ANALYSIS OF THE COED SROCESS AHD RPITMIZATION OE FLIE CAS heat recovfry from a second tair pepspective
by

TERRY LEE UNRUHI
B.S., Kamsas State Unitersity, 1978
\qquad

A MASTER'S THESIS
subraitted in partial fulfillment of the

```
fecusmements for the degree
```

MASTER OF SCIENCL

Departhent of Chemical Enginesring
KANSAS STATE MNVERSTEY
Karhattan, Kansas
1979
Approved by:

Spec. coll.
LD2668
. 74TMBLE CY CONIENTSC. 2 part I: introduciton to hiemmoynamic analysis
CHAPTER 1. Intraduction 1
CHAPYER 2. Firsc Law Analysis of Chenical Processes 5
2.1 Derivation of the first law efficiency 5
2.2 Calculaticn of AH 10
CHAPTER 3. Theoretical Approach to Second Law Analysis 13
3.1 Previous work 13
3.2 Two efficiency definitions 15
CHAPTER 4. Work Equivalent Calculations 18
4.1 Datur level components 18
4.2 Standard state work equivalents 19
4.3 Heat of combustion approximations 20
4.4 Total work equivalent 26
PART II: THE ENERGETICS OF THE COED RROCESS FROM A SECOND LAW PERSFECTIVE
CHPPTER 5. COED Process Description 29
CHAPTER 6. Second Law Analysis of the COED Process 32
6.1 Computational scheme 32
6.2 Char gasification unit example 35
6.3 Overall COED results 41
CHAPTER 7. Equipment and Construction Energy Cost. 48
7.1 Introduction 48
7.2 Computational approach and application to the COED plant 50
7.3 Salvage value considerations 54
CHAPTER 8. Conclusion 58
PART III: OPITMIzRICN OF FLLE GdS HEAT RECOVERY FROM A SECOND LAN EHRSPECTITE
$\frac{\text { Page }}{60}$
9.1 Heat recovery process description 60
9.2 Determination of three objective functions 50
CHAPTER 10. Thermodynamic and Econotnic Optimal Heat Recovery Designs 67
10.1 Computational scheme 67
10.2 Optimization results 73
CHAPTER 11. Conclusion 84
ACKNOWLEDGMENTS 85
NOMENCLATURE 86
REFERENCES 91
APPENDICES 93
Appendix A. 93
Appendix B 123
Table Page
1 Standard State Work Equivalints for 3dsic Substances 21
A Comparison of ε_{i}^{0} and $\Delta \mathrm{H}_{298}^{\mathrm{C}}$ for Various $\begin{gathered}\text { Dompounds } 22\end{gathered}$
ε_{i}^{0} for Compounds in the COED Process 33
Process Streams in Char Gasification - 1 Hour Basis 37
Char Gasification Utilities 38
Wozk Equivalents for Char Gasification 39
Work Equivalents fo: Overali COED Process.43
Thermodynamic Efficiencies and Energy Balance Closure for the COED Process 44
T_{c} and D_{c} Sector Energy Coefficients for Various Sectors 49Multiplying Factors and Combined Energy Coefficients forthe COED Plant 52
Combined Enersy Credit Coefficients for the COED Process 57
Heat-Exchanger Design Criteria for the Economic andThermodynamic Global Optimums75
Optimal Values of the Economic and themodynamic Objective Functions 77
COED Comercial Design Process Stream Description 95
Figure Page
1 A General Chemical Process 72 COED Comercial Process Block Diagran with Main Inputand Output Streams30
3 Flowchart of the GOED Thermodynamic Analysis Program 34
4 Char Gasification Diagram 36
5 Overall COED Process Diagran 42
6 Overall Furnace and Fiue Gas Heat Recovery BlockFlow Diagram . 6161
7 Overall Block Diagram of the Combined Heat Recovery System 63
8 Overall Block Diagram of the Heat Exchanger Addition System 65
9
Flowchart of the Flue Gas Heat Recovery Optimization Program 71.
10 A Gomparison of Normalized Economic and Thermodyramic Local Optimums with Respect to the Nimber of Hear Exchangers 79
11 A Direct Comparison of the Net Present Value Objective Function and the Exchanger-Plus-Furnace Objective Function with Respect to the Number of Heat Exchangers 8212
COED Commercial Process Block: Diagran wth DetailedStreams.94

PART I

INTRODUCTION TO THERMODYNAITC ANALYSIS

CHAPTER 1

IMTRODUCTIOR

The United States depends artensively on fossil fuel imports for energy and chemicals. To reduce this foreign depencincy and become energy selfsufficient we must convert alternate energy resources to liquid fuels and chemical feedstocks. Many forecasters predict that coal, oil shale, and tar sands among other nonrenewable encrgy resources can supply this country's energy needs for several hundred years once the technology is realized and the economics become attractive. Ultirntely future energy resources will have to be renewable. A major renewable energy resource, biomass, results from the utilization of plant material, an accumulation of solar energy. In addition to these alternate anergy resources the United States must proceed with a program of technological improvements in energy conservarion since it is quite clear that energy will never again be as cheap and abundant as in the past.

With the rapidly rising cost of energy one area of conservation that has been receiving increased attention is inproved waste heat recovery. The recovery of heat destined to be dissipated into the environment yields many benefits including a reduction in fuel consumption and reductions in air and water pollution because of the reduced heater and cooling tower loads. Thermodynamic analysis should play an important role in the development of energ; conservation programs such as this one to correct current wasteful energy practices and in the development of alternate energy resources to help fend oif foreign dependency.

Currently the Chemical Manufacturing Asscciation as reported by Fallwell and Greek (1) is claining to have reached their first goal of a 15% reduction in energy use through rather simple straightforward conservation techniques.

They have now set an energy conservation goal of yet another 15% by 1985 . To achieve this additional savings more sophisticated conservation techniques must be employed that require full-scale plant-by-plant energy audits. These audits would determine which segments of the processes are the most inefficient, and they would show where capital can best be spent in order to realize a large energy savings. Second law analysis can be used most effectively to locate the process segment inefficiencies and determine which are the most inefficient. It can also be used to compare different design alternatives that correct these inefficiencies.

A thermodynamic analysis of a process can be based upon either the first or the second law of thermodynamics. The first law is an energy conserration principle whereas the second law assizas a quality or worth to energy. Each energy source has a certain potential to perform work related to the second law, i.e. a work equivalent. This is a functiou of temperature, pressure, chemical composition, ant the enviroment in which it exists, Fo: example, a million kcal of thernal energy in a waste fice gas stream at $500^{\circ} \mathrm{F}$ is most certalnly worth more than the same amount of thermal energy in a wastewater stream at $150^{\circ} \mathrm{F}$. In comparing the relative worths of energy sources the work equivalent is the best basis for comparison.

This idea may be extended to form a second law analysis thereby providing a comon sasis in which different process schemes can be compared and their inefficiencies identifiad. Although second Iaw analyses have not been widely used, recently, several exfsting processes or industries have been examined in this manner (2, 3, 4, 5, 6). The second law analysis can be used throughout the development of a new process to determine which approaches utilize energy most efficiently and to identify areas of improvement. For example, currently the subject of Gasohol is attracting much
attention and so are the two processes for monviacturing the required ethancl: the farming-fermentation process and the ethylene hydration process. Second law analyses (7) have shown that the farming fermentation route is roughly twice as energy efficient as the other route and that it has a greater potential for improvament than the other route to ethanol production. In this thesis the Char Oil Energy Development (COED) process (8) which has been researched extensively was chosen to illustrate the procedures and necessary considerations in order to apply the thermodynamic principles of this second law analysis to one alternate energy technology.

Secorid lan analysis may also be used to carry out an optimization of a process design from the standpoint of an overall efficiency. The concepts of work equivalents or availabilities which are similar have recently been incorporated into heat exchange synthesis (9) and distillation system synthesis (10). These system syntheses, horever, examine the heat excharge network in a general manner from an ultimately economic point of viev. Here the optimization of a process design will be considered in detail from a totally themodynamic point of view wherein the process will be designed for a maximum in the overall second law efficiency. That efficiency as will be discussed shortly is distinguished from the second law efficiency by the additional onergy inputs and inefficiencies included therein. In this thesis a flue gas heat recovery process was chosen to illustrate this thermodynamic optimization of one energy conservation technology. Specificaily, the investigation herein will deal with the thermodynamic principles involved with the analysis and optimization of processes with the appcopriate considerations aeeded to proceed with both. The furdamental. principles involved with earlier and more recent thenocynamic enalysis will
be presented in the remainder of part I while the second law analysis and thermodynamic optimization appications will be presented in Parts II and III respectively. This investigation will show that two different efficiencies may be used in a second law analysis and that each one has distinct advantages and disadvantages. A1so the concept of an ove:all second law efficiency will be dealt with. This involves consideration of energy inputs and inefficiencies not normally included in en efficiency analysis or thermodynamic optimization. One such additional energy input is the energy associated with the fabrication of plant equipment and with the construction of a plant. This factor has not previously been fncluded in efficiency analyses or thermodynamic optimizations. It will be discussed extensively in Chapter 8 with specific reference to its application to the COED plant. Additional inefficiencies that must be considered in an overall second law efficiency are those associated with raw materials processing and electrical generation. Finally an overall second law efficiency will be presented for the COED process and two thermodynamic optimums will be given for two corresponding definitions of the flue gas heat recovery system. The COED second law efficiency will be compared with the first law efficiency of thet process, and one of the thermodynamic optimum of the flue gas heat zecovery system will be compared with a corresponding economic optinum for that system.

CHAPTER 2

FIRS: LAN ANALESIS OF CHEMICAL EROCESSES
2.1 Derivation of the first law efficiency

This chapter deals with the first law approach in finding an efficiency for a chemical process. Until recently this has been the primary approach given in the literature for evaluating the energy efficiency of any process. Because most previous applications have lacked rigor it W111 be advantageous to examine the thermodynamic principles and to provide the basis for a general first law efficiency.

Specifically, the first law efficiency may be derived Irom the statement of the first law for an open steady-state system in which potential and kinetic energies have been ignored:

$$
\begin{equation*}
\Delta H=Q+W \tag{2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
\Delta H= & \text { total change in enthalpy } \\
Q= & \text { net heat flow across system boundaries with heat } \\
& \text { flow in being a positive quantity and heat flow } \\
& \text { out being a negative quantity } \\
W= & n e t \text { shaft work between system and surroundings with } \\
& \text { the convention that work done on the system is posi- } \\
& \text { tive and work done by the system is negative }
\end{aligned}
$$

The total enthalpy change may then be expressed in terms of the standard heat of reaction and the appropriate reactant and product heat effects:

$$
\begin{equation*}
\Delta H=\Delta H_{298}^{0}+\Delta H_{p}^{O}-\Delta H_{R}^{\circ} \tag{2.2}
\end{equation*}
$$

where

$$
\begin{aligned}
\Delta \mathrm{H}_{298}^{\circ}= & \text { the standard heat of reaction at } 298 \mathrm{~K} \text { and } 1 \text { atm } \\
\Delta \mathrm{H}_{\mathrm{F}}^{\circ}= & \text { erthalpy change as the paoducts fn their standard } \\
& \text { states are taken from } 298 \mathrm{~K} \text { and } 1 \text { atm to their } \\
& \text { actual temperatures } \\
\Delta H_{\mathrm{R}}^{\circ}= & \text { analogous ertinalpy change for reactants }
\end{aligned}
$$

These terms can be expanded to sepresent the cotal enthalpy change of a general chemical process involving any number of chemical reacticns as shown in Figure 1. This process has n resctant streans with molar flow rates $r_{1}, r_{2}, \ldots r_{i}, \ldots r_{n}$ and m product streams with molar flow rates $p_{1}, p_{2}, \ldots p_{j}, \cdots p_{m}$ with the sum of all heat flows equal to Q and the sum of all work exchanges equal to W. The components of $\Delta \mathbb{R}$ may now be expressed in the following manner:

$$
\begin{align*}
& \Delta H_{298}^{\circ}=\sum_{j=1}^{m} P_{j} \Delta H_{j}^{f}-\sum_{i=1}^{n} r_{i} \Delta H_{i}^{f} \tag{2,3}\\
& \Delta H_{P}^{\circ}=\sum_{j=1}^{m} P_{j} C p_{j}\left(T_{j}-T_{0}\right) \tag{2.4}\\
& \Delta H_{R}^{\circ}=\sum_{i=1}^{n} r_{i} C p_{i}\left(T_{i}-T_{0}\right) \tag{2.5}
\end{align*}
$$

where

$$
\begin{aligned}
\Delta H_{a}^{f}= & \text { standard heat of formation for component a }(a=i \text { or } j) \\
\mathrm{Cp}_{\mathrm{a}}= & \text { constant pressure heat capacity for component } \mathrm{a}(\mathrm{a}= \pm \\
& \text { or } j \text {) with units consistent with those of } \Delta \mathrm{H}^{\circ}
\end{aligned}
$$

Next, the total standard heat of combustion is formed for the reactants and products in terms of standard heats of formation. The chemical species are taken to be composed of the elements C, H, O, N, and S and the combustion equation for an arbitraty species i is

$$
\begin{align*}
& C_{O_{i}} H_{\beta_{i}} O_{Y_{i}} N_{i} S_{\lambda_{i}}+\left(\alpha_{i}+\frac{B_{i}}{4}-\frac{\gamma_{i}}{2}+\lambda_{i}\right) 0_{2} \\
= & \alpha_{i} C_{0}+\frac{\beta_{i}}{2} H_{2} O+\frac{\delta_{i}}{2} N_{2}+\lambda_{i} S O_{2} \tag{2.6}
\end{align*}
$$

In this equation $\$_{2}$ was taker as the oxidation product instead of ${ }^{N}{ }^{2} x$ because of the unfavorable equilibrium of the latter for all but very high temperatures. The $\mathrm{H}_{2} \mathrm{O}$ is either liquid or vapor depending upon the method

Figure 1. A General Chemical Process
of calculating ΔH which will be considered in section 2.2. The standard heat of combustion for compousd i is

$$
\begin{equation*}
\Delta H_{i}^{c}=\alpha_{i} \Delta H_{C O}^{f}+\frac{\beta_{i}}{2} \Delta H_{H_{2} O}^{f}+\dot{\lambda}_{i} \Delta H_{S O_{2}}^{f}-\Delta H_{i}^{f} \tag{2.7}
\end{equation*}
$$

Using this equation, the total standard heat of combustion for reactants, ΔH_{R}^{C}, and for products, ΔH_{P}^{C}, is found:

$$
\begin{align*}
& \Delta H_{R}^{c}=\Delta H_{C O}^{f} \sum_{i=1}^{n} r_{i} \alpha_{i}+\Delta H_{H_{2}}^{\mathrm{f}} \sum_{i=1}^{n} r_{i} \frac{\beta}{2}+\Delta H_{S O_{2}}^{f} \sum_{i=1}^{n} r_{i} \lambda_{i} \\
& -\sum_{i=1}^{n} r_{i} \mathrm{MI}_{i}^{f} \tag{2.8}\\
& \Delta H_{P}^{C}=\Delta H_{C O}^{f} \sum_{j=1}^{m} p_{j} \alpha_{j}+\Delta H_{H_{2}}^{f} \sum_{j=1}^{m} p_{j} \frac{B}{2}+\Delta H_{S O_{2}}^{f} \sum_{j=1}^{m} p_{j} \lambda_{j} \\
& -\sum_{j=1}^{m} p_{j} \Delta H_{j}^{f} \tag{2.9}
\end{align*}
$$

Elemental balances show that ΔH_{293}° can be expressed as a combination of ΔH_{R}^{c} and ΔH_{P}^{c}. The elemental balances are

$$
\begin{align*}
& \sum_{i=1}^{n} r_{i} \alpha_{i}=\sum_{j=1}^{m} r_{j} \alpha_{j} \tag{2.10}\\
& \sum_{i=1}^{n} r_{i} \frac{B_{i}}{2}=\sum_{j=1}^{m} p_{j} \frac{B_{i}}{2} \tag{2.11}\\
& \sum_{i=1}^{n} r_{i} \lambda_{i}=\sum_{j=1}^{m} p_{j} \lambda_{j} \tag{2.12}
\end{align*}
$$

Conceptually these are seen to be true because the amount of a combustion product such as CO_{2} produced from the combustion of the reactants equals the amount likewise obtained from the products. Using these equalities Eq. (2.9) is subtracted from Eq. (2.8) giving

$$
\begin{equation*}
\Delta H_{R}^{c}-\Delta H_{p}^{c}=\sum_{j=1}^{m} p_{j} \Delta H_{j}^{f}-\sum_{i=1}^{n} r_{i} \Delta H_{i}^{f} \tag{2.13}
\end{equation*}
$$

Comparison with Eq. (2.3) reveals that

$$
\begin{equation*}
\Delta \mathrm{H}_{298}^{\mathrm{o}}=\Delta \mathrm{H}_{\mathrm{R}}^{\mathrm{c}}-\Delta \mathrm{H}_{\mathrm{P}}^{\mathrm{c}} \tag{2.14}
\end{equation*}
$$

Eq. (2.2) then becomes

$$
\begin{equation*}
\Delta H=\Delta H_{R}^{C}-\Delta H_{P}^{c}+\Delta H_{P}^{O}-\Delta H_{R}^{O} \tag{2.15}
\end{equation*}
$$

Now, this result is combined with the first law statement to obtain
a basic equality for the energy out terms with the energy in terms. First, Eq. (2.15) is substituted into Eq. (2.1). Second, Q and W are replaced by $Q_{i n}, Q_{o u t}, W_{i n}$, and $W_{\text {out }}$ where for convenience these quantities are taken to be positive. These actions result in

$$
\begin{equation*}
\Delta H_{R}^{c}-\Delta H_{P}^{c}+\Delta H_{P}^{o}-\Delta H_{R}^{\circ}=Q_{i n}-Q_{o u t}+W_{\text {in }}-W_{\text {out }} \tag{2.16}
\end{equation*}
$$

Rearranging yields

$$
\begin{equation*}
\Delta H_{P}^{C}-\Delta H_{P}^{o}-W_{\text {out }}-Q_{\text {out }}=\Delta H_{R}^{C}-\Delta H_{R}^{O}-W_{i n}-Q_{i n} \tag{2.17}
\end{equation*}
$$

The equation is now multiplled through by -1 to give

$$
\begin{equation*}
-\Delta H_{P}^{c}+\Delta H_{P}^{\circ}+W_{\text {out }}+Q_{\text {out }}=-\Delta H_{R}^{c}+\Delta H_{R}^{\circ}+W_{i n}+Q_{i n} \tag{2.18}
\end{equation*}
$$

Because all heats of combustion are always negative $-\Delta H^{C}$ will be written as an absolute value, $\left|\Delta \mathrm{H}^{\mathrm{c}}\right|$. Also, because most processes occur with $T_{i}>298$ and $T_{j}>298$ it should be noted that ΔE_{P}^{o} and ΔE_{R}^{o} will almost always be positive. This results in the following general first law statement:

$$
\begin{equation*}
\left|\Delta H_{p}^{c}\right|+\Delta H_{p}^{o}+W_{\text {out }}+Q_{o u t}=\left|\Delta H_{R}^{c}\right|+\Delta H_{R}^{o}+W_{\text {in }}+Q_{i n} \tag{2.19}
\end{equation*}
$$

Again, ic should be remembered that when using this equation all Q and W terms are taken as positive. Thus, each term in Eq. (2.19) is expected to be positive making each side of the equation equal to the sum: of all types of energy associated with inputs or outputs.

This equality should serve weil as a basis for defining the first law efficiency. This efficiency can be expressed as all of the utilized energy out divided by all of the energy in. The situation when all forms of energy are realized to their full potential will be termed the unity case because for that situation the first 1 av efficiency, $\eta_{\text {lst }}$, equals unity. It should be noted, however, that if all possible irputs are considered it is not possible to have a first law efficiency greater than unity. If any form of energy resulting from the process is not realized to its full potential $\eta_{1 s t}$ is less than unity. For example, some conditions that would cause $\eta_{1 s t}$ to be less than unity are

1. incomplete combustion resulting in a product such as $C 0$ in the stack gas
2. nonrecovery of the sensible heat, $\Delta H_{P_{j}}^{\circ}$, of a product
3. mechanical inefficiencies resulting in a heat flow to the surroundings
4. heat loss to the surroundings

2.2 Caicualtion of ΔH

Bailie and Douer (11) have defined a first law efficiency whose numerical value depends upon the type of thermochemical data used to evaluate $4 H$. Even though their formalization was not precise their definition is essentially the same as the one given in the previous section wherein the first Law efficiency equals rtilized energy out divided by total energy in. They considered heat of formation, higher heating value, and lower heating value data in the calculation of a first law efficiency. They pointed out that the higher heating value data are primarlly used in combustion processes and that for most other types of chemical processes the heat of formation data are used. They analyzed a simple conversion system utilizing the
reaction $\mathrm{CH}_{4}=\mathrm{C}+2 \mathrm{H}_{2}$. In this example the carbon product was considered waste. The first law efficiercies they calculated were $0,0.64$, and 0.60 corresponding to the use of heat of formation, higher heating value, and lower heating value data respectively.

Using these methods of calculating $4 H$ three different efficiencies are obtained, however, only two of these are realistic. First, consider calculation of ΔH from heat of formation data. It is possible to show through manipulation of Eqs. (2.1), (2.2), and (2.3) that

$$
\begin{equation*}
\Delta H_{P}^{f}+\Delta H_{P}^{o}+Q_{o u t}+W_{o u t}=\Delta H_{R}^{f}+\Delta H_{R}^{\circ}+Q_{i n}+W_{i n} \tag{2.20}
\end{equation*}
$$

Hence it is thermodynamically legitimate to use the above as the basis of an efficiency, however, it is not physically significant to refer the enthalpy of species to their elements when the ener3y possessed by any species is realized through an oxidation process. Thus it seems more realistic to refer specie enthalpies to oxidation products by using heats of combustion. In this way ridiculous and meaningless results such as those obtained by Bailie and Doner will be avoided. Next, consider the calculation of ΔH from heat of combustion data for two general chemical process cases. In the first case the chemical process does not involve water in the reactant or product streams. As pointed out by Bailie and Doner in their example the higher and lower heating value data yielded two different first law efficiencies. This is seen to be justifiable because as long as the $\Delta H_{H_{2}}^{\mathrm{f}}$ ond $\Delta \mathrm{H}_{\mathrm{i}}^{\mathrm{f}}$ terms in Eqs. (2.7), (2.8), and (2.9) are handled consistently (both referring to same $\mathrm{F}_{2} 0$ standard state) either heat of combistion method can correctly be used to calculate AH. In the second case the chemical process does fnvolve water in the reactant and/or product streams. Here in order to correctly apply both methods of calculating $\Delta \mathrm{H}$, the higher and lower heating value methods, the $\Delta \mathrm{H}_{\mathrm{H}_{2} \mathrm{O}}^{\mathrm{f}}$ and $\Delta \mathrm{H}_{i}^{f}$
terms in Eqs. (2.7), (2.8), and (2.3) must again be handled consistently with respect to water's reference state, but aiso the latent heat of vaporization of water must be either added to or suttracted from Eqs. (2.4) and (2.5) when appropriate. This again will lead to two different first law efficiencies, however, in both of the cases considered the higher heat of combustion method is perhaps preferred because it uses the maximum energy oitainable from any stream in the efficiency calculations. It should be noted, however, that the difference between these two first law efficiencies is expected to be small.

3.1 Previous work

This chapter deals with the second law approach in determining an efficiency for a chemical process. Two approaches to this thermodynamic efficiency analysis based on the second law have been given in the literature.

Denbigh (5) delineated the first approach and applied it in his analysis of an ammonia oxidation process. He used the concept of availability to calculate the actual and the ideal work associated with the process. With this information Denbigh found what he termed the thermodynamic efficiency for the ammonia oxidation process. Specifically, he obtained an efficiency of 0.06 for that process. Denbigh recognized that for all practical purposes large scale fadustrial reactions could not be carried out reversibly so under that limitation an efficiency of unity was not possible. He therefore propcsed the concept of a "prescribed degree of irreversibility" in which chemical reactions and the mixing of reagents are allowed to proceed irreversibly. The reactions' heat effects, however, are realized in a reversible manner and all other physical or mechanical operations are assumed reversibie. Using this concept Denbigh calculated a new efficiency, the practical efficiency. He found that efficiency to be 0.11 for the ammonia oxidation process.

The other approach was given by Gyftopolous, Lazaridis, and Widmer (4) who used the concept of available useful work to evaluate the potential for mere effective use of fuel. They evaluated the second law efficiency of several basic industries. Riekert (6) formalized this approach and its environmental datum. He employed the available useful work, which he called the work equivalent, to calculate the "efficiency of energy
utilization." Riekert calculated that efficfency for an ammia oxidation process similar to Denbigh's and Eound an efficiency of 0,16. He explained the discrepancy with Denbigh in the differences in their approaches even though he assumed slightly different operating conditions, Specifically, Riekert counted the work equivalent of the product as an output whereas Denbigh gave the product no value. Riekert's approach will be considered in this chapter.

He defined the work equivalent as the maximum work obtainable when a substance is moved reversibly into equilibrium with a specified environment. The work equivalent may be developed from the statement of the first law for an open steady-state system in which potential and kinetic energies have been ignored, Eq. (2.1). Since the processes taking place are reversible

$$
\begin{equation*}
Q=\int T d S \tag{3,1}
\end{equation*}
$$

where

```
T = heat transfer temperature
dS = differential entropy
```

Substitution into the first law statement, Eq. (2.1), yields an equation for the maximum shaft work done by the system which after multirlication by -1 is

$$
\begin{equation*}
W_{\max }=\Delta H-\int T d S \tag{3,2}
\end{equation*}
$$

For the case where the only transfer of heat takes place reversibly at constant temperature, T_{0}, Eq. (3.2) becomes

$$
\begin{equation*}
W_{\max }=\Delta H-T_{0} \Delta S \tag{3.3}
\end{equation*}
$$

If a reference state with properties (T_{0}, F_{0}, S_{o}) exists from which no work can be obtained through interaction with che environment, then the work equivalent, ε, may be defined as

$$
\begin{equation*}
\varepsilon=H-H_{0}-T_{0}\left(S-S_{0}\right) \tag{3.4}
\end{equation*}
$$

For a homogeneous mixture containing n_{i} moles of species i a partial molar work equivalent can be defined

$$
\begin{equation*}
\varepsilon=\sum_{i} n_{i} \varepsilon_{i}=H-H_{0}-T_{0}\left(S-S_{0}\right) \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\varepsilon_{i}=H_{i}-H_{o i}-T_{0}\left(S_{i}-S_{o i}\right) \tag{3.6}
\end{equation*}
$$

is the partial molar work equivalent of species i in the mixture with respect to the environment.

Riekert considered the environment to be fixed with respect to temperature, T_{0}, pressure, p_{0}, and datur level components. These datum level components are assumed to be available from the enviromment in "unlimited" supply without any expenditure of work. This is analogous to an infinite heat reservoir of temperature T_{0}. The properties of the datum level components imply that no work can be obtained from them at T_{0} and $P_{o}, ~ i . e . \varepsilon=0$. This would prohibit spontaneous chemical reactions between these components at T_{0} and p_{0}. In addition the work equivalent ε_{i} of any compound in equilibrium at T_{0} and P_{0} with the datum level components is zero. It may be noted that the datum level of a specific element is the state of that element as it exists in "uniinited" supply in the environment. Another property of the datum level components is that they provide the set of reference properties ($H_{o i}, S_{o i}$) in Eq. (3.6). These reference properties are determined from the manner in which substance i is in equilibrium with the environment, i.e. by itself or as part of a mixture.

3.2 Two efficiency definitious

Work equivalents may be calculated for all the process streams and utilities associated with a given process. In order to do this and then
determine an efficiency a large amount of information must be gathered temperature, pressure, composition, and flow rates of all streams entering or leaving the process, the work inputs and outputs, and the heat inputs and outputs with their temperature levels. Once this is accomplished either one of the two following efficiencies may be found.

The first of these, the second law efficiency or efficiency of energy utilization according to Riekert, is defined on a unit time basis as the total work equivalent output in all the useful outgoing streams divided by the total work equivalent input or

$$
\begin{equation*}
\eta=\frac{\varepsilon_{\text {out }}+W_{\text {out }}}{\varepsilon_{\text {in }}+W_{\text {in }}} \tag{3.7}
\end{equation*}
$$

The $W_{i n}$ and $W_{\text {out }}$ refer to the total in and out work equivalents of utilities such as shaft work, steam, condensate, and fuel gas. In this efficiency definition the work equivalent of any stream is zero when it is unutilized and it disappears into the environment. If all possible inputs are considered it is not possible for the second law efficiency to be greater than unity. This efficiency is seen to be analogous to the first law efficiency defined in Chapter 2 where energy has been replaced by the work equivalent.

The other efficiency, Denbign's thermodynamic efficiancy, is referred to here as the incremental efficiency. It is defined on a unit time basis as a ratio of the ideal work involved with the process streams' transformations to the actual work equivalent that brought about these changes. For a work-requiring process the incremental efficiency is

$$
\begin{equation*}
\eta_{I}=\frac{\varepsilon_{\text {out }}-\varepsilon_{\text {in }}}{W_{\text {net }}} \tag{3.8}
\end{equation*}
$$

For a work producing process the inverse of $E q$. (3.8) equals n_{I}. As with the first and second law efficiencies the incremental efficiency cannot be
greater than unity if all possible inputs are considered. However, in contrast with these two prior efficiencies the incremental efficiency can be less than zero. Negative values can occur when many of the product streams are unutilized in a work requiring process.

While the second law or absolute efficiency measures the effectiveness of the entire process, often the large work equivalents associated with high energy chemical streans can overshadow the physical work terms which are more often identified with fuel utilization. In this regard Gyftopolaus et al. (4) have shown that the absolute efficiency for petroleum refining is 0.91 , but the incremental efficiency, which measures fuel utilization, is only 0.09 . This difference between the two efficiencies will further be examined in Chapter 6 in light of a specific process evaluation.

CHATTER 4
WORK EQUIVALENT CALCUIATIONS

4.1 Datum level components

In this chapter the method of calculating work equivalents in a specific environment will be detalled. As discussed in the previous chapter the enviroment must be specified with respect to temperature, pressure, and datum level components. The environment considered here is fixed with respect to these properties:
(a) $T_{0}=298 \mathrm{~K}$
(b) $\mathrm{p}_{0}=1.0 \mathrm{~atm}$
(c) Datum level components:

$$
\begin{aligned}
& \mathrm{N}_{2(\mathrm{~g})}: \mathrm{x}_{\mathrm{N}_{2}}=0.79 \\
& \mathrm{O}_{2(\mathrm{~g})}: \mathrm{x}_{\mathrm{O}_{2}}=0.21 \\
& \mathrm{CO}_{2(\mathrm{~g})}: \mathrm{x}_{\mathrm{CO}}=0.000314 \\
& \mathrm{H}_{2} \mathrm{O}(\ell): \mathrm{x}_{\mathrm{H}_{2} \mathrm{O}}=1.0 \\
& \mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}): \mathrm{x}_{\mathrm{CaSO}}^{4} \text { } \cdot 2 \mathrm{H}_{2} \mathrm{O}=1.0 \\
& \mathrm{CaCO}_{3}(\mathrm{~s}): \mathrm{x}_{\mathrm{CaCO}_{3}}=1.0
\end{aligned}
$$

Riekert (5) considered stack gases to be part of his environment so he used 0.17 as the CO_{2} mole fraction. So as to be more general the environment considered here does not include stack gases thus the value used above is the mole fraction of CO_{2} in air. The last two components listed above, gypsum $\left(\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ and limestone $\left(\mathrm{CaCO}_{3}\right)$, provide for the calculation of a work equivalent for sulfur. The $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ was used as a sulfur source because of its reactive stability, i.e., a very low Gibbs free energy of formation, ΔG_{f}^{O}, and because it exists in plentiful supply. Likewise CaCO_{3} was chosen as a calcium source for similar reasons. In general a datum
level component should be abundant in the environment and should not react with other datum level components; this implies a low ΔG_{f}^{0}. The state of aggregation of datum level components should also be considered. If it is a liquid or gas the mole fraction is important. If it is a solid then its interaction with water can be important. For example, a solid can become hydrated or it can dissolve. If the latter occurs the component's datum level state must be aqueous so that solution affects can be accounted for. 4.2 Standard stace work equivalents

For the environmental properties described in the previous section the work equivalents of the elements $\mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{H}_{2}, \mathrm{C}$, and S in their pure forms at T_{0} and p_{o}, the standard state, can be calculated. These standard state work equivalents, ε_{i}^{o} 's of pure N_{2}, O_{2}, and CO_{2} are equal to their standard free energies of unmixing from the envircnment. For example, $\varepsilon_{0_{2}}^{0}$ is calculated from

$$
\begin{equation*}
\varepsilon_{0_{2}}^{\circ}=-R T_{o} \text { ln } x_{0_{2}} \tag{4.1}
\end{equation*}
$$

Using these air derived values, H_{2} and C can be calculated from the $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} formation reactions. The change in the standard state work equivalent for these reactions equals the standard free energy of formation.

$$
\begin{align*}
& \varepsilon_{\mathrm{H}_{2}^{0}}^{0} \mathrm{O}^{0}-\varepsilon_{\mathrm{H}_{2}}^{\circ}-\frac{1}{2} \varepsilon_{\mathrm{O}_{2}}^{0}=\Delta G_{f \mathrm{H}_{2}}^{0} \tag{4.2}\\
& \varepsilon_{\mathrm{CO}_{2}}^{0}-\varepsilon_{\mathrm{C}}^{\circ}-\varepsilon_{\mathrm{O}_{2}}^{0}=\Delta \mathrm{G}_{\mathrm{fCO}}^{0} \tag{4.3}
\end{align*}
$$

The work equivalent for water in Eq. (4.2) is set equal to zero because liquid water is a datum level component.

To calculate ε_{S}° the compound $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is taken to be the stable configuration of sulfur. Sulfur is put into this compound from CaCO_{3}, the stable source of Ca . The reaction to bring sulfur or a sulfur compound into equilibrium with the environment is

$$
\begin{equation*}
\mathrm{SO}_{3}+\mathrm{CaCO}_{3}+2 \mathrm{H}_{2} \mathrm{O}=\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \tag{4.4}
\end{equation*}
$$

It is noted that $\varepsilon_{i}^{0 \text { ' }}$ s are avallable for all of these components except for SO_{3}, thus $\varepsilon_{\mathrm{SO}_{3}}^{\circ}$ may be calculated from Eq. $(4,5)$ after the standard free energy of reaction, ΔG°, is determined.

$$
\begin{equation*}
\varepsilon_{\mathrm{CO}}^{2}+\varepsilon_{\mathrm{CaSO}_{4}}^{0} \cdot 2 \mathrm{H}_{2}^{\mathrm{O}}-\varepsilon_{\mathrm{SO}_{3}}^{0}-\varepsilon_{\mathrm{CaCO}_{3}}^{0}-2 \varepsilon_{2}^{0} \pi_{2}^{0}=\Delta \mathrm{G}^{\circ} \tag{4.5}
\end{equation*}
$$

Next, ε_{s}° is calculated from the formation reaction of SO_{3}

$$
\begin{equation*}
\varepsilon_{\mathrm{SO}_{3}}^{\circ}-\varepsilon_{\mathrm{s}}^{\circ}-\frac{3}{2} \varepsilon_{\mathrm{O}_{2}}^{\circ}=\Delta \mathrm{G}_{\mathrm{f} \mathrm{SO}_{3}}^{\circ} \tag{4.6}
\end{equation*}
$$

The standard state work equivalent of any substance containing C, H, $0, N$, and S can be calculated using the previous rasults if standard free energy of formation data are known. This is achieved through

$$
\begin{align*}
\varepsilon_{\mathrm{C}_{\alpha} \mathrm{H}_{8} O_{\gamma} N_{\delta} S_{\lambda}}^{\circ}=\alpha \varepsilon_{\mathrm{c}}^{\circ} & +\frac{1}{2} \beta \varepsilon_{\mathrm{H}_{2}}^{\circ}+\frac{1}{2} \gamma \varepsilon_{\mathrm{O}_{2}}^{\circ}+\frac{1}{2} \delta \varepsilon_{\mathrm{N}_{2}}^{\circ} \\
& +\lambda \varepsilon_{\mathrm{S}}^{\circ}+\Delta G_{f}^{\circ} \mathrm{C}_{\alpha} \mathrm{H}_{\beta} O_{\gamma}{ }^{N} \delta^{S} \lambda \tag{4.7}
\end{align*}
$$

The standard state work equivalents for $\mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{H}_{2}, \mathrm{C}$, and S are given in Table 1. It ray be noted that with the proper selection of datum level components and with the above procedure a consistent set of ε_{i}^{0} 's for all the elements should be obtainable.

4.3 Heat of combustion approximations

For complex hydrocarbons such as coal and coal-derived ofls the rethod for finding standard state work equivalents cannot be applied because of the absence of ΔG_{f}^{0} data. Therefore the approximation that ε_{i}^{0} is equal to the standard heat of combustion, $\Delta \mathrm{H}_{293}^{\mathrm{C}}\left(\mathrm{H}_{2}{ }^{\mathrm{O}}(\mathrm{l}\right.$.$)), must be considered. Table 2$ compares these two values calculated for several groups of hydrocarbons, including coal tar constituents (12), for which ΔG_{f}^{0} data could be found. This table shows that for hydrocarbons the ratio $-\varepsilon_{i}^{0} / \Delta \mathrm{H}_{298}^{\mathrm{C}}$ increases as the

TABLE 1. Standard State Work Equivalents for Basic Substances

Substance	State	$\begin{gathered} \varepsilon_{i}{ }^{0}(298 \mathrm{~K}, 1 \text { atm }) \\ \mathrm{kcal} / \mathrm{kmol} \\ \hline \end{gathered}$
N_{2}	g	143
0_{2}	g	932
H_{2}	g	65224
C	c, graphite	98112
S	c, rhombic	139660

Table 2. A Comparison of ε_{i}^{0} and $\Delta H_{298}^{\hat{2}}$ for Various Compounds *

Compound $\begin{array}{cc}\varepsilon_{i}^{0} & -\Delta \mathrm{H}_{298}^{\mathrm{c}} \\ \mathrm{kcal} / \mathrm{kmol} & \mathrm{kcal} / \mathrm{kmol}\end{array} \quad-\varepsilon_{i}^{0} / \Delta \mathrm{H}_{298}^{\mathrm{c}} \times 100$

Normal Alkane -

$$
\begin{gathered}
\mathrm{CH}_{4} \\
\mathrm{C}_{2} \mathrm{H}_{6} \\
\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10} 10 \\
\mathrm{n}-\mathrm{C}_{8} \mathrm{H}_{18} 18 \\
\mathrm{n}-\mathrm{C}_{20} \mathrm{H}_{42}
\end{gathered}
$$

198420
212820.
93.23
357040.
372810.
95.77

669820
687640.
97.41

1294830
1317440.
98.28

3170980
3206750 .
98.88

Cyclic Alkane -

$$
\begin{gathered}
\mathrm{C}_{6} \mathrm{H}_{12} \\
\text { trans }-\mathrm{C}_{10} \mathrm{H} 18
\end{gathered}
$$

933600.

944780 .
98.82
1504690. 1511790.
99.53
** Benzoid_Aromatic-
Monocylic:

$\mathrm{C}_{6} \mathrm{H}_{6}$	788340.	789080.	99.91
$\mathrm{C}_{7} \mathrm{H}_{8}$	939840.	943580.	99.60
p-xylene $\mathrm{C}_{8} \mathrm{H}_{10}$	1094970.	1098280.	99.70

Bicyclic:

tetralin $\mathrm{C}_{10} \mathrm{H}_{12}$
1358360.

1259460 .
1357010.
100.10
napththalene $\mathrm{C}_{10} \mathrm{H}_{8}$
Q-methylnaph thalene $\mathrm{C}_{11}{ }^{\mathrm{H}}{ }_{10}$
1412390
1249850.
100.77
biphenyl $\mathrm{C}_{12} \mathrm{H}_{10}$
Tricylic:
anthracene $\mathrm{C}_{14}{ }^{\mathrm{H}} 10$
phenanthrene $\mathrm{C}_{14} \mathrm{H}_{10}$
1733930.
1713270.
101.21
1728290.
1707780.
101.20

Oxygenated

phenol $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$	749490.	746230.	100.44
p-cresol $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}$	904300.	901660.	100.29
pyridine	676650.	674550.	100.31

676650.
676651.

100.31

Table 2 - Continued

Compound

Biochemicals -

Amino Acids:

L-Alanine $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{~N}$
403340
I-Aspartic Acid $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{4} \mathrm{~N}$
L-Cysteine $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{NS}$
Glycine $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{~N}^{\mathrm{N}}$
I-Glutamic Acid $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{4} \mathrm{~N}$
L-Leucine $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~N}$
L-Tyrosine $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{~N}$
L-Tryptophan $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2}{ }^{\mathrm{N}} 2$
Monosaccharides:
D-Glucose $\mathrm{C}_{6} \mathrm{H}_{12}{ }^{\mathrm{O}} 6$
Galactose $\mathrm{C}_{6} \mathrm{H}_{12}{ }^{\mathrm{O}}{ }_{6}$
711210
669950
105.16

711210
669350
106.16

Disaccinarides:

S-Lactose $\mathrm{C}_{12} \mathrm{H}_{22}{ }^{0} 11$
1426410
1346000

1388330
1349300
102.89

Maltose $\mathrm{C}_{12} \mathrm{H}_{22}{ }^{\mathrm{O}} 11$
Sucrose $\mathrm{C}_{12}{ }^{\mathrm{H}} 22{ }^{0}{ }^{0} 11$
387210
104.17
108.62
103.21(118.3) ${ }^{* * *}$
106.99
106.19
101.79
103.55
102.88

1472870
1515340

元
-解

Maltose $\mathrm{C}_{12} \mathrm{H}_{22}{ }^{\mathrm{O}} 11$
1431750
1348200
106.20

* 298K, 1 atm, ideal gas
** aromatic constituents of coal tar (12)
*** $\Delta \mathrm{H}_{298}^{\mathrm{C}}$ calculated from $\Delta \mathrm{H}^{\mathrm{f}}=-127880 \mathrm{kcal} / \mathrm{kmol}$ with products of N_{2}, $\mathrm{H}_{2} \mathrm{O}(\ell), \mathrm{CO}_{2}$, and SO_{2}

```
    Thermodynamic data - (13), (14), (15), and (16)
```

carbon to hydrogen ratio increases and in most cases as the molecular weight increases. These results will be taken as empirical and no explanation will be offered. Therefore, in the light of these results the assumption that ε_{i}^{0} equals $-4 \mathrm{H}_{298}^{\mathrm{c}}$ will be used in the case of highly aromatic coal products. This application to coal seems reasonable since Whitehurst (17) has suggested that bituminous coals have an aromaticity of approximately 60% and contain significant amounts of polycylic aliphatic rings.

Another class of compounds of interest are the biochemicals. They, in the form of biomass, may be important in alternate energy conversion technologies therefore secund law analysis is appropriate and consequently standard state work equivalents will be needed. Since ΔG_{f}^{0} data, and for that matter $\Delta \mathrm{H}_{298}^{\mathrm{C}}$ data, are seldom available several approximations are needed. First, the heat of combustion approximation will be considered. The latter part of Table 2 deals with applying this approximation to some bionass related compounds for which thermodynamic data are available. The work equivalent - heat of combustion comparison ratios, $-\varepsilon_{i}^{0} / \Delta \mathrm{H}_{298}^{\mathrm{c}} \mathrm{s}$, for the biochamical compounds are seen to be slightly larger than those for the hydrocarbon compounds. Also, these data suggest that in actual biochemical calculations it may be desirable to let ε_{i}^{0} equal $1.05 \Delta H_{298}^{c}$ rather than equating them one to one. It should be pointed out that this work equivalent heat of combustion approximation has been established for compounds containing C, H, O, and N. The assumption may not be valid for other types of compounds. For instance, look at this assumption as it applies for carbon and sulfur. The combustion reactions and heats of combustion for these elements are

$$
\begin{array}{ll}
\mathrm{C}+\mathrm{O}_{2}=\mathrm{CO}_{2} & -\Delta \mathrm{H}_{298}^{\mathrm{c}}=94051 \mathrm{kcal} / \mathrm{kg} \\
\mathrm{~s}+\mathrm{O}_{2}=\mathrm{SO}_{2} & -\Delta \mathrm{H}_{298}^{\mathrm{c}}=70960 \mathrm{kcal} / \mathrm{kg}
\end{array}
$$

For comparison the standard state work equivalents for carbon and sulfur are 98112 and $139660 \mathrm{kcal} / \mathrm{kg}$ respectively. Thus for carbon the comparison ratio is about one but for sulfur it is about two. Clearly, the work equivalent heat of combustion approximation is invalid for sulfur. This may be explained in that sulfur's combustion product, SO_{2}, is a datum heat of combustion product, zero energy value, but it is not a work equivalent datum component. Therefore, the addition of sulfur increases the heat of combustion a specific amount, but it increases the work equivalent by more than that amount since a significant amount of work can be obtained from SO_{2} as it is moved reversibly into equilibrium with the environment. It may be noted that for this reason the comparison ratio for sulfur-containing L-cysteine is somewhat higher than that for other amino acids when $\Delta \mathrm{H}_{298}^{\mathrm{c}}$ calculated from ΔH^{5} data with standard combustion products is used instead of the ilterature value of the heat of combustion.

The second approximation concerns estimating the heat of combustion. To discuss this it is instructive to consider the problem of estimating the heat of conbustion for wheat. Minkevich, Eroshin, and coworkers (18) found that based on the following reaction

$$
\begin{equation*}
\mathrm{CH}_{\mathrm{p}} \mathrm{O}_{\mathrm{n}} \mathrm{~N}_{\mathrm{q}}+\frac{\gamma_{\mathrm{b}}}{4} \mathrm{O}_{2}=\mathrm{CO}_{2}+\frac{1}{2}(\mathrm{p}-3 \mathrm{q}) \mathrm{H}_{2} \mathrm{O}+\mathrm{qNH}_{3} \tag{4.8}
\end{equation*}
$$

the heat of combustion of a wide variety of organic material is

$$
\begin{equation*}
\Delta \mathrm{H}_{298}^{\mathrm{c}}=27 \gamma_{\mathrm{b}} \mathrm{kcal} / \mathrm{g} \mathrm{~mole} \mathrm{c} \tag{4.9}
\end{equation*}
$$

where

$$
\gamma_{b}=4+p-3 q-2 n
$$

Thus, if the elemental composition of wheat is known $\Delta H_{298}^{\mathrm{C}}$ can be estimated. However, in the likely event that the composition of wheat is unknown further
approximations must be made. Wikevich et al. also found that for most biomass γ_{b} is about 4.29 and that the weight fraction of carbon is about 0.462 . This weight fraction corresponds to 0.0385 g mole C per g biomass and results in $\Delta \hat{\mathrm{H}}_{298}^{\mathrm{c}}=2025 \mathrm{kcal} / \mathrm{lb}$ ($4460 \mathrm{cal} / \mathrm{g}$) for biomass. Therefore, this $\Delta \hat{H}_{298}^{c}$ value estimates the heat of combustion for dry wheat. For comparison Merrill and Watt (19) report a value of $4.03 \mathrm{kcal} / \mathrm{g}$ or 1828 kcal/lb for wheat containing 10.8% moisture. If the heat of combustion estimate for dry wheat is corrected for 10.8% moisture then this estimate becomes $1806 \mathrm{kcal} / \mathrm{lb}$ which is very close to the reported value. It would appear that the approximation of $\Delta \hat{H}_{298}^{c}=2025 \mathrm{kcal} / \mathrm{lb}(4460 \mathrm{cal} / \mathrm{g})$ for biomass is reasonable; in the absence of other data this combined with the empirically established equality of ε_{i}^{0} and ΔH_{298}^{C} at best allows ε_{i}^{0} to be estirated for biomass.
4.4 Total work equivalent

To arrive at the total work equivalent for a substance both the standard state work equivalent, ε_{i}^{0}, and the change in work equivalent, $\Delta \varepsilon_{i}$, to another state (T, p, x_{i}) must be calculated. Using the molar work equivalent as an approximation for the partial molar work equivalent in $E q$. (3.6), $\Delta \varepsilon_{i}{ }^{\prime} s$ follow from that equation's partial derivatives. In the following derivations the ideal gas and the ideal solution assumptions are used. First, take the partial derivative of Eq. (3.6) with respect to temperature to obtain

$$
\begin{equation*}
\frac{\partial \varepsilon_{i}}{\partial T}=\frac{\partial H_{i}}{\partial T}-T_{0} \frac{\partial S_{i}}{\partial T} \quad \text { (constant } ? \text { and } x_{i} \text {) } \tag{4.10}
\end{equation*}
$$

Next, apply the constant pressure heat capacity relations to arrive at

$$
\begin{equation*}
\frac{\partial \varepsilon_{i}}{\partial T}=\left(1-\frac{T}{T}\right) C p_{i} \quad\left(\text { constant } p \text { and } x_{i}\right) \tag{4.11}
\end{equation*}
$$

This equation may be integrated with a two paraneter heat capacity equation, $C p_{i}=a_{i}+b_{i} T$, from T_{0} to T to give

$$
\begin{equation*}
\Delta \varepsilon_{i_{T}}=\left(a_{i}-b_{i} T_{0}\right)\left(T-T_{0}\right)+\frac{1}{2} b_{i}\left(T^{2}-T_{0}^{2}\right)-a_{i} T_{0} \ln T / T_{0} \tag{4.12}
\end{equation*}
$$

For constant heat capacity Eq. (4.1I) becomes

$$
\begin{equation*}
\Delta \varepsilon_{I_{T}}=C_{p_{i}}\left(T-T_{0}-T_{0} \ln T / T_{0}\right) \tag{4.13}
\end{equation*}
$$

Now, take the partial derivative of Eq. (3.6) with respect to pressure to find

$$
\begin{equation*}
\frac{\partial \varepsilon_{i}}{\partial p}=\frac{\partial H_{i}}{\partial p}-T_{0} \frac{\partial S_{i}}{\partial p} \quad \text { (constant } T \text { and } x_{i} \text {) } \tag{4.14}
\end{equation*}
$$

Then apply the proper thermodynamic identities to obtain these results

$$
\begin{align*}
& \left(\frac{\partial \varepsilon_{i}}{\partial p}\right)_{T, x_{i}}=V_{i}-T\left(\frac{\partial V_{i}}{\partial T}\right)_{p, x_{i}}+T_{0}\left(\frac{\partial V_{i}}{\partial T}\right)_{p, x_{i}} \tag{4.15}\\
& \left(\frac{\partial \varepsilon_{i}}{\partial p}\right)=V_{i}-\left(T-T_{0}\right)\left(\frac{\partial V_{i}}{\partial T}\right)_{p, x_{i}} \tag{4.16}
\end{align*}
$$

This equation may be integrated from P_{0} to p at T_{0} to give for an ideal gas

$$
\begin{equation*}
\Delta \varepsilon_{i_{p}}=R T_{0} \ln p / p_{o} \tag{4.17}
\end{equation*}
$$

Finally, consider the change of work equivalent at constant T and p due to a change of mole fraction. For simplification let this change only take place at T_{o} and p_{0} then $\Delta \varepsilon_{i}$ equals the change in free energy or in the case of an ideal solution

$$
\begin{equation*}
\Delta \varepsilon_{i_{x}}=R T_{0} \ln x_{i} \tag{4.18}
\end{equation*}
$$

Since the work equivalent is a state function, its calculation based on the datum can be performed in the following manner:

In evaluating a process stream of materials the total work equivalent can be divided into a chemical work equivalent, $\varepsilon_{\text {chem }}$, and a physical work equivalent, $\varepsilon_{\text {phys }}$. The chemical work equivalent can be defined as

$$
\begin{equation*}
\varepsilon_{\text {chem }}=\sum_{i} n_{i} \varepsilon_{i}^{0} \tag{4.20}
\end{equation*}
$$

where n_{i} equals the moles of species i in a stream on a unit time basis. In other words, $\varepsilon_{\text {chem }}$ represents that part of the total work equivalent, ε, which is due to chemical energy at T_{0} and p_{o}. The physical work equivalent can be defined as

$$
\begin{equation*}
\varepsilon_{\text {phys }}=\sum_{i} n_{i}\left(\Delta \varepsilon_{i_{T}}+\Delta \varepsilon_{i_{p}}+\Delta \varepsilon_{i_{x}}\right) \tag{4.21}
\end{equation*}
$$

i.e. $\varepsilon_{\text {phys }}$ is the part of ε resulting from a state different than the datum.

In evaluating the process utilities the work equivalents for steam, condensate, and fuel gas can be calculated in the same way.

PART II
THE ENERGETICS OF THE COED PROCESS
FROM A SECOND LAN PERSPECTIVE

CHAPTER 5

COED PROCESS DESCRIPTION

Part II is an application of the thermodynamic analysis presented in Part I. Specifically, the Char Oil Energy Development process of FMC Corp. (8) developed under the sponsorship of the United States Energy Research and Development Administration will be analyzed from a second law perspective with the first law approach used as a comparison. Both the second law and the incremental efficiency will be used to show that each has distinct advantages and disadvantages. Also the concept of an overall second law efficiency which includes an energy debit for plant equipment will be dealt with. This factor has not previously been included in efficiency analyses. The energy associated with manufacturing plant equipment and with plant construction will be discussed and specifically calculated for the COED plant. Also the inclusion of outside inefficiencies involved with raw materials processing and electricity generation will be discussed.

However, the process must first be described before the analysis may proceed. The COED process fits into the general category of liquefaction via pyrolysis. Figure 2 is a schematic diagram filustrating the comercial plant design for processing 25,000 tons (22,680 metric tons) of Illinois No. 6 - seam coal per day. Following coal preparation, the coal is dried in a fluidized-bed dryer at $350^{\circ} \mathrm{F}$ (450K) using the first stage pyrolysis off-gases. The dried coal is then fed through four stages of pyrolysis, each at succeedingly higher temperatures; $550^{\circ} \mathrm{F}$ (561 K) , $850^{\circ} \mathrm{F}$ (723K), $1050^{\circ} \mathrm{F}$ (839 K), and $1550^{\circ} \mathrm{F}$ (1116K). The fourth stage pyrolysis is affected by injection of steam and oxygen. The char leaving the fourth stage passes directly to the afr blown, Winkler type fluidized-bed gasifiers. Gas produced there consists mainly of $\mathrm{N}_{2}, \mathrm{CO}$, and H_{2}. This gasifier gas chen
goes through the acid gas removal scrubber and becomes a high energy product. The pyrolysis gas consists mainly of $\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}, \mathrm{CO}, \mathrm{H}_{2}$, and hydrocarbons. It goes through a recovery section in which the pyrolysis oil is condensed and separated from the product gas. Following oil filtration, the oil is upgraded to a synthetic cruce oil, syncrude, by hydrotreating. The hydrogen to do this is produced by gas reforming a portion of the deacidized pyrolysis product gas followed by shift conversion and methanation. In the gas clean-up sections, sulfur is recovered, via a claus process, as a byproduct.

The COED comercial plant design also contains various systems to satisfy the utility requirements. Included are the cooling, boiler, and process waste water systems. Waste heat boilers produce a net excess of steam primarily from the compression, hydrotreating, and gasification units. The fuel gas needed mainly by the pyrolysis and hydrogen units is taken from the product gas. The net inputs and outputs of quantities used in this COED process are given later in Figure 5.

This COED commercial design was based upon pilot plant studies for only the pyrolysis, filtration, product recovery, and hydrotreating sections. The designs for other sections, most of which are well-known, were obtained from various companies. A very simplified approach was taken in process water treatment that may not represent an actual design.

CHAPTER 6

SECOND IAW ANALYSIS OF THE COED PROCESS

6.1 Computational scheme

In this chapter the COED process will be analyzed with respect to the second law of thermodynamics. A specific unit of this process, the char gasification unit, will serve to illustrate the detailed computational approach. However, first the general computational scheme will be outlined along with several specific assumptions.

The bulk of this analysis of the COED process was accomplished through the use of a FORTRAN computer program developed to analyze a general coal conversion process. With only minor modifications any chemical process may be analyzed through its use as long as thermodynamic data are available for calculating standard state work equivalents for all components and as $10 n$ as the process is fully described with respect to stream analysis, temperature levels, pressures, and utilities. The computer program checks the material balance for each unit, calculates enthalpies and work equivalents for each stream and utility, checks the energy balance for each unit and calculates first and second law efficiencies for each unit and the overall process. The first law efficiencies are calculated using higher heating value data since, as mentioned in section 2.2 , this represents the maximum energy obtainable fromastreat. The second law efficiencies are calculated after Eq. (4.7) and Table 1 are used to construct a table of standard state work equivalents for compounds present in the COED process. These are presented in Table 3. A flowchart of this computer program is presented in Figure 3. Appendix A lists the progran and a final output, and also contains a detailed block diagran of the COED commercial process with all interconnecting streams.

Table 3. ε_{i}^{0} for Compounds in the COED Frocess

Compound	$\underset{(\mathrm{kcal} / \mathrm{kmol})}{\varepsilon_{1}^{0}}$
H_{2}	56224
0_{2}	932
N_{2}	143
CO_{2}	4776
CO	65770
CH_{4}	198420
$\mathrm{C}_{2} \mathrm{H}_{4}$	308672
$\mathrm{C}_{2} \mathrm{H}_{6}$	357036
$\mathrm{C}_{3} \mathrm{H}_{6}$	448018
$\mathrm{C}_{3} \mathrm{H}_{8}$	513618
$\pi-\mathrm{C}_{4} \mathrm{H}_{10}$	669814
$\mathrm{H}_{2} \mathrm{~S}$	187992
NH_{3}	59657
S	139660
${ }^{*} \mathrm{Coal}$	6667
* Char	6167
*Syncrude	10611

Several assumptions were made enroute to the final analysis. First, to be consistent all of the streara and utility data were used as given. However, one additional stream was created as an output from the hydrogen plant unit to account for a discrepency in the material balance. An elementai balance dictated that this stream contain primarily carbon dioxide and water, thus it was considered a waste gas stream. Second, an average saturated condition was assumed for all utility stean used and produced. Third, the physical properties of the derived coal liquids were approximated by those of anthracene oil (13). Finally, the heating values for char and unhydrotreated oil which were not given in the commercial process description were determined from the range of values listed in a COED pilot plant report (20) and from energy balance results of the units involved. These values, of course, do not enter into the analysis of the overall COED process. These and other less important assumptions are detailed in the computer program coments in Appendix A.

6.2 Char gasification unit example

The char gasification unit is one of the major units of the COED process. Figure 4 gives a diagram of the input and output process streams with utilities for this process unit. The essential data are presented in Tables 4 and 5. Each stream's chemical and physical work equivalent is calculated from Eq. (4.20) and Eq. (4.21) respectively. The results of these calculations are given in Table 6. The negative value of $\varepsilon_{\text {phys }}$ for stream 6 occurs because the stream is a mixture and therefore the ability to perform work according to Eq. (4.18) was lost when pure gases were mixed irreversibly. Application of the second law efficiency definition, Eq. (3.7), produces

$$
\eta=\frac{\varepsilon_{6}+\varepsilon_{\text {stearn }}}{\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}+\varepsilon_{5}+\varepsilon_{w}}=0.81
$$

Figure 4. Char Gasification Diagram

* Component in tons

Table 5. Char Gasification Utilities

Ueility	Value (kcal)
Work	2.533×10^{7}
**Cooling Water	2.838×10^{7}
***S team	4.758×10^{8}
** $\Delta T=16.7^{\circ} \mathrm{C}$	
*** avg. conditi	$138^{\circ} \mathrm{C}, 3.4$

Table 6. Work Equivalents for Char Gasification

$\begin{gathered} \text { Strearo } \\ \text { No. } \\ \hline \end{gathered}$	Component	$\begin{aligned} & \varepsilon_{\text {chem }} \\ & \text { (keal) } \end{aligned}$	$\varepsilon_{\text {phys }}$ (kcal)	$\begin{gathered} \varepsilon \\ (k c a 1) \end{gathered}$
1	Coal	1.875×10^{8}	2.160×10^{3}	1.875×10^{8}
2	Char	3.020×10^{9}	4.670×10^{7}	3.067×10^{9}
3	Water	-	7.021×10^{4}	7.021×10^{4}
4	Alr	-	1.727×10^{7}	1.727×10^{7}
5	Steam	-	3.032×10^{7}	3.032×10^{7}
6	Product Gas	2.622×10^{9}	-3.690×10^{8}	2.585×10^{9}
7	Waste Water	-	1.395×10^{5}	1.395×10^{5}
8	Ash	-	8.081×10^{5}	8.081×10^{5}
	Work	-	-	3.167×10^{7}
	Cooling water	-	7.651×10^{5}	7.651×10^{5}
	Steam	-	1.213×10^{8}	1.213×10^{8}

In this efficiency streams 3, 7 , and 8 plus the cooling water do not represent useful work equivalents. Stream 4, air, is included because expansion work is possible. The incremental efficiency, Eq. (3.8), is calculated for a work producing process (remember the convention that work out is negative) as

$$
\eta_{I}=\frac{\varepsilon_{W}-\varepsilon_{c W}-\varepsilon_{\text {steam }}}{\left[\varepsilon_{6}+\varepsilon_{7}+\varepsilon_{8}-\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{4}+\varepsilon_{5}\right)\right]}=0.13
$$

These two efficiencies are comparable to values given by Gaggioli (21) (22) for a Koppers-Totzek gasifier with coal preparation. He found similar second law and incremental efficiencies to be 0.78 and 0.15 respectively. For comparison a first law efficiency is calculated as 0.94 for the gasification unit.

This char gasification example may also be used to illustrate Denbigh's concept of a "prescribed degree of irreversibility" discussed in section 3.1 . In utilizing this concept the criteria for comparison are: chemical reactions are allowed to proceed irreversibly with the heat of reaction recovered as mechanical work in a Carnot type heat engine, and all other parts of the process, except mixing, are carried out reversibly. For the char gasification example the gasification reactions proceed irreversibly at approxinately $1500^{\circ} \mathrm{F}$ (1090 K) with the heat of reaction partially recovered as low temperature steam and the rest of it lost to the atmosphere and cooling water. The pumps and compressors are 80% efficient in converting electricity to shaft work. To apply Denbigh's concept the heat of reactior becomes totally recoverable as saturated steam at $1500^{\circ} \mathrm{F}$ and the mechanical equipment is considered reversible, 100% efficient. Thus a new work equivalent is obtained for the stean, $2.15 \times 10^{8} \mathrm{kcal}$, and a new shaft work value is found, $2.533 \times 10^{7} \mathrm{kcal}$. Using these work equivalents the two maximum efficiencies obtainable under
the prescribed conditions are 0.342 and 0.265 for the second law and incremental efficiencies respectively. It should be noted that in calculating the latter efficiency the work equivalent of the cooling water is zero beca.دse all of the heat of reaction was recovered as high temperature steam. Since these are maximum efficiencies it may be helpful to compare these with the actual efficiencies by defining a practical efficiency whereby it equals the actual efficiency divided by the maximum efficiency under the prescribed conditions. Thus the practical second law and incremental efficiencies are 0.96 and 0.49 respectively. The large practical second law efficiency is the result of the large chemical work equivalents of the char and gas overshadowing the smaller utility work equivalents.

6.3 Overall COED Results

An overall flow diagram of the COED process is given in Figure 5 , and the corresponding stream and utility work equivalents are presented in Table 7. The second law efficiency of the overall process is

$$
\eta=\frac{\varepsilon_{5}+\varepsilon_{6}+\varepsilon_{7}+\varepsilon_{\text {steam }}}{\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{w}+\varepsilon_{\text {condensate }}\right)}=0.75
$$

This value is slightly higher than the 0.68 given by Gaggioli for KoppersTotzek coal gasification. The first law efficiency of the overall process calculated here is 0.80 while the COED designers' calculated value was 0.75. However, in their calculation they considered electrical work to be a negative output term rather than a positive input term which was used here in order to remain consistent with the first law efficiency development in Chapter 2. Tahle 8 gives the first and second law efficiencies plus the energy balance closure for each unit. It is observed that for the overall process and for the units second law and first law efficiencies are quize

Figure 5. Overall COED Process Diagram

Table 7. Work Equivalents for Overall COED Process

Stream No.	Component	$\begin{gathered} \varepsilon \\ (k c a 1) \end{gathered}$
1	Coal	6.24×10^{9}
2	Oxygen	6.06×10^{6}
3	Alr	2.27×10^{7}
4	Water	-
5	Syncrude	1.69×10^{9}
6	Sulfur	1.34×10^{8}
7	Product Gas	3.03×10^{9}
	Cooling Water	-
	Steam	3.22×10^{7}
	Work	2.57×10^{8}
	Condensate	3.95×10^{5}

Table 8. THERMODYNAMIC EFFICIENCIES ATD ENERGY BALANCE CLOSURE FOR THE COED PROCESS
SECOND LAW ENERCY BALANCF
EFFICIENCY

FIRST LAW
EFFICIENCY
0.989
0.963
0.984
0.908
0.993
0.880
1.007
0.999
1.001
0.997
0.998
0.996
0.792
0.953
0.979
0.987
1.020
0.716
0.797

close. The reason for this is that the dominant terms in the efficiency calculation are those which represent chemical energy and, as has been shown, the heat of combustion and the work equivalent are practically equal.

In Table 8 the second law efficiency is less than the first law efficiency for most units and overall, as would normally be expected. However, for four units, three of which primarily involve separations, the reverse is true. This occurs for the three units involved with separations because the second law analysis takes into account the work of separation. For example, the removal of CO_{2} and $\mathrm{H}_{2} \mathrm{~S}$ in the gasifier acid gas removal unit increases the mole fractions of the other components thereby increasing che work equivalent of the output product gas stream. The large difference between the first and second law efficiencies in the pyrolysis acid gas removal unit is in part explained by the previous discussion, but is perhaps primarily caused by a non closing energy balance. The balance accounted for only 0.91 of the energy input to that unit. The reason for this speculation is that if the lost energy was recovered for examplo in the form of steam the first law efficiency would gain as additional output one kcal for every kcal of recovered energy whereas the second law efficiency would gain as additional output only about 0.2 kcal of work equivalent per kcal of recovered energy. Therefore the first law efficiency would increase more noticeably than would the second law efficiency. The other unit in whicn the second law efficiency is greater than the first law efficiency is gasifier gas compression. This occurs in part because of the condensation of water from the gasifier gas, a separation effect, but it occurs primarily because the second law analysis places value on the expansion work that may be obtained from a stream not at the standard pressure and the defined first law efficiency does not. Without the separation and pressure affects the second law efficiency becomes 0.95 in contrast with the first law efficiency of 0.98 .

The lower efficiencies generally associated in the literature with physical processes, such as separations and ccmpressions, result from using an incremental efficiency. For example, incremental efficiencies for purge acid gas removal and oil filtration are 0.025 and 0.31 respectively. In addition, these efficiencies for gasiffer gas compression and expansion are 0.68 and 0.81 respectively. The corresponding second law efficiencies are much higher. In a process such as fuel gas compression the work equivalent of the gas is much larger than the amount of work lost. In other words, the difference between the ideal and the actual work input is very small relative to the total work equivalent of the fuel gas. For a gas with a very low work equivalent, such as air, the second law efficiency for compression approaches the corresponding incremental efficiency. Consider for instance that the chemical work equivalents of the fuel gas being compressed in the gasifier gas compression unit are equal to zero. The second law efficiency for this compression process then becomes 0.69 which is very close to the incremental value of 0.68 given above. This example tends to show that for physical processes involving low chemical energy streams the second law efficiency approaches the incremental efficiency.

The second law efficiency as applied up to this point charges the overall COED process with only those inefficiencies directly created by the prosess. However, the process uses items such as oxygen and electricity with which there is an associated inefficiency. Electricity, for example, is generated with an efficiency of approximately 0.38 . This value may be included in the work term to give an overall work equivalent for shaft work. An oxygen plant may be added to the overall process to supply the necessary oxygen at an efficiency of about 0.1 .5 (4). With these changes the second law efficiency of the coal conversion endeavor decreases from 0.75 to 0.68 .

In the commercial COED design several items were disregarded that may cause the second law efficiency found here to be too high. First, no energy charge was made for new catalyst, regeneration of old catalyst, or general chemicals. The catalyst use amounted to approximately $73 \mathrm{~kg} / \mathrm{hr}$ ($160 \mathrm{lb} / \mathrm{hr}$). An approximate energy charge for the catalyst and chemicals will be given in the next chapter. Second, the energy charge for waste treatment was much less than expected because of a simplified approach to the difficult water treatment problem.

CHAPTER 7

EQUIPMENT AND CONSTRUCTION ENERGY COST

7.1 Introduction

When considering the total energy input to a process, the energy needed to produce the equipment and to construct the plant must be included. The energy input-output matrix as developed by Herendeen (23) allows this additional energy to be estimated. This type of energy evaluation uses InputOutput analysis, a technique borrowed from economics, and takes advantage of the large data base of intersector sales available from the U.S. Department of Commerce. The data were last compiled in 1963 for 367 sectors, each sector being a segment of the economy which produces goods or services, e.g. dairy farm products, machine shop products, and research and development. Also this energy evaluation accounts for all the steps in the complex manufacturer-sales chain. For example, Herendeen gives results which indicate that the auto manufacturer alone uses only 6% of the total energy necessary to produce and to market an automobile.

The primary results of the energy input-output matrix of interest here are the sector energy coefficients. The two most applicable are the energy supplied directly to a sector per dollar of that sector's output, D_{c}, and the total energy required per dollar of market value, T_{c}, of which D_{c} is a part. The I_{c} and D_{c} values for pertinent sectors reproduced from Herendeen are listed in Table 9. To correctly use these sector energy coefficients the problem of tine variance must be considered. The sector energy coefficients were developed in 1973 using 1953 sales data. Therefore, to use these coefficients they must be taken as time invariant in the sense that oniy a cost index is needed to change their time basis. However, new manufacturing techniques serve to reduce the sector energy coefficients by

TABLE 9. T_{c} and D_{c} Sector Energy Coefficients for Various Sectors*

Sector
(1) fabricated plate work
(2) fabricated metal products
(3) pumps and compressors
(4) fabricated structural steel
(5) ready-mixed concrete
(6) asbestos products
(7) instruments and controls
(8) pipe, valves, and pipe fittings
(9) new construction, nonresidential buildings
(10) new construction, highways
(11) electrical equipment
(12) clay refractories
(13) industrial inorganic and organic chemicals
$\begin{array}{cc}{ }^{T}{ }_{c} & { }^{D_{c}}{ }_{c}{ }^{3} \mathrm{kcal} / \$(1963)\end{array} \quad 10^{3} \mathrm{kcal} / \$(1963) \mathrm{l}$
29.1
2.12
23.2
1.00
14.7
1.90
$31.1 \quad 1.27$
36.1
2.49
$29.4 \quad 3.46$
$10.3 \quad 0.94$
$19.5 \quad 2.30$
16.7
1.74
24.8
6.74
17.9
0.81
40.3
26.94
81.4
45.30

[^0]reducing energy consumption per product unit. These new manufacturing techniques, however, can be shown to have little affect on T_{c} with a larger affect on D_{c}. Remember that D_{c} is a part of T_{c} and from Table 9 it is seen that D_{c} is $5-10 \%$ of T_{c} for most sectors. Also note that D_{c} can be thought of as the energy it takes per dollar of product to fabricate a product from raw materials whereas the difference $T_{c}-D_{c}$ can be considered the energy consumption per dollar of product involved with producing these raw materials, e.g. mining iron ore, transporting iron ore, and processing iron ore into steel. Intuitively the tern $T_{c}-D_{c}$ will most likely be time invariant with fncreases in processing efficiencies, less energy per dollar, being negated by an increasing difficulty in mining ore, more energy per dollar. Therefore, I_{c} will probably be affected little. It should be noted that T_{c} obscures D_{c} in the combined energy coefficient calculations which lead directly to the equipment and construction energy cost while D_{c} will only become important when an energy credit for scrap is determined for the steel sector.
7.2 Computational approach and application to the COED plant

Knowing the fixed capital investment for the COED project, an appropriate breakdown of its components as prescribed by Peters and Tirmerhaus (24), and the energy coefficients D_{c} and T_{c}, an energy cost may be assigned to all of the equipment and materials needed for the project's construction. An equation will now be briefly derived which will calcualte the total plant energy cost. First, consider an expression for part of the fixed capital investment.

$$
\begin{equation*}
C_{D}=C_{1}+C_{2}+C_{3}+c_{4}+c_{5} \tag{7.1}
\end{equation*}
$$

where
$C_{D}=$ total direct plant cost less land
$C_{1}=$ purchased equipment cost
$C_{2}=$ purchased equipment installation cost

$$
\begin{aligned}
& C_{3}=\text { instrumentation and controls cost } \\
& C_{4}=\text { piping cost } \\
& C_{5}=\text { offsite facilities cost }
\end{aligned}
$$

The individual C_{i} terms can be expressed as

$$
\begin{equation*}
C_{i}=f_{i} C_{D} \quad 1=1,2,3,4,5 \tag{7.2}
\end{equation*}
$$

where
$f_{i}=a$ fractional multiplying factor
The energy associated with each direct cost is determined from

$$
\begin{equation*}
E_{i}=g_{i} C_{i} \quad i=1,2,3,4,5 \tag{7.3}
\end{equation*}
$$

where
$E_{i}=$ energy associated with direct cost i
$g_{i}=$ combined energy coefficient in kcal/\$ for direct cost \ddagger determined from T_{c} 's for appropriate sectors

Combining Eq̧s. (7.2) and (7.3) yields

$$
E_{T}=C_{D} \sum_{i=1}^{5} g_{i}{ }^{E_{i}}
$$

where
$E_{T}=$ total equipment and construction energy cost
Eq. (7.4) is used to calculate the total plant energy cost. The multiplying factors, f_{i} 's, are determined from percentages listed for a solid-liquid-processing plant (24). These percentages were adjusted to fulfill the requirement given in the COED economic analysis (8) that the offsite facilities' cost is 30% of the other direct costs. Table 10 presents these multiplying factors. The combined energy coefficients, g_{i} 's, are determined from a combination of appropriate T_{c} sector energy coefficients. As an example consider g_{1}, the combined energy coefficient for purchased equipment. The major components of this include vessels (fluidized beds, tanks,

TABLE 10. Multiplying Factors má Combined Energy Coefficients for the COED Plant

Cost Component

purchased equipment
equipment installation
instrumentation and controls
0.06
5.4
piping
0.13
11.9
offsite facilities
0.23
19.2

* as given by Peters and Timmerhaus ** calculated from total sector energy coefficients, I ${ }_{c}$'s, for approprlate sectors
and towers), heat exchangers, cyclones, and pumps and compressors. The combined energy coefficient is deternined from an average of T_{c} 's in sectors (1), (2), and (3) as listed in Table 9. The other g_{i} 's are similarly found, however, for these the labor cost is significant and must be included as a zero term in the weighting of the appropriate sector energy coefficients. To illustrate this additional point look at the numerical calculation of g_{4}, the combined energy coefficient for piping. The major nonlabor components in this area with corresponding sectors are pipe, valves and fittings, structural supports, and insulation corresponding to sectors (8), (4), and (6) (asbestos is used as a close approximation to actual insulation). The combined energy coefficient is determined by a weighting of each component: labor - 50%, pipe, valves and fittings - 30%, and structural supports and insulation - 10% each. Therefore g_{4} is calculated as

$$
\begin{aligned}
& g_{4}=0.5(0)+0.3(19.5)+0.1(31.1)+0.1(29.4) \\
& g_{4}=11.9 \times 10^{3} \mathrm{kcal} / \$(1963)
\end{aligned}
$$

The combined energy coefficients are listed in Table 10 . Finally the total COED plant energy cost can be determined. The total direct COED plant cost, C_{D}, was given as 505.7 MMS(1975). With this information plus the cost index ratio, $1.75 \$(1975) / \(1963), Eq. (7.4) may be used to calcul.ate a total plant energy cost of $5.85 \times 10^{12} \mathrm{kcal}$. Thus a combined energy coefficient for this plant is $1.14 \times 10^{4} \mathrm{kcal} / \(1975). This value can be considered a rough first approximation for a solid-liquid-processing plant. With a service life of 9 years, as assumed by the COED designers (8), and an operation of 330 days/year the energy input assigned to the equipment is found to be $8.21 \times 10^{7} \mathrm{kcal} / \mathrm{hr}$. This quantity is approximately 1.2% of the total energy input to che COED plant.

At this point the catalyst and chemical energy charge discussed in section 6.3 may be estimated using total sector energy coefficients, T_{c} 's.

The COED economic analysis gives a combined catalyst and cherical cost of 40.5 MS (1975). A total sector energy coefficient must now be determined. The catalyst support material is assumed to be the prinary source of the catalyst's total energy charge. Sector (12), clay refractories, seems to be the most representative sector corresponding to the support material. The chemicals are assumed to correspond to sector (13), industrial inorganics and organic chemicals. The total sector energy coefficient for catalyst and chemicals, taken to be an average of the two separate coefficients, is $60.8 \times 10^{3} \mathrm{kcal} / \(1963). After the cost index ratio is applied a final energy charge for catalyst and chemicals is calculated to be $1.40 \times 10^{12} \mathrm{kcal}$. Applying the operating time conversion the energy input assigned to the catalyst and chemicals is found to be $1.96 \times 10^{7} \mathrm{kcal} / \mathrm{hr}$. This nonrecoverable energy will be included in the equipment and construction energy input to give a total energy input of $1.02 \times 10^{8} \mathrm{kcal} / \mathrm{h}$: or approximately 1.5% of the total energy input to the COED plant.
7.3 Salvage value considerations

At the end of the plant equipment's service life an energy credit from the scrap steel is oftained. Since the actual amount of steel is unknown an approximation method is used to determine this credit. First look at the steel sector and consider what energy is saved by the use of scrap steel over raw ores. This savings may approximately be expressed per dollar of finished steel as

$$
\begin{equation*}
E_{s c}=T_{c_{\text {steel }}}-(I-h) D_{c_{\text {steel }}} \tag{7.5}
\end{equation*}
$$

where

$$
\begin{aligned}
E_{S C}= & \text { energy credit coefficient of scrap steel } \\
h \quad & \text { fraction of energy saved in the steel sector alone by } \\
& \text { using scrap instead of ores }
\end{aligned}
$$

In other words, on a dollar of finished steel basis Eq. (7.5) means that the energy value of scrap equals the total energy required to produce steel (energy consumption from mining, transportation, and processing) minus the net energy used only by the steel sector. Gyftopolous (4) gives has about 0.33 and Herendeen gives $T_{c_{s t e e l}}$ and $D_{c_{s t e e l}}$ as 6.61×10^{4} and $4.13 \times$ $10^{4} \mathrm{kcal} / \$(1963)$ respectively. Thus by Eq. (7.5) E_{sc} becomes 3.84×10^{4} kcal/\$(1963). Now it is convenient to express the energy savings when scrap is employed as a fraction.

$$
\begin{equation*}
\mathrm{f}_{\mathrm{sc}}=\mathrm{E}_{\mathrm{sc}} / \mathrm{T}_{\mathrm{c}_{\text {stee } 1}} \tag{7.6}
\end{equation*}
$$

where

$$
f_{s C}=\text { energy credit fraction for scrap steel }
$$

This fraction, $f_{s c}$, is the fraction of the energy charged to steel which is recovered when salvage is used. Numerically $f_{s c}$ is approximately 0.58 which is larger than $h(0.33)$, the fraction of energy recovered in the steel sector alone when salvage is used, because the use of scrap steel saves all the energy expended to mine and process the ores. Next, this energy credit fraction for scrap steel is used to determine the combined energy credit coefficients, $g_{c_{i}}$'s analogous to g_{i} 's. To accomplish this, first a nev sector energy coefficient, the total sector energy credit coefficient, $T_{c c}$, is determined. Here it may be helpful to review the analogy of calculating combined energy credit coefficients so that the equipment energy cost could be found. In that instance the total sector energy coefficfents, T_{c} 's, were weighted to find combined energy coefficients, g_{i} 's, which were then used With the proper multiplying factor, f_{i}, and direct cost, C_{D}, to ultimately obtain E_{T}, the total flant energy cost. Returning to the total sector energy
credit coefficient, $T_{c c}$ is approximated by assuming that steel is the only raw material and it is calculated from

$$
\begin{equation*}
T_{c c}=\left(T_{c}-D_{c}\right) f_{s c} \tag{7.7}
\end{equation*}
$$

In cther words the total sector energy credit coefficient equals the part of the energy consumption per dollar of product involved with producing raw materials that is recovered when salvage is used. Of course this analysis applies oniy to those sectors having steel to salvage, otherwise $I_{c c}$ equals zero. The combined energy credit coefficients, $g_{c_{i}}$'s, are then determined analogous to the combined energy coefficients in the previous section. These are listed in Table 11. Since the f_{i} terms do not change Eq. (7.4) may be applied after using the cost index ratio to obtain an energy credit for the COED plant of 2.3×10^{12} kcal corresponding to an energy credit flow of $3.2 \times 10^{7} \mathrm{kcal} / \mathrm{hr}$ or 39% of the total input equipment and construction energy flow. This value can be considered a maximum because factors such as the energy needed to dismantle the plant for scrap and transport the scrap have not been taken into account. Also, not all of the steel may be salvageable. Using this energy credit value the net energy flow into the plant is about $7.0 \times 10^{7} \mathrm{kcal} / \mathrm{hr}$ or about 1.1% of the total energy input, less equipment, to the plant.

TABLE 11. Combined Energy Credit Coefficients for the COED Plent

	${ }^{\text {Cost Component }}{ }^{\mathrm{g}_{\mathrm{c}_{i}}}$purchased equipment
equipment installation	12.2
instrumentation and controls	4.4
piping	0
offsite facilities	

CHAPTER 8

CONCLUSION
The second law thermodynamic analysis of the Char Oil Energy Development process yielded an efficiency of 0.75 when applied to the immediate process. The scope of the analysis was then broadened to encompass indirect inefficiencies in electrical generation and oxygen production and to include the equipment and construction energy costs. This led to a final overall second law efficiency of 0.67 . This shows that the second law efficiency decreases as the scope of the analysis broadens. The analysis can be extended to the point where other energy inputs such as coal mining and ash disposal are included but that was considered to be remote and too detailed for this second law analysis.

The COED units involving physical processes had second law efficiencies that were higher than initially expected. The incremental efficiency was found to give lower, more representative values for the physical process units. However, for units involving chemical transformations the second law efficiency was deemed to be the more useful of the two.

An analysis was developed for determining energy charges for equipment and construction. This charge was found to be only a small part, approximately 1%, of the total energy involved with the COED process. However, this energy may be significant when calculated for a process with few high energy chemical streams. Also the equipment and construction energy charge analysis worked well in the estimation of an energy charge for indirect materials consumed, speciffically for catalyst and chemicals for which only an economic cost was available. The other result of this anelysis was the approximate $1.14 \times 10^{4} \mathrm{kcal} / \(1975) value of the combined energy coefficient which may prove useful for estimating the energy cost for a solid-liquid-processing plant.

PART III
OPTIMIZATION OF FLUE GAS HEAT RECOVERY FROM A SECOND LAW PERSPECTIVE

CRAPTER 9

THERMODYNAMIC AND ECONOMTC OPTIMIZATIONS APPROACHES

9.1 Heat recovery process description

Part III is a further application of the thermodynamic analysis presented in Part I. However, in this case it will be used to optimize the design of a process from the standpoint of an overall efficiency. Specifically, a flue gas heat recovery process design will be optimized from a second law perspective. Included in this thermodynamic optimization will be the concept of an energy debit for equipment and construction as discussed in Chapter 7. The economic optimum design will also be determined for use as a comparison. For both the thermodynamic and the economic optimizations there exist two system definitions that may be employed when the respective objective functions are determined. This will be discussed in section 9.2 .

The flue gas heat recovery system which is used here is similar to one given by James and Stokes (25) for the heat recovery from reformer furnace stack gases in ammonia plants. Figure 6 gives a block flow diagram of the flue gas heat recovery systen plus furnace. The heat recovery section serves as a combustion air preheater in which heat exchange is accomplished through a number of parallel counter-current shell and tube heat exchangers. The flue gas and air streams were given by James and Stokes to enter the heat recovery section at $500^{\circ} \mathrm{F}$ (533K) and $100^{\circ} \mathrm{F}$ (311K) respectively. The pressure drops associated with the flow of these streams through the flue gas heat recovery system are compensated for by forced and induced draft fans. 9.2 Determination of three objective functions

For the previously described flue gas heat recovery system two system definitions may be employed that yield two thermodynamic and two economic

Figure 6. Overall Furnace and Flue Gas lleat Recovery
objective functions each of which may be optimized. The two system definitions differ in that the reformer furnace unit is included in one system definition, the combined heat recovery system, while it is not included in the other system definition, the heat recovery addition system. The thermodynamic and economic objective functions will now be determined for each of these system definitions.

First, consider the combined heat recovery system as shown in Figure 7 with only inputs and outputs. A thermodynamic objective function for this system is ultimately obtained from the application of Eq. (3.7) which yields an overall second law efficiency, ${ }_{1}$.

$$
\begin{equation*}
\eta_{1}=\frac{\varepsilon_{4}+\varepsilon 7_{7}^{0}}{\varepsilon_{1}+\varepsilon_{2}+\varepsilon /_{6}^{7^{0}}+\varepsilon_{\text {equip }}+W_{\text {in }}} \tag{9.1}
\end{equation*}
$$

Next, let each work equivalent term, ε_{n}, equal the sum of the work equivalent of the furnace unit before flue gas heat recovery, ε_{n}, and the work equivalent of the flue gas heat recovery addition, $\Delta \varepsilon_{n}^{\prime}$. Therefore Eq. (10.1) becomes

$$
\begin{equation*}
\eta_{1}=\frac{\varepsilon_{4}^{\prime}+0}{\varepsilon_{1}^{\prime}+0+\varepsilon_{2}^{\prime}+\Delta \varepsilon_{2}^{\prime}+\varepsilon_{\text {equip }}^{\prime}+\Delta \varepsilon_{\text {equip }}^{\prime}+W_{i n}^{\prime}+\Delta W_{i n}^{\prime}} \tag{9.2}
\end{equation*}
$$

Since all but the delta quantities are constant this equation may be written as

$$
\begin{equation*}
\eta_{1}=\frac{C_{1}}{C_{2}+\Delta \varepsilon_{2}^{\prime}+\Delta \varepsilon_{\text {equip }}^{\prime}+\Delta W_{\text {in }}^{\prime}} \tag{9.3}
\end{equation*}
$$

where

$$
\begin{array}{ll}
C_{1}=\text { constant } 1 & \left(\varepsilon_{4}^{\prime}\right) \\
C_{2}=\text { constant } 2 & \left(\varepsilon_{1}^{\prime}+\varepsilon_{2}^{\prime}+\varepsilon_{\text {equip }}^{\prime}+W_{i n}^{\prime}\right)
\end{array}
$$

Therefore, to maximize the second law efficiency the group of terms $\left(\Delta \varepsilon_{2}^{\prime}+\Delta \varepsilon_{\text {equip }}^{\prime}+\Delta W_{i n}^{\prime}\right)$ must be minimized. Thus that group of terms

Figure 7. Overall Block Diagram of the Combined Heat Recovery Syster
comprise the thermodynamic objective function for the combined heat recovery system. The thermodynamic optimum of this system is given in terms of the variable values that minimize $\left(\Delta \varepsilon_{2}^{\prime}+\Delta \varepsilon_{\text {equip }}^{\prime}+\Delta W_{i n}^{\prime}\right)$ instead of the actual overall second law efficiency, η_{1}, because the constant terms, C_{1} and C_{2}, are unknown. This group of terms may have a negative value because as more heat is exchanged less fuel is used and $\Delta \varepsilon_{2}$ becomes negative. It may be noted that the work equivalent of the fuel oil in this objective function, $\Delta \varepsilon_{2}^{\prime}$, is approximated by its higher heat of combustion as has been shown in section 4.3. The result of this approximation is a thermodynamic analysis that in one respect closely resembles a first law analysis. Every thermal kcal recovered from the stack gas essentially reduces the fuel demand by a corresponding kcal. In other words each kcal of thermal energy recovered from the stack gas stream by the air stream is roughly translated as increasing the work equivalent of the air stream by that same kcal. However, first law efficiencies seldom take into account the electrical generation inefficiency and the energy debit associated with the equipment. Corresponding econonic objective functions for this system definition are well known and will not be detailed. For example, James and Stokes (25) present an economic analysis of a similar flue gas heat recovery system in which they give payout periods of their system for two purchased fuel oil costs. The economic objective function used here is the net present value because it gives a means of direct comparison of alternatives while taking into account the time value of money. The net present value is optimized with respect to fuel savings, equipment costs, power costs, and various indirect costs.

Second, consider the other system definition, the heat recovery addition system as given in Figure 8. A thermodynamic objective function for this systen is obtained directly from application of the second law efficiency to give

Figure 8. Overall Block Diagram of the Heat Exchanger Addition System

$$
\begin{equation*}
n_{2}=\frac{\varepsilon_{3}+\varepsilon / 7_{7}^{0}}{\varepsilon_{5}+\varepsilon /_{6}^{0}+\varepsilon_{\text {equip }}+W_{\text {in }}} \tag{9.4}
\end{equation*}
$$

For this heat recovery addition system the thermodynamic optimum is determined by the actual maximum overall second law efficiency value corresponding to the optimal variable values. In contrast with the other second law efficiency, Π_{1}, the work equivalent of the preheated air stream, ε_{3}, does not approximately equal the themal energy recovered from the stack gas. Thus in this system less emphasis is placed upon the amount of heat recovered since one kcal of thermal energy recovered equals only about one quarter of one kcal of work equivalent. The corresponding economic objective function for this system is similar to the previous one. However, in actual practice this is not as useful since it is not clear as to what credit is given to the recovered heat. Thus the economic objective function for the heat recovery addition system will not be considered further.

THERMODYNAMIC AND ECONOMIC OP'RIMAL HEAT RECOVERY DESIGNS

10.1 Computational Scheme

To optimize the thermodynamic and economic objective functions first the physical conditions, constraints, and assumptions must be established. The inlet flue gas and air stream temperatures have been given in section 9.1. The flow rates of these streams are determined from the specific heat recovery situation given by James and Stokes (25) where exit temperatures of $300^{\circ} \mathrm{F}$ (422 K) and $350^{\circ} \mathrm{F}$ (450K) corresponding to exit flue gas and air streams respectively produce a heat recovery of $40 \mathrm{MM} \mathrm{BTU} / \mathrm{hr}$. Using this information plus Perry's (16) empirical formula for sulfurless No. 2 fuel oil, $\mathrm{C}_{6.93^{\mathrm{H}}}$, a combustion reaction for that fuel with 10% excess air, and constant pressure heat capacities (13) an energy balance is made to determine the flow rates. They are found to be $1.124 \times 10^{4} \mathrm{kmol} / \mathrm{hr}$ and $1.00 \times 10^{4} \mathrm{kmol} / \mathrm{hr}$ for the flue gas and air streams respectively. It should be noted that these flow rates are considered constant for this analysis even though more efficient heat recovery will result in the use of less fuel thereby decreasing the air demand. However, calculations show this to be a good assumption: if the heat recovery doubles then the flow rates are only reduced by about 0.5%.

Other physical conditions worth noting involve the beat exchanger placement, the heat exchange fluid flow, and the routing of specific fluids inside the heat exchangers. The heat exchanger system as shown previously in Figure 5 consists of n exchangers connected in parallel. The parallel placement is used instead of a serfes placement because the large gas flow rates of about $100 \mathrm{~m}^{3} / \mathrm{s}$ would create an unreasonable overall pressure drop in the series placement that would cause the power terms to completely overshadow
the other terms in the thermodynamic and economic optimizations. Another important physical condition is the heat exchange fluid flow. The heat exchange may take place with either parallel or counter flow of fluids. For a given heat exchange area and set of stream temperatures the loss of work equivalent in a counter-current heat exchanger is smaller than that in a co-current heat exchanger. A co-current heat exchanger is an inherently irreversible process while for counter-current heat exchange the loss of work equivalent can be reduced by increasing heat exchange area. For instance, if a counter-current heat exchanger is balanced, one in which total stream heat capacities are equal, and it has infinite area the result is a reversible heat exchange process. Because of these facts the counter flow design was chosen. It should be noted that work equivalent is lost whenever a temperature difference exists between two streans because a Carnot engine could be operated across that difference. The other important physical conditions is the routing of specific fluids inside the heat exchangers. A choice must be made as to which fluid flows through the shell and which fluid flows through the tubes. Peters and Timmerhaus (24) 1ist several major factors involved in determining the best fluid routing. These factors include fouling, corrosion, pressure drop, and fluid velocities. However, fouling and corrosion are assumed negligible and because of the closeness of the flow rates the pressure drops and fluid velocities will be similar. Since the flue gas contains a condensible vapor, water, it is possibly easier to separate liquid from the gas on the shell side so the flue gas is routed through the shell and the air through the tubes. This fluid routing, though, is still somewhat arbitrary. Further physical details and assumptions concerning the heat exchanger design are found in Appendix B. It should be noted that the most important two remaining physical design
limitations are that the tube length cannot exceed 20 ft and that the tube length may also not be less than the shell inside diameter. These will be further discussed in the next section.

An important physical constraint to be considered when heat recovery increases is the existence of a pinchpoint. A pinchpoint occurs when the temperature of the two streams approach each other. When the heating capacities of the fluids are constant the pinchpoint will occur at one end the heat exchanger, but when the heat capacity of a fluid stream changes it is possible for the pinchpoint to occur inside the heat exchanger. If condensation or vaporization of a component is possible the effective heat capacity of that stream will increase and thus lead to the possibility of an interior pinchpoint. This concept is well illustrated by Tucker and Chen (26) who cite the example of flue gas heating of boiler feed water. In the present study because of the existence of a condensible specie, i.e. water vapor, in the flue gas the possibility of this occurence was examined but was found to be nonexistent.

At the same time that the physical conditions, constraints, and assumptions are being specified the independent design variables must be determined. For this flue gas heat recovery design these varlables are the following: number of heat exchangers connected in parallel, tube outside diameter ($5 / 8^{\prime \prime}, 3 / 4^{\prime \prime}$, or $1^{\prime \prime}$), exit temperature of the preheated air, and shell inside diameter. Further details on the ranges of these independent design variables will be given shortly.

Once the physical conditions, constraints, assumptions, and independent design variables are determined a computer program can be written to find the optimum of each objective function given in section 9.2. The bulk of the optimization procedure for the flue gas heat recovery design remains
the same irrespective of whether the objective function is economic or thermodynamic. For example, the heat exchanger design section remains unchanged for any of the objective functions. Briefly the computer program written for this optimization problem conducts an iterative search whereby the independent design variables are incremented one at a time over a predetermined search interval. Specifically, the computer program is designed to incrementally search over a range of shell inside diameters and exit preheated air temperatures before the tube outside diameter and the number of heat exchangers is incremented. This results in a table of exit preheated air temperatures versus shell inside diameters for a particular value of tube outside diameter and number of heat exchangers. The basic search ranges for this table are the following: shell inside diameter --50-300 cm (19.7-118 in) and exit preheated air temperature (stream 3 in Figure 5) -- $330-530 \mathrm{~K}\left(134.3-494.3^{\circ} \mathrm{F}\right.$). The program computes values of the objective function for all the design variable combinations and finds the maximum objective function value along with corresponding values of the design variables. A flowchart of this computer program is presented in Figure 9. Appendix B lists the program and sample search results.

Figure 9. Flowchart of the Flue Gas Heat Recovery Optimization Program

10.2 Optimization results

The results of the optimizations of the economic objective function and the two thermodynamic objective functions determined in section 9.2 are given here. At the outset it will be helpful to explain the basis of comparison for these three objective functions and also to define some of the terminology used in dealing with the optimums of these objective functions. Since four independent design variables are used the number of comparison methods and the detail of each can easily be seen to be large and complex. However, it may be revealed here that only three of these variables can be used for comparison since the tube outside diameter variable is found for all optimums to be one inch, the largest value tested. For simplicity only one independent design variable, the number of heat exchangers, is chosen as the basis of comparison. That variable is chosen over the others because of its inherent unconstrained range of values and its major role in each objective function. For instance, the shell inside diameter is iimited to about 118 in. by design constraints and the exit preheated air temperature is limited to the temperature of the inlet flue gas by an end pinchpoint condition. The number of heat exchangers is a major cost factor in the economic objective function and because of its determination of individual exchanger gas flow rates it is a major factor in determining pressure drops. It should be remembered that with the very large flow rates, about $100 \mathrm{~m}^{3} / \mathrm{s}$, associated with this system only a small pressure drop produces both staggering economic and thermodynamic energy costs.

Terminology pertaining to the optimums of the three objective functions is defined next in light of the previous discussion. An objective function optimum at a specified number of heat exchangers will be referred to as a local optimum whereas the objective function optimum found with respect to
all the independent design variables including the number of exchangers will be referred to as the global optimum. Economic objective function optimums will be considered as net present value optimums which correspond to the combined heat recovery system (see Figure 6). Optimums of the two thermodynamic objective functions will be considered as exchanger optimums and as exchanger-plus-furnace optimums corresponding to the heat exchanger addition system (see Figure 6) and the combined heat recovery system (Figure 6) respectively.

The simplistic approach mentioned in the early part of this section is well in tune with the major objectives of this heat recovery optimizational study which are to find the conditions at each global optimum and to compare the economic and thermodynamic optimums. As mentioned, because of this simplistic approach it is not considered pertinent to consider the complex functionality that exists between the heat exchanger design criteria and the design variables. The major heat exchanger design criteria of each global optimum are given in Table 12 while Table 13 gives the corresponding objective function value. Table 12 gives outlet flue gas temperatures that indicate the possibility of water vapor condensation. However, no arrangements exist in the computational procedure for condensation because water vapor is only 1.3 mole percent of the total gas corresponding to a very low dew point. In Table 13, the negative value of the thermodynamic objective function for the combined heat recovery system, $\left(\Delta \varepsilon_{2}^{\prime}+\Delta \varepsilon_{\text {equip }}^{\prime}+\Delta W_{i n}^{\prime}\right)$, occurs because as pointed out in section 9.2 fuel is saved which results in a decrease of total fuel work equivalent, f.e. a negative $\Delta \varepsilon_{2}^{\prime}$, that in this case is larger in magnitude than the increase in equipment and electrical work equivalents. It is interesting in the light of Part II of this thesis that
Table 12. Heat-Exchanger Design Criteria for the Economic

Table 12 (Continued)
Heat Transfer and or Pressure
timum Net
429.5
99.4
14.4
0.881
1.936
458.3
71.0
Optimum
Exchanger Value***

* value of a quantity corresponding to the overall maximum net present value for the combined heat recovery
** value of a quantity corresponding to the overall minimum of $\left(\Delta \varepsilon_{2}, ~+\Delta \varepsilon\right.$ equip $+\Delta W_{\text {in }}$) for the combined heat
*** value of a quantity corresponding to the overall maximum overall second 1 aw efficiency, η_{2}, for the heat exchanger addition system

1

Table 13. Optimal Values of the Economic and Thermodynanic Objective Functions

Objective Function	Value
Net Present Value*	$4.429 \times 10^{6} \$(1979)$
$\left(\Delta \varepsilon_{2}^{\prime}+\Delta \varepsilon_{\text {equip }}^{\prime}+\Delta W_{\text {in }}^{\prime}\right) *$	$-1.376 \times 10^{7} \mathrm{kcal} / \mathrm{hr}$
Overall Second Law Efficiency $\eta_{2}^{* *}$	0.4704

* for the combined heat recovery system
** for the heat exchanger addition syster
a first law efficiency corresponding to the heat recovery addition system is calculated without the inclusion of equipment energy or electrical generating inefficiencies to be approximately 0.70 . A corresponding incremental efficiency is found to be negative since the work equivalent change between output and input streams is negative and since work is required which by convention is positive. In other words work is required in a process cap$a b l e$ of performing work, i.e. a Carnot heat engine could be operated between the stream temperatures.

The other purpose of this study, economic and thermodynamic optimum comparisons, is in part fulfilled by Figure 10. In this figure local optimuns normalized with respect to corresponding global optimums are plotted versus the number of heat exchangers. The normalized net present value curve is observed to peak rather sharply at 8 heat exchangers in contrast to the two thermodynamic curves peaking gradually at 27 and 35 heat exchangers corresponding to the normalized exchanger curve and the normalized exchanger-plus-furnace curve respectively. However, these latter two curves reach 0.95 , essentially the maximum, at about 12 and 15 heat exchangers respectively. It is observed that the normalized exchanger curve for small numbers of heat exchangers has a lower slope than does the normalized exchanger-plus-furnace curve yet it reaches its global optimum before the normalized exchanger-plus-furnace curve does. The normalized exchanger and exchanger-plusfurnace curves as it should here be remembered correspond to the heat exchanger addition system and the combined heat recovery system respectively. As discussed in section 9.2 in the heat exchanger addition system less emphasis is placed upon the amount of heat recovered than in the combined heat recovery system. The reason for this is that since the furnace is inefficient, because of the combustion of fuel any lessening of the fuel

Figure 10. A Comparison of liormalized Economic and Thermodynamic Local Optimums with respect to the Number of Heat Exchangers.
requirement means that the quantity of heat is substituted for a higher grade source. Thus large initial increases in heat recovery have more effect on the combined heat recovery system's objective function resulting In a larger inftial slope for the normalized exchanger-plus-furnace curve. The reason that the global optimum of the normalized exchanger curve occurs at a fewer number of heat exchangers than does the global optimum of the normalized exchanger-plus-furnace can be somewhat similarly explained. First, consider what factors actually cause a global thermodynamic optimum to occur with respect to the number of heat exchangers. It is found that as the number of heat exchangers increase the energy debit associated with the equipment (see Chapter 7) finally becomes a large enough fraction of the energy input so that its incremental increase is greater than any incremental decrease in energy cost due to a decreased pressure drop or increased heat recovery. Now, as stated above, recall that the heat exchanger addition system, associated with the normalized exchanger curve, places less value on the heat recovered than does the combined heat recovery system, associated with the normalized exchanger-plus-furnace curve. Thus the equipment energy debit is a larger fraction of the energy input in the exchanger case than in the exchanger-plus-furnace case. Therefore, as the number of heat exchangers increase the global exchanger optimum occurs before the global exchanger-plus-furnace optimum. It may be noted that the equipment energy fraction of the total energy input is 0.045 for the heat exchanger addition system, the exchanger case. A corresponding value for the combined heat recovery system, however, may not be calculated because as seen in section 9.2 the equipment, electrical, feed, product and work equivalents for the furnace system alone are not known. In contrast an equipment cost fraction of the global net present value optimum is 0.48 .

The above discussion gives global optimums for the economic and thermodynamic objective functions and shows the functionality of these objective functions with the major independent design variable, the number of heat exchangers. However, that discussion does not provide for a direct comparison between the economic and thermodynamic objective functions. It should be rememered that in Figure 10 these objective functions are only compared on the basis of the same number of heat exchangers and as it happens the same tube outside diameter. The other independent design variables are not fixed. Thus upon further consideration a new comparison approach can be found that yields Figure ll. In this figure the economic and thermodynamic objective functions are directly compared for the combined heat recovery system. Two economic-thermodynamic comparison ratios are plotted versus the number of heat exchangers. One ratio is referred to as $\mathrm{NPV}_{\eta_{\text {loc opt }}} / \mathrm{NPV}_{\text {loc opt }}$ and the other is referred to as $\mathrm{n}_{\mathrm{NPV}}{ }_{\text {loc opt }} / 7_{\text {loc opt }}$. To deternine these ratios for a specific number of heat exchangers first the local net present value optimum, $N P V_{\text {loc opt, }}$ and the local exchanger-plus-furnace optimum, $\eta_{\text {loc opt }}$, are found. Next, the values of the independent design variables corresponding to the local exchanger-plus-furnace optimum are used to calculate a new net present value, $\mathrm{NPV}_{\mathrm{n}_{1}}$. Likewise ${ }^{7} 10 c$ opt the values of the independent design varlables corresponding to the local net present value optimum are used to calculate a new exchanger-plus-furnace value, $\Pi_{\text {SPV }}^{\text {loc opt }}$. Finally the new values are divided by the corresponding local optimums to arrive at the two economic-thermodynamic comparison ratios, $\mathrm{NPV}_{\mathrm{H}_{\text {loc opt }}} / \mathrm{NPV} \mathrm{loc}_{\text {opt }}$ and $\mathrm{n}_{\mathrm{NPV}}^{\text {loc opt }}$ $/ \eta_{\text {loc opt. }}$. It should be remembered that local optimum are used here implying that a specific number of heat exchangers are used for each ratio calculation. Therefore, these ratios make possible the direct comparison between the net present value objective

function and the exchanger-plus-furnace objective function. Returning to Figure 11 it is first noticed that for one, two, and three heat exchangers both ratios are unity. This implies that both the economic and the thermodynamic optimal designs are identical for these three cases. One explanation for this occurrence is that as had been previously discussed the pressure drop is the dominant factor in both objective functions for this range of heat exchangers thereby producing identical designs that minimize its affect. Another observation is that $\eta_{N P V}{ }_{\text {loc opt }} / \eta_{\text {loc opt }}$ gradually decreases asymptotically to 0.74 while $^{N P V} V_{\eta_{\text {lo }}} / \mathrm{NPV}_{\text {loc opt }}$ decreases steeply after about 4 exchangers and becomes negative after 15 exchangers. It may be instructive to exanine these ratios at the economic and thermodynamic global optimums of 8 heat exchangers and approximately 15 heat exchangers respectively. For 8 heat exchangers $\eta_{N P V_{10 c ~ o p t}} / \eta_{\text {loc opt }}$ is about 0.9 while $\mathrm{NPV}_{\mathrm{n}_{\text {loc opt }}} / \mathrm{NPV}_{\text {loc opt }}$ is about 0.5 . These values imply that the use of global economic optimum design conditions work well in approximating the actual local thermodynamic optimum but that the reverse of using local thermodynamic optimum design conditions does not satisfactorily approximate the actual global economic optimum. The other case being considered that of 15 heat exchangers gives a similar conclusion since $\eta_{\text {NPV }}^{\text {loc opt }}<1 \eta_{\text {loc opt }}$ is 0.76 and $N P V_{\eta_{\text {loc opt }}} / \mathrm{NPV}_{\text {loc opt }}$ is 0 . One additional point may be brought out concerning the global economic optimum case. Since the normalized exchanger-plus-furnace curve in Figure 10 is actually a plot of $n_{\text {loc opt }} / n_{\text {global opt }}$ versus the nurber of heat exchangers its value at 8 heat exchangers, 0.84 , may be multiplied by the $\eta_{N P V_{10 c ~ o p t ~}} /$ ${ }^{\eta} 10 c$ opt value of 0.91 to give about 0.77 for the new ratio ${ }^{n} \mathrm{NPV}{ }_{\mathrm{global} \text { opt }}$ / ${ }^{\eta}$ global opt. This represents the approach of the global economic optimum design to the global thermodynamic optimum design.

CHAPTER 11

CONCLUSION

The thermodynamic optimization of a flue gas heat recovery system using the principles of second law analysis yielded several enlightening conclusions. The thermodynamic optimums produced heat recovery system designs that physically seemed impractical because they required approximately 30 large heat exchangers of about $20,000 \mathrm{ft}^{2}$ each. However, specific designs for only 13 heat exchangers were determined to be nearly as optimal as the 30 exchanger cases since those designs gave values of the thermodynamic objective functions within 95% of the optimal values. For comparison a distinct economic optimum occurred at 8 heat exchangers.

In addition, the design conditions of an economic optimum for a predetermined number of heat exchangers was deemed to approximate within at least 20% a corresponding thermodynamic optimum for the same number of heat exchangers as long as that number was less than about 13 . The reverse approximation of using themodynamic optimal conditions to calculate an economic optimutn for a preset number of heat exchangers was not satisfactory. This points out that the cost of energy is now becoming high enough so that it is economical to optimize the design of this flue gas heat recovery system within 80% of the actual thermodynamic optimum. However, as this percentage slowly approaches 100% the economics rapidly become less favorable. Thus this additional 20% proves to still be economically quite costly.

ACKNOWLEDGMENTS

I would like to thank my major advisor, Prof. B. G. Kyle, whose advice and direction contributed greatly to the completion of this work. I would also like to express my appreciation to the Engineering Experiment Station, Kansas State University (Energy Study Project) for its financial support. Special thanks are given to my wife, Miriam, and the faculty and staff of the Chemical Engineering Department for their continual assistance.

NOMENCLATURE

a_{i}, bi	$=$ constants of a two parameter heat capacity equation for component i used in Eq. (4.12), kcal/(knol K) and kcal/(kmol ki), respectively
Cp_{a}	$=$ constant pressure heat capacity for component a (a $=i$ or j), kcal/(kmol K)
$C_{\text {d }}$	$=$ total direct plant cost less land, \$; defined in Eq. (7.1)
C_{i}	$=$ cost component of the total direct cost $(i=1,2,3,4,5)$, \$; defined in Eq. (7.1)
C_{1}, C_{2}	$=$ constants; defined in Eq. (9.3)
${ }_{\mathrm{D}}$	= direct sector energy coefficient, kcal/
E_{i}	$=$ energy associated with direct cost i, kcal; defined in Eq. (7.3)
$\mathrm{E}_{\text {Sc }}$	```= energy credit coefficient for scrap steel, kcal/$; defined in Eq. (7.5)```
E_{T}	$=$ total equipment and energy construction cost, $\$$; defined in Eq. (7.4)
f_{i}	$=$ fractional multiplying factor; defined in Eq. (7.2)
$\mathrm{f}_{s c}$	$=$ energy credit fraction for scrap steel; defined in Eq. (7.6)
$\mathrm{g}_{c_{i}}$	$=$ combined energy credit coefficient for direct cost i determined from Tcc ${ }_{c}$'s for appropriate sectors, kcal/\$
g_{i}	= combined energy coefficient for direct cost i determined from T_{c} 's for appropriate sectors, kcal/\$
ΔG°	$=$ standard free energy of reaction, kcal/kmol
$\Delta G_{f a}^{o}$	$=$ standard free energy of formation for component a, kcal/kmol
h	= fraction of energy saved in the steel sector alone by using scrap instead of ores
H	$=$ enthalpy of system, kcal
H_{i}	= partial molar enthalpy of component i, kcal/kmol
H_{O}	$=$ enthalpy of system's reference state, kcal
H_{oi}	= partial molar reference enthalpy of component i, kcal/knol
$\Delta \mathrm{H}$	$=$ total change in enthalpy of system, kcal/hr

ΔH_{a}^{E}	standard enthalpy of formation for component $a(a=i$ or $j)$, kcal/kmol
ΔH_{298}^{o}	$=$ standard enthalpy change in reaction, kcal/hr
ΔH°	$=$ enthalpy change as products in their standard states are taken from 298 K and 1 atm to their actual temperatures, keal/hr
ΔH_{R}°	$=$ analogous to ΔH_{p}° for reactants instead of products
ΔH_{i}^{c}	$=$ standard heat of combustion for component i , kcal/kmol
$\Delta \mathrm{H}_{298}^{\mathrm{C}}$	$=$ standard heat of combustion ($\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$), kcal/kmol
$\Delta \hat{H}_{298}^{c}$	$=$ analogous to $\Delta H_{298}^{\mathrm{c}}$ except with kcal/lb units
$\Delta H_{P}^{c}, \Delta H_{R}^{c}$	$=$ standard heat of combustion for products and reactants, respectively, kcal/kmol
m	$=$ number of product streans
\square	$=$ number of reactant streams
n	$=$ stoichiometric coefficient for oxygen in Eq. (4.8)
n_{1}	= molar flowrate of species i, knol/hr
$\mathrm{NPV}_{10 \mathrm{c} \text { opt }}$	local net present value optimum, \$
$\mathrm{NPV}_{\eta_{10 c}}$	$=$ net present value associated with independent design variable values corresponding to the local exchanger-plus-furnace optimum, \$
	$=$ stoichiometric coefficient for hydrogen in Eq. (4.8)
p_{j}	$=$ product stream j
${ }^{\circ}$	= reference pressure, 1 atm
	$=$ stoichiometric coefficient for nitrogen in Eq. (4.8)
Q	$=$ net heat flow across system boundaries with heat flow in being a positive quantity and heat flow out being a negative quantity, k.cal/hr
$Q_{\text {in }}, Q_{\text {out }}$	= heat flows into and out of the system, respectively, taken as positive, kcal/hr
	$=$ ideal gas law constant, kcal/(kmol K)
r_{i}	$=$ reactant stream i
5	$=$ entropy of system, kcal/k

S_{i}	$=$ partial molar entropy of comporent i, kcal/(kmol K)
S_{0}	$=$ entropy of system's reference state, kcal/K
Soi	= partial molar reference entropy of component i, kcal/(kmol K)
T	$=$ heat transfer temperature, K
T_{a}	$=$ temperature of component $a(a=i$ or $j), \mathrm{K}$
T_{C}	$=$ total sector energy coefficient, kcal/\$
$\mathrm{T}_{C C}$	$=$ total sector energy credit coefficient, kcal/\$
T_{0}	= reference temperature, 298 K
V_{1}	$=$ molar volume of species $i, \ell / \mathrm{kmol}$
W	$=$ net shaft work between system and surroundings with the convention that work done on the system is positive and work done by the system is negative, kcal/hr
$\mathrm{W}_{\text {in }}, \mathrm{W}_{\text {out }}$	= shaft work done on the system and by the system, respectively, taken as positive, kcal/hr
$W_{\text {in }}^{\prime}$	= shaft work into the furnace unit before flue gas heat recovery, $\mathrm{kcal} / \mathrm{hr}$; see Eq. (9.2)
$\Delta W_{\text {in }}{ }^{\prime}$	```= shaft work into the flue gas heat recovery addition, kcal/hr; see Eq. (9.2)```
$W_{\text {net }}$	```= actual work equivalent used by a process, kcal/hr; defined in Eq. (3.8)```
$W_{\max }$	$=$ maximum absolute value shaft work done by system under reversible conditions, kcal/hr
X_{1}	$=$ mole fraction of species i
α, β, γ	= stoichiometric coefficients for carbon, hydrogen, and oxygen respectively
γ_{b}	$=$ quantity used in estimating the heat of combustion of a variety of organic material; defined in Eq. (4.9)
δ	$=$ stoichiometric coefficient for nitrogen
ε	$=$ total work equivalent of a system, kcal
$\varepsilon_{\text {chem }}$	$=$ work equivalent due to chemical energy at T_{0} and p_{0}, kcal/hr; defined in Eq. (4.20)

$\varepsilon_{\text {equip }}$	work equivalent associated with equipment and construction energy cost, amoritized, kcal/hr; see Eq. (9.1)
$\varepsilon_{\text {equip }}^{\prime}$	= analogous to ε recovery, kcal界枵; defined in Eq. (9.2) for the furnace unit before flue gas heat
$\Delta \varepsilon_{\text {equip }}^{\prime}$	$=$ analogous to $\varepsilon_{\text {eguip }}$ for the flue gas heat recovery addition, $\mathrm{kcal/hr}$; definediif Eq. (9.2)
ε_{i}	$=$ partial molar work equivalent of species i
$\Delta \varepsilon_{i}$	$=$ change in work equivalent from pure component i at T and p_{0} to other conditions, kcal/kmol; defined in Eq. (4.19)
i_{p}	$=$ change in work equivalent due to a change in pressure from p_{0} at T and constant x_{i} for component i, kcal/kmol; defined in Eq. (4.17)
i_{T}	$=$ change in work equivalent due to a change in temperature from T at constant p and x_{i} for component i, kcal/kmol; defined in Eq. (4.12) for a^{i} two parameter heat capacity and in Eq. (4.13) for a constant heat capacity
i_{x}	$=$ change in work equivalent due to a change in mole fraction from $x_{i}=1$ at T_{0} and p_{o}, kcal/kmol; defined in Eq. (4.18)
ε_{i}	= standard state work equivalent for species i, kcal/kmol
$\varepsilon_{i n}$	```= work equivalent input due to process streams, kcal/hr; defined in Eq. (3.7)```
ε_{1}	$=$ work equivalent of any stream $n(\mathrm{n}=1,2, \ldots$, $\mathrm{kcal} / \mathrm{hr}$
ε_{n}	$=$ work equivalent of any stream $n(n=1,2, \ldots)$ associated with the furnace unit before flue gas heat recovery, kcal/hr; defined in Eq. (9.2)
$\Delta \varepsilon^{\prime}$	$=$ analogous to ε except associated with the flue gas heat recovery systen, kcal/hr; defined in Eq. (10.2)
$\varepsilon_{\text {out }}$	```= work equivalent output due to process streams, kcal/hr; defined in Eq. (3.7)```
$\varepsilon_{\text {phys }}$	$=$ work equivalent due to changes from pure components at T_{0} and p_{o}, kcal/hr; defined in Eq. (4.21)
n	$=$ second law efficieacy; defined in Eq. (3.7)
${ }^{n}$ I	= incremental efficiency; defined in Eq. (3.8)
${ }^{n}$ loc opt	= local exchanger-plus-furnace optimum, kcal/hr
$N P V_{1 o c o}$	= exchanger-plus-furnace value associated with independent t design variable values corresponding to the local net present value optimum

$n_{1} \quad=$ overall second law efficiency of the combined heat recovery system; defined in Eq. (9.2)
$\eta_{2}=$ overall second law efficiency of the heat exchanger addition system; defined in Eq. (9.4)
$\gamma \quad=$ stoichiometric coefficient for sulfur

REFERENCES

1. Fallwell and Greek, Chemical \& Engineering News, Vol. 57, No. 34, pp. 10-11 (August 20, 1979).
2. Appelbaum, B. and Lannus, A., Available Energy Analysis of a Dry Process Cement Plant, Goridan Associates Inc., 711 Third Avenue, New York, NY, 1978.
3. Frederick, W. J. and Hanna, W. T., Chemical Engineering Progress, pp. 71-77 (May 1978).
4. Gyftopoulos, E. P., Lazaridis, L. J., and Widmer, T. F., "Potential Fuel Effectiveness in Industry," Ballinger Publishing Co., Cambridge, Mass., 1974.
5. Denbigh, K. G., Chemical Engineering Science, 6, 1 (1956).
6. Riekert, L., Chemical Engineering Science, 29, 1613 (1974).
7. Kyle, B. G., "The Energetics of Ethanol Production," private communication (1978).
8. J. F. Jones, et al., "Char Oil Energy Development," Vol. 1, NTIS No. Fe-1212-T-9 (1975).
9. Umeda, T., Itoh, J., and Shiroko, K., Chemical Engineering Progress, pp. 70-76 (July 1978).
10. Umeda, T., Niida, K., and Shiroko, K., AIChE Journal, Vo1. 25, No. 3, pp. 423-429 (May 1979).
11. Bailie, R. C. and Doner, D. M., "Resource Recovery and Conservation," Elsevier Scientific Publishing Co., Amsterdam, 1975.
12. Gutsche, C. D. and Pasto, D. J., "Fundamentals of Organic Chemistry," Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1975.
13. Reid, R. C., Prausnitz, J. M., and Sherwood, T. K., "The Properties of Gases and Liquids," 3rd Ed., McGraw-Hil1 Book Co., New York, 1977.
14. "Anthracene and Phenanthrene," API Monograph Series, Washington, D.C., 1979.
15. Dean, J. A., "Lange's Handbook of Chenistry," 12th Ed., McGraw-Kill Book Co., New York, 1979.
16. Perry, J. H., "Chemical Engineer's Handbook," 5th Ed., McGraw-Hill, New York, 1973.
17. Larson, J. W., Organic Chemistry of Coal," pp. 1-33, ACS Symposium Series 71, Washington, D.C., 1978.
18. Minkevich, I. G. and Eroshin, V. K., Folia Microbiologica, 18, 376 (1973).
19. Merrill, A. L. and Watt, B. K., "Energy Value of Foods - Basis and Derivation," U.S. Dept. of Agriculture, Agriculture Handbook No. 74, 1973.
20. J. F. Jones, et al., "Char Oil Energy Development," R \& D Report No. 73 - Interim Report No. 2, Office of Coal Research, Dept. of the Interior, Washington, D.C., 1973.
21. Gaggioli, R. A. and Petit, P. J., Chemtech, Vo1. 7, No. 8, pp. 496-506 (August 1977).
22. Fazzolare, R. A. and Smith, C. B., "Energy Use Management Proceedings of the International Conference," Vol. II, pp. 31-43, Pergamon Press, New York, 1977.
23. Herendeen, R. A., "An Energy Matrix for the United States, 1963: Users Guide," NTIS No. PB-227872 (1973).
24. Peters, M. S. and Timmerhaus, K. D., "Plant Design and Economics. for Chemical Engineers," 2nd Ed., McGraw-Hill Book Co., New York, 1968.
25. James, G. R. and Stokes, K. J., Chemical Engineering Progress, pp. 65-70 (November 1977).
26. Tucker, W. H. and Chen, H. T., "Availability Analysis--An Acacemic Viewpoint," private commaication (1973).
27. Guthrie, K. M., "Process Plant Estimating, Evaluation, and Control," Craftsman Book Co., New York, 1974.

APPENDIX A

This appendix refers to the COED process analyzed in Part II. A detailed block flow diagram listing all the stream numbers is given in Figure 12. Corresponding stream descriptions are presented in Table 14. Following that table a listing of the COED thermodynamic computer program with output is given. Throughout the program-listing comments are included that describe the procedures used and give many of the minor assumptions. In reference to the computer output the first table lists the composition and physical conditions of each stream. The next table essentially gives the stream information entailed in Figure 12 plus the utility useage information. After that the material balance check is given which shows a slight discrepancy in the balance that is considered insignificant. Following that table the molar composition, physical conditions, energy values, and work equivalent values are presented for each stream. It may be heipful to define the notation that describe the last two items mentioned above. ACH and ECH refer to the total standard heat of combustion and total standard state chemical work equivalent respectively. APH refers to the total physical enthalpy change from standard state while EPH refers to the total physical work equivalent change from standard state. The E and A represent the total thermal energy and total work equivalent respectively. The next table lists the total input thermal energy and work equivalent for each process unit. Finally the last table gives the final efficiencies and energy balance closure.

Figure 12. Coed Commercial Process Block Diagran with
Detailed Streams (from ref. 8)

Table 14. COED Conmercial Design Process Stream Descriptions

Stream	Description
Number	
1	Feed Goal
2	Goal Fines
3	Fuel Gas
4	Air
5	Stack Gas
6	Crushed Coal
7	Waste Water
8	Fuel Gas
9	Air
10	Stack Gas
11	Second Stage Transport Gas
12	First Stage Char
13	First Stage Waste Liquor
14	Second Stage Transport Gas
15	Oxygen to Stage 4
16	Steam to Stage 4
17	Second Stage Off-Gas
18	Char
19	Second Stage Transport Gas
20	Unfiltered Oil
21	Waste Water
22	Pyrolysis Product Gas
23	Water to Scrubber
24	Water to Stripper
25	Recycled Pyrolysis Gas
26	Stripper Off-Gas
27	Waste Water
28	Pyrolysis Product Gas
29	Acid Gas
30	Clean Pyrolysis Product Gas
31	Clean Pyrolysis Product Gas
32	Glean Pyrolysis Product Gas
33	Clean Pyrolysis Product Gas
34	Clean Pyrolysis Product Gas
35	Clean Pyrolysis Product Gas
36	Steam
37	Water
38	Waste Water
39	Hydrogen
40	Purge Gas
41	Filter Cake
42	Filterafd
43	Hydrogen
44	Filtered Oil

Stream Number

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

Description

Spent Catalyst Plus Coke Waste Water
Syncrude
Purge Gas
Stripper off-Gas
Water to Scrubber
Acid Gas
Clean Purge Gas
Hydrogen
Hydrogen
Hydrocarbons
Water
Air
Steam
Ash
Waste Water
Gasifier Product Gas
Waste Water
Gasiffer Product Gas
Acld Gas
Acid Gas
Stack Gas
Product Sulfur
Air
Fuel Gas
Glean Gasifier Product Gas
Glean Gasifier Product Gas
Plant Fuel Gas
Glean Gasifier Product Gas
Plant Product Gas
Stack Gas

C

C SECGND LAW THERMODYAAMIC AVALYSIS UF A GENLRAL CUMMEKCIAL COAL C CUNVERSION PROCESS--APPLIEJ SPECIFICALLY TO FMC CORP.'S CHAK UIL C ERERGY DEVELUPMENT PRCCESS

```
1. NO. OF process StreaiAS, NO. CF UNITS, AiNO NO. Of StreaiM IN
```

 ovenall unit If>s
 2. STREAM-LUMPCNENT AKKAYII HR BASIS, ALL AMCLNTS IN TCNSI--
SII,JI nAERE I=1NO. CF STREAM, MNO J=CCMPDNENT CF PROPERTY
S(1,1) -- LUAL UR LHan IF Value NEGATIVE
S(I,2) -- O!L
S11.31 -- NITROGEN, N2
S(1,4) - UXYGEN, 02
S(I,5) -- MATER, H2C
S(I,6) -- CAROCN OIOXIDE, CUZ
S(1,7) -- CARBOiv MCiVCXIJE, CU
S(1,8) -- HYUROGEN,H2
S(l, 8) -- meThane, CH4
S(I,1U)-- ETHYLENE, C2H**
S(I,ll)--ETHANE, C2HO
SII,121-- STATE 11. =GAS, O.=LIL. UN SULIJI
S(I,13)-- TEMPERATURE, DEGREES F
SII,141-- PRESSURE, PSIA
SII.L5:-- PRCPYLENE, C3HE
S(1,10)-- PRCPANE, C3HB
S(1.17)-- NCRMAL BUTANE, C4H 10
S(1.18)-- HYOROGEN SULFICE, H2S
S(1,191-- AMMLN:A, NH3
SII,201-- SULFUR, S
S(I.21)-- ASH
S(I,22)--AIR
3. PROCESS UNII ARRAYS (I HR BASIS)
UNAAE(I, J) WHERE I=NU. CF UNIT, J=NAME OF WNIT
UNIT(I,J) WHERE I=NC. OF UNIT
UAIT(I,1-8)-- NC. CF STREAM ENTERING $1+1$ LR LEAVING $1-1$ UNIT I
STKEAM NU.<L.--UNUTILILEU STREAM, STREAM 'UL.>IUU.
--value ilso incluuts in utilitles
UNITII,9) -- FUEL GAS, AAM ETU
UNITIL,LO)-- SHAFT nCRK, 1000 mp (lv=+1
UNITII,IIJ-- NET STEA*, MM STU (I: $\mathrm{C}=+$)
UNIT (1,12)-- NET CUNDENSATE, TUNS (CIUT=+1
LNIT(I,13)-- NET COCLING WATER, LしUU GPY (Iid=+1

2 NRITE(6,1)

NRITE (O,50) NS TRM, NUNIT
WRITE(6.164)
hxITE(6,123)
UO $153 \quad 1=1$, ins TKM
wRITE(0,150)(I,(S(I,J),J=1,22))
IF(1.NE.+2) GO TO 153
NRITE (6, 105)
WRITE (6,123)
153 CONTINUE
WRITE (6,167)
WRITE(6,165)
NRITE 6,180)

Ifluveral.eg.o.) UU TD 70
K=Nutil T
WRITE (6,251) (UNIT (K,M), $4=14,45)$
7J CDNTINUE
बRITE(6.185)
waterial babance cteck

WRITE(C.174)
nRITE(E.175)
＊move alk value e replace it aith char value if necessary＊ DO $731=1$ ，NSTRM
S（1，24）$=5(1,22)$
S（ 1,22$)=0$ ．
IF（S（1，L）．UE．O．）GU TC 73
S（I，22）$=-S(1,1)$
$S(1,1)=0$ ．
13 CCINTINUE
$0060 \mathrm{~K}=1$ ，NUNII
＊SKIP ITEMS 9－ 13
（F（M．Ge．Y）$\quad M=M+5$
UMT＝UNIT（K，H）
IFIUNT．EV．O．I GO TU 65
＊put stheam no．in prgper furi
［FIABSIUNIT（K，M）］．LT．I．）LNT＝UNT＊10）．
If（ABSIUNIT（K，M））．GE．100．）UNT＝UNT／IU．
$I U=U N T$
＊correct fer computek rlunjort Ekror df uecimals
$A A=A B S(U N T)+.4$
$J=A A$
IF（J．LE．NS（RM）GU TU OI
WRITE16．299）J
GO 10 65
67 COivt INUE
＊adu values in streat ic in ur out variable
$0068 \mathrm{LL}=1,21$
$L=L L$
＊SKIP STREAM ITEMS 12－14
（F（L．GE．12）L＝L＋3
IF（IU．LT．O）GO TC 6y
TIN＝TIN＋Adj（S（J，L））
GO TO 68
69 TOUT＝IOUT＋AÜS $(S(J, L))$
of chatinue
65 CONTINUE
＊CONVERT THE STKEAM GOMPJNENTS FROM TGNS TO KMOLS
$0023 \mathrm{~L}=1$ ，NSTRM
＊USE A GIVEN OIL MOLECULAR nËIGHT OF 300 KG／KMLL
$S(L, 2)=S(L, 2) * 3.024$
$S(L, 3)=S(L, 3) * 32.385$
$S(L, 4)=S(L, 4) * 28.351$
$S(L, 5)=S(L, 5) * 50.357$
$S(L, 6)=S(L, 6) * 20.614$
$S(L, 7)=S(L, 7) * 32.388$
$S(L, B)=S(L, 8) * 450.013$
$S(L, 9)=S(L, 9) * 56.548$
$S(L, L O)=S(L, 10) * 32.337$
$S(L, L 1)=S(L, L 1) * 30.169$
$S(L, 15)=S(L, 15) \neq 21.553$
$S(L, L 6)=S(L .16) * 20.573$
$S(L, L 7)=5(L, L 7) * 15.608$
$S(L, 18)=S(L, 18) * 26.62$
$S(L, 17)=S(L, 19) * 53.269$
$S(L, 20)=S(L, 20) * 28.293$
$5(L, 24)=5(L, 24) * 28.99$
23 CCNTINUE

TUTAL KMCLS AND GALCULATE MGLE FRACTICNS

＊THE TUTAL KMOLS UF EACH STNEAM AKE pUT INTO
＊S（STR．NO．．23）AND THE MCL E FRACTIDNS AKE PUT INTU IHE
－x array．
$0032 \mathrm{LT}=1$ ，NSTRiA
0031 LA＝2．11
$S(L T, 23)=S(L T, 23)+A B S(S(L T, L A))$
31 CONTINUE
$00 \quad 30$ LA $=15,20$
S（LT，23）$=5(L T, 23)+A 3 S(5(L T, L A))$
33 CONTINUE
S（LT，23）＝S（LT，23）＋S（LT，24）
32 CCNT I NUE
$0081 \mathrm{~J}=1$ ，NSTRM
IF（S）J，23）．GT．O．）GU Ti 334
$X(J, K)=1$ 。
GU TO \＆1
334 गU 82 $x=2,11$
$x(j, K)=S(j, K) / S(J, 23)$
\＆F（X（J，K）．LE゙．O．）$X(J, K)=1$ ．
92 CONTINUE
DU $83 \mathrm{~K}=15,20$
$x(J, K)=S(J, K) / S(J, 23)$
IF $(X) J, K) \cdot L E, O.) X(J, K)=1$ ．
33 CONTINUE
©L CUNTINUE

* after sume preliminary constants are established,
* values are calculateo fúk variables corkespgnoing to
* each ccapgnent in the stream--fuur variables per ccm-
* punent: el complnemf audreviatiun I useu fur the chey- *
* ICAL work equivalent, pl compciént abereviatica I used *
* fGR the physical nukk equivalent, al ccmpgnent aúurevia- *
* ticir I used fok the hear lf combusticn at refekengé con-*
* oitida, añ al comp. a己̃. 1 ujeu fur the enthalpy chance*
* FROM REFERENGE ClivoItIUN.
* THE CPI AND CPA FUNCTICN SUSPKOGRAMS akE USEO TO FIND
* values fur the p ainu a varladles respectively. cpl and
* cpa calculate the change in merk equivalent anu enthalpy
* hespecitvely as a compeneia is adjustec to the stanuard
* State (298.15).

DO $125 \quad 1=1$,NSTRM
$T=S(1,13)$
$T I=298.15$
RTI= 1.707*TI
HVCUAL $=12000$.

* use the reat of comóusticin-aura ezuivalint approximatiun *
* aith the lluou btu/lb value given fur coal

ECOAL=HVCOAL*S(I,1)*504.

* take the average meat capacity fuk coal, char, aivj ash *
* TC BE 0.224 GTU/Lb/UEG r is GIVEN BY PEKaY IV THE CHEA-
* ical encineek's haidzuck.

PCUAL=S(I,1)*112.90 *(T-II - I (*ALOG(T/TI))
ACOAL $=$ S(I, I) $*$ HVCCAL $=504$.
BCCAL = S(1, 1)*(T-TI)*11く.5*1.8

* check fuk type df oil aide calqulate e e a values
* accaruingly.

HVOIL $=15300$
IF(S(1,2).UE.O.) GC TO 14
$S(1,2)=-S(1,2)$
EUIL $=19100 . * 5(1,2) * 166.67$
AULL $=19100 . * S(1,2) * 100.07$
GO 10 19

* USE the given syncrude highir henting value uf 19100
* bTU/LU alcing inth ait approximate value lf l4700 bTu/lo
* fur the ran ull.

14 EOIL $=S(1,2) *$ HVOIL*160.9?
AUIL $=5(1,2) * H V U I L * 106.7$

* check vil fur li auid ur gas state ado cilculate pe e
* Values accuraliluly.
* assume oil phiysical phgperties to ge cllse tc thóse cf
* ANTHKACENE: CP=-14.09+.204*T KiAL/KMCL, HEAT CF VAPCRI-*

19 POIL = 135.*ड(I, 2)*(T-T! - TI *ALJG(T/TI)
BOIL=S(1,2)*135*(T-TI)
IF(S) 1,12).NE.1.) GO TU 1!
POIL=S(I,2)*(1.987*TI*ALUG(380000.) +CPII-14.C9,204.2,T) +RTI*

* ALOG(X(1,2$) 1)$

BUIL $=S(I, 2) *(C P A(-14.09,204.2,1)+137 . * 166.7)$
$11 E N 2=5(1,3) * 143$.
PN2 $=5(1,3) *(C P I(6.83, .9, T)+$ RTIFALUG(×(I,3)))
AN2 $=0$.
$B N 2=S([, 3) * C P A(6.83, .9,5)$
$E \cup 2=S(1,4) * 932$.

$A D 2=0$.
$\Delta G 2=S(1,4) * C P A(7.16,1 \ldots T)$

* check nater fcr liguio or gaj state anc calculate p e 3 *
* valués acloroingly.
[F(SII,12).EQ.1.) GO TU 10
$\mathrm{EH} 2 \mathrm{O}=0$.
$\mathrm{AH} 2 \mathrm{O}=0$.
PH2C=S(I,5)*(T-TI-TI*ALUG(T/TI))*18.
BH2U $=$ S(1,5) $\# 1$ B. * (T-TI)
GU 1020

1) $\mathrm{EHZO}=0$.
$\mathrm{AH} 2 \mathrm{O}=0$.
$\mathrm{PH} 2 \mathrm{U}=5(1,5) *(2054.5+C P(17.30,2.40, \mathrm{~T})+R T I * A L G(X(I, 5)))$

20 ECO2 $=5(1,6) * 476$.
PCU2 $=5(1,6) \neq(C P 1(10.57,2.17, T)+R T I * A L U \cup(x(1,0)))$
$\operatorname{ACO2}=0$.
$3 C 02=5(1,0) \neq C P A(10.57,2 \cdot 10, T)$
$E C O=S(!, 7) * 6 b 770$.
$P C O=S(1,1) *(C P I(0.79, .9 d, T)+R T 1 * A L U G(x(1,7)))$
$A C U=5(1,7) * 67036$.
ECU $=5(1,7) \neq C P A(6.79, .58, T)$
EH2=S(1,d)*50224.
PH2=S(I,8)*(CPI(6.52,.18, J) +RTI*ALOG(X1 (1,8)))
AH2 $=5(1,8) * 6031 \%$.
$3 \mathrm{H} 2=\mathrm{S}(1,8) * \mathrm{CPA}[0.52, .7 \mathrm{~B}, \mathrm{~T})$
ECH4 $=$ S $(1,9) * 193420$.
PCH4=S(I,9)*(CPI(3.3d1, $15.044, T)+$ RTI*ALOG(X(I,9)))
ACH4= S (1,9) $=2128 \mathrm{CO}$.
$\mathrm{BCH}=\mathrm{S}(1,4) \# こ \mathrm{PA}(3.3 \mathrm{~d} 1,18.044,1)$
EC2144=S(I,10)*303672.
PC2H4=S(1,10)*(CPI(2.d3,28.0, T) +RTI*ALUGIX(1,10)))
AC2 $2 \mathrm{H} 4=5(1,10) * 337150$.
$\mathrm{BC} 2 \mathrm{H} 4=\mathrm{S}(1,10) * \mathrm{CPA}(2.83,2 \mathrm{~d} .6, \mathrm{~T})$
EC2H6=S(I, 11)*357036.
PC2H6=S(1,11)*(CPI(2.247,33.2,T)+KTI*ALOG(x(1,11)))
AC2H6= S(I, 11)*372820.
UC2H6 = S(I,11)*CPA(2.247,33.2,T)
EC3H6=S(I, 15)*44 0 OLO.
PC3HG=う(1,15)*(CPI(3.253,4..12,T)+RTI*ALCG(x(1,15)))
ACSH6= S(I, 15)*4 41990 .
```
BC3H6=S(I,15) &CPA(3.253,45.12,I)
EC 3H8=5(1,10)*513618.
PC3HA=S(I,16)*(CPI(2.41, 27.2,T)*RII*ALUN(X(1,16)))
AC3Ho}=5(1,16)*530000
BC3H8=S(I,16)*CPA(2.41,57.2,T)
EC4HLO=S(1,17)*669814.
PC4HLU=S(I,17)*(CHI;3.044,73.35,T)+RT[*ALOG(X(1,17)))
AC4,11)=S(I,17)*687640.
BC4H1O=S(I,17)*CPA(3.344,73.35,T)
EH2S=S(1,18)*187992.
PH2S=S(I,Ld)*(CP[(7.81,2.96,T)+RTI*ALUG(X(I,18)))
AH2S= S(l,18)*134402.
BH2S=S({,18)*CPA(7. (L,2.96,T)
ENH3=5(1,19)*90432.
PNH3=S(I,LS)*(CPI(7.1L,6.,I)+RTI*ALOG(X(I,L9)))
ANH3=0.
8NH3= S(1,19)*CPA(7.11,6.,T)
ESLFR=S(I,2U)*139660.
PSLFR=S(I,20)*CPI(3.53,6.24,T)
ASLFR=S(1,20)*70960.
8SLFR=S(1,20)#CPA(3.59,6.24,T)
EASH=0.
PASH=S(I.2I)*L12.9*(T -II-II*ALOG(T/TI))*1.8
AASH= 0.
oे\mp@code{SH=S(I,2I)*112.4*1.8*(T-TI)}
```

* uSE Tnu different char meat ef combustiun values(Btj/Lu) * depending upci stream number.

IF(I.EU.12) HVCHAR=12UCO.
IF(I.EG.13) HVCHAR $=11100$.
ECHAR=S(1,22)*504.*HVCHAR
PCHAR=S(I,22)*112.9*(T-TI-TI*ALOG(T/TI))*1. ©
ACHAR $=5(1,22) * 504$. *HVCHAR
BCHAR = S(1,22)*112.与*1.8*(T-TI)
$E A I R=0$.
PA IR=S(I.24)*CPI(6.9..92,T)
$A A I K=0$.
$\triangle A I R=S(1,24) * C P A(6,9, .92, T)$
PHYS(I) = PCOAL + PUIL+PN2+PC2+PH2U+PCO2+PCC+PH2+PCH4+PC2H4+

* PC2H6+PC $3 \mathrm{H} 6+P C 3 H 8+P C 4 H 1 U+P M 2 S+P M H 3+P S L F N+P A S H+P C H A R+P A I R$

CHEM (I) = ECCAL+ECIL+EN2 +EC2 + EHZC+ECO2 +ECC $+E H 2+E C H 4+E C 2 H 4+$
*EC $216+$ EL 3 H6 +EC $3 H$ d $+E C 4 H 1 O+E H 25+E N H 3+E S L F R+E A S H+E C H A R$ $B H Y S(I)=B C O A L+B U I L+B N 2+B C 2+B H 2 U+B C O 2+3 C O+B H 2+E C H 4+B C 2 H 4+$ *BC $2 \mathrm{HO}+\mathrm{BC} 3 \mathrm{H} 6+\mathrm{BC} 3 \mathrm{H} 8+\mathrm{BC} 4 \mathrm{H} 1 \mathrm{O}+\mathrm{BH} 25+8 \mathrm{NH} 3+8 \mathrm{SLFR}+3 A S H+8 C H A R+8 A I R$
CHAM(I) = ACOAL+AOIL+AN2+AC2+AH2L+ACUL+ACU+AH2+ACH4+AC2H4+

* $A C 2 H 6+A C 3 H O ́+A C 3 H O+A C 4 H 1 O+A H 2 S+A N H 3+A S L F R+A A S H+A C H A R$

IF(S(1,12).NE.1.)GC TO 74
PHYS(I)=PHYS(I)+S(I,23!*1.937*TI*ALUG(S(I,14)/14.7)

* calculate the total mukx equivalents, ell), anc thermal *
* ENEKGY, alil, FUR STKEAY 1.

74 E(I) = PHYS(I) +CHEM(I)
$\mathrm{A}(1)=\mathrm{BHYS}(1)+$ ChAM(I)
125 CCNTINE

* SKip items 9-13

IF(M.GE. Y) $M=M+5$
UNT=UNIT $\Gamma(K, M)$
ABSU=ABS (UNT)

* put streaiy nu. In prcper furm

IF(ABS(UNIT(K,M)).LT.1.1 LINT=UNT*10).
IF(ABS(UNIT(K,M)).GE.100.) UNT $T=0$.
IU=UNT
6

* corkect for cumputer round uff of decimals
$A \lambda=A \Delta S(U N T)+.4$
$J=A A$
IF(J.NE.)) GD TC 29
EUNIT=0.
ALNI T $=0$.
BUNIT=0.
GO TO 17
29 EUNIT=E(J)
BUNIT=A(J)
AUNIT=A(J)
IFIIU.LT.U.J GC TC 33
* calculate the total useful mork evuivalent, ein, the
* total useful thermal energy, bin, divo the tctal thermal
* eneruy, aln, enterliag the unit as streais.

17 IF(AJSU.LT.L.) EUNIT=0.
IFCABSU.LT. . . 1 BUNIT $=0$.
EIN=EIIN+EUNIT
BIN= $I N+\mathbb{I N}$ IT
AIN=AIN+AUN:T
GOTC 151

```
C * calculate analuguus quantities leaving the vinit as
    33 IF(ABSU.LT.I.) EUNIT=0.
    IF(ABSU.LT.1.) BUNIT=0.
    EOUT=EOUT + EUNIT
    BCUT=BOUT + BUNIT
    ACUT=AOUT+AUNIT
151 CONTINUE
    N=0.
    Y=0.
    Z=0.
    00 47 KM=9,13
    * calculaje the total wChk equivalent, n, thermal energy, *
    * Y, ANO THERMAL ENERGY INCLUDING THE GËNERAT ING EfFICIENCY*
    * Z, for EACr UNITS UTILITIES.
    IF(UNIT(K,K,N).LT.O.) GO TO 4ó
    W=W+UNIT(K,KM)
    IF(ANIT(K,KM).LT.O.) GO TO 40
    Y=Y + AiNII(K,KM)
    Z=Z+BNIT(K,KM)
    GO TO 4T
    * calculate total vuantities leaving a unit.
    40 EUUT=EOUT+ABSIUNIT(K,KM))
    AOUT = AOUT + ABS (ANIT (K,K,M))
    BUUT = 8OUT + ABS(BNIT(K,KiH))
    47 Cuntinue
    Q=EIN+n
    IFIO.NE.O.) GO TO 48
    ErF(K)=0.
    BrF(x)=0.
    GO TO 49
    * dETERMINE THE SECCND LAN EFFICIENCY, EFF[KI, THE ENERÜY
    * uALANCE LL⿱亠juRE, AfF(K), AND THE FIKST LAn EFFICIENCy
    * fur unit K.
    4# EFF(K)=EOUT/(EIN+N)
    AFF(K)=AU\cupT/(AIN+Y)*1JU.
    BFF(K)=BUUT/(BIN+L)
    3TOT(K) = 8IN+Z
    ETOT(K) = EIN+M
    4% EUUT=0.
    ACUT=0.
    BOUT=0.
    EIN=0.
    AIN=0.
    GIN=0.
    w=0.
    Y=0.
    L=0.
130 CONTINUE
```

C
DO $51 \mathrm{~K}=1$ ，NSTAM
$T S=S(K, 13)$
PS $=S(K, 14)$
OO $52 \quad N=12,20$
$S(K, N)=S(K, N+3)$
52 CONTINUE
S（K，21）＝PS
$5(K, 22)=15$
$0087 M=1,20$
$N=24-M$
j（K，A：$=5(K, N-1)$
87 CCNTINUE
$S(K, 3)=S(K, 24)$
51 CONTINUE
$N S=0$
$M=1$
$M F=10$
ds wRITE（6，310）
WRITE（6，320）（J，J＝M，MF）
WRITE $(6,330)$
WRITE（ 6,350 ）（RWHEAD（J），（S（1，J），I＝M，MF），J $=1,23$ ）
WRITE $(6,551)(\operatorname{CHAM}(N), N=M, M F)$
WRITE（ $0,0 S 1)(B H Y S(N), N=M, M F)$
hRITE（0，15L）（A（JJ），JJ＝M，MF）
WRITE（ 6,550 ）（CHEM（ N ），$N=M$, MF）
aRITE $(6,650)($ PHYS（N），N $=M, M F)$
WRITE（6，75O）（E（JJ），JJ＝M，MF）
$N S=N S+10$
IF（NS．CE．NSTRM）CC TC 89
$M=M+10$
$M F=\mu F+10$
GO 1088
89 WRITE $(6,423)$
WRITE（ 6,450 ）（（UNAME（K，I），I $=1,7)$ ，BTOT (K) ，ETUT $(K), K=1$ ，NUUIV IT）
WRITE（6，670）
WRITE（0，675）
WRITE $(6,680)$
WR：TE（6，4T7）（IUNAME（K，（），I＝ 1,7$), B F F(K), E F F(K), A F F(K), K=1$, NUMTI）

FORMATS

1 FORMATI＇L＇，ECHC CHECK OF DATA＇／／）
50 FORMAT（5x，＇ND．STREAMS＝ $1,12,1$ NO．UNITS＝ $1,12 / / 1$
10）FORMAT（2I 10，F10．4）

 \＃＇H25＇， $2 x,{ }^{\prime}$＇NH3＇， $3 x, 5^{\prime}, 4 x,{ }^{\prime} A S H \prime, 4 x,{ }^{\prime} A I R^{\prime} / 1$
150 FORMAT（LX，I2，1X，F7．1，2F7．2，2F6．2，2F7．2，2FU．2，2F5．2，F3．），Fo．0． ＊F7．1，6F5．2，F6．2，F7．21
164 FURMATI52X，＇STREAM－CEMPCNENT CATA＊＊ $1 / 1$
165 FORMAT（＇1＇）
167 FDRMAT $/$ IX， 1 ＊CAS－LIQUID ICENTIFICATIUN＇11＇1＝GAS，1＇O＇：＇，
*' = LIUJiU'/ LX, '** ALL COMPGNENTS IN TLNSAHN, TEMPERATURE ',
*'IN DEG F. ANU PKESSURE IN PSIA'I
174 FORMATI/////////55X.'MATERIAL BALANCE (HECK'/)
$1 / 5$ FORMATI7OX,'DIFFERENCE IN TONS/HR'/53x, 'UNIT NAME', 1SX, *'(IN-OUT)'/)
176 FQRMAI $143 \mathrm{x}, 744,10 \mathrm{x}, \mathrm{FQ} .3 / 1$
180 FORMATI48X,'PROCESS UNITS SIREAMS AND UTILITIES*'/ 52X,

 *'CM'/ノ

*', '' '-'','/10x.'STREAM NO.<1. -UNUTILILED SIREAM, '/ $10 x_{1}$.
*'STREAM NO. >100.--VALUE ALSO INCLUUEO IN UTILITIES'//10X,

* 'UTILITIES:'/IBX,'FUEL GAS, 4M BTU', SX,'(IN=+)'/I8X,'mOKK, ',
*'HP', 17X,'(IN=+)'/18X,'STEAM, MM BTU',12X,'(IN=+1'/18x,
*'CONDENSATE, TONS', ©x,' (OLT=+)'/13x,'CUULINL WATER, 1000 ',
* 'GPM (IN=+)')

200 FORMAT(11F7.2)
250 FORMAT(8X,7A4, 1X,4F7.2,5F5.0,4F3.1/)
251 FORMAT(1X,2LFG.2,4X/)
299 FOKMATIIJX,'SIREAM NCT INFUTTEU--1,15)
300 FORMAT (7A4,4F4.0,5F3.0,F5.1,F5.0, LF5.1)
310 FCRMAT''1'/////// 50X,'CCED PROCESS STREAMS 11 HR EAS IS)'
*//)
320 FOKMAT(1X,'STREAM \#',8x,12,9(10X,12)/)
330 FORMAT (1 X, 'COMPUSITICN-KMCL'/)
350 FCRMAT($(1 x, A 8,3 X, 10(F 10.2,2 X))$)
400 FCRMAT(2UF4.0)

*' ENERGY IN', $4 x_{1}$ 'TUTAL HOKK E. IN'/4LX, 'UNIT NAME', $17 x_{1}$,
*'KCAL (LST LAN)",7x,'KCAL (2NO LANI'/)
45) FURMAT (31X,7A4,9X,E11.4,9x,E11.4/)

477 FORMAT(15x,7A4,11X,FY.5,11X,FS.5,12X,FY.3/)
550 FOKMAT ($1 X$, 'ECH/KCAL', $3 x, 1$ DE $12.4 /$)
551 FGRMAI //IX,'ACH/KCAL', $3 x, 10[12.4 / 1$
© 50 FORMATI LX,'EPH/KCAL', $3 x, 1$ UE $12.4 / 1$
051 FGRMAT(LX,'APH/KCAL', $3 x, 10 E: 2,4 /$)
G7U FORMAT''1////////2YX,' THEKiAOUYNAMIL EFFLCIENCIES AND ENEKGY', *' balance closure for the ceeo prccessil/)

*'ENERGY BALANCE'।
S8) FORMAI!55x, 'EFFICIENCY', SX,'EFFICIENCY', L2X,'CLOSURE (ち) ///।
150 FORMATILX,'E/KCAL':5X, 1OE 12.4/)
751 FORMAT(IX,'A/KCAL',5X,10E12.4/)
sIUP
ENO

$$
c=8 / 1000 .
$$

TI=293.15
CPI=(A-TI*C)*(T-T1)+C/2*(T**2.-TI**2.)-A*II*ALCG(T/TI) RETURN ENO

FUNCTIUN CPA(A.B.TI

This function subprogram calculates the change IN WORK とQUIVALENT/KMCL AJ A CC.AFUNENT IS adjusted to the standaro state (293. 15K)

```
****####***#######*#***######################*#*###############
```

ENO
FUNCTIUN CPA(A,B,T)

this function subprcgray calculates the
ENTHALPY Chaivee as a cuapjnent is adjusteu
TO : TS SIANDARU STATE (29 9. 15 K)
$\mathrm{C}=8 / 1000$.
TI $=290.15$
CPA= \ddagger ($T-T I)+C / 2 * *(T * * 2-T 1 * * 2)$
RETURN
END

00000000000000000000000000000000000300000
需

$\stackrel{\sim}{\otimes}$
 00000000000000 in 0007000000N0000000000000000

$\stackrel{N}{2}$

2
8

030000000000000000000000000000000
 0900909090909000000000200000000

 0900290909090009000900000000

 00000000000090009000009000090000 N

Phocess units stafans and utilities*
SIREAMS ENi
ER LNG

- emteging siafai mo. '.'. leaving stream no. --',

dithaties:

MATERIAL BALANCE CHECK

UNIT NAME
COAL PREPAKATIUN
ORYINE E STAGE I PYRCLYSIS
STAGE 2, 3, ANO 4 PYROLYSIS
PRODUCT RECOVERY
PYRGLYSIS GAS COMPRESSION
PYRULYSIS ACID GAS REMOVAL PYROLYSIS LIAS EXPANSIUN

OIL FILTRATION
oil hycrotkeating
PURGE ACID GAS REMOVAL
HYCROCARBCN REMOVAL
Ahmunia removal
hYORCGEN PLANT
Chak gasification
GASIFIER LAS COMPRESSICN
gasifiek acio gas renuval
Gasifier gas expansicn
SULFLR RECOVERY OVERALL CUEO PROCESS

DIfference in tuns/hr (IN-OUT)
-0.001
-0.000
-0.001
0.001
-0.002
0.001
0.0
-0.200
0.001
0.0
U. 0
-0.000
0.306
0.000
0.000
-コ.3
0.0
-0.000
0.043

Stream *	1	2	3	4	5	6	7	8	9	10
COMPOSITIOA-KME										
COAL-T(0)	1031.00	31.00	0.0	0.0	0.0	1000.00	0.0	0.0	0.0	0.0
Of	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
41 L	$\therefore 0$	0.0	0.0	2091.34	0.0	0.0	0.0	0.0	4047.60	0.0
H 2	0.0	0.0	806.71	0.0	2551.29	0.0	0.0	2320.06	0.0	7311.19
02	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
H20	8449.90	100.11	8.06	0.0	5567.47	3172.49	3289.32	24.67	0.0	954.26
602	0.0	0.0	17.32	0.0	651.20	0.0	0.0	50.09	0.0	1911.95
co	0.0	0.0	626.38	0.0	0.0	0.0	0.0	1801.42	0.0	0.0
112	0.0	0.0	214.51	0.0	0.0	0.0	0.0	781.52	0.0	0.0
CH4	0.0	0.0	7.35	0.0	0.0	0.0	0.0	20.36	0.0	0.0
$\mathrm{C2H4}^{4}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C2H6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C3116	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C4H0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C4140	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
H2S	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NH_{5}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
- 5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ASH-TONS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CHAR-TOM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
folal-ky	8449.90	100.71	1740.32	2091.34	8764.95	3172.49	3289.32	5004.12	6047.60	10238.00
PaEs-Psi	14.10	14.70	20.00	20.00	16.00	14.10	14.70	30.00	24.50	15.00
	294.26	310.93	294.26	294.26	334.11	294.26	317.59	310.93	366.48	316.48
achircal	c.6235E 10	0.1075E 09	0.626at 0a	0.0	0.0	0.6048 EE 10	0.0	0.1800 e 09	0.0	0.0
APh/acal	-0.1406E 07	$0.1037 E 06$	-0.1327E 06	-0.5833E 05	0.6142 E O8	-0.1012E 07	$0.1151 E 07$	0.7133 E 08	0.2978E 07	0.1153E 08
a/rcal	0.6235 E 10	0.18160^{09}	0.6255E 08	-0.5833E 05	0.6142 E OR	$0.6047 E 10$	O.LI5LE OT	$0.1807 E 09$	$0.2978{ }^{0} 07$	O.1153E 08
ECH/KCAL	$0.6235 E 10$	0.1815 S 09	0.5829 E OB	0.0	$0.3475 E 07$	0.6040E 10	0.0	0.1614 E 09	0.0	0-1019E O8
EPH/KCAL	0.9255 E 04	0.2160E 04	-0.8094E 06	0.381 aE 06	0.76 ghe 07	0.6663E 04	0.3599E 05	-0.1115e 07	$0.2127 E 07$	-0.2549E O7
E/KCAL	$0.6235 E 10$	0.1875 E 09	0.5748 E O8	0.3818 EE 06	0.1116 E OB	0.604 BE 10	0.3599 ES	0.1663E 09	$0.2127 E 07$	0.1636E 07

20 $\begin{array}{cc}0.0 & 0.0 \\ 0.0 & 595.13 \\ 0.0 & 0.0 \\ 15.22 & 0.0 \\ 0.0 & 0.0 \\ 347.25 & 49.85 \\ 16544.69 & 0.0 \\ 90.06 & 0.0 \\ 1494.04 & 0.0 \\ 624.29 & 0.0 \\ 16.17 & 0.3 \\ 39.62 & 0.0 \\ 10.13 & 0.0 \\ 6.38 & 0.0 \\ 14.20 & 0.0 \\ 103.29 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 7.88 \\ 5265.73 & 045.58 \\ 30.38 & 14.70 \\ 810.93 & 394.26\end{array}$ $0.3020 E 10 \quad 0.3482 E 09$ 0.7570 Ot 9
$\stackrel{9}{3}$
$\stackrel{+}{0}$ 0.1563 E 10
 0
$\stackrel{3}{5}$
$\stackrel{0}{0}$
$\stackrel{0}{0}$
\approx

 $0.3310 E 09$

18

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.32
539.82
0.0
14.70
1116.48 1116.48 $019602 E^{\circ} 0 \quad 0.0$ 0.8999 CB 0.3110e 10 0.3020 E 10 ∞
0
$\stackrel{0}{0}$
0
\vdots
0

= oinono

 $\stackrel{\circ}{\circ}$ $0.3373 E 09$ 0.3540 E 10 $0.3129 E 10$ $\stackrel{\oplus}{\circ}$ | 0 |
| :--- |
| |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |

coeo process streans 11 hr gasisi

Streat *	11	12	13	14	15	16	17	18	19	20
compositiontemir.										
Coal -ion	0.0	0.0	10.60	0.0		0.0				
011	0.0	0.0	1.21	0.0	0.0	0.0	0.0 595.73	0.0 0.0	0.0	${ }_{595}^{0.0}$
418	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0	595.13
${ }^{\prime 2}$	5.18	5.18	0.0	10.04	0.0	0.0	71.25	0.0	15.22	0.0
02	0.0	0.0	0.0	0.0	4436.93	0.0	0.0	0.0	15.22	0.0
1520	131.94	131.94	553.93	255.31	0.0	16962.15	14362.12	0.0	347.25	49.85
${ }_{6} 02$	564.41	564.41	0.0	1090.27	0.0	0.0	7801.63	0.0	1654.69	0.0
co	307.04	301.04	0.0	593.02	0.0	0.0	4243.47	0.0	903.06	0.0
$1{ }^{1}$	508.51	508.51	0.0	985.53	0.0	0.0	7051.10	0.0	1494.04	0.0
C1/4 C214	213.19 5.50	213.19 5.50	0.0	411.10	0.0	0.0	2944.45	0.0	624.29	0.0
C2n6	13.58	5.50 13.58	0.0 0.0	10.61	0.0	0.0	76.64	0.0	16.17	0.9
C314\%	3.45	3.45	0.0	6.6.8	0.0	0.0	187.05 47.00	0.0	39.42	0.0
C4H8	2.26	2.26	0.0	4.32	0.0	0.0	31.27	0.0	10.13	0.0
C46to	4.84	4.84	0.0	9.36	0.0	0.0	81.27	0.0	6.58	0.0
H2S	35.14	35.14	0.0	69.15	0.0	0.0	487.15	0.0	103.29	0.0
Nil3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.0	c. 0
5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ASH-TOHS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.32	0.0	0.0
CHIR-TOPA	0.0	917.25	0.0	0.0	0.0	0.0	7.08	539.42	0.0	7.88
JWIAL-K4 PHES-PSI	1715.03 23.04	1795.03 23.64	555.14	3470.71	4436.93	16962.75	37968.44	0.0	5265.73	645.58
PHES-PSI TEAP-K	23.04 560.73	23.64 560.93	14.10	29.18	30.52	30.52	29.20	14.70	30.38	14.70
TEAP-K	560.73	560.93	316.48	810.93	295.31	810.93	721.59	1116.48	810.93	394.26
ACh/acal	0.1187E 09	0.6029 E 10	0.6714E O9	0.2295509	0.0	0.0	$0.3209 E 10$	0.3020810	0.3482 Ca	$0.1563 E 10$
APH/KCAL	c.5764E 01	$0.5195 E$ Of	0.2253 EO	0.2012E 08	-0.9190E 05	0.2539E 09	$0.3373 E 09$	0.8999E Ca	0.3052 E 08	0.7570 E Of
A/MCAL	0.1245E 09	0.6007510	$0.6742 E$ OB	0.2496009	-0.9190E 05	0.2530609	$0.3546 E 10$	0.3110e 10	0.3197E 09	0.1511E 10
eciukcal	0.1129809	$0.6023 E 10$	0.6719E O8	0.2102E 09	0.4135 E 07	0.0	$0.3129 E 10$	O.3020E 10	0.3310e 09	0.1563 E 10
EPh/KCal	0.2760 E 06	0.1504E 00	0.6658E 04	$0.6007 E 07$	$0.1921 E 07$	0.1423E 09	0.72016 de	$0.4670 E 00$	0.9241E 07	0.1062 E 07
efuctal	0.1132 E 0	$0.6038 E 10$	$0.6720 E$							

coeo process streans il hr basis:

Stream	21	22	23	24	25	26	27	28	29	30
Compusijlontekil										
coal -ich	0.0	0.0	0.0	0.0	0.0	0.0				
011	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$A 18$	0.0	0.0	0.0	11673.98	0.0	0.0	0.0	0.0	0.0	0.0
N2	0.0	56.03	0.0	0.0	23.50	9851.76	0.0	84.52	0.0	0.0
02	12.0	0.0	0.0	0.0	0.0	2577.67	0.0	84.52 0.0	0.0 0.0	84.52 0.0
H2O	12486.02	1437.20	289.05	0.0	371.65	536.30	1699.04	113.81	0.0	10.0
$\mathrm{COR}_{\mathrm{Co}}$	0.0	6148.95	0.0	0.0	311.68	0.0	0.0	6400.63	5535.27	925.36
Co $4+2$	0.0	3343.41	0.0	0.0	1693.89	0.0	0.0	5031.30	0.0	5031.30
${ }_{\text {C12 }}^{\text {C14 }}$	0.0	5557.66 2320.16	0.0	0.0	2812.58	0.0	0.0	8310.23	0.0	8370.23
C2H3	0.0	60.47	0.0	0.0	1175.63	0.0	0.0	3495.80	0.0	3485.30
C2H6	0.0	147.22	0.0	0.0	74.52	0.0	0.0	91.19	0.0	31.19
С3н6	0.0	36.86	0.0	0.0	18.76	0.0	0.0	221.74	0.0	221.74
C4, ${ }^{\text {a }}$	0.0	24.69	0.0	0.0	12.55	0.0	0.0	55.62	0.0	55.62
C3H10	0.0	52.60	0.0	0.0	26.69	0.0	0.0		0.0	31.24
H25	0.0	383.86	0.0	0.0	111.01	0.0	0.0	79.29	0.0	79.29
Ni+3	0.0	0.0	0.0			.	0.0	494.81	494.07	0.80
5	0.0	0.0	0.0	. 0	0.0	129.98	0.0	0.0	0.0	0.0
ASH-TONS	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0
Cham-ton	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
F014t-x	12486.02	19571.10	289.05	11673.98	6070.16	12995.71	1699.04	24540.0	0.0	0.0
PRES-PSI	14.70	16.00	14.10	20.00	16.00	129.16 .00	1699.04	24542.21	6029.33	18512.88
TEMP-K	351.04	316.48	310.93	310.93	310.93	310.93	305.37	$\begin{aligned} & 150.00 \\ & 305.31 \end{aligned}$	$\begin{array}{r} 30.00 \\ 377.59 \end{array}$	$\begin{aligned} & 140.00 \\ & 316.48 \end{aligned}$
$\mathrm{ACH}^{\text {KCM }}$	0.0	0.1294 E 10	0.0	0.0	$0.6442 E$ Os	0.0	0.0	0.1938 E 10	$0.6643 E$ O8	.1872E 10
APH/KCAL	0.1324 E 08	0.1820E 08	$0.6648 E$ OS	$0.1071 E 07$	0.4592E 07	0.6042807	0.2209806	0.2707 OJ	0.5306E 07	$0.3825 E 07$
A/KCaL	0.1324 E 08	0.1312 E 10	0.6648 ES	$0.1071 E 07$	0.6488 E 09	$0.6842 E$ Of	$0.2209 E$ Of	0.1941610	0.7174 EDO	0.1815 C 10
ECIVKCAL	0.0	0.1230 E 10	0.0	0.0	0.5940E 09	0.1425E 08	0.0	$0.1824 E 10$	0.1193 E 0	0.170SE 10
EPHKKCAL	0.1151507	-0.1513E 08	0.1385E 04	0.2152E Of	-0.4968E O7	-0.371日E 07	$0.2661 E 04$	0.1150e os	0.2139207	0.1004 E 08
E/KCAL	0.1157E 07	0.121510	0.1385E O6	0.2152E Of	0.5890e 09	0.1053E CB	0.2 thie 04	0.1835E 10	$0.1215 E$	0.17158

COEO PROCESS STREARS 1 HR BASISI

StaEAM	31	- 32	33	34	35	36	31	38	39	60
COMPUSILION-KMOL										
COAL-TON	0.0	0.0	0.0			0.0				
016	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0		0.0	0.0
${ }^{\text {A } 1 / 2}$	3. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0
N2	75.66	9.07	15.46	46.96	28.50	0.0	0.0	0.0	0.0 42.42	0.0
02	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.42 0.0	17.81
H20	101.12	12.09	101.12	63.45	34.27	5401.29	584.18	3763.18	42.30	0.50
co	4532.51	12.18 .33 534.13	827.03 45025	515.56	311.48	0.0	0.0	0.0	0.21	0.0
H2	$74 \% 21$	\% 4 L. 03	4502.97	2808.69	1643.89	0.0	0.0	0.0	0.32	0.0
Cli_{4}	3124.26	371.52	3124.28	1940.64	2812.58	0.0	0.0	0.0	4381.63	0.0
C2+4	81.49	9.10	3124.28	1940.64	1175.63 30.12	0.0	0.0	0.0	188.30	0.0
C2116	148.21	23.53	198.21	123.69	14. 52	0.0	0.0	0.0	0.0	0.0
$\mathrm{C}^{\text {3 }} 16$	49.80	5.82	49.40	+31.04	18. 16	0.0	0.0	0.0	0.0	0.0
C4H8	33.33	3.91	33.33	20.18		0.0	0.0	0.0	0.0	0.0
C4, ${ }^{\text {che }}$	10.86	0.43	70.86	44.17	12.35	0.0	0.0	0.0	0.0	0.0
H2S	0.80	0.0	0.80	0.53	26.69	0.0	0.0	0.0	0.0	0.0
NH3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ash-Tlus	0.0	0.0					0.0	0.0	0.0	0.0
CHAR-TOM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JUTAL-KM	16544.75	1988.14	16544.75	10320.90	6223.84	540.0	0.0	0.0	0.0	0.0
PRES-PS!	140.00	140.00	30.00	30.00	322.04 30.00	515.00	589.18	3183.18	4681.18	18.32
IEMP-K	316.48	316.48	310.93	310.93	310.93	504.26	14.70	14.70	215.00	60.00
ACH/KCAL	0.1673E 10	0.1989E 09	0.1673 E 10	0.1043 E 10	$0.6203 F 09$					
							0.0	0.0	0.3390809	0.0
APM/KCAL	0.3419E Or	0.4065E 06	$0.2704 \mathrm{E}^{07}$	0.168 IE 07	0.1013 E 07	$0.6604 E^{08}$	$0.1355 E 06$	0.8655E 06	0.1299 O	0.6966E O4
A/KCAL	C. 16 TGE 10	0.1993 E 09	0.1675E 10	0.1045 E 10	0.6303 E 09	0.6G0ヶE 08	$0.1355 E 08$	0.8655 E 06	34115	$0.6866 E$
ECH/XCAL	0.1523 E 10	0.1811E 09	$0.1523 E 10$	$0.9503 E 09$	0.5732 ES	0.0	0.			0.2547E 04
EPH/KCAL	0.8975 O7									
	-	0.1060 07	.015se 07	-0.3841E 07	-0.2318E O7	0.2402 E 08	$0.2023 E 04$	$0.1803 E 05$	0.6717E 07	0.1496E 05
E/XCAL	0.153210	$0.1822 E 09$	0.1517E 10	0.9405E 09	0.5roae 09	$0.2402 E 08$	0.2823 O4	0.1803E 05	0.2909809	0.1751E 0S

COEO PROCESS STREAMS 11 hr basiss

Streay ${ }^{\text {d }}$	41	42	43	44	45	46	47	48	69	50
COAPCSITION-Kmol										
COAL-IGN	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
011	17.60	0.0	0.0	578.13	0.0	0.0	531.62	0.0	0.0	0.0
418	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
${ }_{0}{ }^{1} 2$	0.0	0.0	11.81	0.0	0.0	0.0	0.0	42.42	28.50	0.0
02	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HzO CO 2	0.0	0.0	0.0	49.35	0.0	740.75	0.0	4.03	81.58	3.02
$\mathrm{Cuz}_{\text {Cij }}$	0.0	13.0	0.0	0.0	0.0	0.0	0.0	0.21	311.48	0.0
112	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11.01	1653.89	0.0
L 14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6696.19	2812.58	0.0
C.21,4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	527.50	1175.63	0.0
C2H8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29.62	30.12	0.0
C3H6	0.0	0.0	0.3	0.0	0.0	0.0	0.0	29.26 4.10	14.52	0.0
(4 HB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15.64	12.55	0.0
(4\%LT)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18.62	26.89	0.0
12 L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	91.04	19.96	0.0
$\mathrm{NH3}^{3}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.79	125.18	0.0
S	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12.0	0.0
ASt-rons	1.32	1.32	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CHAR-TUY	7.88 17.60	0.0 0.0	${ }^{0.0}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PRESL-KN	17.60 16.70	${ }_{14.0}^{0.70}$	17.81 60.00	627.48 14.10	0.0 0.0	140.75	531.62	1441.41	6412.02	3.32
1EMP-K	449.82	294.26	294.26	422.04	255.37	14.70 310.93	14.70	1700.00	26.00	14.10
				422.04	255.37	310.93	310.93	310.93	310.93	310.93
aCh/KCAL	0.8897 E 08	0.0	0.0	0.14 SE 10	0.0	0.0	$0.1692 E 10$	$0.6162 E 09$	0.t320E 09	0.0
APH/KCAL	0.6439E 06	-0.1043E 04	-0.4ylbe 03	0.9179 Ol	0.0	0.1704 E 06	0.9170 E 06	$0.7123 E 06$	0.1494E 0]	$0.6949 E 03$
NKCAL	0.8962E 08	-0.1043E 04	-0.4916E 03	0.1684E 10	0.0	0.1J04E 06	0.1693 E 10	0.6169E 09	0.6334E 09	$0.6949 E 03$
ECh/KCAL	0.4896E 08	0.0	0.256TE O4	0.1474E 10	0.0	0.0	$0.1692 E 10$	0.5316E 09	0.5869E 09	0.0
EPh/KCal	0.1234 E 06	0.6866 E1	0.1484E OS	0.1601207	0.0	0.3550E 04	0.1911 E 05	$0.1903 E 08$	-0.3256E 07	0.1448 E 02
EfKCML	0.8909 E 08	0.6866 O1	0.1739205	$0.1476 \mathrm{E}^{10}$	0.0	0.3550E 04	0.1692E 10	0.5501E 09	0.5837 E 09	0.144BE 02

coed process sireams 11 ha dasisi

SIREAM	51	52	53	54	55	56	57	58	59	60
COMPOSITISN-KMLL										
COAL-TON	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Olt Alk	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
${ }_{4} 12$	0.0	0.0	0.0	0.0	0.0	0.0	40242.16	0.0	0.0	0.0
N2 02	0.0	42.42	0.0	42.42	42.42	0.0	0.0	0.0	0.0	0.0
${ }_{3}^{02}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
H20 CO2	3.02 0.21	4.03	4.03	46.33	0.0	14650.36	0.0	11003.60	0.0	10352.94
co	0.21	0.0	0.0	0.21	0.0	0.0	0.0	0.0	0.0	0.0
42	0.3	6676.19	6696.19	11083.32	11.01	0.0	0.0	0.0	0.0	0.0
$\mathrm{CHH}^{\text {che }}$	0.0	522.50	201.25	469.56	261.25	0.0	0.0	0.0	0.0	0.0
C2H4	0.0	1.62	0.0	0.0	1.62	0.0	0.0	0.0	0.0	0.0
C216	0.0	29.26	0.0	0.0	29.26	0.0	0.0	0.0	0.0	0.3
C3H6	0.0	4.10	0.0	0.0	4.10	0.0	0.0	0.0	0.0	0.0
C418	0.0	15.84	0.0	0.0	15.84	0.0	0.0	0.0 0.0	0.0	0.0 0.0
C4H10 1125	0.0	18.42	0.0	0.0	18.42	0.0	0.0	0.0	0.0	0.0
1125 $1+13$	91.04	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
${ }_{\text {Hit3 }}$	4.19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ASH-TONS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ASH-TONS CHAR-IUS	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	136.07	0.0
TOTAL-K. ${ }_{\text {ch }}$	99.06	1345.30	6961.47	0.05	0.0	0.0	0.0	0.0	0.0	0.0
PRES-PS1	26.00	1690.00	1600.00	1000.00	383.92 30.00	14650.36 14.70	40242.16 27.92	11003.60 27.92	0.0	10052.94
IEAP-X	310.93	110.93	310.93	366.48	310.93	310.93	366.48	408.15	449.82	319.26
ACH/KCAL	$0.1224 E 00$	0.6039609	$0.5131 E 09$	$0.8529 E 09$	0.908 E Of	0.0	0.0	0.0	0.0	0.0
APH/KEAL	0.4280E 05	$0.1016 E 06$	0.6506E 06	0.5957E O1	0.5097 E 05	0.3310 E 07	$0.1581 E 00$	0.1348 Ca	0.4219 O	0.4124E 07
A/ACAL	0.1220 ECS	0.6046509	0.5137 E 09	0.asage 09	0.9093 E 0 O	$0.33 \mathrm{JOE} \mathrm{C7}$	$0.1901 E 08$	0.134 EE 09	$0.4219 E 07$	0.4124E 07
ECHESAL	0.1750 E O8	0.5141E 09	0.4283 E 09	0.f124E 03	0.0582 E Of	0.0	0.0	0.0	0.0	0.0
EPH/XCAL	$0.1475 E 05$	0.1905E OO	0.1888 EO	0.3227E 08	-0.9073E 05	$0.7021 E 05$	0.1727608	0.3032E 00	0.8081E 06	0.1395E OS
E/XEAL	0.1752 O	0.5332 E 09	0.4472 E 09	0.7447E 09	0.0572 E 08	0.t021E uS	$0.1727 E 08$	0.3032 E		

70

Strean	61	62	63	64	65	66	67	68	69	70
CEAPOSIIION-KHRL										
COAL-ton	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
016	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$A 18$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3404.29	0.0	0.0 0.0
N2	35125.13	0.0	35125.73	0.0	0.0	3288.41	0.0	0.0	478.00	35125.73
02	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$\mathrm{H2O}$	5041.78	4676.65	371.13	0.0	0.0	1289.14	0.0	0.0	5.04	371.13
Cu 2	1211.69	0.0	1211.64	454.14	5990.01	6385.30	0.0	0.0	10.31	756.95
CO	21275.21	0.0	27275.21	0.0	0.0	0.0	0.0	0.0	371.17	27215.21
H2	11884.84	0.0	11884.84	0.0	0.0	0.0	0.0	0.0	162.00	11884.84
CH_{4}	300.15	0.0	308.75	0.0	0.0	0.0	0.0	0.0	4.52	308.75
$\mathrm{CLH4}^{\text {che }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C2H6 C3H6	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C 3 HO $\mathrm{C4HO}$	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0
${ }_{\text {c } 4 \text { Hil }}$	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0
Hi2s	461.45	0.0	467.45	462.12	954.19	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 5.32
NH^{3}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5	0.0	0.0	0.0	0.0	0.0	0.0	956.02	0.0	0.0	0.0
ASh-TUNS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C.1a9-109	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10IAL-Ky	81321.38	4676.85	16644.75	916.87	6946.20	10976.85	956.02	3404.29	1031.04	15727.08
Pies-psi	20.00	14.10	150.00	30.00	30.00	16.00	14.70	20.00	20.00	140.00
IEMP-K	316.68	305.37	305.31	371.59	311.59	413.71	310.93	310.93	310.93	316.48
$\mathrm{ACH} / \mathrm{KCAL}$	0.27bse 10	0.0	0.2783E 10	$0.6214 E^{08}$	0.1286E 09	0.0	0.6704E 08	0.0	$0.3713 E 08$	$0.2723 E 10$
APH/KCAL	$0.6381 E$ 08	$0.6080 E 06$	0.7850e O7	0.7309 E O6	0.6031E 07	$0.2586 E 08$	$0.6695 E$ OS	$0.3123 E 06$	0.1465606	0.1376E 08
A/KCAL	0.2日49E 10	0.6080e O6	$0.2793 E 10$	$0.6287 E 08$	$0.1346 E 09$	0.2588 Cc	$0.6791 E$ 08	$0.3123 E 06$	0.3728 EA	0-2737E 10
ECH/KCAL	$0.2622 E 10$	0.0	$0.2622 E 10$	0.8905e 08	0.2CA4E 09	0.3099E 08	$0.1335 E 09$	0.0	0.3454508	0.25s3E 10
EPH/KCAL	-0.3692E 08	c.1269E 04	0.5365E 08	$0.9418 E 05$	0.1973 E 07	-0.9235E O6	$0.1398 E^{\text {O }}$	0.6274E 06	-0.4781E 06	0.5231E 08
EJKCAL	$0.2585 E 10$	0.1269 E 04	$0.2676 E 10$	0.5914E 08	$0.2103 E 09$	0.300BE 08	$0.1335 E 09$	$0.6274 E 06$	$0.3406 E 08$	0.2585E 10

- ódo ódódojodo odo : ódo

$$
\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ \dot{0} & 0 & 0 & 0 & 0 & 0\end{array}$
= \quad - 000000000000000000000

$\dot{0}$	$\dot{0}$	$\dot{0}$	$\dot{0}$	$\dot{0}$	$\dot{0}$

COEO pROCESS SIREANS I HR oASISI
$\left.\begin{array}{lll} & \text { JOTAL ENTERING CUANTITIES } \\ \text { UNII NAME } \\ \text { TOTAL ENERGY IN } \\ \text { KCAL IIST LAH }\end{array}\right]$
TOTAL HORK EO. IN kCAL t2HD LAhI 0.6300 E 10 0.6361 E 10 0
$\stackrel{1}{4}$
$\stackrel{1}{4}$
0
0 c. 3231E 10 or $32987^{\circ} 0$
 0
$\underset{\sim}{\sim}$
$\underset{\sim}{n}$
\vdots 0
$\stackrel{0}{2}$
$\stackrel{0}{0}$
\vdots
0

 o
0
0
$\stackrel{y}{n}$
$\stackrel{y}{n}$
0
0 \circ
0
$\stackrel{1}{3}$
0
0
0
0

 or उeree 0 | \circ |
| :--- |
| |
| |
| $\dot{~}$ |
| 0 |

 or $3585 z^{\circ} 0$ g
0
\vdots
\vdots
\vdots
\vdots
0
$0.6523 E 10$
thenhooynamic efficitncies ano energy balance clusure fur the coeo process
ENERGY galance
CeSURE IJ）
99.910
 98.423 n
n
\vdots
0

 $\stackrel{7}{\square}$ 100.332 | N |
| :--- |
| $\underset{\sim}{9}$ | $⿳ 亠 丷 厂$

+

0
0 99.798 0
0
0
0
 91.046 96.574 99.078 99.171
 86.662
94.206 SECONO LAH SECONO LACH 0.98980 0.95986 \circ
0
0
0
0 0.86551 $\stackrel{n}{N}$ N
N
人
0
 a
漛
0
0
0 n
$\stackrel{n}{\circ}$
$\stackrel{y}{\circ}$
$\stackrel{y}{0}$ N
N
N
0
0 0.99681 n
0
0
0
0 a
n
\vdots
\vdots
i 0.81242 n
$\stackrel{n}{5}$
$\stackrel{y}{0}$
0 0.99485 0.99564 0
0
0
0
0
0 0.76932 FIRSI LAW EfFICIENCY 0.98915 0.96345 0.98423 0.90198 0.94696 0.88055 1.00710 0.99856 1.00143 0.99146 0.99162 0.99617 0.79194 0.95346 0.91908 0.98690 1.02009 0.71613
0.79657
UNIT NAME
orying e stage 1 PYROLYSIS Stage 2，3．ano a prodysis proouet rlcovery
pyrolysis gas compression pyrolysis acio gas rehoval pyrcaysis cas expanston oll filitration oil hydrotreating purge acid gas removal． hyorocaryun removal ammonila removal frorogen plant char gasificatlun Gasifier gas compression gasifier acio gas remoyal gasifier gas expansion sulfur recoveky
overall coeo process

APPENDIX B

This appendix refers to the optimization of the flue gas heat recovery system in Part III. A computer program listing with sample output corresponding to 8 heat exchangers and a 1 in. tube outside diameter is presented. Throughout the program listing descriptive comments are included which give most of the assumptions. The program may briefly be described in terms of three sections. The first section physically designs the heat exchanger, a counterflow one-pass fixed-tube-sheet shell and tube carbon steel exchanger, once the inside and outside fluid properties have been entered as data and once the independent design variables have been given values. In this section the shell-side heat transfer and pressure drop quantities are calculated from empirical relations given by Perry (16) and the corresponding tube-side quantities are calculated from relations given by Peters and Timmerhaus (24). Because of the moderate stream temperatures, less than 550R, radiation has been neglected in the heat transfer coefficient calculations. The next section of the program estimates all of the equipment costs from correlations given by Guthrie (27) and Peters and Timmerhaus. The final program section calculates the remaining quantities such as power, annual costs, and work equivalents necessary to determine values for the economic and thermodynamic objective functions. The program is structured to print out results for any or all of the objective function optimizations. The results consist of two major sections. The first gives a search table for a specified tube outside diameter and number of heat exchangers. The temperature difference colum listed in the table shows the temperature difference that exists at the hot end of the heat exchanger, i.e. inlet flue gas temperature minus exit preheated air temperature. The next section presents the heat exchanger design criteria and objective function values in addition to several intermediate results for one of the objective function optimizations.

SECONU LAh and cuSt ofrimizatiun uf a flue gas heat kecevery SYSTEH USING A CDUNTERFLOW UNE PASS FIXED-IUBE-SIIEET SHELL ANU

 TUBE HEAT EXCHANGEK-ALL CARBCN STEELWRITTEN BY TEKRY L. UNRUH UNOER THE ADVISEMENT OF DR. E. G. hYLE, DEPT. OF CHEMICAL ENGINEERING, KANSAS STATE LAIV.

DATA DESCRIPTION

I. INSIDE FLUIL PROPERTIES, \quad I-KG/HR(MASS FLCh RATEJ, CPIKLAL/KG/DEG K(HEAT CAPALITY),VISI-G/CM/S(VISCOSITY), IKICAL/S/CM/DEG K(THERMAL CCNDUCTIVITY)
2. OUTSIDE FLUIU PROPERTIES, WU-KG/HR(iAASS FLEN RATE), CPUKCAL/KG/UEG K(HEAT CAPACITY), VISO-G/CM/S(VISCCSITY), YKUCAL/S/Ci1/DEG K(THEKMAL CONDUCTIVITY)
3. RANGES OF SEARCH, NUMEER OF REAT EXCHANGERS, TUEE DUTS IDE diameter, exit preheated air temp., inside shell ulameter, AND OPTIMIZATION UUTPUT CHOICE, NET PRESENT VALUL, NCRK EQUIVALINT(COMBINEU HEAT RECUVERY SYSTEM), UVERALL SECLND LAH EFFICIENCY(HEAT EXCHANGER AUJITIUN SYSTEM) (I=YES)

REAL JK,LC,JC,MWTO,NC,NCN,LMTD,LS,KL,MAXLS,LT,JL,JS
KEAL NPVOLU,EFCLU
REAL EINF $(25,25)$, TOIF (25),NPV $(25,25)$, EFF $(25,25)$
[NTEGER NNPV, WIAE, IAEFF
INTEGER IDS(25)
CATA EINF,TUIF,NPV,EFF/ 1900 *0./
DATA IDS/2S*O/
READ(5,100) WI,CPI,VISI,TKI
READ (S,100 NC,CPO,VISU,TKU
READ (5,125) NEXCHI,NEXCH2, ITODI, 1 TOO2, ITMP4A,ITMP43,ISIDL,
*ISIUZ, inNPV, WWE, intFf
hRITE(0,150)
WRITE(S,170)
WRITE16,200) WI,CPI,VISI,TKI
WRITE (O,220) WO,CPO,VISC,TKO
$\mathrm{NXCHI}=\mathrm{NEXCH} 1$
$\mathrm{NXCH} 2=$ NEXCH2
ITEMPA $=$ ITMP4A
ITEMPB $=$ ITMP4B,

```
    ISOI = 1SIOL
    1502 = 15102
    TwI = n!
    IWU=H()
    SKIP = 0.
    IECK = O
    NPVCLC = -*.*10.**8
    EINOLD = 9.*IO.**)
    JOPT = O
    IUPT = 0
```

95 Cuntinue

* vary thie numbek uf heat ex litainueks.

OU 50 NEXCH $=$ NEXCHI,NEXCH2
$w I=T w I / N E X C H$
WO = TWO/NEXCH

* vaky the allenable tube cutside ulameter, tcu lif cm.
* for three pussible values,5/8, 3/4, CR I ln.

UC 40 JTUU $=1$ ITOU1,ITCU2
ITOU $=\mathrm{JIOO}-2$

* Vaky the exit preheated alk temperater, iterpa, in
* degkes k. The absulute maximuia ls 533.1b k, the lidet
* flue lis temperature.

```
\(J=0\)
UO 10 ITEMP4 \(=\) ITMP4A, ITMP4 E, 20
\(\downarrow=\downarrow+1+\) dur \(T\)
POIF(J) \(=533.15-1\) TEMP4
IT.V \(=(I T M P 4 E-1\) TMP4A) \(/ 20+1\)
* vary the smell inside oiametem, sid, in ca
\(1=0\)
UC 20 ISIJ = I'j!ul, ISIU2,25
\(1=1+1+10 p T\)
\(S 10=1510\)
\(105(1)=1510\)
```


* relate the tuge dutsiue olayeter to pitch, f, and
* parallel to flcín pitch, po. the tutal numetr of ex-

```
* Chanuer rubes, nt, ake calculatej fadm lata curikelatilns \#
```

33 IF（ITCO）31．32．33
31 TCU $=1.5875$
$P=2.06375$
$p p=1.7832$

GO IO 35
$32100=1.905$
$P=2.30125$
$P P=2.0676$
$N T=(14.13) * * 2) * .40804 *.(510 / 2.54) * * 2.071731$
GO TO 35
$33 \mathrm{TOO}=2.54$
$p=3.175$
$P P=2.7483$
$N T=.36704 *(510 / 2.54) * * 2.35445$
3）CUNTINUE
IF（IECK．NE．O）GO TO 132
WRITE（6．945）
WKITE（0．950）
WRITE（O，पWO）AXCHL，NXCH2
hxITE（ $0:$ ylu）IOU．TCU
WRITE（6，980）ISUL，ISO2
walte（6，צY YO）lTEHPA，ITEMPE
132 IECK＝ $1 E C K+1$
＊finu the amliuint of heat transtereu，di in ial／fo from thé
＊insiue rluio．
TEMPI $=533.15$
TEMP $3=310.43$
TEMP4＝ITEMP4

＊（TE゙Mア4＊＊2－IEMア3＊＊こ））
＊calculate Ihe shell－siue fluio exit temperatuke，Tetpz，＊
＊in des x using aiy energy balanle and a tac parameter heat＊ ＊capalitr

```
\(A=1.14 / 2 . * 10 . * *(-3)\)
\(B=7.53\)
\(\mathrm{C}=-\) (B*IEMPI +A*TEHP1**2-G/n0/1000.*30.91
TEMP2 \(=(-d+S\) QRT ( \(0 * * 2-4 * A * C) / /(2 * \dot{*})\)
```

calculate shell-s ive reat jransfef parameters

* calculate crojsflliw akea, sa. at uk nejr uenterlise fer *
* lane crosjflon SeCtiun assjming a $1 / 2$ In. Clíakance
* betrién siu aivo outer tube limit. alsc rino the gaffle *
* spalivi. ls, in cia
NN:N $=0$
$L د=S I J$

IF（LS．LT．5．08）LS $=5.38$
MAXLS $=(74 . * 2.54) *(500 / 2.54) * * .15$
（F（LS．GT．MAXLS）LS $=$（MAXLS
UOTL $=$ SID－．5\＃2．j4＊2．
$41 S M=L S *(S 1 D-D O T L+(J Q T L-T C U) *(H-T O U) / P)$

195 STB $=.024$ j＊TOD＊NT＊（1．＋FC）／2．54
SSH＝3 1D／2．54／8．＊（PI－AKLOS（1．－2＊LC／SIU））
$x=(5 S B+5 T B) / 54 * 2.54$
$L=558 /(550+510)$
IF（X．LT．．03）GQ TU 196
$J L=(-.4222 * 2-.47052) * x+(-.0514 * 2+.90317)$
GO TO 197
เท6 JL $=-2.02 * x+.478$
＊Find Ithe Currecticn factuk，ju，fuk juidule－by－passifu
＊EfFECTS assuming no jealing stikips．the fract ill uf
＊callulate the fractilu of tlotal tubes in cresjflun，fc，＊
＊ASSUMING A BAFFLE CUT，LC，of 49：SIC（lnlBSTRUCTEU FLC＇A）＊
$P I=3.1416$
$L C=.44 * 510$
$F C C=(S 1 D-2 . * L C) / D O T L$
$F C=1.181 *(P I+2 . * F C C * S I N(A R C O د(F し C))-2$＊$A R C O S(F C C))$
＊callulate shell－siof keynulus nutior，sreyir
SREYN＝TCU＊WO＊1000．／VISD／SM／36UO．
SPRNDI＝レPC＊VISU／TKU
＊calculate shell－siue heat－txandrer coefficient．he，in＊
＊cal／ISEC SQCM DEu C）fCR aN IDEA TUsE daNK．
＊rIND JK FROM a TUBE－BAAK \＆REYVOLU NC．RELAIICN（RE＞BOU．）＊ $J K=0.2230 * S K L Y N^{*} *(-.3455)$
＊assume wulk aidu wall averace viscusities art egual so＊
＊That（VISd／VISa）＊＊0．14＝1．
HU＝JK＊LPC＊NC／SM／3．60U＊（TKL／CPU／VISU）＊＊（2．13．1
＊COREECT HL FCk baffle－cuirfiujratiun effects，jc，lsinu＊
＊+ C．
IF（FC．GE．．9）GD TU 190
ル $=.0125$ Fらじ＋U．61 7
GO TC 1S
$190 \mathrm{~J}=-+C+2.05$
＊FIN THE CORREETICir factlr，Jl，Fur daffle－leakjuce＊
＊EFFECTS ASSUMING A l／36 livCh UIAMEIRAL GLEARANCE uETaEEN＝
＊TUUE anu baffle and a $1 / 4$ InCH liametral smell－gaffle＊
＊CLEARANCE．THE TUUE－TC－baffle and aHELL－TC－daffle leak－＊
＊ale areas fur cne baffll arl sto anj ssu respectively．＊
＊the jl curve－fit is valio fur x＞． 08 hithin 3：ainc fir＊
＊x＜．03 WITHIN ら？．

- CROSSFLOW AREA AVAILABLE FOR 3Y-PASS FLONi IS FBP.
147 FEP $=\mid S I D-$ DOTL $\mid * L S / S M$
$J B=\operatorname{EXP}(-1.2397 * F E P-.00254)$
* calculate final ho.
$H O=H U * J C * J L * J Y$
calculate tuee-siot heat thaidser parameters
* calculate tuae-sice reyidolcs number,treyn, assumine a *
* BWG OF 14.

TIU = TOU-.083*2.54*2.
TREYN = T10*HI*1000./V151//P1*(TID**2)/4.1/NT/360C.

* calculate the inside-fluil prandtl nleber, frnctl.

PRNDTL = CPI\#VISI/TKI
$M M M=0$

* initialize tube length in case fluw is layimar of in the * * transifiun relion ano iteration is keblireo.
d9 LTI = LT
* calgulate the insioe heat-triansfer ccefricignt, hi, using*
* the silver-tare correlatiuns. ajsuming vise/visn = . *
* fer either a turbulent, transitium, uf laminar रegion *
* DEPENUING ON TREYN.

IFITREYN.LT.lUUUO.) GC TC SG
HI = .OLう*TKI/TIU*(TKEYN**. B) \# (PRROTL** (L./3.))
©0 TO 83
os LFGTREYN.LT.2LUU.I GC TC 87
 * (1.+(T10/LT)*(2.13.))

GO TO 88

> CALCULAIE THE TLQING LENGTH NEL JEO TU
> TRANSFER THE AHOUIT LF HEAT, A, UETERMINEU
> FRGH THE TEMPERATURE APPRUACH CONUITICA

* Calculate the lug mean témperature difference

3才 LMTD = (TEMPL-TEMP4-TEMP2+TEAP3)/ALUG((TENPL-TENR4)/
nnonn nnnmer
*(TEMP 2-TEMP3))~~~
* Calculate the uveadil heat-tkansfer cuerficient baseu on *
* the dutside tube area, ug. ruuling is assunéu neg-
- ligable.
$T K H=.1075$
$U U=1 . /(1 . / M O+T U Q / H I / T I U+T C J *(T U U-T I D) / T$ Ra/(ITIU+TQU:/2.)
* calculate the uutside akea, ad, the tube length, lt, and *
* the numetr cf baffles, ne. if nexu then iteraite by
* revucing the baffle spacing, ls.
$A Q=$ G/UC/LMTO/36OO.
$L T=A O / P I / T U D / N T$
IFITREYN.GE.10000.) GO TL 17
IF(ABSILTI-LT).LT..3) GC TU 71
MMM $=$ MMM +1
IF(MMM.GE.L5) GOTO 77
GOTO 39
$77 \mathrm{NG}=\mathrm{LT} / \mathrm{LS}-1$
NAN $=$ NNN +1
IF(NNN.EQ. 20) GO 1044
IF(NE.NE.O) GO TO 44
$L S=L T / 2 .-. L$
GE TO 47
44 IF(LT.GT.SIO) GU TO 45
NPV(1,J) $=9594949$.
$\operatorname{EINF}(1,1,1)=9599998$.
EFF (1, J) $=.94994$
GU TO 20
45 IFILT.LT.610.1 GO TU 4ó
NPV(I,J) = Eउ\&8808்.
EINF(I,J) = 88888\&日.
EFF(I,J) = .むどdठd
GU TO 20
＊finu the ijeal－tueg－baink faicticiy factcr，fo．fkca a
＊KELATION VALIU FOR SKEyiszJuU．
$40 \mathrm{FK}=.9107 *$ SREYN＊＊（－．1772 $)$
＊itterate with respect tu the average shell pressure，
－Spavg，io calculait the shell－flulu censity，rhuj，lin
＊G／CM＊\＃3．InITIATE The lcop nith a valle cif 5 psifur
＊the shell－side pressuke lícp suess，upsi．
$N N=1$ ．
DPSG $=5$ ．
MWTO $=33.9$
AVGTO $=1$ EMPI IEMPLI／2．
；SPAVG $=(14.7+(14.7+U P S O)) / 2$ ．

```
－RHOS＝SPAVG／14．7／（．0U2J5）／AVGTU／LOUU．＊MnTO
*RHUS/(SM**2)
＊calculate tre number df tube ruws cacssed in une gruss－ ＊FLOn Stcticn，NC．
\(N C=S 10 * 11 .-2 . * L C / S 101 / P P\)
＊calculate the pressuke ukup，upg，in psi fok an jueal
＊CROSSFLUK SECTICN ASSUNINÓ VIS甘／VISr＝ 1 ．
\[
\text { UPC }=2 . * 4.014 * 10 * * *(-4) * .03613 *((1 . / 3.6) * * 2) * F X *(\mathrm{nc} * * 2) * N C /
\]
＊calculate the numuer of effeltive lrússfluh ruhs in each＊ ＊hlnuda，NCh．
NCN＝． H LLC／PP
＊calculate the area fcr rlun throlgh each hladon，sh，ey＊
＊the oIfference oetheen the grujs hindun area anu the part＊
＊cf that area cccupiec gy tuzes．
SHC \(=1 .-2 * L C / S I O\)
\(S_{n}=(\operatorname{S1U**2)/4.*(AKCUS(SnC)-SWC*SNT(1.-SWC**2))-NT/8.*(1..-~}\)
＊FCJ＊P1＊100
＊callulate the pkessure urup，upn，for an leeal alincow
＊SECTICN in ps！．
```



```
＊find the corkection factur，rl，for effect cf eaffle＊
＊leakace cn pressure crop．the linear lurve－fit is valio＊
＊FOK X＜． 7 ANO RL＞．1．THE FIT APPKCXIMATES THE CURVES
＊wITHIN 5b．
［F（X．LT．．1）UU TU 100
\(K L=(-.053166 * 2-.618014) * x+(-.24) 30 * 2+.75349)\)
CU IC 185
\(100 \mathrm{RL}=-3.3 * x+.525\)
＊finu the cuknecticn factcr，ru，for eunule gy－pass
＊ASSUMING NO SEALING STRIPS．THL EXpCNENTIAL FIT ACCURACY＊
＊IS mITHIN I\＆．
13j RU \(=\) EXP（－3．75404＊FsP－．01C7C3）
＊calculate the pressure jrup．ups，in psi acfics the shell＊
＊Side excluuing nolzles．
\(D P S=\left((N B-1) * U P C * R E+.N E *\left(P_{n}\right) * K L+2 * U P C * R B *(1 .+i N C m / N C)\right.\)
＊Check If the calculatec paesjune Ukup is mithin i．psi ur＊
＊the initial guess．If not their let this calculatec value＊
＊al the new guess．
IF（NN．GT．100）GOTC 15
```

```
PUIFF= AGS(OPS-UPSUS)
IF(PUIFF.LE.O.1) GO TU LS
UPSG = OPS
NN = NN+I.
GG TO 5
```


calculate the tlbe－side presslre dhcp
＊finu the fanding friction facitur，f，from tre blasius＊
＊furmula．
$15 \mathrm{~F}=$. ．C791／1TREYN＊＊．251
＊calculate bi，the currectilh faltur tu accolnt for sudjen＊
＊CUNTRACTICN，SUDDEN EXPANSILN，ANJ кevensal CF fluw
＊directiun．
$K 1=(1-1 T 10 * * 2) * N T / S I U * 2) * * 2+.05$
FILMDT $=($ TEMPL + TEMP 2$) / 2 .-($ TEMP $3+$ TEMP4）／2．
di＝1．$+(.51$ \＃KI＊FILMCT）／（TEMP4－TEMP3）／（PRNJTL＊＊（2．／3．））
＊calculate the pressure urup，top，in inches cf h20
Mint I $=20.8$
AVGTI $=$（TEMP3＋TEMP4／／2．
RHCI $=1.1$. C日205／AVGTI／1000．＊NATI
TDP＝BI＊2．＊F＊（wl／I000．／（PI＊（TIU＊＊2）／4．）＊＊く）＊LT／スHOI／TIO／1．01／
＊2490．8＊（（1．136．）＊＊2）
TUP＝ロI＊2．＊F＊（1nI＊ICJO．／（PI／4．＊TID＊＊2）／NT）＊＊2）＊LT／RHCI／TIJ／
＊ $1.02 /(3000$＊＊2）＊4．0142＊10．＊＊（－4）

$$
\begin{aligned}
& \begin{array}{llllllllll}
& & & C & C & S & \text { I } & & & \\
\text { E } & \text { S } & \text { I } & \text { I } & \text { M } & \text { A } & \text { T } & 1 & O & \text { N }
\end{array} \\
& \text { S ECTIUN }
\end{aligned}
$$

> Calculate the jane igty CuSts of the alk eluatk, arbcst, and the flue gas olamer, fgecst.
＊calculate aik anu flue ias vulumetric fluh rates arifm＊ ＊anu fucta respectively，in Cudil fi．／alin．assuminj air＊ ＊INLET PKEjSURe OF I．ATM．ALSU CCNYENT TDP TC PSI．

```
FGCFM \(=W O * 1000 . * .00205 * T E A H 1 / \mathrm{MNTO} .03532 / 00 . * \wedge E X C H\)
PST \(=.0361\) \#TUP
PUS \(=\) UPS
```

＊lse the blumek correlaticins flr a piesssure increase of ＊BEIWEEN 3 divu 30 PSI．IF THE PKESSURE INCREASE IS LESS
＊than 3 pSi then set it egual to that lentr limit．how－＊ ＊Ever，if this increase is greater than 10 pgi then use an＊ ＊axial ccmpkessor curirelatilu．

IFIPST．LT．3．）PST $=3$.
IFIDPS．LT．3．）POS $=3$.
IFIPST．LEヒ．30．）GCTO 60
ARBCST $=3.5 * 10 . * * 5$
Gu TO Q 5
ou ARBCST＝（13．3847＊PST＊＊1．C9347）＊ARCFM＊＊（．576S5＊PST＊＊ ＊（－．017041））
65 IFIDPS．LE．30．1 GO TO 70
FGBCSI＝ $0 . * 10 . * * 5$
GO TC 75
70 FGBCSI＝（13．3847＊PUS＊＊1．C9347）＊FGCFM＊＊（．57695＊PUS＊＊ ＊（－．0170411）
75 CUNTINUE
＊CCNVERT THESE JAN． 1967 CUSTs TU A JAN． 1979 bAjij 3Y
＊USING A COST LCEFFICIENT，CSICFI，DETERMINED fRGM IHE
＊Chemical engineerinu plairt cost inuex．
CSTCF1 $=225.11$ CS． 1
ARECST＝ARDCST＊CSTCF！
FGBCST＝FGBCST＊CSTCFI
＊applr a fielo installatiln factjó tu uetain a tutal cust＊ ＊cf the blcmers．

```
BWRGST = (ARUCST+FG&WSTI*1.1
```

Calcllate the jan．igty cesi CF THE rEAT EXLHANUEN（S）
＊CCNVERT the area to sj．ft．g edu，anu calculate the heat＊ ＊ExChanger base mid 1s7c cust，jascst．

```
EAO = AU/1.WOO.*10.704
```

BASCST＝73．7＊EAU＊＊．701
＊calculate the desigh factor，fo，fcr a fixec tube sheet＊
＊heat exchanger．

$$
F D=.00 \Psi * B A S C S T * *(-.007004)
$$

＊calculate tre jair．ly gy puklmajeu euulpment cost，hxGujt，＊
＊USINU a SECONU COST COEFF！CIENT，CSICFZ．

CSTCF2 $=229.1122$.
 HXCUST $=$ CSTCFL*OASCST*FU*NEXCH

* calculate the total material cust, hamil, lsing a mater- * * Ial factor uf 0.7. included are items such as pirlivg aino * insulaticn.

HXMTL $=.7 *$ HXCOST

* calculate the total heat exchanger lost inclujing ladur, *
* JhXCST, uSing a mCUulấ factor of 3.17.

THXCST $=3.17 *$ HXCOST

* ubtalir the tutal cost cf the heat recovery adoltica, *
* totcst.

TOTCST $=$ THXCST + ZWKCST

$$
\begin{aligned}
& \\
& \\
& \\
& \text { E A N N N N M G }
\end{aligned}
$$

calculate the net present yalue cf the heat recovery acuiticn fcir a 12 yean servicelife

* Calgulate the elecciric peweri annual cust, phrcst, *
* ASSUMING: (1) ISOTHERMAL CCOMPRESS(ON, (2) 340 UAYد/YR *
* lf uperaticin, i3) ain avekace electric rate ct s.032/knh. *
* blCaER pChers are In Cal/tr, (4) dot ISUTHERNal
* EfflにIENCY.

```
    PUaFGS = WU*LCOU./MhTU*1. YO7*TEMP1*ALOGIILPS+14.7//14.1//.d*
*NEXCH
```



```
*NEXCH
    PWRCSI \(=(\) PCWAIR + POWFGS \(1 / 3600 . * 4.186 * 1\) ).**( -3 )*24.*34C.*.032
```

 * calculate the fuel oll innual savings, rlsung, asslying: *
 * (1) 33 A.P.1. [2) J̧ JULFJR, (3) AN AVERALE FUEL CCST OF *
 * S. BS/GAL CR 3O.1/MM ETU. THIS LEAUS TC A HIGRER HEATING *
 * Valué of 19370. ©Tu/lo ok lu760.cal/G.
 FLSVNG \(=0 / 252 . * 0.1 /(10 . * * 0) * 24 . * 340 . *\) VEXCH
 * percentages of the rotal aluitilun cust: haintenance-4.\%,*
* determine the work eguivalent df the saveu fuel oll, *
* EOIL, IN KCAL. USE THE HIGH—MULECULAR-wEIGYT hyCRCCAKBON*
* assumpiton that the horx equivalent is apprcxinately *
* euual to the heat ué ccmeustionilig. h2c). also assume *
- qil at keference teqpenature aifu presslke.

EOIL $=-\mathrm{U} / 1000$. NEXCH

* calculate the work ecuivalent uf the electéical murk, *
* élec, in ńlal assuming ain electrical generatinu *
* Effectency of 3ás.

EELEC $=1$ PChAIR + POMFGSI/ICOC./.38

* calculate the eguifment aidc constructicn energy flcin, *
* EQCLN, IN KCAL FRCM ENERGY/\$119631 CCEFFICIENIS aSSUMING *
* nu scrap value. use a third cust cueffilient, csisf3,
* to cunvert to the jan. 1979 3asis.

CSTCF3 $=227.1102 .3$
EUCDN = 123200.*HXCUST+2070G.*HXATL+1ARBCST+FGECST)*14100.1/
*CSTCF3/12.1340.124.

* calculate the hork equivalent inplt aith kespect í ibe
* adult lun assuming livput alr at keference lunditicns for
* the comzineu heat recovery systei.

EAIR $=$ Th1/28.8*CPA16.6..92, TEMP4)
ESGAS = TnC/30.y*CPA17.53,1.14,TEMP1)
ESGAS = ESGAS+.013*TWO/30.9*1 3519
EINF(I,J) = EUIL+EELEC+EQCON

[^1]C

* PLANT UVERHEAU-2.0\%, ANU TAXES E IASURANCE-1.j!. ALSU *
* assume nu auuItIonal lajur aind siralght line deprecialign*

ANLCST $\left.=P_{\text {NRCS }} 1+(14 .+2.6+1.5) / 100 .+1 . / 12.\right) \neq T O T C S T$

* FINi the net annual cash flum, acf, using a 4st tax rate.* $A C F=$ (FLSVNG-ANLCST) 1 (1.-. $401+$ TUTCST/L2.
* evaluate the net present value, nov, asslmlnu a l5\% rate *
* OF RETUKN, UNIFCRM CASh FLUNA, NU NURKING CAPITAL, AND *
* no salvage value.

NPV(1,J) $=A C F *(1 E X P(.15 * 12)-1) / .15) * E X P.(-.15 * 12.1-T O T C S T$
calculate the wurk equivalent intc
the furnace unit cn a une mour zas is KESULTING FROIA THE HEAI RECOVERY ADOITICN

```
    EFF(I,J)= EAIR/(ESGAS+EELEC+EVCUN)
```

* koutine to find ano save variable values correspcnoing * * tu optimal ebjective flaction values.

IF(SKIP.GE.1.) GO TC 90
IF(NPV(I,J).LT.NPVCLD) GO TO 80
NPVOLU $=$ NPV(I,J)
NJI = JTOU
NIA $=$ ITEMP4
NIL = ISIU
NEL $=$ NEXCH
IUI $=I-1$
j01 $=J-1$
30 IF(EINF (I,J).GT.EINOLU) GE TO 35
EINOLD = EINF(I,J)
$E J L=J T C D$
$E L A=1 T E M P 4$
EIL = ISIU
EEL = NEXCH
IOL = I-1
$\mathrm{JO2}=\mathrm{J}-1$
35 IF(EFF(I,J).LT.EFOLO) SO TO 20
EROLD $=E F F(I, J)$
$E F J I=J T C D$
EFIA = ITEMP4
EFIL = ISIU
EFEL $=\mathrm{NEXCH}$
[03 $=1-1$
J03 $=\mathrm{J}-1$
20 continue
10 CONTINUE

```
    IH(WNPV.NE.LJ GU IG 12O
    aRITE(0,850)
    WRITE(6,:80)
    WRITE(6,070) TUU
    mRITE(0,074) NEXCH
    WRITE(0,876)
    WRITE (6,880)
    WRITE(6,900) (IUS(I),I=1,11)
    mNITE(6,910) (TOIF(J),(NPV(1,J),l=1,11),J=1,ITA)
    IRITE (6,54C:
    WRITE(O,930)
120 [F(WWE.NE.1) &C TO 130
    nRITE (0,820)
    WRITE(6,00C)
    WRITE{6,070) TEO
    MRITE(c,014) NEXCH
    HRITE16,870)
    WRITE(C.000)
```

```
            MKITE(6,900) (IDS(I),1=1,11)
            WKITc(0,910) (TUIF(J),(EINF(I,N),I=1,11),J=1,ITN)
            WRITE(6,940)
            nRITE(6,930)
130 IF(NEFF.NE.1) GD TD 40
    WRITE(6,925)
    MRITE(6,860)
    WRITE(t,870) roo
    HRITE(6,874) NEXCH
    wRITE(6,876)
    WRITE(6,880)
    wRITE(6,400) (10S(1),1=1,11)
    WRITE(6,890) (TDIF(J),(EFF(I,J),I=1,11),J=1,ITA)
    NRITE(6,935)
    WRITE(6,543)
40 CCNTINUE
50 CLNTINUE
90 SKIP = SKIP+1.
    IF(SKIP.NE.1.) GU TO 105
    IF(nNPY.NE.1) GC TG 140
    ITOOL = NJI
    1TOD2 = NJ1
    ITMP4A = NIA
    ITMP4B = NIA
    ISIDI = NII
    IS102 = NIL
    NEXCHL = NEL
    NEXCH2 = NEL
    IUPT = 101
    JOPT = JOL
    WKITEE(6,200)
    GO T0 95
c
C
    * CCNVERT to american englmEEERING unItS aND Check valuES
    * uF X, rl, and sREyN.
105 IF(X.LE..7) GO TO 180
    WRITE(6,952)
186 IF(RL.GE..1) GU TO 1甘7
    WRITE(6,994)
187 IF(SREYN.GE.8OO) GU TG 188
    wRITE(८,9४6)
108 AO = AO/15000.
    0 = U*NEXCH
    LT = LT/LUO.
    SOPS = DPS/14.090
    STUP = TUP#1.368
    ESID = SIU/2.54
    ELT = LY/2.54/12.*100.
    ELS = LS/2.54
    ETCD = TCD/2.54
    EHC = H0/.0001355
    EH! = HI/.00U1355
    EUU = UU/.JOO1355
    EO = 0/252.
    ETEMP1 = (TEMP1-273.15)*1.8+32.
    ETEMP2 = (TEMP2-273.15)*1.8 +32.
    ETEMP3 = (TEMP3-273.15)*1.8+32.
```

```
ETEMP4 = (IEMP4-273.15)* 1.8 +32.
    EL.HTU = LMTJ*1.8
EAO = AU* 10.704
ARFLOW = ARCFM/2118.G
FLFLOW = FGCFM/2113.9
PGWFGS = PU゙WFGS/00./252.*.0175%
PONA1R = POWA1R/60.1/252.*.01758
ABPWR = PCWAIK*.7457
FGP nix = PCrFGS*.7457
WRITE(0, 290)
WRITE(6,300)
WRITE(6,310) TCD,ETOD
WRITE(6,320) SIU,ESIU
WRITE (6,330) LT,ELT
WRITE (6,340) NT
WRITE{6,350} LS,ELS
WRITE(0,360) NB
WRITE(6,370) NEXCH
WRITE(6,300)
WRITE(0,400)
WRITE(0,410) SREYN
WRITE (6,420) SFRNOT
WRITE (6,430) FO, EHO
WRITE (6,440) TREYN
WRITE(6,450) PRNDTL
WRITE(6,460) HI,EHI
WRITE (6,470) UC,EUC
WRITE(6,480) G,EQ
WRITE(6,440) TEMPL,ETEMPL
WRITE(6,500) TEMP2,ETE4P2
WRITE(6,510) TEMP3,EETEMP3
MRITE(6,520) TEMP4,ETEMF4
WR!TE(6,530) LMID,ELLMTO
WRITE(6,540) AC,EAC
WR1TE (6,550) SUPS,EPS
ARITE(6,500) STUP,TOP
WRITE (6,600)
WRITE (6,610)
WRITE(6,620) ARFLOH,ARCFA
WRITE(6,030) FGFLUW,FGLFM
WRITE(6,640) PCWAIR,ABPGR
WRITE(0,05O) PUWFGS,FGPWR
NRITE (0,660)
WRITE(6,67C)
WRITE (6,080) ARUCST
WRITE(6,0YO) FG3CST
WRITE(0,700) HXCOST
WRITE(6,710) HX,MTL
WRITE(0,720) THXCST
WRITE(6,730) TCICST
ARITE(6,740) PWRCST
WRITE(0,750) FLSVNG
WRITE(6,7UJ) ANLGST
WRIIE (6,770) ALF
WRITE(6,730) NPV(1,J)
WRITE(0,7Y0)
WRITE(6,800)
WRIIE(0,810) EOIL
```

```
    WRITE(6,020) EELEC
    ARITE(6,830) EGCLN
    MRITE(6,840) EINF(I,J)
    WRITE(6,845) EFF(I,J)
    140 |FISKIP.EU.1\ SKIP = 2
    IFISKIP.NE.2.) GO TO 100
    IF(WWE.NE.1) GC TU 160
    ITOOL = EJ\
    ITUUL = EJ\
    ITMP'4A = EIA
    ITAP48 = EIA
    \S101=E11
    ISIUZ = EII
    NEXCHI = EE!
    NEXCH2 = EEL
    IUPT = 10L
    JOPT = JUL
    nRITE(6.285)
    GO TU 95
    100 1FISKIP.EQ.2) SKIP = 3
    1F(SKIP.NE.3) GG TC 99%
    IF(tIEFH.NE.1) GC TO GS9
    ITOUL = EFJI
    1TUUZ = EFJl
    ITMP4A = EFIA
    ITMP4E = EFIA
    ISIOI = EFI\
    \S102 = EFII
    NEXCH1 = EHEL
    NEXCH2 = とrとl
    IOPT =103
    JUPT = JU3
    HRITE(6,287)
    GC TC 95
100 FCRMAT(8F10.3)
125 FUrimat(11:5)
153 FORMAT(//////////56X,'ECHC CHECK OF OATA'////)
17U FORMATI43X,'MASS FLUN RATE', 2X,'HEAT CAPACITY',4X,'VISCUSITY',
    *5X,'THEKM. CCNU.'/47X,'KG/HK',7X,'KCAL/KN/DEG K',5X,'G/CM/S',
    *6X,'CAL/S/CM/OLG K'//I
200 FCKMAT(2/X,'INSIOE FLUIO',כ゙X,4(E12.4,3^)//)
220 FORMAT(27x,'OLTSIOE FLUID',4x,4(EL2.4,3X)//)
230 FORMAT''1'///40X,'***** SEAŔLH RESULTS FOR THE ECUNGIAIC ',
    *'0िT\MuM *****'////)
2dj FCKMATG'1'///,37x,'***** SEARCH RESULIS FUK THE UPTIMLA hOR',
    *'K EGUIVALENI *****'////।
287 FORMAT/'1'///30X,'***** SEARCH RESULYS FCR THE CPTIMUM CVEN',
    *'ALL SECCNU LA* EFFICIENCY *****'////)
290 FUhMATI///55x,'HLAT-EXCHAAGER UESIUN',///1
300 FORMAT{3LX,'REAT-EXGHANGEK SPECIF[CATILN', LOX,'VALUE'//)
310 FERMATI32X,'TUBE GLTSIDE CIMAEIEK',24X,F5.3,IX,'CM', &X,Fy.3,IX
```

*'IN'/)
 *' $1 N$ '/)

340 FDRMAT ($32 x$, 'NUMSER OF TUBES', $27 x, I 4 /$)

300 FURMATI $32 x$, 'NUMBEK OF BAFFLES', $27 \mathrm{X}, 12 / 1$
370 FDRMAT (32 X , 'NUMBER OF HEAT EXCHANSERS", $19 \mathrm{X}, 12 / 1 / 1$
330 FURMAT (' 1 '//, 55 X, ' HEAT - EXCHANGER UESIGN', ////)
400 FURMAT ($7 X$, 'HEAT TRANSFER ANC/CN PRESSURE [RCP GUANTITYI, $41 X$, *'VALUE'//)
410 FCRMAT(IOX,'SHELL-SILE REYNCLE''S NUMEER',24X, E12.5/)
420 FORMAT (1OX, 'SHELL-SIDE PRANOTL NIUMUER', 27X,F6.4/1
430 FCRMAT (LOX,'SHELL-SICE HEAT-TRANSFER CDEFFICIENT', $1 \in X, F G .7,3 X$, *' $^{\prime} C A L / S / S U C M / C ', 12 X, F O \cdot 3,7 X, B T U / H R / S G F T / F ' / I$
440 FDRUAT (LI)X, 'TUUE-SIUE KEYNDLO''S NUMUER', 25X, EL2.5/)
450 FCRMAT(IOX, 'TUEE-SIUE PRANUTL NUMEEN', $2 d X, F 6.4 /$)
400 FUKMAT ($10 X,{ }^{\prime}$ 'TUBE゙-SIDE HEAT-TRANSFEK COEFFICIENT', $17 X, F 9.7,3 \mathrm{X}$,

47U FORMAT (LOX, 'DVERALL HEAT TRANSFER CCEFFICIENT',19X,FY.7,3X,
*'CAL/S/SUCM/C', L2X,F6.3.7X.'BJU/HR/SQ FI/F'/I
480 FCRMATI $10 X$, 'TOTAL AMCUNT LF HEAT TKANSFEKEU', 2CX,E12.5,1X, *'CAL/HK',19X,E12.5,1X,'BTL/HK'/)
490 FORMAT $10 x$, 'INLET FLUE GAS TEMPERATURE', Z4X,F6. $2, E x$, 'OEG K',

* $19 \mathrm{X}, \mathrm{F} 6.2,8 \mathrm{X}$, 'JEG $\mathrm{F}^{\prime} / \mathrm{I}$

SOU FGRMAT (LOX, 'GUTLET FLUE GAS TEMPERATURE', $23 \times, F \in .2,8 x, 10 E G K^{\prime}$, * $19 x, F 6.2 .8 x$, DEL $\mathrm{F}^{\prime \prime} / 1$

5 IJ FORMATI LUX,'INLET CCMBLSTIUN AIR TEMPEHATLRE', 18X,FG.2, 8X, *'DEG K', 19X,F6.2,8X, 'DEG F'/1
520 FURMAT(10X, 'CUTLET CGMUUSTICN AIN TEMPERATURE', 17X,FG. 2, dX, *'DEG K',19x,F6.2, Bx, 'JEG F'/J
530 FORMAI $110 x_{1}^{\prime}$ LUG MEAN TEMPERATLKE JIFFERENCE $1,1 G X, F 6.2,8 X$,

540 FOKIAT (1 OX, 'DUTSIUE IUULLAR AREA/EXCHANCER', $21 X, E 11.4,2 X$, *'SO M', 21X,E11.4, 2x, 5* FT'/J
 *F7.3, 7 X , 'PSI'/)

*F7.3,7x, "1A H20'/j
600 FCEMAT (/////5SX: ELCWER CESICNS $/ / / /)$
O 10 FQRMAT ($35 X,{ }^{\prime}$ SPECIFICATICN', $34 X,{ }^{\prime}$ 'VALUE'//)
620 FORMAT($3 L X,{ }^{\prime}$ 'AIR FLOA RATE', $23 X, F 6.2,1 X,{ }^{\prime} C U N / S ', 7 X, E L 1.4,1 X$, *'CFM'/I
630 FORMAT($31 X$, 'FLLE GAS FLCh RATL', 1JX,F6. 2, 1X, 'CL . $1 / 51,7 X, E 11.4$, * $1 X^{\prime}$ CFM'/1

640 FCRMATI $31 X$, 'AIR BLCMER FDWER', 1/X,FY. $2,1 X, 1 K N^{\prime}, 7 X, F G .2,7 X$, 'HP, */1
650 FCRMATI $31 X$, 'FLUE GAS ELQWER PDNER', 12X,F9. L, IX,'Kh', 7X,FG.2, 7X, *'HP')
O6U FORMAT('I'///, ECX, 'HEAT RECCVERY AJJITICNECCNCNICS'///)
670 FURMAT ($47 X^{\prime}$, 'GUANTITY', $25 X$,'JAN. $1 Y 74$ VALUE'//)

690 FDRMAT (3OX, 'FLUE GAS BLONER', $32 \times, F 9 . J /)$
700 FURMAT ($36 x$,'HEAT EXCHANGEH', $33 \times, F G .0 / 1$
710 FUFMATI $36 X_{1}$ 'TOTAL HEAT EXCHANGEK MATER【AL', LBX,FQ.O/)
120 FORMAT (30 A', 'HEAT EXChANCER MLUULE: $26 x, F G .0 / 1$
730 FORMAII $16 x$, 'HEAT RECCVERY ACUITICN', 25X,F9.0/1
740 FCRMAT (36X.'AVERACE ANNLAL PUMEN'. $27 \times, F 9.0 / 1$

```
750 FORMAT 13OX. ANNUAL FLEL SAVIIGG5',23X,FY.C/I
760 FERMAT(36x,'ANNUAL CCST', 30X,F9.0/)
77U FURMATI36X, 'NET ANNUAL CASH HLOW',27X,F9.O/I
73O FORMAT(36X,'NET PRESENY VALUE', \angle8X,F11.0/)
790 FUFMAT(////49X,'InCRN ELUIVALENTS (ONE HUUR LASIS)'///)
800 FORMAI(48X, 'QUANTITY', 23x,'VALUE IH XCAL'//)
810 FCRMAT(40X,'OIL SAVEC',30X,EL2.5/)
४20 FURMATI4OX,'ELECTRICITY',2JX,E12.'/I)
830 FCFMAI(40x,'tQUIPMENT & CCNSTRUCTION'.15x.E12.5/)
840 FURMAT(40X,'ICTAL',34X,ELC.5/)
845 FORMATI////45X,'OVERALL SECCNC LAN EFFICIENCY',3X,FB.51
850 FCRMAT('I'///,44X,'NET PRESENT VALUES FOR A RANGE OF TEMPER',
*'ATURES'/)
860 FORMAT(40X,'ANU SHELL [NSIDE OIAMETEKS nITH A CCNSTANT'/I
870 FCLMAT(50X,'TUDE CUTSILE CIMMETEK UF',FO.3,' CM'/)
E74 FURMAT(55X,'ANU',I 3,' HEAT EXCHANGERS'/)
876 FCRMAT(60X,'(JAN. 1979 5)'///)
87O FOKMAT(61X,'(KCAL/HR)'///)
&8O FORMAT(7X,'TEMP.',45X,'SHELL INSIDE DIAMETEN (CM)'/7X,'DIFF.')
890 FCRMAT(OX,FU.2,3X,11F10.5/1
900 FONMAT(/X,'EEG C',7X,11(13,7X)/)
910 FORMAT(6x,F6.2,3x,11FIO.3/)
920 FURMAT('1'///,45x,'WCRK EUUIVALENTS FUR A KANGE CF TEMPERAT',
    *'URES'/!
925 FCRMAT('L'///37X,'CVERALL SECONO LAH EFFICIENCIES FCR A RAN',
    *'GE UF remperatures'/)
930 FORMATI20X,'ERRCR CONOITICN 95997G9.: LENUTH CF TURES LESS',
    *' THAN SHELL INSIUE C!AMETER')
935 FLRMATI////20X,'ERRCK CCNSITICN .SJSO&: LENGTR CF rUEES ',
    *'EXCEED 6.1 M (20 FT)'//)
940 FURMAT/////20X,'ERROK GCNUITILN &&yg883.: LENCTH OF TUBES ',
    *'ExCEEU 6.1 M (20 FT)'//)
943 FCRMATI2OX,'ERRCK CCNLITICN .Sצ9४%: LENGTH CF TU&ES LESS ',
    *'thaN SHELL [NSIOE DIAMETER')
945 FORMAT(5OX,'RANGE CF SEARCH'///)
950 FURMAT(35X,'INOEX VARIARLE',25X,'INITIAL VALUE',gX,'fIIAL V',
    *'AluE'//)
900 FCRMAT(26x,'NUMBER OF HEAT EXCHANUERS',25x,13,16X,13/1
y70 FUNMAT(2ÚX,'TUUE OUSIOE OIAMETER',31X,F゙5.3,1X,'CM',12X,F5.S, IK,
    *'CM'/)
900 FCKMATI26X,'SHELL LNSIUE CIAMETER',23X,13.5X,'GN',10X,13,5X,
    *'(M'/)
99U FURMAT(26X,'CUTLET CCMBLSIILN AIR TEMPERATJHE',lOX,IJ,5X,'K',
    *11x,13,5x,'K'///1
G92 FOKMAT(' X GREATER THAN .'')
994 FCRMAT(' RL GREATER THAN .1')
SS6 FCRMAT(' ShEYN LESS YhAN 800')
999 SIUP
        END
```

FUNCTION CPA(A,8,T)

This functign subprogiah calculates the change
IN WORK EQUIVALENT/AMCL AS A COMPUNENT IS ADJUSTED TO THE STANDARO STATE (298. 15 K)
$c=8 / 1000$.
$T I=253.15$
$C P A=(A-T I * C) *(T-T I)+C / 2 *(T * * 2 .-T I * * 2)-.A * T \| A L Q U(T / T I)$ KEIURA
ENU
THERM. COND.
CAL/S/CM/UEG K
$0.7504 E-04$
$0.8067 E-04$
VISCOSITY
G/CM/S
0.2173 E-03
$0.2480 \mathrm{E}-03$
initial value

Σ	Ξ	x
0		
	0	0
	in	

ECHC ChECK ©F DATA
MASS FLUW KATE HLAT CAPACITY
KG/HR
KCAL/KG/DEG K
$0.2880 E 06 \quad 0.2517 E 00$
$0.2613 E 00$

index variable
NUMBER OF HEAT EXCHANGERS
TUBE QUSIDE DIAMETER
SHELL INSIUE UIAMETER
cutlet combustion afr temperature
nel paeseni values for a mange cf iemplhatures
abo shell instue clameitrs hith a cunsiant
tube outside blameier uf 2.540 CM
anc a hear exchangers
1JAN． 197881
（W）甘3I 3wvio 3otsNi 7 T3HS
8
 929.5599. 9499599． 9999999. 4989999.
 9999899. 9999999. $\dot{+}$
$\stackrel{y}{*}$
$\stackrel{y}{*}$
$\underset{\sim}{*}$

0
0
0
0
0
D
D

 9999989. 9994595． 9994999. 989998． $94989 \% 9$. 9998999. 4999595． 3359826.
3834808. 8888日昰 в日ввв8．

$$
\underset{\sim}{\approx}
$$ 9799999. 9459925． 9999949. 9999999. 8494999. 2999999． 5459899. 3572305.

4131516. 4131516.

 $\dot{0}$
0
D
I
I
∞
∞

$$
\begin{aligned}
& \stackrel{8}{\sim} \\
& \approx \\
& \approx
\end{aligned}
$$

2499585. 5555595. 9989994. 99998ss．$\$ 554999$. 9999489．9959999．8499999． 9999995．ys89895．9492999． 1155520．9559995．9999499． 2974742．2750204． 2443713. 3592527． 3714350. 4138533.4365006.

 3781512.
1. $\stackrel{\sim}{2}$ 5989949. 9984999. 9982999. sy 8899% ． -939832. 1488444. 26501d0． 2698212． casmas．

$\dot{\Phi}$
\＃
\＃
\＃
あ

100
9899999. 9499989． s599984． $-14317363 .-3279299 .-3678976$. -522817. 1647C1． 458521. $\stackrel{\dot{7}}{\stackrel{\rightharpoonup}{2}}$ $\dot{\#}$
∞
∞
∞
∞
∞
∞
∞ өө日暗的．

 9499999. -1231442.
 -4799310. -2024748 E．-5244464. Аөавввв．－1313977．
 0
0
0
0
D
D
B
 50
9989995.
-12486079.
-10056931. -14317363. -15549486. -18278672.
 a日esese IEMP：
OLFF
$0 E G C$
203.15
183.15
163.15
143.15
123.15
103.15
83.15
63.15
43.15
23.15
3.15
9899999. 9989999. 9999999.
hork equivalents for a range of temperatures
and Shell thstof olaneiers with a constant TUEE OUTSIOE OIAMEIER OF 2.540 CM anu B heal exchangers
（kCAL／HR）

TEMP． olff．					Shell in	Sloe diame	IER（CH）				
Deg C	So	75	100	125	150	175	200	225	250	275	300
203.15	9599999.	9999999.	9999999.	949999\％．	999999\％．	9894999.	999.999.	9394999.	9999599.	5959999.	2999994
183.15	36264032.	9999999.	9999999.	s980989．	9954595.	95995\％9．	9999999.	9）99999．	9999899.	9989994.	9999899
16．3．15	30434672.	22249104．	\＄559555．	\＄9 \＄9999．	9959999．	9959895．	9999999.	2999999.	9499599．	sssssss．	990959
143.15	42629744.	11982191.	12904360．	4999499.	9988999.	9553899．	9599999.	9298999.	9894895．	2099988．	289
123.15	46490992.	10637357.	4646311.	5554148．	9259959.	25s9999．	9999999.	9937989.	9989999.	9 ± 99 y99．	9999
103.15	55402080.	17596736.	1602062.	－719853．	－235198．	9999999.	9999999.	9890999.	9999 99．	9459999.	9999599
83.15	61940064.	15502192.	2905910．	－3716768．	－5129648．	－4843815．	4224523.	$9 \% 599 \% 9$.	－99\％＊9\％．	9.998955.	9899599
63.15	\％884888．	2S643472．	3957882.	3475869.	－7313959．	－8573327．	－8289593．	－8350259．	－ 812912.	375281．	999998
43.15		水yuygs．	8yydyy．	4 840888.	－7613692．	－9298227．－	1062169\％．－	1083893 n ．－	11005220.	1130852.	122523
23.15	a日sa8ya．	8888日砳．	88888в．	вив 8 88，	8084888．	8 88y88．	8yyysay．	8484888.	848888.	bdydust．	884888
3.15	abseaye．	в888в日．	8иав日вя．		088sex．	beabaza．	вяввввя．	$88^{\text {casaza }}$	анв8888．	в98вввв．	888888

error cenditicn ygyggyg．a lengih of iubes less than shell insioe oiaheiger
overall second lak efficiencies for a range of temperatures ano shell inside ciameters hilh a constant tuae cursioe ciameier of 2.540 CH
ano a heat exchangers

		8	$\begin{aligned} & x \\ & \stackrel{7}{2} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \alpha \\ & \stackrel{\alpha}{\alpha} \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\sigma} \\ & \stackrel{\rightharpoonup}{6} \\ & \stackrel{\rightharpoonup}{6} \\ & \stackrel{1}{0} \end{aligned}$	$\begin{aligned} & \sigma \\ & \stackrel{\sigma}{\delta} \\ & \stackrel{\circ}{\delta} \\ & \dot{\circ} \end{aligned}$	$\begin{aligned} & \alpha \\ & \stackrel{\sigma}{\alpha} \\ & \dot{\alpha} \\ & \dot{0} \end{aligned}$		$\begin{aligned} & \text { Q } \\ & \stackrel{y}{6} \\ & \stackrel{y}{0} \\ & 0 \end{aligned}$	$\stackrel{m}{\stackrel{m}{5}}$		
		$\underset{\sim}{n}$	$\begin{aligned} & \stackrel{a}{\circ} \\ & \stackrel{\circ}{\circ} \\ & \stackrel{1}{\circ} \end{aligned}$		$\begin{aligned} & \stackrel{\sim}{4} \\ & \stackrel{\sim}{\alpha} \\ & \dot{\alpha} \end{aligned}$	$\begin{aligned} & \stackrel{7}{6} \\ & \frac{2}{7} \\ & \stackrel{3}{3} \\ & 0 \end{aligned}$	$\begin{aligned} & \hat{a} \\ & \hat{\alpha} \\ & \dot{\alpha} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \stackrel{\sigma}{\sigma} \\ & \stackrel{\rightharpoonup}{\pi} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{N}{\sigma} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \tilde{n} \\ & \underset{\sim}{n} \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{gathered} \underset{n}{n} \\ \underset{\sim}{m} \\ 0 \end{gathered}$	0 0 0 0 0 0 0	
		in		$\begin{aligned} & \sigma \\ & \stackrel{\sigma}{2} \\ & \stackrel{y}{2} \\ & \vdots \\ & \vdots \end{aligned}$		$\begin{aligned} & \stackrel{7}{2} \\ & \stackrel{\rightharpoonup}{x} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\alpha}{\delta} \\ & \stackrel{\alpha}{\underset{~}{2}} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \dot{\sigma} \\ & \stackrel{\alpha}{\hat{\alpha}} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{5} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \text { oi } \\ & \stackrel{y}{5} \\ & \stackrel{1}{5} \end{aligned}$		0 0 0 0 0 0 0 0	
		$\underset{\sim}{\sim}$	$\begin{aligned} & \frac{\rightharpoonup}{\lambda} \\ & \hat{人} \\ & \stackrel{\rightharpoonup}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{N}{\tilde{N}} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \vdots \end{aligned}$	$\stackrel{\stackrel{a}{a}}{\stackrel{2}{8}} \stackrel{\stackrel{1}{0}}{0}$	$\begin{aligned} & a \\ & \alpha \\ & \text { a } \\ & \dot{\alpha} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \stackrel{\sigma}{\circ} \\ & \stackrel{\circ}{3} \\ & \stackrel{0}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{3}{3} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{1}{0} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \text { g } \\ & \text { g } \\ & \text { g } \\ & \vdots \\ & 0 \end{aligned}$	$\begin{gathered} \stackrel{\rightharpoonup}{5} \\ \stackrel{y}{*} \\ \stackrel{y}{c} \end{gathered}$	$\begin{aligned} & \stackrel{\Delta}{\otimes} \\ & \underset{\sim}{\infty} \\ & \dot{0} \end{aligned}$		
	İ	$\stackrel{0}{2}$	$\stackrel{\circ}{\stackrel{\circ}{\circ}}$	$\begin{aligned} & \alpha \\ & \stackrel{\alpha}{\alpha} \\ & \stackrel{\rightharpoonup}{0} \\ & 0 \end{aligned}$		$\begin{gathered} \stackrel{\circ}{\circ} \\ \stackrel{\circ}{\circ} \\ \dot{0} \end{gathered}$	$\begin{aligned} & \alpha \\ & \alpha \\ & \alpha \\ & \dot{\alpha} \\ & \dot{\circ} \end{aligned}$	$\stackrel{7}{2}$	$\begin{aligned} & \tilde{\sim} \\ & \stackrel{\sim}{\circ} \\ & \underset{\Delta}{c} \end{aligned}$	$\begin{gathered} n \\ \stackrel{n}{n} \\ \stackrel{n}{n} \\ \dot{n} \end{gathered}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{\infty} \\ & \dot{\Phi} \\ & \dot{\infty} \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
*	$\frac{\stackrel{\rightharpoonup}{4}}{4}$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \stackrel{\circ}{\sigma} \\ & \stackrel{y}{\alpha} \\ & \stackrel{0}{0} \\ & \vdots \end{aligned}$	$\begin{aligned} & \dot{\alpha} \\ & \dot{\beta} \\ & \dot{0} \end{aligned}$	$\stackrel{\stackrel{\pi}{\circ}}{\stackrel{\circ}{\circ}}$	$\begin{aligned} & \text { a } \\ & 0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & j \end{aligned}$	$\begin{aligned} & \stackrel{a}{\sigma} \\ & \stackrel{\rightharpoonup}{\sigma} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \\ & 0 \end{aligned}$	$\begin{aligned} & \triangleq \\ & \vdots \\ & \vdots \end{aligned}$	a 0 \vdots \vdots 0		$\begin{aligned} & \text { ® } \\ & \text { © } \\ & \text { D } \\ & 0 \\ & 0 \end{aligned}$	
$\begin{aligned} & \dot{~} \\ & \underline{y} \end{aligned}$		0	$\begin{aligned} & \stackrel{\alpha}{\sigma} \\ & \dot{\sigma} \\ & \dot{\circ} \end{aligned}$	$\stackrel{a}{\mathbf{a}}$			$\begin{aligned} & \text { O} \\ & \dot{\sigma} \\ & \dot{\sigma} \\ & \dot{0} \end{aligned}$	0 0 0 0	$\stackrel{\circ}{0}$ 0 0 $\dot{0}$	N N N a	$\begin{aligned} & \text { N } \\ & \underset{\sim}{n} \\ & \vdots \\ & 0 \end{aligned}$	$\begin{aligned} & \text { © } \\ & \stackrel{0}{\infty} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
		$\stackrel{n}{\approx}$		$\begin{aligned} & \stackrel{\alpha}{\alpha} \\ & \alpha \\ & \alpha \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \stackrel{\sigma}{6} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{1}{0} \end{aligned}$	$\begin{aligned} & 0 \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \tilde{\sim} \\ & \stackrel{y}{n} \\ & 0 \\ & 0 . \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hat{0} \\ & \underset{0}{0} \end{aligned}$	$\begin{aligned} & m \\ & 0 \\ & \vdots \\ & \vdots \\ & 0 \end{aligned}$)	$\begin{aligned} & \infty \\ & \text { © } \\ & \text { © } \\ & \text { 0. } \\ & \dot{0} \end{aligned}$	∞ ∞ 0 0 0 0 0
		8		$\stackrel{0}{\circ}$	${ }_{0}^{9}$	$\begin{aligned} & \stackrel{m}{3} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { a } \\ & \stackrel{a}{a} \\ & \dot{0} \end{aligned}$	\vec{Z} 0 0 0 0	a 0 0 0 0	¢ $\stackrel{1}{1}$ i			
		\cdots	$\begin{aligned} & \stackrel{a}{7} \\ & \stackrel{y}{2} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\alpha} \\ & \stackrel{\sigma}{\alpha} \\ & \dot{\circ} \end{aligned}$	$\begin{aligned} & \tilde{\theta} \\ & \underset{0}{0} \\ & \dot{0} \end{aligned}$	$\begin{gathered} \stackrel{\rightharpoonup}{\hat{*}} \\ \stackrel{\rightharpoonup}{0} \\ \dot{0} \end{gathered}$	$\begin{aligned} & \text { B } \\ & \text { + } \\ & \text { b } \end{aligned}$		$\begin{aligned} & n \\ & \hat{n} \\ & \hat{i} \\ & 0 \end{aligned}$	N	\%	-	
		n	$\begin{aligned} & \alpha \\ & \alpha \\ & \stackrel{\alpha}{\alpha} \\ & \stackrel{\theta}{0} \end{aligned}$	$\begin{aligned} & \text { A } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \underset{\sim}{\sim} \\ \underset{0}{0} \end{gathered}$	$\begin{aligned} & \tilde{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\frac{\pi}{\sim}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & 0 \\ & \dot{O} \end{aligned}$	$\begin{gathered} \text { N } \\ \text { N } \\ 0 \\ 0 \\ 0 \end{gathered}$		a 0 0 0 0 a i	D 0 0 0 0 0	P

ERKOR CCNSITION . GBBOB: LEAGIH OF TUBES EXCEEO S.1 M 120 FTI
erroor conoition .9s999: Lengit of tuees less than shell inside olame ter
JEMP
OIFF
JE6
203.15
183.15
163.15
143.15
123.15
103.15
83.15
63.15
43.15
23.15
3.15

\geq	已	\pm
\bigcirc		
8	\pm	N
$\stackrel{-}{-}$	∞	\cdots

**** SEARCH RESULTS FCR THE ECCNCMIC CPTIMUM *****
HEAT-EXCHANGER UESIGN
heAt-EXChANGER SPEGIFICAIION
IUBE OUTSIUE DIAAAEIEK
ShELL INSIUE CIAMETEK
IUBE LENGTH
NUMBEK OF IUBES
BAFFLE SPACIN
NUMBER OF EAFFLES
number of heat exchangers
heat transfer andoor pressure orop cuantity
Shelt-sioe reyncloos number
Shell-sioe pranotl number SHELL-SIOE HEAT-IRANSFER COEFFICIENT TUEE-SIDE REYNOLOES NUMBER

TUBE-SIOE PRANOTL NUMBER
tube-side heat-iransfer cuefficient
overall heat transfer cuefficient
total ahgunt uf heat thansfeneo
ireet flue gas iemperature
UUTLEI flUE gas temperaiure
inlet combustion alr tempg.raiture outlet chmustion air temperature
log mean temperature difference
dutsioe tubular areafexchanger
SHELI-SIGE PKESSURE OROP
tube-sioe pressure orup

heat-exchanger design
$\begin{aligned} & 0.15825 E \text { OS } \\ & 0.7477 \\ & 0.0019911\end{aligned}$
0.8036 CE 04
0.7231
0.13016 E 11 CAL /HR
$\begin{array}{ll}0.1278 E 04 & \text { SG M } \\ 0.0579 & \text { AIM } \\ 2.35 & \text { MA HG }\end{array}$
$\begin{aligned} & 04 * 38 \mathrm{C} \\ & 51 \cdot \mathrm{EE}\end{aligned}$
00.384
59.06 OEG C
$0.001 U 299$ CAL/S/SQ CHIC
$0.0005586 \mathrm{CAL} / 5 / 50 \mathrm{CM} \mathrm{C}$ OEG K OEGK OEG K UEG K

3
3
3
$0.0019911 \quad$ CAL./S/SO CM/C
0.8036 CE 04
heat recovery adoition eccncrics

QUANTITY
JAN. 1979 VALUE
$\$ 81005$. 115543. 654146. 457902. 2073642. 2239899. 261699. 257C384. 638006. 1195921. 43650 C6.
hORK EQUIVALENTS (CNE HOLR BASIS)

CIL SAVED	-0.13016 E8
ELECTRICITY	$0.22682 \mathrm{E} \mathrm{C7}$
EGUIFMENT \& CONSTRUCTICN	$0.12566 \mathrm{C6}$
TOTAL	-0.10622 E 08

VALUE
\sum
2.540
300.030
4.516 M

5
0
0
0

***** SEARGH RESULTS FUR IHE UPIIMLM hORK EQUIVALENT
HEAI-EXCHANGER DESIGN
HEAT-EXCHANGER SPECIFICAIIUN
TUBE CUISIDE CIAMEIER
ShELL INSIDE UIAMETER TUBE LENGTH
NUMEER UF IUSES
BAFFLE SPACING
NUMULK OF RAFrLES
IUUMBER UF HEAI EXCIHANGERS
heat-exchanger oes ign

11.239	Bru/hr/so	FT/F
.		
2.828	Bjumres ${ }^{\text {a }}$	Ft/f
1.847	ATU/HR/50	Ft/f
0.51649 E	BiU/hr	
500.00	OEG F	
241.25	OEG F	
100.00	OEG F	
422.33	OEG F	
106.31	CEG F	
0.3122 ES	Sa fi	
0.589	PSt	
0.275	IN H 20	

3กาขィ

$0.10600 E$	
0.7471	
0.0015229	CAL/S/SO CH/C
$0.34365 E 04$	
0.7231	
0.0003832	CAL/S/SO CM/C
$0.000263 B$	CAL/S/SU CN/C
$0.13016 E 11$	CAL/HR
533.15	OEG K
389.40	UEG K
310.93	OCG K
490.00	DEG K
59.06	DEG C
$0.2900 E$	O4C N
0.0408	AIN
0.51	NN HG

value
heai transfea andior pressure orup ouantity
er
Shell-sioe heal-tanasfer coefficient mbeestide retnceld's numoer
tube-sitee prandil hunber
TUdE-SIUE HEAJ-TRANSFER CULFFICIENT overall heat transfer coefficient igial amlunt uf heat transfeheo ineej flue gas ienperature gUTLET FIUE GAS TEMPERALURE intei cunbustion alr templhature UULLEI COMBUSTICN AIK LEMPERATURE log pean lenperature oitference ours lof tubular areadexchanger shell-side paessure orup

TUBE-SLIOE PRESSURE ORUP

$$
\begin{aligned}
& 12.90 \mathrm{cu} \mathrm{~N} / \mathrm{s} \\
& 136.59 \mathrm{CU} \mathrm{~N} / \mathrm{S} \\
& 6.23 \mathrm{KH} \\
& 691.10 \mathrm{KW}
\end{aligned}
$$

$$
\begin{gathered}
0.1545 E \text { O6 CFN } \\
0.2494 E 06 \text { CFN } \\
4.65 \quad \mathrm{HP} \\
515.35
\end{gathered}
$$

BLOLER OESIGNS

$72.90 \mathrm{cUN} / \mathrm{S}$
$136.59 \mathrm{CU} \mathrm{N} / \mathrm{S}$
6.23 KH
691.10 KH
heat recovery adoitica eccincmics

QUANTITY
JaN. 1979 VALUE

$-0.11225 E 08$
iueat transfek amu/or pressure chup cuaniity
meat-exchanger oesicn
0.0015229 CAL/S/SO CM/C

$0.0003832 \mathrm{CAL} / \mathrm{S} / \mathrm{SO}_{\mathrm{CH}}^{\mathrm{CH} / \mathrm{C}}$ 0.0002638 CAL/S/SQ CM/C $\begin{array}{cc}0.13016 \mathrm{E} & 11 \\ \text { Cal/大R } \\ 533.15 & \text { OEG K }\end{array}$ 389.40 UEG K | x |
| :--- |
| $\stackrel{8}{\circ}$ | $\stackrel{\rightharpoonup}{0}$

$\stackrel{0}{0}$了 $930 \quad 90.65$ 0.2900 E4 SO H 310.93
490.00

[^2]0.106 ace os 0.34305 E 04
0.7231

shell-stoe reynglo.s numatr
 shell-side pranull number
 shell-sioe heat-transfer coefficient tue e-sioe reynolo's humaer
 yube-sioe pranotl humber
 tuoe-sloe heat-thanster coefficient overall heat transfer cuefficient
 toital amcunt uf heai transfereo imey flue cas iemperature outlet flue gas temperaiure imei cumuustion air temperaiure outley cumausitonatr templrature
 log vean iemperature olfference duisiue tubular afea/exchanger shell-stoe pressure orop
 thee-sioe pressure orup

heat-ixcranger design
heat-EXChangle splcification

HEAT RECOVERY ADDITICN ECCNCMICS

GUANTITY
air blcher
flue gas bloher
heat exchanger
TDTAL hEAT EXCHANGER MATERIAL
heat exchanger module
HEAT RECQVERY ACOITION
AVERAGE ANNUAL POWER
ANNUAL FUEL SAVINGS
ANNUAL COST
NET ANNLAL CASH FLOW
NET PRESENT VALUE

JAN. 1979 VALUE
\$ 810C5. 115593. 1156419. 809493. 3665847. 3882104. 182102. 257C3E4. 820059. 1233937. 2984347.

```
WORK EQUIVALENTS (CNE HULR BASIS)
```


QUANTITY
 VALUE IN KCAL

CIL SAVED
$-0.13016 E C 8$
ELECTRICITY
EQUIPMENT \& CCNSTRUCTION
TOTAL
$0.157835 \quad 67$
$0.21203 E C 6$
$-0.11225 E 08$

ANALYSIS OF THE COED PROCESS AND OPTIMIZATION OF FLUE GAS HEAT RECOVERY FROM A SECOND LAW PERSPECTIVE

by

TERRY LEE INRUH
B.S., Kansas State University, 1978

AN ABSTRACT OF A MASTER'S THESIS
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Chemical Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

The basis for second law thermodynamic analysis of processes involving chemical transformations is reviewed and the COED process and its attendant chemistry is described. The energetics of this process and of each step therein are calculated from a commercial plant design study and are examined from a second law perspective. Two efficiencies, an incremental and an absolute, are found to be useful in this analysis. The incremental efficiency is most useful with physical processes while the absolute or second law efficiency is most useful with processes involving chemical transformations. The second law (absolute) efficiency is shown to be 0.75. In contrast, the thermal or first law efficiency is 0.80 . When the inefficiencies of oxygen production and electricity generation are charged to the COED process the second law efficiency decreases to 0.68 . An energy cost assigned to the equipment and construction is evaluated using energy/ dollar data obtained from an economic Input-0utput analysis for the U.S. economy. When this energy cost.plus an energy credit for salvage is included in the analysis a final overall second law efficiency of 0.67 is found.

In addition, the optimization of a flue gas heat recovery system from a second law perspective is performed. This system is described and two thermodynaric and one economic objective function are determined. These objective functions are optimized from the standpoint of four independent design variables, the number of heat exchangers, the tube outside diameter, the shell inside diameter, and the exit preheated air temperature. Results are compared on the basis of the number of heat exchangers. The thermodynamic optimums are found at approximately 30 heat exchangers but are taken at 13 heat exchangers since the objective function values of these two amounts are within 5% of each other. In contrast, a distinct economic
optimurn is found at 8 heat exchangers. The design conditions of the economic optimum are determined to produce a thermodynamic objective function value within 20% of the optimal value. The converse, however, is found to not be true.

[^0]: *Taken fron reference (23)

[^1]: * calculate the overall secuno lan efficiémy cf the heat
 * ExChanger acultign system.

[^2]: $\underset{x}{x}$

