21

3.1.3 Power Analysis .. 22

3.2 Cadence ... 23

3.2.1 RTL Compiler .. 25

3.2.2 Encounter ... 26

 vii

3.3 Matlab ... 27

CHAPTER 4 - Encoder Design for Randomly Generated Low-Density Parity-Check Codes 30

4.1 Encoder Design ... 30

4.1.1 Preprocessing ... 31

4.1.2 Hardware Implementation ... 34

4.1.2.1 Multi Clocked Inner Product .. 35

4.1.2.2 Single Clock Inner Product ... 36

4.2 Results ... 36

CHAPTER 5 - Encoder Design for Structured Low-Density Parity-Check Codes 41

5.1 Structured LDPC Codes .. 41

5.2 Design Methodology ... 43

5.3 Hardware Implementation .. 44

5.3.1 Computation of V ... 44

5.3.1.1 Vector-Vector Multiplication .. 45

5.3.1.2 Computation of ep ... 45

5.3.2 Computation of Parity Bits .. 46

5.4 Results ... 46

CHAPTER 6 - Flexible Multi-Code Rate and Multi-Code Length Encoder for Structured Low-

Density Parity-Check Codes .. 51

6.1 Design Methodology ... 51

6.2 Hardware Implementation .. 52

6.2.1 Storing Base Parity-Check Matrices for Different Rates of LDPC Codes 52

6.2.2. Parity-Check Matrix .. 55

6.2.2.1 Multiplication .. 57

6.2.2.2 Division ... 59

6.2.2.3 Computation of H1 .. 61

6.2.2.4 Latency for the Computation of H .. 62

6.2.3 Computation of ep .. 64

6.2.4 Computation of V ... 66

6.2.5 Computation of Parity Bits .. 67

6.3 Results of the Flexible Structured Encoder Implemented on an FPGA 67

 viii

6.4 Implementation of a Flexible Multi-Code Rate and Multi-Code Length Structured Encoder

on an ASIC .. 70

CHAPTER 7 - Decoder for Low-Density Parity-Check Codes.. 73

7.1 Study of LDPC Decoder Parameters .. 74

7.1.1 Decoding Algorithm .. 74

7.1.2 Decoder Architecture ... 75

7.1.3 Quantization ... 75

7.1.3.1 Quantization of  .. 75

7.1.3.2 Quantization of Log-Likelihood Ratios .. 76

7.1.4 Maximum Number of Decoding Iterations .. 77

7.2 Design and Implementation of LDPC Decoder on FPGA .. 78

7.2.1 Quantization ... 78

7.2.1.1 Quantization of  .. 78

7.2.1.2 Quantization of Log-Likelihood Ratios .. 79

7.2.1.3 Conversion of Log-Likelihood Ratios from One Form to Another Form of

Representation... 80

7.2.2 Initialization of Decoder Process ... 81

7.2.3 Check Node Processing ... 82

7.2.4 Variable Node Processing .. 85

7.2.5 End of Decoding Process ... 86

7.2.6 Decoder .. 87

7.3 Results ... 88

7.4 Optimization of Decoder Parameters .. 90

7.4.1 Erroneous Codewords .. 90

7.4.2 Decoder Delay ... 92

7.4.3 Decoder Energy ... 92

7.4.4 Optimization .. 95

CHAPTER 8 - Conclusion .. 101

8.1 Future Work .. 103

CHAPTER 9 - References .. 104

Appendix A - Design of a Convolutional Encoder in Verilog HDL .. 110

 ix

A.1 Convolutional Encoder .. 110

Appendix B - FPGA Implementation using Quartus .. 112

B.1 Creating a Project ... 112

B.2 Compilation of the Project ... 114

B.3 Timing Simulation ... 115

B.4 Power Analysis ... 119

Appendix C - ASIC Implementation using Cadence .. 122

C.1 Initial Setup .. 122

C.2 Synthesis of Verilog HDL Modules in RTL Compiler .. 123

C.3 Place and Route using Cadence Encounter .. 125

C.4 Verification of the Design .. 136

Appendix D - Quantization of Log-Likelihood Ratios in Decoder Implementation 141

 x

List of Figures

Figure 1.1: Comparison of bit error probability of error correcting codes. 3

Figure 2.1: Parity-check matrix. ... 10

Figure 2.2: Tanner graph representation of parity-check matrix. ... 11

Figure 2.3: A parity-check matrix in equivalent lower triangular form. 12

Figure 2.4: Parity-check matrix in approximate lower triangular form, Hpre, and its division of

sub-matrices. ... 12

Figure 2.5: Subgraph of Tanner graph showing message passing from variable node to check

node. .. 14

Figure 2.6: Subgraph of Tanner graph showing message passing from check node to variable

node. .. 14

Figure 3.1: Logic element architecture on the Stratix FPGA. .. 19

Figure 3.2: Design flow in Quartus... 20

Figure 3.3: Compilation report. .. 21

Figure 3.4: Timing simulations. .. 22

Figure 3.5: PowerPlay power analyzer design flow. .. 23

Figure 3.6: PowerPlay power analyzer summary. .. 24

Figure 3.7: ASIC design flow. .. 24

Figure 3.8: Design flow in RTL Compiler.. 25

Figure 3.9: Design flow in Encounter. .. 26

Figure 4.1: Overview of the LDPC encoder. .. 31

Figure 4.2: Application of greedy algorithm A on H. ... 32

Figure 4.3: Distribution of number of one's in each row of P2 matrix for an irregular H of size

504 × 1008. ... 34

Figure 4.4: Complete system of the generic encoder. ... 35

Figure 4.5: Circuit for multi clocked inner product (MCIP). ... 35

Figure 4.6: Circuit for single clocked inner product (SCIP). .. 36

Figure 5.1: Encoding process. ... 44

Figure 5.2: Overview of encoding process. .. 44

 xi

Figure 5.3: Logic elements vs. code lengths for different code rates. .. 48

Figure 5.4: Complete structured encoder system. ... 48

Figure 6.1: Overview of the encoding process. .. 52

Figure 6.2: Computation of V using (a) row parallelization method and (b) column parallelization

method. .. 53

Figure 6.3: Storing base parity-check matrices, Hb, for different code rates. 55

Figure 6.4: Finite state machine for the multiplication module. ... 57

Figure 6.5: Hardware block diagram for the multiplication module. ... 58

Figure 6.6: Finite state machine for the division module. .. 59

Figure 6.7: Hardware block diagram for the division module. ... 60

Figure 6.8: Computation of an element of H1, h1(i,j), from an element of Hb1, hb1(i,j). 62

Figure 6.9: Computation of a column of H1 from a column of Hb1. ... 63

Figure 6.10: Computation of ep. .. 65

Figure 6.11: Computation of V. .. 66

Figure 6.12: Complete system of the flexible multi-code rate and multi-code length structured

LDPC encoder. .. 69

Figure 6.13: Synthesized flexible multi-code rate and multi-code length LDPC structured

encoder in Cadence RTL Compiler. ... 70

Figure 6.14: Layout view of the flexible multi-code rate and multi-code length LDPC structured

encoder in Cadence Encounter. ... 71

Figure 6.15: Layout view of the flexible multi-code rate and multi-code length LDPC structured

encoder in Cadence ICFB. .. 72

Figure 7.1: BER vs. SNR performance using different decoding algorithms. 74

Figure 7.2: Quantization of . ... 76

Figure 7.3: BER vs. SNR performance for different quantization levels of log-likelihood ratios.

 ... 77

Figure 7.4: BER vs. SNR for different values of maximum number of decoding iterations. 78

Figure 7.5: Conversion of 2's complement to sign magnitude representation. 81

Figure 7.6: Conversion of sign magnitude to 2's complement representation. 81

Figure 7.7: Computation of magnitude of check node values. ... 83

Figure 7.8: Computation of sign of check node values. ... 83

 xii

Figure 7.9: Computation of check node values. ... 84

Figure 7.10: Computation of variable node values. .. 85

Figure 7.11: Design of LDPC decoder. .. 87

Figure 7.12: Complete decoder system. .. 89

Figure 7.13: Histogram of decoding iterations required by codewords for varying SNR. 91

Figure 7.14: Surface plot of f for varying SNR, IterMax and weights. ... 98

Figure A.1: A 1/2 rate convolutional encoder with constraint length 7. 110

Figure B.1: The main Quartus II display. ... 112

Figure B.2: Creation of new project. .. 113

Figure B.3: Adding design files. ... 113

Figure B.4: Choose the device family and a specific device. ... 114

Figure B.5: Other EDA tools can be specified. .. 114

Figure B.6: Summary of the project settings. ... 115

Figure B.7: Flow summary of the compilation report. ... 115

Figure B.8: Creating vector waveform file. .. 116

Figure B.9: Waveform editor window. ... 116

Figure B.10: Insert node or bus dialog box... 117

Figure B.11: Selecting nodes to insert into the waveform editor. .. 117

Figure B.12: Simulator settings. ... 118

Figure B.13: Timing simulation report. .. 118

Figure B.14: Creating .saf file... 119

Figure B.15: PowerPlay power analyzer tool. .. 119

Figure B.16: Power settings. ... 120

Figure B.17: Add power input file. ... 120

Figure B.18: PowerPlay power analyzer summary... 121

Figure C.1: Synthesized convolutional encoder in RTL Cadence. ... 123

Figure C.2: Basic design import. .. 126

Figure C.3: Advanced design import. ... 126

Figure C.4: After importing the design. .. 127

Figure C.5: Specify floorplan. .. 127

Figure C.6: After floorPlan. .. 128

 xiii

Figure C.7: Add rings. .. 128

Figure C.8: After adding rings. ... 129

Figure C.9: Add stripes. .. 129

Figure C.10: After adding stripes.. 130

Figure C.11: Special route. ... 130

Figure C.12: After special route. ... 131

Figure C.13: Place. .. 131

Figure C.14: After placing cells. ... 132

Figure C.15: NanoRoute. .. 132

Figure C.16: After nanoRoute... 133

Figure C.17: Add filler. ... 133

Figure C.18: After adding fillers. .. 134

Figure C.19: Verify connectivity. ... 134

Figure C.20: Verify geometry. .. 135

Figure C.21: GDS export form. .. 135

Figure C.22: Stream in form. .. 136

Figure C.23: User-defined data form. ... 136

Figure C.24: Options form. ... 137

Figure C.25: DRC form. ... 137

Figure C.26: Import Verilog in. .. 138

Figure C.27: Schematic view. ... 139

Figure C.28: Extracted view. .. 139

Figure C.29: LVS. ... 140

 xiv

List of Tables

Table 1.1: Coding schemes for different standards. .. 3

Table 2.1: Steps for computation of parity bits p1 and p2. .. 13

Table 4.1: Density (nunber of one's) of H, P1 and P2 matrices. .. 33

Table 4.2: Synthesis results of encoder implementation using MCIP on Stratix EP1S80F1508C5.

 ... 37

Table 4.3: Synthesis results of encoder implementation using SCIP on Startix EP1S80F1508C5.

 ... 37

Table 4.4: Synthesis results of complete encoder system using MCIP and SCIP implemented on

Stratix EP1S80F1508C5. .. 39

Table 4.5: Synthesis results of LDPC encoder designed by Lee. ... 39

Table 5.1: Synthesis results of structured encoder using LDPC codes defined in 802.16e. 47

Table 5.2: Comparison of information data rate without I/O serialization of our proposed

structured encoder with the encoder presented by Kim. ... 49

Table 5.3: Comparison of coded data rate with I/O serialization of our proposed structured

encoder with the encoder presented by Kim. .. 50

Table 6.1: Rate select values for different code rates. .. 56

Table 6.2: Length select values for different code lengths. .. 56

Table 6.3: Number of clock cycles required for computation of H1 from Hb1 for different code

rates. .. 63

Table 6.4: Synthesis results of the flexible encoder for structured LDPC codes. 68

Table 6.5: Latency involved in computation of H for different code rates. 68

Table 6.6: Synthesis results of flexible multi-code rate and multi-code length LDPC encoder in

Cadence RTL Compiler. ... 71

Table 7.1: Quantization of . .. 76

Table 7.2: Quantization of log-likelihood ratios. .. 77

Table 7.3: Look up table for . ... 79

Table 7.4: Quantization of log-likelihood ratios. .. 80

Table 7.5: Synthesis results of the LDPC decoder. .. 88

 xv

Table 7.6: Synthesis results of LDPC decoder of code length 1024 and code rate 1/2 in Cadence

RTL Compiler. .. 90

Table 7.7: Erroneous codewords, errors, for varying SNR and IterMax. 92

Table 7.8: Decoder latency, delay, for varying IterMax. .. 92

Table 7.9: PowerPlay power analysis report of the decoder of size 64 × 128. 93

Table 7.10: Energy (pJ) required for varying SNR and IterMax. ... 94

Table 7.11: Weighing coefficients of error (), energy, (), and delay (). 96

Table 7.12: Minimum f corresponding to IterMax, SNR and weights. ... 97

Table D.1: Quantization of . ... 141

Table D.2: Quantization of log-likelihood ratios. ... 142

 xvi

Acknowledgements

I would like to first express my deepest appreciation for the technical guidance,

invaluable suggestions and support given by my advisor, Dr. Don M. Gruenbacher. I would like

to thank Dr. William B. Kuhn and Dr. Balasubramaniam Natarajan for serving on my committee

and also for their guidance and suggestions during my doctoral program. I am grateful to Dr.

Daniel A Andresen for serving as an outside committee member. My special thanks to Dr. Itzhak

Ben-Itzhak for serving as an outside chairperson.

I would like to thank my parents and sister for their unconditional love, encouragement

and support throughout my life. I am grateful to my husband, Satish, for his support, cooperation

and being there for me whenever needed. I thank my in-laws for their support.

I thank all my friends Ali, Samer, Shilpa, Lutfa, Shekhar, Shama, Mandar, Gayathri,

Murali, Seemanti and Jeet for their support and companionship during my stay at KSU. I owe my

special thanks to Lakshmi, Prasad and their kids (Abhinav and Ananya) for welcoming me into

their home. I would also like to thank Anupama, Praveen, Samatha and Harish for making my

stay at KSU a pleasant one. I appreciate the faculty families Muthukrishnan‟s, Krishnaswamy‟s

and Pahwa‟s for welcoming us (me and Satish) into their homes, helping and advising us

whenever needed.

I would like to thank Sharon and Sam for helping me whenever needed. I thank Dr. Tom

Pearson for giving me an opportunity to work at USDA as a research assistant. I am very grateful

to Dr. Kameran Azadet for giving me an opportunity to work at LSI Corporation as an intern.

Finally, I would like to thank Electrical and Computer Engineering department for providing

partial support through teaching assistantship.

 xvii

Dedication

To

 Mom, Dad, Sister

and

Husband

 1

CHAPTER 1 - Introduction

Channel coding theory began when Shannon applied probability theory to study the

communication system. Shannon showed that for a given transmission rate less than or equal to

channel capacity, the errors induced by the noisy channel can be reduced to a desired level by

using a proper coding scheme [1]. Channel codes that can detect and correct the errors occurred

during the transmission through a communication channel are called error correcting codes.

Channel coding minimizes the effect of channel noise by using a channel encoder and decoder at

the transmitter and receiver respectively. The channel encoder encodes the message bits by

adding redundant bits to generate each codeword. The channel decoder in the receiver exploits

the redundant bits in the received codeword and retrieves the actual message bits. Forward error

correction (FEC) is a system of error control for data transmission. FEC codes detect and correct

errors without requiring retransmission. Low-density parity-check codes (LDPC) are a type of

FEC codes used for error detection and correction.

Low-density parity-check codes were invented by Gallager [2], [3]. LDPC codes have

recently received much attention because of their efficient decoding algorithm, excellent error

correcting capability and their performance close to the Shannon limit for large code lengths [4].

LDPC codes are proposed as an optional code in many IEEE standards. In [5], Europe‟s DVB

standards group has selected LDPC codes due to their superior performance over Turbo codes

for next generation digital satellite broadcasting. LDPC codes have already been verified and

adopted by digital video broadcasting (DVB-S2) satellite broadcast and 10-Gbit Ethernet-over-

copper system specifications [6]. LDPC codes are widely being considered as next-generation

error correcting codes for many real applications such as telecommunications and magnetic

storage.

The objective of this work is to develop a flexible hardware encoder and decoder for

LDPC codes. The design methodologies used for the implementation of a LDPC encoder and

decoder are flexible in terms parity-check matrix, code rate and code length. The following

section presents the motivation behind this work. The current state of LDPC encoder and

decoder implementations in hardware is presented in the next subsection. Finally the

accomplishments of this work and organization of the thesis are illustrated.

 2

1.1 Motivation

Future wireless systems need extremely fast and flexible architectures to support varying

standards, algorithms and protocols with high data rates. Software radio is a widely proposed

solution for these systems [7]. A software radio is a wireless communication device in which all

of the signal processing is implemented in software. By simply downloading a new program, a

software radio is able to interoperate with different wireless protocols, incorporate new services,

and upgrade to new standards [8]. Cognitive radio (CR) is the next step in the evolution of

software-defined radio (SDR). The cognitive radio concept was invented and presented by J.

Mitola [9, 10]. It takes SDR's ability to adapt to changing communication protocols and

frequency bands and adds a new dimension which is the ability to perceive the world around it

and learn from experience [11, 12] and adapt to optimize the use of available resources.

The two primary objectives of the cognitive radio are to provide highly reliable

communication whenever and wherever needed and to utilize the radio spectrum efficiently [13].

Cognitive radio is able to work in different frequency bands and various wireless channels and

supports multimedia services such as voice, data and video [14]. Cognitive radio is a new

paradigm in wireless communication that holds promise for new and better services to many

markets, including public safety, military etc. Based on both current and previous channel

characteristics, the radio would know what to do, where to go and how to make the operating

changes without the user‟s intervention and without interfering with other communication

equipment. Some of the radio‟s other cognitive abilities include determining its location, sensing

spectrum use by neighboring devices, changing frequency, adjusting output power or even

altering transmission parameters and characteristics [15-17].

Hence, there is a need to develop appropriate hardware which can be easily configured

and adapted to varying coding parameters. The future of cognitive radio primarily depends on

the availability of flexible and reliable hardware architectures. In this thesis, an attempt is made

to develop a flexible and reliable architecture which would aid the future development of

cognitive radio.

Any radio with the capacity to jump around the spectrum optimizing for power, range

and required data rates, will, at the very least, require an extremely flexible RF front end [18].

The technical means to dynamically assign or utilize spectrum involves: (1) highly adaptive

modulation and coding techniques (2) multidimensional/hybrid multiple access techniques (3) a

 3

spectrum and resource aware MAC/link layer (4) flexible networking and (5) spectrum

awareness and multilayer resource management [19]. Coding techniques used in different

wireless standards are shown in Table 1.1. Convolutional codes, Reed-Solomon codes, Turbo

codes, Low-density parity-check (LDPC) codes are some of the common error correcting codes

currently being used in different standards and their bit error probability is shown in Figure 1.1

[20].

Table 1.1: Coding schemes for different standards.

Parameter IEEE 802.11a IEEE 802.11n DVB-T IEEE 802.16

Error

correcting

codes

Convolutional

codes

Convolutional

/LPDC codes

Reed-solomon

codes,

Convolutional

codes

Reed-solomon-

convolutional

codes, LDPC

codes (optional)

Net data rate

(Mbps)
Up to 54 200 49.8-131.67 Excess of 120

Code rate 1/2, 2/3, 3/4
1/2, 2/3 , 3/4,

5/6

1/2, 2/3, 3/4,

5/6, 7/8
1/2, 2/3, 3/4

Figure 1.1: Comparison of bit error probability of error correcting codes [20].

Reviewing the work reported in this research area and industry, LDPC codes are found to

be the leading error correcting codes. Most of the architectures for encoding and decoding of

 4

LDPC codes are based on regular or structured LDPC codes. However in [21], it was shown that

properly constructed irregular LDPC codes can approach the channel capacity more closely than

regular LDPC codes. And also, most of the work in the literature shows that the LDPC encoder

and decoder are implemented with fixed parameters such as fixed code rate and code length. But

cognitive radio as explained earlier requires flexibility in both code rate and code length. Hence,

there is a need for designing a flexible LDPC encoder/decoder. Also, high speed encoder and

decoder are necessary as applications require more bandwidth. The focus of this work is to

develop hardware for LDPC encoder and decoder that are flexible in terms of code rate and code

length for a reconfigurable radio. The designs are applicable to both structured and any randomly

generated regular and irregular LDPC codes.

1.2 Literature Review

In the following subsections, the current state of work published in the hardware

implementations of both the encoder and decoder for LDPC codes are presented.

1.2.1 Encoder Implementation

The major drawback of LDPC codes is its high encoding complexity, in spite of the better

performance and lower decoding complexity. The complexity is referred to the number of

operations required per bit. A straightforward implementation of an LDPC encoder has

complexity quadratic in the code length whereas turbo codes can be encoded in linear time. Even

though LDPC codes are difficult to implement due to high encoder complexity, recent

developments have led to more efficient encoder structures which are typically limited in their

encoding rates.

A variety of encoder architectures have been presented in the past. Richardson showed

that the encoding complexity can be reduced from O(n
2
) to either linear or quadratic. For

example, a (3, k)-regular code of length n requires about 0.017
2
n

2
 + O(n) operations [22]. The

parity-check matrix is initially transformed into an approximate lower triangular form. Then

encoding is performed on the approximate lower triangular form of the parity-check matrix using

the greedy algorithm.

Zhang et al. [23, 24] proposed a systematic efficient encoding scheme by effectively

exploiting the sparseness of its (3, k)-regular LDPC codes. A design approach is presented by

Zhong in [25] for a LDPC system hardware implementation by jointly conceiving irregular code

 5

construction and VLSI implementations. The encoding algorithms in [23-25] are similar to that

of Richardson‟s greedy algorithm [22], except that these algorithms do not contain any back-

substitution operations because of the structural property of their parity-check matrices. To take

the advantage of the parity-check matrix structure in [23-24], the parity-check matrix is

transformed into an approximate upper triangular matrix rather than lower triangular form.

In [26], Echard introduced as ensemble of quasi-regular low-density parity-check codes

called as  rotation LDPC codes. In [27], Kim presented high-performance parallel

implementations of an encoder and decoder for a parallel concatenated parity-check class of

LDPC codes. In [28], Miles implemented a radiation tolerant encoder in 0.25 µ CMOS based on

a novel method for deriving regular quasi-cyclic LDPC codes. These encoding methodologies

assume a particular structure for the parity-check matrix such as regular, quasi-regular and

parallel concatenated LDPC codes. Hence the encoding methodologies developed are applicable

to those particular LDPC codes and cannot be used for other structured or non-structured LDPC

codes.

In [29-33], a hardware design of an efficient LDPC encoder was described based on the

method proposed by Richardson and Urbanke in [22]. In [29], the encoder for code length of

2000 bits and rate 1/2 has a coded data rate of 45 Mbps. The coded data rate can be increased to

410 Mbps by implementing 16 instances of the encoder on the same device. In [30-32] an

implementation of a real-time programmable irregular LDPC encoder as specified in the IEEE

P802.16E/D7 standard was presented. The encoder is implemented on a reconfigurable

instruction cell architecture and has a data rate from 10-19 Mbps. The design presented has a

maximum data rate of 78 Mbps with the use of pipelining and multiple cores. In [33], a LDPC

encoder is implemented for structured LDPC codes as defined in both IEEE 802.16e and IEEE

802.11n. An architecture for a structured LDPC encoder has been presented that supports IEEE

802.11n [34].

An encoder and decoder for LDPC codes defined in IEEE 802.16e are developed and

their coded data rate is dependent on the clock frequency at which they run [35]. The basic

encoder and decoder area is 20 K and 125 K gates respectively. The LDPC encoder core in [36]

provides a complete encoding solution for the codes defined in IEEE 802.16e. A major feature of

the core is that it has an extremely low latency and the encoded packet is available at the output

in seven clock cycles. The coded data rate is equal to the clock rate of the encoder.

 6

Most of the encoder methodologies presented above assume some kind of structure for

the parity-check matrix. Also the encoder design parameters, the code rate and the code length,

are fixed. Hence there is a need to design a LDPC encoder that is flexible in terms of parity-

check matrix, code rate and code length for cognitive radio.

1.2.2 Decoder Implementation

Several algorithms are proposed for LDPC decoding. LDPC codes which can approach

Shannon‟s limit by using an iterative decoding algorithm called belief propagation. This

algorithm is also called as sum-product algorithm or message passing algorithm [37]. By using

log-likelihood ratios (LLR) as messages (logarithmic message passing algorithm) the hardware

implementation has become much easier when compared to the message passing algorithm. The

implementation complexity is further reduced by simplifying the process for updating check

nodes, which is the most extensive part of the message passing algorithm. This algorithm is

called the min-sum algorithm [38]. Later on, several algorithms were introduced by modifying

the min-sum algorithm [39-41] to bridge the gap in the performance between the min-sum and

message passing algorithms.

A LDPC decoder can be implemented using serial, parallel or partially parallel

architectures. In [42], a fully-parallel irregular LDPC decoder is synthesized using 0.18 µm

CMOS technology and achieves a data rate of 1 Gbps for code length of 648 and rate 5/6. In

[43], a 1024-b, rate-1/2 LDPC decoder is implemented using a parallel architecture. The design

achieves a coded data rate of 1 Gbps. This performance is achieved by exploiting the inherent

parallelism and rapid convergence of the message passing decoding algorithm. In [44], a 1/2 rate,

2048 codeword, (3, 6) regular LDPC code has been analyzed. The data rate and complexity

analysis is performed for the VLSI implementation of an LDPC decoder using both fully and

partially parallel architectures. In [45], the decoder is designed using a serial architecture and has

a moderate data rate. The decoding algorithm proposed in their paper belongs to the class of min-

sum with a correction factor. The correction factor is updated from the log-likelihood ratio

values. The decoder is peripherally connected to the embedded PowerPC processor of a Xilinx

Virtex-II Pro FPGA and is managed by the processor. This method of hardware/software

implementation provides the maximum flexibility for the development and rapid prototyping of

the hardware-based simulator system.

 7

In [46], a parameterized decoder that supports the LDPC code in the IEEE 802.16e

standard, is presented which requires code rates of 1/2, 2/3 and 3/4, with block sizes varying

from 576 to 2304. The decoder is synthesized with Texas Instruments' 90 nm ASIC process

technology, with a target operation frequency of 100 MHz, 15 decoding iterations, and the

maximum data rate is up to 256 Mbps. Similar flexible multi-rate multi-code length structured

LDPC decoder is designed in [47-49]. The IP core in [50] provides a hardware efficient

implementation of an LDPC decoder for IEEE 802.16e. The design covers the entire

IEEE802.16e LDPC specification and implements an early stop detection function. The data rate

of the decoder is dependent on the clock frequency. The decoded throughput is up to 168 Mbps

for a Virtex-4 with a -12 speed grade.

In [51] the energy consumption of a quantized LDPC decoder is computed. It is shown

that the energy consumption of the decoder increases exponentially with the number of

quantization bits. A new architecture is proposed in [52] which reduces memory access, hence

power consumption, without sacrificing performance. It is shown that through an interconnect-

driven code design approach, coupled with a dynamic addressing scheme and an optimized

version of the BCJR algorithm for computing reliabilities, power savings of up to 85.64% can be

achieved [53]. A low-power real-time decoder that provides constant-time processing of each

frame using dynamic voltage and frequency scaling is presented in [54]. VLSI architectures for

low-density parity-check decoders amenable to low-voltage and low-power operation are

investigated in [55]. In this paper, highly-parallel decoder architecture with low routing overhead

is described. Dynamic power is reduced by using an efficient method to detect early convergence

of the iterative decoder and terminate the computations.

The performance of the LDPC decoder depends on various factors such as the decoding

algorithm, the architecture, the quantization of log-likelihood ratios and the maximum number of

decoding iterations. The maximum number of decoding iterations used for the decoding process

determines the data rate and latency of the LDPC decoder. After performing maximum number

of decoding iterations, the codeword is then estimated. Most of the decoders presented above do

not estimate the codeword and check its validity after each iteration. In order to save decoder

power consumption and to decrease the latency, a decoder design that verifies the codeword after

each iteration and stops the decoding process when the estimated codeword is correct is needed.

In [55], the parity of the normal variable-to-check messages is checked after each iteration. If the

 8

parity check is satisfied then the codeword is estimated at the beginning of the next iteration and

the decoding process is stopped. In [42], the codeword is estimated after every iteration but it is

validated in the next iteration. These two decoder designs in [42] and [55], take an additional

iteration to stop the decoding process after the decoder decoded the correct codeword. An

attempt is made to find an optimum value for the maximum number of decoding iterations for a

given parity-check matrix and SNR by minimizing the error, delay and energy.

1.3 Accomplishments

 In this section the important contributions of this thesis are presented. As shown in the

previous sections, current hardware implementations of LDPC encoders and decoders use either

cyclic, quasi-cyclic or some regular pattern in the parity-check matrix, H. In this work, both an

LDPC encoder and decoder are developed that are flexible in terms of parity-check matrix, code

rate and code length. Here is a list of the significant contributions of this work.

1. A generic encoder is designed and tested for any randomly generated LDPC codes.

Two new encoder designs were developed that achieve much higher data rates

while requiring more area for implementation. The designs developed can be used for

both structured and any randomly generated regular and irregular parity-check matrices

as they are independent of the structure of the LDPC codes.

2. An encoder for structured LDPC codes is designed and tested.

An encoder architecture that adheres to the structured LDPC codes defined in the

IEEE 802.16e standard was developed. The design methodology with minor

modifications can be used for other similar structured LDPC codes defined in different

standards.

3. A flexible multi-code rate and multi-code length LDPC Encoder is designed and tested

A flexible encoder design that accommodates different code lengths and code

rates has been developed. This design methodology does not require re-synthesis of the

Verilog code to change the encoder parameters (code length and code rate). This design

methodology developed with minor modifications can be used for other similar structured

LDPC codes.

4. A LDPC decoder for randomly generated LDPC codes is designed and tested

 9

A decoder design methodology that is independent of the structure in the LDPC

codes has been developed and implemented. Hence it is applicable to both structured and

any randomly generated regular and irregular LDPC codes. This design validates the

estimated codeword after every iteration and stops the decoding process when the correct

codeword is estimated which would save the power consumption.

5. Optimum value of the maximum number of decoding iterations

The maximum number of decoding iterations plays a major role in determining

the decoder performance and latency. A procedure/method is presented to find an

optimum maximum number of decoding iterations for a given parity-check matrix and

SNR.

1.4 Organization of Dissertation

A brief introduction on LDPC codes is presented in chapter 2. In this chapter, various

encoding and decoding algorithms are presented. In chapter 3, the design tools Altera Quartus,

Cadence and Matlab, used in the implementation of LDPC encoder and decoder are presented.

The two design methodologies used for the encoder design implementation for randomly

generated LDPC codes along with the results are presented in chapter 4. The encoder design

methodology, the implementation and the results for a structured LDPC codes are discussed in

chapter 5. In chapter 6, the design methodology, hardware implementation and the results for a

flexible multi-code rate and multi-code length encoder for structured LDPC codes are presented.

In chapter 7, the decoder design methodology, hardware implementation and results are

presented. For a given parity-check matrix and SNR, an optimum maximum number of decoding

iterations are evaluated.

 10

CHAPTER 2 - Low-Density Parity-Check Codes

 In this chapter, low-density parity-check codes are introduced and the details of encoding

and decoding algorithms are presented. LDPC codes were invented by R. G. Gallager [2][3].

LDPC codes are linear block codes specified by a parity-check matrix, H, which is sparse. There

are two types of LDPC codes, regular and irregular LDPC codes. Regular LDPC codes are

defined by parity-check matrices with a fixed number of non-zero entries (usually 1‟s) in each

row and column known as row weight, wr, and column weight, wc, respectively. Irregular LDPC

codes are defined by parity-check matrices having a variable number of non-zero entries in each

row and column. In general, irregular LDPC codes have better error-correcting performance than

that of regular LDPC codes. In this work, Mackay‟s parity-check matrices [56] for both regular

and irregular LDPC codes are used. LDPC codes can be represented using a bipartite graph, also

called as Tanner graph, where one set of nodes represents the codeword, also known as variable

nodes, and the other set of nodes, called check nodes, represents the parity check constraints.

Messages are passed between check and variable nodes along the edges, L(rji) and L(qij). Each

edge in the Tanner graph corresponds to a „1‟ in H. An example of a 4 × 8 rate 1/2 parity-check

matrix is shown in Figure 2.1. Each row of the parity-check matrix represents a check node and

each column represents a variable node. Check node „j‟ is connected to variable node „i‟ if the

corresponding element hji of H is 1. The Tanner graph representation of the parity-check matrix

in Figure 2.1 is shown in Figure 2.2. In this work, parity-check matrices that are binary is

considered.





















10010010

01001001

00111000

00000111

H

Figure 2.1: Parity-check matrix.

2.1 Encoding

Encoding of LDPC codes uses the following property

Hx
T
 = 0

T
, (2.1)

where vector x represents the codeword, H is the parity-check matrix, and 0 is a zero vector. The

codeword x consists of information bits, s, and parity bits, p. Parity bits are computed from the

 11

information bits. Two of the common encoding methods are presented in the following

subsections.

Figure 2.2: Tanner graph representation of parity-check matrix.

2.1.1 Generic Encoding

Let H = [H1 H2] be the m × n parity-check matrix with sub-matrices H1 and H2 having the

dimensions m × k and m × m, respectively. For the remainder of this thesis, these dimensions are

not explicitly designated. The most straight forward encoder implementation requires three steps.

In the first step, the parity-check matrix, H, is transformed to an equivalent lower triangular form

as shown in Figure 2.3. The second step is to take the codeword, x, and split it into it‟s k

information bits, s, and it‟s m parity bits, p. i.e.,][psx  . In the third step, the parity bits p are

obtained by solving Equation 2.1:

,0TTHx 

,0][1

1

1

21

T

m

m

k

p

s
HH

mmkm 















 021  pHsH or .1

1

2 sHHp


 (2.2)

Variable nodes (Vni)

Check nodes (Cnj)

L(qij)

L(rji)

 y8

 y7

 y6

 y5

 y4

 y3

 y2

 y1

 ĉ8

 ĉ7

 ĉ6

 ĉ5

 ĉ4

 ĉ3

 ĉ2

 ĉ1

 12

0

n

m  

0 1 1 1 1 1

n - m

A B

C D

T

E

m - g

g
H

Hpre

Figure 2.3: A parity-check matrix in equivalent lower triangular form.

In [29], it is stated that transforming the parity-check matrix into lower triangular form

using Gaussian elimination requires about O(n
3
) operations. Since the transformed parity-check

matrix is no longer sparse, the actual encoding requires O(n
2
) operations. More precisely the

actual encoding requires 






 

2

)1(2 rr
n XOR operations where r is the code rate.

2.1.2 Efficient Encoding

Richardson and Urbanke [22] showed that linear time encoding is achievable through

careful linear manipulation of LDPC codes. Using row and column permutations only, the

parity-check matrix is transformed into an approximate lower triangular form, Hpre, as shown in

Figure 2.4. The parity-check matrix is still sparse and T is in lower triangular form with ones

along the diagonal. The gap, g, is made as small as possible because the encoding complexity is

upper-bounded by n + g
2

[22].

Figure 2.4: Parity-check matrix in approximate lower triangular form, Hpre, and its

division of sub-matrices.

The encoding procedure is as follows: The codeword x is given by][21 ppsx  , where s are

information bits and p1 and p2 are parity bits of length n-m, g and m-g, respectively. Equation

1
1

1
1

1
1

1
1

n - m

n

m
0

1 H1 H2

m

m - g g

 13

2.1 can also be represented as Hprex
T
 = 0

T
 and is solved to compute the parity bits. This

expression is pre-multiplied by 








  IET

I
1

0
 to obtain

.
0

00

2

11 










































 

p

p

s

EDC

TBA

IET

I
 (2.3)

For binary parity-check matrices, Equation 2.3 can then be separated into two equations as

shown below

 021  TpBpAs , and (2.4)

 0)()(1

11   pDBETsCAET . (2.5)

Let DBET  1 , and assume that  is nonsingular, the parity bits are given by

 sCAETp)(11

1   , and (2.6)

)(1

1

2 BpAsTp   . (2.7)

The steps used to compute the parity bits are summarized [22] in Table 2.1.

Table 2.1: Steps for computation of parity bits p1 and p2.

Step No. Computation of p1 Computation of p2

1 As As

2 T
-1

As Bp1

3 ET
-1

As As + Bp1

4 ET
-1

As + Cs T
-1

(As + Bp1)

5 
-1

(ET
-1

As + Cs)

In [22], it is found that by using this method, the encoding complexity is either linear or

quadratic but quite manageable. For example, a (3, k)-regular code of length n requires about

0.017
2
n

2
 + O(n) operations. The complexity of the encoder is still manageable for large n since

the 0.017
2
n

2
 is a very small number. The encoding complexity for all optimized irregular LDPC

codes is linear because the expected gap, g, is actually of the order less than n , and the required

amount of preprocessing is of order at most n
3/2

.

 14

2.2 Decoding

 Message passing [37] is an iterative algorithm commonly used in decoding LDPC codes.

Each iteration of message passing consists of updating outgoing messages from both variable

and check nodes. In one half of the iteration, each variable node, Vni, passes all its information to

each of the connected check nodes, Cnj, excluding the information the receiving check node

already possesses. Consider the sub-graph of the Tanner graph shown in Figure 2.2

corresponding to the first column of H and is shown in Figure 2.5. An example of message

passing between Vn1 to Cn3 is shown in Figure 2.5. The check node Cn3 receives information from

the channel, y1, and the extrinsic information node Vn1 received from check nodes Cn1 in the

previous half iteration. In the other half iteration, the information is passed from check node to

variable nodes excluding the information the receiving variable node already possesses. Figure

2.6 shows the sub-graph of the Tanner graph in Figure 2.2 corresponding to the first row of H.

Figure 2.5: Subgraph of Tanner graph showing message passing from variable node to

check node.

Figure 2.6: Subgraph of Tanner graph showing message passing from check node to

variable node.

 Cn1

 Vn1

 Vn2

 Vn3

 Cn1

 y1

 Cn3

 Vn1

 15

An example for passing the information from Cn1 to Vn3 is shown in Figure 2.6. The

variable node Vn3 receives the information from Cn1 which it received from variable nodes Vn1

and Vn2 in the previous half iteration. After each iteration, the decoder checks if the estimated

codeword satisfies Equation 2.1. If the decoder finds the correct codeword then the process is

stopped. If not the process of decoding continues until the estimated codeword satisfies Equation

2.1 or reaches the maximum number of decoding iterations.

Using this message passing algorithm, LDPC codes can be efficiently decoded. This

message passing algorithm is also known as sum-product algorithm. Since the direct

implementation of the message passing algorithm will result in high hardware complexity due to

a large number of multiplications, a logarithmic message passing algorithm is used to reduce

complexity. The logarithmic message passing algorithm allows all of the multiplications to be

converted into additions, making it more easily implemented in hardware. In fact, both message

passing and logarithmic message passing decoding algorithms realize the same decoding rule.

The summary of the logarithmic message passing algorithm is presented in the following

subsection:

2.2.1 Logarithmic Message Passing Algorithm

Before presenting the summary of the logarithmic message passing algorithm, an

overview of the notation used is presented below:

 Rj : The set of column locations of the 1‟s in the j
th

 row of H.

 Rj\i : The set of column locations of the 1‟s in the j
th

 row of H, excluding location i.

 Ci : The set of row locations of the 1‟s in the i
th

 column of H.

 Ci\j : The set of row locations of the 1‟s in the i
th

 column of H, excluding location j.

 y: Received codeword corresponding to the transmitted codeword x.

 ĉ: Estimated codeword.

 Pi : Pr(ci = 1|yi).

 b  {0,1}.

 qij(b): probability that ci = b given the information from all neighboring check nodes,

except check node at position j.

 rji(b): probability that j
th

 check Equation being satisfied given ci = b and information from

all variable nodes except from the variable node at location i.

 16

 Qij(b): probability that ci = b given the information from all the check nodes.

 L(ci) = log .
)|1(

)|0(















ii

ii

ycpr

ycpr

 L(rji) = log .
)1(

)0(















ji

ji

r

r

 L(qij) = log .
)1(

)0(















ij

ij

q

q

 L(Qi) = log .
)1(

)0(











i

i

Q

Q

The steps for the logarithmic message passing decoding algorithm are as follows:

Step 1: The messages originating from variable nodes, L(qij), as shown in Figure 2.2 are

initialized using

2

2
)()(



i

iij

y
cLqL  , (2.8)

where yi is the received code word and 
2
 is variance of the channel noise.

Step 2: The messages originating from check nodes, L(rji), as shown in Figure 2.2 are computed

from L(qij)

 












 

 ijij Ri

ij

Ri

ijjirL
\\

)()( (2.9)

where))((ijij qLsign , |)(| ijij qL and
1

1
log))2/log(tanh()(






z

z

e

e
zz . (2.10)

Step 3: .)()()(
\





jiCj

jiiij rLcLqL (2.11)

Step 4: .)()()(



iCj

jiii rLcLQL (2.12)

Step 5: for i, the codeword is estimated from L(Q)

.
0)(0

0)(1
ˆ










i

i

i
QLif

QLif
c (2.13)

Step 6: The decoding process is stopped

 17

if 0ˆ THc (2.14)

or the number of decoding iterations = maximum number of decoding iterations

 else

 repeat starting from step 2.

2.2.2 Minimum Sum Algorithm

The minimum sum algorithm is also called as Min-Sum algorithm and is essentially the

same as the logarithmic message passing algorithm. The Min-Sum algorithm follows the same

exact steps as that of logarithmic message passing algorithm except for step 2 which is modified.

The following function

 













 ijRi

ij

\

)( (2.15)

is approximated by the simple expression given below

 













 ij
ij\Ri

min
 (2.16)

i.e., the minimum value of ij . This substitution is due to the fact that (z) is maximum when z

is minimum and also zz ))(( . Therefore,

 ijij

Ri

ij

ij


ij\ij\ Ri

min

Ri

min
)(

\


















































, (2.17)

and the resulting step 2 becomes

Step 2: 




























 



ij

Ri

ijji

ij

rL 
i\jRi

min
)(

\

 (2.18)

where))((ijij qLsign and |)(| ijij qL .

Min-Sum algorithm simplifies the check node computation because there is no need to

compute  of the variable node values. Using Min-Sum algorithm may reduce the chip area for

the implementation when compared to logarithmic message passing algorithm because  which

is typically implemented using look up table (LUT) in hardware is no longer required.

 18

2.2.3 Modified Minimum Sum Algorithm

The modified minimum sum algorithm is similar to the minimum sum algorithm expect

for a small modification in step 2 of the Min-Sum algorithm procedure. The bit error rate

performance of the decoder is degraded due to the approximation shown in Equation 2.17. To

improve the decoding performance, the step 2 of the Min-Sum algorithm is again modified as

shown below and is called as modified minimum sum algorithm.

Step 2: 





























 



krL ij

Ri

ijji

ij


i\jRi

min
)(

\

 (2.19)

where))((ijij qLsign , |)(| ijij qL and k is a constant value.

2.2.4 Other Decoding Algorithms

Bit flipping and layered decoding algorithms are some of the other LDPC decoding

algorithms. The BER performance of these algorithms is inferior to the performance of the

message passing algorithm. A brief summary of these algorithms are presented below.

Gallager‟s bit flipping algorithm is used for decoding binary symmetric channel [20]. As

shown in Figure 2.2, there are two sets of nodes: check and variable nodes. For a received

codeword, parity check is performed on each check node. For each variable node, the check

nodes that are connected to this variable node and failed the parity check constraints are counted.

The codeword bit associated with the variable node that has the largest number of failed parity

checks is flipped. This process is repeated until all the parity checks are satisfied or a stopping

condition is reached.

The layered decoding algorithm is a variation of the standard message passing algorithm

[57]. The parity-check matrix consists of shifted identity sub matrices that are concatenated in

horizontal layers. The message passing algorithm is performed on each horizontal layer and the

updated a posterior probability messages are passed between the horizontal layers [46]. Because

of this optimized message scheduling the algorithm convergence rate is doubled [58].

 19

CHAPTER 3 - Design Tools for FPGA and ASIC Implementation

In this chapter, the design tools used to accomplish this work are introduced. Quartus,

Cadence and Matlab are used for the implementation of both the encoder and decoder of LDPC

codes. The encoder and decoder of LDPC codes are implemented on field-programmable gate

arrays (FPGA) using Altera Quartus. A flexible multi-code rate and multi-code length encoder

for structured LDPC codes is also implemented on an application specific integrated chip (ASIC)

using Cadence. Matlab is used to analyze, simulate, preprocess and generate Verilog hardware

description language (HDL) modules for all of the encoder and decoder designs.

3.1 Altera Quartus

A FPGA is a reprogrammable integrated circuit which is usually designed using a HDL

or schematic entry. For larger designs, using a HDL is easy and more appropriate. A FPGA can

be typically used to implement any logical function that an ASIC could perform. The ability to

update/modify the functionality of the design is a huge advantage in a FPGA when compared to

an ASIC. FPGAs contain programmable logic components called logic array blocks (LABs). In

the Altera Stratix FPGA device the logic array consists of LABs, with 10 logic elements (LEs) in

each LAB. An LE is the smallest unit of logic providing efficient implementation of user logic

functions. The LE provides advanced features with efficient logic utilization. Each LE contains a

four-input look up table (LUT), which is the function generator that can implement any function

of four variables as shown in Figure 3.1 [59].

Figure 3.1: Logic element architecture on the Stratix FPGA [59].

 20

The flow for the implementation of a design in Quartus II is shown in Figure 3.2 [60].

The desired circuit is specified by using a HDL such as Verilog HDL or VHDL. In this work,

Verilog HDL was used exclusively. This design is synthesized into a circuit that consists of logic

elements and memory blocks provided in the FPGA. The synthesized circuit is tested to verify its

functional correctness. When checking functional correctness, simulation timing issues are not

considered. The fitter tool determines the best placement of the synthesized LEs into the targeted

FPGA device. It also chooses routing wires in the chip to make the required connections between

the specific LEs being utilized.

Figure 3.2: Design flow in Quartus.

The next step is timing analysis, during which propagation delays along the various paths

in the fitted circuit are analyzed to provide an indication of the expected performance of the

Design entry

(Verilog HDL)

Synthesis

Functional simulation

Programming and configuration

Fitting

Timing analysis and simulation

Design correct?

Y

es

N

o

Timing requirements met?

Y

es

N

o

 21

circuit. The fitted circuit is tested to verify both its functional correctness and timing. The

designed circuit is implemented in a physical FPGA chip by programming the configuration

switches that configure the LEs and establish the required wiring connections. The compilation,

simulation and power analysis on a design in Quartus are presented in the following sections.

3.1.1 Compilation

The Verilog HDL code is processed by several Quartus II tools that analyze the code,

synthesize the circuit, and generate an implementation for the target FPGA chip. These tools are

controlled by the application program called the compiler. Once the design is created in Verilog

HDL, it needs to be compiled in Quartus. Compilation converts the design into a bitstream that

can be downloaded into FPGA. The most important output of compilation is a SRAM Object

File (.sof), which is used to program the device. The compilation also generates other report files

such as timing, area, etc., that provide information about the code as it compiles. Figure 3.3 is an

example of the compilation report.

Figure 3.3: Compilation report.

3.1.2 Simulations

A designed circuit can be simulated in two ways: functional and timing simulations [61].

Functional simulations are used to verify the functional correctness of the designed circuit and it

 22

is assumed that the logic elements and interconnection wires have zero propagation delays of the

signals. This takes much less time, because the simulation can be performed simply by using the

logic expressions that define the circuit. In timing simulations, all propagation delays are taken

into account and thus exhibiting the actual behavior of the design when implemented on the

FPGA device. In this work timing simulations are performed on the encoder/decoder designs

compiled in Quartus. The encoded and decoded codeword obtained from timing simulations are

compared with the codeword obtained using Matlab for verification. Figure 3.4 shows an

example of timing simulations.

Figure 3.4: Timing simulations.

3.1.3 Power Analysis

Power plays an important design consideration as the designs grow larger and process

technology continues to shrink [62]. Power consumed by the design compiled in Quartus can be

analyzed using the PowerPlay power analysis tool. There are two PowerPlay power analysis

tools: PowerPlay early estimator spreadsheet and PowerPlay power analyzer. PowerPlay early

estimator spreadsheet can be used during early design stages and gives a rough estimate of the

power consumption. The PowerPlay power analyzer tool offers improved accuracy over the

PowerPlay estimator spreadsheet since it examines actual device resource usage, place and route

information and information on activity rates of all signals in response to a specific input

stimulus. Its accuracy is further improved by adding realistic timing simulation vectors.

 23

PowerPlay power analyzer tool provides both static and dynamic power consumption

estimates. Static power is defined as the power consumed regardless of signal/data activity.

Dynamic power is the additional power consumed due to data switching activity or toggling. The

design flow of PowerPlay power analyzer is shown in Figure 3.5. The PowerPlay power analyzer

requires the design to be synthesized and fitted to the target device. The PowerPlay power

analyzer directly reads the waveforms generated by a design simulation. The static probability

and toggle rate for each signal is calculated from the simulation waveform and is stored in a

signal activity file (.saf). The summary of the PowerPlay power analyzer compilation report is as

shown in Figure 3.6, which consists of the estimated total thermal power dissipation of the

design. The total thermal power includes dynamic, static and I/O thermal power dissipation. The

compilation report also includes a confidence metric that reflects the overall quality of the data

sources for the signal activities.

Figure 3.5: PowerPlay power analyzer design flow.

3.2 Cadence

An application specific integrated circuit is an integrated circuit customized for a

particular use. In this work, Cadence is used for an ASIC design because it is widely used in the

industry. Using Cadence, an ASIC can be designed from textual description Verilog HDL to

layout without using any additional softwares. An ASIC design is performed using the standard

cell library provided by Virginia Polytechnic Institute and State University [63]. The advantage

Design

(compiled)

PowerPlay

analyzer

External

stimulus

Signal

activity file

Power analysis

report

 24

of using a standard cell library is to save time. Using a predesigned and pretested standard cell

library also reduces the design implementation risk. In this work, an ASIC implementation of the

structured encoder is performed using Cadence. The design flow of an ASIC implementation in

Cadence is as shown in Figure 3.7. The Verilog HDL design is first synthesized in Cadence RTL

Compiler. The synthesized design then goes through place and route using Cadence Encounter.

The final layout of the design from Cadence Encounter can be imported into Cadence ICFB and

where design rule checks are performed.

Figure 3.6: PowerPlay power analyzer summary.

Figure 3.7: ASIC design flow.

Design entry

(Verilog HDL)

Synthesis

(RTL Compiler)

Place and route

(Encounter)

Design layout

(ICFB)

 25

3.2.1 RTL Compiler

RTL Compiler is used to synthesize design in Verilog HDL. The RTL Compiler design

flow is shown in Figure 3.8 [64, 65]. After invoking RTL Compiler, the Verilog HDL files are

first read and checked for syntax and synthesis policy checks. Then the design is built using

generic components. The library search path and library that will be used for the design synthesis

needs to be specified. The design is read and creates HDL independent objects in HDL-

intermediate format and stores it in a design library. During elaboration the top-level design is

bound with all the designs and packages.

Figure 3.8: Design flow in RTL Compiler.

At this stage of the design, additional constraints are applied. The constraints typically

include defining any clocks. Other constraints like operating requirements, setup/hold times, I/O

delays, etc., are specified. The design is synthesized during which logic optimization is

performed. The design is mapped to actual gates from the target technology library, producing a

circuit that hopefully meets the requirements. If the design is successfully synthesized, then it has

Elaborate

Apply constraints

Read Verilog

HDL files

Set target library

Invoke RTL

Compiler

Synthesize

Analyze and

report

 26

been fully mapped to gate-level. The generated mapped design can be used by Cadence

Encounter to place and route the design. Finally the timing, power and area of the design can be

analyzed using the tools in RTL Compiler.

3.2.2 Encounter

After the design is synthesized in RTL Compiler, Encounter is used to perform automatic

placement and routing of the synthesized design. A place and route (PNR) tool takes a gate-level

netlist as the input and determines how each gate should be placed on the chip. The design flow

in Encounter is as shown in Figure 3.9 [66]. Encounter is invoked and the design synthesized in

RTL Compiler is imported. A Floorplan is performed on the imported design. Die size and core

margins of the chip are specified. The die size is chosen such that the router would have enough

space to be able to place all the metal interconnects and any buffers needed during optimization.

Figure 3.9: Design flow in Encounter.

Power planning

Place standard cells

Import synthesized design

FloorPlan

Invoke Encounter

Route

Place filler cells

Design verification

Export GDS file

 27

The next step is power planning. Power rings and stripes are configured. The width of the

power lines are determined by the size of the chip. Wider lines are used for bigger designs.

Sroute is performed to do the final power routing. Standard cells are placed in the design. The

design is routed using NanoRoute. Filler cells are added to allow the wells to be at the same

potential. Connectivity and geometry of the design layout are verified. The design should pass

these tests. The foundry needs the design in GDS format. Next, the design is exported to a GDS

file during which a new Verilog netlist based on placement and routed design is generated.

3.3 Matlab

Various design and performance evaluation aspects of LDPC encoding and decoding

algorithms were performed using Matlab. In the encoding algorithm, the codeword generated

from Matlab is used to validate the codeword obtained from the encoder implemented on FPGA.

Encoder for randomly generated LDPC codes is developed using Richardson‟s greedy algorithm

[22]. According to greedy algorithm, the parity-check matrix should be transformed into lower

triangular form for the encoding process. This step is called as preprocessing of parity-check

matrix. The encoding process is further simplified and the details are presented in chapter 4. Two

matrices P1 and P2 are computed for the encoding process. The preprocessing of parity-check

matrix and the computation of matrices P1 and P2 are performed in Matlab.

The decoder performance is based on several decoder parameters such as decoding

algorithm, quantization of the log-likelihood ratios, and maximum number of decoding

iterations. The decoder simulations are performed in Matlab using different decoding algorithms.

Based on the simulation results, the decoding algorithm that gives the best BER performance is

chosen for decoder hardware implementation. Different quantizations of log-likelihood ratios

and non-linear function  used in the decoding process are evaluated using Matlab. Simulations

are also performed in Matlab by varying the maximum number of decoding iterations for the

decoding process. Based on these simulation results the quantization of the log-likelihood ratios

and maximum number of decoding iterations for the decoding process are chosen. The details

and the results of the simulations are presented in chapter 7.

Matlab is also used to generate Verilog modules required for the implementation of

encoder and decoder of the LDPC codes in hardware. The encoder and decoder of LDPC codes

are designed to have flexibility in code length and code rate. In order to incorporate this

 28

flexibility, the Verilog HDL module parameters have to accommodate the updates and/or

changes. Therefore, Matlab script to generate a generic Verilog module was written. Based on

the desired LDPC codes, the code length and code rate are selected and the corresponding

Verilog HDL modules can then be generated by running the Matlab script. The Verilog HDL

files are written using the fprintf (write data to text file) command in Matlab. Following is an

example script to generate a Verilog HDL module which implements a 1/2 rate convolutional

encoder with variable constraint length.

Example: Matlab file to generate Verilog HDL module to design a 1/2 rate convolutional

encoder with variable constraint length.

clear all; clc;

% Example: 1/2 rate convolutional encoder with constraint length 7

% Parameters needs to be changed based on desired convolutional encoder

N = 7;

g0 = [6 4 3 1 0];

g1 = [6 5 4 3 0];

% open the file with write permission

fid1 = fopen('convEncoder.v','w');

% write the required data to the file

fprintf(fid1,'module convEncoder(n, k, clk, reset);\n');

fprintf(fid1,'parameter N = %d;\n',N);

fprintf(fid1,'input k, clk, reset;\n');

fprintf(fid1,'output wire [1:0] n;\n');

fprintf(fid1,'reg [N-1:0] p0;\n');

fprintf(fid1,'always@(negedge reset or posedge clk)\n');

fprintf(fid1,'if (~reset)\n');

fprintf(fid1,'\tp0 = {(N){1''b0}};\n');

fprintf(fid1,'else\n');

fprintf(fid1,'\tp0 = {k, p0[%d-1:1]};\n\n',N);

fprintf(fid1,'assign n[0] = ');

for i = 1:length(g0)-1

 29

fprintf(fid1,'p0[%d]^',g0(i));

end

fprintf(fid1,'p0[%d];\n',g0(length(g0)));

fprintf(fid1,'assign n[1] = ');

for i = 1:length(g1)-1

fprintf(fid1,'p0[%d]^',g1(i));

end

fprintf(fid1,'p0[%d];\n\n',g1(length(g1)));

fprintf(fid1,'endmodule\n');

% close the file when finished

fclose(fid1);

 30

CHAPTER 4 - Encoder Design for Randomly Generated Low-

Density Parity-Check Codes

In general, encoder implementations of LDPC codes are optimized for area due to their

high complexity. Such designs usually have relatively low data rate. In this chapter, two new

encoder designs are presented that achieve much higher data rates while requiring more area for

implementation.

In this chapter, two encoder design methodologies and their implementation results are

presented. The key aspects of the design are summarized as follows:

 The efficient algorithm presented in 2.1.2 is used to develop a hardware implementation

of faster encoders for LDPC codes. The specific efficient algorithm is the greedy

algorithm A presented by Richardson and Urbanke in [22].

 The encoder designs are independent of code length, code rate and structure of the parity-

check matrix. Hence these designs can be used for both structured and any randomly

generated regular and irregular parity-check matrices.

 The encoder uses a direct implementation which sacrifices area for increased speed, but

this is necessary as applications require more bandwidth.

 The design is implemented using Mackay‟s regular and irregular LDPC codes [56]. For

this purpose, 1/2 rate regular LDPC codes with code lengths of 256, 512 and 1024 and

1/2 rate irregular LDPC codes with code lengths of 504 and 1008 are considered.

 One of the designs achieves encoding rates of up to 844 Mbps. Both of the designs

presented can fit on FPGAs currently available.

4.1 Encoder Design

An overview of the LDPC encoding process is shown in Figure 4.1. The encoding

process consists of two steps. In the first step, the parity-check matrix is transformed to

approximate lower triangular form, Hpre. For any given parity-check matrix, this step needs to be

performed only once and hence this step can be performed offline in software such as Matlab. In

the second step, hardware encoding is performed. Since the codeword is obtained using the

modified parity-check matrix, it needs to be rearranged to obtain the final codeword with regard

to the original parity-check matrix.

 31

Figure 4.1: Overview of the LDPC encoder.

4.1.1 Preprocessing

In preprocessing, the parity-check matrix is first transformed to approximate lower

triangular form, Hpre. This processing requires the following three steps:

1. Any variable node (i.e., any column in H) which is connected to a degree-one (i.e.,

rows of H having one non-zero element) check node (i.e., row in H) is declared to be known. For

any given H, each column in H is declared independently to be known with probability (1-) or,

otherwise, to be an unknown (erasure). The (1-)l known columns are then reordered to form the

leading columns of the matrix H as shown in Figure 4.2 (a) where l is the number of columns.

2. Assuming that the residual matrix, H
~

, has rows of degree-one, the columns connected

to degree-one rows are then identified. Let these columns be c1, … ck and let r1, … rk be the

degree-one rows such that ci is connected to ri. These new known columns and their associated

rows are ordered along a diagonal as shown in Figure 4.2 (b).

3. Furthermore, step 2 is repeated until all the degree-one rows are exhausted. If this

procedure does not stop prematurely then the row gap is (1 – )l and the column gap is (1 – r –

)l as shown in Figure 4.2 (c). If the procedure terminates before all columns are exhausted then

the remaining columns are reordered to the left. Let the remaining columns be l then the column

gap is (1 –  + )l and the row gap is (1 – r –  + )l. For a given parity-check matrix, H, this

preprocessing needs to be performed only once. Hence this step is performed in Matlab. The

Encoding

(P1 & P2 matrices)
Codeword

Information

bits

Parity-check matrix

(H)

H in approximate lower triangular

form (preprocess in Matlab)

 32

obtained Hpre is divided into sub-matrices as shown in Figure 4.2 (d). All these matrices are

sparse and T is lower triangular with ones along the diagonal.

(a) Parity-check matrix after the application of first step in greedy algorithm A.

(b) Parity-check matrix after the application of second step in greedy algorithm A.

(c) Parity-check matrix after the application of third step in greedy algorithm A.

(d) The parity-check matrix in approximate lower triangular form, Hpre, and its division of

submatrices.

Figure 4.2: Application of greedy algorithm A on H.

The parity bits are computed using Equations 2.6 and 2.7, which can also be written as

shown below in Equations 4.1 and 4.2. The parity bits p1 and p2, are obtained by multiplying

information bits, s, with matrices P1 and P2.

0 1
1

1
1 1

n – m m – g

A B

C D

T

E

g

m – g

g

0

0
0

r1

rk

k

c1 ck

(1 – ) l  l

 (1 – r) l

1
1

1

(1 – r) l H
~

(1 – ) l  l

0
 l

 l (1 – ) l

(1 – r – ) l

 33

 sCAETp)(11

1  

 sP1 , where)(11

1 CAETP   . (4.1)

)(1

1

2 BpAsTp  

))((111 sCAETBAsT   

 sCAETBAT))((111   

 sP2 , where)).((111

2 CAETBATP    (4.2)

Only the P1 and P2 matrices are required for encoding LDPC codes. For the computation of the

P1 and P2 matrices, the inverse of  matrix, i.e., (-ET
-1

B + D)
-1

 is used. Therefore the  matrix

has to be non-singular. If  is singular, then the columns of B are swapped with the columns in A

until  matrix is non-singular. This complete process, transforming H to approximate lower

triangular form, Hpre, and obtaining matrices P1 and P2, is performed in Matlab. While a smaller

gap, g, is suggested as outlined in [22], here it is only necessary that g > m/2. This is because

both P1 and P2 work independently and concurrently, so making one considerably more compact

than the other does not lead to an encoder which is faster.

 Once the P1 and P2 matrices are defined in Matlab, the next step is to find the best way to

store these matrices on the chip. For doing this, matrices P1 and P2 are computed using Matlab

for both regular and irregular parity-check matrices of different sizes. The number of one‟s in

each matrix is shown in Table 4.1.

Table 4.1: Density (nunber of one's) of H, P1 and P2 matrices.

H No. of one‟s in H No. of one‟s in P1 No. of one‟s in P2

Irregular parity-check matrix

252 × 504 2014 15878 15839

504 × 1008 4033 63359 63493

Regular parity-check matrix

256 ×512 1536 14638 14456

512 × 1024 3072 52279 56871

From Table 4.1, it can be observed that the matrices P1 and P2 are not sparse. For example, the

distribution of number of one‟s in the rows of a P2 matrix for an irregular parity-check matrix of

size 504 × 1008 is shown in Figure 4.3. This indicates that approximately 220-290 one‟s are in

 34

every row vector of P2. While a sparse representation for the P1 and P2 matrices can be utilized,

it is more efficient to use a dense representation of the matrices due to the dense properties of the

matrices themselves.

Figure 4.3: Distribution of number of one's in each row of P2 matrix for an irregular H of

size 504 × 1008.

4.1.2 Hardware Implementation

The Hardware implementation of the encoder, as shown in Figure 4.4 and Equations 4.1

and 4.2, is to multiply the information bits, s, with matrices P1 and P2 to obtain parity bits p1 and

p2 respectively. The multiplication and addition in binary system can be performed with an AND

gate and an XOR gate respectively. The length of information bits is n-m. The encoder assumes

that the information bits are available and the latency involved in reading the information bits is

not considered. Therefore, a serial input interface is used to read the information bits and it

requires n-m clock cycles. The information bits are read using a faster clock Clks and the

encoding is done using a slower clock, Clke.

Matrices P1 and P2 are stored on logic elements in arrays so that the data can be retrieved

simultaneously for all rows. This will help to reduce the latency involved if the matrices are

stored in the onboard RAM. To maximize the parallelism, matrix-vector multiplication is

performed by a multiple vector-vector multiplications (inner product) in parallel. Each vector-

 35

vector multiplication can be performed in two ways. The first method, multi clocked inner

product (MCIP), requires m clocks to compute one inner product while the second method,

single clocked inner product (SCIP), computes the inner product in a single clock.

Figure 4.4: Complete system of the generic encoder.

4.1.2.1 Multi Clocked Inner Product

In this method the inner product of vectors In1 and In2, each of length m, is performed

one bit at a time as illustrated in Figure 4.5. Bit-wise multiplication is performed on each clock

cycle with a single AND gate, and a running single-bit sum, Out, of the products is achieved

using a single XOR gate. If vectors In1 and In2 are stored in m-bit shift registers, then this method

requires m clock periods to calculate their inner product. Multiple instantiations of this inner

product module may be implemented in parallel on all the arrays of matrices P1 and P2 to obtain

the parity bits p1 and p2. Therefore, the coded data rate is determined by the minimum period of

the shift register clock, Clke.

Figure 4.5: Circuit for multi clocked inner product (MCIP).

In2 m-1 0

Out

D

Q

Clke
MUX

MUX

In1 m-1 0

s

Clke

Clks

n - m

n
Generic

encoder
c

 36

4.1.2.2 Single Clock Inner Product

This method is similar to the multi clocked inner product except that the inner product is

done in a single clock cycle. The illustration of this method is shown in Figure 4.6. In a single

clock, as shown in Figure 4.6, all pairs of bits from vectors In1 and In2 are ANDed and the output

of each AND gate is XORed to obtain the inner product, Out. This procedure may also be

performed in parallel on all arrays of matrices P1 and P2. The coded data rate of this method is

determined by the maximum propagation delay from any bit in In1 and In2 to the output, Out.

This delay will set the minimum period of the encoder clock, Clke.

Figure 4.6: Circuit for single clocked inner product (SCIP).

After obtaining the parity bits p1 and p2 using either of the above methods, the

information and parity bits are rearranged to obtain the final codeword with respect to the actual

parity-check matrix, H. The number of clock cycles required for a codeword using the multi

clocked inner product (MCIP) method is equal to m + 1 where the m clock cycles are required to

compute the inner product and the additional clock is required to rearrange the codeword bits.

When single clocked inner product (SCIP) is used the number of clock cycles required for

codeword is two where the inner product is obtained in one clock cycle and the codeword bits

are rearranged in the second clock cycle.

4.2 Results

As described in section 3.3, Verilog modules for these encoder designs are generated

using a Matlab script. The Verilog modules are then synthesized using Quartus and implemented

on a Stratix EP1S80F1508C5 FPGA. A computer is used to send the information bits to the

FPGA and to read each resulting codeword from the encoder. For verification, the hardware

In2

In1 m-1

m-1

0

Out





m

 37

encoder output is then compared to the corresponding codeword generated by Matlab. A

comparison of the performance of both design strategies was achieved by implementing each

version for different types and sizes of rate 1/2 parity-check matrices. As discussed previously,

preprocessing was performed on each H using Matlab. This is not a major concern because this

step is performed only once for a given parity-check matrix. The actual hardware encoder results

are shown in Tables 4.2 and 4.3. The maximum clock speed shown is that of the encoder clock,

Clke. The coded data rate and latency calculations are based on the internal encoder design and

not on any special I/O limitations.

Table 4.2: Synthesis results of encoder implementation using MCIP on Stratix

EP1S80F1508C5.

H

Encoder implementation using MCIP

LE‟s CPC
Clke

(MHz)

Coded data rate

(Mbps)

Latency

(µs)

Reg 128 × 256 2014 129 76.65 152.12 1.683

Reg 256 × 512 6580 257 60.73 120.98 4.232

Reg 512 × 1024 22978 513 46.02 91.86 11.147

Irreg 252 × 504 7485 253 69.73 138.9 3.628

Irreg 504 × 1008 28459 505 51.57 102.94 9.793

Table 4.3: Synthesis results of encoder implementation using SCIP on Startix

EP1S80F1508C5.

H

Encoder implementation using SCIP

LE‟s CPC
Clke

(MHz)

Coded data rate

(Gbps)

Latency

(ns)

Reg 128 × 256 1143 2 319.49 40.9 6.26

Reg 256 × 512 3508 2 262.4 67.18 7.62

Reg 512 × 1024 12664 2 318.47 163.06 6.28

Irreg 252 × 504 5450 2 238.55 60.12 8.38

Irreg 504 × 1008 22249 2 316.56 159.54 6.32

 38

The encoder implementation using both methods MCIP and SCIP assumes that all input

data bits are available for encoding, so any serialization delay factor is not included in the results

shown in Tables 4.2 and 4.3. The important observation here is that using a SCIP encoder has a

huge advantage in terms of data rate and latency over the MCIP encoder. This is somewhat

expected for the defined architecture of each system. Another interesting observation is the

difference in area for each design. One would normally expect the MCIP to require fewer LEs,

but the converse is actually true. This is due to the implementation of huge multiplexer‟s

required by MCIP in the FPGA. May be SCIP encoder required fewer LEs than MCIP encoder

due to the statically defined P1 and P2 matrices. It is observed that increasing the code length

decreases the clock speed. Also an irregular LDPC code takes considerably more area than a

regular LDPC code. Again this can be attributed to a difference in potential optimization for the

two different codes as they are defined in P1 and P2.

If one wants to consider both encoders under a serial input stream then an input shift-

register needs to be added to both the MCIP and SCIP encoders. The latency in reading the

information bits is m/Clks. Let the encoding clock frequency be Clke, which is equal to the

maximum clock frequency of the synthesized designs shown in Tables 4.2 and 4.3. The latency

of the complete system, shown in Figure 4.4, is the maximum value of [m/Clks, CPC/Clke],

which becomes CPC/Clke for MCIP encoder and m/Clks for SCIP encoder. Therefore the coded

data rate is equal to m×Clke /(CPC×code rate) for MCIP encoder and Clks/(code rate) for SCIP

encoder. The synthesis results of the complete generic encoder system using MCIP and SCIP are

shown in Table 4.4. It can be observed from Tables 4.2 and 4.4 that the MCIP encoder coded

data rate is not affected by I/O serialization. However, coded data rate of the complete encoder

system using SCIP becomes limited by the speed of the shift register, which in this case is

422.12 MHz.

The coded data rate decreases with the increase in the size of the parity-check matrix for

the MCIP encoder whereas it is independent of the size of the parity-check matrix for the SCIP

encoder. This encoding process is not restricted by the properties of the original H matrix, and it

is also completely flexible with respect to code length and code rate. Hence it can encode any

LDPC codes. Although the implementation is based on H matrices that are binary, it can be

extended to matrices that belong to higher order fields. All of the designs presented can fit on

FPGAs currently available.

 39

Table 4.4: Synthesis results of complete encoder system using MCIP and SCIP

implemented on Stratix EP1S80F1508C5.

H

Complete system of

MCIP encoder

Complete system of

SCIP encoder

Latency

(µs)

Coded data rate

(Mbps)

Latency

(µs)

Coded data rate

(Mbps)

Regular 128 × 256 1.683 152.12 0.303 844.24

Regular 256 × 512 4.232 120.98 0.606 844.24

Regular 512 × 1024 11.147 91.86 1.213 844.24

Irregular 252 × 504 3.628 138.9 0.597 844.24

Irregular 504 × 1008 9.793 102.94 1.194 844.24

Both of the implementations presented here provide a significant increase in coded data

rate compared to the design presented in [29]. Lee in [29] implemented an encoder on a Xilinx

Virtex-II XC2V4000-6 using Richardson and Urbanke‟s encoding algorithm. Table 4.5 shows

the implementation results for various encoders presented in [29] with code lengths ranging from

500 to 8000 bits for rate 1/2. In order to compare the results of the encoder presented in [29] to

our design [67], the slices (smallest unit of logic in Xilinx) required by the design in [29] need to

be converted to logic elements. Xilinx Virtex-II XC2V4000 FPGA has 23040 slices [68] and its

equivalent Stratix logic elements are 57600 [69]. Therefore, 1 slice of Xilinx is approximately

equal to 2.5 logic elements. The number of approximate logic elements required by the encoder

presented in [29] is also included in Table 4.5.

Table 4.5: Synthesis results of LDPC encoder designed by Lee [29].

H

Coded data rate

(Mbps)
Slices

Equivalent

LEs

250 × 500 50 562 1405

500 × 1000 48 682 1705

1000 × 2000 45 870 2175

2000 × 4000 40 1340 3350

4000 × 8000 34 2148 5370

 40

In order to maximize the coded data rate, the design presented in [29] uses multiple

instances of the encoder, which is not required in our design [67]. In [29], for code length of

2000 and code rate 1/2, it is shown that by using 16 encoder instances instead of one encoder

instance the coded data rate is increased from 45 Mbps to 410 Mbps which requires 16906 slices.

In this case, the equivalent logic elements are 42265. To get a higher data rate, the design

presented in [29] also requires large area for its implementation.

From Tables 4.4 and 4.5, it can be observed that for code lengths of 500 and 1000, the

coded data rate of our designs is greater than the design presented in [29]. The coded data rate of

the encoder implemented using MCIP method is greater than or equal to twice the coded data

rate of the design in [29]. The encoder implemented using the SCIP method has a very high

coded data rate approximately 17 times the coded data rate of the design presented in [29].

Although the required area for our design is significantly larger, its use in high-speed

applications would not require the parallelization that other designs propose.

 41

CHAPTER 5 - Encoder Design for Structured Low-Density Parity-

Check Codes

In the previous chapter, a LDPC encoder for randomly generated LDPC codes was

presented. Due to the randomness in the LDPC codes, the encoder implementation requires large

area. The use of structured LDPC codes decreases the encoding complexity and also provides

design flexibility.

In this chapter, the encoder design and its hardware implementation for structured LDPC

codes are described.

 An encoder architecture is presented that adheres to the structured LDPC codes defined

in the IEEE 802.16e standard. The encoder supports codes with rates 1/2, 2/3, 3/4 and 5/6

and code lengths ranging from 576-2304.

 The coded data rate is equal to 844, 633, 562 and 506 Mbps for code rates 1/2, 2/3, 3/4

and 5/6 respectively. For a given code rate, the coded data rate is constant for varying

code lengths.

 The design methodology is flexible in terms of both the code rate and code length. Hence

the design can also be used for similar structured LDPC codes defined in other standards.

5.1 Structured LDPC Codes

The parity-check matrices defined in the IEEE 802.16e standard are used for the encoder

implementation. Standard IEEE 802.16e defines LDPC codes as a set of one or more

fundamental LDPC codes. Each of the fundamental codes support code lengths from 576 to 2304

with code rates of 1/2, 2/3 A, 2/3 B, 3/4 A, 3/4 B and 5/6. The parity-check matrix, H, is of size

m × n, where m is the number of parity-check bits in the code and n is the length of the code. The

parity-check matrix H is expanded from a base parity-check matrix, Hb. The size of Hb is mb × nb

where mb = m/z, nb = n/z = 24 and z is an integer greater than zero. The value of mb varies with

code rate of the LDPC codes. Its value is equal to 12, 8, 6 and 4 for code rates of 1/2, 2/3, 3/4

and 5/6. A parity-check matrix is obtained by replacing each -1 in Hb with a z × z zero matrix,

each 0 with a z × z identity matrix, and any element greater than zero with a z × z permutation

matrix. The permutation matrix is an identity matrix that has been circularly right shifted by the

associated value specified in Hb.

 42

Hb and can be partitioned into two matrices, Hb1 and Hb2. Matrix Hb1 has size mb × kb and

corresponds to the systematic bits with kb = nb − mb. Matrix Hb2 has size mb × mb and

corresponds to the parity check bits.

][21 bbb HHH  (5.1)

Hb2 can further be partitioned into Hb2a and Hb2b as shown Equation 5.2. Column vector Hb2a has

odd weight, and it has 3 elements whose value is greater than or equal to zero. All other values in

the vector are equal to -1. The top and bottom elements of Hb2a are assigned equal shift sizes

(hb(0) = hb(mb-1)), and the third element, is located anywhere in the middle of the vector. Matrix

Hb2b has a dual diagonal structure with each matrix element at row i, column j equal to 0 for i = j

and i = j + 1 and -1 elsewhere.

(5.2)

An example of the Hb1 and Hb2 matrices for code rate 2/3 B give values of hb and are

shown in Equations 5.3 and 5.4 respectively. In this case, mb is 8, nb is 24 and kb = nb – mb = 16.

Unlike the efficient encoding method where the parity-check matrix is transformed into lower

triangular form, here the base parity-check matrix need not be transformed into lower triangular

form because of the dual diagonal structure of Hb2.



















































41178155184161113147101

152161518515611510132

0174130101141541651301

162150124166130115129123

37156151881271811321281

173134116185128162186110

48140137116131331881691

11514718213614814711912

1bH

 (5.3)







































0

001

00

..

00

100

0

)1(

.

.

)(

.

.

)0(

][222

















bb

b

b

bbabb

mh

ih

h

HHH

 43



















































011111195

00111110

10011111

11001111

11100111

11110011

11111001

111111095

2bH

 (5.4)

5.2 Design Methodology

Using structured LDPC codes considerably simplifies the encoder and makes the design

straightforward compared to other encoders. A modified version of the generic encoding method

described in 2.1.1 is used for hardware implementation of structured LDPC codes. Encoding of

LDPC codes also uses the property TT

b xH 0 , where x and Hb is the base parity-check matrix.

Codeword x may be split into the information bits, S, and parity bits, p, i.e., 









p

S
xT

. The size

of S is kb × 1 and the size of p is mb × 1, so

TT

b xH 0

becomes .0][21

T

bb
p

S
HH 









 (5.5)

Expanding and solving for p one finds

021  pHSH bb (5.6)

.1

1

2 SHHp bb




 (5.7)

Matrix Hb2
−1

is no longer sparse when compared to Hb2. Therefore, direct implementation of

Equation 5.7 has high encoding complexity. However, the parity bits are easily solved by

exploiting the dual diagonal structure of the Hb2 matrix, which is explained in subsection 5.3.2.

Let the product of matrices Hb1 and S be denoted by V. Therefore, for modulo 2 operations,

Equation 5.6 can also be written as

VSHpH bb  12 . (5.8)

The parity bits, p are obtained by solving

.2 VpH b  (5.9)

 44

5.3 Hardware Implementation

The encoder implementation is performed in two steps. First step, the product of matrices

Hb1 and information bits, S, is computed and is denoted by V. In the second step, the parity bits,

p, are computed by solving Equation 5.9. As will be explained in section 5.3, computation of V

and p each require a time period of t. Therefore the encoding process is done in a period of 2t as

shown in Figure 5.1. To reduce the time period required for the encoding process to half of its

time period, the two steps required for the computation of V and p can be performed in a pipeline

fashion as shown in Figure 5.2. First, V is computed for the first set of information bits. Then the

parity bits, p, are computed. During the computation of p for the first set of information bits, V is

computed for the second set of information bits simultaneously. This pipeline implementation of

the encoder increases the encoding data rate by decreasing the time required for the encoding

process.

Figure 5.1: Encoding process.

Figure 5.2: Overview of encoding process.

5.3.1 Computation of V

The first step in the encoder implementation is the computation of V, the product of

matrix Hb1 and vector S. This can be obtained by vector-vector multiplication of each row in Hb1

with the column vector S. To maximize the efficiency, vector-vector multiplication is performed

in parallel.

t t

Computation of V

for the first set of

information bits

Computation of V

for the second set of

information bits

Computation of p

for the first set of

information bits

Computation of p

for the second set of

information bits

t t

Computation of V

for the first set of

information bits

Computation of p

for the first set of

information bits

 45

5.3.1.1 Vector-Vector Multiplication

The matrix Hb1 is a sparse matrix with each element representing a zero matrix, identity

matrix, or permutation matrix of size z × z. The inner product, vi, an element of the vector V, is

obtained by multiplying the ith row in Hb1 with S as shown

 

























1

1

0

)1,(1)1,(1)0,(1][

b

b

k

kibibibi

s

s

s

hhhv


 (5.10)

 1)1,(11)1,(10)0,(1 


bb
kkibibib shshsh 

 





1

0
),(

bk

j
jipe (5.11)

where

















.)(

,0

,10

),(1

),(1

),(1

),(1),(

bjibbj

jibj

jib

jjibjip

hhifhs

hifs

hif

she (5.12)

The product of hb1(i,j), an element in Hb1, with sj, a vector in S, is denoted by ep(i,j). It is defined as

shown in Equation 5.12, where sj(hb) is the circular right shifted version of the vector sj and the

circular right shift value is defined by hb1(i,j). An additional clock cycle is required to add all the

elements of ep to obtain v. In modulo 2, v is obtained by performing an XOR operation on all the

elements of ep.

5.3.1.2 Computation of ep

Vector ep is defined as the product of the z × z matrix hb1 and a z × 1 vector s as shown in

Equation 5.11. Each sj(hb) is obtained by circular right shifting the vector sj by a particular shift

value, hb, defined by hb(i,j) . If the value of hb is greater than z/2, then a circular right shift is

performed on sj and the number of shifts required to obtain the corresponding ep(i,j) is equal to hb

− z/2. If the value of hb is less than z/2, then a circular left shift is performed on sj and the

number of shifts required to obtain corresponding ep(i,j) is equal to hb. If a shift is performed on

each clock cycle, then the computation of ep requires z/2 clock cycles.

 46

5.3.2 Computation of Parity Bits

The second step in the encoding process includes the computation of parity bits. Equation

5.9 can be rewritten as shown in Equation 5.13. Solving, we get 010)0(vpphb  , 121 vpp  ,

….,
jjjb vpppjh  10)(, …,

110)1( 
bb mmbb vppmh . Adding all of these equations

results in
1100 

bmvvvp  . p0 can be computed in a single clock cycle by XORing all the

elements of v. Once p0 is obtained, the remaining parity bits can be computed by using the

following expressions: 001)0(phvp b , 112 pvp  etc., where 0)0(phb is now the shifted

version of p0 whose shift value is defined by)0(bh . The 0)0(phb is computed using the method

described in above subsection 5.3.1.2. This procedure would require z/2 clock cycles. Once 0p

and
0)0,0(pc are obtained, they can be used to compute the values of the remaining parity bits.

This step can be performed in a single clock period.

.

.

.

.

.

.

.

.

.

0)1(

001.

00.

..)(

00.

100.

0)0(

1

1

0

1

1

0





























































































 bb mmbb

b

b

v

v

v

p

p

p

mh

jh

h

 (5.13)

5.4 Results

Verilog modules are again generated using a Matlab script as explained in section 3.3. A

hardware implementation was performed on an Altera Stratix EP1S80F1508C5 FPGA using

Quartus II for synthesis. The synthesis results for different code lengths and code rates are shown

in Table 5.1. In Table 5.1, variable z, represents the size of the sub-matrix in the base matrix, Hb,

and is equal to n/24. Column LE denotes the number of logic elements required for the

implementation of the encoder on the FPGA, while CPC represents the number of clock cycles

required per codeword for encoding. CPC is equal to the maximum number of clock cycles

required for computation of V and p. The computation of V requires z/2 + 3 clock cycles in which

z/2 clock cycles are required to compute ep, and three clock cycles are required for loading and

processing the data and computing V. Computation of p requires z/2 + 3 clock cycles, in which

 47

one clock cycle is used for computing p0, z/2 clock cycles are required to compute 0)0(phb , and

the remaining two clock cycles are required for loading the data and computing the remaining

parity bits. Hence this method requires z/2 + 3 clock cycles. Clke in Table 5.1 represents the

encoder clock. From Table 5.1, it is observed that increasing the code length increases LEs and

CPC. Synthesis results of LEs required for different code lengths and code rates is shown in

Figure 5.3. The coded data rate is equal to m × Clke /(CPC × code rate).

Table 5.1: Synthesis results of structured encoder using LDPC codes defined in 802.16e.

n z

Code rate 1/2 Code rate 2/3

LE
Clke

(MHz)

Coded

data rate

(Gbps)

LE
Clke

(MHz)

Coded

data rate

(Gbps)

576 24 3391 192.23 7.38 4039 176.71 6.78

960 40 5100 159.57 6.66 6056 169.2 7.07

1440 60 7012 164.83 7.2 8080 158.25 6.9

1920 80 8924 148.72 6.64 10408 153.73 6.87

2304 96 10339 148.41 6.70 12008 141.02 6.38

n CPC

Code rate 3/4 Code rate 5/6

LE
Clke

(MHz)

Coded

data rate

(Gbps)

LE
Clke

(MHz)

Coded

data rate

(Gbps)

576 15 4421 189.07 7.27 4295 193.23 7.54

960 23 6593 170.88 7.13 6400 174.52 7.28

1440 33 8749 165.73 7.23 8472 161.47 7.04

1920 43 11063 152.18 6.8 10704 147.43 6.59

2304 51 12727 152.65 6.89 12306 150.69 6.8

For any code rate and code length the coded data rate varies from 6.3 to 7.5 Gbps. These

calculations are based on the internal encoder design and not on any special I/O limitations. The

encoder implementation assumes that all input data bits are available for encoding, so I/O

serialization factors are not included in the results. In order to consider the encoder

implementation under I/O serialization, a shift register needs to be added as shown in Figure 5.4.

 48

The data rate thus becomes limited by the speed at which the shift register can run, Clks, which is

422.12 MHz.

Figure 5.3: Logic elements vs. code lengths for different code rates.

Figure 5.4: Complete structured encoder system.

The latency of the encoder considering I/O serialization is the maximum of [m/Clks,

CPC/Clke] which is m/Clks. The coded data rate of the encoder considering I/O serialization is

equal to Clks/(code rate). Thus, the coded data rate value is constant for different code lengths.

The coded data rate is equal to 844, 633, 562 and 506 Mbps for code rates 1/2, 2/3, 3/4 and 5/6

respectively. The design methodology of our proposed encoder accommodates different code

lengths and code rates. The encoder design presented can easily fit on FPGA‟s and has a

significant high information data rates. This value is significantly high when compared to the

coded data rate of the encoders presented in [32] and [33].

s

Clke

Clks

n - m

n
Structured

encoder
c

 49

In [32], an encoder is implemented on a reconfigurable instruction cell architecture which

is an ultra low power, high performance, ANSI-C programmable embedded core. The encoder is

implemented using Richardson and Urbanke‟s algorithm and LDPC codes defined in IEEE

802.16e. The encoder data rate achieved without pipelining is in the range from 10 to 19 Mbps

while with pipelining it is in the range from 26 to 47 Mbps. The encoder data rate can be

increased to 78 Mbps by using multiple cores.

In [33], an LDPC encoder is implemented based on Richardson and Urbanke‟s method

using LDPC codes defined in IEEE 802.16e and IEEE 802.11n. Their method is based on a

semi-parallel architecture using cyclic right shift registers and XORs. The information data rate,

which is equal to the product of coded data rate and code rate, is computed for different code

lengths and is shown in Table 5.2. The LEs required for the implementation of our proposed

structured encoder [67] and the encoder in [33] is also shown in Table 5.2. The coded data rate of

1/2 rate LDPC codes defined in IEEE 802.16e with I/O serialization of our proposed structured

encoder compared with the encoder in [33] is shown in Table 5.3.

Table 5.2: Comparison of information data rate without I/O serialization of our proposed

structured encoder with the encoder presented by Kim [33].

Code length Encoder design

Information

data rate

(Gbps)

LE

576

[33] 1.55 1265

Our proposed

structured encoder [67]
3.69 3391

960

[33] 1.41 2078

Our proposed

structured encoder [67]
3.33 5100

1440

[33] 1.41 2835

Our proposed

structured encoder [67]
3.6 7012

1920

[33] 1.26 3657

Our proposed

structured encoder [67]
3.32 8924

2304

[33] 1.25 4305

Our proposed

structured encoder [67]
3.35 10339

 50

From Tables 4.5, 5.2 and 5.3, our proposed structured encoder has highest data rate when

compared with the encoders presented in [29], [32] and [33] but requires more area when

compared to encoders presented in [29] and [33]. With the increase in the length of the

codeword, the coded data rate of our proposed design is constant and is equal to 844 Mbps for

code rate 1/2 whereas the codeword data rate of encoder presented in [33] decreases as shown in

Table 5.3.

Table 5.3: Comparison of coded data rate with I/O serialization of our proposed structured

encoder with the encoder presented by Kim [33].

Code length
Our proposed structured encoder

coded data rate (Mbps)

Reference [33]

coded data rate (Mbps)

768 844 462

1536 844 416

 51

CHAPTER 6 - Flexible Multi-Code Rate and Multi-Code Length

Encoder for Structured Low-Density Parity-Check Codes

Design methodologies presented in chapters 4 and 5 can be used for different code rates

and code lengths. However, the design has to be re-synthesized in order to change the code rate

or code length of the LDPC codes. In this chapter, the design of a flexible encoder for structured

LDPC codes is presented. The design methodology and the implementation results are provided.

The key contributions of the flexible multi-code rate and multi-code length encoder for

structured LDPC codes are presented below:

 A single flexible encoder that accommodates multiple code lengths and code rates of

structured LDPC codes defined in IEEE 802.16e standard is designed which does not

require re-synthesis of the Verilog code in order to change the encoder parameters (code

length and code rate).

 The flexible encoder for structured LDPC codes is implemented on both an FPGA and

ASIC.

 The coded data rate of the synthesized encoder is 844, 633, 562 and 506 Mbps for code

rates 1/2, 2/3, 3/4 and 5/6 respectively. For a given code rate, the coded data rate is

constant for varying code lengths.

 The same design methodology with minor modifications can be used for other LDPC

codes with structure similar to those specified in IEEE 802.16.

6.1 Design Methodology

The encoder implementation is similar to that explained in chapter 5 except that the

parity-check matrices for all different code rates have to be stored on chip in order to design a

flexible encoder. In this method, a flexible encoder is developed using structured LDPC codes

defined in the IEEE 802.16e standard. Depending on the desired code rate and code length the

corresponding parity-check matrix is computed on chip from its base parity-check matrix and is

stored on chip which is used for the encoding process. This design methodology accommodates

the code rates 1/2, 2/3, 3/4 and 5/6 and code lengths ranging from 576-2304 bits.

The encoder implementation is performed in four steps as shown in Figure 6.1. It is

assumed that the user specifies the desired code rate and code length. In the first step, H is

 52

computed from its corresponding Hb, and is stored on the chip temporarily for the encoding

process until code length or code rate of the LDPC codes is changed. In the second step, the

inner product, ep, of the elements of Hb1 and S are computed. In the third step, V is calculated

which is the product of matrices Hb1 and S. Parity bits are computed from V by solving Equation

5.13 in the final step.

Figure 6.1: Overview of the encoding process.

6.2 Hardware Implementation

Hardware implementation of each of the blocks shown in Figure 6.1 is presented in this

section.

6.2.1 Storing Base Parity-Check Matrices for Different Rates of LDPC Codes

In the IEEE 802.16e standard, there are a total of six different base parity-check matrices

corresponding to the six different code rates: 1/2, 2/3 A, 2/3 B, 3/4 A, 3/4 B and 5/6. All six Hb‟s

are stored on chip to design a flexible encoder accommodating all different code rates. In

general, the base parity-check matrices are sparse in nature. As described in section 5.1, Hb can

be split into two matrices Hb1 and Hb2. Because of the sparse nature of Hb1, only the non-negative

elements are stored on the chip instead of all the elements in the matrix. In the encoding process,

the V matrix is computed to obtain the parity bits. V is obtained by vector-vector multiplication

of each row or column in Hb1 with the column vector S. The inner product, ep, of the elements of

Hb1, and S is obtained by circularly right shifting a block of S, vector s, by a particular shift value

determined by hb1, so a shift register is needed to compute ep. More details of the encoding

process are presented in the next subsection. First, the best method to store Hb for efficient

encoding is explored.

To maximize the efficiency, vector-vector multiplication is performed in parallel. V can

be obtained using two methods as shown in Figure 6.2. In Method I, row parallelization, as

shown in Figure 6.2 (a), vector-vector multiplication can be performed on each row, R, of Hb1

Computation

of ep
Computation

of V

Computation

of p
c S

H

 53

and vector S to obtain an element in V. This process can be performed in parallel on all rows of

Hb1 simultaneously to obtain all the elements of V. In Method II, column parallelization, as

shown in Figure 6.2 (b), bitwise multiplication is performed on each column, C, of Hb1 with a

block of S, vector s of size z × 1, in parallel and then all the product vectors are added to obtain

V. All the base parity-check matrices for different code rates are evaluated to determine the best

method for the implementation of vector-vector multiplication.

Figure 6.2: Computation of V using (a) row parallelization method and (b) column

parallelization method.

In the base parity-check matrices for all different code rates there are a maximum of 6

and 18 non-negative elements in each column and row respectively. Computation of V using row

parallelization method would require 18 instantiations of a shift register whereas using column

parallelization method would require only 6 instantiations of a shift register. Computation of V

by using the row parallelization method would require the entire vector S, while only a block of S

of size z × 1 is required when column parallelization method is used. Implementation of the

(a)

×

 R1

 R2

 R
bm

S

Hb1 S

=

R1×S

R2×S

R
bm
×S

 V

(b)

C2 C
bn

bn

 × C1

Hb1 S

=

 V

C1×s1 C2×s2 bb nn sC  +

s2

bns

+

s1

 54

column parallelization method would require less area than the row parallelization method while

the latency involved in reading the information bits is also decreased. Hence for computation of

V, the column parallelization method is chosen.

To design an LDPC encoder that is flexible with code rate, six base matrices of Hb1

corresponding to code rates 1/2, 2/3 A, 2/3 B, 3/4 A, 3/4 B and 5/6 need to be stored on the chip.

To store each Hb1 using sparse representation, six non-negative elements per column of Hb1 are

required. The information needed to store an element is its location (i.e. row number) and its

value. The maximum value of an element in Hb1 is 95 which require 7 bits for representation.

Matrix Hb1 for code rates 1/2, 2/3, 3/4 and 5/6 has 12, 8, 6 and 4 rows respectively, which require

4 bits for its representation of a maximum value 12. Therefore, a total of 11 bits are used to

represent an element in Hb1.

Each column of Hb1 is stored in an array. The values are stored in registers instead of

RAM modules available on an FPGA so that the same design can be implemented on an ASIC

without any modification. Each element in this array represents the concatenation of all the non-

negative elements in each column of Hb1. As mentioned above, there are a maximum of 6 non-

negative elements in each column of H and each element in H requires 11 bits for its

representation. Therefore the size of an element in the Hb1 array is 66 bits. As an example, to

store Hb1 of code rate 2/3 B requires: non-negative elements in the first column of Hb1 located at

row locations 1, 3, 5 and 7, and their corresponding values are 2, 10, 23 and 32 respectively. This

can be denoted as (1, 2), (3, 10), (5, 23) and (7, 32). Six elements are stored per column. If any

column has non-negative elements less than 6 then the remaining elements are denoted as (0,

127). The size of the Hb1 array is equal to the number of columns in Hb1. For code rates 1/2, 2/3,

3/4 and 5/6 the size of the Hb1 array is 12, 16, 18 and 20 respectively. For example, the size of

Hb1 with code rate 2/3 is 16 × 1 where an element in Hb1 is 66-bits long.

The Hb2 matrix for all different code rates has the same pattern except for the location of

non-negative elements in its first column. The first column in Hb2 has 3 non-negative elements.

Two of these non-negative elements are located on the top and bottom of the first column and are

assigned equal shift values. The third non-negative element is located anywhere in the middle of

the column. Also one of the non-negative element‟s shift value is equal to zero. For the encoding

process, a non-negative element with shift value greater than zero is only needed from the first

column of Hb2. Therefore, one non-negative element‟s shift value and its location are stored

 55

instead of the entire first column. For all possible code rates and code lengths its corresponding

scaling value is computed and is stored in a look up table.

6.2.2. Parity-Check Matrix

The base parity-check matrix is defined for the largest code length (n = 2304) for each

code rate. The set of shift values, hb(i,j), in the Hb are used to determine the shift sizes, hb(i,j), of H

for varying code lengths of the same code rate. Each Hb has nb columns equal to 24, and the

expansion factor zf is equal to n/24 for code length n. For example, code length n equal to 2304

has the expansion factor zf of 96. For code rates 1/2, 2/3 B, 3/4 A, 3/4 B, and 5/6, the shift sizes,

hb(i,j), of H for a code length corresponding to expansion factor zf are derived from hb(i,j) by

scaling hb(i,j) proportionally as





















0,

0,

),(

0

),(

),(),(

),(
jib

fjib

jibjib

ji h
z

zh

hh

h (6.1)

where w

denotes the floor of w and z0 = 96. For the code rate 2/3 A, the shift sizes, hb(i,j), of H

for a code length corresponding to expansion factor zf is defined using the modulo function










0),,mod(

0,

),(),(

),(),(

),(

jibfjib

jibjib

ji hzh

hh
h . (6.2)

For any given code rate and code length, the parity-check matrix needs to be computed

only once. All six Hb1 matrices are stored on the chip as shown in Figure 6.3.

Figure 6.3: Storing base parity-check matrices, Hb, for different code rates.

Base matrices

for all code rates

H
Rate

select

 Length select

Hb
Required H

Implementation

of Equations

6.1 and 6.2

66
66

7

3

Rate 1/2 Hb

Rate 2/3 A Hb

Rate 2/3 B Hb

Rate 3/4 A Hb

Rate 3/4 B Hb

Rate 5/6 Hb

 56

Based on the desired code rate and code length, the rate select and length select inputs are

chosen. Rate select values for different code rates are shown in Table 6.1. The length select input

is equal to n/24 where n is the code length and length select values for varying code lengths are

shown in Table 6.2.

Table 6.1: Rate select values for different code rates.

Code rate Rate select

1/2 001

2/3 A 010

2/3 B 011

3/4 A 100

3/4 B 101

5/6 110

Table 6.2: Length select values for different code lengths.

Code length Length select

576 0011000

672 0011100

768 0100000

864 0100100

960 0101000

1056 0101100

1152 0110000

1248 0110100

1344 0111000

1440 0111100

1536 1000000

1632 1000100

1728 1001000

1824 1001100

1920 1010000

2016 1010100

2112 1011000

2208 1011100

2304 1100000

 57

The required H is computed from its corresponding Hb using Equations 6.1 and 6.2 as shown in

Figure 6.3. Equations 6.1 and 6.2 are implemented using simple multiplication and division

modules.

6.2.2.1 Multiplication

The multiplication of two unsigned binary integers, In1 and In2, each of length 7 bits

creates a product, Out, of length 14 bits. The finite state machine of the multiplication module is

shown in Figure 6.4.

Figure 6.4: Finite state machine for the multiplication module.

The multiplication process is controlled by the input, start, as shown in Figure 6.4. If the

input, start is 0 then the machine stays in state S1 where all the values used in the multiplication

process are initialized. When start is equal to 1, the multiplication process begins by loading the

inputs In1, multiplicand, and In2, multiplier. The variable temp2 is assigned the value of the

multiplicand, In1, and counter ct is initialized to zero and then the state machine is moved to state

S2. In state S2, the multiplier bit located at ct is obtained. If In2[ct] value is 1 then the variable

If ct ≥ 7

S3

Out =

temp1

stop

reset

 S1

temp1 = 14‟b0,

temp2 = In1,

Out = 14‟b0,

ct = 4‟b0

 S2

if In2[ct] = 0

 temp1 = temp1

else

 temp1 = temp1 + temp2

end

temp2 = temp2 << 1,

ct = ct + 1

start

If ct < 7

 58

temp1 is added to temp2 and the sum is assigned to temp1 otherwise temp1 remains the same.

The ct is incremented by 1 and temp2 is shifted left by one bit. If the value of ct is less than 7

then the state machine remains in the same state S2. Otherwise, it is moved to state S3. In state

S3, the product, Out, is assigned the value of temp1 and the multiplication process is stopped.

The hardware block diagram of the multiplication module is shown below in Figure 6.5.

Figure 6.5: Hardware block diagram for the multiplication module.

First step is to initialize all the values. Since the product is 14-bit long, the most significant bits

of the multiplicand, In1, are assigned 7 zeros. For every clock cycle, the multiplicand, In1, is

shifted left by one bit and the counter ct is incremented by 1. The multiplier, In2, bit located at ct

controls the multiplexer output. The multiplexer output is assigned the output of shift register A

Inner product

IP

Shift Left

Register

A

Shift

left

LIn1
0

Multiplicand

In1

 7 7

14

14
0

14

14

Register C

Counter B

ct = ct +1

 4

ct

0

1 0 Multiplier

In2[ct]

14

Out

Clk

reset

 59

or 14-bit zeros when the In2[ct] is equal to 1 or 0 respectively. The inner product, IP, is obtained

by adding the multiplexer output and the product, Out, of the register C. This multiplication

module requires 7 clock cycles to obtain the final product, Out.

6.2.2.2 Division

The division of two unsigned binary integers, In1 and In2, each of length 14 bits creates a

quotient, Q, and remainder, R, each of length 14 bits. The finite state machine of the division

module is shown in Figure 6.6 and its hardware block diagram is shown in Figure 6.7.

Figure 6.6: Finite state machine for the division module.

The division process is controlled by the input, start, as shown in Figure 6.6. If the start

input is 0 then the machine stays in state S1 where all the values used in the division process are

initialized. When start is equal to 1, the division process begins by loading the inputs In1,

dividend, and In2, divisor. The variable temp is assigned a value equal to the concatenation of

if ct < 0

S3

Q, R

stop

reset

 S1

temp =

 {14‟b0, In1},

 Q = 14‟b0,

R = 14‟b0,

ct = 4‟d13

 S2

R = temp[27:14]

if R  In2

 Q[ct] = 1‟b1

 R = R – In2

 temp[27:14] = R

else

 Q[ct] = 1‟b0

end

temp = temp << 1

ct = ct - 1

start

If ct  0

 60

Figure 6.7: Hardware block diagram for the division module.

14-bit zeros and In1. The counter ct is assigned a value equal to 13 and the state machine is

moved to the state S2. In state S2, R is assigned a value equal to temp[27:14]. If R is greater than

or equal to In2 then the Q bit located at ct is assigned a value of 1 and R is assigned a new value

equal to R-In2. The temp[27:14] bits are reset with the updated value of R. If R is less than In2,

14

Register C

Q[ct] = sel

 Q

14

Register

B

E

In2

7

Divisor

In2

sel

14

sel

 clk

Counter

ct = ct - 1

4

 R

14 A[27:14]

Left Shift

Register

A

Shift

left

LIn1

Dividend

In1

14 14

 4

 13 Comparator

R ≤ In2 ?

A[27:14]

14

ct

0 1

14

 reset

+ -

7

0

 61

then the Q bit located at ct is assigned a value of 0. The variable temp is shifted left by one bit

and ct is decremented by 1. If the value of ct is greater than or equal to zero then the state

machine remains in the same state S2 otherwise it is moved to state S3. In state S3, the division

process is stopped and the quotient and remainder are obtained.

First step in the hardware block diagram of the division module as shown in Figure 6.7 is

to load inputs dividend, In1, and divisor, In2 in left shift register A and register B respectively.

Variable ct is assigned a value of 13. For each clock cycle, In1, is shifted to the left by one bit.

The 14 most significant bits of the left shift register A is equal to the remainder, R, of the

division module. For every clock cycle, R is compared with In2. If R ≥ In2 then output of the

comparator, sel, is assigned a value equal to 1. Otherwise, sel is assigned a value of 0. Register

C stores the quotient value where Q[ct] is equal to sel. The output of the multiplexer is assigned

to the 14 most significant input bits of the left shift register A. The output of the multiplexer is

equal to R-In2 or A[27:14] when the value of sel is 1 or 0 respectively. For every clock, counter,

ct, is decremented by one. When ct reaches a value of 0 then the division process is completed.

This module requires 14 clock cycles to produce the quotient, Q, and the remainder, R.

6.2.2.3 Computation of H1

As explained in section 6.2.1, only the elements of Hb1 whose values are greater than or

equal to zero are stored on the chip. From Equations 6.1 and 6.2, each element of parity-check

matrix is computed from the base parity-check matrix and is implemented as shown in Figure

6.8. For code rates 1/2, 2/3 B, 3/4 A, 3/4 B and 5/6 the H1 is computed using multiplication and

division modules using Equation 6.1 as shown in Figure 6.8. For a desired code rate the

corresponding base parity-check matrix element, hb1(i,j), is multiplied with the corresponding

expansion factor, zf, and this product is then divided by z0 = 96 to obtain the value of the element

in H1, h1(i,j). The value of the element h1(i,j) is equal to the quotient of a division module. For code

rate 2/3 A, the modulus function in Equation 6.2 is implemented using a division module as

shown in Figure 6.8. For a desired code rate the corresponding base parity-check matrix element,

hb1(i,j), is divided by the corresponding expansion factor, zf, to obtain the value of the element in

H1, h1(i,j). The value of the element h1(i,j) is equal to the remainder of the division module. Based

on the desired code rate an appropriate select value is chosen as shown in Figure 6.8.

 62

Figure 6.8: Computation of an element of H1, h1(i,j), from an element of Hb1, hb1(i,j).

The element of H1 obtained using Equations 6.1 and 6.2 is either equal to the quotient, Q,

or the remainder, R, of the division module as shown in Figure 6.8. The quotient and remainder

obtained using the divison module presented in subsection 6.2.2.2 are each of length 14 bits. The

element value in any H1 does not exceed 96 and therefore 7 bits are sufficient to represent its

value. Therefore, 7 least significant bits of the quotient and remainder are sufficient and are only

used for the computation of the elements of H1.

There are 6 non-negative elements in each column of Hb1 as explained in subsection

6.2.1. Therefore 6 instantiations of the design that computes an element of H1 as shown in Figure

6.8 are required to compute all the six elements that are located in each column of H1. In one

clock cycle, elements located in a column of H1, h1, is computed from corresponding elements in

each column of Hb1, hb1, as shown in Figure 6.9.

6.2.2.4 Latency for the Computation of H

For the computation of a single element in H1 from its corresponding Hb1 requires 23

clock cycles i.e., 8 clock cycles to perform multiplication and 15 clock cycles to perform

division. This is the case for code rates 1/2, 2/3 B, 3/4 A, 3/4 B and 5/6 whereas for code rate 2/3

A computation of an element of H1 requires 15 clock cycles because it only requires the division

operation. The number of clock cycles required for the computation of all the elements in H1

Rate 2/3 A

MUX

clk

zo

zf

7
Multiplication

Division

Division

7

select

R

Q hb[0:10]
11

7

4

hb[4:10]

h[0:10]

hb[0:3]

R

Rates 1/2, 2/3 B, 3/4 A, 3/4 B and 5/6

7

 63

from Hb1 is shown in Table 6.3. The number of elements in Hb1 array is equal to the number of

columns of Hb1. For code rates 1/2, 2/3, 3/4 and 5/6 the number of elements in Hb1 array are 12,

16, 18 and 20 respectively.

Figure 6.9: Computation of a column of H1 from a column of Hb1.

Table 6.3: Number of clock cycles required for computation of H1 from Hb1 for different

code rates.

Code rate

No. of

elements in

Hb1 array

No. of clock cycles

required per

element in Hb1 array

Total No. of clock

cycles required for

computation of H1

1/2 12 23 276

2/3 A 16 15 240

2/3 B 16 23 368

3/4 A 18 23 414

3/4 B 18 23 414

5/6 20 23 460

clk

zo

zf

11

select

11

hb
66

h
66

7

7

hb[0:10]

11

11

7

Element of H

1
7

11 hb[11:21]

7
7

Element of H

2

11 hb[55:65]

7
7

Element of H

6

 64

The total number of clock cycles required for the computation of all the elements of H1 from Hb1

is equal to the number of clock cycles required per element in Hb1 array times the number of

elements in Hb1 array.

Only one element value of H2 is required for encoding process. Its value for different

code rates and code lengths is computed and stored in a look up table which can be obtained in

one clock cycle. Therefore the total number of clock cycles required for obtaining H is equal to

the total number of clock cycles required for computation of H1. The latency involved in the

computation of H is equal to product of the total number of clock cycles required for

computation of H and time period of the clock.

6.2.3 Computation of ep

The first step in the encoder implementation is the computation of V, the product of matrices

Hb1 and S. The matrix H1 is a sparse matrix with each element representing either a zero matrix,

identity matrix or permutation matrix of size z × z. Vector ep is defined as the product of an

element of H1, h1, which is a matrix of size z × z, and an element is S, s, which is a vector of size

z × 1. The product vector, ep, is obtained by circularly right shifting the vector s by a particular

shift value determined by h1. As shown in Equation 6.3, ep is equal to 0 or s (itself) or sf if h1 is

equal to -1 or 0 or f respectively.

















.,

,0,

,1,0

1

1

1

1

fhifs

hifs

hif

she

f

p (6.3)

Vector sf is the circular right shifted version of the vector s and the circular right shifted value f

is defined by h1.

Figure 6.10 shows the computation of ep. The code length of the LDPC codes varies from

576-2403. The base matrix has 24 columns. Therefore the size of each element in the base

matrix, z, vary from 24 – 96 (i.e., 576/24 - 2304/24). In order to accommodate different code

lengths of LDPC codes, the size of the shift register is chosen to be 96. The shift register is

hardcoded for all possible shift values (0-95), so that the circular right shifted version of s is

obtained in one clock cycle. This kind of implementation will occupy more area than a single

shift register, but will ultimately achieve high encoding data rates. In one clock cycle, a 66-bit

element from H1 and a 96-bit block of s are read. Depending on code length, the size of s may

vary from 24-96. If the size of s is less than 96, then the remaining bits are assigned zeros. As

 65

shown in Figure 6.10, six circular right shift operations are performed by six shift registers in

parallel whose shift values and locations are obtained from an element of H1. Each of the ep

obtained from the circular right shift register is assigned to one of 12 outputs of the

demultiplexer based on its location (row number). For example, if the row number is equal to 3

then ep is assigned to the third output of the demultiplexer. All of the demultiplexer outputs are

added to obtain the inner products ep1, ep2, …., ep12.

Figure 6.10: Computation of ep.

s

DE-

MUX

1

hb1[5:11]

sjc

hb1[1:4]

ep3

 ep4

 ep5

 ep6

 ep7

 ep8

 ep9

 ep10

ep2

ep1

 ep11

 ep12

hb1[1:66]
7

+
+

+
+

+
+

+
+

+
+

+
+

DE-

MUX

2

hb1[16:22]

sjc

hb1[12:15]

96

7

+
+

+
+

+
+

+
+

+

+

96

DE-

MUX

6

hb1[61:66]

sjc

hb1[57:60]

7 +
+

+
+

+
+

+
+

+
+

96

SR

SR

SR

+
+

+

+

96

96

96

96

96

96

96

96

96

96

96

96 4

96

4

96

4

96

 66

6.2.4 Computation of V

The third step in the encoding process is the computation of V, the product of matrices Hb1

and S. An element of the vector V (vi) is obtained, from

 



k

j

pii ev
1























6/520

4/318

3/216

2/112

ratecodeif

ratecodeif

ratecodeif

ratecodeif

kwhere (6.4)

and is shown in Figure 6.11.

Figure 6.11: Computation of V.

vi is obtained by adding the inner product (ep) 12, 16, 18 and 20 times for code rates 1/2, 2/3, 3/4

and 5/6, respectively. In modulo 2, addition is performed using the XOR gate.

ep1

reset

Clke

96 96

ep1[1]

ep1[2]

ep1[96]

ep12
96 96

ep12[1]

ep12[2]

ep12[96]

k

k
Counter

 +1

v1

v12

 67

6.2.5 Computation of Parity Bits

The final step in the encoding process includes the computation of parity bits. Once V is

computed, parity bits are obtained by solving Equation 5.13. Solving Equation 5.13, we get

010)0(vpphb  , 121 vpp  , ... ,
jjjb vpppjh  10)(, …,

110)1( 
bb mmbb vppmh .

Adding all the Equations, one obtains
1100 ... 

bmvvvp . The addition is performed by

XORing all the elements of v. This is the case for all the code rates except for code rate 3/4 B.

For code rate 3/4 B,
1100 ...)0(

bmb vvvph . p0 is obtained by circularly right shifting the

sum of
110 ... 

bmvvv by a value equal to zf – hb(0). This step can be performed in a single

clock cycle by using an additional shift register. Once p0 is obtained, the remaining parity bits

can be computed from solving the above expressions i.e., 001)0(phvp b , 112 pvp  etc.,.

To obtain p, all the parity expressions shown above are hard coded in the design for all different

code rates. Hence parity bits are computed in one clock cycle.

6.3 Results of the Flexible Structured Encoder Implemented on an FPGA

A hardware implementation was performed on an Altera Stratix EP1S80F1508C5 FPGA

using Quartus II for synthesis. Verilog modules generated from Matlab scripts were used for the

implementation. The results are shown in Table 6.4. Due to the restriction on the number of

input/output pins on the FPGA the code length is restricted to the range of 576-2016. The

number of logic elements required for the implementation of the encoder on the FPGA are

34,100 (43%). Of the two clock signals being used, Clk, is a faster clock used to compute the

required H1 and is equal to 69.76 MHz. The other clock, Clke, is a slower clock used for the

computation of the parity bits and is equal to 27.23 MHz.

In order to accommodate all the code lengths (576-2304) on the chip the number of

output pins is reduced and the design is re-synthesized. To reduce the number of output pins,

sum of the parity bits is read instead of individual parity bits. It is observed that this design

occupies 40936 (52%) LEs which is more than that of the earlier design implementing only code

length from 576-2016. The increase in the LEs is due to the addition operation performed on the

parity bits. The clock frequencies Clk and Clke are 77.10 MHz and 26.65 MHz respectively. It

can be concluded that if the design is synthesized on a larger chip with a large number of input

and output pins, then the encoder design with more code lengths can be accommodated. Also, the

 68

design would require less than 40936 LEs and operate with the same clock frequencies. The

lowest values of Clk and Clke are considered for the coded data rate and latency computations.

In Table 6.4, CPC represents the number of clock cycles required per codeword for

encoding. CPC is equal to number of clock cycles required for computation of V and p. The

number of clock cycles required to compute V is equal to the number of columns in Hb1 for a

given code rate. Computation of p requires one clock cycle. Hence this method requires 13, 17,

19 and 21 clock cycles for code rates 1/2, 2/3, 3/4 and 5/6 respectively. Column Clke in Table

6.4 represents the encoder clock which can run at 26.65 MHz for any code rate and code length.

Table 6.4: Synthesis results of the flexible encoder for structured LDPC codes.

Code rate Clke

(MHz)

CPC m Coded data rate

(Mbps)

1/2 26.65 13 288 – 1152 1180 – 4724

2/3 26.65 17 384 – 1536 903 – 3612

3/4 26.65 19 432 – 1728 808 – 3232

5/6 26.65 21 480 – 1920 730 – 2924

The latency involved in the computation of H from Hb is equal to product of the total

number of clock cycles required for computation of H and the clock time period. The latency

involved in computing H for different code rates is shown in Table 6.5. The synthesized Clk

frequency for computation of H is 69.76 MHz. So the time period of the clock is 14.34 ns. For

any given code rate and code length, computation of the required H is done only once. Therefore

the latency involved in computation of the parity-check matrix is not included in the coded data

rate calculations.

Table 6.5: Latency involved in computation of H for different code rates.

Code rate
Latency involved in

computation of H (s)

1/2 3.958

2/3 A 3.442

2/3 B 5.277

3/4 A 5.937

3/4 B 5.937

5/6 6.596

 69

The coded data rate is equal to m×Clke/(CPC×code rate). The coded data rate decreases

with an increase in the code rate and increases with increase in the code length as shown in Table

6.4. For a code length of 576, the coded data rate ranges from 1180-730 Mbps for different code

rates. When the code length is increased to 2304, the coded data rate increases and is in the range

of 4724-2924 Mbps. These calculations are based on the internal encoder design and not on any

special I/O limitations. The encoder implementation assumes that all input data bits are available

for encoding, so serialization factors are not included in the results. In order to consider the

encoder implementation under serialization, a shift register needs to be added as shown in Figure

6.12. The coded data rate thus becomes limited by the speed at which the shift register can run,

Clks, which is 422.12 MHz.

Figure 6.12: Complete system of the flexible multi-code rate and multi-code length

structured LDPC encoder.

The latency of the encoder considering I/O serialization is the maximum of [m/Clks,

CPC/Clke] which is m/Clks. The coded data rate of the encoder considering I/O serialization is

equal to Clks/(code rate). Thus, the coded data rate value is constant for different code lengths.

The coded data rate is 844, 633, 562 and 506 Mbps for code rates 1/2, 2/3, 3/4 and 5/6

respectively. This value is significantly high when compared to a coded data rate of range 10-19

Mbps obtained for same LDPC codes [32]. From Tables 4.5, 5.3 and 6.4 it can be observed that

the proposed encoder has very high coded data rate when compared to the encoders in [29] and

[33]. In [29], for code length of 2000 and code rate 1/2, it is shown that by using 16 encoder

instances instead of one encoder instance, the coded data rate is increased from 45 Mbps to 410

Mbps which requires 16906 slices. In this case, the equivalent logic elements are 42265. The

coded data rate of our flexible structured encoder is equal to 844 Mbps which is more than twice

the coded data rate of the encoder presented in [29] while requiring less area than the encoder in

[29]. A single design accommodates different code lengths and code rates. Re-synthesis of the

s

Clke

Clks

n - m

n Flexible

structured

encoder

c

 70

code is not required in order to change code rate or code length. The encoder design presented

can easily fit on FPGAs and has a high coded data rate. The flexible structured encoder is also

implemented on ASIC. The details are presented in the next section.

6.4 Implementation of a Flexible Multi-Code Rate and Multi-Code Length

Structured Encoder on an ASIC

Implementation of the flexible multi-code rate and multi-code length structured encoder

on an ASIC is performed using Cadence. An ASIC is designed using the standard cell library

provided by Virginia Polytechnic Institute and State University [63]. The same Verilog design

that is used for the FPGA implementation is also used for the implementation of the ASIC. The

Verilog design is synthesized in Cadence RTL by following the procedure presented in section

C.2 of appendix C. The synthesized design in RTL Compiler is shown in Figure 6.13. The

synthesized results of the flexible multi-code rate and multi-code length structured encoder are

shown in Table 6.6.

Figure 6.13: Synthesized flexible multi-code rate and multi-code length LDPC structured

encoder in Cadence RTL Compiler.

 71

Once the design is synthesized it is then placed and routed in Cadence Encounter

following the procedure presented in section C.3 of appendix C. The final layout of the design in

Encounter is shown in Figure 6.14. The design is saved in GDS format. Figure 6.15 shows the

imported layout of the encoder in Cadence ICFB.

Table 6.6: Synthesis results of flexible multi-code rate and multi-code length LDPC

encoder in Cadence RTL Compiler.

Parameter Value

Code length 576 – 2304 bits

Code rate 1/2, 2/3 A, 2/3B, 3/4 A, 3/4 B, 5/6

Technology 0.25 µm

Gate count 116.5 K

Clock frequency 215.66 MHz

Figure 6.14: Layout view of the flexible multi-code rate and multi-code length LDPC

structured encoder in Cadence Encounter.

 72

Figure 6.15: Layout view of the flexible multi-code rate and multi-code length LDPC

structured encoder in Cadence ICFB.

 73

CHAPTER 7 - Decoder for Low-Density Parity-Check Codes

LDPC encoder designs are presented in the earlier chapters. In this chapter a LDPC

decoder is designed in order to encompass the complete LDPC codec. The factors affecting the

LDPC decoder bit error rate (BER) performance are studied. Decoder design and its hardware

implementation are presented.

The key aspects of the LDPC decoder presented in this chapter are summarized as follows:

 Decoder design methodology does not consider any structure in the LDPC codes. Hence

it is applicable to both structured and any randomly generated LDPC codes.

 The decoder performance is affected by various design parameters such as the decoding

algorithm, the design architecture, the quantization of log-likelihood ratios and the

number of decoding iterations. All of these parameters are analyzed, and the best design

parameters are chosen based on BER performance.

 Several decoding algorithms are proposed for the implementation of a LDPC decoder.

From Matlab simulations, it is observed that logarithmic message passing algorithm gives

the best BER performance.

 A parallel architecture yields high data rate while a serial architecture yields low data

rate. In this work, the parallel architecture is chosen because of the desired high data rate.

 Different quantization of log-likelihood ratios is analyzed. It is observed that 6-bit

quantization yields an acceptable BER performance reducing the implementation

complexity of the design.

 The maximum number of decoding iterations affects the decoder BER performance and

the decoding latency. The optimum maximum number of decoding iterations is chosen

from BER simulations.

 For different SNR the number of decoding iterations required for the decoding process

varies. Also for a given SNR, different codewords require different number of decoding

iterations. Unlike other designs that perform fixed number of decoding iterations, the

estimated codeword is verified after every iteration in this design. The decoding process

is stopped when the correct codeword is estimated.

 74

 For a given SNR and parity-check matrix, the procedure to find an optimum value of the

maximum number of decoding iterations by minimizing the error, delay and energy is

presented.

 The coded data rate of the decoder is dependent on the length of the codeword. Its value

increases with increase in the code length. The design is applicable to both structured and

any randomly generated regular and irregular LDPC codes.

7.1 Study of LDPC Decoder Parameters

The performance of the LDPC decoder depends on various factors such as decoding

algorithm, architecture, quantization of log-likelihood ratios and maximum number of decoding

iterations. Mackay‟s parity-check matrices [56] are used to evaluate all these decoder parameters.

7.1.1 Decoding Algorithm

Sum product algorithm, minimum sum algorithm and modified minimum sum algorithm

are some of the primary algorithms used for decoding LDPC codes, and they were explained in

section 2.2. In this subsection, a decoding algorithm that gives better BER performance is

explored. All the decoding algorithms are implemented in Matlab. The simulation results of BER

performance for varying SNR are shown in Figure 7.1. It can be observed from Figure 7.1 that

Figure 7.1: BER vs. SNR performance using different decoding algorithms.

 75

the performance of the modified minimum sum algorithm is comparable to that of the minimum

sum algorithm, and that the sum product algorithm gives the best BER performance. Hence the

sum product algorithm is used for decoder implementation. However, the implementation

complexity of the sum product algorithm is high when compared to min-sum algorithm as

discussed on section 2.2.2.

7.1.2 Decoder Architecture

A serial architecture for the decoder implementation is efficient in terms of hardware

resources but yields low data rate. Using a parallel architecture yields high data rate at the

expense of large hardware resources. In this work, a parallel architecture is chosen for the

decoder implementation because of the desired high data rate.

7.1.3 Quantization

Because decoders are implemented using digital logic, quantization is present on the log-

likelihood ratios as they are passed between the check and variable nodes of the Tanner graph.

This will also influence the BER performance of the LDPC codes, and is one of the most

important factors that influences the hardware implementation of the decoder. If more bits are

used to represent the log-likelihood ratios, then the performance of the decoder is increased

because of the improved accuracy. However, this will also increase the number of logic elements

required for the implementation of the decoder. It also slows down the decoder process and

increases latency. In this subsection, the number of bits required without compromising

performance and latency is evaluated.

7.1.3.1 Quantization of 

The quantization of  is important in determining the corresponding quantization of log-

likelihood ratios.  is a non-linear function and is defined below, but a linear approximation with

a sufficient number of levels can still provide a performance close to that of the double precision

case.

1

1
log)(






z

z

e

e
z (7.1)

Figure 7.2 shows the quantization effect on  (z). From Figure 7.2, it can be observed that double

precision (z) is approximately zero for z equal to 3.5. Therefore, 2 bits are chosen to represent

 76

the integer part of z. (z) is computed by varying the number of bits needed to represent the

fraction part of z from 1 to 4 and is shown in Table 7.1. From Figure 7.2, 5-bit quantization of

(z) provides performance close to double precision (z). Therefore, 5-bit quantization is chosen

to represent (z).

Figure 7.2: Quantization of .

Table 7.1: Quantization of .

Quantization Integer Fraction

3-bit 2 1

4-bit 2 2

5-bit 2 3

6-bit 2 4

7.1.3.2 Quantization of Log-Likelihood Ratios

Figure 7.3 shows the effect of quantization on BER performance for varying SNR.

Simulations are performed by using 1 bit for sign, 2 bits for integer part and varying number of

bits to represent the fractional part as shown in Table 7.2. The number of bits to represent the

fractional part is varied from 1 to 4 in increments of 1 and the simulation results are shown in

Figure 7.3. It can be observed from Figure 7.3, that the 6-bit quantization (1 bit for sign, 2 bits

(z)

z

 77

for integer and 3 bits for fraction) gives a comparable performance to that of double precision.

Hence 6-bit quantization is chosen to represent log-likelihood ratios.

Table 7.2: Quantization of log-likelihood ratios.

Quantization Sign Integer Fraction

4-bit 1 2 1

5-bit 1 2 2

6-bit 1 2 3

7-bit 1 2 4

8-bit 1 3 4

Figure 7.3: BER vs. SNR performance for different quantization levels of log-likelihood

ratios.

7.1.4 Maximum Number of Decoding Iterations

The maximum number of decoding iterations determines the maximum latency of the

decoder. With an increase in the number of decoding iterations the performance improves at the

cost of increased latency. In this subsection the maximum number of decoding iterations required

is chosen based on the trade-off between performance and latency. Figure 7.4 shows the BER

performance when varying the SNR for different values of maximum number of decoding

 78

iterations. It can be observed from Figure 7.4, that a maximum of 20 decoding iterations can be

chosen for better BER performance without significant impact on the decoder performance.

Figure 7.4: BER vs. SNR for different values of maximum number of decoding iterations.

7.2 Design and Implementation of LDPC Decoder on FPGA

Once the required parity-check matrix is chosen all the parameters discussed above can

be obtained from simulations to help determine the best hardware implementation of the LDPC

decoder. The logarithm message passing algorithm presented in 2.2.1 is used for the decoder

implementation. In this section the details of the design and the hardware implementation of

LDPC decoder are described.

7.2.1 Quantization

The number of bits required to represent the log-likelihood ratios used in the decoding

process is presented in this subsection. This is the most important issue in hardware

implementation of the decoder because decoding performance and complexity are dependent on

the number of bits used to represent the log-likelihood ratios. The quantization of function (z)

and the log-likelihood ratios passed between the check and variable nodes are presented.

7.2.1.1 Quantization of 

 79

In subsection 7.1.3.1, it is shown that 5-bit quantization is required to represent (z)

without compromising much on performance and latency. From step 2 of the logarithmic

message passing algorithm it can be observed that (z) is computed for positive values of z.

Therefore, it is sufficient to store the values of (z) for only positive values of z. Implementation

of the log and tanh functions in (z) requires a lot of hardware and has high complexity. As an

alternative (z) is computed for different values of z, which are then stored in a look up table

(LUT). By using 5-bit quantization, the minimum and maximum positive values that can be

represented are 0 and 3.875 respectively, and z is varied from 0 to 3.875 in increments of 0.125

(=1/2
3
). Its binary equivalent representation ranges from 0 to 31 in increments of 1. Since (z)

theoretically obtains its maximum value of infinity when z is equal to 0, the 5-bit quantized

version of (z) is limited to 3.875. Therefore (z) also varies from 0 to 3.875. The actual value,

binary equivalent and binary representation of z and (z) when z is equal to 0, 1, 2 and 3 are

shown in Table 7.3. For all the values of z ranging from 0 to 3.875, the actual value, binary

equivalent and binary representation of z and  (z) are given in Table D.1 in Appendix D.

Table 7.3: Look up table for .

Actual

value

Binary

equivalent
Binary

representation

z (z) z (z) z (z)

0 3.875 0 31 00000 11111

1.000 0.750 8 6 01000 00110

2.000 0.250 16 2 10000 00010

3.000 0.000 24 0 11000 00000

7.2.1.2 Quantization of Log-Likelihood Ratios

In subsection 7.1.3.2, it is shown that 6-bit quantization is used to represent the log-

likelihood ratios without compromising much on performance and latency. The representation of

log-likelihood ratios is similar to that of (z) but the extra 6
th

 bit is used to represent the sign of

the message. 2‟s complement notation is used to represent the log-likelihood ratios. The range of

the log-likelihood ratios using 6-bit quantization varies from -4 to +3.875 in increments of 0.125.

Its binary equivalent is -32 to +31. The actual value, binary equivalent and 2‟s complement

 80

representation of certain log-likelihood ratios is shown in Table 7.4. For all the values of log-

likelihood ratios ranging from -4 to +3.875 its actual value, binary equivalent and 2‟s

complement representation is given in Table D.2 in Appendix D.

Table 7.4: Quantization of log-likelihood ratios.

Actual

value

Binary

equivalent

2‟s Complement

representation

0 0 000000

1.125 9 001001

2.375 19 010011

3.625 29 011101

-3.125 -25 100111

-1.875 -15 110001

-0.625 -5 111011

7.2.1.3 Conversion of Log-Likelihood Ratios from One Form to Another Form of

Representation

During the decoding process, log-likelihood ratios passed between variable and check

nodes are in 2‟s complement representation, while (z) is in sign magnitude representation.

Hence there is a need to convert from one form of representation to another form. In this

subsection, the conversion of 2‟s complement to sign magnitude representation and vice-versa

are presented.

During check node processing, the received variable node values in 2‟s complement

representation need to be converted to sign magnitude representation. This conversion is

performed as shown in Figure 7.5. If the MSB of the input is equal to 0 then the output, Out, is

equal to the input, In. Otherwise, the input bits, In, are inverted and 1 is added to convert the

input, In, into sign magnitude representation. The sign bit, sg, is the MSB of the input, In.

The check node values are in sign magnitude representation. These values need to be

converted back to 2‟s complement representation for the computation of variable node values.

This conversion is performed as shown in Figure 7.6. If the input sg is equal to 0 then the output,

Out, is equal to the concatenation of bit sg and the 5 input bits, In. Otherwise, the output, Out, is

equal to the concatenation of sg bit and the 2‟s complement of the input bits, In.

 81

Figure 7.5: Conversion of 2's complement to sign magnitude representation.

Figure 7.6: Conversion of sign magnitude to 2's complement representation.

7.2.2 Initialization of Decoder Process

In the decoder implementation it is assumed that the initial log-likelihood values, L(ci),

are available to the decoder which is equal to
2

2



iy
, where y is the received code word and 

2
 is

the channel noise variance. These values are computed and quantized as shown in Table 7.4.

This step needs to be performed only once for a given codeword and is performed off-chip. If the

value of L(ci) is greater than +3.875 (its binary equivalent is 31) then its value is assigned to

6
In

Sel In[4:0]

In[5]

MUX
5

sg

In[4:0]
+

5‟b00001

5 5

2‟s complement

conversion

Out

5

5

5
In

Sel In[4:0]

MUX
6

sg

In[4:0]
+

5‟b00001

5 5

2‟s complement

conversion

Out

5

5 6

6

 82

+3.875. Similarly, if the value of L(ci) is less than -4 (its binary equivalent is -32) then its value

is assigned to -4. As shown in step 1 of the logarithmic message passing algorithm presented in

2.2.1, the variable nodes L(qij) are initialized and is equal to L(ci).

7.2.3 Check Node Processing

Step 2 of the logarithmic message passing algorithm presented in 2.2.1 is to compute the

check nodes values. The check node values, L(rji), are computed from the variable node values,

L(qij) as shown below














 

 ijij Ri

ij

Ri

ijjirL
\\

)()( (7.2)

where))((ijij qLsign , |)(| ijij qL and
1

1
log)(






z

z

e

e
z .

The magnitude of the check nodes is obtained by computing

 












 

 ijRi

ijjirL
\

)()( . (7.3)

The implementation of Equation 7.3 is shown in Figure 7.7. In this implementation  is obtained

from the look up table in Table 7.3. The sign of the check node values can be found from as

shown below, and it is implemented in hardware as shown in Figure 7.8.

 



ijRi

ijjirLsign
\

)}({  (7.4)

Figure 7.7 shows the computation of the magnitude of check node values associated with

parity-check matrix of row weight wr. For regular LDPC codes the row weight wr is equal to a

constant value. Therefore, one implementation for a given wr would be sufficient for the entire

decoder. For irregular LDPC codes, wr can be different for each row and therefore several

different implementations for each wr, are needed for its decoder. Based on the type of LDPC

codes, one or more of these check node processing designs are implemented.

The magnitude and sign of a check node is obtained using the magnitudes and sign bits of

the other wr -1 check nodes, respectively, as shown in Figures 7.7 and 7.8. For a check node

 83

shown in Figure 7.7, the  outputs of all the wr inputs are added excluding the  output of its

input.

Figure 7.7: Computation of magnitude of check node values.

Figure 7.8: Computation of sign of check node values.

In1

In2

Inwr

Out1

Out2

Outwr

w 5 5

In1

In2

Inwr

Out1

Out2

Outwr
Iwr Owr

O2 I2

O1 I1 w
if I1 > 31

O1 = 5‟b11111

else

O1 = I1[4:0]

5 5

w 5 5
if I2 > 31

O2 = 5‟b11111

else

O2 = I2[4:0]

if Iwr > 31

Owr = 5‟b11111

else

Owr = Iwr [4:0]



LUT

5 5

5 5

5 5

Adder

Adder

Adder



LUT



LUT



LUT



LUT



LUT

 84

For example, the check node, In1,  of In2, In3,.. Inwr are added to obtain I1. This resulting sum is

equal to the w-bit long, when wr-1 outputs of , each of length 5-bit, are added. w is equal to

log2(wr-1)×31 where   denotes the ceiling function. This w-bit I1 is truncated to 5 bits by

assigning a value of 31 when its value is greater than 31. The magnitude of the check node, In1,

is updated by obtaining  of I1 and is assigned to output, Out1. The same procedure is followed

to update the magnitudes of the other check nodes as shown in Figure 7.7. From Figure 7.8, the

sign of the check node is obtained by ANDing all the sign bits of the wr check nodes excluding

its sign bit. For example, the sign of In1 is obtained by ANDing In2, In3,.. Inwr and is assigned to

Out1. Similarly other check nodes sign bits are updated as shown in Figure 7.8. The check node

values are computed as shown in Figure 7.9 by combining the magnitude and sign bits computed

using Equations 7.3 and 7.4.

Figure 7.9: Computation of check node values.

The received variable node values are first converted into sign magnitude representation

from 2‟s complement representation. The magnitude and sign of the check node values are

2‟s

complement

sign

magnitude

2‟s

complement

sign

magnitude

2‟s

complement

sign

magnitude

sign

magnitude

2‟s

complement

sign

magnitude

2‟s

complement

sign

magnitude

2‟s

complement

Sign of

check node

values

Magntude

of check

node values

In1

In2

Inwr

Out1

Out2

Outwr

6

6

6 6

6

6

5

5

5

5

5

5

 85

computed from Figures 7.7 and 7.8 and is converted back to 2‟s complement representation.

These values are used for the computation of variable nodes.

7.2.4 Variable Node Processing

The variable node values are obtained from the check node values using step 3 of the

decoding algorithm in 2.2.1:

 



jicj

jiiij rLcLqL
\

)()()((7.5)

This is also shown in Figure 7.10 for LDPC codes with column weight wc.

Figure 7.10: Computation of variable node values.

For regular LDPC codes the column weight wc is equal to a constant value whereas for an

irregular LDPC code column weights can be different for different columns. Depending on wc,

In[5]

if Owc > 31

Outwc = 6‟b011111

elseif Owc < -32

Outwc = 6‟b100001

else Outwc = Owc [5:0]

8 6

In1
Out1

Out

O

wc

6

Inwc

8 w2

 6

w1 w1‟b00

 w1‟b11

MUX
Concatenation

[O Inwc]

O

Inwc[5]

Inwc

+

6

In

8 w2

 6

w1 w1‟b00

w1‟b11

MUX
Concatenation

[O In]

O

In

+

6

Outwc

w2

Oo
if Oo ≥ 0

Out = 0‟b0

else

Out = 1‟b1

w2

6

w1

w1‟b00

 w1‟b11

MUX
Concatenation

[O In1]

O

In1[5]

In1

+

w2

6

Owc

Sign extension

Truncation

Sign extension Truncation

Sign extension
Truncation

Adder

Adder

Adder

w2

6
if O1 > 31

Out1 = 6‟b011111

elseif O1 < -32

Out1 = 6‟b100001

else Out1 = O1[5:0]

O1

 86

the design in Figure 7.10 is modified accordingly. Based on the type of LDPC codes, one or

more of these variable node processing designs are implemented.

Each variable node is updated by adding all the wc + 1 inputs excluding the input of the

node itself. When wc inputs, each of length 6-bits, are added this results in a sum equal to w2-bits

long. The value w2 is equal is log2(wc-1)×63 where   denotes the ceiling function. As shown

in Figure 7.10, a sign extension is performed on all the wc + 1 inputs. The number of bits

appended to the variable nodes is equal to w1 where w1 = w2-6. The updated variable node is now

of length w2-bits which also needs to be truncated to 6 bits. Truncation is performed by assigning

the variable node a value of 31 and -32 when its value is greater than 31 or less than -32,

respectively.

Step 4 of the decoding algorithm is computation of L(Qi) defined as

 



icj

jiii rLcLQL)()()(. (7.6)

Step 5 is making the decision on the received codeword based on the value of L(Qi) and is

defined as










0)(0

0)(1
ˆ

i

i

i
QLif

QLif
c . (7.7)

For all the values of i if the value of L(Qi) is greater than or equal to zero then the received bit of

the codeword is declared to be 0 or else 1.

Steps 4 and 5 of the decoding algorithm are also included in the computation of the

variable node values as shown in Figure 7.10. L(Q) is obtained using Equation 7.6 and its

implementation is similar to that of the variable node computation except L(Q) is obtained by

adding all the wc + 1 inputs. The codeword is estimated using Equation 7.7 and Oo and Out in

Figure 7.10 represents the L(Q) andĉi respectively. From Equation 7.7, the estimated codeword

bit, Out, is assigned a value of 0 if Oo is greater than or equal to zero otherwise Out is assigned a

value of 1.

7.2.5 End of Decoding Process

After each decoding iteration a decision is made on the codeword. The estimated

codeword, ĉ , is then verified by multiplying it with the parity-check matrix. If the resultant

vector is zero, i.e., 0ˆ THc , then the received codeword is decoded correctly or else the

 87

decoding process is continued. This process is continued until the received codeword is decoded

correctly or it has reached the fixed maximum number of decoding iterations.

The product of THĉ is of size 1 × n and is hard coded in the design. An element of the

product of THĉ is obtained by multiplying ĉ with a column of H
T
. This can be implemented by

XORing the bits of ĉ positioned at the corresponding locations of 1‟s in each column of H.

7.2.6 Decoder

Figure 7.11 shows the decoder implementation. The decoder implementation consists of

four blocks which are initialization, computation of check and variable nodes and validation of

the estimated codeword.

Figure 7.11: Design of LDPC decoder.

n

6n

6n 6n

 Check nodes

 CN 1

 CN m

Variable nodes

 VN 1

 VN n

6

N

6n

Initialization

 mux 1

 mux n

 select
L(ci)

6n

Validation

n

 Stop

 ĉ

 ĉH
T

 88

Variable nodes are initialized from the received codeword. Using these variable node values,

check node values are computed in the first half of the decoding iteration. The design for the

computation of check nodes shown in Figure 7.9 is replicated m times to update the entire check

node values of the decoder.

The variable node values are updated in the other half of the decoding iteration from the

check node values. The design for the computation of variable nodes shown in Figure 7.10 is

replicated n times to update the entire variable node values of the decoder. After completion of a

decoding iteration, an estimate is made on the received codeword and is checked for validity. If

the codeword is decoded correctly then the decoding process is stopped. Otherwise, it is

continued till it reaches the maximum number of decoding iterations.

7.3 Results

A hardware implementation was performed on an Altera Stratix EP1S80F1508C5 FPGA

using Quartus II. Verilog modules generated again from Matlab script are used for the

implementation. The design requires a large number of LEs because of the use of parallel

decoder architecture. Because of the restrictions on LEs a decoder with a small code length can

only be implemented on the available FPGAs. Decoders for code lengths 64 and 128 are

implemented on FPGA for a regular and irregular parity-check matrix of sizes 64 × 128 and 32 ×

64 respectively. The results are shown in Table 7.5. With an increase in the code length the

number of logic elements required by the decoder also increases. Let the decoding clock

frequency be Clkd, which is equal to the maximum clock frequency of the synthesized designs

shown in Table 7.5. From section 7.1.4, the maximum number of decoding iterations (IterMax) is

chosen to be 20. The latency of the decoder can be computed by IterMax/Clkd and is shown in

Table 7.5. The coded data rate of the decoder can be computed from Equation 7.8 and is shown

in Table 7.5. The coded data rate increases with increase in the code length.

Max

d

Iter

Clk
nratedatacoded  (7.8)

Table 7.5: Synthesis results of the LDPC decoder.

H LE
Clkd

(MHz)

Coded data rate

(Mbps)

Latency

(µs)

Irreg 32 × 64 24384 36.48 116.74 0.55

Reg 64 × 128 49985 34.47 220.61 0.58

 89

These calculations are based on the internal decoder design and not on any special I/O

limitations. The decoder implementation assumes that all input data bits are available for

decoding, so serialization factors are not included in the results. In order to consider the decoder

implementation under serialization, a shift register needs to be added. The complete decoder with

I/O serialization is shown in Figure 7.12. The coded data rate thus becomes limited by the speed

at which the shift register can run, Clks, which is 422.12 MHz. The latency in reading codeword

is n/Clks. The latency of the complete decoder system is equal to the maximum value of [n/Clks,

IterMax/Clkd]. For small code lengths the latency is equal to IterMax/Clkd. Therefore the coded data

rate of the complete decoder is same as that of the decoder without I/O serialization and is equal

to n×IterMax/Clkd.

Figure 7.12: Complete decoder system.

The LDPC decoder implementation on FPGA is restricted to small code lengths because

of the huge hardware requirement. The decoder coded data rate is directly proportional to the

code length. Therefore, implementing a decoder in an ASIC would accommodate decoders with

large code lengths and hence increases the coded data rate. An LDPC decoder with code length

of 1024 and code rate 1/2 is synthesized in Cadence RTL Compiler and the synthesis results are

presented in Table 7.6. The coded data rate of the decoder without I/O serialization is 3.17 Gbps

which is much higher than the decoders presented in [42] and [43].

x

Clkd

Clks

6n

n Generic

decoder
ĉ

 6

 90

Table 7.6: Synthesis results of LDPC decoder of code length 1024 and code rate 1/2 in

Cadence RTL Compiler.

Parameter Our proposed decoder Decoder in [42] Decoder in [43]

Code length 1024 648 1024

Code rate 1/2 Irregular 5/6 Irregular 1/2 Regular

Technology 0.25 µm 0.18 µm 0.16 µm

Gate count 820.3 K 842 K 1750 K

Clock frequency 61.89 MHz 111 MHz 64 MHz

Data rate 3.17 Gbps 1 Gbps 1 Gbps

Maximum decoding

iterations
20 10 64

7.4 Optimization of Decoder Parameters

In this section, an attempt is made to find an optimum number of maximum decoding

iterations for a given SNR based on erroneous codewords (error), energy required (energy) and

latency of the decoding process (delay).

7.4.1 Erroneous Codewords

In the earlier section 7.1.4, it was discussed that the maximum number of decoding

iterations (IterMax) plays an important role in the error performance of the decoder. The

maximum number of decoding iterations varies with the parity-check matrix and SNR. An

example parity-check matrix of size 64 × 128 is considered to show the affect of SNR on IterMax.

Decoder simulations are performed in Matlab, and 1000 codewords are decoded for a given

SNR. Figure 7.13 shows the histograms of the decoding iterations required by the codewords for

varying SNR using a maximum of 50 decoding iterations. From Figure 7.13, it can be observed

that for low SNR (0.9844 dB), a large number of codewords (64 %) require 50 iterations whereas

for high SNR (2.9226 dB) only a few codewords (4 %) require 50 iterations. For all values of

SNR, the codewords that require 50 decoding iterations may still not be corrected. Number of

 91

erroneous codewords, errors, for varying IterMax from 5 - 50 in increments of 5 are shown in

Table 7.7.

Figure 7.13: Histogram of decoding iterations required by codewords for varying SNR.

From Table 7.7, it can be observed that the number of erroneous codewords decreases

with the increase in the maximum number of decoding iterations. This decrease in the erroneous

codewords is initially large and then flattens out with an increase in the maximum number of

decoding iterations. For example, at SNR equal to 0.9844 dB, when the maximum number of

decoding iterations is increased from 5 to about 20, the decrease in the erroneous codewords is

large. However, the decrease in the erroneous codewords is small when the number of decoding

iterations is increased from 20 to 50.

 92

Table 7.7: Erroneous codewords, errors, for varying SNR and IterMax.

IterMax

SNR

(dB)

5 10 15 20 25 30 35 40 45 50

0.9844 946 780 703 678 664 654 647 645 644 643

1.289 890 684 604 574 554 541 538 533 529 529

1.584 806 513 438 403 396 388 381 376 375 369

1.868 732 425 337 309 300 293 289 284 280 278

2.411 505 204 156 133 126 119 116 112 112 109

2.9226 325 89 62 51 48 45 44 40 40 40

7.4.2 Decoder Delay

The latency involved in the decoding process for I number of iterations is equal to I × t,

where t is the time required for one iteration. From the decoder design, the time required for one

decoding iteration is equal to one clock period and from Quartus compilation report, t is equal to

29 ns. Latency is independent of SNR. The latency involved in the decoding process for varying

IterMax is shown in Table 7.8.

Table 7.8: Decoder latency, delay, for varying IterMax.

IterMax
Latency

(ns)

5 145

10 290

15 435

20 580

25 725

30 870

35 1015

40 1160

45 1305

50 1450

7.4.3 Decoder Energy

Power analysis is performed using the PowerPlay power analyzer described in section

3.1.3 on the decoder implemented. For analysis, two codewords are considered at SNR of 0.9844

dB, where one codeword is not decoded correctly even after 50 iterations and the other codeword

is decoded correctly in 7 iterations. Power analysis is performed for a maximum of 20 iterations

 93

and the total thermal power dissipation, TTPD, core dynamic thermal power dissipation,

CDTPD, core static thermal power dissipation, CSTPD, and I/O thermal power dissipation,

IOTPD, are obtained from power analysis compilation report and is shown in the Table 7.9.

CSTPD is constant and is equal to 1395 mW.

Table 7.9: PowerPlay power analysis report of the decoder of size 64 × 128.

Iter-

ation

No.

Time

(ns)

Codeword corrected in 7

Iterations (SNR 0.9844 dB)

Codeword not corrected in 51

Iterations (SNR 0.9844 dB)

TTPD

(mW)

CDTPD

(mW)

IOTPD

(mW)

TTPD

(mW)

CDTPD

(mW)

IOTPD

(mW)

1 0-30 3699 2134 170 3459 1168 896

2 30-60 7717 5870 451 7149 5323 432

3 60-90 5690 4140 155 5226 3643 188

4 90-120 5214 3651 168 5142 3546 200

5 120-150 5212 3694 123 4802 3284 123

6 150-180 5256 3693 168 4649 3131 123

7 180-210 5445 3927 123 4441 2929 117

8 210-240 4966 3442 130 4356 2787 175

9 240-270 4517 3031 91 4328 2803 130

10 270-300 3221 1728 97 4435 2891 149

11 300-330 1662 146 91 4479 2922 162

12 330-360 1499 0.6 104 4598 3060 142

13 360-390 1486 0.1 91 4445 2901 149

14 390-420 1493 0.2 97 6984 5466 123

15 420-450 1486 0.3 91 4772 3165 213

16 450-480 1512 0.7 117 4772 3165 213

17 480-510 1486 0.1 91 4772 3165 213

18 510-540 1493 0.2 97 4772 3165 213

19 540-570 1486 0.18 91 4772 3165 213

20 570-600 1499 0.45 104 4772 3165 213

 94

From Table 7.9, it can be observed that TTPD is maximum after initialization because of

the high signal activity. The TTPD decreases with increase in the number of decoding iterations.

In the case when the codeword is corrected in 7 iterations, the CDTPD is negligibly small after

11 decoding iterations and the TTPD is almost equal to or little higher than CSTPD. The TTPD

decreases with increase in the number of decoding iterations for the codeword that did not

decode correctly after 51 iterations. The TTPD value reaches a constant value equal to 4772 mW

after 14 iterations. This is because the variable and check node message values become stagnant

after 14 iterations and the signals stop toggling.

From Table 7.9, the decoder average TTPD per iteration while decoding (PowRun) and

idle (PowIdle) are computed and are equal to 5462 mW and 1510 mW respectively. The PowRun

and PowIdle are obtained from Table 7.9 using TTPD of the codeword that decodes correctly in 7

iterations. The PowRun is obtained by averaging the TTPD during 7 decoding iterations (time

period of 0-210 ns). The PowIdle is obtained by averaging the TTPD when the decoder is idle,

i.e., after the decoder estimated the correct codeword. From Table 7.9, PowIdle is equal to

average of the average of TTPD from 300-600 ns. The power dissipated during the time interval

of 210-300 ns is not considered in the calculations of PowRun and PowIdle because the decoder has

estimated correct codeword and has not reached an idle state yet.

The energy required by the decoder for a given SNR can be computed from IterMax, the

average number of decoding iterations, the time per iteration and the power dissipation rate

during the decoding process. The energy required is computed from Eq. 7.9 and is shown in

Table 7.10.

Table 7.10: Energy (pJ) required for varying SNR and IterMax.

IterMax

SNR

(dB)

5 10 15 20 25 30 35 40 45 50

0.9844 795 1591 2386 3181 3977 4772 5567 6020 6244 6468

1.289 795 1591 2386 3181 3977 4772 5224 5448 5672 5896

1.584 795 1591 2386 3181 3977 4201 4424 4648 4872 5096

1.868 795 1591 2386 3181 3405 3630 3853 4077 4301 4525

2.411 795 1591 2043 2267 2491 2715 2939 3163 3387 3611

2.9226 795 1248 1472 1696 1920 2144 2368 2592 2815 3040

 95

The average number of decoding iterations, IterAvg, required for SNR values of 0.9844, 1.289,

1.584, 13868, 2.411 and 2.9226 dB obtained from Matlab simulations are 37, 32, 25, 20, 12 and

7 respectively.








 .

,)))(()((

,

AvgMaxIdleAvgMaxrunAvg

AvgMaxrunMax

IterIteriftPowIterIterPowIter

IterIteriftPowIter
energy (7.9)

7.4.4 Optimization

The following two cases are considered to find an optimum value of IterMax for a given

SNR by attempting to minimize error, delay and energy.

Case I:

The optimum value of IterMax for a given SNR is obtained by minimizing the error,

energy and delay. A function for a given SNR and IterMax can be expressed in terms of error,

energy and delay and is shown as

delayenergyerrorIterSNRf Max  ),((7.10)

where ,  and  are weighing coefficients of error, energy and delay respectively. For a given

SNR, all the values of error, delay and energy shown in Tables 7.7, 7.8 and 7.10 are normalized

by their respective maximum values. Numerically f(SNR, IterMax) is evaluated by varying the

values of ,  and  from 0 to 1 in increments of 0.1 such that  +  +  = 1. For example,  =

0.1,  = 0.2 and  = 0.7. The values of the weights ,  and  are shown in Table 7.11.  is

incremented from 0 to 1 in steps of 0.1. For each value of ,  is decremented from 1- to 0 in

steps of 0.1.  is chosen such that the value is equal to 1 -  - .

The plots of f for varying SNR, IterMax and weights are shown in Figure 7.14. For each

SNR and IterMax, the corresponding weights of the minimum value of f are shown in Table 7.12.

From Figure 7.14 and Table 7.12, it can be observed that when error is not considered i.e.,  = 0

then f is minimum and its value increases with increase in the IterMax. Fewer decoding iterations

would be optimum when latency is given priority. It can also be observed from Figure 7.14 and

Table 7.12, that when  = 1 then f decreases with increase in the IterMax and it obtains minimum

value for largest value of IterMax. This means that when error is minimized the decoder requires

larger value of IterMax.

 96

Table 7.11: Weighing coefficients of error (), energy, (), and delay ().

Weights   

1 0 0 1

2 0 0.1 0.9

3 0 0.2 0.8

4 0 0.3 0.7

5 0 0.4 0.6

6 0 0.5 0.5

7 0 0.6 0.4

8 0 0.7 0.3

9 0 0.8 0.2

10 0 0.9 0.1

11 0 1 0

12 0.1 0 0.9

13 0.1 0.1 0.8

14 0.1 0.2 0.7

15 0.1 0.3 0.6

16 0.1 0.4 0.5

17 0.1 0.5 0.4

18 0.1 0.6 0.3

19 0.1 0.7 0.2

20 0.1 0.8 0.1

21 0.1 0.9 0

22 0.2 0 0.8

:

:

:

:

:

:

:

:

54 0.8 0.2 0

55 0.9 0 0.1

56 0.9 0.1 0

57 1 0 0

 97

Table 7.12: Minimum f corresponding to IterMax, SNR and weights.

SNR

(dB)

 IterMax

 5 10 15 20 25 30 35 40 45 50

0.9844 fMin 0.1 0.2 0.3 0.4 0.5 0.6 0.684 0.682 0.681 0.68

α 0 0 0 0 0 0 1 1 1 1

Β 0 0 0 0 0 0 0 0 0 0

γ 1 1 1 1 1 1 0 0 0 0

1.289 fMin 0.1 0.2 0.3 0.4 0.5 0.6 0.605 0.599 0.594 0.594

α 0 0 0 0 0 0 1 1 1 1

β 0 0 0 0 0 0 0 0 0 0

γ 1 1 1 1 1 1 0 0 0 0

1.584 fMin 0.1 0.2 0.3 0.4 0.491 0.481 0.473 0.467 0.465 0.458

α 0 0 0 0 1 1 1 1 1 1

β 0 0 0 0 0 0 0 0 0 0

γ 1 1 1 1 0 0 0 0 0 0

1.868 fMin 0.1 0.2 0.3 0.4 0.41 0.4 0.395 0.388 0.383 0.38

α 0 0 0 0 1 1 1 1 1 1

β 0 0 0 0 0 0 0 0 0 0

γ 1 1 1 1 0 0 0 0 0 0

2.411 fMin 0.1 0.2 0.3 0.263 0.25 0.237 0.23 0.222 0.222 0.216

α 0 0 0 1 1 1 1 1 1 1

β 0 0 0 0 0 0 0 0 0 0

γ 1 1 1 0 0 0 0 0 0 0

2.9226 fMin 0.1 0.2 0.191 0.157 0.148 0.139 0.135 0.123 0.123 0.123

α 0 0 1 1 1 1 1 1 1 1

β 0 0 0 0 0 0 0 0 0 0

γ 1 1 0 0 0 0 0 0 0 0

 98

Figure 7.14: Surface plot of f for varying SNR, IterMax and weights.

Case II:

 In this case the optimum value of IterMax for a given SNR can be found by minimizing

one of the parameters of error, delay and energy while constraining the other two parameters.

 99

1. For a given SNR, the optimum value of IterMax can be obtained by minimizing error and

constraining the delay and energy as shown below

f (SNR, IterMax) = min error (7.11)

such that delay < Tmin and

energy < Emin.

For a given set of values of Tmin and Emin, IterMax can be obtained from Tables 7.8 and

7.10 respectively.

2. For a given SNR, the optimum value of IterMax can be obtained by minimizing delay and

constraining the error and energy as shown below

f (SNR, IterMax) = min delay (7.12)

such that error < Pe and

energy < Emin.

For a given set of values of Pe and Emin, IterMax can be obtained from Tables 7.7 and 7.10

respectively.

3. For a given SNR, the optimum value of IterMax can be obtained by minimizing energy and

constraining the delay and error as shown below

f (SNR, IterMax) = min energy (7.13)

such that delay < Tmin and

error < Pe.

For a given set of values of Tmin and Pe, IterMax can be obtained from Tables 7.8 and 7.7

respectively.

There are always constraints on error performance, energy/power and delay to develop

designs for real time applications. Error and delay determine the quality of the performance and

the speed. Energy/power influence the battery power required. For example, to find an optimum

maximum number of decoding iterations for a given SNR of 1.868 dB, minimizing the error

when delay and energy are constrained to less than 600 ns and 4000 pJ respectively can be

obtained as follows.

For delay to be less than 600 ns, the corresponding IterMax can be obtained from Table 7.8

and is equal to 20. The IterMax when energy is less than 4000 pJ can be obtained from Table 7.10

and is equal to 40. In order to satisfy both delay and energy constraints IterMax cannot exceed 20.

From Table 7.7, error is minimum for a given SNR and IterMax if it has less number of erroneous

 100

codewords. For SNR of 1.868 dB, error is minimum when IterMax is 50. But for given constraints

on delay and energy, the minimum error occurs for IterMax of 20. Therefore, IterMax in this case is

20. Similarly IterMax can be obtained for other constraints on error, delay and energy as

explained for cases I and II. By repeating this procedure on other parity-check matrices, the

optimum value of IterMax for that particular parity-check matrix at a given SNR can be obtained.

 101

CHAPTER 8 - Conclusion

Low-density parity-check codes are being used in many applications because of their

excellent coding performance. A flexible hardware encoder and decoder for LDPC codes which

would aid in the future development of cognitive radio are developed. The design methodologies

used for the implementation of both a LDPC encoder and decoder are flexible in terms of parity-

check matrix, code rate and code length.

In this work, four encoder designs are proposed yielding very high data rates. The

encoder designs presented can fit on currently available FPGAs. As the density and size of

FPGAs continue to increase and the demand from high-speed applications also increase,

encoders similar to this will become more commonplace. The data rate of these encoders is

restricted by the I/O serialization required to convert between the serial data stream(s) and the

corresponding block processing.

Two of these encoder designs can be used for both structured and non-structured LDPC

codes. These designs are more efficient for small code lengths while requiring large FPGAs for

longer code lengths. The two other encoder designs are proposed for structured LDPC codes

because of their use in IEEE communication standards. Using structured LDPC codes decreases

the encoding complexity and also provides design flexibility. The same design methodology with

minor modifications can also be used for similar structured LDPC codes defined in other

standards. One of the structured encoder designs has flexibility in terms of both the code rate and

code length. This design methodology does not require re-synthesis of the Verilog code to

change the code rate and code length of the LDPC encoder. The design flexibility in both code

rate and code lengths can be utilized in a real time implementation of LDPC codecs for new

technologies such as cognitive radio which needs physical reconfigurability. A flexible encoder

design for structured LDPC codes is also implemented on both an FPGA and an ASIC.

In this work, a decoder is also designed for LDPC codes. The design methodology does

not consider any structure in the LDPC codes. Hence it is applicable to both structured and non-

structured LDPC codes. The decoder has to be optimized for BER performance, hardware

complexity, and power consumption. The maximum number of decoding iterations used for the

decoding process plays an important role in determining the decoder BER performance, latency

and power consumption. Most of the earlier decoder designs found to be available prior to this

 102

work, always decode for a fixed number of iterations after which an estimate of the codeword is

calculated. This leads to unnecessary delay and power consumption, especially in higher SNRs

where the correct codeword is available within a few iterations. In [55], the parity of the normal

variable-to-check messages is checked after each iteration. If the parity check is satisfied then the

codeword is estimated at the beginning of the next iteration and the decoding process is stopped.

In [42], the codeword is estimated after every iteration but it is validated in the next iteration. So

these two methods would take an extra iteration to stop the process after the decoder decoded the

correct codeword. In our design, the codeword is estimated and checked for validity after every

iteration. In a clock cycle, a complete decoding iteration is performed; codeword is estimated and

is validated. The area required to implement this logic is very small when compared to the rest of

the design. The decoding process is stopped if the estimated codeword is correct; otherwise it is

continued until it reaches the maximum number of decoding iterations. This logic will decrease

the decoding latency which in turn saves the power consumed by the chip and increases the data

rate. The proposed decoder can be implemented on FPGAs for only small code lengths.

However, for large code lengths it is shown that the design can be implemented on an ASIC.

The major contributions of this work can be summarized as follows:

 A generic encoder is designed that achieves high data rates. This design methodology can

be used for both structured and any randomly generated regular and irregular LDPC

codes.

 An encoder is designed for structured LDPC codes defined in the IEEE 802.16e standard.

This design methodology can be used for other similar structured LDPC codes such as

IEEE 802.11n.

 A flexible multi-code rate and multi-code length LDPC encoder is designed for structured

LDPC codes defined in IEEE 802.16e standard accommodating code lengths ranging

from 576-2304 with code rates of 1/2, 2/3, 3/4 and 5/6.

 A LDPC decoder is designed that can be used for both structured and any randomly

generated regular and irregular parity-check matrices.

 Procedure to determine the optimum maximum number of decoding iterations for a given

parity-check matrix and SNR is presented.

 103

8.1 Future Work

Although significant advances have been made during this work, there are several areas

in which further investigation would be useful.

 Decrease the latency involved in the computation of parity-check matrix from its

corresponding base parity-check matrix.

Base parity-check matrices, Hb1, of the structured LDPC codes are stored on the

chip to design a flexible encoder accommodating different code lengths and code rates.

Based on the desired code length and code rate, the parity-check matrix is computed from

its corresponding base parity-check matrix and is stored temporarily until the code rate or

the code length is changed. This step needs to be performed only once for a desired code

length and code rate. The latency involved in the computation of parity-check matrix may

affect the overall latency of the encoder when the code rate and code lengths are changed

frequently. The computation latency of H1 can be reduced by using efficient

multiplication and division modules. Latency can be further reduced by computing all the

columns of H1 in parallel.

 Stopping the decoding process

During simulations, it was observed that some codewords are not corrected even

after performing the maximum number of decoding iterations. Identifying such

codewords and stopping the decoding process would decrease the power consumption of

the chip. Also this logic would decrease the decoding latency and increase the decoder

data rate.

 A flexible LDPC codec system can be designed that could accommodate parity-check

matrices of different standards.

 104

CHAPTER 9 - References

[1] C. E. Shannon, “A mathematical theory of communications,” Bell System Technical

Journal, 1948.

[2] R. G. Gallager, “Low-density parity-check codes,” M.I.T. Press, Cambridge, MA, 1963.

[3] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inform.Theory, vol. IT-8,

pp. 21-28, Jan. 1962.

[4] D. J. C. Mackay and R. Neal, “Near Shannon limit performance of low density parity check

codes,” Electron Letter, vol. 33, pp. 457-458, Mar. 1997.

[5] C. Berrou, A. Glavieuxand and P. Thitimajshima, “Near Shannon limit error-correcting

coding and decoding: Turbo codes,” IEEE Conference on Communications, pp. 1064-1070,

1993.

[6] N. Weste and D. J. Akellern, “VLSI for OFDM,” IEEE Communication Magazine, vol. 36,

Issue 10, pp. 127-131, Oct. 1998.

[7] S. Rajagopal, S. Rixner and J. R. Cavallaro, “A programmable baseband processor design

for software defined radios,” 45th Midwest Symposium on Circuits and Systems, vol. 3, pp.

413 – 416, Aug. 2002.

[8] A. Shah, “An introduction to software radio,” Vanu Inc.

 http://vanu.com/resources/intro/SWRprimer.pdf, Nov. 2006.

[9] J. Mitola, “Cognitive radio,” Ph.D. thesis, KTH, Stockholm, 2000.

[10] J. Mitola III and G. Q. Maguire Jr., “Cognitive radio: making software radios more

personal,” IEEE Personal Communications, vol. 6, Issue 4, pp. 13-18, Aug. 1999.

[11] P. Mohanem, “Cognitive trends in making: future of networks,” 15
th

 IEEE International

Symposium on Personal, Indoor and Mobile Radio Communications, vol. 2, pp. 1449-1454,

Sept. 2004.

[12] B. Fette, “Three obstacles to cognitive radio,”

http://www.eetimes.com/showArticle.jhtml?articleID=29100657&printable=true, Nov.

2006.

[13] S. Haykin, “Cognitive radio: brain-empowered wireless communications,” IEEE Journal

on Selected Areas in Communications, vol. 23, Issue 2, pp. 201-220, Feb. 2002.

 105

[14] Q. Zhang, F. W. Hoeksema, A. B. J. Kokkeler and G. J. M. Smit, “Towards cognitive radio

for emergency networks,” http://eprints.eemcs.utwente.nl/2758/01/BookChapter.pdf, Nov.

2006.

[15] B. Fette, “Cognitive radio shows great promise,”

http://www.cotsjournalonline.com/magazine/articles/view/100206, Nov. 2006.

[16] W. Krenik and A. Batra, “Cognitive radio techniques for wide area networks,” 42
nd

Proceedings of Design Automation Conference, pp. 409-412, June 2005.

[17] T. A. Weiss and F. K. Jondral. “Spectrum pooling: an innovative strategy for the

enhancement of spectrum efficiency”. IEEE Communication Magazine, vol. 24, no. 3, pp.

S8–S14, Mar. 2004.

[18] J. Walko, “Cognitive radio,” IEE Review, vol. 51, Issue 5, pp. 34-37, May 2005.

[19] R. Berezdivin, R. Breinig and R. Topp, “Next-generation wireless communications

concepts and technologies,” IEEE Communications Magazine, vol. 40, Issue 3, pp. 108-

116, Mar. 2002.

[20] B. Kurkoski, “Introduction to low-density parity check codes,”

http://www.lit.ice.uec.ac.jp/kurkoski/teaching/portfolio/uec_s05/S05-LDPC%20Lecture%

201.pdf, April 2010.

[21] M. Luby, M. Mitzenmacher, A. Shokrollahi and D. Spielman, “Improved low density

parity check codes using irregular graphs,” IEEE Trans.Inform. Theory, vol. 47, pp. 585-

598, 2001.

[22] T. J. Richardson and R. L. Urbanke, “Efficient encoding of low-density parity-check

codes,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 638-656, Feb. 2001.

[23] T. Zhang and K. K. Parhi, “VLSI implementation-oriented (3, k)-regular low-density

parity-check codes,” Proc. IEEE Workshop on Signal Processing Systems (SiPS): Design

and Implementation, pp. 25-36, 2001.

[24] T. Zhang and K. K. Parhi, “A class of efficient-encoding generalized low-density parity-

check codes,” Proc. IEEE International Conference on Acoustics, Speech, and Signal

Processing, vol. 4, pp. 2477 -2480, May 2001.

[25] H. Zhong and T. Zhang, “Joint code-encoder-decoder design for LDPC coding system

VLSI implementation,” proceedings of the 2004 International Symposium on Circuits and

Systems, vol. 2, pp. 389-392, 2004.

 106

[26] R. Echard and S. Chang, “The -rotation low-density parity check codes,” IEEE Global

Telecommunications Conference, vol. 2, pp. 980-984, Nov. 2001

[27] S. Kim, G. E. Sobelman and J. Moon, “Parallel VLSI architectures for a class of LDPC

codes,” IEEE International Symposium on Circuits and Systems, vol. 2, pp 93-96, May

2002.

[28] L. Miles, J. Gambles, G. Maki, W. Ryan and S. Whitaker, “An (8158, 7136) low-density

parity-check encoder,” IEEE Proceedings of the Custom Integrated Circuits Conference,

pp. 699-702, Sept. 2005.

[29] D. U. Lee, W. Luk, C. Wang, C. Jones, M. Smith and J. Villasenor, “A flexible hardware

encoder for low-density parity-check codes,” Proc. IEEE Symposium on Field-

Programmable Custom Computing Machines, pp. 101 - 111, April 2004.

[30] Z. Khan, T. Arslan and S. Macdougall, “A real time programmable encoder for low density

parity check code as specified in the IEEE P802.16E/D7 standard and its efficient

implementation on a DSP processor,” IEEE International SOC Conference, pp. 17-20,

Sept. 2006.

[31] Z. Khan and T. Arslan, “A real time programmable encoder for low density parity check

code targeting a reconfigurable instruction cell architecture,” IEEE International

Conference on Field Programmable Technology, pp. 245-248, Dec 2006.

[32] Z. Khan and T. Arslan, “Pipelined implementation of a real time programmable encoder for

low density parity check code on a reconfigurable instruction cell architecture,”

Proceedings of the conference on Design, automation and test in Europe, pp. 349-354,

2007.

[33] J. K. Kim, H. Yoo, “Efficient encoding architecture for IEEE 802.16e LDPC codes,”

IEICE Trans. Fundamentals, vol. E91–A, No.12, Dec. 2008.

[34] Y. Sun, M. Karkooti and J. R. Cavallaro, “High throughput, parallel, scalable LDPC

encoder/decoder architecture for OFDM systems,” IEEE Dallas/CAS Workshop on Design,

Applications, Integration and Software, pp. 39-42, Oct. 2006.

[35] “IEEE 802.16e LDPC encoder/decoder core,”

http://www.turbobest.com/WhitePaper80216eLDPC.pdf, May 2010.

[36] “802.16 LDPC encoder v1.0,”

 107

http://www.xilinx.com/support/documentation/ip_documentation/ldpc_802_16_enc_v1_0.p

df, May 2010.

[37] D. J. C. Mackay, “Good error-correcting codes based on very sparse matrices,” IEEE

International Symposium on Information Theory, vol. 45, Issue 2, pp. 399-431, 1999.

[38] M. P. C. Fossorier, M. Mihaljevic and H. Imai, “Reduced complexity iterative decoding of

low-density parity check codes based on belief propagation,” IEEE Transactions on

Communications, vol. 47, Issue 5, pp. 673-680, 1999.

[39] E. Eleftheriou, T. Mittelholzer and A. Dholakia, “Reduced-complexity decoding algorithm

for low-density parity-check codes,” Electronics letters, vol. 37, Issue 2, pp. 102-104,

2001.

[40] J. Zhang, M. Fossorier, D. Gu and J. Zhang, “Two-dimensional correction for min-sum

decoding of irregular LDPC codes,” IEEE Communications Letters, vol. 10, Issue 3, pp.

180-182, 2006.

[41] M. Jiang, C. Zhao, L. Zhang and E. Xu, “Adaptive offset min-sum algorithm for low-

density parity check codes,” IEEE Communications Letters, vol. 10, Issue 6, pp. 483-485,

2006.

[42] Q. Wang, K. Shimizu, T. Ikenaga and S. Goto, “A power-saved 1Gbps irregular LDPC

decoder based on simplified Min-Sum algorithm,” International symposium on VLSI

Design Automation and test, pp. 1-4, 2007.

[43] A. J. Blanksby and C. J. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity-

check code decoder,” IEEE Journal of Solid-State circuits, vol. 37, pp. 404-412, 2002.

[44] L. Fanucci and F. Rossi, “A throughput / complexity analysis for the VLSI implementation

of LDPC decoder,” Proceedings of the fourth IEEE International Symposium on Signal

Processing and Information Technology, pp. 409-412, 2004.

[45] S. M. E. Hosseini, K. S. Chan and W. L. Goh, “A reconfigurable FPGA implementation of

an LDPC decoder for unstructured codes,” 2
nd

 International Conference on Signals,

circuits and Systems, pp. 1-6, 2008.

[46] Y. Zhu, Y. Chen, D. Hocevar and M. Goel, “A reduced-complexity, scalable

implementation of low density parity check decoder,” IEEE Workshop on Signal

Processing Systems Design and Implementation, pp. 83-88, 2006.

 108

[47] P. Radosavljevic, A. D. Baynast, M. Karkooti, and J. R. Cavallaro, “Multi-rate high-

throughput LDPC decoder: tradeoff analysis between decoding throughput and area,” IEEE

17
th

 International Symposium on Personal, Indoor and Mobile radio Communications, pp.

1-5, 2006.

[48] M. Karkooti, P. Radosavljevic and J. R. Cavallaro, “Configurable, high throughput,

irregular LDPC decoder architecture: tradeoff analysis and implementation,” Proceedings

of the IEEE 17
th

 International conference on Application-Specific Systems, Architectures

and Processors, pp. 360-367, 2006.

[49] P. Radosavljevic, A. D. Baynast, M. Karkooti and J. R. Cavallaro, “High-throughput multi-

rate LDPC decoder based on architecture-oriented parity check matrices,” European Signal

Processing Conference, Sept. 2006.

[50] “IEEE 802.16e (WiMAX) LDPC decoder IP core,”

http://www.hitechglobal.com/ipcores/WiMAX_LDPC_Decoder.htm, May 2010.

[51] Z. H. Kashani and M. Shiva, “Power optimised channel coding in wireless sensor networks

using low-density parity-check codes,” Institution of Engineering and Technology

Communications, vol. 1, pp. 1256-1262, 2007.

[52] L. Yijun, M. Elassal and M. Bayoumi, “Power efficient architecture for (3,6)-regular low-

density parity-check code decoder,” Proceedings of the 2004 International Symposium on

Circuits and Systems, vol. 4, pp. 81-84, 2004.

[53] M. M. Mansour and N. R. Shanbhag, “Low-power VLSI decoder architectures for LDPC

code,” International Symposium on Low Power Electronics and Design, pp. 284-289, 2002.

[54] W. Wang, G. Choi, “Minimum-energy LDPC decoder for real-time mobile application,”

Proceedings of the conference on Design, automation and test in Europe, pp. 343-348,

2007.

[55] A. Darabiha, A. C. Carusone and F. R. Kschischang, “Power reduction techniques for LDPC

decoders,” IEEE Journal of Solid-State Circuits, vol. 43, pp. 1835-1845, 2008.

[56] D. J. C. Mackay, “Encyclopedia of sparse graph codes,”

http://www.inference.phy.cam.ac.uk/mackay/codes/data.html, April 2010.

[57] M. M. Mansour and N. R. Shanbhag, “High-throughput LDPC decoders,” IEEE

Transactions on Very Large Scale Integration Systems, pp. 976-996, Dec. 2003.

 109

[58] P. Radosavljevic, A. D. Baynast and J. R. Cavallaro, “Optimized message passing

schedules for LDPC decoding,” 39
th

 Asilomar Conference on Signals, Systems and

Computers, pp. 591-595, 2005.

[59] Stratix II Architecture,” http://www.altera.com/literature/hb/stx2/stx2_sii51002.pdf, March

2010.

[60] “Quartus II introduction using verilog design,”

ftp://ftp.altera.com/up/pub/Tutorials/DE2/Digital_Logic/tut_quartus_intro_verilog.pdf,

March 2010.

[61] Z. G. Vranesic, “Tutorial 1 – Using quartus II CAD software,”

http://www.eecg.toronto.edu/~zvonko/AppendixB_quartus.pdf, March 2010.

[62] “PowerPlay power analysis,” http://www.altera.com/literature/hb/qts/qts_qii53013.pdf,

March 2010.

[63] Standard cell library download, http://www.vtvt.ece.vt.edu/vlsidesign/download.php,

March 2004.

[64] “FreePDK 45nm: A variation-aware design kit for 45nm,”

http://vcag.ecen.okstate.edu/projects/scells/OSUFreePDK.php, March 2010.

[65] Y. Pu, J. P. D. Gyvez, “Cadence SoC encounter RTL-to-GDSII system,”

http://www.es.ele.tue.nl/~gyvez/5kk60/Lab3_manual.pdf, March 2010.

[66] “Place and route using cadence SOC Encounter,”

http://www.vtvt.ece.vt.edu/vlsidesign/tutorialCadence_socEncounter.php, March 2004.

[67] S. Kopparthi and D. M. Gruenbacher, “A high speed flexible encoder for low density parity

check codes,” 49th IEEE International Midwest Symposium on Circuits and Systems, Aug.

2006.

[68] “Xilinx Virtex-II series FPGAs,”

http://www.xilinx.com/publications/matrix/virtexmatrix.pdf, April 2010.

[69] F. Rivoallon, “Comparing Virtex-II and Stratix logic utilization,”

http://www.xilinx.com/support/documentation/white_papers/wp161.pdf, April 2010.

[70] S. Kopparthi and D. M. Gruenbacher, “Implementation of a flexible encoder for structured

low-density parity-check codes,” IEEE Pacific Rim Conference on Communications,

Computers and Signal Processing 2007, pp. 438-441, Aug. 2007.

 110

Appendix A - Design of a Convolutional Encoder in Verilog HDL

A design created in Verilog HDL is used to illustrate the procedures to synthesize and

place and route a design in FPGA and ASIC using Quartus and Cadence respectively. In this

appendix, Verilog HDL design of a 1/2 rate convolutional encoder with constraint length 7 is

used to demonstrate these procedures.

A.1 Convolutional Encoder

Convolutional encoding is used in forward error correcting codes. Convolutional

encoding is a bit-level encoding technique where it calculates and adds the redundant bits for

every input data bit, based on the polynomials. A 1/2 rate convolutional encoder with constraint

length 7 with polynomials defined as g
(0)

 = 1111001 = (171)8 and g
(1)

 = 1011011 = (133)8 is

shown in Figure A.1.

Figure A.1: A 1/2 rate convolutional encoder with constraint length 7.

Design using Verilog HDL for convolutional encoder shown in Figure A.1 is as follows:

convEncoder.v

module convEncoder (n, k, clk, reset);

input k; // input to encoder

input clk, reset; // clock and reset for the encoder

 111

output [1:0] n; // outputs of the encoder

wire [1:0] n;

reg [6:0] po;

always @(negedge reset or posedge clk)

 if (~reset)

 po = 7'b0;

 else

 po = {k, po[6:1]};

assign n[0] = po[6]^po[4]^(po[3]^po[1]^po[0];

assign n[1] = po[6]^po[5]^po[4]^po[3]^po[0];

endmodule

 112

Appendix B - FPGA Implementation using Quartus

Quartus software makes it easy to implement a desired logic circuit by using a

programmable logic device such as FPGA. In this appendix, the implementation of a design

specified by Verilog HDL in Quartus II is presented as discussed in section 3.1. Graphical user

interface is used to invoke Quartus II commands.

B.1 Creating a Project

Each logic circuit, or sub-circuit, being designed in Quartus II is called a project. The

software works on one project at a time and keeps all the information for that project in a single

directory. Start the Quartus II software and the main Quartus II display is as shown in Figure

B.1. Procedure to implement the design in Quartus II using Verilog HDL is illustrated by using

an example of the convolutional encoder presented in appendix A. New project needs to be

created to start working on a new design.

Figure B.1: The main Quartus II display.

New project is created by selecting File  New project wizard. A window pops up

requesting name and directory of the project as shown in Figure B.2. Choose the working

directory and the Verilog HDL file. The directory and the project name are assigned. The name

of the project and top-level design entity of the project are same. Click next and another window

pops up requesting the file name. Add all the files required for the project as shown in Figure

B.3. Choose next. A window pops up asking for device type in which the designed circuit is

 113

implemented as shown in Figure B.4. Choose Stratix as the target device family. From the list of

available devices, choose the device called EP1S80F1508C5 which is the FPGA used on Altera‟s

Startix board. Press next, which opens the window in Figure B.5. The user can specify any third-

party tools that should be used. A commonly used term for CAD software for electronic circuits

is EDA (Electronic Design Automation) tools. Since third-party tools are not being used nothing

is chosen in this window. Click next. A summary of the chosen setting appears in the screen

shown in Figure B.6.

Figure B.2: Creation of new project.

Figure B.3: Adding design files.

 114

Figure B.4: Choose the device family and a specific device.

Figure B.5: Other EDA tools can be specified.

B.2 Compilation of the Project

Run the compiler by selecting Processing  Start compilation. As the compilation

progresses through various stages, its progress is reported in a window on the left side of the

Quartus II display. Successful or unsuccessful compilation is indicated in a pop-up box at the end

of the run. Clicking ok leads to the Quartus II display in Figure B.7. In the message window, at

the bottom of the Figure, various messages are displayed. In case of errors, the relevant messages

 115

are shown. When the compilation is finished, a compilation report is generated. The flow

summary of the compilation report is shown in Figure B.7. For the implementation of

convolutional encoder on a Stratix FPGA chip requires 7 logic elements and 5 pins

Figure B.6: Summary of the project settings.

.

Figure B.7: Flow summary of the compilation report.

B.3 Timing Simulation

 Timing simulations are performed on the design to check its behavior before

implementing the design on the FPGA device. Before the design can be simulated, it is necessary

 116

to create the desired waveforms to represent the input signals. All the inputs and outputs are

specified. Open the waveform editor window by selecting File  New. A window pops up as

shown in Figure B.8, choose vector waveform file and click ok. New waveform editor window

opens as shown in Figure B.9.

Figure B.8: Creating vector waveform file.

Figure B.9: Waveform editor window.

 117

Set the desired simulation to run by selecting Edit  End Time and enter 200 ns in the

dialog box. To include the input and output nodes of the design click Edit  Insert  Insert

Node or Bus to open the window shown in Figure B.10. Click on node finder to open the

window shown in Figure B.11 or type the name of the signal in Name part of the Figure B.10.

Figure B.10: Insert node or bus dialog box.

Figure B.11: Selecting nodes to insert into the waveform editor.

In Figure B.11 select pins, all in filter and click List. Select the required pin under nodes

found on the left side of the window shown in Figure B.11 and click > sign to add the node to

selected nodes on the right side of the window shown in Figure B.11. Add each pin or make

multiple pin selections by simultaneously pressing shift button on the keyboard. Input nodes are

assigned a desired waveform by selecting the waveform name and right click  Value to assign

 118

desired value. Save the waveform file. Timing simulations can be performed by selecting

Assignments  Settings  Simulator settings as shown in Figure B.12. Choose timing as the

simulation mode and the waveform as the simulation input and click ok. Start simulation by

selecting Processing  Start simulation. The obtained simulated waveform is as shown in Figure

B.13.

Figure B.12: Simulator settings.

Figure B.13: Timing simulation report.

 119

B.4 Power Analysis

PowerPlay power analyzer tool of Quartus II is used to perform power analysis. During

simulator settings the simulation output files are created as shown in Fig B.14. Check the

generate signal activity file under signal activity output for power analysis and specify the name

of the .saf file. Signal activity file is generated when timing simulation is performed. PowerPlay

power analyzer tool is started by selecting Processing  PowerPlay power analyzer tool and is

shown in Figure B.15.

Figure B.14: Creating .saf file.

Figure B.15: PowerPlay power analyzer tool.

 120

Check the option use input file(s) to initialize toggle rates and static probabilities during

power analysis under Input file. Click add power input file(s) and a window pops up as shown in

Figure B.16. In this window, check the option use input file(s) to initialize toggle rates and static

probabilities during power analysis under select the power analyzer options. Click add and a

window pops up as shown in Figure B.17. Choose the file under file name and select signal

activity file under input file type and click ok. Click ok on power setting window. Power analysis

is performed by clicking start button on PowerPlay power analyzer tool. When power analysis is

finished a window pops up stating PowerPlay power analysis successful.

Figure B.16: Power settings.

Figure B.17: Add power input file.

 121

Click on the report button on PowerPlay power analyzer tool to view the PowerPlay

power analyzer summary as shown in Figure B.18. Summary report consists of estimated total

thermal, dynamic, static and I/O thermal power consumption of the design.

Figure B.18: PowerPlay power analyzer summary.

 122

Appendix C - ASIC Implementation using Cadence

Procedure to synthesize and place and route a design in Cadence using an example is

presented. The design in Verilog HDL is synthesized using RTL Compiler. The synthesized

design is then place and route in Encounter.

C.1 Initial Setup

Standard cell library developed at Virginia Polytechnic Institute and State University is

used to place and route the design. The standard cell library VTVT_TSMC250 design kit is

downloaded from the following link http://www.vtvt.ece.vt.edu/vlsidesign/download.php. Unzip

the files and copy the directory named vtvt_tsmc250_release under your UNIX directory. The

cadence files are available under directory vtvt_tsmc250_release/Cadence_Libraries for the

actual physical layout of the standard cells.

Cadence environmental variables need to be set up for verifying the design in Cadence Virtuoso

which is explained in the later section.

 Create a script file called cadence-script and include the text below in the file

setenv USE_NCSU_CDK

setenv CDK_DIR /cadence/tools/dfII/local/ncsu_rel_1.5.1

 Source the cadence_script by using following commands

/bin/csh

source /idrive/cadence_script

Following steps are performed before synthesizing the design:

 Move the standard cell library layout directory vtvt_tsmc250 into the cadence directory

(directory created to run the project in this example).

 Add the library to cadence library manager by adding the line below in the cds.lib file

INCLUDE /cadence/tools/dfII/local/ncsu_rel_1.5.1/cdssetup/cds.lib

DEFINE vtvt_tsmc250_nolabel ./vtvt_tsmc250_nolabel

 Copy vtvt_tsmc250.lib, vtvt_tsmc250.lef, vtvt_tsmc250.tf, vtvt_SocE2df2.map and

vtvt_tsmc250_StreamIn.map into libs directory

 Copy display.drf from /cadence/tools/dfII/local/ncsu_rel_1.5.1/cdssetup/display.drf to the

current directory

 123

 Attach library vtvt_tsmc250 to TSMC_CMOS025_DEEP techfile by doing the following

steps:

 Invoke cadence

icfb

 In CIW  Tools  Technology File Manager Attach

 Design Library: vtvt_tsmc250_nolabel

 Technology Library: NCSU_TechLib_tsmc03d

 The standard cell views are now available in the Library Manager

C.2 Synthesis of Verilog HDL Modules in RTL Compiler

In this section the steps followed to synthesize the design using RTL Compiler are

presented.

 Invoke RTL Compiler

rc –gui

 Run the script

File  source script  rc.tcl

 The synthesized convolutional encoder design is shown in Figure C.1.

Figure C.1: Synthesized convolutional encoder in RTL Cadence.

 124

The script file used to generate the synthesized design is given below:

RTL script file rc.tcl

Step1: Specify Verilog HDL design files

All HDL files, separated by spaces

set hdl_files {/mnt/hgfs/Idrive/cadence_encoder/design/convEncoder.v}

The Top-level Module

set DESIGN convEncoder

Set clock pin name in design.

Set clkpin clk

Target frequency in MHz for optimization

set delay 100

#**/

Target Library path is set

NO further changes past this point

set_attribute lib_search_path

{/cadence/tools/dfII/local/ncsu_rel_1.5.1/lib/NCSU_TechLib_tsmc03d}

set_attribute library {/mnt/hgfs/Idrive/cadence/libs/vtvt_tsmc250.lib}

Verilog HDL files are read

read_hdl ${hdl_files}

Design is elaborated

elaborate $DESIGN

Apply Constraints

set clock [define_clock –period ${delay} –name ${clkpin} [clock_ports]]

external_delay –input 0 –clock clk [find / -port ports_in/*]

external_delay –output 0 –clock clk [find / -port ports_out/*]

Sets transition to default values for Synopsys SDC format, fall/rise

400ps

dc::set_clock_transition .4 clk

Design is checked

check_design –unresolved

 125

report timing –lint

Synthesis of the design

synthesize –to_mapped

Analyzing and reporting

report timing > timing.rep

report gates > cell.rep

report power > power.rep

Generating synthesized design

write_hdl –mapped > ${DESIGN}.vh

write_sdc > ${DESIGN}.sdc

puts “Synthesis Finished! “

puts “Check timing.rep, area.rep, gate.rep and power.rep for synthesis results”

C.3 Place and Route using Cadence Encounter

Once the design is synthesized in Cadence RTL it is then place and route in Cadence

Encounter. The following steps are performed to place and route the design [67].

Step 1: Invoke Encounter: Invoke Encounter from the design directory by using the following

command

 encounter

Step 2: Import Design: Import the synthesized design by selecting the following options under

basic and advanced tab as shown in Figures. C.2 and C.3.

 Design  Import design

Basic tab  Verilog Netlist: Files: convEncoder.vh

 By User: convEncoder

Timing Libraries: Common Timing Libraries: vtvt_tsmc250.lib

 LEF Files: vtvt_tsmc250.lef

Timing Constraint File convEncoder.sdc (optional)

 126

Figure C.2: Basic design import.

 Advanced Tab  Power Power Nets: vdd

 Ground Nets: gnd

Leave all the other fields as default. Click OK.

Figure C.3: Advanced design import.

 After importing the design a window appears as shown in Figure C.4 showing the initial

floorplan.

 127

Figure C.4: After importing the design.

Step 3: Floor Planning: Depending on the size of the design the floorplan is specified. Figures.

C.5 and C.6 show the specify floorplan and after floorplan windows respectively.

 Floorplan  Specified Floorplan

Basic  Die Size by: Width: 500, Height: 500

Core Margins by: Core to IO Boundary

Core to Left: 38 Core to Top: 38

Core to Right: 38 Core to Bottom: 38

Click OK.

Figure C.5: Specify floorplan.

 128

Figure C.6: After floorPlan.

Step 4: Power Planning: Rings and stripes are added. Windows for add rings and after adding

rings are shown in Figures. C.7 and C.8 respectively. Similarly windows for add stripes and

after adding stripes are shown in Figures. C.9 and C.10 respectively.

 Power  Power Planning  Add Rings

Basic  Ring Configuration: Layer: Width: 10.8, Spacing: 2.16

Click OK.

Figure C.7: Add rings.

 129

Figure C.8: After adding rings.

 Power  Power Planning  Add Stripes

 Set Configuration: Layer: Metal2

 Direction: Vertical Width: 10.8

Spacing: 2.16

Click OK.

Figure C.9: Add stripes.

 130

Figure C.10: After adding stripes.

Step 5: Special Route: SRoute is performed to do the final power routing and is shown in Figure

C.11. Figure C.12 shows the routed design.

 Route

Route  Special Route

Click OK

Figure C.11: Special route.

 131

Figure C.12: After special route.

Step 6: Place: Design is Placed by filling the form as shown in Figure C.13. Change the view

form floorplan to physical view by selecting the appropriate view as shown in Figure C.14.

 Place

Place  Standard Cells

Chose Run Full Placement

Figure C.13: Place.

 Set View option to Physical View

 132

Figure C.14: After placing cells.

Step 7: NanoRoute: For global routing nanoRoute is used. Figures C.15 and C.16 show the

options chosen for NanoRoute and window after NanoRoute is performed respectively.

 Route

Route  Nanoroute  Route

Click OK

Figure C.15: NanoRoute.

Physical View Floorplan

View

 133

Figure C.16: After nanoRoute.

Step 8: Place: Filler cells are added to allow all the wells to be at the same potential. Place

options window is as shown in Figure C.17. Figure C.18 shows design after placing the filler

cells.

 Place

Place  Filler  Add filler

Click OK

Figure C.17: Add filler.

 134

Figure C.18: After adding fillers.

Step 9: Verify: Final layout of the design is verified. Design connectivity and the geometry are

verified by following commands. Design should pass selected tests. Connectivity and geometry

options are as shown in Figure C.19 and C.20 respectively.

 Verify

Verify  Verify Connectivity

Click OK.

Figure C.19: Verify connectivity.

 135

 Verify  Verify Geometry

Click OK.

Figure C.20: Verify geometry.

Step 10: Export: The design is saved and its GDS file is exported. Figure C.21 shows the GDS

export form.

 Export GDS

Design  Save  GDS

 Output Stream File: convEncoder.gds

 Map File: vtvt_SocE2df2.map

 Click OK.

Figure C.21: GDS export form.

 136

C.4 Verification of the Design

The layout of the design generated in Cadence Encounter is imported into Cadence icfb

to verify if the Encounter has properly generated the design. Also to check if the generated

design is DRC clean. Verification of the design is performed as follows:

The layout generated in the Encounter is imported into Cadence Virtuoso.

Step 1: Start Cadence icfb

Step 2: In the CIW  File  Import  Stream..

In the Stream In form fill the following as shown in Figure C.22.

 Run directory: .

 Input file: convEncoder.gds

 Library name: vtvt_tsmc250

Figure C.22: Stream in form.

Step 3: Select User-Defined data:

 Fill the details as shown in Figure C.23.

 Layer map table: vtvt_tsmc250_StreamIn.map

Figure C.23: User-defined data form.

 137

Step 4: Select options:

 Fill as shown in Figure C.24. Click OK.

A pop-up message appears indicating that PIPO STRMIN completed successfully.

Figure C.24: Options form.

Step 5: In the layout view, as shown in Figure C.25.

 Verify  DRC… and select OK. Design must be DRC clean.

Figure C.25: DRC form.

 138

The synthesized design in Cadence RTL is imported into a schematic in Cadence icfb.

Step 6: Start Cadence icfb

Step 7: In the CIW  File  Import  Verilog…

Fill in the form as shown in Figure C.26.

 Target library name: convEncoder_design

 Reference library: vtvt_tsmc250 basic

 Verilog files to import: convEncoder.vh

 Import structural modules as: Schematic

 Power net name: VDD

 Ground net name: GND

Figure C.26: Import Verilog in.

The synthesized design is shown in Figure C.27.

 139

Figure C.27: Schematic view.

To check if schematic and layout have the same netlist, LVS is run on both schematic and layout.

Step 8: Open both the schematic and layout views

Step 9: Extract the layout using Verify  Extract  OK. The extracted view of the

convolutional encoder is shown Figure C. 28.

Figure C.28: Extracted view.

Step 10: Open the extracted view and perform LVS by choosing Verify  LVS as shown in

Figure C.29.

 140

A pop-up window appears notifying successful completion or failure of the LVS.

In the LVS window click output to get the information regarding the LVS run.

Figure C.29: LVS.

 141

Appendix D - Quantization of Log-Likelihood Ratios in Decoder

Implementation

In subsection 7.2.1.1 and 7.2.1.2, it is shown that 5-bit and 6-bit quantizations are

required to represent (z) and log-likelihood ratios, respectively, without compromising much on

performance and latency. The actual value, binary equivalent and binary representation of z, (z)

and log-likelihood ratios are shown in Table D.1 and D.2 respectively.

Table D.1: Quantization of .

Actual

Value

Binary

Equivalent
Binary

Representation

z (z) z (z) z (z)

0 3.875 0 31 00000 11111

0.125 2.750 1 22 00001 10110

0.250 2.000 2 16 00010 10000

0.375 1.625 3 13 00011 01101

0.500 1.375 4 11 00100 01011

0.625 1.125 5 10 00101 01010

0.750 1.000 6 8 00110 01000

0.875 0.875 7 7 00111 00111

1.000 0.750 8 6 01000 00110

1.125 0.625 9 5 01001 00101

1.250 0.500 10 4 01010 00100

1.375 0.500 11 4 01011 00100

1.500 0.375 12 3 01100 00011

1.625 0.375 13 3 01101 00011

1.750 0.250 14 2 01110 00010

1.875 0.250 15 2 01111 00010

2.000 0.250 16 2 10000 00010

2.125 0.125 17 1 10001 00001

2.250 0.125 18 1 10010 00001

 142

2.375 0.125 19 1 10011 00001

2.500 0.125 20 1 10100 00001

2.625 0.125 21 1 10101 00001

2.750 0.125 22 1 10110 00001

2.875 0.000 23 0 10111 00000

3.000 0.000 24 0 11000 00000

3.125 0.000 25 0 11001 00000

3.250 0.000 26 0 11010 00000

3.375 0.000 27 0 11011 00000

3.500 0.000 28 0 11100 00000

3.625 0.000 29 0 11101 00000

3.750 0.000 30 0 11110 00000

3.875 0.000 31 0 11111 00000

Table D.2: Quantization of log-likelihood ratios.

Actual

Value

Binary

Equivalent

2‟s Complement

Representation

0 0 000000

0.125 1 000001

0.250 2 000010

0.375 3 000011

0.500 4 000100

0.625 5 000101

0.750 6 000110

0.875 7 000111

1.000 8 001000

1.125 9 001001

1.250 10 001010

1.375 11 001011

1.500 12 001100

 143

1.625 13 001101

1.750 14 001110

1.875 15 001111

2.000 16 010000

2.125 17 010001

2.250 18 010010

2.375 19 010011

2.500 20 010100

2.625 21 010101

2.750 22 010110

2.875 23 010111

3.000 24 011000

3.125 25 011001

3.250 26 011010

3.375 27 011011

3.500 28 011100

3.625 29 011101

3.750 30 011110

3.875 31 011111

-4.000 -32 100000

-3.875 -31 100001

-3.750 -30 100010

-3.625 -29 100011

-3.500 -28 100100

-3.375 -27 100101

-3.250 -26 100110

-3.125 -25 100111

-3.000 -24 101000

-2.875 -23 101001

-2.750 -22 101010

 144

-2.625 -21 101011

-2.500 -20 101100

-2.375 -19 101101

-2.250 -18 101110

-2.125 -17 101111

-2.000 -16 110000

-1.875 -15 110001

-1.750 -14 110010

-1.625 -13 110011

-1.500 -12 110100

-1.375 -11 110101

-1.250 -10 110110

-1.125 -9 110111

-1.000 -8 111000

-0.875 -7 111001

-0.750 -6 111010

-0.625 -5 111011

-0.500 -4 111100

-0.375 -3 111101

-0.250 -2 111110

-0.125 -1 111111

