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Abstract 

Future technologies such as cognitive radio require flexible and reliable hardware 

architectures that can be easily configured and adapted to varying coding parameters. The 

objective of this work is to develop a flexible hardware encoder and decoder for low-density 

parity-check (LDPC) codes. The design methodologies used for the implementation of a LDPC 

encoder and decoder are flexible in terms of parity-check matrix, code rate and code length. All 

these designs are implemented on a programmable chip and tested.  

Encoder implementations of LDPC codes are optimized for area due to their high 

complexity. Such designs usually have relatively low data rate. Two new encoder designs are 

developed that achieve much higher data rates of up to 844 Mbps while requiring more area for 

implementation. Using structured LDPC codes decreases the encoding complexity and provides 

design flexibility. The architecture for an encoder is presented that adheres to the structured 

LDPC codes defined in the IEEE 802.16e standard.  

A single encoder design is also developed that accommodates different code lengths and 

code rates and does not require re-synthesis of the design in order to change the encoding 

parameters. The flexible encoder design for structured LDPC codes is also implemented on a 

custom chip. The maximum coded data rate of the structured encoder is up to 844 Mbps and for 

a given code rate its value is independent of the code length.  

An LDPC decoder is designed and its design methodology is generic. It is applicable to 

both structured and any randomly generated LDPC codes. The coded data rate of the decoder 

increases with the increase in the code length. The number of decoding iterations used for the 

decoding process plays an important role in determining the decoder performance and latency. 

This design validates the estimated codeword after every iteration and stops the decoding process 

when the correct codeword is estimated which saves power consumption.  For a given parity-

check matrix and signal-to-noise ratio, a procedure to find an optimum value of the maximum 

number of decoding iterations is presented that considers the affects of  power, delay, and error 

performance.   
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CHAPTER 1 - Introduction 

Channel coding theory began when Shannon applied probability theory to study the 

communication system. Shannon showed that for a given transmission rate less than or equal to 

channel capacity, the errors induced by the noisy channel can be reduced to a desired level by 

using a proper coding scheme [1]. Channel codes that can detect and correct the errors occurred 

during the transmission through a communication channel are called error correcting codes. 

Channel coding minimizes the effect of channel noise by using a channel encoder and decoder at 

the transmitter and receiver respectively. The channel encoder encodes the message bits by 

adding redundant bits to generate each codeword. The channel decoder in the receiver exploits 

the redundant bits in the received codeword and retrieves the actual message bits. Forward error 

correction (FEC) is a system of error control for data transmission. FEC codes detect and correct 

errors without requiring retransmission. Low-density parity-check codes (LDPC) are a type of 

FEC codes used for error detection and correction. 

Low-density parity-check codes were invented by Gallager [2], [3]. LDPC codes have 

recently received much attention because of their efficient decoding algorithm, excellent error 

correcting capability and their performance close to the Shannon limit for large code lengths [4]. 

LDPC codes are proposed as an optional code in many IEEE standards. In [5], Europe‟s DVB 

standards group has selected LDPC codes due to their superior performance over Turbo codes 

for next generation digital satellite broadcasting. LDPC codes have already been verified and 

adopted by digital video broadcasting (DVB-S2) satellite broadcast and 10-Gbit Ethernet-over-

copper system specifications [6]. LDPC codes are widely being considered as next-generation 

error correcting codes for many real applications such as telecommunications and magnetic 

storage. 

The objective of this work is to develop a flexible hardware encoder and decoder for 

LDPC codes. The design methodologies used for the implementation of a LDPC encoder and 

decoder are flexible in terms parity-check matrix, code rate and code length. The following 

section presents the motivation behind this work. The current state of LDPC encoder and 

decoder implementations in hardware is presented in the next subsection. Finally the 

accomplishments of this work and organization of the thesis are illustrated. 
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1.1 Motivation 

Future wireless systems need extremely fast and flexible architectures to support varying 

standards, algorithms and protocols with high data rates. Software radio is a widely proposed 

solution for these systems [7]. A software radio is a wireless communication device in which all 

of the signal processing is implemented in software. By simply downloading a new program, a 

software radio is able to interoperate with different wireless protocols, incorporate new services, 

and upgrade to new standards [8]. Cognitive radio (CR) is the next step in the evolution of 

software-defined radio (SDR). The cognitive radio concept was invented and presented by J. 

Mitola [9, 10]. It takes SDR's ability to adapt to changing communication protocols and 

frequency bands and adds a new dimension which is the ability to perceive the world around it 

and learn from experience [11, 12] and adapt to optimize the use of available resources.  

The two primary objectives of the cognitive radio are to provide highly reliable 

communication whenever and wherever needed and to utilize the radio spectrum efficiently [13]. 

Cognitive radio is able to work in different frequency bands and various wireless channels and 

supports multimedia services such as voice, data and video [14]. Cognitive radio is a new 

paradigm in wireless communication that holds promise for new and better services to many 

markets, including public safety, military etc. Based on both current and previous channel 

characteristics, the radio would know what to do, where to go and how to make the operating 

changes without the user‟s intervention and without interfering with other communication 

equipment. Some of the radio‟s other cognitive abilities include determining its location, sensing 

spectrum use by neighboring devices, changing frequency, adjusting output power or even 

altering transmission parameters and characteristics [15-17]. 

Hence, there is a need to develop appropriate hardware which can be easily configured 

and adapted to varying coding parameters. The future of cognitive radio primarily depends on 

the availability of flexible and reliable hardware architectures. In this thesis, an attempt is made 

to develop a flexible and reliable architecture which would aid the future development of 

cognitive radio. 

Any radio with the capacity to jump around the spectrum optimizing for power, range 

and required data rates, will, at the very least, require an extremely flexible RF front end [18]. 

The technical means to dynamically assign or utilize spectrum involves: (1) highly adaptive 

modulation and coding techniques (2) multidimensional/hybrid multiple access techniques (3) a 
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spectrum and resource aware MAC/link layer (4) flexible networking and (5) spectrum 

awareness and multilayer resource management [19]. Coding techniques used in different 

wireless standards are shown in Table 1.1. Convolutional codes, Reed-Solomon codes, Turbo 

codes, Low-density parity-check (LDPC) codes are some of the common error correcting codes 

currently being used in different standards and their bit error probability is shown in Figure 1.1 

[20]. 

Table 1.1:  Coding schemes for different standards. 

Parameter IEEE 802.11a IEEE 802.11n DVB-T IEEE 802.16 

Error 

correcting 

codes 

Convolutional 

codes 

Convolutional 

/LPDC codes 

Reed-solomon 

codes, 

Convolutional 

codes 

Reed-solomon-

convolutional 

codes, LDPC 

codes (optional) 

Net data rate 

(Mbps) 
Up to 54 200 49.8-131.67 Excess of 120 

Code rate 1/2, 2/3, 3/4 
1/2, 2/3 , 3/4, 

5/6 

1/2, 2/3, 3/4, 

5/6, 7/8 
1/2, 2/3, 3/4 

 

 

Figure 1.1: Comparison of bit error probability of error correcting codes [20]. 

Reviewing the work reported in this research area and industry, LDPC codes are found to 

be the leading error correcting codes. Most of the architectures for encoding and decoding of 
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LDPC codes are based on regular or structured LDPC codes. However in [21], it was shown that 

properly constructed irregular LDPC codes can approach the channel capacity more closely than 

regular LDPC codes. And also, most of the work in the literature shows that the LDPC encoder 

and decoder are implemented with fixed parameters such as fixed code rate and code length. But 

cognitive radio as explained earlier requires flexibility in both code rate and code length. Hence, 

there is a need for designing a flexible LDPC encoder/decoder. Also, high speed encoder and 

decoder are necessary as applications require more bandwidth. The focus of this work is to 

develop hardware for LDPC encoder and decoder that are flexible in terms of code rate and code 

length for a reconfigurable radio. The designs are applicable to both structured and any randomly 

generated regular and irregular LDPC codes.  

1.2 Literature Review 

In the following subsections, the current state of work published in the hardware 

implementations of both the encoder and decoder for LDPC codes are presented. 

1.2.1 Encoder Implementation  

The major drawback of LDPC codes is its high encoding complexity, in spite of the better 

performance and lower decoding complexity. The complexity is referred to the number of 

operations required per bit. A straightforward implementation of an LDPC encoder has 

complexity quadratic in the code length whereas turbo codes can be encoded in linear time. Even 

though LDPC codes are difficult to implement due to high encoder complexity, recent 

developments have led to more efficient encoder structures which are typically limited in their 

encoding rates. 

A variety of encoder architectures have been presented in the past. Richardson showed 

that the encoding complexity can be reduced from O(n
2
) to either linear or quadratic. For 

example, a (3, k)-regular code of length n requires about 0.017
2
n

2
 + O(n) operations [22]. The 

parity-check matrix is initially transformed into an approximate lower triangular form. Then 

encoding is performed on the approximate lower triangular form of the parity-check matrix using 

the greedy algorithm.  

Zhang et al. [23, 24] proposed a systematic efficient encoding scheme by effectively 

exploiting the sparseness of its (3, k)-regular LDPC codes. A design approach is presented by 

Zhong in [25] for a LDPC system hardware implementation by jointly conceiving irregular code 
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construction and VLSI implementations. The encoding algorithms in [23-25] are similar to that 

of Richardson‟s greedy algorithm [22], except that these algorithms do not contain any back-

substitution operations because of the structural property of their parity-check matrices. To take 

the advantage of the parity-check matrix structure in [23-24], the parity-check matrix is 

transformed into an approximate upper triangular matrix rather than lower triangular form.  

In [26], Echard introduced as ensemble of quasi-regular low-density parity-check codes 

called as  rotation LDPC codes. In [27], Kim presented high-performance parallel 

implementations of an encoder and decoder for a parallel concatenated parity-check class of 

LDPC codes. In [28], Miles implemented a radiation tolerant encoder in 0.25 µ CMOS based on 

a novel method for deriving regular quasi-cyclic LDPC codes. These encoding methodologies 

assume a particular structure for the parity-check matrix such as regular, quasi-regular and 

parallel concatenated LDPC codes. Hence the encoding methodologies developed are applicable 

to those particular LDPC codes and cannot be used for other structured or non-structured LDPC 

codes.   

In [29-33], a hardware design of an efficient LDPC encoder was described based on the 

method proposed by Richardson and Urbanke in [22]. In [29], the encoder for code length of 

2000 bits and rate 1/2 has a coded data rate of 45 Mbps. The coded data rate can be increased to 

410 Mbps by implementing 16 instances of the encoder on the same device. In [30-32] an 

implementation of a real-time programmable irregular LDPC encoder as specified in the IEEE 

P802.16E/D7 standard was presented. The encoder is implemented on a reconfigurable 

instruction cell architecture and has a data rate from 10-19 Mbps. The design presented has a 

maximum data rate of 78 Mbps with the use of pipelining and multiple cores. In [33], a LDPC 

encoder is implemented for structured LDPC codes as defined in both IEEE 802.16e and IEEE 

802.11n. An architecture for a structured LDPC encoder has been presented that supports IEEE 

802.11n [34].  

An encoder and decoder for LDPC codes defined in IEEE 802.16e are developed and 

their coded data rate is dependent on the clock frequency at which they run [35]. The basic 

encoder and decoder area is 20 K and 125 K gates respectively. The LDPC encoder core in [36] 

provides a complete encoding solution for the codes defined in IEEE 802.16e. A major feature of 

the core is that it has an extremely low latency and the encoded packet is available at the output 

in seven clock cycles. The coded data rate is equal to the clock rate of the encoder.  



 6 

Most of the encoder methodologies presented above assume some kind of structure for 

the parity-check matrix. Also the encoder design parameters, the code rate and the code length, 

are fixed. Hence there is a need to design a LDPC encoder that is flexible in terms of parity-

check matrix, code rate and code length for cognitive radio. 

1.2.2 Decoder Implementation 

Several algorithms are proposed for LDPC decoding. LDPC codes which can approach 

Shannon‟s limit by using an iterative decoding algorithm called belief propagation. This 

algorithm is also called as sum-product algorithm or message passing algorithm [37]. By using 

log-likelihood ratios (LLR) as messages (logarithmic message passing algorithm) the hardware 

implementation has become much easier when compared to the message passing algorithm. The 

implementation complexity is further reduced by simplifying the process for updating check 

nodes, which is the most extensive part of the message passing algorithm. This algorithm is 

called the min-sum algorithm [38]. Later on, several algorithms were introduced by modifying 

the min-sum algorithm [39-41] to bridge the gap in the performance between the min-sum and 

message passing algorithms.  

A LDPC decoder can be implemented using serial, parallel or partially parallel 

architectures. In [42], a fully-parallel irregular LDPC decoder is synthesized using 0.18 µm 

CMOS technology and achieves a data rate of 1 Gbps for code length of 648 and rate 5/6. In 

[43], a 1024-b, rate-1/2 LDPC decoder is implemented using a parallel architecture. The design 

achieves a coded data rate of 1 Gbps. This performance is achieved by exploiting the inherent 

parallelism and rapid convergence of the message passing decoding algorithm. In [44], a 1/2 rate, 

2048 codeword, (3, 6) regular LDPC code has been analyzed. The data rate and complexity 

analysis is performed for the VLSI implementation of an LDPC decoder using both fully and 

partially parallel architectures. In [45], the decoder is designed using a serial architecture and has 

a moderate data rate. The decoding algorithm proposed in their paper belongs to the class of min-

sum with a correction factor. The correction factor is updated from the log-likelihood ratio 

values. The decoder is peripherally connected to the embedded PowerPC processor of a Xilinx 

Virtex-II Pro FPGA and is managed by the processor. This method of hardware/software 

implementation provides the maximum flexibility for the development and rapid prototyping of 

the hardware-based simulator system. 
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In [46], a parameterized decoder that supports the LDPC code in the IEEE 802.16e 

standard, is presented which requires code rates of 1/2, 2/3 and 3/4, with block sizes varying 

from 576 to 2304. The decoder is synthesized with Texas Instruments' 90 nm ASIC process 

technology, with a target operation frequency of 100 MHz, 15 decoding iterations, and the 

maximum data rate is up to 256 Mbps. Similar flexible multi-rate multi-code length structured 

LDPC decoder is designed in [47-49]. The IP core in [50] provides a hardware efficient 

implementation of an LDPC decoder for IEEE 802.16e. The design covers the entire 

IEEE802.16e LDPC specification and implements an early stop detection function. The data rate 

of the decoder is dependent on the clock frequency. The decoded throughput is up to 168 Mbps 

for a Virtex-4 with a -12 speed grade. 

In [51] the energy consumption of a quantized LDPC decoder is computed. It is shown 

that the energy consumption of the decoder increases exponentially with the number of 

quantization bits. A new architecture is proposed in [52] which reduces memory access, hence 

power consumption, without sacrificing performance. It is shown that through an interconnect-

driven code design approach, coupled with a dynamic addressing scheme and an optimized 

version of the BCJR algorithm for computing reliabilities, power savings of up to 85.64% can be 

achieved [53]. A low-power real-time decoder that provides constant-time processing of each 

frame using dynamic voltage and frequency scaling is presented in [54]. VLSI architectures for 

low-density parity-check decoders amenable to low-voltage and low-power operation are 

investigated in [55]. In this paper, highly-parallel decoder architecture with low routing overhead 

is described. Dynamic power is reduced by using an efficient method to detect early convergence 

of the iterative decoder and terminate the computations. 

The performance of the LDPC decoder depends on various factors such as the decoding 

algorithm, the architecture, the quantization of log-likelihood ratios and the maximum number of 

decoding iterations. The maximum number of decoding iterations used for the decoding process 

determines the data rate and latency of the LDPC decoder. After performing maximum number 

of decoding iterations, the codeword is then estimated. Most of the decoders presented above do 

not estimate the codeword and check its validity after each iteration. In order to save decoder 

power consumption and to decrease the latency, a decoder design that verifies the codeword after 

each iteration and stops the decoding process when the estimated codeword is correct is needed. 

In [55], the parity of the normal variable-to-check messages is checked after each iteration. If the 
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parity check is satisfied then the codeword is estimated at the beginning of the next iteration and 

the decoding process is stopped. In [42], the codeword is estimated after every iteration but it is 

validated in the next iteration. These two decoder designs in [42] and [55], take an additional 

iteration to stop the decoding process after the decoder decoded the correct codeword. An 

attempt is made to find an optimum value for the maximum number of decoding iterations for a 

given parity-check matrix and SNR by minimizing the error, delay and energy.  

1.3 Accomplishments 

 In this section the important contributions of this thesis are presented. As shown in the 

previous sections, current hardware implementations of LDPC encoders and decoders use either 

cyclic, quasi-cyclic or some regular pattern in the parity-check matrix, H. In this work, both an 

LDPC encoder and decoder are developed that are flexible in terms of parity-check matrix, code 

rate and code length. Here is a list of the significant contributions of this work. 

1. A generic encoder is designed and tested for any randomly generated LDPC codes. 

Two new encoder designs were developed that achieve much higher data rates 

while requiring more area for implementation. The designs developed can be used for 

both structured and any randomly generated regular and irregular parity-check matrices 

as they are independent of the structure of the LDPC codes.  

2. An encoder for structured LDPC codes is designed and tested. 

An encoder architecture that adheres to the structured LDPC codes defined in the 

IEEE 802.16e standard was developed. The design methodology with minor 

modifications can be used for other similar structured LDPC codes defined in different 

standards. 

3. A flexible multi-code rate and multi-code length LDPC Encoder is designed and tested 

A flexible encoder design that accommodates different code lengths and code 

rates has been developed. This design methodology does not require re-synthesis of the 

Verilog code to change the encoder parameters (code length and code rate). This design 

methodology developed with minor modifications can be used for other similar structured 

LDPC codes. 

4. A LDPC decoder for randomly generated LDPC codes is designed and tested 
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A decoder design methodology that is independent of the structure in the LDPC 

codes has been developed and implemented. Hence it is applicable to both structured and 

any randomly generated regular and irregular LDPC codes. This design validates the 

estimated codeword after every iteration and stops the decoding process when the correct 

codeword is estimated which would save the power consumption.  

5. Optimum value of the maximum number of decoding iterations 

The maximum number of decoding iterations plays a major role in determining 

the decoder performance and latency. A procedure/method is presented to find an 

optimum maximum number of decoding iterations for a given parity-check matrix and 

SNR.  

1.4 Organization of Dissertation 

A brief introduction on LDPC codes is presented in chapter 2. In this chapter, various 

encoding and decoding algorithms are presented. In chapter 3, the design tools Altera Quartus, 

Cadence and Matlab, used in the implementation of LDPC encoder and decoder are presented. 

The two design methodologies used for the encoder design implementation for randomly 

generated LDPC codes along with the results are presented in chapter 4. The encoder design 

methodology, the implementation and the results for a structured LDPC codes are discussed in 

chapter 5. In chapter 6, the design methodology, hardware implementation and the results for a 

flexible multi-code rate and multi-code length encoder for structured LDPC codes are presented. 

In chapter 7, the decoder design methodology, hardware implementation and results are 

presented. For a given parity-check matrix and SNR, an optimum maximum number of decoding 

iterations are evaluated.  
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CHAPTER 2 - Low-Density Parity-Check Codes 

 In this chapter, low-density parity-check codes are introduced and the details of encoding 

and decoding algorithms are presented. LDPC codes were invented by R. G. Gallager [2][3]. 

LDPC codes are linear block codes specified by a parity-check matrix, H, which is sparse. There 

are two types of LDPC codes, regular and irregular LDPC codes. Regular LDPC codes are 

defined by parity-check matrices with a fixed number of non-zero entries (usually 1‟s) in each 

row and column known as row weight, wr, and column weight, wc, respectively. Irregular LDPC 

codes are defined by parity-check matrices having a variable number of non-zero entries in each 

row and column. In general, irregular LDPC codes have better error-correcting performance than 

that of regular LDPC codes. In this work, Mackay‟s parity-check matrices [56] for both regular 

and irregular LDPC codes are used. LDPC codes can be represented using a bipartite graph, also 

called as Tanner graph, where one set of nodes represents the codeword, also known as variable 

nodes, and the other set of nodes, called check nodes, represents the parity check constraints. 

Messages are passed between check and variable nodes along the edges, L(rji) and L(qij). Each 

edge in the Tanner graph corresponds to a „1‟ in H. An example of a 4 × 8 rate 1/2 parity-check 

matrix is shown in Figure 2.1. Each row of the parity-check matrix represents a check node and 

each column represents a variable node. Check node „j‟ is connected to variable node „i‟ if the 

corresponding element hji of H is 1. The Tanner graph representation of the parity-check matrix 

in Figure 2.1 is shown in Figure 2.2. In this work, parity-check matrices that are binary is 

considered.  





















10010010

01001001

00111000

00000111

H  

Figure 2.1: Parity-check matrix. 

2.1 Encoding 

Encoding of LDPC codes uses the following property 

Hx
T
 = 0

T
,                                                                    (2.1)  

where vector x represents the codeword, H is the parity-check matrix, and 0 is a zero vector. The 

codeword x consists of information bits, s, and parity bits, p. Parity bits are computed from the 
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information bits. Two of the common encoding methods are presented in the following 

subsections. 

 

Figure 2.2: Tanner graph representation of parity-check matrix. 

2.1.1 Generic Encoding 

Let H = [H1 H2] be the m × n parity-check matrix with sub-matrices H1 and H2 having the 

dimensions m × k and m × m, respectively. For the remainder of this thesis, these dimensions are 

not explicitly designated. The most straight forward encoder implementation requires three steps. 

In the first step, the parity-check matrix, H, is transformed to an equivalent lower triangular form 

as shown in Figure 2.3. The second step is to take the codeword, x, and split it into it‟s k 

information bits, s, and it‟s m parity bits, p. i.e., ][ psx  . In the third step, the parity bits p are 

obtained by solving Equation 2.1: 
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Figure 2.3: A parity-check matrix in equivalent lower triangular form. 

In [29], it is stated that transforming the parity-check matrix into lower triangular form 

using Gaussian elimination requires about O(n
3
) operations. Since the transformed parity-check 

matrix is no longer sparse, the actual encoding requires O(n
2
) operations. More precisely the 

actual encoding requires 






 

2

)1(2 rr
n  XOR operations where r is the code rate. 

2.1.2 Efficient Encoding 

Richardson and Urbanke [22] showed that linear time encoding is achievable through 

careful linear manipulation of LDPC codes. Using row and column permutations only, the 

parity-check matrix is transformed into an approximate lower triangular form, Hpre, as shown in 

Figure 2.4. The parity-check matrix is still sparse and T is in lower triangular form with ones 

along the diagonal. The gap, g, is made as small as possible because the encoding complexity is 

upper-bounded by n + g
2 

[22]. 

 

 

 

 

 

Figure 2.4: Parity-check matrix in approximate lower triangular form, Hpre, and its 

division of sub-matrices. 

The encoding procedure is as follows: The codeword x is given by ][ 21 ppsx  , where s are 

information bits and p1 and p2 are parity bits of length n-m, g and m-g, respectively.  Equation 
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2.1 can also be represented as Hprex
T
 = 0

T
 and is solved to compute the parity bits. This 

expression is pre-multiplied by 








  IET

I
1

0
 to obtain 

                                              

.
0

00

2

11 










































 

p

p

s

EDC

TBA

IET

I
                                         (2.3) 

For binary parity-check matrices, Equation 2.3 can then be separated into two equations as 

shown below 

    021  TpBpAs , and                (2.4) 

                                              0)()( 1

11   pDBETsCAET .                                         (2.5) 

Let DBET  1 , and assume that  is nonsingular, the parity bits are given by 

                                                       sCAETp )( 11

1   , and                                               (2.6) 

                                                              )( 1

1

2 BpAsTp   .                                                    (2.7) 

The steps used to compute the parity bits are summarized [22] in Table 2.1. 

Table 2.1: Steps for computation of parity bits p1 and p2. 

Step No. Computation of p1 Computation of p2 

1 As As 

2 T 
-1

As Bp1 

3 ET 
-1

As As + Bp1 

4 ET 
-1

As + Cs T 
-1

(As + Bp1) 

5  
-1

(ET 
-1

As + Cs)  

 

In [22], it is found that by using this method, the encoding complexity is either linear or 

quadratic but quite manageable. For example, a (3, k)-regular code of length n requires about 

0.017
2
n

2
 + O(n) operations. The complexity of the encoder is still manageable for large n since 

the 0.017
2
n

2
 is a very small number. The encoding complexity for all optimized irregular LDPC 

codes is linear because the expected gap, g, is actually of the order less than n , and the required 

amount of preprocessing is of order at most n
3/2

.  
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2.2 Decoding 

 Message passing [37] is an iterative algorithm commonly used in decoding LDPC codes. 

Each iteration of message passing consists of updating outgoing messages from both variable 

and check nodes. In one half of the iteration, each variable node, Vni, passes all its information to 

each of the connected check nodes, Cnj, excluding the information the receiving check node 

already possesses. Consider the sub-graph of the Tanner graph shown in Figure 2.2 

corresponding to the first column of H and is shown in Figure 2.5. An example of message 

passing between Vn1 to Cn3 is shown in Figure 2.5. The check node Cn3 receives information from 

the channel, y1, and the extrinsic information node Vn1 received from check nodes Cn1 in the 

previous half iteration. In the other half iteration, the information is passed from check node to 

variable nodes excluding the information the receiving variable node already possesses. Figure 

2.6 shows the sub-graph of the Tanner graph in Figure 2.2 corresponding to the first row of H.  

 

Figure 2.5: Subgraph of Tanner graph showing message passing from variable node to 

check node. 

 

 

Figure 2.6: Subgraph of Tanner graph showing message passing from check node to 

variable node. 

  Cn1 

  Vn1 

  Vn2 

  Vn3 

  Cn1 

 y1 

  Cn3 

  Vn1 
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An example for passing the information from Cn1 to Vn3 is shown in Figure 2.6. The 

variable node Vn3 receives the information from Cn1 which it received from variable nodes Vn1 

and Vn2 in the previous half iteration. After each iteration, the decoder checks if the estimated 

codeword satisfies Equation 2.1. If the decoder finds the correct codeword then the process is 

stopped. If not the process of decoding continues until the estimated codeword satisfies Equation 

2.1 or reaches the maximum number of decoding iterations. 

Using this message passing algorithm, LDPC codes can be efficiently decoded. This 

message passing algorithm is also known as sum-product algorithm. Since the direct 

implementation of the message passing algorithm will result in high hardware complexity due to 

a large number of multiplications, a logarithmic message passing algorithm is used to reduce 

complexity. The logarithmic message passing algorithm allows all of the multiplications to be 

converted into additions, making it more easily implemented in hardware. In fact, both message 

passing and logarithmic message passing decoding algorithms realize the same decoding rule. 

The summary of the logarithmic message passing algorithm is presented in the following 

subsection:  

2.2.1 Logarithmic Message Passing Algorithm 

Before presenting the summary of the logarithmic message passing algorithm, an 

overview of the notation used is presented below: 

 Rj : The set of column locations of the 1‟s in the j
th

 row of H. 

 Rj\i : The set of column locations of the 1‟s in the j
th

 row of H, excluding location i. 

 Ci : The set of row locations of the 1‟s in the i
th

 column of H. 

 Ci\j : The set of row locations of the 1‟s in the i
th

 column of H, excluding location j. 

 y: Received codeword corresponding to the transmitted codeword x. 

 ĉ: Estimated codeword. 

 Pi : Pr(ci = 1|yi). 

 b  {0,1}. 

 qij(b): probability that ci = b given the information from all neighboring check nodes, 

except check node at position j. 

 rji(b): probability that j
th

 check Equation being satisfied given ci = b and information from 

all variable nodes except from the variable node at location i.  
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 Qij(b): probability that ci = b given the information from all the check nodes. 

 L(ci) = log .
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The steps for the logarithmic message passing decoding algorithm are as follows: 

Step 1: The messages originating from variable nodes, L(qij), as shown in Figure 2.2 are 

initialized using 

                                                        
2

2
)()(



i

iij

y
cLqL  ,                                                         (2.8) 

where yi is the received code word and 
2
 is variance of the channel noise. 

Step 2: The messages originating from check nodes, L(rji), as shown in Figure 2.2 are computed 

from L(qij) 
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Step 3: .)()()(
\





jiCj

jiiij rLcLqL                                (2.11) 
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Step 5: for i, the codeword is estimated from L(Q) 
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c                    (2.13) 

Step 6: The decoding process is stopped 
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if  0ˆ THc          (2.14) 

or the number of decoding iterations = maximum number of decoding iterations 

 else 

   repeat starting from step 2. 

2.2.2 Minimum Sum Algorithm 

The minimum sum algorithm is also called as Min-Sum algorithm and is essentially the 

same as the logarithmic message passing algorithm. The Min-Sum algorithm follows the same 

exact steps as that of logarithmic message passing algorithm except for step 2 which is modified. 

The following function  
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is approximated by the simple expression given below 
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i.e., the minimum value of ij . This substitution is due to the fact that (z) is maximum when z 

is minimum and also zz ))(( . Therefore,  
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and the resulting step 2 becomes 
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                                (2.18) 

where ))(( ijij qLsign and |)(| ijij qL . 

Min-Sum algorithm simplifies the check node computation because there is no need to 

compute  of the variable node values. Using Min-Sum algorithm may reduce the chip area for 

the implementation when compared to logarithmic message passing algorithm because  which 

is typically implemented using look up table (LUT) in hardware is no longer required.  
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2.2.3 Modified Minimum Sum Algorithm 

The modified minimum sum algorithm is similar to the minimum sum algorithm expect 

for a small modification in step 2 of the Min-Sum algorithm procedure. The bit error rate 

performance of the decoder is degraded due to the approximation shown in Equation 2.17. To 

improve the decoding performance, the step 2 of the Min-Sum algorithm is again modified as 

shown below and is called as modified minimum sum algorithm.  

Step 2: 
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         (2.19) 

where ))(( ijij qLsign , |)(| ijij qL  and k is a constant value. 

2.2.4 Other Decoding Algorithms 

Bit flipping and layered decoding algorithms are some of the other LDPC decoding 

algorithms. The BER performance of these algorithms is inferior to the performance of the 

message passing algorithm. A brief summary of these algorithms are presented below.  

Gallager‟s bit flipping algorithm is used for decoding binary symmetric channel [20]. As 

shown in Figure 2.2, there are two sets of nodes: check and variable nodes. For a received 

codeword, parity check is performed on each check node. For each variable node, the check 

nodes that are connected to this variable node and failed the parity check constraints are counted. 

The codeword bit associated with the variable node that has the largest number of failed parity 

checks is flipped. This process is repeated until all the parity checks are satisfied or a stopping 

condition is reached. 

The layered decoding algorithm is a variation of the standard message passing algorithm 

[57]. The parity-check matrix consists of shifted identity sub matrices that are concatenated in 

horizontal layers. The message passing algorithm is performed on each horizontal layer and the 

updated a posterior probability messages are passed between the horizontal layers [46]. Because 

of this optimized message scheduling the algorithm convergence rate is doubled [58]. 

 



 19 

CHAPTER 3 - Design Tools for FPGA and ASIC Implementation 

In this chapter, the design tools used to accomplish this work are introduced. Quartus, 

Cadence and Matlab are used for the implementation of both the encoder and decoder of LDPC 

codes. The encoder and decoder of LDPC codes are implemented on field-programmable gate 

arrays (FPGA) using Altera Quartus. A flexible multi-code rate and multi-code length encoder 

for structured LDPC codes is also implemented on an application specific integrated chip (ASIC) 

using Cadence. Matlab is used to analyze, simulate, preprocess and generate Verilog hardware 

description language (HDL) modules for all of the encoder and decoder designs. 

3.1 Altera Quartus 

A FPGA is a reprogrammable integrated circuit which is usually designed using a HDL 

or schematic entry. For larger designs, using a HDL is easy and more appropriate. A FPGA can 

be typically used to implement any logical function that an ASIC could perform. The ability to 

update/modify the functionality of the design is a huge advantage in a FPGA when compared to 

an ASIC. FPGAs contain programmable logic components called logic array blocks (LABs). In 

the Altera Stratix FPGA device the logic array consists of LABs, with 10 logic elements (LEs) in 

each LAB. An LE is the smallest unit of logic providing efficient implementation of user logic 

functions. The LE provides advanced features with efficient logic utilization. Each LE contains a 

four-input look up table (LUT), which is the function generator that can implement any function 

of four variables as shown in Figure 3.1 [59].  

 

Figure 3.1: Logic element architecture on the Stratix FPGA [59]. 
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The flow for the implementation of a design in Quartus II is shown in Figure 3.2 [60]. 

The desired circuit is specified by using a HDL such as Verilog HDL or VHDL. In this work, 

Verilog HDL was used exclusively. This design is synthesized into a circuit that consists of logic 

elements and memory blocks provided in the FPGA. The synthesized circuit is tested to verify its 

functional correctness. When checking functional correctness, simulation timing issues are not 

considered. The fitter tool determines the best placement of the synthesized LEs into the targeted 

FPGA device. It also chooses routing wires in the chip to make the required connections between 

the specific LEs being utilized. 

 

Figure 3.2: Design flow in Quartus. 
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circuit. The fitted circuit is tested to verify both its functional correctness and timing. The 

designed circuit is implemented in a physical FPGA chip by programming the configuration 

switches that configure the LEs and establish the required wiring connections. The compilation, 

simulation and power analysis on a design in Quartus are presented in the following sections. 

3.1.1 Compilation 

The Verilog HDL code is processed by several Quartus II tools that analyze the code, 

synthesize the circuit, and generate an implementation for the target FPGA chip. These tools are 

controlled by the application program called the compiler. Once the design is created in Verilog 

HDL, it needs to be compiled in Quartus. Compilation converts the design into a bitstream that 

can be downloaded into FPGA. The most important output of compilation is a SRAM Object 

File (.sof), which is used to program the device. The compilation also generates other report files 

such as timing, area, etc., that provide information about the code as it compiles. Figure 3.3 is an 

example of the compilation report. 

 

Figure 3.3: Compilation report. 

3.1.2 Simulations 

A designed circuit can be simulated in two ways: functional and timing simulations [61]. 

Functional simulations are used to verify the functional correctness of the designed circuit and it 
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is assumed that the logic elements and interconnection wires have zero propagation delays of the 

signals. This takes much less time, because the simulation can be performed simply by using the 

logic expressions that define the circuit. In timing simulations, all propagation delays are taken 

into account and thus exhibiting the actual behavior of the design when implemented on the 

FPGA device. In this work timing simulations are performed on the encoder/decoder designs 

compiled in Quartus. The encoded and decoded codeword obtained from timing simulations are 

compared with the codeword obtained using Matlab for verification. Figure 3.4 shows an 

example of timing simulations. 

 

Figure 3.4: Timing simulations. 

3.1.3 Power Analysis 

Power plays an important design consideration as the designs grow larger and process 

technology continues to shrink [62]. Power consumed by the design compiled in Quartus can be 

analyzed using the PowerPlay power analysis tool. There are two PowerPlay power analysis 

tools: PowerPlay early estimator spreadsheet and PowerPlay power analyzer. PowerPlay early 

estimator spreadsheet can be used during early design stages and gives a rough estimate of the 

power consumption. The PowerPlay power analyzer tool offers improved accuracy over the 

PowerPlay estimator spreadsheet since it examines actual device resource usage, place and route 

information and information on activity rates of all signals in response to a specific input 

stimulus. Its accuracy is further improved by adding realistic timing simulation vectors.  
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PowerPlay power analyzer tool provides both static and dynamic power consumption 

estimates. Static power is defined as the power consumed regardless of signal/data activity. 

Dynamic power is the additional power consumed due to data switching activity or toggling. The 

design flow of PowerPlay power analyzer is shown in Figure 3.5. The PowerPlay power analyzer 

requires the design to be synthesized and fitted to the target device. The PowerPlay power 

analyzer directly reads the waveforms generated by a design simulation. The static probability 

and toggle rate for each signal is calculated from the simulation waveform and is stored in a 

signal activity file (.saf). The summary of the PowerPlay power analyzer compilation report is as 

shown in Figure 3.6, which consists of the estimated total thermal power dissipation of the 

design. The total thermal power includes dynamic, static and I/O thermal power dissipation. The 

compilation report also includes a confidence metric that reflects the overall quality of the data 

sources for the signal activities. 

 

Figure 3.5: PowerPlay power analyzer design flow. 

3.2 Cadence 

An application specific integrated circuit is an integrated circuit customized for a 

particular use. In this work, Cadence is used for an ASIC design because it is widely used in the 

industry. Using Cadence, an ASIC can be designed from textual description Verilog HDL to 

layout without using any additional softwares. An ASIC design is performed using the standard 

cell library provided by Virginia Polytechnic Institute and State University [63]. The advantage 
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of using a standard cell library is to save time. Using a predesigned and pretested standard cell 

library also reduces the design implementation risk. In this work, an ASIC implementation of the 

structured encoder is performed using Cadence. The design flow of an ASIC implementation in 

Cadence is as shown in Figure 3.7. The Verilog HDL design is first synthesized in Cadence RTL 

Compiler. The synthesized design then goes through place and route using Cadence Encounter. 

The final layout of the design from Cadence Encounter can be imported into Cadence ICFB and 

where design rule checks are performed. 

 

Figure 3.6: PowerPlay power analyzer summary. 

 

Figure 3.7: ASIC design flow. 
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3.2.1 RTL Compiler 

RTL Compiler is used to synthesize design in Verilog HDL. The RTL Compiler design 

flow is shown in Figure 3.8 [64, 65]. After invoking RTL Compiler, the Verilog HDL files are 

first read and checked for syntax and synthesis policy checks. Then the design is built using 

generic components. The library search path and library that will be used for the design synthesis 

needs to be specified. The design is read and creates HDL independent objects in HDL-

intermediate format and stores it in a design library. During elaboration the top-level design is 

bound with all the designs and packages. 

 

Figure 3.8: Design flow in RTL Compiler. 
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been fully mapped to gate-level. The generated mapped design can be used by Cadence 

Encounter to place and route the design. Finally the timing, power and area of the design can be 

analyzed using the tools in RTL Compiler. 

3.2.2 Encounter 

After the design is synthesized in RTL Compiler, Encounter is used to perform automatic 

placement and routing of the synthesized design. A place and route (PNR) tool takes a gate-level 

netlist as the input and determines how each gate should be placed on the chip. The design flow 

in Encounter is as shown in Figure 3.9 [66]. Encounter is invoked and the design synthesized in 

RTL Compiler is imported. A Floorplan is performed on the imported design. Die size and core 

margins of the chip are specified. The die size is chosen such that the router would have enough 

space to be able to place all the metal interconnects and any buffers needed during optimization. 

 

Figure 3.9: Design flow in Encounter. 
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The next step is power planning. Power rings and stripes are configured. The width of the 

power lines are determined by the size of the chip. Wider lines are used for bigger designs. 

Sroute is performed to do the final power routing. Standard cells are placed in the design. The 

design is routed using NanoRoute. Filler cells are added to allow the wells to be at the same 

potential.  Connectivity and geometry of the design layout are verified. The design should pass 

these tests. The foundry needs the design in GDS format. Next, the design is exported to a GDS 

file during which a new Verilog netlist based on placement and routed design is generated. 

3.3 Matlab 

Various design and performance evaluation aspects of LDPC encoding and decoding 

algorithms were performed using Matlab. In the encoding algorithm, the codeword generated 

from Matlab is used to validate the codeword obtained from the encoder implemented on FPGA. 

Encoder for randomly generated LDPC codes is developed using Richardson‟s greedy algorithm 

[22]. According to greedy algorithm, the parity-check matrix should be transformed into lower 

triangular form for the encoding process. This step is called as preprocessing of parity-check 

matrix. The encoding process is further simplified and the details are presented in chapter 4. Two 

matrices P1 and P2 are computed for the encoding process. The preprocessing of parity-check 

matrix and the computation of matrices P1 and P2 are performed in Matlab. 

The decoder performance is based on several decoder parameters such as decoding 

algorithm, quantization of the log-likelihood ratios, and maximum number of decoding 

iterations. The decoder simulations are performed in Matlab using different decoding algorithms. 

Based on the simulation results, the decoding algorithm that gives the best BER performance is 

chosen for decoder hardware implementation. Different quantizations of log-likelihood ratios 

and non-linear function  used in the decoding process are evaluated using Matlab.  Simulations 

are also performed in Matlab by varying the maximum number of decoding iterations for the 

decoding process. Based on these simulation results the quantization of the log-likelihood ratios 

and maximum number of decoding iterations for the decoding process are chosen. The details 

and the results of the simulations are presented in chapter 7.  

Matlab is also used to generate Verilog modules required for the implementation of 

encoder and decoder of the LDPC codes in hardware. The encoder and decoder of LDPC codes 

are designed to have flexibility in code length and code rate. In order to incorporate this 
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flexibility, the Verilog HDL module parameters have to accommodate the updates and/or 

changes. Therefore, Matlab script to generate a generic Verilog module was written. Based on 

the desired LDPC codes, the code length and code rate are selected and the corresponding 

Verilog HDL modules can then be generated by running the Matlab script. The Verilog HDL 

files are written using the fprintf (write data to text file) command in Matlab. Following is an 

example script to generate a Verilog HDL module which implements a 1/2 rate convolutional 

encoder with variable constraint length. 

 

Example: Matlab file to generate Verilog HDL module to design a 1/2 rate convolutional 

encoder with variable constraint length. 

clear all; clc; 

% Example: 1/2 rate convolutional encoder with constraint length 7 

% Parameters needs to be changed based on desired convolutional encoder 

N = 7;  

g0 = [6 4 3 1 0];  

g1 = [6 5 4 3 0]; 

% open the file with write permission 

fid1 = fopen('convEncoder.v','w'); 

% write the required data to the file  

fprintf(fid1,'module convEncoder(n, k, clk, reset);\n'); 

fprintf(fid1,'parameter N = %d;\n',N); 

fprintf(fid1,'input k, clk, reset;\n'); 

fprintf(fid1,'output wire [1:0] n;\n'); 

fprintf(fid1,'reg [N-1:0] p0;\n'); 

fprintf(fid1,'always@(negedge reset or posedge clk)\n'); 

fprintf(fid1,'if (~reset)\n'); 

fprintf(fid1,'\tp0 = {(N){1''b0}};\n'); 

fprintf(fid1,'else\n'); 

fprintf(fid1,'\tp0 = {k, p0[%d-1:1]};\n\n',N); 

fprintf(fid1,'assign n[0] = '); 

for i = 1:length(g0)-1 
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fprintf(fid1,'p0[%d]^',g0(i)); 

end 

fprintf(fid1,'p0[%d];\n',g0(length(g0))); 

fprintf(fid1,'assign n[1] = '); 

for i = 1:length(g1)-1 

fprintf(fid1,'p0[%d]^',g1(i)); 

end 

fprintf(fid1,'p0[%d];\n\n',g1(length(g1))); 

fprintf(fid1,'endmodule\n'); 

% close the file when finished 

fclose(fid1);  
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CHAPTER 4 - Encoder Design for Randomly Generated Low-

Density Parity-Check Codes 

In general, encoder implementations of LDPC codes are optimized for area due to their 

high complexity. Such designs usually have relatively low data rate. In this chapter, two new 

encoder designs are presented that achieve much higher data rates while requiring more area for 

implementation. 

In this chapter, two encoder design methodologies and their implementation results are 

presented. The key aspects of the design are summarized as follows: 

 The efficient algorithm presented in 2.1.2 is used to develop a hardware implementation 

of faster encoders for LDPC codes. The specific efficient algorithm is the greedy 

algorithm A presented by Richardson and Urbanke in [22]. 

 The encoder designs are independent of code length, code rate and structure of the parity-

check matrix.  Hence these designs can be used for both structured and any randomly 

generated regular and irregular parity-check matrices.  

 The encoder uses a direct implementation which sacrifices area for increased speed, but 

this is necessary as applications require more bandwidth. 

 The design is implemented using Mackay‟s regular and irregular LDPC codes [56]. For 

this purpose, 1/2 rate regular LDPC codes with code lengths of 256, 512 and 1024 and 

1/2 rate irregular LDPC codes with code lengths of 504 and 1008 are considered. 

 One of the designs achieves encoding rates of up to 844 Mbps. Both of the designs 

presented can fit on FPGAs currently available.  

4.1 Encoder Design 

An overview of the LDPC encoding process is shown in Figure 4.1. The encoding 

process consists of two steps. In the first step, the parity-check matrix is transformed to 

approximate lower triangular form, Hpre. For any given parity-check matrix, this step needs to be 

performed only once and hence this step can be performed offline in software such as Matlab. In 

the second step, hardware encoding is performed. Since the codeword is obtained using the 

modified parity-check matrix, it needs to be rearranged to obtain the final codeword with regard 

to the original parity-check matrix.  
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Figure 4.1: Overview of the LDPC encoder. 

4.1.1 Preprocessing 

In preprocessing, the parity-check matrix is first transformed to approximate lower 

triangular form, Hpre. This processing requires the following three steps: 

1. Any variable node (i.e., any column in H) which is connected to a degree-one (i.e., 

rows of H having one non-zero element) check node (i.e., row in H) is declared to be known. For 

any given H, each column in H is declared independently to be known with probability (1-) or, 

otherwise, to be an unknown (erasure). The (1-)l known columns are then reordered to form the 

leading columns of the matrix H as shown in Figure 4.2 (a) where l is the number of columns. 

2. Assuming that the residual matrix, H
~

, has rows of degree-one, the columns connected 

to degree-one rows are then identified. Let these columns be c1, … ck and let r1, … rk be the 

degree-one rows such that ci is connected to ri. These new known columns and their associated 

rows are ordered along a diagonal as shown in Figure 4.2 (b). 

3. Furthermore, step 2 is repeated until all the degree-one rows are exhausted. If this 

procedure does not stop prematurely then the row gap is (1 – )l and the column gap is (1 – r – 

)l as shown in Figure 4.2 (c). If the procedure terminates before all columns are exhausted then 

the remaining columns are reordered to the left. Let the remaining columns be l then the column 

gap is (1 –  + )l and the row gap is (1 – r –  + )l. For a given parity-check matrix, H, this 

preprocessing needs to be performed only once. Hence this step is performed in Matlab. The 
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obtained Hpre is divided into sub-matrices as shown in Figure 4.2 (d). All these matrices are 

sparse and T is lower triangular with ones along the diagonal.  

 

(a) Parity-check matrix after the application of first step in greedy algorithm A. 

 

(b) Parity-check matrix after the application of second step in greedy algorithm A. 

 

(c) Parity-check matrix after the application of third step in greedy algorithm A. 

 

(d) The parity-check matrix in approximate lower triangular form, Hpre, and its division of 

submatrices. 

Figure 4.2: Application of greedy algorithm A on H. 
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Only the P1 and P2 matrices are required for encoding LDPC codes. For the computation of the 

P1 and P2 matrices, the inverse of  matrix, i.e., (-ET 
-1

B + D)
-1

 is used. Therefore the  matrix 

has to be non-singular. If  is singular, then the columns of B are swapped with the columns in A 

until  matrix is non-singular. This complete process, transforming H to approximate lower 

triangular form, Hpre, and obtaining matrices P1 and P2, is performed in Matlab. While a smaller 

gap, g, is suggested as outlined in [22], here it is only necessary that g > m/2. This is because 

both P1 and P2 work independently and concurrently, so making one considerably more compact 

than the other does not lead to an encoder which is faster.  

 Once the P1 and P2 matrices are defined in Matlab, the next step is to find the best way to 

store these matrices on the chip. For doing this, matrices P1 and P2 are computed using Matlab 

for both regular and irregular parity-check matrices of different sizes. The number of one‟s in 

each matrix is shown in Table 4.1.  

Table 4.1: Density (nunber of one's) of H, P1 and P2 matrices. 

H No. of one‟s in H No. of one‟s in P1 No. of one‟s in P2 

Irregular parity-check matrix 

252 × 504 2014 15878 15839 

504 × 1008 4033 63359 63493 

Regular parity-check matrix 

256 ×512 1536 14638 14456 

512 × 1024 3072 52279 56871 

 

From Table 4.1, it can be observed that the matrices P1 and P2 are not sparse. For example, the 

distribution of number of one‟s in the rows of a P2 matrix for an irregular parity-check matrix of 

size 504 × 1008 is shown in Figure 4.3. This indicates that approximately 220-290 one‟s are in 
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every row vector of P2. While a sparse representation for the P1 and P2 matrices can be utilized, 

it is more efficient to use a dense representation of the matrices due to the dense properties of the 

matrices themselves. 

 

Figure 4.3: Distribution of number of one's in each row of P2 matrix for an irregular H of 

size 504 × 1008. 

4.1.2 Hardware Implementation 

The Hardware implementation of the encoder, as shown in Figure 4.4 and Equations 4.1 

and 4.2, is to multiply the information bits, s, with matrices P1 and P2 to obtain parity bits p1 and 

p2 respectively. The multiplication and addition in binary system can be performed with an AND 

gate and an XOR gate respectively. The length of information bits is n-m. The encoder assumes 

that the information bits are available and the latency involved in reading the information bits is 

not considered. Therefore, a serial input interface is used to read the information bits and it 

requires n-m clock cycles. The information bits are read using a faster clock Clks and the 

encoding is done using a slower clock, Clke.  

Matrices P1 and P2 are stored on logic elements in arrays so that the data can be retrieved 

simultaneously for all rows. This will help to reduce the latency involved if the matrices are 

stored in the onboard RAM. To maximize the parallelism, matrix-vector multiplication is 

performed by a multiple vector-vector multiplications (inner product) in parallel. Each vector-
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vector multiplication can be performed in two ways. The first method, multi clocked inner 

product (MCIP), requires m clocks to compute one inner product while the second method, 

single clocked inner product (SCIP), computes the inner product in a single clock.  

 

Figure 4.4: Complete system of the generic encoder. 

4.1.2.1 Multi Clocked Inner Product 

In this method the inner product of vectors In1 and In2, each of length m, is performed 

one bit at a time as illustrated in Figure 4.5. Bit-wise multiplication is performed on each clock 

cycle with a single AND gate, and a running single-bit sum, Out, of the products is achieved 

using a single XOR gate. If vectors In1 and In2 are stored in m-bit shift registers, then this method 

requires m clock periods to calculate their inner product. Multiple instantiations of this inner 

product module may be implemented in parallel on all the arrays of matrices P1 and P2 to obtain 

the parity bits p1 and p2. Therefore, the coded data rate is determined by the minimum period of 

the shift register clock, Clke. 

 

 

Figure 4.5: Circuit for multi clocked inner product (MCIP). 

In2 m-1 0 

Out 

D 

Q 

Clke 
MUX 

MUX 

In1 m-1 0 

s 

Clke 

Clks 

n - m 

n 
Generic 

encoder 
c 



 36 

4.1.2.2 Single Clock Inner Product 

This method is similar to the multi clocked inner product except that the inner product is 

done in a single clock cycle. The illustration of this method is shown in Figure 4.6. In a single 

clock, as shown in Figure 4.6, all pairs of bits from vectors In1 and In2 are ANDed and the output 

of each AND gate is XORed to obtain the inner product, Out. This procedure may also be 

performed in parallel on all arrays of matrices P1 and P2. The coded data rate of this method is 

determined by the maximum propagation delay from any bit in In1 and In2 to the output, Out. 

This delay will set the minimum period of the encoder clock, Clke. 

 

 

Figure 4.6: Circuit for single clocked inner product (SCIP). 

 

After obtaining the parity bits p1 and p2 using either of the above methods, the 
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FPGA and to read each resulting codeword from the encoder. For verification, the hardware 
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encoder output is then compared to the corresponding codeword generated by Matlab. A 

comparison of the performance of both design strategies was achieved by implementing each 

version for different types and sizes of rate 1/2 parity-check matrices. As discussed previously, 

preprocessing was performed on each H using Matlab. This is not a major concern because this 

step is performed only once for a given parity-check matrix. The actual hardware encoder results 

are shown in Tables 4.2 and 4.3. The maximum clock speed shown is that of the encoder clock, 

Clke. The coded data rate and latency calculations are based on the internal encoder design and 

not on any special I/O limitations.  

Table 4.2: Synthesis results of encoder implementation using MCIP on Stratix 

EP1S80F1508C5. 

H 

Encoder implementation using MCIP 

LE‟s CPC 
Clke 

(MHz) 

Coded data rate 

(Mbps) 

Latency 

(µs) 

Reg 128 × 256 2014 129 76.65 152.12 1.683 

Reg 256 × 512 6580 257 60.73 120.98 4.232 

Reg 512 × 1024 22978 513 46.02 91.86 11.147 

Irreg 252 × 504 7485 253 69.73 138.9 3.628 

Irreg 504 × 1008 28459 505 51.57 102.94 9.793 

 

Table 4.3: Synthesis results of encoder implementation using SCIP on Startix 

EP1S80F1508C5. 

H 

Encoder implementation using SCIP 

LE‟s CPC 
Clke 

(MHz) 

Coded data rate 

(Gbps) 

Latency 

(ns) 

Reg 128 × 256 1143 2 319.49 40.9 6.26 

Reg 256 × 512 3508 2 262.4 67.18 7.62 

Reg 512 × 1024 12664 2 318.47 163.06 6.28 

Irreg 252 × 504 5450 2 238.55 60.12 8.38 

Irreg 504 × 1008 22249 2 316.56 159.54 6.32 
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The encoder implementation using both methods MCIP and SCIP assumes that all input 

data bits are available for encoding, so any serialization delay factor is not included in the results 

shown in Tables 4.2 and 4.3. The important observation here is that using a SCIP encoder has a 

huge advantage in terms of data rate and latency over the MCIP encoder. This is somewhat 

expected for the defined architecture of each system. Another interesting observation is the 

difference in area for each design. One would normally expect the MCIP to require fewer LEs, 

but the converse is actually true. This is due to the implementation of huge multiplexer‟s 

required by MCIP in the FPGA. May be SCIP encoder required fewer LEs than MCIP encoder 

due to the statically defined P1 and P2 matrices. It is observed that increasing the code length 

decreases the clock speed. Also an irregular LDPC code takes considerably more area than a 

regular LDPC code. Again this can be attributed to a difference in potential optimization for the 

two different codes as they are defined in P1 and P2.  

If one wants to consider both encoders under a serial input stream then an input shift-

register needs to be added to both the MCIP and SCIP encoders. The latency in reading the 

information bits is m/Clks. Let the encoding clock frequency be Clke, which is equal to the 

maximum clock frequency of the synthesized designs shown in Tables 4.2 and 4.3. The latency 

of the complete system, shown in Figure 4.4, is the maximum value of [m/Clks, CPC/Clke], 

which becomes CPC/Clke for MCIP encoder and m/Clks for SCIP encoder. Therefore the coded 

data rate is equal to m×Clke /(CPC×code rate) for MCIP encoder and Clks/(code rate) for SCIP 

encoder. The synthesis results of the complete generic encoder system using MCIP and SCIP are 

shown in Table 4.4. It can be observed from Tables 4.2 and 4.4 that the MCIP encoder coded 

data rate is not affected by I/O serialization. However, coded data rate of the complete encoder 

system using SCIP becomes limited by the speed of the shift register, which in this case is 

422.12 MHz.  

The coded data rate decreases with the increase in the size of the parity-check matrix for 

the MCIP encoder whereas it is independent of the size of the parity-check matrix for the SCIP 

encoder. This encoding process is not restricted by the properties of the original H matrix, and it 

is also completely flexible with respect to code length and code rate. Hence it can encode any 

LDPC codes. Although the implementation is based on H matrices that are binary, it can be 

extended to matrices that belong to higher order fields. All of the designs presented can fit on 

FPGAs currently available. 
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Table 4.4: Synthesis results of complete encoder system using MCIP and SCIP 

implemented on Stratix EP1S80F1508C5. 

H 

Complete system of 

MCIP encoder 

Complete system of 

SCIP encoder 

Latency 

(µs) 

Coded data rate 

(Mbps) 

Latency 

(µs) 

Coded data rate 

(Mbps) 

Regular 128 × 256 1.683 152.12 0.303 844.24 

Regular 256 × 512 4.232 120.98 0.606 844.24 

Regular 512 × 1024 11.147 91.86 1.213 844.24 

Irregular 252 × 504 3.628 138.9 0.597 844.24 

Irregular 504 × 1008 9.793 102.94 1.194 844.24 

 

Both of the implementations presented here provide a significant increase in coded data 

rate compared to the design presented in [29]. Lee in [29] implemented an encoder on a Xilinx 

Virtex-II XC2V4000-6 using Richardson and Urbanke‟s encoding algorithm. Table 4.5 shows 

the implementation results for various encoders presented in [29] with code lengths ranging from 

500 to 8000 bits for rate 1/2. In order to compare the results of the encoder presented in [29] to 

our design [67], the slices (smallest unit of logic in Xilinx) required by the design in [29] need to 

be converted to logic elements. Xilinx Virtex-II XC2V4000 FPGA has 23040 slices [68] and its 

equivalent Stratix logic elements are 57600 [69]. Therefore, 1 slice of Xilinx is approximately 

equal to 2.5 logic elements. The number of approximate logic elements required by the encoder 

presented in [29] is also included in Table 4.5. 

Table 4.5: Synthesis results of LDPC encoder designed by Lee [29]. 

 

H 

 

Coded data rate  

(Mbps) 
Slices 

Equivalent 

LEs 

250 × 500 50 562 1405 

500 × 1000 48 682 1705 

1000 × 2000 45 870 2175 

2000 × 4000 40 1340 3350 

4000 × 8000 34 2148 5370 
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In order to maximize the coded data rate, the design presented in [29] uses multiple 

instances of the encoder, which is not required in our design [67]. In [29], for code length of 

2000 and code rate 1/2, it is shown that by using 16 encoder instances instead of one encoder 

instance the coded data rate is increased from 45 Mbps to 410 Mbps which requires 16906 slices. 

In this case, the equivalent logic elements are 42265. To get a higher data rate, the design 

presented in [29] also requires large area for its implementation. 

From Tables 4.4 and 4.5, it can be observed that for code lengths of 500 and 1000, the 

coded data rate of our designs is greater than the design presented in [29]. The coded data rate of 

the encoder implemented using MCIP method is greater than or equal to twice the coded data 

rate of the design in [29]. The encoder implemented using the SCIP method has a very high 

coded data rate approximately 17 times the coded data rate of the design presented in [29]. 

Although the required area for our design is significantly larger, its use in high-speed 

applications would not require the parallelization that other designs propose.  
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CHAPTER 5 - Encoder Design for Structured Low-Density Parity-

Check Codes 

In the previous chapter, a LDPC encoder for randomly generated LDPC codes was 

presented. Due to the randomness in the LDPC codes, the encoder implementation requires large 

area. The use of structured LDPC codes decreases the encoding complexity and also provides 

design flexibility.  

In this chapter, the encoder design and its hardware implementation for structured LDPC 

codes are described. 

 An encoder architecture is presented that adheres to the structured LDPC codes defined 

in the IEEE 802.16e standard. The encoder supports codes with rates 1/2, 2/3, 3/4 and 5/6 

and code lengths ranging from 576-2304.  

 The coded data rate is equal to 844, 633, 562 and 506 Mbps for code rates 1/2, 2/3, 3/4 

and 5/6 respectively. For a given code rate, the coded data rate is constant for varying 

code lengths. 

 The design methodology is flexible in terms of both the code rate and code length. Hence 

the design can also be used for similar structured LDPC codes defined in other standards. 

5.1 Structured LDPC Codes 

The parity-check matrices defined in the IEEE 802.16e standard are used for the encoder 

implementation. Standard IEEE 802.16e defines LDPC codes as a set of one or more 

fundamental LDPC codes. Each of the fundamental codes support code lengths from 576 to 2304 

with code rates of 1/2, 2/3 A, 2/3 B, 3/4 A, 3/4 B and 5/6. The parity-check matrix, H, is of size 

m × n, where m is the number of parity-check bits in the code and n is the length of the code. The 

parity-check matrix H is expanded from a base parity-check matrix, Hb. The size of Hb is mb × nb 

where mb = m/z, nb = n/z = 24 and z is an integer greater than zero. The value of mb varies with 

code rate of the LDPC codes. Its value is equal to 12, 8, 6 and 4 for code rates of 1/2, 2/3, 3/4 

and 5/6. A parity-check matrix is obtained by replacing each -1 in Hb with a z × z zero matrix, 

each 0 with a z × z identity matrix, and any element greater than zero with a z × z permutation 

matrix. The permutation matrix is an identity matrix that has been circularly right shifted by the 

associated value specified in Hb.  
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Hb and can be partitioned into two matrices, Hb1 and Hb2. Matrix Hb1 has size mb × kb and 

corresponds to the systematic bits with kb = nb − mb. Matrix Hb2 has size mb × mb and 

corresponds to the parity check bits.  

][ 21 bbb HHH                                                       (5.1) 

Hb2 can further be partitioned into Hb2a and Hb2b as shown Equation 5.2. Column vector Hb2a has 

odd weight, and it has 3 elements whose value is greater than or equal to zero. All other values in 

the vector are equal to -1. The top and bottom elements of Hb2a are assigned equal shift sizes 

(hb(0) = hb(mb-1)), and the third element, is located anywhere in the middle of the vector. Matrix 

Hb2b has a dual diagonal structure with each matrix element at row i, column j equal to 0 for i = j 

and i = j + 1 and -1 elsewhere.  
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An example of the Hb1 and Hb2 matrices for code rate 2/3 B give values of hb and are 

shown in Equations 5.3 and 5.4 respectively. In this case, mb is 8, nb is 24 and kb = nb – mb = 16. 

Unlike the efficient encoding method where the parity-check matrix is transformed into lower 

triangular form, here the base parity-check matrix need not be transformed into lower triangular 

form because of the dual diagonal structure of Hb2.  
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5.2 Design Methodology 

Using structured LDPC codes considerably simplifies the encoder and makes the design 

straightforward compared to other encoders. A modified version of the generic encoding method 

described in 2.1.1 is used for hardware implementation of structured LDPC codes. Encoding of 

LDPC codes also uses the property TT

b xH 0 , where x and Hb is the base parity-check matrix. 

Codeword x may be split into the information bits, S, and parity bits, p, i.e., 









p

S
xT

. The size 

of S is kb × 1 and the size of p is mb × 1, so 

TT

b xH 0
 

becomes                                          .0][ 21

T
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p
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         (5.5) 

Expanding and solving for p one finds  

021  pHSH bb                                                        (5.6)                                                                             

.1

1

2 SHHp bb




                                                        (5.7)
 

Matrix Hb2
−1 

is no longer sparse when compared to Hb2. Therefore, direct implementation of 

Equation 5.7 has high encoding complexity. However, the parity bits are easily solved by 

exploiting the dual diagonal structure of the Hb2 matrix, which is explained in subsection 5.3.2. 

Let the product of matrices Hb1 and S be denoted by V. Therefore, for modulo 2 operations, 

Equation 5.6 can also be written as  

VSHpH bb  12 .                                                     (5.8) 

The parity bits, p are obtained by solving  

.2 VpH b                                                        (5.9) 
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5.3 Hardware Implementation 

The encoder implementation is performed in two steps. First step, the product of matrices 

Hb1 and information bits, S, is computed and is denoted by V. In the second step, the parity bits, 

p, are computed by solving Equation 5.9. As will be explained in section 5.3, computation of V 

and p each require a time period of t. Therefore the encoding process is done in a period of 2t as 

shown in Figure 5.1. To reduce the time period required for the encoding process to half of its 

time period, the two steps required for the computation of V and p can be performed in a pipeline 

fashion as shown in Figure 5.2. First, V is computed for the first set of information bits. Then the 

parity bits, p, are computed. During the computation of p for the first set of information bits, V is 

computed for the second set of information bits simultaneously. This pipeline implementation of 

the encoder increases the encoding data rate by decreasing the time required for the encoding 

process. 

 

Figure 5.1: Encoding process. 

 

Figure 5.2: Overview of encoding process. 

5.3.1 Computation of V 

The first step in the encoder implementation is the computation of V, the product of 

matrix Hb1 and vector S. This can be obtained by vector-vector multiplication of each row in Hb1 

with the column vector S. To maximize the efficiency, vector-vector multiplication is performed 

in parallel.  

t t 
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5.3.1.1 Vector-Vector Multiplication 

The matrix Hb1 is a sparse matrix with each element representing a zero matrix, identity 

matrix, or permutation matrix of size z × z. The inner product, vi, an element of the vector V, is 

obtained by multiplying the ith row in Hb1 with S as shown 
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The product of hb1(i,j), an element in Hb1, with sj, a vector in S, is denoted by ep(i,j). It is defined as 

shown in Equation 5.12, where sj(hb) is the circular right shifted version of the vector sj and the 

circular right shift value is defined by hb1(i,j). An additional clock cycle is required to add all the 

elements of ep to obtain v. In modulo 2, v is obtained by performing an XOR operation on all the 

elements of ep. 

5.3.1.2 Computation of ep 

Vector ep is defined as the product of the z × z matrix hb1 and a z × 1 vector s as shown in 

Equation 5.11. Each sj(hb) is obtained by circular right shifting the vector sj by a particular shift 

value, hb, defined by hb(i,j) . If the value of hb is greater than z/2, then a circular right shift is 

performed on sj and the number of shifts required to obtain the corresponding ep(i,j) is equal to hb 

− z/2. If the value of hb is less than z/2, then a circular left shift is performed on sj and the 

number of shifts required to obtain corresponding ep(i,j) is equal to hb. If a shift is performed on 

each clock cycle, then the computation of ep requires z/2 clock cycles.  
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5.3.2 Computation of Parity Bits 

The second step in the encoding process includes the computation of parity bits. Equation 

5.9 can be rewritten as shown in Equation 5.13. Solving, we get 010)0( vpphb  , 121 vpp  , 

…., 
jjjb vpppjh  10)( , …, 

110)1(  
bb mmbb vppmh . Adding all of these equations 

results in 
1100 

bmvvvp  . p0 can be computed in a single clock cycle by XORing all the 

elements of v. Once p0 is obtained, the remaining parity bits can be computed by using the 

following expressions: 001 )0( phvp b , 112 pvp   etc., where 0)0( phb  is now the shifted 

version of p0 whose shift value is defined by )0(bh . The 0)0( phb  is computed using the method 

described in above subsection 5.3.1.2. This procedure would require z/2 clock cycles. Once 0p  

and 
0)0,0( pc  are obtained, they can be used to compute the values of the remaining parity bits. 

This step can be performed in a single clock period. 
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5.4 Results 

Verilog modules are again generated using a Matlab script as explained in section 3.3. A 

hardware implementation was performed on an Altera Stratix EP1S80F1508C5 FPGA using 

Quartus II for synthesis. The synthesis results for different code lengths and code rates are shown 

in Table 5.1. In Table 5.1, variable z, represents the size of the sub-matrix in the base matrix, Hb, 

and is equal to n/24. Column LE denotes the number of logic elements required for the 

implementation of the encoder on the FPGA, while CPC represents the number of clock cycles 

required per codeword for encoding. CPC is equal to the maximum number of clock cycles 

required for computation of V and p. The computation of V requires z/2 + 3 clock cycles in which 

z/2 clock cycles are required to compute ep, and three clock cycles are required for loading and 

processing the data and computing V. Computation of p requires z/2 + 3 clock cycles, in which 
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one clock cycle is used for computing p0, z/2 clock cycles are required to compute 0)0( phb , and 

the remaining two clock cycles are required for loading the data and computing the remaining 

parity bits. Hence this method requires z/2 + 3 clock cycles. Clke in Table 5.1 represents the 

encoder clock. From Table 5.1, it is observed that increasing the code length increases LEs and 

CPC. Synthesis results of LEs required for different code lengths and code rates is shown in 

Figure 5.3. The coded data rate is equal to m × Clke /(CPC × code rate).  

Table 5.1: Synthesis results of structured encoder using LDPC codes defined in 802.16e. 

n z 

Code rate 1/2 Code rate 2/3 

LE 
Clke 

(MHz) 

Coded 

data rate 

(Gbps) 

LE 
Clke 

(MHz) 

Coded 

data rate 

(Gbps) 

576 24 3391 192.23 7.38 4039 176.71 6.78 

960 40 5100 159.57 6.66 6056 169.2 7.07 

1440 60 7012 164.83 7.2 8080 158.25 6.9 

1920 80 8924 148.72 6.64 10408 153.73 6.87 

2304 96 10339 148.41 6.70 12008 141.02 6.38 

 

n CPC 

Code rate 3/4 Code rate 5/6 

LE 
Clke 

(MHz) 

Coded 

data rate 

(Gbps) 

LE 
Clke 

(MHz) 

Coded 

data rate 

(Gbps) 

576 15 4421 189.07 7.27 4295 193.23 7.54 

960 23 6593 170.88 7.13 6400 174.52 7.28 

1440 33 8749 165.73 7.23 8472 161.47 7.04 

1920 43 11063 152.18 6.8 10704 147.43 6.59 

2304 51 12727 152.65 6.89 12306 150.69 6.8 

 

For any code rate and code length the coded data rate varies from 6.3 to 7.5 Gbps. These 

calculations are based on the internal encoder design and not on any special I/O limitations. The 

encoder implementation assumes that all input data bits are available for encoding, so I/O 

serialization factors are not included in the results. In order to consider the encoder 

implementation under I/O serialization, a shift register needs to be added as shown in Figure 5.4. 
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The data rate thus becomes limited by the speed at which the shift register can run, Clks, which is 

422.12 MHz. 

 

Figure 5.3: Logic elements vs. code lengths for different code rates. 

 

Figure 5.4: Complete structured encoder system. 

The latency of the encoder considering I/O serialization is the maximum of [m/Clks, 

CPC/Clke] which is m/Clks. The coded data rate of the encoder considering I/O serialization is 

equal to Clks/(code rate). Thus, the coded data rate value is constant for different code lengths. 

The coded data rate is equal to 844, 633, 562 and 506 Mbps for code rates 1/2, 2/3, 3/4 and 5/6 

respectively. The design methodology of our proposed encoder accommodates different code 

lengths and code rates. The encoder design presented can easily fit on FPGA‟s and has a 

significant high information data rates. This value is significantly high when compared to the 

coded data rate of the encoders presented in [32] and [33].  
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In [32], an encoder is implemented on a reconfigurable instruction cell architecture which 

is an ultra low power, high performance, ANSI-C programmable embedded core. The encoder is 

implemented using Richardson and Urbanke‟s algorithm and LDPC codes defined in IEEE 

802.16e. The encoder data rate achieved without pipelining is in the range from 10 to 19 Mbps 

while with pipelining it is in the range from 26 to 47 Mbps. The encoder data rate can be 

increased to 78 Mbps by using multiple cores.  

In [33], an LDPC encoder is implemented based on Richardson and Urbanke‟s method 

using LDPC codes defined in IEEE 802.16e and IEEE 802.11n. Their method is based on a 

semi-parallel architecture using cyclic right shift registers and XORs. The information data rate, 

which is equal to the product of coded data rate and code rate, is computed for different code 

lengths and is shown in Table 5.2. The LEs required for the implementation of our proposed 

structured encoder [67] and the encoder in [33] is also shown in Table 5.2. The coded data rate of 

1/2 rate LDPC codes defined in IEEE 802.16e with I/O serialization of our proposed structured 

encoder compared with the encoder in [33] is shown in Table 5.3.  

 

Table 5.2: Comparison of information data rate without I/O serialization of our proposed 

structured encoder with the encoder presented by Kim [33]. 

Code length Encoder design 

Information 

data rate 

(Gbps) 

LE 

576 

[33] 1.55 1265 

Our proposed 

structured encoder [67] 
3.69 3391 

960 

[33] 1.41 2078 

Our proposed 

structured encoder [67] 
3.33 5100 

1440 

[33] 1.41 2835 

Our proposed 

structured encoder [67] 
3.6 7012 

1920 

[33] 1.26 3657 

Our proposed 

structured encoder [67] 
3.32 8924 

2304 

[33] 1.25 4305 

Our proposed 

structured encoder [67] 
3.35 10339 
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From Tables 4.5, 5.2 and 5.3, our proposed structured encoder has highest data rate when 

compared with the encoders presented in [29], [32] and [33] but requires more area when 

compared to encoders presented in [29] and [33]. With the increase in the length of the 

codeword, the coded data rate of our proposed design is constant and is equal to 844 Mbps for 

code rate 1/2 whereas the codeword data rate of encoder presented in [33] decreases as shown in 

Table 5.3. 

Table 5.3: Comparison of coded data rate with I/O serialization of our proposed structured 

encoder with the encoder presented by Kim [33]. 

Code length 
Our proposed structured encoder 

coded data rate (Mbps) 

Reference [33] 

coded data rate (Mbps) 

768 844 462 

1536 844 416 
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CHAPTER 6 - Flexible Multi-Code Rate and Multi-Code Length 

Encoder for Structured Low-Density Parity-Check Codes 

Design methodologies presented in chapters 4 and 5 can be used for different code rates 

and code lengths. However, the design has to be re-synthesized in order to change the code rate 

or code length of the LDPC codes. In this chapter, the design of a flexible encoder for structured 

LDPC codes is presented. The design methodology and the implementation results are provided. 

The key contributions of the flexible multi-code rate and multi-code length encoder for 

structured LDPC codes are presented below: 

 A single flexible encoder that accommodates multiple code lengths and code rates of 

structured LDPC codes defined in IEEE 802.16e standard is designed which does not 

require re-synthesis of the Verilog code in order to change the encoder parameters (code 

length and code rate).  

 The flexible encoder for structured LDPC codes is implemented on both an FPGA and 

ASIC. 

 The coded data rate of the synthesized encoder is 844, 633, 562 and 506 Mbps for code 

rates 1/2, 2/3, 3/4 and 5/6 respectively. For a given code rate, the coded data rate is 

constant for varying code lengths. 

 The same design methodology with minor modifications can be used for other LDPC 

codes with structure similar to those specified in IEEE 802.16. 

6.1 Design Methodology 

The encoder implementation is similar to that explained in chapter 5 except that the 

parity-check matrices for all different code rates have to be stored on chip in order to design a 

flexible encoder. In this method, a flexible encoder is developed using structured LDPC codes 

defined in the IEEE 802.16e standard. Depending on the desired code rate and code length the 

corresponding parity-check matrix is computed on chip from its base parity-check matrix and is 

stored on chip which is used for the encoding process. This design methodology accommodates 

the code rates 1/2, 2/3, 3/4 and 5/6 and code lengths ranging from 576-2304 bits.  

The encoder implementation is performed in four steps as shown in Figure 6.1. It is 

assumed that the user specifies the desired code rate and code length. In the first step, H is 
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computed from its corresponding Hb, and is stored on the chip temporarily for the encoding 

process until code length or code rate of the LDPC codes is changed. In the second step, the 

inner product, ep, of the elements of Hb1 and S are computed. In the third step, V is calculated 

which is the product of matrices Hb1 and S. Parity bits are computed from V by solving Equation 

5.13 in the final step.  

 

Figure 6.1: Overview of the encoding process. 

6.2 Hardware Implementation 

Hardware implementation of each of the blocks shown in Figure 6.1 is presented in this 

section.  

6.2.1 Storing Base Parity-Check Matrices for Different Rates of LDPC Codes 

In the IEEE 802.16e standard, there are a total of six different base parity-check matrices 

corresponding to the six different code rates: 1/2, 2/3 A, 2/3 B, 3/4 A, 3/4 B and 5/6. All six Hb‟s 

are stored on chip to design a flexible encoder accommodating all different code rates. In 

general, the base parity-check matrices are sparse in nature. As described in section 5.1, Hb can 

be split into two matrices Hb1 and Hb2. Because of the sparse nature of Hb1, only the non-negative 

elements are stored on the chip instead of all the elements in the matrix. In the encoding process, 

the V matrix is computed to obtain the parity bits. V is obtained by vector-vector multiplication 

of each row or column in Hb1 with the column vector S. The inner product, ep, of the elements of 

Hb1, and S is obtained by circularly right shifting a block of S, vector s, by a particular shift value 

determined by hb1, so a shift register is needed to compute ep. More details of the encoding 

process are presented in the next subsection. First, the best method to store Hb for efficient 

encoding is explored.  

To maximize the efficiency, vector-vector multiplication is performed in parallel. V can 

be obtained using two methods as shown in Figure 6.2. In Method I, row parallelization, as 

shown in Figure 6.2 (a), vector-vector multiplication can be performed on each row, R, of Hb1 

Computation 

of ep 
Computation 

of V 

Computation 

of p 
c S 

H 



 53 

and vector S to obtain an element in V. This process can be performed in parallel on all rows of 

Hb1 simultaneously to obtain all the elements of V. In Method II, column parallelization, as 

shown in Figure 6.2 (b), bitwise multiplication is performed on each column, C, of Hb1 with a 

block of S, vector s of size z × 1, in parallel and then all the product vectors are added to obtain 

V. All the base parity-check matrices for different code rates are evaluated to determine the best 

method for the implementation of vector-vector multiplication. 

 

Figure 6.2: Computation of V using (a) row parallelization method and (b) column 

parallelization method. 

In the base parity-check matrices for all different code rates there are a maximum of 6 

and 18 non-negative elements in each column and row respectively. Computation of V using row 

parallelization method would require 18 instantiations of a shift register whereas using column 

parallelization method would require only 6 instantiations of a shift register. Computation of V 

by using the row parallelization method would require the entire vector S, while only a block of S 

of size z × 1 is required when column parallelization method is used. Implementation of the 
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column parallelization method would require less area than the row parallelization method while 

the latency involved in reading the information bits is also decreased. Hence for computation of 

V, the column parallelization method is chosen. 

To design an LDPC encoder that is flexible with code rate, six base matrices of Hb1 

corresponding to code rates 1/2, 2/3 A, 2/3 B, 3/4 A, 3/4 B and 5/6 need to be stored on the chip. 

To store each Hb1 using sparse representation, six non-negative elements per column of Hb1 are 

required. The information needed to store an element is its location (i.e. row number) and its 

value. The maximum value of an element in Hb1 is 95 which require 7 bits for representation. 

Matrix Hb1 for code rates 1/2, 2/3, 3/4 and 5/6 has 12, 8, 6 and 4 rows respectively, which require 

4 bits for its representation of a maximum value 12. Therefore, a total of 11 bits are used to 

represent an element in Hb1. 

Each column of Hb1 is stored in an array. The values are stored in registers instead of 

RAM modules available on an FPGA so that the same design can be implemented on an ASIC 

without any modification. Each element in this array represents the concatenation of all the non-

negative elements in each column of Hb1. As mentioned above, there are a maximum of 6 non-

negative elements in each column of H and each element in H requires 11 bits for its 

representation. Therefore the size of an element in the Hb1 array is 66 bits. As an example, to 

store Hb1 of code rate 2/3 B requires: non-negative elements in the first column of Hb1 located at 

row locations 1, 3, 5 and 7, and their corresponding values are 2, 10, 23 and 32 respectively. This 

can be denoted as (1, 2), (3, 10), (5, 23) and (7, 32). Six elements are stored per column. If any 

column has non-negative elements less than 6 then the remaining elements are denoted as (0, 

127). The size of the Hb1 array is equal to the number of columns in Hb1. For code rates 1/2, 2/3, 

3/4 and 5/6 the size of the Hb1 array is 12, 16, 18 and 20 respectively. For example, the size of 

Hb1 with code rate 2/3 is 16 × 1 where an element in Hb1 is 66-bits long. 

The Hb2 matrix for all different code rates has the same pattern except for the location of 

non-negative elements in its first column. The first column in Hb2 has 3 non-negative elements. 

Two of these non-negative elements are located on the top and bottom of the first column and are 

assigned equal shift values. The third non-negative element is located anywhere in the middle of 

the column. Also one of the non-negative element‟s shift value is equal to zero. For the encoding 

process, a non-negative element with shift value greater than zero is only needed from the first 

column of Hb2. Therefore, one non-negative element‟s shift value and its location are stored 
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instead of the entire first column. For all possible code rates and code lengths its corresponding 

scaling value is computed and is stored in a look up table. 

6.2.2. Parity-Check Matrix  

The base parity-check matrix is defined for the largest code length (n = 2304) for each 

code rate. The set of shift values, hb(i,j), in the Hb are used to determine the shift sizes, hb(i,j), of H 

for varying code lengths of the same code rate. Each Hb has nb columns equal to 24, and the 

expansion factor zf is equal to n/24 for code length n. For example, code length n equal to 2304 

has the expansion factor zf of 96. For code rates 1/2, 2/3 B, 3/4 A, 3/4 B, and 5/6, the shift sizes, 

hb(i,j), of H for a code length corresponding to expansion factor zf  are derived from hb(i,j) by 

scaling hb(i,j) proportionally as  
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where w
 
denotes the floor of w and z0 = 96. For the code rate 2/3 A, the shift sizes, hb(i,j), of H 

for a code length corresponding to expansion factor zf  is defined using the modulo function 
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For any given code rate and code length, the parity-check matrix needs to be computed 

only once. All six Hb1 matrices are stored on the chip as shown in Figure 6.3.  

 

Figure 6.3: Storing base parity-check matrices, Hb, for different code rates. 
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Based on the desired code rate and code length, the rate select and length select inputs are 

chosen. Rate select values for different code rates are shown in Table 6.1. The length select input 

is equal to n/24 where n is the code length and length select values for varying code lengths are 

shown in Table 6.2.  

Table 6.1: Rate select values for different code rates. 

Code rate Rate select 

1/2 001 

2/3 A 010 

2/3 B 011 

3/4 A 100 

3/4 B 101 

5/6 110 

 

Table 6.2: Length select values for different code lengths. 

Code length Length select 

576 0011000 

672 0011100 

768 0100000 

864 0100100 

960 0101000 

1056 0101100 

1152 0110000 

1248 0110100 

1344 0111000 

1440 0111100 

1536 1000000 

1632 1000100 

1728 1001000 

1824 1001100 

1920 1010000 

2016 1010100 

2112 1011000 

2208 1011100 

2304 1100000 
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The required H is computed from its corresponding Hb using Equations 6.1 and 6.2 as shown in 

Figure 6.3. Equations 6.1 and 6.2 are implemented using simple multiplication and division 

modules. 

6.2.2.1 Multiplication 

The multiplication of two unsigned binary integers, In1 and In2, each of length 7 bits 

creates a product, Out, of length 14 bits. The finite state machine of the multiplication module is 

shown in Figure 6.4.  

 

Figure 6.4: Finite state machine for the multiplication module. 

The multiplication process is controlled by the input, start, as shown in Figure 6.4. If the 

input, start is 0 then the machine stays in state S1 where all the values used in the multiplication 

process are initialized. When start is equal to 1, the multiplication process begins by loading the 

inputs In1, multiplicand, and In2, multiplier. The variable temp2 is assigned the value of the 

multiplicand, In1, and counter ct is initialized to zero and then the state machine is moved to state 

S2. In state S2, the multiplier bit located at ct is obtained. If In2[ct] value is 1 then the variable 
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temp1 is added to temp2 and the sum is assigned to temp1 otherwise temp1 remains the same. 

The ct is incremented by 1 and temp2 is shifted left by one bit. If the value of ct is less than 7 

then the state machine remains in the same state S2. Otherwise, it is moved to state S3. In state 

S3, the product, Out, is assigned the value of temp1 and the multiplication process is stopped. 

The hardware block diagram of the multiplication module is shown below in Figure 6.5. 

 

Figure 6.5: Hardware block diagram for the multiplication module. 

First step is to initialize all the values. Since the product is 14-bit long, the most significant bits 

of the multiplicand, In1, are assigned 7 zeros. For every clock cycle, the multiplicand, In1, is 
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or 14-bit zeros when the In2[ct] is equal to 1 or 0 respectively. The inner product, IP, is obtained 

by adding the multiplexer output and the product, Out, of the register C. This multiplication 

module requires 7 clock cycles to obtain the final product, Out. 

6.2.2.2 Division 

The division of two unsigned binary integers, In1 and In2, each of length 14 bits creates a 

quotient, Q, and remainder, R, each of length 14 bits. The finite state machine of the division 

module is shown in Figure 6.6 and its hardware block diagram is shown in Figure 6.7.  

 

Figure 6.6: Finite state machine for the division module. 

The division process is controlled by the input, start, as shown in Figure 6.6. If the start 

input is 0 then the machine stays in state S1 where all the values used in the division process are 

initialized. When start is equal to 1, the division process begins by loading the inputs In1, 
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Figure 6.7: Hardware block diagram for the division module. 
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then the Q bit located at ct is assigned a value of 0. The variable temp is shifted left by one bit 

and ct is decremented by 1. If the value of ct is greater than or equal to zero then the state 

machine remains in the same state S2 otherwise it is moved to state S3. In state S3, the division 

process is stopped and the quotient and remainder are obtained. 

First step in the hardware block diagram of the division module as shown in Figure 6.7 is 

to load inputs dividend, In1, and divisor, In2 in left shift register A and register B respectively. 

Variable ct is assigned a value of 13. For each clock cycle, In1, is shifted to the left by one bit. 

The 14 most significant bits of the left shift register A is equal to the remainder, R, of the 

division module. For every clock cycle, R is compared with In2. If R ≥ In2 then output of the 

comparator, sel, is assigned a value equal to 1. Otherwise, sel  is assigned a value of 0. Register 

C stores the quotient value where Q[ct] is equal to sel. The output of the multiplexer is assigned 

to the 14 most significant input bits of the left shift register A. The output of the multiplexer is 

equal to R-In2 or A[27:14] when the value of  sel is 1 or 0 respectively. For every clock, counter, 

ct, is decremented by one. When ct reaches a value of 0 then the division process is completed. 

This module requires 14 clock cycles to produce the quotient, Q, and the remainder, R. 

6.2.2.3 Computation of H1 

As explained in section 6.2.1, only the elements of Hb1 whose values are greater than or 

equal to zero are stored on the chip. From Equations 6.1 and 6.2, each element of parity-check 

matrix is computed from the base parity-check matrix and is implemented as shown in Figure 

6.8. For code rates 1/2, 2/3 B, 3/4 A, 3/4 B and 5/6 the H1 is computed using multiplication and 

division modules using Equation 6.1 as shown in Figure 6.8. For a desired code rate the 

corresponding base parity-check matrix element, hb1(i,j), is multiplied with the corresponding 

expansion factor, zf, and this product is then divided by z0 = 96 to obtain the value of the element 

in H1, h1(i,j). The value of the element h1(i,j) is equal to the quotient of a division module. For code 

rate 2/3 A, the modulus function in Equation 6.2 is implemented using a division module as 

shown in Figure 6.8. For a desired code rate the corresponding base parity-check matrix element, 

hb1(i,j), is divided by the corresponding expansion factor, zf,  to obtain the value of the element in 

H1, h1(i,j). The value of the element h1(i,j) is equal to the remainder of the division module. Based 

on the desired code rate an appropriate select value is chosen as shown in Figure 6.8. 
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Figure 6.8: Computation of an element of H1, h1(i,j), from an element of Hb1, hb1(i,j). 

The element of H1 obtained using Equations 6.1 and 6.2 is either equal to the quotient, Q, 

or the remainder, R, of the division module as shown in Figure 6.8. The quotient and remainder 

obtained using the divison module presented in subsection 6.2.2.2 are each of length 14 bits.  The 

element value in any H1 does not exceed 96 and therefore 7 bits are sufficient to represent its 

value. Therefore, 7 least significant bits of the quotient and remainder are sufficient and are only 

used for the computation of the elements of H1. 

There are 6 non-negative elements in each column of Hb1 as explained in subsection 
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6.8 are required to compute all the six elements that are located in each column of H1. In one 

clock cycle, elements located in a column of H1, h1, is computed from corresponding elements in 

each column of Hb1, hb1, as shown in Figure 6.9.  
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from Hb1 is shown in Table 6.3. The number of elements in Hb1 array is equal to the number of 

columns of Hb1. For code rates 1/2, 2/3, 3/4 and 5/6 the number of elements in Hb1 array are 12, 

16, 18 and 20 respectively. 

 

Figure 6.9: Computation of a column of H1 from a column of Hb1. 

 

Table 6.3: Number of clock cycles required for computation of H1 from Hb1 for different 

code rates. 

Code rate 

No. of 

elements in 

Hb1 array 

No. of clock cycles 

required per 

element in Hb1 array 

Total No. of clock 

cycles required for 

computation of H1 

1/2 12 23 276 

2/3 A 16 15 240 

2/3 B 16 23 368 

3/4 A 18 23 414 

3/4 B 18 23 414 

5/6 20 23 460 

 

clk 

zo 

zf 

11 

select 

11 

hb 
66 

h 
66 

7 

7 

hb[0:10] 

11 

11 

7 

Element of H 

1 
7 

11 hb[11:21] 

7 
7 

Element of H 

2 

11 hb[55:65] 

7 
7 

Element of H 

6 



 64 

The total number of clock cycles required for the computation of all the elements of H1 from Hb1 

is equal to the number of clock cycles required per element in Hb1 array times the number of 

elements in Hb1 array. 

Only one element value of H2 is required for encoding process. Its value for different 

code rates and code lengths is computed and stored in a look up table which can be obtained in 

one clock cycle. Therefore the total number of clock cycles required for obtaining H is equal to 

the total number of clock cycles required for computation of H1. The latency involved in the 

computation of H is equal to product of the total number of clock cycles required for 

computation of H and time period of the clock. 

6.2.3 Computation of ep 

The first step in the encoder implementation is the computation of V, the product of matrices 

Hb1 and S. The matrix H1 is a sparse matrix with each element representing either a zero matrix, 

identity matrix or permutation matrix of size z × z.  Vector ep is defined as the product of an 

element of H1, h1, which is a matrix of size z × z, and an element is S, s, which is a vector of size 

z × 1. The product vector, ep, is obtained by circularly right shifting the vector s by a particular 

shift value determined by h1. As shown in Equation 6.3, ep is equal to 0 or s (itself) or sf if h1 is 

equal to -1 or 0 or f respectively.  
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Vector sf  is the circular right shifted version of the vector s and the circular right shifted value f 

is defined by h1. 

Figure 6.10 shows the computation of ep. The code length of the LDPC codes varies from 

576-2403. The base matrix has 24 columns. Therefore the size of each element in the base 

matrix, z, vary from 24 – 96 (i.e., 576/24 - 2304/24). In order to accommodate different code 

lengths of LDPC codes, the size of the shift register is chosen to be 96. The shift register is 

hardcoded for all possible shift values (0-95), so that the circular right shifted version of s is 

obtained in one clock cycle. This kind of implementation will occupy more area than a single 

shift register, but will ultimately achieve high encoding data rates. In one clock cycle, a 66-bit 

element from H1 and a 96-bit block of s are read. Depending on code length, the size of s may 

vary from 24-96. If the size of s is less than 96, then the remaining bits are assigned zeros. As 
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shown in Figure 6.10, six circular right shift operations are performed by six shift registers in 

parallel whose shift values and locations are obtained from an element of H1. Each of the ep 

obtained from the circular right shift register is assigned to one of 12 outputs of the 

demultiplexer based on its location (row number). For example, if the row number is equal to 3 

then ep is assigned to the third output of the demultiplexer. All of the demultiplexer outputs are 

added to obtain the inner products ep1, ep2, …., ep12. 

 

Figure 6.10: Computation of ep. 
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6.2.4 Computation of V 

The third step in the encoding process is the computation of V, the product of matrices Hb1 

and S. An element of the vector V (vi) is obtained, from  
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
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and is shown in Figure 6.11.  

 

Figure 6.11: Computation of V. 
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6.2.5 Computation of Parity Bits 

The final step in the encoding process includes the computation of parity bits. Once V is 

computed, parity bits are obtained by solving Equation 5.13. Solving Equation 5.13, we get 

010)0( vpphb  , 121 vpp  , ... , 
jjjb vpppjh  10)( , …, 

110)1(  
bb mmbb vppmh . 

Adding all the Equations, one obtains 
1100 ... 

bmvvvp . The addition is performed by 

XORing all the elements of v. This is the case for all the code rates except for code rate 3/4 B. 

For code rate 3/4 B, 
1100 ...)0( 

bmb vvvph . p0 is obtained by circularly right shifting the 

sum of 
110 ... 

bmvvv  by a value equal to zf – hb(0).  This step can be performed in a single 

clock cycle by using an additional shift register. Once p0 is obtained, the remaining parity bits 

can be computed from solving the above expressions i.e., 001 )0( phvp b , 112 pvp  etc.,. 

To obtain p, all the parity expressions shown above are hard coded in the design for all different 

code rates. Hence parity bits are computed in one clock cycle. 

6.3 Results of the Flexible Structured Encoder Implemented on an FPGA 

A hardware implementation was performed on an Altera Stratix EP1S80F1508C5 FPGA 

using Quartus II for synthesis. Verilog modules generated from Matlab scripts were used for the 

implementation. The results are shown in Table 6.4. Due to the restriction on the number of 

input/output pins on the FPGA the code length is restricted to the range of 576-2016. The 

number of logic elements required for the implementation of the encoder on the FPGA are 

34,100 (43%). Of the two clock signals being used, Clk, is a faster clock used to compute the 

required H1 and is equal to 69.76 MHz. The other clock, Clke, is a slower clock used for the 

computation of the parity bits and is equal to 27.23 MHz.  

In order to accommodate all the code lengths (576-2304) on the chip the number of 

output pins is reduced and the design is re-synthesized. To reduce the number of output pins, 

sum of the parity bits is read instead of individual parity bits. It is observed that this design 

occupies 40936 (52%) LEs which is more than that of the earlier design implementing only code 

length from 576-2016. The increase in the LEs is due to the addition operation performed on the 

parity bits. The clock frequencies Clk and Clke are 77.10 MHz and 26.65 MHz respectively. It 

can be concluded that if the design is synthesized on a larger chip with a large number of input 

and output pins, then the encoder design with more code lengths can be accommodated. Also, the 
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design would require less than 40936 LEs and operate with the same clock frequencies. The 

lowest values of Clk and Clke are considered for the coded data rate and latency computations. 

In Table 6.4, CPC represents the number of clock cycles required per codeword for 

encoding. CPC is equal to number of clock cycles required for computation of V and p. The 

number of clock cycles required to compute V is equal to the number of columns in Hb1 for a 

given code rate. Computation of p requires one clock cycle. Hence this method requires 13, 17, 

19 and 21 clock cycles for code rates 1/2, 2/3, 3/4 and 5/6 respectively.  Column Clke  in Table 

6.4 represents the encoder clock which can run at 26.65 MHz for any code rate and code length. 

Table 6.4: Synthesis results of the flexible encoder for structured LDPC codes. 

Code rate Clke 

(MHz) 

CPC m Coded data rate 

(Mbps) 

1/2 26.65 13 288 – 1152 1180 – 4724 

2/3 26.65 17 384 – 1536 903 – 3612 

3/4 26.65 19 432 – 1728 808 – 3232 

5/6 26.65 21 480 – 1920 730 – 2924 

 

The latency involved in the computation of H from Hb is equal to product of the total 

number of clock cycles required for computation of H and the clock time period. The latency 

involved in computing H for different code rates is shown in Table 6.5. The synthesized Clk 

frequency for computation of H is 69.76 MHz. So the time period of the clock is 14.34 ns. For 

any given code rate and code length, computation of the required H is done only once. Therefore 

the latency involved in computation of the parity-check matrix is not included in the coded data 

rate calculations.  

Table 6.5: Latency involved in computation of H for different code rates. 

Code rate 
Latency involved in 

computation of H (s) 

1/2 3.958 

2/3 A 3.442 

2/3 B 5.277 

3/4 A 5.937 

3/4 B 5.937 

5/6 6.596 
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The coded data rate is equal to m×Clke/(CPC×code rate). The coded data rate decreases 

with an increase in the code rate and increases with increase in the code length as shown in Table 

6.4. For a code length of 576, the coded data rate ranges from 1180-730 Mbps for different code 

rates. When the code length is increased to 2304, the coded data rate increases and is in the range 

of 4724-2924 Mbps. These calculations are based on the internal encoder design and not on any 

special I/O limitations. The encoder implementation assumes that all input data bits are available 

for encoding, so serialization factors are not included in the results. In order to consider the 

encoder implementation under serialization, a shift register needs to be added as shown in Figure 

6.12. The coded data rate thus becomes limited by the speed at which the shift register can run, 

Clks, which is 422.12 MHz. 

 

Figure 6.12: Complete system of the flexible multi-code rate and multi-code length 

structured LDPC encoder. 

The latency of the encoder considering I/O serialization is the maximum of [m/Clks, 

CPC/Clke] which is m/Clks. The coded data rate of the encoder considering I/O serialization is 

equal to Clks/(code rate). Thus, the coded data rate value is constant for different code lengths. 

The coded data rate is 844, 633, 562 and 506 Mbps for code rates 1/2, 2/3, 3/4 and 5/6 

respectively. This value is significantly high when compared to a coded data rate of range 10-19 

Mbps obtained for same LDPC codes [32]. From Tables 4.5, 5.3 and 6.4 it can be observed that 

the proposed encoder has very high coded data rate when compared to the encoders in [29] and 

[33]. In [29], for code length of 2000 and code rate 1/2, it is shown that by using 16 encoder 

instances instead of one encoder instance, the coded data rate is increased from 45 Mbps to 410 

Mbps which requires 16906 slices. In this case, the equivalent logic elements are 42265. The 

coded data rate of our flexible structured encoder is equal to 844 Mbps which is more than twice 

the coded data rate of the encoder presented in [29] while requiring less area than the encoder in 

[29]. A single design accommodates different code lengths and code rates. Re-synthesis of the 
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code is not required in order to change code rate or code length. The encoder design presented 

can easily fit on FPGAs and has a high coded data rate. The flexible structured encoder is also 

implemented on ASIC. The details are presented in the next section. 

6.4 Implementation of a Flexible Multi-Code Rate and Multi-Code Length 

Structured Encoder on an ASIC 

Implementation of the flexible multi-code rate and multi-code length structured encoder 

on an ASIC is performed using Cadence. An ASIC is designed using the standard cell library 

provided by Virginia Polytechnic Institute and State University [63]. The same Verilog design 

that is used for the FPGA implementation is also used for the implementation of the ASIC. The 

Verilog design is synthesized in Cadence RTL by following the procedure presented in section 

C.2 of appendix C. The synthesized design in RTL Compiler is shown in Figure 6.13. The 

synthesized results of the flexible multi-code rate and multi-code length structured encoder are 

shown in Table 6.6. 

 

Figure 6.13: Synthesized flexible multi-code rate and multi-code length LDPC structured 

encoder in Cadence RTL Compiler. 
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Once the design is synthesized it is then placed and routed in Cadence Encounter 

following the procedure presented in section C.3 of appendix C. The final layout of the design in 

Encounter is shown in Figure 6.14. The design is saved in GDS format. Figure 6.15 shows the 

imported layout of the encoder in Cadence ICFB. 

Table 6.6: Synthesis results of flexible multi-code rate and multi-code length LDPC 

encoder in Cadence RTL Compiler. 

Parameter Value 

Code length 576 – 2304 bits 

Code rate 1/2, 2/3 A, 2/3B, 3/4 A, 3/4 B, 5/6 

Technology 0.25 µm 

Gate count 116.5 K 

Clock frequency 215.66 MHz 

 

 

Figure 6.14: Layout view of the flexible multi-code rate and multi-code length LDPC 

structured encoder in Cadence Encounter. 



 72 

 

Figure 6.15: Layout view of the flexible multi-code rate and multi-code length LDPC 

structured encoder in Cadence ICFB. 
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CHAPTER 7 - Decoder for Low-Density Parity-Check Codes 

LDPC encoder designs are presented in the earlier chapters. In this chapter a LDPC 

decoder is designed in order to encompass the complete LDPC codec. The factors affecting the 

LDPC decoder bit error rate (BER) performance are studied. Decoder design and its hardware 

implementation are presented. 

The key aspects of the LDPC decoder presented in this chapter are summarized as follows: 

 Decoder design methodology does not consider any structure in the LDPC codes. Hence 

it is applicable to both structured and any randomly generated LDPC codes.  

 The decoder performance is affected by various design parameters such as the decoding 

algorithm, the design architecture, the quantization of log-likelihood ratios and the 

number of decoding iterations. All of these parameters are analyzed, and the best design 

parameters are chosen based on BER performance.  

 Several decoding algorithms are proposed for the implementation of a LDPC decoder. 

From Matlab simulations, it is observed that logarithmic message passing algorithm gives 

the best BER performance. 

 A parallel architecture yields high data rate while a serial architecture yields low data 

rate. In this work, the parallel architecture is chosen because of the desired high data rate.  

 Different quantization of log-likelihood ratios is analyzed. It is observed that 6-bit 

quantization yields an acceptable BER performance reducing the implementation 

complexity of the design.  

 The maximum number of decoding iterations affects the decoder BER performance and 

the decoding latency. The optimum maximum number of decoding iterations is chosen 

from BER simulations. 

 For different SNR the number of decoding iterations required for the decoding process 

varies. Also for a given SNR, different codewords require different number of decoding 

iterations. Unlike other designs that perform fixed number of decoding iterations, the 

estimated codeword is verified after every iteration in this design. The decoding process 

is stopped when the correct codeword is estimated.  
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 For a given SNR and parity-check matrix, the procedure to find an optimum value of the 

maximum number of decoding iterations by minimizing the error, delay and energy is 

presented. 

 The coded data rate of the decoder is dependent on the length of the codeword. Its value 

increases with increase in the code length. The design is applicable to both structured and 

any randomly generated regular and irregular LDPC codes. 

7.1 Study of LDPC Decoder Parameters 

The performance of the LDPC decoder depends on various factors such as decoding 

algorithm, architecture, quantization of log-likelihood ratios and maximum number of decoding 

iterations. Mackay‟s parity-check matrices [56] are used to evaluate all these decoder parameters.  

7.1.1 Decoding Algorithm 

Sum product algorithm, minimum sum algorithm and modified minimum sum algorithm 

are some of the primary algorithms used for decoding LDPC codes, and they were explained in 

section 2.2. In this subsection, a decoding algorithm that gives better BER performance is 

explored. All the decoding algorithms are implemented in Matlab. The simulation results of BER 

performance for varying SNR are shown in Figure 7.1. It can be observed from Figure 7.1 that  

 

Figure 7.1: BER vs. SNR performance using different decoding algorithms. 
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the performance of the modified minimum sum algorithm is comparable to that of the minimum 

sum algorithm, and that the sum product algorithm gives the best BER performance. Hence the 

sum product algorithm is used for decoder implementation. However, the implementation 

complexity of the sum product algorithm is high when compared to min-sum algorithm as 

discussed on section 2.2.2. 

7.1.2 Decoder Architecture 

A serial architecture for the decoder implementation is efficient in terms of hardware 

resources but yields low data rate. Using a parallel architecture yields high data rate at the 

expense of large hardware resources.  In this work, a parallel architecture is chosen for the 

decoder implementation because of the desired high data rate.  

7.1.3 Quantization 

Because decoders are implemented using digital logic, quantization is present on the log-

likelihood ratios as they are passed between the check and variable nodes of the Tanner graph. 

This will also influence the BER performance of the LDPC codes, and is one of the most 

important factors that influences the hardware implementation of the decoder. If more bits are 

used to represent the log-likelihood ratios, then the performance of the decoder is increased 

because of the improved accuracy. However, this will also increase the number of logic elements 

required for the implementation of the decoder. It also slows down the decoder process and 

increases latency. In this subsection, the number of bits required without compromising 

performance and latency is evaluated. 

7.1.3.1 Quantization of   

The quantization of  is important in determining the corresponding quantization of log-

likelihood ratios.  is a non-linear function and is defined below, but a linear approximation with 

a sufficient number of levels can still provide a performance close to that of the double precision 

case.  

1

1
log)(






z

z

e

e
z                                                          (7.1) 

Figure 7.2 shows the quantization effect on  (z). From Figure 7.2, it can be observed that double 

precision (z) is approximately zero for z equal to 3.5. Therefore, 2 bits are chosen to represent 
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the integer part of z. (z) is computed by varying the number of bits needed to represent the 

fraction part of z from 1 to 4 and is shown in Table 7.1. From Figure 7.2, 5-bit quantization of 

(z) provides performance close to double precision (z). Therefore, 5-bit quantization is chosen 

to represent (z).  

 

Figure 7.2: Quantization of . 

Table 7.1: Quantization of . 

Quantization Integer Fraction 

3-bit 2 1 

4-bit 2 2 

5-bit 2 3 

6-bit 2 4 

7.1.3.2 Quantization of Log-Likelihood Ratios 

Figure 7.3 shows the effect of quantization on BER performance for varying SNR. 

Simulations are performed by using 1 bit for sign, 2 bits for integer part and varying number of 

bits to represent the fractional part as shown in Table 7.2. The number of bits to represent the 

fractional part is varied from 1 to 4 in increments of 1 and the simulation results are shown in 

Figure 7.3. It can be observed from Figure 7.3, that the 6-bit quantization (1 bit for sign, 2 bits 

(z) 

z 
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for integer and 3 bits for fraction) gives a comparable performance to that of double precision. 

Hence 6-bit quantization is chosen to represent log-likelihood ratios. 

 

Table 7.2: Quantization of log-likelihood ratios. 

Quantization Sign Integer Fraction 

4-bit 1 2 1 

5-bit 1 2 2 

6-bit 1 2 3 

7-bit 1 2 4 

8-bit 1 3 4 

 

 

Figure 7.3: BER vs. SNR performance for different quantization levels of log-likelihood 

ratios. 

7.1.4 Maximum Number of Decoding Iterations 

The maximum number of decoding iterations determines the maximum latency of the 

decoder. With an increase in the number of decoding iterations the performance improves at the 

cost of increased latency. In this subsection the maximum number of decoding iterations required 

is chosen based on the trade-off between performance and latency. Figure 7.4 shows the BER 

performance when varying the SNR for different values of maximum number of decoding 
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iterations.  It can be observed from Figure 7.4, that a maximum of 20 decoding iterations can be 

chosen for better BER performance without significant impact on the decoder performance.  

 

Figure 7.4: BER vs. SNR for different values of maximum number of decoding iterations. 

7.2 Design and Implementation of LDPC Decoder on FPGA 

Once the required parity-check matrix is chosen all the parameters discussed above can 

be obtained from simulations to help determine the best hardware implementation of the LDPC 

decoder. The logarithm message passing algorithm presented in 2.2.1 is used for the decoder 

implementation. In this section the details of the design and the hardware implementation of 

LDPC decoder are described.  

7.2.1 Quantization 

The number of bits required to represent the log-likelihood ratios used in the decoding 

process is presented in this subsection. This is the most important issue in hardware 

implementation of the decoder because decoding performance and complexity are dependent on 

the number of bits used to represent the log-likelihood ratios. The quantization of function (z) 

and the log-likelihood ratios passed between the check and variable nodes are presented. 

7.2.1.1 Quantization of  
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In subsection 7.1.3.1, it is shown that 5-bit quantization is required to represent (z) 

without compromising much on performance and latency. From step 2 of the logarithmic 

message passing algorithm it can be observed that (z) is computed for positive values of z. 

Therefore, it is sufficient to store the values of (z) for only positive values of z. Implementation 

of the log and tanh functions in (z) requires a lot of hardware and has high complexity. As an 

alternative (z) is computed for different values of z, which are then stored in a look up table 

(LUT). By using 5-bit quantization, the minimum and maximum positive values that can be 

represented are 0 and 3.875 respectively, and z is varied from 0 to 3.875 in increments of 0.125 

(=1/2
3
). Its binary equivalent representation ranges from 0 to 31 in increments of 1. Since (z) 

theoretically obtains its maximum value of infinity when z is equal to 0, the 5-bit quantized 

version of (z) is limited to 3.875. Therefore (z) also varies from 0 to 3.875. The actual value, 

binary equivalent and binary representation of z and (z) when z is equal to 0, 1, 2 and 3 are 

shown in Table 7.3. For all the values of z ranging from 0 to 3.875, the actual value, binary 

equivalent and binary representation of z and  (z) are given in Table D.1 in Appendix D.  

Table 7.3: Look up table for . 

Actual 

value 

Binary 

equivalent 
Binary 

representation 

z (z) z (z) z (z) 

0 3.875 0 31 00000 11111 

1.000 0.750 8 6 01000 00110 

2.000 0.250 16 2 10000 00010 

3.000 0.000 24 0 11000 00000 

7.2.1.2 Quantization of Log-Likelihood Ratios 

In subsection 7.1.3.2, it is shown that 6-bit quantization is used to represent the log-

likelihood ratios without compromising much on performance and latency. The representation of 

log-likelihood ratios is similar to that of (z) but the extra 6
th

 bit is used to represent the sign of 

the message. 2‟s complement notation is used to represent the log-likelihood ratios. The range of 

the log-likelihood ratios using 6-bit quantization varies from -4 to +3.875 in increments of 0.125. 

Its binary equivalent is -32 to +31.  The actual value, binary equivalent and 2‟s complement 
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representation of certain log-likelihood ratios is shown in Table 7.4. For all the values of log-

likelihood ratios ranging from -4 to +3.875 its actual value, binary equivalent and 2‟s 

complement representation is given in Table D.2 in Appendix D. 

Table 7.4: Quantization of log-likelihood ratios. 

Actual 

value 

Binary 

equivalent 

2‟s Complement  

representation 

0 0 000000 

1.125 9 001001 

2.375 19 010011 

3.625 29 011101 

-3.125 -25 100111 

-1.875 -15 110001 

-0.625 -5 111011 

7.2.1.3 Conversion of Log-Likelihood Ratios from One Form to Another Form of 

Representation  

During the decoding process, log-likelihood ratios passed between variable and check 

nodes are in 2‟s complement representation, while (z) is in sign magnitude representation. 

Hence there is a need to convert from one form of representation to another form. In this 

subsection, the conversion of 2‟s complement to sign magnitude representation and vice-versa 

are presented. 

During check node processing, the received variable node values in 2‟s complement 

representation need to be converted to sign magnitude representation. This conversion is 

performed as shown in Figure 7.5. If the MSB of the input is equal to 0 then the  output, Out, is 

equal to the input, In. Otherwise, the input bits, In, are inverted and 1 is added to  convert the 

input, In, into sign magnitude representation. The sign bit, sg, is the MSB of the input, In. 

The check node values are in sign magnitude representation. These values need to be 

converted back to 2‟s complement representation for the computation of variable node values. 

This conversion is performed as shown in Figure 7.6. If the input sg is equal to 0 then the output, 

Out, is equal to the concatenation of bit sg and the 5 input bits, In. Otherwise, the output, Out, is 

equal to the concatenation of sg bit and the 2‟s complement of the input bits, In. 
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Figure 7.5: Conversion of 2's complement to sign magnitude representation. 

 

 

Figure 7.6: Conversion of sign magnitude to 2's complement representation. 
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+3.875. Similarly, if the value of L(ci) is less than -4 (its binary equivalent is -32) then its value 

is assigned to -4. As shown in step 1 of the logarithmic message passing algorithm presented in 

2.2.1, the variable nodes L(qij) are initialized and is equal to L(ci).  

7.2.3 Check Node Processing 

Step 2 of the logarithmic message passing algorithm presented in 2.2.1 is to compute the 

check nodes values. The check node values, L(rji), are computed from the variable node values, 

L(qij) as shown below 














 

 ijij Ri

ij
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ijjirL
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)()(                                        (7.2) 
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The magnitude of the check nodes is obtained by computing 
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The implementation of Equation 7.3 is shown in Figure 7.7. In this implementation  is obtained 

from the look up table in Table 7.3. The sign of the check node values can be found from as 

shown below, and it is implemented in hardware as shown in Figure 7.8. 

                                                             



ijRi

ijjirLsign
\

)}({                         (7.4) 

Figure 7.7 shows the computation of the magnitude of check node values associated with 

parity-check matrix of row weight wr. For regular LDPC codes the row weight wr is equal to a 

constant value. Therefore, one implementation for a given wr would be sufficient for the entire 

decoder. For irregular LDPC codes, wr can be different for each row and therefore several 

different implementations for each wr, are needed for its decoder. Based on the type of LDPC 

codes, one or more of these check node processing designs are implemented.  

The magnitude and sign of a check node is obtained using the magnitudes and sign bits of 

the other wr -1 check nodes, respectively, as shown in Figures 7.7 and 7.8. For a check node 
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shown in Figure 7.7, the  outputs of all the wr  inputs are added excluding the  output of its 

input.  

 

Figure 7.7: Computation of magnitude of check node values. 

 

Figure 7.8: Computation of sign of check node values. 
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For example, the check node, In1,  of In2, In3,.. Inwr are added to obtain I1. This resulting sum is 

equal to the w-bit long, when wr-1 outputs of , each of length 5-bit, are added. w is equal to 

log2(wr-1)×31 where   denotes the ceiling function. This w-bit I1 is truncated to 5 bits by 

assigning a value of 31 when its value is greater than 31. The magnitude of the check node, In1, 

is updated by obtaining  of I1 and is assigned to output, Out1. The same procedure is followed 

to update the magnitudes of the other check nodes as shown in Figure 7.7. From Figure 7.8, the 

sign of the check node is obtained by ANDing all the sign bits of the wr check nodes excluding 

its sign bit. For example, the sign of In1 is obtained by ANDing In2, In3,.. Inwr and is assigned to 

Out1. Similarly other check nodes sign bits are updated as shown in Figure 7.8. The check node 

values are computed as shown in Figure 7.9 by combining the magnitude and sign bits computed 

using Equations 7.3 and 7.4.  

 

 

Figure 7.9: Computation of check node values. 
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computed from Figures 7.7 and 7.8 and is converted back to 2‟s complement representation. 

These values are used for the computation of variable nodes. 

7.2.4 Variable Node Processing 

The variable node values are obtained from the check node values using step 3 of the 

decoding algorithm in 2.2.1: 

                                                   



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jiiij rLcLqL
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)()()(         (7.5) 

This is also shown in Figure 7.10 for LDPC codes with column weight wc.  

 

Figure 7.10: Computation of variable node values. 
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the design in Figure 7.10 is modified accordingly. Based on the type of LDPC codes, one or 

more of these variable node processing designs are implemented. 

Each variable node is updated by adding all the wc + 1 inputs excluding the input of the 

node itself. When wc inputs, each of length 6-bits, are added this results in a sum equal to w2-bits 

long. The value w2 is equal is log2(wc-1)×63 where   denotes the ceiling function. As shown 

in Figure 7.10, a sign extension is performed on all the wc + 1 inputs. The number of bits 

appended to the variable nodes is equal to w1 where w1 = w2-6. The updated variable node is now 

of length w2-bits which also needs to be truncated to 6 bits. Truncation is performed by assigning 

the variable node a value of 31 and -32 when its value is greater than 31 or less than -32, 

respectively.  

Step 4 of the decoding algorithm is computation of L(Qi) defined as  

  



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Step 5 is making the decision on the received codeword based on the value of L(Qi) and is 

defined as 
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For all the values of i if the value of L(Qi) is greater than or equal to zero then the received bit of 

the codeword is declared to be 0 or else 1.  

Steps 4 and 5 of the decoding algorithm are also included in the computation of the 

variable node values as shown in Figure 7.10. L(Q) is obtained using Equation 7.6 and its 

implementation is similar to that of the variable node computation except L(Q) is obtained by 

adding all the wc + 1  inputs. The codeword is estimated using Equation 7.7 and Oo and Out in 

Figure 7.10 represents the L(Q) andĉi respectively. From Equation 7.7, the estimated codeword 

bit, Out, is assigned a value of 0 if Oo is greater than or equal to zero otherwise Out is assigned a 

value of 1. 

7.2.5 End of Decoding Process 

After each decoding iteration a decision is made on the codeword. The estimated 

codeword, ĉ , is then verified by multiplying it with the parity-check matrix. If the resultant 

vector is zero, i.e., 0ˆ THc , then the received codeword is decoded correctly or else the 
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decoding process is continued. This process is continued until the received codeword is decoded 

correctly or it has reached the fixed maximum number of decoding iterations.  

The product of THĉ is of size 1 × n and is hard coded in the design. An element of the 

product of THĉ  is obtained by multiplying ĉ with a column of H
T
. This can be implemented by 

XORing the bits of ĉ  positioned at the corresponding locations of 1‟s in each column of H.  

7.2.6 Decoder 

Figure 7.11 shows the decoder implementation. The decoder implementation consists of 

four blocks which are initialization, computation of check and variable nodes and validation of 

the estimated codeword.  

 

Figure 7.11: Design of LDPC decoder. 
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Variable nodes are initialized from the received codeword. Using these variable node values, 

check node values are computed in the first half of the decoding iteration. The design for the 

computation of check nodes shown in Figure 7.9 is replicated m times to update the entire check 

node values of the decoder.  

The variable node values are updated in the other half of the decoding iteration from the 

check node values. The design for the computation of variable nodes shown in Figure 7.10 is 

replicated n times to update the entire variable node values of the decoder. After completion of a 

decoding iteration, an estimate is made on the received codeword and is checked for validity. If 

the codeword is decoded correctly then the decoding process is stopped. Otherwise, it is 

continued till it reaches the maximum number of decoding iterations. 

7.3 Results 

A hardware implementation was performed on an Altera Stratix EP1S80F1508C5 FPGA 

using Quartus II. Verilog modules generated again from Matlab script are used for the 

implementation. The design requires a large number of LEs because of the use of parallel 

decoder architecture. Because of the restrictions on LEs a decoder with a small code length can 

only be implemented on the available FPGAs. Decoders for code lengths 64 and 128 are 

implemented on FPGA for a regular and irregular parity-check matrix of sizes 64 × 128 and 32 × 

64 respectively. The results are shown in Table 7.5. With an increase in the code length the 

number of logic elements required by the decoder also increases. Let the decoding clock 

frequency be Clkd, which is equal to the maximum clock frequency of the synthesized designs 

shown in Table 7.5. From section 7.1.4, the maximum number of decoding iterations (IterMax) is 

chosen to be 20. The latency of the decoder can be computed by IterMax/Clkd and is shown in 

Table 7.5.  The coded data rate of the decoder can be computed from Equation 7.8 and is shown 

in Table 7.5. The coded data rate increases with increase in the code length. 

Max

d

Iter

Clk
nratedatacoded                                                (7.8) 

Table 7.5: Synthesis results of the LDPC decoder. 

H LE 
Clkd  

(MHz) 

Coded data rate 

(Mbps) 

Latency 

(µs) 

Irreg 32 × 64 24384 36.48 116.74 0.55 

Reg 64 × 128 49985 34.47 220.61 0.58 
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These calculations are based on the internal decoder design and not on any special I/O 

limitations. The decoder implementation assumes that all input data bits are available for 

decoding, so serialization factors are not included in the results. In order to consider the decoder 

implementation under serialization, a shift register needs to be added. The complete decoder with 

I/O serialization is shown in Figure 7.12. The coded data rate thus becomes limited by the speed 

at which the shift register can run, Clks, which is 422.12 MHz. The latency in reading codeword 

is n/Clks. The latency of the complete decoder system is equal to the maximum value of [n/Clks, 

IterMax/Clkd]. For small code lengths the latency is equal to IterMax/Clkd. Therefore the coded data 

rate of the complete decoder is same as that of the decoder without I/O serialization and is equal 

to n×IterMax/Clkd.  

 

Figure 7.12: Complete decoder system. 
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Table 7.6: Synthesis results of LDPC decoder of code length 1024 and code rate 1/2 in 

Cadence RTL Compiler. 

Parameter Our proposed decoder Decoder in [42] Decoder in [43] 

Code length 1024 648 1024 

Code rate 1/2 Irregular 5/6 Irregular 1/2 Regular 

Technology 0.25 µm 0.18 µm 0.16 µm 

Gate count 820.3 K 842 K 1750 K 

Clock frequency 61.89 MHz 111 MHz 64 MHz 

Data rate 3.17 Gbps 1 Gbps 1 Gbps 

Maximum decoding  

iterations 
20 10 64 

 

7.4 Optimization of Decoder Parameters 

In this section, an attempt is made to find an optimum number of maximum decoding 

iterations for a given SNR based on erroneous codewords (error), energy required (energy) and 

latency of the decoding process (delay).  

7.4.1 Erroneous Codewords 

In the earlier section 7.1.4, it was discussed that the maximum number of decoding 

iterations (IterMax) plays an important role in the error performance of the decoder. The 

maximum number of decoding iterations varies with the parity-check matrix and SNR. An 

example parity-check matrix of size 64 × 128 is considered to show the affect of SNR on IterMax. 

Decoder simulations are performed in Matlab, and 1000 codewords are decoded for a given 

SNR. Figure 7.13 shows the histograms of the decoding iterations required by the codewords for 

varying SNR using a maximum of 50 decoding iterations. From Figure 7.13, it can be observed 

that for low SNR (0.9844 dB), a large number of codewords (64 %) require 50 iterations whereas 

for high SNR (2.9226 dB) only a few codewords (4 %) require 50 iterations. For all values of 

SNR, the codewords that require 50 decoding iterations may still not be corrected. Number of 
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erroneous codewords, errors, for varying IterMax from 5 - 50 in increments of 5 are shown in 

Table 7.7.   

 

Figure 7.13: Histogram of decoding iterations required by codewords for varying SNR. 

From Table 7.7, it can be observed that the number of erroneous codewords decreases 

with the increase in the maximum number of decoding iterations. This decrease in the erroneous 

codewords is initially large and then flattens out with an increase in the maximum number of 

decoding iterations. For example, at SNR equal to 0.9844 dB, when the maximum number of 

decoding iterations is increased from 5 to about 20, the decrease in the erroneous codewords is 

large. However, the decrease in the erroneous codewords is small when the number of decoding 

iterations is increased from 20 to 50. 
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Table 7.7: Erroneous codewords, errors, for varying SNR and IterMax. 

IterMax 

SNR 

(dB) 

5 10 15 20 25 30 35 40 45 50 

0.9844 946 780 703 678 664 654 647 645 644 643 

1.289 890 684 604 574 554 541 538 533 529 529 

1.584 806 513 438 403 396 388 381 376 375 369 

1.868 732 425 337 309 300 293 289 284 280 278 

2.411 505 204 156 133 126 119 116 112 112 109 

2.9226 325 89 62 51 48 45 44 40 40 40 

7.4.2 Decoder Delay 

The latency involved in the decoding process for I number of iterations is equal to I × t, 

where t is the time required for one iteration. From the decoder design, the time required for one 

decoding iteration is equal to one clock period and from Quartus compilation report, t is equal to 

29 ns. Latency is independent of SNR. The latency involved in the decoding process for varying 

IterMax is shown in Table 7.8. 

Table 7.8: Decoder latency, delay, for varying IterMax. 

IterMax 
Latency 

(ns) 

5 145 

10 290 

15 435 

20 580 

25 725 

30 870 

35 1015 

40 1160 

45 1305 

50 1450 

7.4.3 Decoder Energy 

Power analysis is performed using the PowerPlay power analyzer described in section 

3.1.3 on the decoder implemented. For analysis, two codewords are considered at SNR of 0.9844 

dB, where one codeword is not decoded correctly even after 50 iterations and the other codeword 

is decoded correctly in 7 iterations. Power analysis is performed for a maximum of 20 iterations 
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and the total thermal power dissipation, TTPD, core dynamic thermal power dissipation, 

CDTPD, core static thermal power dissipation, CSTPD, and I/O thermal power dissipation, 

IOTPD, are obtained from power analysis compilation report and is shown in the Table 7.9. 

CSTPD is constant and is equal to 1395 mW.  

 

Table 7.9: PowerPlay power analysis report of the decoder of size 64 × 128. 

Iter-

ation 

No. 

Time 

(ns) 

Codeword corrected in 7 

Iterations (SNR 0.9844 dB) 

Codeword not corrected in 51 

Iterations (SNR 0.9844 dB) 

TTPD 

(mW) 

CDTPD 

(mW) 

IOTPD 

(mW) 

TTPD 

(mW) 

CDTPD 

(mW) 

IOTPD 

(mW) 

1 0-30 3699 2134 170 3459 1168 896 

2 30-60 7717 5870 451 7149 5323 432 

3 60-90 5690 4140 155 5226 3643 188 

4 90-120 5214 3651 168 5142 3546 200 

5 120-150 5212 3694 123 4802 3284 123 

6 150-180 5256 3693 168 4649 3131 123 

7 180-210 5445 3927 123 4441 2929 117 

8 210-240 4966 3442 130 4356 2787 175 

9 240-270 4517 3031 91 4328 2803 130 

10 270-300 3221 1728 97 4435 2891 149 

11 300-330 1662 146 91 4479 2922 162 

12 330-360 1499 0.6 104 4598 3060 142 

13 360-390 1486 0.1 91 4445 2901 149 

14 390-420 1493 0.2 97 6984 5466 123 

15 420-450 1486 0.3 91 4772 3165 213 

16 450-480 1512 0.7 117 4772 3165 213 

17 480-510 1486 0.1 91 4772 3165 213 

18 510-540 1493 0.2 97 4772 3165 213 

19 540-570 1486 0.18 91 4772 3165 213 

20 570-600 1499 0.45 104 4772 3165 213 
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From Table 7.9, it can be observed that TTPD is maximum after initialization because of 

the high signal activity. The TTPD decreases with increase in the number of decoding iterations. 

In the case when the codeword is corrected in 7 iterations, the CDTPD is negligibly small after 

11 decoding iterations and the TTPD is almost equal to or little higher than CSTPD.  The TTPD 

decreases with increase in the number of decoding iterations for the codeword that did not 

decode correctly after 51 iterations. The TTPD value reaches a constant value equal to 4772 mW 

after 14 iterations. This is because the variable and check node message values become stagnant 

after 14 iterations and the signals stop toggling. 

From Table 7.9, the decoder average TTPD per iteration while decoding (PowRun) and 

idle (PowIdle) are computed and are equal to 5462 mW and 1510 mW respectively. The PowRun 

and PowIdle are obtained from Table 7.9 using TTPD of the codeword that decodes correctly in 7 

iterations. The PowRun is obtained by averaging the TTPD during 7 decoding iterations (time 

period of 0-210 ns). The PowIdle is obtained by averaging the TTPD when the decoder is idle, 

i.e., after the decoder estimated the correct codeword. From Table 7.9, PowIdle  is equal to 

average of the average of TTPD from 300-600 ns. The power dissipated during the time interval 

of 210-300 ns is not considered in the calculations of PowRun and PowIdle because the decoder has 

estimated correct codeword and has not reached an idle state yet.  

The energy required by the decoder for a given SNR can be computed from IterMax, the 

average number of decoding iterations, the time per iteration and the power dissipation rate 

during the decoding process. The energy required is computed from Eq. 7.9 and is shown in 

Table 7.10. 

Table 7.10: Energy (pJ) required for varying SNR and IterMax. 

IterMax 

SNR  

(dB) 

5 10 15 20 25 30 35 40 45 50 

0.9844 795 1591 2386 3181 3977 4772 5567 6020 6244 6468 

1.289 795 1591 2386 3181 3977 4772 5224 5448 5672 5896 

1.584 795 1591 2386 3181 3977 4201 4424 4648 4872 5096 

1.868 795 1591 2386 3181 3405 3630 3853 4077 4301 4525 

2.411 795 1591 2043 2267 2491 2715 2939 3163 3387 3611 

2.9226 795 1248 1472 1696 1920 2144 2368 2592 2815 3040 
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The average number of decoding iterations, IterAvg, required for SNR values of 0.9844, 1.289, 

1.584, 13868, 2.411 and 2.9226 dB obtained from Matlab simulations are 37, 32, 25, 20, 12 and 

7 respectively.  








 .

,)))(()((

,

AvgMaxIdleAvgMaxrunAvg

AvgMaxrunMax

IterIteriftPowIterIterPowIter

IterIteriftPowIter
energy       (7.9) 

7.4.4 Optimization 

The following two cases are considered to find an optimum value of IterMax for a given 

SNR by attempting to minimize error, delay and energy. 

Case I:  

The optimum value of IterMax for a given SNR is obtained by minimizing the error, 

energy and delay. A function for a given SNR and IterMax can be expressed in terms of error, 

energy and delay and is shown as  

delayenergyerrorIterSNRf Max  ),(                (7.10) 

where ,  and  are weighing coefficients of error, energy and delay respectively. For a given 

SNR, all the values of error, delay and energy shown in Tables 7.7, 7.8 and 7.10 are normalized 

by their respective maximum values. Numerically f(SNR, IterMax) is evaluated by varying the 

values of ,  and   from 0 to 1 in increments of 0.1 such that  +  +  = 1. For example,  = 

0.1,  = 0.2 and  = 0.7. The values of the weights ,  and  are shown in Table 7.11.   is 

incremented from 0 to 1 in steps of 0.1. For each value of ,  is decremented from 1- to 0 in 

steps of 0.1.  is chosen such that the value is equal to 1 -  - .  

The plots of f for varying SNR, IterMax and weights are shown in Figure 7.14. For each 

SNR and IterMax, the corresponding weights of the minimum value of f are shown in Table 7.12. 

From Figure 7.14 and Table 7.12, it can be observed that when error is not considered i.e.,  = 0 

then f is minimum and its value increases with increase in the IterMax. Fewer decoding iterations 

would be optimum when latency is given priority. It can also be observed from Figure 7.14 and 

Table 7.12, that when  = 1 then f decreases with increase in the IterMax and it obtains minimum 

value for largest value of IterMax. This means that when error is minimized the decoder requires 

larger value of IterMax. 
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Table 7.11: Weighing coefficients of error ( ), energy, ( ), and delay ( ). 

Weights    

1 0 0 1 

2 0 0.1 0.9 

3 0 0.2 0.8 

4 0 0.3 0.7 

5 0 0.4 0.6 

6 0 0.5 0.5 

7 0 0.6 0.4 

8 0 0.7 0.3 

9 0 0.8 0.2 

10 0 0.9 0.1 

11 0 1 0 

12 0.1 0 0.9 

13 0.1 0.1 0.8 

14 0.1 0.2 0.7 

15 0.1 0.3 0.6 

16 0.1 0.4 0.5 

17 0.1 0.5 0.4 

18 0.1 0.6 0.3 

19 0.1 0.7 0.2 

20 0.1 0.8 0.1 

21 0.1 0.9 0 

22 0.2 0 0.8 

: 

: 

: 

: 

: 

: 

: 

: 

54 0.8 0.2 0 

55 0.9 0 0.1 

56 0.9 0.1 0 

57 1 0 0 
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Table 7.12: Minimum f corresponding to IterMax, SNR and weights. 

SNR 

(dB) 

 IterMax 

 5 10 15 20 25 30 35 40 45 50 

0.9844 fMin 0.1 0.2 0.3 0.4 0.5 0.6 0.684 0.682 0.681 0.68 

α 0 0 0 0 0 0 1 1 1 1 

Β 0 0 0 0 0 0 0 0 0 0 

γ 1 1 1 1 1 1 0 0 0 0 

1.289 fMin 0.1 0.2 0.3 0.4 0.5 0.6 0.605 0.599 0.594 0.594 

α 0 0 0 0 0 0 1 1 1 1 

β 0 0 0 0 0 0 0 0 0 0 

γ 1 1 1 1 1 1 0 0 0 0 

1.584 fMin 0.1 0.2 0.3 0.4 0.491 0.481 0.473 0.467 0.465 0.458 

α 0 0 0 0 1 1 1 1 1 1 

β 0 0 0 0 0 0 0 0 0 0 

γ 1 1 1 1 0 0 0 0 0 0 

1.868 fMin 0.1 0.2 0.3 0.4 0.41 0.4 0.395 0.388 0.383 0.38 

α 0 0 0 0 1 1 1 1 1 1 

β 0 0 0 0 0 0 0 0 0 0 

γ 1 1 1 1 0 0 0 0 0 0 

2.411 fMin 0.1 0.2 0.3 0.263 0.25 0.237 0.23 0.222 0.222 0.216 

α 0 0 0 1 1 1 1 1 1 1 

β 0 0 0 0 0 0 0 0 0 0 

γ 1 1 1 0 0 0 0 0 0 0 

2.9226 fMin 0.1 0.2 0.191 0.157 0.148 0.139 0.135 0.123 0.123 0.123 

α 0 0 1 1 1 1 1 1 1 1 

β 0 0 0 0 0 0 0 0 0 0 

γ 1 1 0 0 0 0 0 0 0 0 

 

 

 



 98 

 

 

Figure 7.14: Surface plot of f for varying SNR, IterMax and weights. 

Case II: 

 In this case the optimum value of IterMax for a given SNR can be found by minimizing 

one of the parameters of error, delay and energy while constraining the other two parameters.  
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1. For a given SNR, the optimum value of IterMax can be obtained by minimizing error and 

constraining the delay and energy as shown below 

f (SNR, IterMax) = min error                                              (7.11) 

such that delay  < Tmin and                                           

energy < Emin. 

For a given set of values of Tmin and Emin, IterMax can be obtained from Tables 7.8 and 

7.10 respectively. 

2. For a given SNR, the optimum value of IterMax can be obtained by minimizing delay and 

constraining the error and energy as shown below 

f (SNR, IterMax) = min delay                                              (7.12) 

such that error  < Pe and                                           

energy < Emin. 

For a given set of values of Pe and Emin, IterMax can be obtained from Tables 7.7 and 7.10 

respectively.  

3. For a given SNR, the optimum value of IterMax can be obtained by minimizing energy and 

constraining the delay and error as shown below 

f (SNR, IterMax) = min energy                                              (7.13) 

such that delay  < Tmin and                                           

error < Pe. 

For a given set of values of Tmin and Pe, IterMax can be obtained from Tables 7.8 and 7.7 

respectively. 

There are always constraints on error performance, energy/power and delay to develop 

designs for real time applications. Error and delay determine the quality of the performance and 

the speed. Energy/power influence the battery power required. For example, to find an optimum 

maximum number of decoding iterations for a given SNR of 1.868 dB, minimizing the error 

when delay and energy are constrained to less than 600 ns and 4000 pJ respectively can be 

obtained as follows. 

For delay to be less than 600 ns, the corresponding IterMax can be obtained from Table 7.8 

and is equal to 20. The IterMax when energy is less than 4000 pJ can be obtained from Table 7.10 

and is equal to 40. In order to satisfy both delay and energy constraints IterMax cannot exceed 20. 

From Table 7.7, error is minimum for a given SNR and IterMax if it has less number of erroneous 
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codewords. For SNR of 1.868 dB, error is minimum when IterMax is 50. But for given constraints 

on delay and energy, the minimum error occurs for IterMax of 20. Therefore, IterMax in this case is 

20. Similarly IterMax can be obtained for other constraints on error, delay and energy as 

explained for cases I and II. By repeating this procedure on other parity-check matrices, the 

optimum value of IterMax for that particular parity-check matrix at a given SNR can be obtained. 
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CHAPTER 8 - Conclusion 

Low-density parity-check codes are being used in many applications because of their 

excellent coding performance. A flexible hardware encoder and decoder for LDPC codes which 

would aid in the future development of cognitive radio are developed. The design methodologies 

used for the implementation of both a LDPC encoder and decoder are flexible in terms of parity-

check matrix, code rate and code length. 

In this work, four encoder designs are proposed yielding very high data rates. The 

encoder designs presented can fit on currently available FPGAs. As the density and size of 

FPGAs continue to increase and the demand from high-speed applications also increase, 

encoders similar to this will become more commonplace. The data rate of these encoders is 

restricted by the I/O serialization required to convert between the serial data stream(s) and the 

corresponding block processing.  

Two of these encoder designs can be used for both structured and non-structured LDPC 

codes. These designs are more efficient for small code lengths while requiring large FPGAs for 

longer code lengths. The two other encoder designs are proposed for structured LDPC codes 

because of their use in IEEE communication standards. Using structured LDPC codes decreases 

the encoding complexity and also provides design flexibility. The same design methodology with 

minor modifications can also be used for similar structured LDPC codes defined in other 

standards. One of the structured encoder designs has flexibility in terms of both the code rate and 

code length. This design methodology does not require re-synthesis of the Verilog code to 

change the code rate and code length of the LDPC encoder. The design flexibility in both code 

rate and code lengths can be utilized in a real time implementation of LDPC codecs for new 

technologies such as cognitive radio which needs physical reconfigurability. A flexible encoder 

design for structured LDPC codes is also implemented on both an FPGA and an ASIC.  

In this work, a decoder is also designed for LDPC codes. The design methodology does 

not consider any structure in the LDPC codes. Hence it is applicable to both structured and non-

structured LDPC codes. The decoder has to be optimized for BER performance, hardware 

complexity, and power consumption. The maximum number of decoding iterations used for the 

decoding process plays an important role in determining the decoder BER performance, latency 

and power consumption. Most of the earlier decoder designs found to be available prior to this 
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work, always decode for a fixed number of iterations after which an estimate of the codeword is 

calculated. This leads to unnecessary delay and power consumption, especially in higher SNRs 

where the correct codeword is available within a few iterations. In [55], the parity of the normal 

variable-to-check messages is checked after each iteration. If the parity check is satisfied then the 

codeword is estimated at the beginning of the next iteration and the decoding process is stopped. 

In [42], the codeword is estimated after every iteration but it is validated in the next iteration. So 

these two methods would take an extra iteration to stop the process after the decoder decoded the 

correct codeword. In our design, the codeword is estimated and checked for validity after every 

iteration. In a clock cycle, a complete decoding iteration is performed; codeword is estimated and 

is validated. The area required to implement this logic is very small when compared to the rest of 

the design. The decoding process is stopped if the estimated codeword is correct; otherwise it is 

continued until it reaches the maximum number of decoding iterations. This logic will decrease 

the decoding latency which in turn saves the power consumed by the chip and increases the data 

rate. The proposed decoder can be implemented on FPGAs for only small code lengths. 

However, for large code lengths it is shown that the design can be implemented on an ASIC. 

The major contributions of this work can be summarized as follows: 

 A generic encoder is designed that achieves high data rates. This design methodology can 

be used for both structured and any randomly generated regular and irregular LDPC 

codes. 

 An encoder is designed for structured LDPC codes defined in the IEEE 802.16e standard. 

This design methodology can be used for other similar structured LDPC codes such as 

IEEE 802.11n. 

 A flexible multi-code rate and multi-code length LDPC encoder is designed for structured 

LDPC codes defined in IEEE 802.16e standard accommodating code lengths ranging 

from 576-2304 with code rates of 1/2, 2/3, 3/4 and 5/6. 

 A LDPC decoder is designed that can be used for both structured and any randomly 

generated regular and irregular parity-check matrices. 

 Procedure to determine the optimum maximum number of decoding iterations for a given 

parity-check matrix and SNR is presented. 
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8.1 Future Work 

Although significant advances have been made during this work, there are several areas 

in which further investigation would be useful. 

 Decrease the latency involved in the computation of parity-check matrix from its 

corresponding base parity-check matrix. 

Base parity-check matrices, Hb1, of the structured LDPC codes are stored on the 

chip to design a flexible encoder accommodating different code lengths and code rates. 

Based on the desired code length and code rate, the parity-check matrix is computed from 

its corresponding base parity-check matrix and is stored temporarily until the code rate or 

the code length is changed. This step needs to be performed only once for a desired code 

length and code rate. The latency involved in the computation of parity-check matrix may 

affect the overall latency of the encoder when the code rate and code lengths are changed 

frequently. The computation latency of H1 can be reduced by using efficient 

multiplication and division modules. Latency can be further reduced by computing all the 

columns of H1 in parallel.  

 Stopping the decoding process 

During simulations, it was observed that some codewords are not corrected even 

after performing the maximum number of decoding iterations. Identifying such 

codewords and stopping the decoding process would decrease the power consumption of 

the chip. Also this logic would decrease the decoding latency and increase the decoder 

data rate.   

 A flexible LDPC codec system can be designed that could accommodate parity-check 

matrices of different standards. 
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Appendix A - Design of a Convolutional Encoder in Verilog HDL 

A design created in Verilog HDL is used to illustrate the procedures to synthesize and 

place and route a design in FPGA and ASIC using Quartus and Cadence respectively. In this 

appendix, Verilog HDL design of a 1/2 rate convolutional encoder with constraint length 7 is 

used to demonstrate these procedures.  

A.1 Convolutional Encoder 

Convolutional encoding is used in forward error correcting codes. Convolutional 

encoding is a bit-level encoding technique where it calculates and adds the redundant bits for 

every input data bit, based on the polynomials. A 1/2 rate convolutional encoder with constraint 

length 7 with polynomials defined as g
(0)

 = 1111001 = (171)8 and g
(1)

 = 1011011 = (133)8 is 

shown in Figure A.1.  

 

Figure A.1: A 1/2 rate convolutional encoder with constraint length 7. 

 

Design using Verilog HDL for convolutional encoder shown in Figure A.1 is as follows: 

convEncoder.v 

module convEncoder (n, k, clk, reset); 

input  k; // input to encoder 

input clk, reset; // clock and reset for the encoder 
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output  [1:0] n; // outputs of the encoder 

wire [1:0] n; 

reg  [6:0] po; 

 

always @(negedge reset or posedge clk)  

    if (~reset) 

      po = 7'b0; 

    else 

      po = {k, po[6:1]}; 

 

assign n[0] = po[6]^po[4]^(po[3]^po[1]^po[0]; 

assign n[1] = po[6]^po[5]^po[4]^po[3]^po[0]; 

endmodule 
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Appendix B -  FPGA Implementation using Quartus 

Quartus software makes it easy to implement a desired logic circuit by using a 

programmable logic device such as FPGA. In this appendix, the implementation of a design 

specified by Verilog HDL in Quartus II is presented as discussed in section 3.1. Graphical user 

interface is used to invoke Quartus II commands. 

B.1 Creating a Project 

Each logic circuit, or sub-circuit, being designed in Quartus II is called a project.  The 

software works on one project at a time and keeps all the information for that project in a single 

directory. Start the Quartus II software and the main Quartus II display is as shown in Figure 

B.1. Procedure to implement the design in Quartus II using Verilog HDL is illustrated by using 

an example of the convolutional encoder presented in appendix A. New project needs to be 

created to start working on a new design.  

 

Figure B.1: The main Quartus II display. 

New project is created by selecting File  New project wizard. A window pops up 

requesting name and directory of the project as shown in Figure B.2. Choose the working 

directory and the Verilog HDL file. The directory and the project name are assigned. The name 

of the project and top-level design entity of the project are same. Click next and another window 

pops up requesting the file name. Add all the files required for the project as shown in Figure 

B.3. Choose next. A window pops up asking for device type in which the designed circuit is 
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implemented as shown in Figure B.4. Choose Stratix as the target device family. From the list of 

available devices, choose the device called EP1S80F1508C5 which is the FPGA used on Altera‟s 

Startix board. Press next, which opens the window in Figure B.5. The user can specify any third-

party tools that should be used. A commonly used term for CAD software for electronic circuits 

is EDA (Electronic Design Automation) tools. Since third-party tools are not being used nothing 

is chosen in this window. Click next. A summary of the chosen setting appears in the screen 

shown in Figure B.6. 

 

Figure B.2: Creation of new project. 

 

 

Figure B.3: Adding design files. 
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Figure B.4: Choose the device family and a specific device. 

 

 

Figure B.5: Other EDA tools can be specified. 

B.2 Compilation of the Project 

Run the compiler by selecting Processing  Start compilation. As the compilation 

progresses through various stages, its progress is reported in a window on the left side of the 

Quartus II display. Successful or unsuccessful compilation is indicated in a pop-up box at the end 

of the run. Clicking ok leads to the Quartus II display in Figure B.7. In the message window, at 

the bottom of the Figure, various messages are displayed. In case of errors, the relevant messages 



 115 

are shown. When the compilation is finished, a compilation report is generated. The flow 

summary of the compilation report is shown in Figure B.7. For the implementation of 

convolutional encoder on a Stratix FPGA chip requires 7 logic elements and 5 pins 

 

Figure B.6: Summary of the project settings. 

. 

 

Figure B.7: Flow summary of the compilation report. 

B.3 Timing Simulation 

 Timing simulations are performed on the design to check its behavior before 

implementing the design on the FPGA device. Before the design can be simulated, it is necessary 
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to create the desired waveforms to represent the input signals. All the inputs and outputs are 

specified. Open the waveform editor window by selecting File  New. A window pops up as 

shown in Figure B.8, choose vector waveform file and click ok. New waveform editor window 

opens as shown in Figure B.9.  

 

Figure B.8: Creating vector waveform file. 

 

 

Figure B.9: Waveform editor window. 
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Set the desired simulation to run by selecting Edit  End Time and enter 200 ns in the 

dialog box. To include the input and output nodes of the design click Edit  Insert  Insert 

Node or Bus to open the window shown in Figure B.10. Click on node finder to open the 

window shown in Figure B.11 or type the name of the signal in Name part of the Figure B.10. 

 

Figure B.10: Insert node or bus dialog box. 

 

 

Figure B.11: Selecting nodes to insert into the waveform editor. 

 

In Figure B.11 select pins, all in filter and click List. Select the required pin under nodes 

found on the left side of the window shown in Figure B.11 and click > sign to add the node to 

selected nodes on the right side of the window shown in Figure B.11. Add each pin or make 

multiple pin selections by simultaneously pressing shift button on the keyboard. Input nodes are 

assigned a desired waveform by selecting the waveform name and right click  Value to assign 
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desired value. Save the waveform file. Timing simulations can be performed by selecting 

Assignments  Settings  Simulator settings as shown in Figure B.12. Choose timing as the 

simulation mode and the waveform as the simulation input and click ok. Start simulation by 

selecting Processing  Start simulation. The obtained simulated waveform is as shown in Figure 

B.13. 

 

Figure B.12: Simulator settings. 

 

 

Figure B.13: Timing simulation report. 
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B.4 Power Analysis 

PowerPlay power analyzer tool of Quartus II is used to perform power analysis. During 

simulator settings the simulation output files are created as shown in Fig B.14. Check the 

generate signal activity file under signal activity output for power analysis and specify the name 

of the .saf file. Signal activity file is generated when timing simulation is performed. PowerPlay 

power analyzer tool is started by selecting Processing  PowerPlay power analyzer tool and is 

shown in Figure B.15.  

 

Figure B.14: Creating .saf file. 

 

 

Figure B.15: PowerPlay power analyzer tool. 
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Check the option use input file(s) to initialize toggle rates and static probabilities during 

power analysis under Input file. Click add power input file(s) and a window pops up as shown in 

Figure B.16. In this window, check the option use input file(s) to initialize toggle rates and static 

probabilities during power analysis under select the power analyzer options. Click add and a 

window pops up as shown in Figure B.17. Choose the file under file name and select signal 

activity file under input file type and click ok. Click ok on power setting window. Power analysis 

is performed by clicking start button on PowerPlay power analyzer tool. When power analysis is 

finished a window pops up stating PowerPlay power analysis successful. 

 

Figure B.16: Power settings. 

 

 

Figure B.17: Add power input file. 
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Click on the report button on PowerPlay power analyzer tool to view the PowerPlay 

power analyzer summary as shown in Figure B.18. Summary report consists of estimated total 

thermal, dynamic, static and I/O thermal power consumption of the design. 

 

 

Figure B.18: PowerPlay power analyzer summary. 
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Appendix C - ASIC Implementation using Cadence 

Procedure to synthesize and place and route a design in Cadence using an example is 

presented. The design in Verilog HDL is synthesized using RTL Compiler. The synthesized 

design is then place and route in Encounter. 

C.1 Initial Setup 

Standard cell library developed at Virginia Polytechnic Institute and State University is 

used to place and route the design. The standard cell library VTVT_TSMC250 design kit is 

downloaded from the following link http://www.vtvt.ece.vt.edu/vlsidesign/download.php. Unzip 

the files and copy the directory named vtvt_tsmc250_release under your UNIX directory. The 

cadence files are available under directory vtvt_tsmc250_release/Cadence_Libraries for the 

actual physical layout of the standard cells. 

Cadence environmental variables need to be set up for verifying the design in Cadence Virtuoso 

which is explained in the later section. 

 Create a script file called cadence-script and include the text below in the file 

setenv USE_NCSU_CDK 

setenv CDK_DIR /cadence/tools/dfII/local/ncsu_rel_1.5.1 

 Source the cadence_script by using following commands 

/bin/csh 

source /idrive/cadence_script 

Following steps are performed before synthesizing the design: 

 Move the standard cell library layout directory vtvt_tsmc250 into the cadence directory 

(directory created to run the project in this example).  

 Add the library to cadence library manager by adding the line below in the cds.lib file 

INCLUDE /cadence/tools/dfII/local/ncsu_rel_1.5.1/cdssetup/cds.lib 

DEFINE vtvt_tsmc250_nolabel ./vtvt_tsmc250_nolabel 

 Copy vtvt_tsmc250.lib, vtvt_tsmc250.lef, vtvt_tsmc250.tf, vtvt_SocE2df2.map and 

vtvt_tsmc250_StreamIn.map into libs directory 

 Copy display.drf from /cadence/tools/dfII/local/ncsu_rel_1.5.1/cdssetup/display.drf to the 

current directory 
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 Attach library vtvt_tsmc250 to TSMC_CMOS025_DEEP techfile by doing the following 

steps: 

 Invoke cadence  

icfb 

 In CIW  Tools  Technology File Manager Attach 

 Design Library: vtvt_tsmc250_nolabel 

 Technology Library: NCSU_TechLib_tsmc03d 

 The standard cell views are now available in the Library Manager   

C.2 Synthesis of Verilog HDL Modules in RTL Compiler 

In this section the steps followed to synthesize the design using RTL Compiler are 

presented.  

 Invoke RTL Compiler  

rc –gui 

 Run the script 

File  source script  rc.tcl 

 The synthesized convolutional encoder design is shown in Figure C.1.  

 

Figure C.1: Synthesized convolutional encoder in RTL Cadence. 
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The script file used to generate the synthesized design is given below: 

RTL script file rc.tcl 

# Step1: Specify Verilog HDL design files 

# All HDL files, separated by spaces 

set hdl_files {/mnt/hgfs/Idrive/cadence_encoder/design/convEncoder.v} 

# The Top-level Module 

set DESIGN convEncoder 

# Set clock pin name in design.  

Set clkpin clk 

# Target frequency in MHz for optimization 

set delay 100 

#**************************************************/ 

# Target Library path is set 

# NO further changes past this point 

set_attribute lib_search_path  

{/cadence/tools/dfII/local/ncsu_rel_1.5.1/lib/NCSU_TechLib_tsmc03d} 

set_attribute library {/mnt/hgfs/Idrive/cadence/libs/vtvt_tsmc250.lib} 

# Verilog HDL files are read 

read_hdl ${hdl_files} 

# Design is elaborated 

elaborate $DESIGN 

# Apply Constraints 

set clock [define_clock –period ${delay} –name ${clkpin} [clock_ports]]  

external_delay –input   0 –clock clk [find / -port ports_in/*] 

external_delay –output  0 –clock clk [find / -port ports_out/*] 

# Sets transition to default values for Synopsys SDC format, fall/rise 

# 400ps 

dc::set_clock_transition .4 clk 

# Design is checked 

check_design –unresolved 
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report timing –lint 

# Synthesis of the design 

synthesize –to_mapped 

# Analyzing and reporting  

report timing > timing.rep 

report gates  > cell.rep 

report power  > power.rep 

# Generating synthesized design 

write_hdl –mapped >  ${DESIGN}.vh 

write_sdc >  ${DESIGN}.sdc 

puts “Synthesis Finished!         “ 

puts “Check timing.rep, area.rep, gate.rep and power.rep for synthesis results” 

C.3 Place and Route using Cadence Encounter 

Once the design is synthesized in Cadence RTL it is then place and route in Cadence 

Encounter. The following steps are performed to place and route the design [67]. 

Step 1: Invoke Encounter: Invoke Encounter from the design directory by using the following 

command 

 encounter 

Step 2: Import Design: Import the synthesized design by selecting the following options under 

basic and advanced tab as shown in Figures. C.2 and C.3. 

 Design  Import design 

Basic tab   Verilog Netlist:  Files: convEncoder.vh  

    By User: convEncoder 

Timing Libraries: Common Timing Libraries: vtvt_tsmc250.lib 

    LEF Files: vtvt_tsmc250.lef 

Timing Constraint File convEncoder.sdc (optional) 
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Figure C.2: Basic design import. 

 

 Advanced Tab    Power  Power Nets: vdd 

     Ground Nets: gnd 

Leave all the other fields as default. Click OK. 

 

Figure C.3: Advanced design import. 

 After importing the design a window appears as shown in Figure C.4 showing the initial 

floorplan. 
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Figure C.4: After importing the design. 

Step 3: Floor Planning: Depending on the size of the design the floorplan is specified. Figures. 

C.5 and C.6 show the specify floorplan and after floorplan windows respectively. 

 Floorplan  Specified Floorplan 

Basic  Die Size by: Width: 500, Height: 500  

Core Margins by: Core to IO Boundary   

Core to Left: 38 Core to Top: 38  

Core to Right: 38 Core to Bottom: 38 

Click OK. 

 

Figure C.5: Specify floorplan. 
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Figure C.6: After floorPlan. 

Step 4: Power Planning: Rings and stripes are added. Windows for add rings and after adding 

rings are shown in Figures. C.7 and C.8 respectively. Similarly windows for add stripes and 

after adding stripes are shown in Figures. C.9 and C.10 respectively. 

 Power  Power Planning  Add Rings 

Basic  Ring Configuration:  Layer:  Width: 10.8,     Spacing: 2.16 

Click OK. 

 

Figure C.7: Add rings. 
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Figure C.8: After adding rings. 

 Power  Power Planning  Add Stripes 

 Set Configuration:  Layer: Metal2 

  Direction: Vertical   Width: 10.8 

Spacing: 2.16 

Click OK. 

 

 

Figure C.9: Add stripes. 

 



 130 

 

Figure C.10: After adding stripes. 

Step 5: Special Route: SRoute is performed to do the final power routing and is shown in Figure 

C.11. Figure C.12 shows the routed design. 

 Route 

Route  Special Route 

Click OK 

 

Figure C.11: Special route. 
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Figure C.12: After special route. 

Step 6: Place: Design is Placed by filling the form as shown in Figure C.13. Change the view 

form floorplan to physical view by selecting the appropriate view as shown in Figure C.14.  

 Place 

Place  Standard Cells 

Chose Run Full Placement 

 

Figure C.13: Place. 

 Set View option to Physical View 
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Figure C.14: After placing cells. 

 

Step 7: NanoRoute: For global routing nanoRoute is used.  Figures C.15 and C.16 show the 

options chosen for NanoRoute and window after NanoRoute is performed respectively. 

 Route 

Route  Nanoroute  Route 

Click OK 

 

Figure C.15: NanoRoute. 

 

Physical View Floorplan 

View 
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Figure C.16: After nanoRoute. 

Step 8: Place: Filler cells are added to allow all the wells to be at the same potential. Place 

options window is as shown in Figure C.17. Figure C.18 shows design after placing the filler 

cells. 

 Place 

Place  Filler  Add filler 

Click OK 

 

Figure C.17: Add filler. 
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Figure C.18: After adding fillers. 

Step 9: Verify: Final layout of the design is verified. Design connectivity and the geometry are 

verified by following commands. Design should pass selected tests. Connectivity and geometry 

options are as shown in Figure C.19 and C.20 respectively.  

 Verify 

Verify  Verify Connectivity 

Click OK. 

 

Figure C.19: Verify connectivity. 
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 Verify  Verify Geometry 

Click OK. 

 

Figure C.20: Verify geometry. 

Step 10: Export: The design is saved and its GDS file is exported. Figure C.21 shows the GDS 

export form. 

 Export GDS 

Design  Save  GDS 

 Output Stream File: convEncoder.gds 

 Map File: vtvt_SocE2df2.map 

 Click OK. 

 

Figure C.21: GDS export form. 
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C.4 Verification of the Design 

The layout of the design generated in Cadence Encounter is imported into Cadence icfb 

to verify if the Encounter has properly generated the design. Also to check if the generated 

design is DRC clean. Verification of the design is performed as follows: 

The layout generated in the Encounter is imported into Cadence Virtuoso. 

Step 1: Start Cadence icfb 

Step 2: In the CIW  File  Import  Stream.. 

In the Stream In form fill the following as shown in Figure C.22. 

 Run directory: . 

 Input file: convEncoder.gds 

 Library name: vtvt_tsmc250 

 

Figure C.22: Stream in form. 

Step 3: Select User-Defined data: 

 Fill the details as shown in Figure C.23. 

 Layer map table: vtvt_tsmc250_StreamIn.map 

 

Figure C.23: User-defined data form. 
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Step 4: Select options: 

 Fill as shown in Figure C.24. Click OK. 

A pop-up message appears indicating that PIPO STRMIN completed successfully. 

 

Figure C.24: Options form. 

Step 5: In the layout view, as shown in Figure C.25. 

 Verify  DRC… and select OK. Design must be DRC clean. 

 

Figure C.25: DRC form. 
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The synthesized design in Cadence RTL is imported into a schematic in Cadence icfb. 

Step 6: Start Cadence icfb 

Step 7: In the CIW  File  Import  Verilog… 

Fill in the form as shown in Figure C.26. 

 Target library name: convEncoder_design 

 Reference library: vtvt_tsmc250 basic 

 Verilog files to import: convEncoder.vh 

 Import structural modules as: Schematic 

 Power net name: VDD 

 Ground net name: GND 

 

Figure C.26: Import Verilog in. 

The synthesized design is shown in Figure C.27. 
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Figure C.27: Schematic view. 

To check if schematic and layout have the same netlist, LVS is run on both schematic and layout. 

Step 8: Open both the schematic and layout views 

Step 9: Extract the layout using Verify  Extract  OK. The extracted view of the 

convolutional encoder is shown Figure C. 28. 

 

Figure C.28: Extracted view. 

Step 10: Open the extracted view and perform LVS by choosing Verify  LVS as shown in 

Figure C.29. 
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A pop-up window appears notifying successful completion or failure of the LVS. 

In the LVS window click output to get the information regarding the LVS run. 

 

 

Figure C.29: LVS. 
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Appendix D - Quantization of Log-Likelihood Ratios in Decoder 

Implementation 

In subsection 7.2.1.1 and 7.2.1.2, it is shown that 5-bit and 6-bit quantizations are 

required to represent (z) and log-likelihood ratios, respectively, without compromising much on 

performance and latency. The actual value, binary equivalent and binary representation of z, (z) 

and log-likelihood ratios are shown in Table D.1 and D.2 respectively. 

Table D.1: Quantization of . 

Actual 

Value 

Binary 

Equivalent 
Binary 

Representation 

z (z) z (z) z (z) 

0 3.875 0 31 00000 11111 

0.125 2.750 1 22 00001 10110 

0.250 2.000 2 16 00010 10000 

0.375 1.625 3 13 00011 01101 

0.500 1.375 4 11 00100 01011 

0.625 1.125 5 10 00101 01010 

0.750 1.000 6 8 00110 01000 

0.875 0.875 7 7 00111 00111 

1.000 0.750 8 6 01000 00110 

1.125 0.625 9 5 01001 00101 

1.250 0.500 10 4 01010 00100 

1.375 0.500 11 4 01011 00100 

1.500 0.375 12 3 01100 00011 

1.625 0.375 13 3 01101 00011 

1.750 0.250 14 2 01110 00010 

1.875 0.250 15 2 01111 00010 

2.000 0.250 16 2 10000 00010 

2.125 0.125 17 1 10001 00001 

2.250 0.125 18 1 10010 00001 
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2.375 0.125 19 1 10011 00001 

2.500 0.125 20 1 10100 00001 

2.625 0.125 21 1 10101 00001 

2.750 0.125 22 1 10110 00001 

2.875 0.000 23 0 10111 00000 

3.000 0.000 24 0 11000 00000 

3.125 0.000 25 0 11001 00000 

3.250 0.000 26 0 11010 00000 

3.375 0.000 27 0 11011 00000 

3.500 0.000 28 0 11100 00000 

3.625 0.000 29 0 11101 00000 

3.750 0.000 30 0 11110 00000 

3.875 0.000 31 0 11111 00000 

 

Table D.2: Quantization of log-likelihood ratios. 

Actual 

Value 

Binary 

Equivalent 

2‟s Complement  

Representation 

0 0 000000 

0.125 1 000001 

0.250 2 000010 

0.375 3 000011 

0.500 4 000100 

0.625 5 000101 

0.750 6 000110 

0.875 7 000111 

1.000 8 001000 

1.125 9 001001 

1.250 10 001010 

1.375 11 001011 

1.500 12 001100 
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1.625 13 001101 

1.750 14 001110 

1.875 15 001111 

2.000 16 010000 

2.125 17 010001 

2.250 18 010010 

2.375 19 010011 

2.500 20 010100 

2.625 21 010101 

2.750 22 010110 

2.875 23 010111 

3.000 24 011000 

3.125 25 011001 

3.250 26 011010 

3.375 27 011011 

3.500 28 011100 

3.625 29 011101 

3.750 30 011110 

3.875 31 011111 

-4.000 -32 100000 

-3.875 -31 100001 

-3.750 -30 100010 

-3.625 -29 100011 

-3.500 -28 100100 

-3.375 -27 100101 

-3.250 -26 100110 

-3.125 -25 100111 

-3.000 -24 101000 

-2.875 -23 101001 

-2.750 -22 101010 
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-2.625 -21 101011 

-2.500 -20 101100 

-2.375 -19 101101 

-2.250 -18 101110 

-2.125 -17 101111 

-2.000 -16 110000 

-1.875 -15 110001 

-1.750 -14 110010 

-1.625 -13 110011 

-1.500 -12 110100 

-1.375 -11 110101 

-1.250 -10 110110 

-1.125 -9 110111 

-1.000 -8 111000 

-0.875 -7 111001 

-0.750 -6 111010 

-0.625 -5 111011 

-0.500 -4 111100 

-0.375 -3 111101 

-0.250 -2 111110 

-0.125 -1 111111 

 

 

 


