MULTIPROGRAMMING: AN OVERVIEW
by

CHARLOTTE LAND CRAWFORD

B. A., Texas Christian University, 1963

S 2¥<F

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1971

Approved by:

Major Professor

2668
L
197/
i 7 po Y
’ . TABLE OF CONTENTS
I. INTRODUCTION
II. OPERATING SYSTEM
III. QUEUEING
IV. CORE ALLOCATION
V. PROTECTION
VI. CONCLUSION
BIBLIOGRAPHY

ACKNOWLEDGEMENTS

11
17
17
19
23

INTRODUCTION

Multiprogramming is the result of the computer users' desire to make
more efficient use of the equipment and improve throughput and response times.
Multiprogramming exists in many forms, but the basic idea is that two or more
programs share the resources of the computer.
The purpose of this paper is to present an overview of multiprogram-
ming: what it is, how it works.
Five important properties of a multiprogramming computing sysfem are!
(1) Computation processes are in concurrent operation for more than
one user. .« .« o«

(2) Many computations share pools of resources in a flexible way. . . .

(3) 1Individual computations vary widely in their demands for computing
resources in the course of time. . . .

(4) Reference to common information by separate computations is a fre-
quent occurrence. . . .

(5) An M[ultiprogrammed] Clomputing] S[ystem] must evolve to meet

changing requirements. . . ,®

The advantage of using a multiprogramming system can be demonstrated by
considering two programs, a foreground program and a background program. The
foreground program has high usage of card readers, printers, tapes, disks,
drums (input-output), and the background program primarily uses the processor
capabilities (compute-bound). The foreground program receives priority use of
the central processor but relinquishes it frequently because of input-output
(I/0) requests. When the foreground program is interrupted, the background
program processes until either the foreground program I/0 request is satisfied
or the background program issues an I/0 request,

This method works even when one program is not processor bound if

enough I/0 devices exist in the system to service a number of programs. The

1Jack B. Dennis and Earl C. Van Horn, "Programming Semantics for Mul-
tiprogrammed Computations," Communications of the ACM, IX (March, 1966), 144.

central processor 1ls shared, and the I/0 devices tend to reach their maximum
capability.

The elapsed time required to execute a single program is greater than
when that program runs alone. However, an overall reduction in turn-around
time for the total job stream results because long jobs incrementally process
to completion.

"~ This improvement is accomplished at a price. More hardware is neces-
sary to detect idle programs and more software to switch control among the
programs. Critchlow states that this increase must be less than the increase
in output of useful work if a net gain in efficiency is to be achieved.?

In 1959 Codd proposed a set of six conditions which a multiprogramming
system must satisfy if it is to be generally accepted and used. They are still
applicable today.

1. 1Independence of preparation. Programs may be independently written
and compiled.

2. Minimum information from programmer. A programmer need not provide
additional information about his program for successful processing.

3. Maximum control by programmer. While certain features of the
machine must be placed out of the programmer's direct control, no reduction in
the effective logical power available to him must result.

4. Noninterference. Programs must not be allowed to interfere with
one another.

5. Automatic supervision. Some method must be used to contrel I/0,

detect machine malfunctions and programming errors, perform scheduling, and

%A, J. Critchlow, "Generalized Multiprocessing and Multiprogramming

Systems," AFIPS Conference Proceedings: 1963 Fall Joint Computer Conference,
XX1V (Baltimore: Spartan Books, 1963), 107.

keep accounting records. (This method is known today as an operating system.)
6. Flexible allocation of time and space. The needs of the program

should dictate allocation of core and 1/0 devices.®
OPERATING SYSTEM

An operating system consists of special control and service programs
to perform most of the routine supervisory functions of the machine operator.
It eliminates the need for operatbr intervention during processing and permits
sequential execution of independent programs. It handles iinking between pro-
gram segments and any necessary program relocation. It supervises queues, if
the system uses them, and determines job selection. One important function is
to supervise I/0: file label checking, buffering, blocking, error detectiomn,
recovery procedures. It must be able to handle interrupts from external
devices, e.g., inquiry stations, remote terminals, display devices, or other
computers.

Most operating systems contain:

1. Programs to compile and assemble source code

2. Programs for sorting data

3. Programs to manage I/0 for all types of devices and data set
organization

4. Programs to determine space availability on direct-access devices

5. Programs to diagnose and analyze 1/0 device failures

6. Programs to determine the disk location of all applications pro-

grams as well as those named above

3E. F. Codd and others, "Multiprogramming STRETCH: Feasibility Consid-
erations," Communications of the ACM, II (November, 1959), 14.

7. Programs to write messages to the operator

8. Programs to maintain a catalog of data sets

9. The supervisor, which controls and schedules all other programs.”

The supervisor informs programs when fo begin execution and regains
control of the central processor when an interrupt occurs. The supervisor
consists of many programs, called routines., These routines include:

1. Scheduler, which oversees the entire administration of the operat-
ing system.

2. I/0 routines, which control all I/0 operationms.

3. Task supervisor, which determines the status and condition of each
task in core.

4, Task dispatcher, which chooses the next task to use the central
processor.

5. Main storage supervisor, which maintains a table of available core
storage.

6. Time supervisor, which maintains time of day and calculates the
amount of time used by each task.

7. Contents supervisor, which maintains a ligt of programs in core at
any given time.

8. Interrupt handling routines, which determine the specific cause of
an interrupt. Interrupts are of the following types: (a) external--the time
allotted to the executing program is gone or an external signal is received;
(b) program--the executing program contains an error; (c) I/0~—an I/O opera-
tion has taken place; (d) supervisor call-~an instruction in the active program

requests that central processor control be returned to the supervisor; (e)

*Harry W. Cadow, 0S/360 Job Control Language (Englewood Cliffs, New
Jersey: Prentice-Hall, Inc., 1970), pp. 120-121.

machine check--a central processor malfunction occurs.

The operating system usually resides permanently in a protected (read
only) section of main memory. In some systems; certain routines may reside on
an auxiliary storage device and be brought into core as needed; this usually
represents a substantial hardware and software overhead. Resident control pro-
grams can occupy significant amounts of the available core memory. Many users
have not been willing to tolerate this loss of resources for an operating sys-
tem. It is, however, possible for the user to design the operating system to
fit his individual needs. The advent of direct access storage facilitates
efficient segmentation techniques, which may significantly reduce the sizes of
resident control routines,

One of the major requirements of multiprogramming is that the job
stream be able to be read continuously. Information on job control cards is
placed in a job queue and each set of data cards recorded on an auxiliary stor-
age device as a separate data set.® One method of accomplishing this is called
spooling, where peripheral I/0 operations for card readers and printers are
programmed to proceed concurrently with the normal job stream. The system
stays well ahead of the card reader and maintains a backlog on disk for the
printer so no active program is delayed.6

The operating system cén control use of the central processor's time
in three ways. One is a time-slicing system, which automatically allots so
many units of time (a quantum) to each active job. In a queueing system it is
possible that the quantum may vary from queue to queue. Time-slicing is an

attempt to more equally allot usage of the central processor.

*Ibid., p. 152.

fRobert F. Rosin, "Supervisory and Monitor Systems," Computing Surveys,
I (March, 1969), 49.

A subget of time-slicing is dynamic dispatching; In each queue job
priority is determined by the amount of I/0 required--the more I/0 the higher
the priority.

Instead of time-slicing, a system may use the roadblocking technique
for central processor usage. In roadblocking; once a2 job has gained control
of the central processor, it does not have to relinquish the central processor
until it requires I/0. This technique may exist in systems with or without

priorities.
QUEUEING

Multiprogramming is not effective without priority among programs and
interrupt facilities so that higher priority tasks can assume control. Priori-
ties are implemented through the use of queues.

Two types of queueing disciplines exist: head of line and preemptive.
In a head of line queue, a resource services the request with the highest prior-
ity after completing the current request. In a preemptive queue, a request is
interrupted whenever a higher priority request enters the queue.

Queueing ﬁndels based on these disciplines are determined by consider-
ing the way jobs arrive and the amount of service time required. These models
are the round robin, the multiple-level feedback, and the processor-sharing
model. The latter is a theoretical model.’

In the round robin model (RR), jobs are serviced on a first-in first-
out (FIFO) basis, with each job allocated a quantum of time. If its service
demand is greater than the quantum, the job is put on the rear of the queue

and will loop through until its service demand is met.

7E. G. Coffman, "Studying Multiprogramming Systems," Datamation, XIII
(June, 1967), 49-54.

The multiple-level feedback model is the most general. A hierarchy of
queues exists with a time-slice which may vary according to the level of the
queue. If the service request of a job is not fulfilled at the end of the
quantum, the job is put at the end of the next higher lével queue (priority
decreases with higher queue level). .Assuming a‘finite number of queue levels,
at the highest level, if a job still needs service, no feedback occurs. It
loops at the highest level as long as necessary but receives service only
after all lower-level queues are empty.

In this model, at the end of any time-slice, the next job to be ser-
viced comes from the highest priority, non-empty queue.

Internal queue structure in this model is first in line, which can be
determined either by FIFO or by the original entry queue level.

Another model which has received analysis is the theoretical processor-
shared (PS) or pure time-sharing (PTS) model., If the time-slice approaches
zero, then the round robin and feedback models becomg PS models. These models
allow two or more jobs to share the processor simultaneocusly. Four different
PS models exist: simple PS (round robin), PS with priorities (job priority
determines rate at which service is received), preemptive PS.(infinite level
feedback model without priorities), and preemptive PS with pridrities (infinite
level priority model with jobs ordered by priority within the queues).

Kleinrock has introduced a generalized queueing model which can be

applied to various scheduling algorithms.®

Assuming no preassigned priorities
in this model (i.e., all jobs join the queue with zero priority), a job await-

ing service gains priority at rate, a. While receiving service, priority

®leonard Kleinrock, "A Continuum of Time-Sharing Scheduling Algorithms,”
AFIPS Conference Proceedings: Spring Joint Computer Conference, XXXVI (Mont-
vale, New Jersey: AFIPS Press, 1970), 453.

changes at a different rate, B. If a job is removed from service before com-
pletion, the priority again changes at rate g, etc. All jobs possess the
same parameters O and B, and at all times jobs of highest priority are ser-
viced equally.

Depending on the relative values of o and R, six scheduling algorithms
are discussed by Kleinrock.’®

In the first come first served (FCFS) scheduling algorithm, jobs in
the queue gain priority at a rate which is below the rate of jobs in service.
That is, 0<a<B, Only when one job finishes can another receive service.

If jobs in service gain no priority at all (i.e., B=0), then each job
entering the queue will immediately receive service. This is the processor-
sharing round robin (RR) algorithm.

In the selfish round robin (SRR) algorithm jobs are serviced in a pro-
cessor-sharing RR manner. The rate gain in priority of those jobs in the
queue is such that they will eventually catch up to those already in service
(i.e., 0<B<0). However, those already receiving service are "selfishly" try-
ing to keep the service for themselves. In this case, each job spends some
time in the queue and then joins the group being serviced in an RR manner.

In the last come first served (LCFS) algorithm, priority decreases
with time, both for the queued jobs and for the active ones. However, queue-
ing jobs lose priority faster than ones receiving service (i.e., qi8<0).
Obviously any mew job will have highest priority and so gains control until
his service demand is satisfied or a new job demands service. If a job pro-
cesses to completion, the queued job with highest priority becomes active.

A modification of this model occurs when a<0<B, that is, queueing

*Ibid., pp. 454-455.

jobs lose priority but active jobs gain priority. If a new job finds the ac-
tive job with a negative priority, it gains control and processes to comple-
tion since the service priority increases while.queueing priority decreases,
meaning no queueing job can catch up. Service then goes to the queueing job
with highest priority. Since qﬁeueing jobs lose priority, all priorities are
negative, including the one next receiving service. If this job can keep pro-
cessor control until its priority is positive, it is said to "seize" control
and can process to completion. This algorithm is called LCFS with seizuré.

The bulk service algorithm is a special case where all jobs in the
queuve retain zero priority, i.e., o=0<f. All queueing.jobs are taken into
service simultaneously and begin to gain priority. Any new job must queue un-
til all the active jobs are finished, and then the entire queue again receives
service "in bulk".

In the LCFS with pickup case an active job loses priority while a
queueing job either loses at a slower rate or gains priority. The range is
B<0, B<o. Consequently, queueing jobs are "picked up" by the active jobs
when the priorities are equal, and the entire group then receives service.

Figure 1 illustrates the rénge of scheduling algorithms discussed
above. The FCFS, LCFS, and RR models are well known and solved. The two
regions describing the LCFS with seizure and LCFS with pickup are not sclved.
Kleinrock gives an analysis of the SRR. A job whose demand for service is
greater than average is discriminated against in the SRR model as compared to
a FCFS model, while a job whose service demand is less than average is treated

preferentially in the SRR model as compared to a FCFS model.!?

1%1bid., p. 454, 458.

B
/ -~
LCFS WITH SEIZURE
“—RR
-
~
Kleinrock's generalized queueing model.

11

CORE ALLOCATION

Core can be allocated (i.e., divided) either statically or dynamically.
In static allocation, main memory is divided into two prime areas, one for the
operating system and the other for.partitions, which are fixed areas of core.
The maximum number of partitions is determined at system generation time, but
the actual number of partitions used may vary. Each partition may service
more than one job queue. Partitions may be time-sliced among themselves, and
if a partition services remote terminals, it also may be time-sliced intern-
ally. Each partition can contain only one task at any given time.

In dynamic allocation of core, a variable number of tasks may execute
concurrently. A fixed area of main storage contains the resident part of the
system. The remainder of core is available for tasks. One method used is to
initiate a task with highest priority within a queue provided there is enough
available core. This assumes only one job from each queue can be resident and
competing for resources at any one time. A disadvantage to this method is
that core may become fractured. That is, suppose several large jobs and many
small jobs are running concurrently with some medium sized jobs queueing. The
small jobs run to completion, leaving enough core for a medium sized task, except
that the space now available is in small segments scattered within core. Dur-
ing any one period of systems operation, this situation may become worse.

Two solutions have been suggested and implemented. One is called vir-
tual memory, in which any program can be subdivided into small sections, usually
of different sizes, and scattered about in core. A disadvantage to this
system is its cost; the links (both hardware and software) necessary to con-
nect these sections are expensive to buy and use. fhe other solution is
dynamic memory relocation, in which tasks are reassigned in memory to make

the available space contiguous. The jobs are removed from memory onto an

12

auxiliary storage device and then loaded back into core. This method has the
disadvantage of degrading the system while the exchange takes place.

Another method of dynamic core allocation is called paging. A page is
the basic unit of storage and transmission. Core is physically divided into
sections, and a page may contain part of a program (also called a page) or
data. A program is not necessarily loaded into contiguous pages, so a page
table is kept which shows where each page of program or data is located.

Most systems use a page on demand strategy. That is, one page is
mapped into main memory originally, and this page demands any other pages it
may need for execution. These pages iﬁ turn may demand other pages. Even-
tually a page is called when core is "full", so one of these pages must be
"turned out" (copied back onto auxiliary storage) to make room for the new
page. The problem becomes one of which page to replace.

Several page replacement algorithms exist to determine which page is
to be replaced. These are random selection, first-in first-out, and least
recently used. The simplest of these algorithms is a random selection of
pages, but it results in high page traffic between core and auxiliary storage.

The FIFO algorithm replaces the page which has been least recently
paged. The logic for this algorithm is that programs execute instructioms in
sequence, so the first page called will be least likely to be needed. One
argument against this is that many programs are set up as calls to subroutines,
other programs, etc., so that the presence of the first page of the program is
vitally necessary for execution. If demand for core is quite intense, another
disadvantage of this algorithm is apparent. The list of pages in memory is
processed rapidly, and many of the deleted pages are still needed by their
programs. This causes an excess of page faults as each program is trying to

get the pages needed for execution. It is possible that the page requesting

13

a new page will be overwritten.

The Least Recently Used (LRU) algorithm replaces the page which has
gone the longest time without being referenced. This method works well, except
when overload occurs, at which time its behavior degenerates to that of the
FIFO algorithm. |

Wegner has suggested several factors which determine thé efficiency of
paging:

1. Page tables and other necessary software add much to a system's
overhead,

2, Processes seem to require a large number of pages over short time
sequences resulting in many pagerfaults.

3. The time required by a process to acquire enough pages in memory
to run for a reasonable length of time without page faults tends to be quite
long. This factor also shows that paging requires a considerable real time
investment.?!

12 and

Separate studies conducted by Fine, Jackson, and McIsaac
0'Neill'? geem to show that demand paging leads to very inefficient computer
utilization,

Fine, et al., conclude that a program tends to demand pages at a very

rapid rate until a sufficiency of pages is acquired, but then the program

llpeter Wegner, "Machine Organization for Multiprogramming,” Proceed-
ings of the 22nd National Conference of the ACM (Washington: Thompson Book Co.,
1967), p. 148.

l2Gerald H. Fine, Calvin W. Jackson, and Paul V. McIsaac, "Dynamic
Program Behavior under Paging," Proceedings of the 21st National Conference
of the ACM (Washington: Thompson Book Co., 1966), pp. 224-226,

13R. W. 0'Neill, "Experience Using a Time-Shared Multiprogramming Sys-
tem with Dynamic Address Relocation Hardware," AFIPS Conference Proceedings:
Spring Joint Computer Conference, XXX (Washington: Thompson Book Co., 1967),
pp. 611-621.

14

often does not run very long. If a program does run for an extended time, its
sufficiency of pages is a large fraction of total pages required. ?*

The idea of the working set model, introduced by Denning, is an attempt
to reduce excessive paging. The working set is defined to be the set of most
recently used pages of a process or the minimum set of pages which must be pre-
sent in core for a process to operéte without unnecessary page faults.!®

The working set has two important properties which show how it differs
from the other paging algorithms:

1. A process is active if and only if its working set is completely
in main memory.

2, It is applied individually to each program in a multiprogramming
system.15

Denning defines a working set memory allocation policy as ome in which
a process is active only if enough unused space exists in core to contain its
working set. 1’

De Meis and Weizer describe implementation of the working set theory
on an RCA Spectra 70/46 with Time-Sharing Operating System. A count of pages
used in execution of a task during its previous active period is used as the
working set of that task. The task is not activated until the number of main

memory pages not in use at any instant at least equals the size of the work-

ing set. The conclusion reached is that '"the primary value of the working

I“Fine, et al., loc. cit.

15peter J. Denning, "The Working Set Model for Program Behavior,"
Communications of the ACM, XI (May, 1968), p. 326.

1¢peter J. Denning, "Thrashing: Its Causes and Prevention," AFIPS
Conference Proceedings: Fall Joint Computer Conference, XXXIII, Part I
(Washington: Thompson Book Co., 1968), p. 917.

171bid., p. 916.

15

set concept lies in aiding the operating system to intelligently schedule the
use of main memory based on a reasonable prediction of the memory requirements
of the tasks in its load."!®

Thrashing is defined as "“excessive overhead and severe performance

degradation or collapse caused by too much paging."'®

It will turn a shortage
of memory space into a dedication of the processor to obtain appropriate pages.
Denning believes that the poor performance of paged systems is due not to pro-
gram behavior but the amount of time necessary to access a page in auxiliary
atorage.zo

The missing page probability is the probability that when a page is
referenced by a process it is not in main memory. This probability is a good
way to measure a paging algorithm's performance since the probability is lower
if necessary pages are normally resident in core.

Denning shows that the FIFO and LRU algorithms, since they are applied
globally across core, permit the missing page probability to fluctuate as the
total demand for memory fluctuates.?! This fluctuation is a direct result of
the length of time necessary to move a page between auxiliary storage and main
memory (traverse time).

Denning claims "that applying a paging algorithm globally to a collec-
tion of programs may lead to undesirable interaction among them."?2

It is possible for programs to interact if the paging algorithm is

close to saturation. Large programs will not get as much space as they need,

18y, M. De Meis and N. Weizer, '"Measurement and Analysis of a Demand
Paging Time-Sharing System," Proceedings of the 24th National Conference of
the ACM (Washington: Thompson Book Co., 1969), p. 205.

¥penning, op. cit., p. 915. 201bid.

211pid., p. 921. 2%Ibid., p. 917.

16

and the space each program acquires will depend on its demands as compared to
the others in core.

These globally applied algorithms exhibit great susceptibility to
thrashing. Dennings solutions are: (1) use of the working set model algorithr
to make a program independent of the others' demands for space; (2) slow-speed
core memory between drum and main memory tc cut down on traverse time by mak-
ing speeds between memory levels more compatible; and (3) sufficient wain mem-
ory to contain the desired number of working sets.??

IBM has designed a new hardware device, called a cache, which is a
small, high-speed buffer contained in the central processor unit. This type
memory unit is installed on the IBM 360/85 and 370 series. It seems that this
is a uniquely hardware-implemented paging system.

The cache is used to hold the contents of those parts of main storage
currently being used; however, it is not addressable by a program. ?hen a
program references data not contained in the cache, the portion of main memory
containing the referenced data must be loaded into the cache, overwriting some
other portion.

Both main storage and the cache are divided into sectors, and during
operation a correspondence is set up between the cache sectors and main stor-
age sectors. Most main memory sectors are not assigned a cache sector because
there are only a limited number of cache sectors. The cache sectors are
assigned dynamically during operation to the main storage sectors currently
being used by the program. In order to decide which cache sector to reassign,
an activity list is kept and the sector which has been least recently refer-

enced is reassigned.

231bid., p. 922.

17

Each sector 1s divided into sixteen blocks, and the blocks are loaded
on demand. Therefore, if a program only references one or two blocks of a
main memory sector, these are the only ones loaded into the cache sector.
When main memory is updated the cache is also updated, so no cache sector

reassignment 1s necessary.
PROTECTION

Protection of the system from the user and the user from the system
has evolved as operating systems have become more sophisticated. Additional
hardware implementation has been necessary. Registers to hold acceptable
upper and lower bound addresses and registers to reflect protection status for
fixed portions of core have begn developed. Facilities also exist to make a
certain area read only, write only, or execute only. Interrupt facilities pre-
vent attempts to execute hardware-dependent I/0 operations, to set the special
regisfers (interval timer or protection registers) or to execute illegal
instructions. Privileged instructions exist which only the supervisor can
execute. It is possible for the supervisor to complete an operation the user
requested but did not have the privilege to execute. Thus the user must rely

on the system, insuring system integrity.?"
CONCLUSION

Multiprogramming is a logical development of computer usage. It is an
attempt to use more efficiently the computer equipment and improve throughput
and response times by having two or more programs execute concurrently.

The implementation of multiprogramming has run into many obstacles in

24Rosin, op. cit., p. 52.

18

the course of its development. Many different methods exist to implement the
idea of multiprogramming. Some form of dynamic core allocation seems to be
preferable, but whether paging can be improved to an acceptable point remains
to be seen.

Unfortunately it is possible for the amount of time used by the super—
visor in maintaining the job flow to be as great as that required to process
applications programs. Perhaps investigation should be made to determine
whether some activities supported by the system cannot be accomplished by other
methods.

It may be possible to design an operating system which results in
small overhead for jobs not using or requiring many system resources but which
accommodates jobs requiring extended functions.

An upper limit exists on what a multiprogramming system can accomplish.
As the system approaches this upper limit, marginal improvements require vast
amounts of time and effort. It is not possible to do more than use all of the

machine all of the time!

BIBLIOGRAPHY

1. Books

Cadow, Harry W. 08/360 Job Control Language. Englewood Cliffs, New Jersey:
Prentice-Hall, Inc., 1970,

Wilkes, M. V. Time-Sharing Computer Systems. New York: American Elsevier
Publishing Co., 1968.

2, Papers

Bouvard, J. '"Perspective on Operating Systems," Comparative Operating Systems:
A Symposium. New York: Brandon/Systems Press, Inc., 1969.

Brawn, Barbara S., and Frances G. Gustavson. 'Program Behavior in a Paging
Enviromment," AFIPS Conference Proceedings: 1968 Fall Joint Computer Con-
ference. Vol. XXXIII, Part II, pp. 1019-1032. Washington: Thompson Book
Co., 1968. '

Cantrell, H. N., and A. L. Ellison. "Multiprogramming System Performance Mea-
surement and Analysis," AFIPS Conference Proceedings: 1968 Spring Joint
Computer Conference. Vol. XXXII, pp. 213-221. Washington: Thompson Book
Co., 1968.

Coffman, E. G., and R. R. Muntz. "Models of Pure Time-Sharing Disciplines for
Resource Allocation," Proceedings of 24th National Conference of the ACM.
Pp. 217-228. New York: ACM Publication P-69, 1969.

Critchlow, A. J. "Generalized Multiprocessing and Multiprogramming Systems,"
AFIPS Conference Proceedings: 1963 Fall Joint Computer Conference.
Vol. XXIV, pp. 107-126. Baltimore: Spartan Books, 1963.

De Meis, W. M., and N. Weizer. '"Measurement and Analysis of a Demand Paging
Time Sharing System," Proceedings of 24th National Conference of the ACM.
Pp. 201-216. New York: ACM Publication P-69, 1969.

Denning, Peter J. "Effects of Scheduling on File Memory Operations," AFIPS
Conference Proceedings: 1967 Spring Joint Computer Conferemce. Vol. XXX,
pp. 9-21. Washington: Thompson Book Co., 1967.

. "Thrashing: Its Causes and Prevention," AFIPS Conference Proceed-
ings: 1968 Fall Joint Computer Conference. Vol. XXXIII, Part I, pp. 915~
922. Washington: Thompson Book Co., 1968.

Fenichel, Robert R. "An Analytic Model of Multiprogrammed Computing," AFIPS
Conference Proceedings: 1969 Spring Joint Computer Conference. Vol. XXXIV,
pp. 717-721. Montvale, New Jersey: AFIPS Press, 1969.

Fine, Gerald H., Calvin W. Jackson, and Paul V. McIsaac. '"Dynamic Program

20

Behavior Under Paging," Proceedings of 21st National Conference of ACM.
Pp. 223-228. Washington: Thompson Book Co., 1966.

Kleinrock, Leonard. "A Continuum of Time-Sharing Scheduling Algorithms,"
AFIPS Conference Proceedings: 1970 Spring Joint Computer Conference.
Vol. XXXVI, pp. 453-458. Montvale, New Jersey: AFIPS Press, 1970.

Kuehner, C. J., and B, Randell. "Demand Paging in Perspective," AFIPS Confer-
ence Proceedings: 1968 Fall Joint Computer Conference. Vol. XXXIII,
Part II, pp. 1011-1018. Washington: Thompson Book Co., 1968.

McCredie, John W., Jr. 'Measurement Criteria for Virtual Memory Paging Rules,"”
Proceedings of 24th National Conference of ACM. Pp. 193-199. New York:
ACM Publication P-69, 1969.

0'Neill, R. W. "Experience Using a Time-Shared Multi-Programming System with
Dynamic Address Relocation Hardware," AFIPS Conference Proceedings: 1967
Spring Joint Computer Conference. Vol. XXX, pp. 611-621. Washington:
Thompson Book Co., 1967.

Peters, Bernard. "Security Considerations in a Multi-Programmed Computer Sys-
tem," AFIPS Conference Proceedings: 1967 Spring Joint Computer Confer-
ence. Vol, XXX, pp. 283-286. Washington: Thompson Book Co., 1967.

Steel, Thomas B., Jr. '"Multiprogramming--Promise, Performance and Prospect,"”
AFIPS Conference Proceedings: 1968 Fall Joint Computer Conference.
Vol. XXXIII, Part I, pp. 99-103. Washington: Thompson Book Co., 1968.

Wegner, Peter. '"Machine Organization for Multiprogramming," Proceedings of
29nd National Conference of ACM. Pp. 135-150. Washington: Thompson Book
Co., 1967.

3. Periodicals

Arden, B. W., and others. "Program and Addressing Structure in a Time-Shar-
ing Environment," Journal of the Association for Computing Machinery,
XIIT (January, 1966), 1-16.

Chang, Wei, and Donald J. Wong. "Analysis of Real Time Multiprogramming,"
Journal of the Association for Computing Machinery, XII (October, 1965),
-581-588. i ,

Codd, E. F. '"Multiprogram Scheduling: Parts 1 and 2. Introduction and
Theory," Communications of the ACM, III (June, 1960), 347-350.

. "Multiprogram Scheduling: Parts 3 and 4. Scheduling Algorithm
and External Constraints,"” Communications of the ACM, III (July, 1960),
413-418.

, and others. "Multiprogramming STRETCH: Feasibility Considerations,"
Communications of the ACM, II (November, 1959), 13-17.

21

Coffman, E. G. "Studying Multiprogramming Systems," Datamation, XIII (June,
1967), 47-54.
,» R. R. Muntz, and H. Trotter. "Waiting Time Distributions for Pro-
cessor-Sharing Systems," Journal of the Association for Computing Machin-
ery XVII (January, 1970), 123-130.

, and L. C. Varian. "Further Experimental Data on the Behavior of
Programs in a Paging Environment," Commmications of the ACM, XI (July,
1968), 471-474.

Denning, Peter J. "The Working Set Model for Program Behavior," Communications
of the ACM, XI (May, 1968), 323-333.

Dennis, Jack B. "Segmentation and the Design of Multiprogrammed Computer

Systems," Journal of the Association for Computing Machinery, XII
(October, 1965), 589-602. :

, and Earl C. Van Horn. "Programming Semantics for Multiprogrammed
Computations," Communications of the ACM, IX (March, 1966), 143-155.

Flores, Ivan. 'Multiplex Programming," Science & Technology, September, 1969,
pp - 6-13 .

Liptay, J. S. "Structural Aspects of the System/360 Model 85 II The Cache,"
IBM Systems Journal, VII, 1 (1968), 15-21.

Maher, R. J. '"Problems of Storage Allocation in a Multiprocessor Multipro-
grammed System," Communications of the ACM, IV (October, 1961), 421-422.

Rosin, Robert F. "Supervisory and Monitor Systems," Computing Surveys, I
(March, 1969), 37-53.

Saltzer, Jerome H,, and John W. Gintell. "The Instrumentation of Multics,"
Communications of the ACM, XIII (August, 1970), 495-500.

Smith, John L. "Multiprogramming under a Page on Demand Strategy," Communi-
cations of the ACM, X (October, 1967), 636-646.

Stevens, David F. "On Overcoming High-Priority Paralysis in Multiprogramming
Systems: A Case History," Communications of the ACM, XI (August, 1968),
539-541.

4. Reference Manuals

Control Data Corporation 3600 Computer System, Drum SCOPE Reference Manual,
No. 60059200, Rev. A, 1965.

General Electric 625/635 System Manual, No. CPB-371B, 1965.

IBM System/360 Operating System: Concepts and Facilities, Form C28-6535-4,
1968.

IBM System/360 Operating System: Control Program with MFT, Program Logic
Manual, Program Number 360S-CI-505, Form GY27-7128-5, June 1970.

IBM System/360 Operating System: MFT Guide, Form C27-6939-5, 1965.
IBM System/360 Operating System: MVT Guide, Form GC28-6720-1, 1970.

UNIVAC 1108 Multiprocessor System, System Description, 1968.

22

23

ACKNOWLEDGEMENTS

The author wishes to thank Dr. Tom L. Gallagher for his suggestion of
the topic and constructive criticisms of this report. The author especially
acknowledges the guidance, suggestions, and interest of Mrs. Elizabeth A,

Unger.

Financial assistance from the National Institute of Health under the

Department of Health, Education, and Welfare is gratefully acknowledged.

MULTIPROGRAMMING: AN OVERVIEW

N4

CHARLOTTE LAND CRAWFORD

B. A., Texas Christian University, 1963

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1971

ABSTRACT

The purpose of this paper is to present an overview of multiprogramming
with an emphasis on those components and methodologies found in contemporary
multiprogramming systems. The properties, advantages, and disadvantages are
presented, and the conditions multiprogramming must satisfy to be acceptable are
discussed. The concepts and methodologies presented are the operating system,
queueing, core allocation, and protection.

Some possible improvements in multiprogramming technology are noted.

At this time multiprogramming seems to be the most reasonable way for general

purpose computing systems to produce work efficiently.

