
  

Characterization of the equine microbiome during late gestation and the early postpartum period, 

and at various times during the estrous cycle in mares being bred with raw or extended semen 

 

 

by 

 

 

Emily Jones  

 

 

 

 

B.S., Clemson University, 2017 

 

 

 

A THESIS 

 

 

 

submitted in partial fulfillment of the requirements for the degree 

 

 

 

MASTER OF SCIENCE 

 

 

 

Department of Animal Sciences and Industry  

College of Agriculture  

 

 

 

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

 

 

 

2019 

 

 Approved by: 

 

Major Professor 

Dr. Joann Kouba 

  



  

Abstract 

 Two experiments were conducted to investigate the microbiome of the mare and foal in 

the late gestational to early postpartum period as well as the effects of breeding on the mare 

uterine and vaginal microbiota. In the first experiment the objectives were to investigate the 

microbial composition of the perinatal foal gut and its similarity to the maternal microbiome, and 

to characterize the temporal dynamics of the microbial composition of mare feces and the vagina 

during late gestation and the mare vagina and uterus during the early postpartum period. Nine 

Quarter Horse mare/foal pairs were utilized in this study. Starting 6 weeks prior to parturition, 

mare feces, vaginal swabs, and milk secretions were collected at 2-week intervals until 

parturition. At parturition, mare fecal, colostral and placental, and foal meconium samples were 

collected. Uterine efflux and vaginal swabs were collected from mares on day 7 and 25 

postpartum. Samples were analyzed using NGS of the V4 region of the 16S rRNA gene to 

determine microbial composition. Analysis of sequencing data and statistics were performed 

using QIIME2 and R. The mare fecal and vaginal microbiomes were generally stable during late 

gestation. The neonatal foal gut was dominated by the Bacteroidetes and Firmicutes phyla as 

well as genera commonly found in adult feces. Meconium appeared to be more similar to mare 

feces and placenta than colostrum. In general, the postpartum mare uterine and vaginal 

microbiomes were stable postpartum and had many shared taxa with the placental microbiome. 

The equine neonate is born with a unique gut microbiome compared to dam feces, placenta and 

colostrum; however, the foal gut may be colonized in utero by some of the dam’s gut and uterine 

microbes.  

 The objectives of the second experiment were to investigate the microbiome of the uterus 

and vagina in healthy mares and to determine the effect of breeding with either raw or extended 



  

semen on the uterine/vaginal microbiomes. Sixteen Quarter Horse mares and one stallion were 

utilized in this study. Mares were separated into 2 treatments: artificially inseminated (AI) with 

10 mL of raw semen only (RAW, n=8) or 10 mL of semen and 10 mL of extender (EXT, n=8). 

Uterine efflux and vaginal swabs were collected when a follicle measuring ≥ 35 mm was first 

observed. Mares were then inseminated within 24 hours of initial sample collection and uterine 

and vaginal samples were collected again 48 hours post-AI. The uterine and vaginal protocol was 

repeated in the next estrous cycle. Feces were collected once from mares, immediately following 

the first detection of a follicle measuring ≥ 35 mm. Semen samples were collected for analysis 

prior to insemination. Samples were analyzed using the same protocol as the first experiment. 

Microbes were detected in all sample types. Feces and semen were distinct from all other sample 

types, however there were few differences between the uterine and vaginal microbiomes. The 

uterine microbiota was not significantly impacted by breeding and there were no differences 

between breeding with raw or extended semen. The vaginal microbiome did shift post-AI in the 

first cycle and between the first and second cycle. Although there were differentially abundant 

taxa between the uterus, vagina and semen, Actinobacteria, Bacteroidetes, and Firmicutes the 

were dominant phyla and Corynebacterium and Prophyromonas were dominant genera in all 

three sample types. In healthy mares the uterus appeared to return to the pre-AI microbial 

composition by 48 hours post-AI and there was no shift in composition between estrous cycles. 

However, the vaginal microbiome is dynamic and displays more shifts following breeding and 

throughout the estrous cycle than the uterine microbiota. The semen, vaginal and uterine 

microbiomes shared dominant taxa, indicating that there may be similar control mechanisms in 

mares and stallions to recognize commensal bacteria within the reproductive tract.  
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Chapter 1 - Review of Literature 

 Introduction  

The microbiome has been defined as the “microbial organisms located in or on a defined 

anatomic space or surface” [1]. These microbes are thought to have two roles within the host: 

gatekeeper and watchman. As gatekeeper microbes are the “front line” against chemicals, toxins 

and nutrients, influencing what is absorbed through mucosal surfaces into the host body. They 

act as watchman through responding to, and sending signals to, the host immune system [2]. 

Decreasing cost of analysis, increased speed of microbial DNA sequencing, and advancements in 

bioinformatic pipelines used to analyze sequencing data have resulted in a rapid rise in the 

number of studies investigating the microbiota within the different body sites of various species 

and the role that these microbes play in host health [3].  

The human microbiome has been the most extensively studied of all species but there has 

been considerable interest in the equine microbiome in recent years. The equine gut microbiome 

garners the most attention as horses are hindgut fermenters and rely on microbes within the large 

intestine and cecum to break down complex carbohydrates to provide energy in the form of 

volatile fatty acids, inhibit overgrowth of pathogens, and modulate of the immune system [4]. 

Alterations to the adult equine gut microbiota have been associated with colitis, laminitis and 

colic, however determination of the “normal” equine gut microbiome is elusive as there are 

typically interindividual based on location, age and management [4].  

The importance of gut microbes to the host have sparked an interest into how and which 

microbes initially colonize the neonate. While only two previous studies have utilized meconium 

as an indicator for early gut colonization in foals [5,6], human studies have demonstrated that in 

utero transfer of commensal gut microbes may be essential for development of the adult gut 
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microbiome [7]. Only a few studies have utilized next generation sequencing (NGS) for analysis 

of the equine uterine microbiome [8–10], and to date, none have investigated the vaginal or 

seminal microbiome. However it is becoming an area of interest in humans as the relationship 

between the microbiota of the reproductive tract and fertility/reproductive disorders is becoming 

more clear [11]. Overall the microbiota of both the gut and reproductive tract in the equine 

warrants further research to fully understand what is “normal”, consequences to alterations of the 

normal microbiome and which microbes are of importance for maintenance of the microbial 

composition in these body sites.  

 Next Generation Sequencing Technology  

Microbial organisms were first detected as early as the 1600’s by Antony van 

Leeuwenhoek [12]. Since that time various methods have arisen to determine the phylogenetic 

makeup, diversity, and physiological characteristics of microbiomes or microbial communities. 

Microbial communities that inhabit different areas of the body, such as the gastrointestinal and 

reproductive tracts, are of particular interest because they can have both synergistic and 

pathogenic relationships with the host and alterations to the microbial community can have 

negative health consequences [12].  Culture based methods, while still of value, are limited in the 

microbes that can be studied because the majority of bacteria cannot be cultivated and it is costly 

and time consuming to determine the ideal conditions for growth of new bacterial species [13]. 

In contrast, sequencing based technologies account for the total genetic material of the microbes 

within a community or environment; allowing researchers to more accurately define and 

compare microbial populations [13].  

The gene of interest utilized in next generation sequencing (NGS) is the 16S ribosomal 

RNA (rRNA) gene. It is highly conserved among prokaryotes which allows for the creation of 
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polymerase chain reaction (PCR) primers that can accurately replicate the gene [14]. The gene 

also contains nine highly variable regions that can be utilized to differentiate between bacterial 

taxa; the V4 region is most commonly used due to its high level of reliability when determining 

taxonomic level [15]. There are several technologies or platforms that can be utilized for 

isolation of the 16S rRNA gene, however the Illumina technology is the most popular based on 

the largest market share [16].  

The Illumina workflow begins with sample preparation. First DNA is extracted, and then 

undergoes PCR to amplify the 16S rRNA gene. Adapter sequences, sequencing binding sites, 

indexes, and regions complementary to the flow cell are also added through PCR. The next step 

is to load samples into the flow cell where clustering occurs. Clustering begins when templates 

hybridize at their adapter sequences to oligos on the surface of the flow cell, they are then copied 

by a polymerase and washed away [17]. The remaining strands are clonally amplified via bridge 

amplification [17]. This process is followed by “sequencing by synthesis” in which fluorescently 

tagged nucleotides are added one at a time during each cycle; the clusters of nucleotide bands are 

then excited by a light source and the emission wavelength is used to determine the base call 

[17]. Finally, raw data from sequencing is analyzed using a bioinformatics pipeline such as 

QIIME.  

While NGS technology has greatly expanded our knowledge of microbial communities, 

there are significant limitations and areas for bias in NGS. The sampling process can introduce 

bias if the person collecting the samples is not careful to avoid contamination, especially in 

samples that are low in microbial biomass such as blood and other bodily fluids [13]. Extraction 

of DNA can also introduce contaminants and bias as there are several methods and commercial 

kits for DNA extraction [13]. Bias is also present in PCR as there are numerous 16S rRNA 
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primers available and certain primers may skew the population structure by more favorably 

binding to the 16S rRNA gene of certain microbes over others [12]. The final area for bias is in 

selection of the variable region to be targeted during sequencing; several studies using the same 

ecosystem of interest have found different taxonomic results when different regions of the 16S 

rRNA gene were targeted [11,18,19]. While these areas of bias can influence the results of a 

study they can be overcome through careful, sterile sample collection, removal of contaminants 

from laboratory reagents during data analysis, and choosing a variable region that has been 

previously utilized in a researchers area of interest to ensure the ability to compare results 

effectively.  

Data analysis also presents challenges: the large volume of sequencing data is a 

computational issue, data needs to be filtered for quality and chimeras, and there will be many 

sequences that have no match within the chosen taxonomic database [12,13]. These unidentified 

microbes may play an important role in the environment of interest but as they are unable to be 

classified, their role also remains a mystery. Results from NGS are a snapshot in time of the 

microbial community and there is typically a high amount of variation between individuals or 

between samples taken from the same individual, making it difficult to produce replicable results 

[12]. Lastly, NGS technology only measures the genetic material of microbes within a sample so 

it cannot differentiate between live/dead, active/inactive microbes, or provide any information 

about the physiological characteristics of the microbes. Despite these limitations, NGS 

technologies are a valuable tool in furthering our understanding of the microbial communities 

that are present within different body sites through the ability to recognize species that are unable 

to be cultured and the capacity to sequence hundreds of samples in a short amount of time.  
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 Neonatal Gut Microbiome  

It was previously assumed that the mammalian fetus develops in a sterile environment in 

utero and that upon exposure to the external environment, it obtains the microbes that ultimately 

colonize the gastrointestinal tract. This mentality has both been challenged and supported by 

both classic and modern work using culture-based, NGS and PCR-based methods. The debate 

between bacterial colonization in utero vs. bacterial colonization postpartum is ongoing and 

remains to be definitively proven one way or the other. There may be significant differences 

between host species in terms of the timing of colonization due to differences in placental 

structure when comparing hemochorial in humans, or epitheliochorial in monogastric animals 

(pigs and horses) and ruminants (cows and sheep) [20]. Regardless of when initial colonization 

takes place, it is well established that the neonatal gut microbiome undergoes a shift in microbial 

composition so that it ultimately refelcts that of the mature animal, however the time to reach the 

mature microbiome is variable among species [21–24]. Several factors influence the early 

recruitment of these gut microbes that ultimately play a significant role in the future health of the 

animal.  

 In Utero Colonization - Humans 

Meconium is the first stool of a neonate; it is produced in utero and passed following 

parturition. The first reported microbial analysis of meconium was by Theodor Escherich in 1886 

[25]. Using culture-based methods, he was unable to find any microbial flora in the meconium of 

newborn infants and was only able to detect microbes as early as day 8 postpartum. His findings 

established the concept of the “sterile womb”, indicating that colonization of the gut only occurs 

postpartum due to exposure to the external environment. His findings were supported by other 

early work, until the 1980’s when researchers reported bacteria in the meconium of humans, 
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piglets, mice, and ruminants using culture-based methods [21,26,27]. Despite their findings of 

microbes within meconium, which may suggest microbial colonization in utero, all of these 

researchers explained their findings as rapid colonization postpartum due to exposure to the 

extra-uterine environment. It is worth noting that the exact timing of sampling was not always 

clearly stated, or it was indicated that samples were taken up to 24 hours after birth; which would 

allow for possible colonization or contamination from the environment. Although lacking in 

detail and consistency, these early findings laid the foundation for current research that uses 

more advanced methods to determine the composition of the gut microbial community of 

neonates.  

Work in the late 1990’s and early 2000’s found contradictory evidence of the sterile 

womb. Bacterial DNA typically found in the gut, Bifidobacteria and Lactobacilli, were found in 

the placenta of normal human pregnancies (vaginal and cesarean section birth) using species-

specific PCR [28]. Hitti et al. [29] found bacteria in the amniotic fluid of women with negative 

culture results in the fluid using PCR to amplify the 16s rRNA region. Enterococcus faecium, 

Propionibacterium acnes, Staphylococcus epidermidis, and Streptococcus sanguinis were 

detected in the umbilical cord blood of neonates delivered through sterile cesarean section 

resulting from healthy pregnancies [30]. These bacteria were detected through culture-based 

techniques and were also found in neonatal meconium. They are generally considered to be 

commensal as they provide nutrients to the host and help to inhibit growth of pathogenic 

bacteria. This same research team investigated the microbial composition of meconium in 

newborns, only utilizing meconium passed within 2 h of birth, with strict inclusion parameters. 

They found bacterial growth for every subject on certain culture plates, while other types of 

plates had no detectable growth [31]. The same group also used a genetically labeled E. faecium 



7 

to test the transmission from the maternal gut to the neonate in utero in two separate but similar 

experiments. Four pregnant mice were orally inoculated with E. faecium, then amniotic fluid [30] 

or meconium from the fetus [31] were taken aseptically during cesarean section and plated on 

MSR agar, followed by PCR of isolates from plates to detect the labeled strain. In both 

experiments the labeled strain was only found in the inoculated mice and absent from the 

controls. These results indicate that transmission of microbes from the dam to the developing 

fetus is possible in the murine model. One possible explanation of this transmission from the gut 

to the fetus is dendritic cells [32]. These cells can take up live bacteria from the lumen of the 

digestive tract; the cells are then transported to other parts of the body through circulation of the 

lymphatic system. Another possible explanation for this transfer of microbes is that the fetus 

swallows a significant amount of amniotic fluid, especially in late gestation [33]. If amniotic 

fluid truly does contain a microbial community (possibly delivered by dendritic cells) then this 

would be a direct pathway of transmission of microbes in utero.  

Despite the growing body of evidence that there is potential for microbial colonization of 

the human gut in utero, there is also research contradictory to these findings. Hansen et al. [34] 

used rigorous inclusion/exclusion standards in an infant meconium study to ensure only healthy 

subjects were included. Only 66% of meconium samples were FISH (flouresece in situ 

hybridization) positive and of those only one provided enough bacterial DNA upon extraction to 

be amplified via PCR. These results would indicate that in truly normal, healthy pregnancies 

meconium has very little to no bacteria, which suggests colonization may occur rapidly after 

delivery rather than in utero. However, using strict contamination controls, Lauder et al. [35] 

found that there was no significant difference between DNA extraction and PCR reagent 

negative controls and placental samples, while vaginal and oral samples were clearly different 
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from the controls when using qPCR. The authors did note that their results do not rule out the 

presence of placental microbes, only that it was not possible to distinguish between the placental 

samples and controls. While these results appear to give evidence of a sterile environment in 

utero, it is important to note that the placenta of ruminants and horses, which is epitheliochorial 

and has 6 tissue layers seperating the fetal and maternal blood supply, is vastly different from the 

human placenta, which is classifeid as hemochorial and fetal tissues are in direct contact with 

maternal blood supply [20]. Given this difference in placental tissue layers, direct comparisons 

between studies of the human placenta and ruminant/equine placenta cannot be made as there 

may be differences in the level of microbial translocation that can be achieved.  

 In Utero Colonization - Livestock  

Research into the colonization of the gut in livestock animals is still in the early stages. 

Studies focusing on the gut microbial community of newborn livestock using PCR and next 

generation sequencing have only just started in the past 10 years or so, with a heavy focus on the 

transition from the neonatal gut microbiome to the adult microbiome and how different 

nutritional strategies affect this transition. Evidence in the calf shows the potential for in utero 

transfer of microbes, potentially through placentomes. The first study to utilize PCR-based 

techniques to determine the microbial community of the calf gut was Mayer et al. in 2012.  They 

used sequence-specific PCR to determine the microbial profile of calf meconium directly after 

delivery. Samples were low in diversity and dominated by Citrobacter spp. and lactic acid 

producing  bacteria [36]. Diversity increased rapidly however, with a completely different 

composition present by 48 hours [36]. A study sampling Simmental calves from 12 hours after 

birth to post-weaning using 454 pyrosequencing found that at the 12 hour time point, the calf gut 

microbiome had the highest relative abundance of Proteobacteria, with Bacteroidetes second, 
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followed by Firmicutes [37]. Similar to the results seen by Mayer et al., diversity and richness 

were low at the 12 hour time point and increased with age. In the most recent bovine study, using 

a stringent protocol with several negative and contamination controls, authors investigated the 

microbial community composition of newborn calf meconium [25]. They found that calf 

meconium consists of a low abundance, high diversity bacterial community containing some 

known adult intestinal microbiota and being most similar to the dam’s oral microbiome. The 

bacterial community diversity drops within 24 hours and increases again by day 7. These results 

are contradictory to a previous calf study and many human studies that found meconium to have 

very low diversity [37–39]. A potential route of the transmission of the microbes found in 

meconium is through the uterus and placenta of the cow. Similar to human studies that have 

isolated bacteria from the human placenta, bacteria have also been isolated from the 

endometrium and placentomes (sites of attachment between the placenta and the endometrium of 

the uterus) of healthy pregnant cows using FISH [40].  

While fecal samples in calves are reflective of the microbial profile of the distal digestive 

tract, the rumen is of greatest interest as this is the site of the majority of digestion in ruminants. 

Rumen fluid samples from calves have been utilized to determine the colonization of the rumen 

early in life with pyrosequencing [41]. The authors found that essential rumen microbes are 

present at birth including cellulolytic bacteria, bacteria of the Prevotella genus which are able to 

utilize starch to produce succinate, as well as soluble sugar and lactate utilizers. Authors also 

noted a decrease in aerobic and facultative anaerobic microbes and an increase in strictly 

anaerobic microbes between day 1 and day 3 [21]. This change is important because the mature 

rumen relies on anaerobic microbes to convert plant fiber into usable energy sources. Overall 
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previous work in the neonatal calf has shown that the neonate is born with commensal gut 

bacteria that are essential for digestion and energy outside the womb.  

 In Utero Colonization - Equine 

Studies using an equine model have also questioned the idea that the fetus develops in a 

sterile environment. Early culture-based studies found foal meconium to be sterile, and 

researchers using PCR-DGGE found that foal feces collected some time between 0-24 hours 

after birth had no or very few bands upon gel examination [42,43]. Researchers using automated 

ribosomal intergenic spacer analysis to examine the microbial composition of foal meconium 

found bacteria in 3 out of 5 foals with a high degree of variability between foals in terms of the 

number of bands [44]. These studies, although contradictory, prompted further investigations 

into the sterility of the uterus and fetal foal gut during pregnancy.  

More recently, the microbiome of the placenta and other fetal membranes have been an 

area of interest in equine studies. Using culture-based techniques, researchers isolated bacteria 

from amniotic fluid and umbilical cord blood collected at foaling [45]. Bacteria were present 

regardless of the health status of the foal, indicating the possibility of a normal bacteria flora in 

fetal tissues, even in normal pregnancies. Xia et al. (2017) conducted a profiling study in which 

mare fecal, oral, vaginal, and placental (gravid and non-gravid horn) samples were analyzed 

using NGS to determine the bacterial composition. The authors found that the fecal and placental 

microbial communities were the least similar. The vaginal, oral, and placental microbiomes 

shared the most phyla, although there were minor differences between the gravid and non-gravid 

portions of the placenta. Most recently, NGS was used to determine the microbial composition of 

mare feces, milk, amniotic fluid, and foal meconium [5]. Mare feces had the most diverse 

community and amniotic fluid was the least diverse. Each sample type was unique in its 
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community composition, however 75 OTUs were shared between mare feces and foal meconium 

and 32 OTUs were shared between amniotic fluid and foal meconium. In our lab, the fecal and 

milk microbiome of the mare at parturition was compared to the foal fecal microbiome [6]. We 

found that, similar to other studies, the mare fecal and milk microbiome were significantly 

different in both diversity and relative abundance of bacteria, while meconium collected at birth 

mirrored that of the milk (E. Jacquay, 2017). Similar to studies in calves, there appears to be the 

possibility of in utero colonization in foals due to presence of bacteria within meconium, the 

placenta, and amniotic fluid; however, studies utilizing healthy vs. non-healthy pregnancies and 

a greater numbers of horses need to be conducted in order to achieve a definitive answer.  

 External Influences on the Microbiome during Pregnancy   

The influence of extrinsic factors, such as pre or probiotic and antibiotic use during 

pregnancy and the perinatal period, on the development of the neonatal gut microbiome is still 

beng investigated. There is currently no research into the effects of external factors on the 

microbiome during pregnancy in livestock animals but it has been investigated in the human and 

mouse models. Researchers have found that prenatal use of probiotics by the mother is 

associated with reduced allergies and disease in the offspring, however the direct impact on the 

infant microbiome is still being investigated [7]. Administration of Lactobacillus rhamnosus 

probitoic in late pregnancy has been shown to increase colonization of the infant gut with 

Bifidobacterium spp., a bacteria found in healthy infants but lacking in those that are prone to 

allergies [47]. The mechanism by which this increase occurred remains to be determined. In a 

murine model, offspring of mice that were given an oligosaccharide prebiotic during pregnancy 

and lactation had a signifcantly different gut microbial community and lower incidence of 

dermititis than those that did not receive the prebiotic [48]. However, in a human study, 
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administration of prebiotics during pregnancy only resulted in an increase in Bifidobacteria in 

the maternal gut but had no effect on the infant gut microbial community [49]. Results of these 

studies indicate that pre/probiotic use during pregnancy and lactation may confer health benefits 

to the offspring, but the exact mechanism through which this occurs and which pre/pro biotics 

are most useful is unclear. Studies utilizing species other than humans and development of 

techniques to determine how these pre/probiotics actually influence or effect the host microbial 

community are necessary to fully understand the relationshp between microbes and these 

extrinisc factors.  

The impact of maternal antibiotic usage during pregnancy has been more extensively 

studied than pre/probiotic usage. There is concern that antibiotic use during pregnancy reduces 

comensal bacteria and increases antibiotic-resistant bacteria in the infant gut [7]. Maternal 

antibiotic usage also can reduce Lactobacillus spp. and increase Citrobacter spp., Enterobacter 

spp., and E. coli, which represent a more antibiotic-resistant population [50,51]. This shift in the 

vaginal microbiome can then directly effect the neonatal gut microbiota by reducing the 

abundance of Lactobacilli and Bifidobacteria as well as decreasing the overall diversity of the 

infant gut bacterial community [50,52,53]. Use of antibiotics during pregnancy has also been 

associated with several illnesses in the resulting offspring, including asthma [54–56], obesity 

[57] and necrotizing enterocolitis [58]. While there are variations in these effects depending on 

the antibiotic used, dosage, and length of time of administration, it is imperative that antibiotic 

usage during pregnancy be reduced as much as possible to avoid causing potentially life-

threatening diseases in offspring. Further research is also needed in other species, including 

livestock species where antibiotics are given routinely during pregnancy to treat infections that 

are not related to pregnancy.  
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There are still many questions to be answered in terms of the neonatal gut microbiome. 

The debate between in utero colonization and colonization postpartum is still ongoing and a clear 

answer has not yet been determined. In contrast, the transition to the adult gut microbiome is 

well-documented in most species and an understanding of this transition will allow medical 

professionals, veterinarians and animal producers to make choices that ensure the ideal gut 

microbiome is established in order to promote the health and well-being of the individual. These 

choices should include avoidance of unneccessary antibiotic usage and potentially the use of 

pre/probiotics, although the mechanisms behind the shifts caused by these products are not yet 

fully understood.  

 Reproductive Tract Microbiota  

 Vaginal Microbes  

It is well-established and accepted that the vagina of mammals is host to a community of 

microbes that is variable between and within species. The vaginal microbiome in women in 

particular has been well-documented and extensively studied. Culture-based studies in the 1970s 

and 80s first identified the Lactobacillus species within the vagina and its significance to 

maintaining a healthy vaginal microbiome [59,60]. More recent studies have utilized sequencing 

technologies to not only confirm the dominance of Lactobacillus in the vaginal microbiome of 

women, but to also differentiate 6 different “grades” or community state types (CST) based on 

the species of Lactobacillus that is dominant [61,62]. L. crispatus, L. gasseri, L. iners, or L. 

jenseii respectively dominate CST I-III and V. There is a low abundance of Lactobacillus in CST 

IV-A as well as anaerobic bacteria such as Anaerococcus, Corynebacterium, Finegoldia and 

Streptococcus in. Higher proportions of the genus Atopobium are found in CST IV-B as well as 

Prevotella, Parvimonas, Sneathia, Gardnerella, Mobiluncus or Peptoniphilus and other taxa 
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[62–64]. There is a high degree of variability between women in terms of which CST represents 

their individual microbiome, and this can be effected by age, race, phase of the menstrual cycle, 

pregnancy, sexual activity, and exogenous hormones [63,64]. It is well-established that 

dominance by Lactobacillus species is associated with a “normal” or “healthy” vaginal 

microbiome because these microbes produce bacteriostatic or bacteriocidal compounds as well 

as lactic acid, which in turn maintains a low pH of 3.5-4.5, all of which helps to limit the growth 

of pathogenic bacteria and prevent conditions such as bacterial vaginosis [11,61,63,64]. While 

our understanding of the human vaginal microbiome continues to delve deeper into implications 

for human health and fertility, studies in livestock species are only beginning to investigate the 

“core” microbiome of the vagina.  

Of all of the livestock species, the vaginal microbiome of cattle has been the most 

extensively studied, focusing frequently on its relation to postpartum issues such as metritis 

[65,66]. The first study to utilize sequencing of the 16S rRNA gene to determine the vaginal 

microbiota of ewes and cattle found several similarities between the two species, however, there 

were vast differences between both species and women [67]. Authors found that Aggregatibacter 

spp., Streptobacillus spp., Cronobacter spp., Phocoenobacter spp., and Psychrilyobacter spp. 

were the most abundant bacterial genera of the ewe vagina. Aggregatibacter spp., Streptobacillus 

spp., Phocoenobacter spp., Sediminicola spp., and Sporobacter spp. were the most common 

genera in cow samples with the cow vaginal microbiome being more diverse as well. When 

authors compared their results to culture-based studies they noted that species commonly 

cultured from ewe and cattle vaginas were only present at very low abundances, calling into 

question the validity of conclusions from culture-based techniques alone. Although present, a 

low abundance of Lactobacillus could be explained by the greater vaginal pH observed in cattle 
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(6.5-8.7) and ewes (5.6-7.1) compared to humans [67]. It is unclear if the higher pH inhibits the 

growth of Lactobacillus or if a low abundance of Lactobacillus results in a higher pH due to less 

lactic acid production. A more recent study also investigated the vaginal microbiota of cattle;, 

utilizing a different variable region with different results [18]. Laguardia-Nascimento et al. [18] 

found that the most abundant bacteria at the phylum level were Firmicutes, Bacteroidetes and 

Proteobacteria; the dominant genera were Aeribacillus, Bacteroides, Clostridium and 

Ruminoccocus. When authors compared heifers to cows, and pregnant to non-pregnant animals, 

they found no difference between heifers and cows however pregnant animals had a higher 

abundance of Archaea compared to non-pregnant animals. They also found several OTUs that 

were shared between the vaginal microbiome and the gastrointestinal/fecal microbiome; this 

could be explained by the close proximity of the anus and vagina in cattle and could further 

explain why the occurrence of postpartum endometritis is so prevalent in cows [18]. 

In contrast to the ongoing interest in human and cattle vaginal microbiome, only culture-

based studies have investigated the equine vaginal microbiota. In 1988, one of the earliest studies 

to investigate the bacteria within the vagina of clinically healthy mares found that 42% of 

vaginal swabs were positive on aerobic culture, with only 8% yielding growth of more than 10 

colonies [68]. Interestingly, 44% of vestibular swabs and 94% of clitoral fossa swabs had 

moderate to heavy growth. These swabs also showed presence of pathogenic microbes, such as 

Streptococcus zooepidemicus and Escherichia coli. Given these results, the authors concluded 

that the vulvovaginal fold and the cervix are barriers to ascension of bacteria into the uterus [68]. 

More recently, the presence of Lactobacillus and Enterococcus within the equine vagina was 

investigated using culture-based techniques [69]. Authors detected lactic acid producing bacteria 

in all of the vaginal samples and further sequencing revealed that the specific strains of the 
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cultured bacteria were Lactobacillus pantheris, Lactobacillus mucosae, Lactobacillus equi, 

Enterococcus faecalis and Enterococcus faecium [69]. All of the strains also exhibited 

antimicrobial activity against Gram positive and Gram negative bacteria. The lactobacilli growth 

counts were lower than humans but similar to cattle, this could be explained by the fact that the 

mare vaginal pH (6-8) is similar to cattle as discussed previously [69]. Authors also concluded 

that because L. equi, E. faecalis and E. faecium are also found in the intestine of healthy horses, 

there may be transference of intestinal microbes to the vagina, as hypothesized in cattle. Further 

research using NGS technologies is necessary to determine the actual abundance and prevalence 

of Lactobacillus as well as other microbes in the equine vagina other microbes.  

 Uterine Microbes 

The uterus had been thought to be a sterile environment with the presence of intrauterine 

microbes typically associated with uterine disease or infection [68,70–73]. This idea was 

challenged by studies that utilized culture-based and NGS technology to show that non-

pathogenic microbes were present in the uterus of various mammalian species, resulting in a 

unique uterine microbiome. Studies in humans have questioned the sterility of the uterus using 

PCR and sequencing methods [74]. Building off this work, other studies have utilized 

sequencing technologies to further investigate the microbial population of the human uterus. A 

core uterine microbiome containing Bacteroides xylanisolvens, Bacteroides thetaiotaomicron, 

Bacteroides fragilis, Bacteroides vulgatus, Bacteroides ovatus, Pelomonas, Betaproteobacteria, 

Escherichia/Shigella, Chitinophagaceae, Pseudomonas, Caulobacter, and Acidovorax, was 

determined using samples collected via transcervical endometrial biopsy and sequencing of the 

V1-V2 region [19]. In contrast, Moreno et al., (2016) utilized 454 pyrosequencing of the V4-V5 

region to analyze endometrial fluid samples and found a slightly different microbiome. Authors 
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found that in most fertile women Lactobacillus (71.7%) was dominant; followed by Gardnerella 

(12.6%), Bifidobacterium (3.7%), Streptococcus and Prevotella (0.866%), which is similar to the 

typical microbial community of the human vagina. However, in infertile subjects undergoing 

IVF, approximately half had a Lactobacillus dominated (LD) vagina [75]. Those in the non-

Lactobacillus dominated group had decreased implantation, pregnancy, and live birth rates, 

indicating a possible link between the uterine microbiome and fertility. Another research team 

also utilized sequencing of the V4-V5 region but looked at 6 different sites within the 

reproductive tract, including surgically obtained endometrial samples [11]. In agreement with 

previous studies, authors found a diverse microbial community within the uterus that included 

Lactobacillus (although it was not dominant), Pseudomonas, Acinetobacter, Vagococcus and 

Sphingobium. This community, similar to the vaginal microbiome, is dependent on the hormones 

and nutrients that are locally available. Authors also noted correlations between the vagino-utero 

microbiota and phase of the menstrual cycle as well as diseases such as endometriosis, 

hysteromyoma, and adenomyosis [11]. As a whole these studies indicate a potential link between 

the uterine microbiome and fertility/disease, however further research is necessary to explore 

these correlations.  

The microbes within the mare uterus are of interest because they are typically associated 

with post-breeding induced endometritis (PBIE). In normal, reproductively sound mares there is 

an inflammatory response to semen, bacteria, and debris that are deposited during either natural 

service or artificial insemination (AI); this inflammatory response is resolved within 48 hours 

and most mares are able to expel or eliminate excess fluid and bacteria [76]. A subset of mares 

are susceptible to PBIE and are unable to effectively clear contaminants from the uterus, 

significantly decreasing their ability to become pregnant or maintain pregnancy [77]. The 
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reasons why certain mares are susceptible and others are resistant remain unclear, however it is 

evident that PBIE has a significant impact on the equine industry as it effects 25-60% of 

broodmares and is a major reproductive health concern among theriogenologists [70,77]. One of 

the main diagnostic tools for PBIE is uterine culture, using swabs of the endometrium or fluid 

collected through low-volume uterine flushing [78]. Both methods present the challenge of false-

positives due to contamination during the sampling process or false-negatives due to insufficient 

sampling. When attempting to diagnose PBIE the number of colonies and the organisms present 

on culture are taken into account. Microbes that are typically cultured from PBIE mares include 

Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Bacteroides fragilis, ß-

hemolytic streptococci, and Taylorella equigenitalis; all are thought to be pathogenic with E.coli 

and ß-hemolytic streptococci being the most commonly associated with fertility problems 

[70,72]. The mode in which these microbes enter the uterus is also not yet fully understood, 

however poor perineal conformation, trauma during foaling, reduced cervical closure during 

diestrus/opening during estrus, and impaired immune function could all be contributing factors 

[70]. In a study looking at 2,123 Thoroughbred mares over the course of three breeding seasons, 

72% had negative cultures and of those that were positive, 12.2% were barren, 11.1% were 

calculated at foaling, and 3.2% were maiden; also, mares with positive culture results had 

reduced pregnancy rates, and even those with non-pathogenic microbes [79]. These non-

pathogenic microbes, as well as pathogenic microbes, have been cultured from normal mares 

with no reproductive issues, however they typically grow much more slowly and the amount of 

growth is less than PBIE mares (<10 colonies) [68,78]. The presence of microbes in 

reproductively normal mares indicates that the equine uterus is not sterile and that it may host a 

diverse microbial community and could impact fertility.  
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More recently, two studies sought to investigate the microbiota of the mare uterus 

through utilization of NGS technologies. Schnobrich et al. [9] compared aerobic culture of 

endometrial swabs, small volume lavage, and endometrial biopsy to NGS of the same samples 

from clinically normal mares. The authors found that for swabs 90% showed no growth on 

culture and 77.8% were negative with NGS (no microbial DNA detected), for small volume 

lavage 70% had no growth on culture and 70% were negative with NGS, for endometrial biopsy 

none of the samples recovered growth on culture and only one sample had low levels of 

microbial DNA with NGS [9]. In contrast, Sathe et al. [8] also used clinically normal mares and 

found bacteria in all uterine samples using NGS, even in mares with negative cultures. They 

determined that Proteobacteria and Bacteroidetes were associated with positive cultures; 

Sphingobacteriales (Bacteroidetes) and Sphingobium (Proteobacteria) were associated with 

mares that produced a viable embryo during embryo transfer, while Rhodocyclaceae and 

Enterobacteriaceae (Proteobacteria) were associated with mares that did not produce a viable 

embryo [8]. Unfortunately, the results from both studies that utilized NGS were only presented 

within abstracts, which limits interpretation of the results. Further studies utilizing stringent 

contamination protocols are necessary to further investigate the presence of a microbial 

population in the equine uterus and the implications of those microbes on reproductive 

efficiency.  

The postpartum uterus of the mare must undergo the process of uterine involution before a 

new pregnancy can be established, however this process is relatively quick in the mare1, as they 

are able to become pregnant at their first postpartum estrus, which typically occurs between 7-10 

days after foaling [80]. Pregnancy rates for mares bred at the first postpartum estrus are lower 

than subsequent estrous cycles most likely due to the process of uterine involution postpartum 
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[81,82]. Previous studies have found that most mares have a positive culture result for potential 

pathogens such as Escherichia coli and Streptococcus at the fist postpartum estrus, but the 

number of mares with positive culture decreases with increased time postpartum and a positive 

culture result is not statistically correlated with fertility at the first postpartum estrus [81–83]. To 

date, the microbiome of the mare uterus in the early postpartum period has not been investigated 

using NGS, however work in cattle has found Firmicutes to be the dominant phylum in the 

postpartum uterus and vagina, followed by Bacteroidetes and Fusobacteria [84]. This same 

research group found that there was a distinct difference in the uterine and vaginal microbial 

population at day 7 postpartum of healthy cows and those that developed endometritis by day 21 

postpartum, indicating that the early postpartum microbial community may play an important 

role in the future reproductive health of animals in the postpartum period.  

 Male Reproductive Tract and Semen Microbes  

It is well-documented that the external genitalia of stallions are not sterile. Several studies 

have investigated the presence of microbes on external genitalia of stallions including the 

urethral fossa, penis, prepuce, and urethra pre- and post-ejaculation [85–89]. Rota et al. [87] 

observed bacterial growth on all of the external genitalia sites; authors also noted that the total 

bacterial count (TBC) was similar between the urethral fossa and penis/prepuce however the 

TBC was greater in the urethral fossa than the urethra both pre- and post-ejaculation. These 

results were supported by a study that investigated the genital microflora of stallions used for 

artificial insemination over the course of a breeding season [88]. Researchers noted that the 

number of microbial species isolated changed between February and August, however not in a 

linear fashion, and the most common bacteria isolated were Staphylococcus spp., 

Corynebacterium spp., Streptococcus spp., Acinetobacter spp., and Escherichia spp. Building off 
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this work, Guimarães et al. [89] compared the genital microbes of breeding stallions (used for 

both artificial insemination and live cover) to non-breeding stallions. Both groups were positive 

for bacterial growth on culture, however 16 species were exclusive to breeding stallions and 4 

were exclusive to non-breeding stallions, with potential pathogens only being found on breeding 

stallions. Similar to previous studies, Corynebacterium spp. and Staphylococcus coagulase-

negative were the most common bacterial isolates. The resident microflora of the external 

genitalia is thought to be the main source of the bacteria found in stallion semen.  

Bacteria have been isolated from stallion semen as early as the 1970’s using culture-

based techniques and sterile collection equipment [90]. The most common non-pathogenic 

bacteria isolated from semen are Staphylococcus coagulase-negative and Corynebacterium spp., 

both of which are also dominant on the external genitalia [87–89,91]. If semen is sterile within 

the testes it may acquire microbes when it encounters the urethra and urethral fossa. However, 

Guimarães et al. [89] found non-pathogenic and potentially pathogenic microorganisms in 

stallion semen that were not present on the external genitalia including, Staphylococcus 

coagulase-negative, Enterococcus spp., Bacillus spp., Strep. zooepidemicus and Salmonella spp. 

Authors postulated that these microbes were present due to contamination during collection and 

processing rather than inherently present in the semen.  

Following the first detection of bacteria in stallion semen, extenders were developed to 

enhance spermatozoa quality, increase fertility, and reduce the bacterial content. Semen 

extenders are most commonly milk or egg yolk-based and typically contain antibiotics [92]. The 

efficacy of various antibiotics on the reduction of the bacterial content of semen has been 

thoroughly investigated and the most common antibiotics added to stallion semen extender are 

beta-lactams (potassium penicillin G) and aminoglycosides (amikacin or gentamicin) [90,92–95]. 



22 

These antibiotics have been shown to effectively reduce the bacterial load of semen by up to 

99%, and have other benefits including increased viability of spermatozoa by removing bacteria 

that may utilize the same substrates and reduction of the microbes introduced to the mare uterus 

[90]. Bollwein et al. [96] investigated the impact of antibiotic-containing extender and raw 

semen on the mare through uterine culture and found that insemination with extender resulted in 

less severe bacterial contamination than raw semen. In contrast, a study that investigated the 

transmission of bacteria from the stallion to the mare during live cover found that breeding mares 

to stallions with positive culture vs negative culture did not increase the incidence of positive 

uterine culture post-breeding, however authors did not report the significance of this conclusion 

[86]. The results would indicate that semen extender is useful in reducing the bacterial 

contamination of the mare uterus post breeding however the impact of bacteria transmitted via 

semen to the mare uterus warrants further investigation.  

To date, NGS has not been used to investigate the microbiome of the stallion external 

genitalia or semen, but it has been used to determine the microbial population of human semen 

and its potential impact on the female reproductive tract. Human studies have found the most 

abundant taxa in semen to be Streptococcus, Corynebacterium, Finegoldia, Veillonella, 

Staphylococcus, Anaerococcus, Peptoniphilus, Lactobacillus, Pseudomonas, Prevotella, and 

Gardnerella with semen from normal, fertile men being dominated by Lactobacillus [97–99]. 

Surprisingly, there is limited research into the direct effect of semen on the uterine or vaginal 

microbiota of women. Borovkova et al. [100] found that staphylococci and streptococci were the 

most frequent new species isolated from the vagina 8-12 hours post-intercourse in infertile 

couples using culture-based techniques. However, Mandar et al. [99] utilized NGS and found 

that the seminal and vaginal microbial communities of couples were highly similar with 85% of 
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all detected phylotypes being shared, although there was a significant shift in the vaginal 

microbiome post-intercourse for a decrease in Lactobacillus crispatus. This would indicate that 

although the seminal and vaginal microbiomes are similar between couples, intercourse, allows 

for introduction of semen into the vagina resulting in alkalization of the typically acidic vagina, 

which may allow for non-lactobacilli species to become dominant for an unknown period of 

time. While we have established an understanding that breeding induces certain immunological 

and physiological responses in the mare, we do yet fully understand the potential effects of 

stallion semen, whether it is deposited through AI or natural service on the resident microflora of 

the mare reproductive tract and the possible implications of alterations to the microflora. 
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Chapter 2 - Characterization of the mare and foal microbiome at 

parturition and during the early post-partum period 

 Summary  

Background: To date, only a few studies have focused on the neonatal foal gut microbiota using 

next generation sequencing (NGS) and none have investigated the uterine and vaginal 

microbiome of the mare during the early postpartum period.  

Objectives: To investigate the microbial composition of the perinatal foal gut and its similarity to 

the maternal microbiome, and to characterize the temporal dynamics of the microbial 

composition of mare feces and the vagina during late gestation and the mare vagina and uterus 

during the early postpartum period. 

Study design: Longitudinal study  

Methods: Nine Quarter Horse mare/foal pairs were utilized in this study. Starting 6 weeks prior 

to parturition, mare feces, vaginal swabs, and milk secretions were collected at 2-week intervals 

until parturition. At parturition, mare fecal, colostral and placental, and foal meconium samples 

were collected. Uterine efflux and vaginal swabs were collected from mares on day 7 and 25 

postpartum. Samples were analyzed using NGS of the V4 region of the 16S rRNA gene to 

determine microbial composition. Analysis of sequencing data and statistics were performed 

using QIIME2 and R.  

Results: The mare fecal and vaginal microbiomes were generally stable during late gestation. 

The neonatal foal gut was dominated by the Bacteroidetes and Firmicutes phyla and appeared to 

be most similar to mare feces and placenta. In general, the postpartum mare uterine and vaginal 

microbiomes were stable postpartum and had many shared taxa with the placental microbiome.  
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Main limitations: Possibility for contamination during sampling, and DNA extraction, and PCR, 

bias of the variable region targeted during sequencing, inability to distinguish live and dead 

microbes presence of unidentified microbes and the low number of mares/foals utilized in this 

study.  

Conclusions: The equine neonate is born with a unique gut microbiome compared to dam feces, 

placenta and colostrum; however, the foal gut may be colonized in utero by some of the dam’s 

gut and uterine microbes. The mare microbiome is fairly stable prior to foaling and during the 

early postpartum period.  

 Introduction  

The development of the gut microbial community is important for equines as they rely on 

microbes for digestion and utilization of complex carbohydrates/starches [1]. These microbes 

within the cecum and intestines of horses produce volatile fatty acids (VFAs), proteins and 

vitamins that are utilized by the animal for energy and maintenance [2]. The microbes that 

colonize the human neonatal gut help also to “program” the immune system to differentiate 

between commensal and pathogenic bacteria [1]. Disruptions of the equine gut microbiome have 

been associated with colitis, laminitis, and colic in mature horses, as well as diarrhea in foals; 

however it is unclear how initial colonization of the foal gut impacts the health of the animal 

later in life [3,4].  

The long-held belief that the fetus develops in a sterile environment in utero, and that 

initial colonization of the gut microbes occurs postpartum, has been questioned in several 

species, including the equine. Only a few studies have utilized next generation sequencing 

(NGS) to investigate the microbial colonization of the neonatal foal gut or the mare microbiome 

before, at, or after foaling [5–9]. Those results support the possibility of in utero colonization in 
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foals due to the presence of microbes within the meconium, placenta, vagina and amniotic fluid; 

however, none have directly compared meconium, mare feces, and the placenta.  

 Also of interest is the early postpartum microbiome of the mare uterus and vagina. It is 

well established that breeding mares during the first postpartum estrus yields lower pregnancy 

rates compared with subsequent estrous cycles [10]. There is also a higher incidence of positive 

bacterial culture in the uterus at first postpartum estrus compared to non-lactating mares, 

however these culture plates are limited in the microbial species that can be detected and 

practitioners typically select plates capable of detecting known pathogens, such as Streptococcus  

[10]. Katila et al. [11] found that mares with a positive culture postpartum did not have a 

significantly lower pregnancy rate compared to those with negative culture, and Huhtinen et al. 

[10] found no significant effect of positive bacterial culture on embryo recovery rate in 

postpartum mares; indicating that potential pathogens present in the postpartum uterus may not 

be the cause of reduced pregnancy rates during foal heat. To date, NGS has not been reported to 

investigate the microbial community of the postpartum uterus and/or vagina of the mare, 

however studies in cattle have found associations between the uterine and vaginal microbiomes 

and future fertility and incidence of endometritis [12–14].  

 Therefore, the first objective of this study was to investigate the microbial composition of 

the perinatal foal gut and its similarity to the maternal microbiome. The second objective was to 

characterize the temporal dynamics of the microbial composition of mare feces and the vagina 

during late gestation and the mare vagina and uterus during the early postpartum period.  

Materials and Methods  

All procedures were approved by the Institutional Animal Care and Usage Committee at 

Kansas State University (Protocol No. 4052).  
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 Animals 

 Nine pregnant Quarter Horse mares 5-14 years of age and their subsequent foals, born 

between April and May of 2018, were used in this study. Mares were previously dewormed and 

vaccinated during the prepartum period prior to inclusion in the study. Mares were group-housed 

at the KSU Horse Unit on a 25-acre brome pasture until approximately 2 weeks prior to their 

expected foaling date, at which time they were moved closer to the foaling barn to a 5-acre 

brome pasture where they remained until foaling. Mares were provided ad libitum access to 

brome hay, salt/mineral blocks, and water. Mares were supplemented with a concentrate pellet to 

meet NRC requirements for late pregnancy and early lactation. At the time of foaling, mares 

were moved to a stall for approximately 24 hours and received the same diet. After foaling, 

mares and foals were group housed in a 3-acre brome pasture with ad libitum water and a 

concentrate and brome hay diet formulated to meet NRC requirements for early lactation.  

 Sample Collection  

 Prepartum Samples  

 Vaginal swabs, blood, prepartum mammary fluid and fecal samples were collected for 

each mare at 14 day intervals beginning 42 days prior to the expected foaling date. For vaginal 

samples tails were first wrapped and held out of the way with a tail tie. The perineum was 

cleaned with water and dilute Ivory soap and then dried. For vaginal samples, a sterile obstetrical 

sleeve with sterile lubricant was donned and a double-guarded sterile swab was inserted into the 

vagina. Once location within the vagina was confirmed through identification of the cervix, a 

sample was taken from of the epithelium of the floor of the vagina roughly 5 cm from the cervix. 

Swabs were returned to the protective casing and removed. They were then placed into sterile 50 

mL conical tubes and stored at -20° C until further analysis. Ten mL blood samples were 
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collected via jugular venipuncture into Vacutainer® tubes (Becton, Dickson and Company, 

Franklin Lakes, NJ) for plasma. Blood was spun at 1,400 x g for 15 min at 25° C and white blood 

cells/platelets were removed and frozen into 1 mL aliquots. Fecal samples were collected via a 

rectal grab using a lubricated sterile shoulder-length sleeve. Approximately 5-50 g of feces were 

placed into a sterile 50 mL conical tube. Prepartum mammary secretions and colostrum samples 

were collected using aseptic procedures utilized for microbial analysis of milk from dairy cattle 

[15]. First, 3 streams of milk were stripped from both teats using sterile latex gloves. Next, teats 

were dipped into a dilute betadine solution and dried with a clean paper towel. Then, teats were 

scrubbed with gauze pads saturated in 70% isopropyl alcohol until no dirt or debris remained. 

Finally, an equal volume of 2-5 mL of milk were collected from both teats into a sterile 50 mL 

conical tube held at a 45° angle below the teat. All fecal and milk/colostrum samples were stored 

individually at -20° C until DNA extraction.  

 Parturition Samples  

 At the time of foaling, blood, fecal, colostrum, and placental samples were collected. 

Blood, fecal, and colostrum samples were obtained from the mare using the same procedures 

described above. Approximately 5 g of meconium was collected via rectal grab from foals using 

a lubricated sterile latex glove and placed in a sterile 50 mL conical tube. Using nitrile gloves, 

placenta samples were collected by manually scraping a sterile 50 mL conical tube against the 

surface of the interior (maternal side) of the horns and body of placenta immediately after it was 

naturally expelled from the mare to gain a representative sample of the entire placenta. 

Colostrum, blood and meconium samples were collected within 2 h of birth and prior to nursing. 

Mare fecal samples were collected within 6 h of parturition. All samples were stored individually 

at -20° C until further analysis.   
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 Postpartum Samples  

On days 7 and 25 postpartum, uterine and vaginal samples were collected from each 

mare. Prior to collection, the tail was wrapped and held out of the way with a tail tie. The 

perineum was cleaned with water and dilute Ivory soap. Vaginal samples were collected in the 

same manner as described above. For uterine samples, the investigator donned a sterile 

obstetrical sleeve with sterile lubricant and a sterile uterine lavage tube was manually passed 

through the vulva, vagina and cervix into the uterine body. The uterine lavage tube was fixed in 

place just past the cervix with a balloon filled with 60-100 mL of air. Next, 120 mL of sterile 

phosphate buffered saline was infused into the uterus via a sterile 60 mL syringe. The fluid was 

collected via gravity flow into two sterile 50 mL conical tubes. Recovery of fluid ranged from 

15-100 mL. Tubes were then centrifuged at 400 x g for 10 min. Supernatant was removed and 

transferred to a separate sterile conical tube, leaving the pellet and approximately 2 mL of fluid 

in the original tube. Conical tubes containing supernatant and pellets were stored at -20° C for 

later DNA analysis.  

 DNA Extraction and PCR  

Total DNA was extracted from the uterine efflux, vaginal swabs, milk and whole blood 

using the QIAamp® DNA Mini Kit (Qiagen; Hilden, Germany) according to manufacturer 

protocols for bacteria. Total DNA was extracted from feces and meconium using the E.Z.N.A® 

Stool DNA Kit (Omega Bio-tek; Norcross, GA). The concentration of DNA was quantified using 

Quant-iTTM PicoGreeenTM dsDNA Assay Kit (Thermo Fischer Scientific; Waltham, MA).  

Amplification of the V4 region of the bacterial 16S rRNA gene was done using PCR 

primers (515F/926R) according to Earth Microbiome Project protocols [16]. Fecal samples were 

amplified through triplicate PCR reactions on a Mastercycler® nexus (Eppendorf; Hamburg, 
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Germany) in a 25 uL solution of 5 uL 5x PCR master mix (Promega; Madison, WI), 0.5 uL of 

the forward and reverse primers, 0.2 uL of dntps, 1 uL of 1% BSA, 0.2 uL of GoTaq® DNA 

Polymerase (Promega; Madison, WI), 16.6 uL PCR grade H2O and 1 uL template DNA for 25 

cycles. For the low template samples (≤ 10 ng/μL DNA), which included vaginal, uterine, 

meconium and blood, a modified solution of 12.6 uL PCR grade H2O and 5 uL template DNA 

was run for 30 or 35 cycles based on previous protocols used in our lab [7]. Each PCR reaction 

was run with a positive and negative control to ensure amplification and check for bacterial 

contamination. Agarose gel electrophoresis was utilized to check the PCR products for amplicon 

length and then PCR product triplicates were pooled for library preparation. Excess primers and 

unincorporated nucleotides were enzymatically removed using the ExoSAP-IT™ PCR Product 

Cleanup Reagent (Thermo Fischer Scientific; Waltham, MA). Total DNA in each sample was 

then quantified using the Quant-iTTM PicoGreeenTM dsDNA Assay Kit (Thermo Fischer 

Scientific, Waltham, MA) and approximately 100 ng of DNA from each sample was combined 

into a 1.5 mL microcentrifuge tube. The combined library was loaded into a 2% agarose gel and 

then extracted using the QIAquick® Gel Extraction Kit (Qiagen; Hilden, Germany) to ensure a 

uniform library size of 500 bp.  

 Bioinformatics and Statistical Analysis  

 The final 500 bp library was submitted to the K-State Integrated Genomics Facility for 

analysis and sequencing. The library was analyzed for amplicon length and bacterial DNA 

concentration using the Agilent 2100 Bioanalyzer (Agilent Technologies; Santa Clara, CA) and 

qPCR. To improve base call quality, 10% PhiX was added to the library. Amplicons were then 

sequenced using the 500 cycles MiSeq Reagent Kit v2 for a single paired-end run on the Illumina 

Miseq.  
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 The sequencing data were analyzed using the QIIME2 (version 2019.7) bioinformatics 

pipeline [17]. Raw sequencing data in the form of FASTQ files were demultiplexed and filtered 

for quality. Taxonomy and OTUs were assigned according to 97% sequence similarity using the 

GreenGenes database (version 13.8). Known reagent and laboratory contaminants and 

contaminants found in negative controls were removed from the data prior to further analysis 

[18]. All alpha and beta diversity analyses were performed in QIIME2. Alpha diversity was 

calculated using Shannon index and observed OTUs. Statistical significance of alpha diversity 

metrics was determined by Kruskal-Wallis one-way ANOVA tests. Beta diversity was calculated 

using Bray-Curtis dissimilarity which was then ordinated into Principal Coordinates Analysis 

(PCoA) plots. Pairwise PERMANOVA tests were used to determine compositional differences 

between body sites and time points based on beta-diversity. Relative abundance of taxa was 

summarized in plots created in QIIME2. Differential abundance comparisons were calculated in 

R (version 3.6.1) using ANCOM (Analysis of composition of microbiomes; version 2) [24]. 

Longitudinal and pairwise comparisons of sample types and were assessed at the phylum and 

genus level using taxa-wise multiple correlation and α = 0.05. The W statistic was used to 

determine significance of differentially abundant genera; this statistic represents the number of 

times that the null-hypothesis (the average abundance of a given genus in a group is equal to that 

in another group) was rejected for a given genus [25–28]. Venn diagrams of shared taxa were 

constructed using Venny (version 2.0) based on presence/absence tables constructed in QIIME2 

[29]. 

 Results  

Initial data analysis and quality filtering yielded 1,481,270 sequences in 118 samples. 

Samples were grouped by sample type and time of collection. Based on rarefication curves, data 
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analysis was performed at 20,000, 826, 203 and 354 sequences for fecal, vaginal, uterine and 

milk samples respectively, and at 810 sequences for samples collected at the time of parturition. 

This was done for normalization of alpha and beta diversity metrics and resulted in the removal 

of samples with low sequence counts, including 4 colostrum, 3 placenta, and 2 meconium for 

analysis of samples collected at parturition. For comparison of the vagina and uterus to the 

placenta, normalization resulted in the removal of 1 placenta sample, 2 vaginal samples from day 

-14, 6 from day -28, and 4 from day -42, as well as 4 and 2 uterine samples from day 7 and 25 

respectively. All samples were utilized for determination of relative abundance of taxa and 

ANCOM. Foaling was missed in 3 mares, so feces, colostrum, placenta and meconium samples 

were unable to be collected from those mare/foal pairs at the parturition time point. One mare 

experienced a retained placenta which resulted in uterine lavage and oral antibiotic treatment 

post-foaling, so all placenta and postpartum samples were removed from the analysis for that 

mare. Another mare was bred on her first postpartum estrus so uterine and vaginal samples were 

not collected from that mare on day 25 postpartum. Blood samples were removed from the 

analysis and will not be reported on due to insufficient microbial DNA detected in those samples 

following PCR.  

Prepartum  

Within fecal samples, Shannon diversity was higher in the day -42 pre foaling samples 

compared to parturition samples and observed OTUs were higher at the day -42 samples than the 

day -14 and parturition (Fig. 3.1, P<0.05). Vaginal samples did not differ between any pre-

foaling time points for Shannon diversity or observed OTUs (Figure 3.3, P>0.05). Day -14 

prepartum milk did not differ from colostrum collected at foaling for Shannon diversity or 

observed OTUs (P>0.05).  
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 The Bray-Curtis dissimilarity index was used to create Principle Coordinate Analysis 

(PCoA) plots of fecal, milk, vaginal, and placental samples. There were no differences in 

community composition between the prepartum vaginal samples, however there was a significant 

difference between each of the prepartum vaginal samples and the placenta (Fig. 3.5, P<0.05). 

There was also a significant clustering of day -42 fecal samples compared to parturition 

(P<0.01).  

 Analysis using ANCOM at the phylum and genus level found no differentially abundant 

taxa between the different time points for fecal samples. There were also no differentially 

abundant genera between prepartum vaginal samples, however Arcanobacterium, 

Agrobacterium, Helcococcus, Leptospira, Prophyromonas and Sediminibacterium were 

differentially abundant when vaginal and placenta samples were compared (Table 3.2). The 

families Oxalobacteraceae and Enterobacteriaceae were the only differentially abundant taxa in 

milk and both were more abundant in colostrum than the -14 day prepartum milk samples. 

Relative abundance of the main phyla and genera of the vagina and placenta are displayed in 

Figures 3.8 and 3.9 respectively. Relative abundance of the main phyla and genera of 

milk/colostrum samples is displayed in Figures 3.8 and 3.12 respectively. 

Parturition  

There were no differences between meconium and mare feces for Shannon diversity; 

however, mare fecal samples were higher in diversity than colostrum and placenta samples (Fig. 

3.2, P<0.05). Mare feces had higher observed OTUs than placenta and colostrum, however there 

was no difference between mare feces and meconium (Fig. 3.2, P<0.05). According to Bray-

Curtis dissimilarity, which is represented as a PCoA plot in Figure 3.6, mare feces had a distinct 
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community composition compared to all other sample types (P<0.05), however there was no 

difference between meconium and placenta or colostrum (P>0.05).   

Figures 3.8 and 3.10 display the relative abundance of the main phyla and genera, 

respectively, for samples collected at parturition. Meconium was compared to mare feces, 

colostrum and placenta samples using phylum and genus as the lowest taxonomic level for 

ANCOM. At the phylum level, Acidobacteria and Proteobacteria were more abundant in 

meconium than feces and Tenericutes were more abundant in feces than meconium. 

Verrucomicrobia, Bacteroidetes, and Spirochaetes were all more abundant in meconium than 

colostrum. Actinobacteria were more abundant in placenta than meconium. Using genus as the 

lowest taxonomic level, there were 14, 7, and 15 differentially abundant taxa between foal 

meconium and mare feces, placenta, and colostrum, respectively (Table 3.1). The differentially 

abundant taxa between mare feces and meconium were order RF39; families 

Christensenellaceae, Comamonadaceae, Enterobacteriaceae Oxalobacteraceae and 

Veillonellaceae; and genera 02d06, Caulobacter, Curvibacter, Comamonas, Cupriavidus, 

Clostridium, Staphylococcus and Sphingobacterium. Differentially abundant taxa between 

meconium and placenta included families p.2534-18B5 and RF16; and genera Agrobacterium, 

Corynebacterium, Facklamia, Jeotgalicoccus and Ruminococcus. Between colostrum and 

meconium orders Bacteroidales, Clostridiales; families Lachnospiraceae, Mogibacteriaceae, 

Paraprevotellaceae, RF16, RFP12, Ruminococcaceae; and genera Oscillospira, 

Phascolarctobacterium, Prevotella, Ruminococcus and Treponema were differentially abundant.  

In order to determine possible links between the sample types we determined common 

genera which is represented as a Venn diagram (Fig. 3.7). There were 88 genera common to 

meconium, milk, mare feces, and the placenta, however 6, 5, and 9 genera were exclusively 
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shared between meconium and mare feces, placenta, and colostrum, respectively. There were 11, 

32, 27, and 19 genera that were exclusive to meconium, mare feces, colostrum, and placenta, 

respectively.  

 Postpartum  

There were no significant differences in Shannon diversity or observed OTUs when 

vaginal and uterine samples were each compared between day 7 and 25 postpartum (Fig. 3.3 and 

3.4, P>0.05). There were also no differences in alpha diversity when the vaginal and uterine 

samples were compared to the placenta or to each other (Fig. 3.3 and 3.4, P>0.05).   

PCoA of Bray-Curtis dissimilarity showed that day 7 and 25 vaginal community 

composition was significantly different (Fig. 3.5, P<0.05). Day 7 and 25 vaginal swabs were 

collectively different from placenta samples (Fig. 3.5, P<0.05). In contrast, there was not a 

significant separation between the placenta and the postpartum uterus, nor was there a difference 

in community composition of the uterus between day 7 and 25 postpartum (P>0.05). There was 

also no significant separation between uterine and vaginal postpartum samples (P>0.05).  

Relative abundance of the main phyla and genera of the vagina, uterus, and placenta are 

presented in Fig. 3.8 and Fig. 3.9 respectively. The placenta was compared to the vagina and 

uterus individually; with the ANCOM results at the genus level presented in Table 3.2. 

Arcanobacterium, Helcococcus, Leptospira, Porphyromonas, and Sediminibacterium were all 

more abundant in the vagina than the placenta, however Agrobacterium was more abundant in 

the placenta than the vagina. Only Agrobacterium was more abundant in the placenta compared 

to the uterus. There were no differentially abundant taxa between the uterus and the vagina 

postpartum, nor between the day 7 and 25 postpartum uterine samples. Four genera, 
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Sphingobacterium, Mycobacterium, Brevundimonas and Delftia, were all more abundant in the 

vagina on day 25 compared with day 7 postpartum (Fig. 3.13).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Diversity of the fecal microbiome of pregnant mares. Alpha diversity, as measured by 

Shannon diversity (A) and observed OTUs (B), of samples collected at 14 day intervals from 42 

days prepartum to parturition (day-42,-28,-14, n=9; parturition, n=6). Boxes represent the 

interquartile range (the horizontal line within the box is the median, the x represents the mean). 

Time points within each individual graph lacking a common superscript differ,  a,bP < 0.05. 
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Figure 2.2 Diversity of microbiome of pregnant mare fecal, placental and colostral samples as 

well as foal meconium samples. Alpha diversity, as measured by Shannon diversity (A) and 

observed OTUs (B), of samples collected at parturition (mare feces, n=6; meconium, n=4; 

placenta, n=3; colostrum, n=2). Boxes represent the interquartile range (the horizontal line within 

the box is the median, the x represents the mean). Time points within each individual graph 

lacking a common superscript differ,  a,bP < 0.05. 
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Figure 2.3 Microbial alpha diversity, as measured by Shannon diversity (A) and observed OTUs 

(B) of pregnant mare placental samples in addition to vaginal samples collected at 14 day 

intervals, starting 42 days prepartum, and vaginal samples collected on day 7 and 25 postpartum 

(day -42, n=4; day -28, n=3; day -14, n=6; placenta, n=4; day 7 PF, n=6; day 25 PF, n=6). Boxes 

represent the interquartile range (the horizontal line within the box is the median, the x represents 

the mean). No significant differences were detected between any time points. PP: postpartum 
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Figure 2.4 Microbial alpha diversity, as measured by Shannon diversity (A) and observed OTUs 

(B) of pregnant mare placental samples in addition to uterine samples collected on day 7 and 25 

postpartum (placenta, n=2; day 7 PF, n=3; day 25 PF, n=4). Boxes represent the interquartile 

range (the horizontal line within the box is the median, the x represents the mean). No significant 

differences were detected between any time points. PP: postpartum. 
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Figure 2.5 Principle Coordinates Analysis (PCoA) of Bray-Curtis Dissimilarity representing 

comparisons of the microbial composition of vaginal samples collected at different time points 

(Placenta, n=4; Day -14, n=6; Day -28, n=3; Day -42, n=4; Day 7 PF, n=6; Day 25 PF, n=6). 

Points in three-dimensional space represent individual samples, which are colored according to 

time point/type. The percent variance explained by PCoA is indicated on the axes. Placenta and 

Day 25 postpartum (PP) were significantly separated from all other time points (P<0.05).  
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Figure 2.6 Principle Coordinates Analysis (PCoA) of Bray-Curtis Dissimilarity representing 

comparisons of the microbial composition of different samples collected at parturition in mares 

and foals (mare feces, n=6; meconium, n=4; placenta, n=3; colostrum, n=2). Points in three-

dimensional space represent individual samples, which are colored according to sample type. 

The percent variance explained by PCoA is indicated on the axes. Mare feces clustered 

separately from all other sample types (P<0.05). There was not a clear separation between 

meconium, placenta, or colostrum (P>0.05).  
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Figure 2.7 Venn diagram of shared genera between different sample types collected at 

parturition in mares and foals (mare fecal, n=33; milk, n=14; foal meconium, n=6; placenta, 

n=5). Overlapping circles indicate the number of shared genera in bold and the percentage of the 

total observed genera shared between each sample type.   

 

 

 

 

 

 

 

 



56 

Figure 2.8 Relative abundance of dominant microbes at the phylum level identified in pregnant 

mare fecal samples collected prepartum and at parturition (n=33); milk samples collected day-14 

prepartum (n=8); meconium (n=6), colostral (n=6) and placental (n=5) samples collected at 

parturition; postpartum uterine samples (n=15) and prepartum/postpartum vaginal samples 

(n=48). Samples were pooled by sample type if there were no differences at the phylum level in 

taxa present at >5% mean relative abundance. Taxa with k__ represent kingdom as the lowest 

taxonomic level.   
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Figure 2.9 The 10 most relatively abundant microbial genera or lowest taxonomic level 

identified in vaginal samples collected during the prepartum period (V prepartum, n=33) and on 

day 7 (V day 7 PP, n=7) and 25 postpartum (V day 25 PP, n=7) as well as the placental samples 

collected at parturition (n=5); and uterine samples collected on day 7 (U day 7 PP, n=7) and 25 

postpartum (U day 25 PP, n=7). All other genera are grouped into “Other”. Taxa with o__ 

represent order as the lowest taxonomic level, f__ represents family. PP: Postpartum  
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Figure 2.10 The 10 most relatively abundant genera or lowest taxonomic level identified in 

samples collected from mares and foals at parturition, which included mare feces (n=6) and foal 

meconium (n=6), as well as placental (n=5), colostral (n=6) samples. All other genera are 

grouped into “Other”. Taxa with o__ represent order as the lowest taxonomic level, f__ 

represents family. 
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Figure 2.11 The 10 most relatively abundant genera or lowest taxonomic level identified in mare 

fecal samples collected at 14 day intervals through parturition, starting 42 days prepartum (day-

42,-28,-14, n=9; parturition, n=6). All other genera are grouped into “Other”. Taxa with o__ 

represent order as the lowest taxonomic level, f__ represents family. 
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Figure 2.12 The 10 most relatively abundant genera or lowest taxonomic level identified in 

pregnant mare secretions collected 14 days prior to parturition (n=8) and colostrum samples 

collected at parturition (n=6). All other genera are grouped into “Other”. Taxa with o__ represent 

order as the lowest taxonomic level, f__ represents family. 
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Figure 2.13 Percent relative abundance of differentially abundant taxa according to Analysis of 

Composition of Microbes (ANCOM) between mare vaginal samples collected on day 7 (n=9) 

and day 25 (n=8) postpartum (PP). Boxes represent the interquartile range (the horizontal line 

within the box is the median, the x represents the mean), dots outside boxes are outliers. Each 

genus was more abundant in the vagina on day 25 compared to day 7 postpartum.   
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Table 2.1 Summary of Analysis of Composition of Microbes (ANCOM) results of differential 

abundance using genus as the lowest taxonomic level in samples collected from mare/foal pairs 

at parturition. Meconium samples (n=6) were compared to mare feces (n=6), placenta (n=5) and 

colostrum (n=6) samples.  

Taxaa Meconiumb Mare Fecesb Placentab Colostrumb 

o__Bacteroidales.f__.g__ 14.82 ± 4.81 17.87 ± 2.21 4.44 ± 6.97  0 ± 0*  

o__Clostridiales.__.__ 1.66 ± 0.96  2.40 ± 1.23 0.34 ± 0.73  0 ± 0*  

o__Clostridiales.f__.g__ 3.35 ± 2.28  4.62 ± 1.13  0.44 ± 0.74  0 ± 0* 

o__RF39.f__.g__ 0.34 ±0.38  1.61 ± 0.70* 0.26 ± 0.50  0 ± 0  

f__Enterobacteriaceae.__ 22.07 ± 20.56 0.03 ± 0.05*  25.52 ± 24.14 76.79 ± 14.74 

f__Lachnospiraceae.g__ 3.03 ± 1.71  3.51 ± 0.74  1.66 ± 2.68  0 ± 0*  

f__RF16.g__ 3.17 ± 1.81  2.54 ± 2.17  0.12 ± 0.27*  0 ± 0* 

f__RFP12.g__ 9.34 ± 3.54 13.39 ± 3.96  2.33 ± 2.90  1.59 ± 3.89* 

f__Ruminococcaceae.__ 3.31 ± 2.15 3.61± 0.58  0.34 ± 0.71 0 ± 0*  

f__Ruminococcaceae.g__ 3.31 ± 2.15 9.53 ± 1.53  1.35 ± 2.60  0 ± 0* 

Clostridium 0.75 ± 0.52  1.47 ± 0.58*  0.20 ± 0.39  0 ± 0  

Corynebacterium 0.26 ± 0.60 0 ± 0  14.13 ± 21.92*  0.96 ± 1.06 

Facklamia 0 ±0  0 ± 0  2.13 ± 2.68*  0.09 ± 0.21 

Oscillospira 1.76 ± 0.82  4.09 ± 3.23 0.40 ± 0.66  0 ± 0* 

Prevotella 1.27 ± 0.80  2.08 ± 0.97  0.55 ± 0.98  0.12 ± 0.30* 

Ruminococcus 2.48 ± 0.56  3.98 ± 2.22 0.33 ± 0.44* 0.15 ± 0.29* 

Staphylococcus 0.07 ± 0.10  0 ± 0* 1.62 ± 2.04  0.24 ± 0.37  

Treponema 1.62 ± 1.26  3.33 ± 1.77 0.66 ± 1.22  0 ± 0* 

aOnly taxa with mean relative abundance >1% in at least one sample type were included  
bPercent mean relative abundance ± standard deviation  

*Denote taxa that were found to be significantly different from meconium 
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Table 2.2 Summary of Analysis of Composition of Microbes (ANCOM) results of differential 

abundance using genus as the lowest taxonomic level in samples collected from mares in late 

gestation, at parturition and during the early postpartum period. Placenta samples collected from 

mares at parturition (n=6) were compared to prepartum/postpartum vaginal (n=33) and 

postpartum uterine (n=14) samples.  

aOnly taxa with mean relative abundance >1% in at least one sample type were included  
bPercent mean relative abundance ± standard deviation  

*Denote taxa that were found to be significantly different from the placenta  

 

 Discussion  

 First, vaginal, milk and fecal samples collected biweekly during the last 6 weeks of 

gestation were analyzed for microbial composition and diversity. To our knowledge this is the 

first study to analyze the microbiome of the pregnant mare vagina using NGS. We found the 

vaginal microbiome of the late gestational mare to be stable in terms of diversity and microbial 

community composition, which is similar to results in human studies [19,20]. The dominant 

phyla of the prepartum vagina were Firmicutes, Actinobacteria, and Bacteroidetes, while the 

dominant genera were Corynebacterium and Porphyromonas. Corynebacterium is a diverse 

genus containing over 110 species, some of which are pathogenic in animals and humans; this 

genus has been found in human skin, oral, and seminal microbiomes as well as the equine uterus, 

vagina, and semen in our lab [21–23]. Porphyromonas is typical of the oral microbiome in 

humans however it has also been isolated from the uterus, cervix, and vagina of humans, as well 

as the vagina of cattle [24,25]. In late gestational mares, placentitis is an area of concern as 

Taxaa  Placentab Vaginab Uterusb 

Arcanobacterium 0 ± 0  3.41 ± 5.36*  0.13 ± 0.27  

Helcococcus 0 ± 0 3.26 ± 6.27* 0.32 ± 0.46 

Leptospira 0 ± 0 4.08 ± 7.87* 2.00 ± 3.37  

Porphyromonas 0.89 ± 1.89 10.93 ± 14.60* 12.13 ± 14.09 

Sediminibacterium 0 ± 0  5.27 ± 10.25* 1.20 ± 2.69  
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ascending infections can cause abortions, premature birth, and compromised foals [26]. Bacteria 

typically cultured from mares with placentitis include Streptococcus equi subspecies 

zooepidemicus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella spp., Leptospira spp., 

Enterobacter spp., α-haemolytic Streptococci, and Staphylococci spp. [26]. While some of these 

bacteria were found in the prepartum vagina of a few mares, they were present at a low 

abundance and all 6 mares that were included in the parturition analysis were healthy and had a 

normal foaling. Taxa that were isolated from feces in this study were also found to be abundant 

in the prepartum vagina, including phyla Bacteroidetes and Firmicutes and family RFP12. Jeon 

et al. [27] found similar results in dairy cattle in that there were shared taxa between the fecal 

and vaginal microbiomes of dairy cattle prepartum, indicating that fecal microbes may be 

translocated to the vagina during defecation, however the impact that this has on pregnancy is 

unknown.  

In contrast to the vagina, there was a shift in diversity in the prepartum fecal samples as   

-42 day feces were higher in Shannon diversity and observed OTUs than feces collected at 

parturition; -42 day feces were also higher in observed OTUs than -14 day feces. Similar results 

were also seen in beta diversity as there was a distinct clustering based on community 

composition between -42 day feces and feces collected at parturition. While their diet did not 

change in terms of type of forage or concentrate, these differences might be explained by the 

change in environment and grass composition as mares were moved to a pasture closer to the 

foaling barn and given more supplemental hay than fresh forage, approximately 2 weeks prior to 

their expected foaling date. Our results are in contrast to work done by Salem et al. [28], where 

researchers found mare feces to be stable in terms of alpha diversity prepartum, however they 

only utilized fecal samples up to 3 weeks prior to the expected foaling date. We found no 
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changes in relative abundance between prepartum and parturition feces, and the microbial 

composition of mare feces is consistent with what has been reported in previous studies 

[3,9,28,29].  

Prepartum mammary secretions were only able to be collected from mares at the -14 day 

time point; but they were compared to colostrum collected at parturition. The prepartum milk 

secretions were dominated mostly by Corynebacterium, followed by Streptococcus and the 

family Enterobacteriaceae; however, there was a major shift to almost complete dominance by 

the family Enterobacteriaceae in colostrum. Streptococcus and Corynebacterium are typically 

dominant in human milk and have been isolated from mare colostrum as well [6,30]. 

Enterobacteriaceae are facultative anaerobes that ferment glucose and are typically isolated from 

the lower gastrointestinal tract [31]. A possible mechanism for the translocation of 

Enterobacteriaceae and other gut microbes to the mammary glands is thought to occur through 

dendritic cells. These cells can take up live bacteria from the lumen of the digestive tract; the 

cells are then transported to other parts of the body, including the mammary glands, through 

circulation of lymph [30,32]. While the dominance of Enterobacteriaceae in colostrum is 

contradictory to previous work done in our lab, it is consistent with the findings of Quercia et al. 

[6] who also determined Enterobacteriaceae to be dominant in mare colostrum [7]. This could be 

explained by the use of different DNA extraction kits between the two projects conducted in our 

lab; the previous work done by Jacquay et al. [7] utilized the EZNA Stool DNA Kit (Omega Bio 

Tek, Norcross, GA) to extract DNA from colostrum samples, however in this study we utilized 

the QIAamp® DNA Mini Kit (Qiagen; Hilden, Germany), which is similar to the QIAamp DNA 

Stool Mini Kit (Qiagen; Hilden, Germany) utilized by Quercia et al. [6]. Previous studies have 

highlighted the differences in reported taxa from different DNA extraction methods, which 
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points to both the potential difficulty in comparing results and the importance of developing 

standardized procedures for sample analysis [33,34]. 

 Secondly, the microbial composition of mare feces, colostrum and placenta were 

compared to that of meconium from neonatal foals. Microbes were detected in all sample types, 

which is in agreement with equine, bovine and human studies that have also isolated bacteria 

from meconium, milk and the placenta [5–7,35,36]. There were no differences between mare 

feces and meconium in terms of alpha diversity, however feces were higher in diversity than 

placenta and colostrum. This is in contrast to previous work comparing mare feces and 

meconium, where mare feces were found to be higher in diversity than meconium [6,7]. Previous 

studies have found meconium to be distinct from mare feces, colostrum and amniotic fluid 

according to beta diversity [6,7]. Interestingly, we found the microbial composition of meconium 

was not different from the placenta or colostrum according to Bray-Curtis dissimilarity, however 

it was distinct from feces. This could be explained by low power when comparing meconium to 

milk and placenta samples since only 2 colostrum and 3 placenta samples were included after 

normalization for alpha and beta diversity analysis due to low sequence count.  

In terms of relative abundance at the different sample types, meconium was dominated by 

Bacteroidetes and Firmicutes, followed by Proteobacteria and Verrucomicrobia. Feces was also 

dominated by Bacteroidetes and Firmicutes but lacked substantial Proteobacteria. Colostrum was 

discussed earlier, and the placenta was fairly evenly split between Actinobacteria, Bacteroidetes, 

Firmicutes and Proteobacteria phyla. Other dominant taxa in meconium included typical gut 

microbes such as orders Bacteroidales and Clostridiales, and families Enterobacteriaceae, RFP12 

and Ruminococcaceae. At the genus level, the placenta was mostly dominated by 

Corynebacterium, which could be attributed to the high abundance of Corynebacterium within 
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the vagina. The placenta also had the least differentially abundant taxa compared to meconium; 

with the placenta being more abundant in Corynebacterium and Facklamia while meconium was 

more abundant in typical gut microbes such as RF16 and Ruminococcus. The majority of the 

differentially abundant taxa between meconium and colostrum were also typical gut microbes, 

including orders Bacteroidales and Clostridiales, families Lachnospiraceae, RF16, RFP12, 

Ruminococcaceae, and genera Oscillospira, Prevotella, Ruminococcus and Treponema. Most of 

the taxa that were differentially abundant between meconium and mare feces were abundant at 

very low levels (< 1%) except for Enterobacteriaceae, which was present at a moderate 

abundance in meconium and very low abundance in mare feces. Surprisingly, 88 (31.3%) genera 

were shared between the 4 sample types, in contrast to previous studies that found only 6 shared 

OTUs between mare feces, meconium and amniotic fluid in horses and 14% shared genera 

between meconium, adult feces, adult mouth, and vaginal samples in dairy cattle [6,35]. 

Meconium shared the most genera with the placenta (121), followed by colostrum (114) and 

mare feces (113), which does agree with a previous study in dairy cattle that found meconium 

shared the least number of genera with dam feces [35].  

Interestingly, in the one mare that had a retained placenta, 2 pathogens known to cause 

placenttis and abortions were the second and third most abundant taxa in her placenta [26,37].  

Actinobacillus was present at 20.5% and Streptococcus equi was present at 15.5% relative 

abundance. These pathogens were absent from all other mares’ placentas. Although his mare was 

not included in the postpartum analysis due to oral antibiotic treatment to prevent complications 

associated with the retained placenta, there was no Streptococcus equi detected in her postpartum 

uterus. However, it was present at a low abundance in her day 7 postpartum vaginal sample, but 

absent by day 25. Actinobacillus was absent from her postpartum vagina and uterus. Although 
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this data is only from a single mare it is possible that these pathogens, which were solely isolated 

from this mare, could have played a role in the incidence of retained placenta, which may 

warrant further investigation.   

The presence of bacteria in meconium, and the shared taxa between meconium and the 

other sample types, would indicate an in utero transfer of microbes to the developing fetus. 

These microbes could potentially reach the fetus in the same manner that microbes from the gut 

theoretically travel to the mammary gland via dendritic cells as discussed previously [32]. 

Another possible explanation for this transfer of microbes is that the fetus swallows a significant 

amount of amniotic fluid, especially in late gestation [1]. If amniotic fluid were to contain a 

microbial community, as previously reported and possibly delivered by dendritic cells, then this 

would be a direct pathway of transmission of microbes in utero between the dam and the fetus 

[6]. While it is unlikely that the dam’s immune system allows functional microbes to reach the 

fetus, in utero inoculation with typical gut microbes may play an important role in programming 

the fetal immune system to recognize these commensal microbes when the foal takes in live 

bacteria through suckling, coprophagy, and general exposure to the external environment [7,8]. 

This programming could potentially prevent the fetal immune system from seeking out and 

destroying microbes necessary for digestion and metabolism, ensuring the foal gut is adequately 

prepared for life outside the womb [1].  

As a third objective we investigated the temporal dynamics of the mare uterine and 

vaginal microbiome in the early postpartum period. There were no differences in alpha or beta 

diversity or community composition in the postpartum uterus. The most dominant family in the 

uterus was Fusobacteriaceae, which has been isolated from the vaginal, gut and oral mucosa of 

humans and other animals [38]. Porphyromonas, which was also dominant in the vagina, was the 
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dominant genus in the uterus postpartum. This is similar to non-lactating mares where 

Porphyromonas was the 2nd most dominant genus and several of the 10 most dominant genera 

were shared between the early postpartum and non-lactating mares according to results found in 

another study in our lab. Several typical gut microbes were also included in the 10 most 

dominant taxa including RFP12, Bacteroidales, Ruminococcaceae, Prevotella, and Clostridiales. 

The presence of these microbes could be explained through an entero-utero pathway via 

dendritic cells as discussed previously. Another route for these microbes could be through 

translocation from the vagina to the uterus during the early postpartum period when the cervix is 

relaxed and open due to dilation that occurs during parturition, possibly allowing for increased 

migration of typical fecal microbes through the vagina and into the uterus.  

The stability of the uterine microbiome is surprising considering previous studies have 

found that most mares have a positive culture result for potential pathogens such as Escherichia 

coli and Streptococcus at the fist postpartum estrus, but the number of mares with positive 

culture decreases with increased time postpartum [11,39]. While there is a reduced pregnancy 

rate when mares are bred during the first postpartum estrus compared to subsequent cycles, this 

phenomenon is not statistically correlated to the incidence of positive cultures [11,40]. Our 

findings would support the idea that uterine involution and recovery of uterine tissues, which is 

generally complete by day 9 or 10 postpartum, may be the limiting factor in pregnancy 

establishment rather than the presence of potentially pathogenic bacteria, as we found the uterus 

to have a diverse microbial community postpartum that included some known pathogens such as 

Leptospira [41]. 

There were no differences in alpha diversity in the vagina postpartum; however, there was 

a distinct shift in community composition between day 7 and 25 postpartum. The day 7 
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postpartum vagina was similar in terms of microbial composition and dominant phyla/genera as 

the prepartum vagina described previously. There were increases in Sphingobacterium 

multivorum, Mycobacterium, Brevundimonas diminuta and Delftia from day 7 to 25 in the 

vagina. Brevundimonas diminuta has been isolated from human blood and urine but is not 

believed to be a significant pathogen as its virulence is low; it has not been reported as a 

pathogen in the equine [42]. Similarly, Delftia has been found in the human oral microbiome, 

and it has not been recognized as pathogenic in horses [43]. Sphingobacterium multivorum and 

Mycobacterium have been associated with suppurative meningitis, meningoencephalomyelitis, 

intracranial abscessation, abortion and granulomatous colitis in adult horses [44,45], however all 

mares were clinically healthy and all became pregnant following study completion with the 

exception of one mare that experienced fluid retention issues post-foaling. These microbes were 

not present in mare feces, so it is unlikely that these microbes originated from the gut. Since 

NGS is not capable of differentiating live and dead bacteria, the high abundance of these 

pathogens in the absence of clinical symptoms could be explained by the possibility of an influx 

of these microbes from an unknown source, followed by immune-mediated removal, but residual 

DNA remained in the vagina. The physiological reason why these particular genera/species 

increased in abundance between day 7 and 25 in the vagina remains unclear, however the lack of 

clinical symptoms and the lack of a corresponding shift in the uterine microbiome would indicate 

that their presence had little, if any, impact on the subsequent reproductive efficiency of these 

mares.  

Lastly, we compared the postpartum vagina and uterus to each other and to the placenta. 

We found there were few differences between these sites. This is similar to a recent study in 

dairy cattle, where researchers found no differences between the uterine and vaginal microbiome 
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or between samples taken 7, 21, or 50 days postpartum in healthy cows, although there was 

significant variation between individual animals [14]. Another study that utilized dairy cattle 

found that the postpartum vagina and uterus had significant differences in alpha and beta 

diversity which is contradictory to our results, however, consistent with our study, the 

postpartum vagina and uterus of dairy cattle were similar in terms of community composition 

[46]. We found no differentially abundant taxa between the uterus and vagina, however there 

were a few that were different between the placenta and vagina/uterus. Only Agrobacterium was 

differentially abundant between the uterus and placenta, however it was abundant at less than 1% 

in each site and is most likely a contaminant introduced through sampling/laboratory analysis, as 

this genus is most typically found in plants and has not been isolated from placenta or uterine 

samples in prior studies [47]. Between the vagina and placenta Sediminibacterium, which was 

abundant at 5% in the vagina but absent from the placenta, is also most likely a contaminant as it 

has been found to be highly abundant in DNA extraction kit reagents [33]. Arcanobacterium and 

Leptospira have both been associated with abortion in the mare and Helcococcus is pathogenic in 

humans, however they were more abundant in the vagina than the placenta, so they were most 

likely introduced postpartum or during the foaling process [48–50]. Porphyromonas which was 

more abundant in the vagina, has been associated with bacterial vaginosis in women and 

bacterial infections of the uterus in cattle, however mares did not show any clinical symptoms of 

bacterial infection [27,51]. We found the uterus, vagina and placenta to be highly similar to each 

other, indicating that the microbial composition of these sample types may be interdependent on 

each other and the detection of potentially pathogenic microbes using sequencing does not 

necessarily indicate clinical disease.  
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 Conclusion  

This study confirmed the presence of bacteria within meconium, placental, and colostral 

samples, in addition to the early postpartum uterus and vagina of the mare. Results indicate that 

there are temporal changes in mare feces prior to foaling that may be related to a change of 

physical location. There is also a large shift between the -14 day prepartum milk secretions and 

colostrum. Meconium had a unique microbiome, however, there were some similarities between 

meconium and mare feces, placental, and colostral samples in terms of alpha and beta diversity 

as well as community composition. The vagina is relatively stable in terms of microbial 

composition prepartum, however there is a slight shift between day 7 and 25 postpartum towards 

an increase in potentially pathogenic bacteria. The uterus appeared to be stable between day 7 

and 25 postpartum and was similar to the postpartum vagina, with both being similar to the 

placenta. Although several differences in composition were discovered, the specific functions of 

the bacteria detected and the physiological significance of shifts in microbial composition remain 

unclear and warrant further investigation. Comparing these results to mares under different 

management practices or to those experiencing clinical disease during the late gestational and 

early postpartum period could better define the relevance of the mare’s microbiome in 

establishing normal reproductive function.   
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Chapter 3 - Effect of breeding on the mare uterine and vaginal 

microbial composition 

 Summary  

Background: Microbial contamination of the mare uterus and vagina associated with breeding 

can potentially be detrimental to fertility. To date, the effect of breeding on the mare uterine or 

vaginal microbiome has not been investigated using next generation sequencing (NGS).  

Objectives: To investigate the microbiome of the uterus and vagina in healthy mares and to 

determine the effect of breeding with either raw or extended semen on the uterine and vaginal 

microbiota.  

Study design: Longitudinal study  

Methods: Sixteen Quarter Horse mares and one stallion were utilized in this study. Mares were 

separated into 2 treatments: artificially inseminated (AI) with 10 mL of raw semen only (RAW, 

n=8) or 10 mL of semen and 10 mL of extender (EXT, n=8). Uterine efflux and vaginal swabs 

were collected when a follicle measuring ≥ 35 mm was first observed. Mares were then 

inseminated within 24 hours of initial sample collection and uterine and vaginal samples were 

collected again 48 hours post-AI. The uterine and vaginal protocol was repeated in the next 

estrous cycle. Feces were collected once from mares, immediately following the first detection of 

a follicle measuring ≥ 35 mm. Semen samples were collected for analysis prior to insemination. 

Samples were analyzed using NGS of the V4 region of the 16S rRNA gene to determine 

microbial composition. Analysis of sequencing data and statistics were performed using QIIME2 

and R.  

Results: Microbes were detected in all sample types. Feces and semen were distinct from all 

other sample types, however there were few differences between the uterine and vaginal 
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microbiomes. The uterine microbiome was not significantly impacted by breeding and there 

were no differences between breeding with raw or extended semen. The vaginal microbiome did 

shift post-AI in the first cycle and between the first and second cycle. Although there were 

differentially abundant taxa between the uterus/vagina and semen, Corynebacterium and 

Prophyromonas were dominant in all three sample types.  

Main limitations: Possibility for contamination during sampling, and DNA extraction, and PCR, 

bias of the variable region targeted during sequencing, inability to distinguish live and dead 

microbes, and presence of unidentified microbes.  

Conclusions: In healthy mares the uterus appeared to return to the pre-AI microbial composition 

by 48 hours post-AI and there was no shift in composition between estrous cycles. However, the 

vaginal microbiome is dynamic and displays more shifts following breeding and throughout the 

estrous cycle than the uterine microbiome. The semen, vaginal and uterine microbiomes shared 

similar dominant taxa, indicating that there may be similar control mechanisms in mares and 

stallions to recognize commensal bacteria within the reproductive tract. 

 Introduction  

The microbes within the mare uterus and vagina are of interest because certain species, 

including Streptococcus equi subsp. zooepidemicus, Escherichia coli, Staphylococcus aureus, 

Klebsiella pneumoniae, Pseudomonas aeruginosa, Bacteroides fragilis and Bacteroides 

ureolyticus, are associated with post breeding-induced endometritis (PBIE) with Streptococcus 

equi subsp. Zooepidemicus being most commonly cultured microorganism in effected mares [1]. 

In normal, reproductively sound, mares there is an inflammatory response in the uterus to semen, 

bacteria, and debris that are deposited during breeding via either natural service or AI; this 

inflammatory response is typically resolved within 48 hours and most mares are able to expel or 
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eliminate fluid and bacteria introduced during breeding [2]. In mares that are susceptible to 

PBIE, this inflammation is not resolved within 48 hours post-breeding, resulting in subfertility 

and economic losses, making PBIE the leading reproductive health concern among equine 

veterinary practitioners [3]. However, non-pathogenic and pathogenic microbes have been 

cultured from clinically normal mares with no reproductive issues, indicating that the equine 

uterus may host a diverse microbial community that could include commensal bacteria [4,5].  

In semen, the most common non-pathogenic bacteria are Staphylococcus coagulase-

negative and Corynebacterium spp, both of which are also dominant on the external genitalia [6–

9]. Following the detection of bacteria in stallion semen, extenders were developed with the goal 

of decreasing potential bacterial contamination of the mare, as well as enhancing spermatozoa 

longevity and improving conception rates. The most common antibiotics added to stallion semen 

extenders are beta-lactams (potassium penicillin G) and aminoglycosides (amikacin or 

gentamicin) [10–14]. The addition of these antibiotics has been shown to reduce the severity of 

uterine bacterial contamination post-AI compared to raw semen alone [15].  

Utilizing NGS technologies, only two studies have investigated the microbial community 

of the mare uterus and none have characterized the vagina or semen microbiome [16,17]. Both 

uterine studies profiled clinically healthy mares, however neither investigated the effect of 

breeding on the microbiome. We sought to establish the “normal” mare uterine and vaginal 

microbiome for comparison to future studies. We also wanted to investigate the effects of 

breeding on the microbiome to gain a better understanding of the immune response that is 

initiated post-breeding and the potential effects of that immune response on pathogenic and 

commensal microbes. The objective of this study was to investigate the microbiome of the uterus 
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and vagina in healthy mares and to determine the effect of breeding with either raw or extended 

semen on the uterine and vaginal microbiomes.  

 Materials and Methods  

All procedures were approved by the Institutional Animal Care and Usage Committee at 

Kansas State University (Protocol No. 4052).  

  Animals and Treatment  

Sixteen non-pregnant stock-type mares 3-18 years of age and one 5-year-old Quarter 

Horse stallion were used in this study. Mares were group-housed in two pens at the KSU Horse 

Unit; they were not separated by treatment and were evenly distributed between the two pens. 

They were provided ad libitum access to brome hay, salt/mineral blocks, and water. The stallion 

was housed individually and fed a diet consisting of brome grass hay, concentrate formulated for 

maintenance, a salt/mineral block and water. Prior to inclusion in the study all horses were 

evaluated through a physical examination to ensure they were healthy; mares did not have any 

obvious reproductive issues upon ultrasound examination, and semen collected from the stallion 

yielded 424 million sperm/ml and 61.36% progressive motility using computer-assisted sperm 

analysis. Mares were blocked by age and weight and assigned to one of two treatment groups: 

bred via artificial insemination (AI) with fresh semen only (RAW, n=8) or bred with fresh semen 

and extender (EXT, n=8).  

 Mare Management   

Beginning in early February of 2018, mare follicular status was monitored via transrectal 

ultrasonography 3 days/week (M, W, F) until ovulation was observed. Following confirmation of 

ovulation, mares were administered Lutalyse® (1 mg/100 lb BW, IM) on day 6 post-ovulation to 

short cycle each mare and bring them back into estrus. Following Lutalyse®, mares received an 
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were ultrasounded every day until a follicle measuring ≥ 35 mm was observed. Mares were 

inseminated once, depending on their treatment, within 24 hours of initial detection of a follicle 

≥ 35 mm. After insemination, ultrasound examinations were performed daily until ovulation was 

detected. On day 6 post-ovulation, mares received another dose of Lutalyse® (1 mg/100 lb BW, 

IM) to induce lysis of the corpus luteum and prevent pregnancy establishment. Eleven mares 

(RAW: n=7; EXT: n=4) were then tracked using ultrasound examination through a second 

estrous cycle in the manner described above and the breeding process was repeated. The number 

of mares was reduced from 16 to 11 in the second cycle due to various reasons including change 

of ownership or to avoid delay in establishing a desired pregnancy. Also, one mare developed a 

hoof abscess that required oral antibiotic treatment between the first and second estrous cycle so 

she was removed from the study for the second cycle; all other mares remained healthy 

throughout the duration of the study. Following the final sample collection and Lutalyse® 

administration on day 6 post-ovulation, after either the first cycle or second cycle for those that 

continued on, mares were removed from the study. 

 Semen Collection and Mare Insemination  

 All semen samples were collected from one stallion. The stallion was first exposed to a 

teaser mare through face to face interaction only to stimulate an erection. Thereafter, the penis 

was washed with warm water only and dried with paper towels. The stallion was re-exposed to 

the teaser mare and then directed to mount a phantom to facilitate semen collection into an 

artificial vagina (AV) that was only used with this stallion during the breeding season. A 

Missouri model AV was used, equipped with a collection bottle. The collection bottle contained 

a sterile bottle liner and a non-sterile gel filter. The AV, wash bucket, and collection bottles were 

cleaned using 70% isopropyl alcohol after each use. The collected semen was processed and 
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analyzed immediately for volume, concentration and motility. For EXT mares the commercially 

available semen extender, INRA 96 (IMV Technologies; L’Aigle, France), was used at a 1:1 

semen:extender ratio with a total dose of 20 mL (10 mL semen and 10 mL extender). For RAW 

mares, a total dose of 10 mL of semen only was used. All insemination doses were prepared 

using sterile syringes. In some instances, the stallion did not produce a total volume of 10 mL of 

semen. In these cases the semen included in the insemination dose ranged from 7-9 mL for 3 

mares, in the first cycle (RAW=2, EXT=1) and 2 mares in the second cycle (RAW=2). Despite 

the lower volume in some instances, sperm concentration and motility were evaluated prior to 

every insemination to ensure mares were bred with a minimum of 500 million progressively 

motile sperm. 

Prior to insemination, the perineal area was cleaned with water and dilute ivory soap and 

dried, then a sterile pipette was inserted through the cervix into the uterus using a lubricated 

sterile shoulder-length sleeve. Raw or extended semen was deposited, and the pipette was 

removed. Care was taken to ensure that the glove and pipette only made contact with the mare 

prior to semen deposition.  

 Sample Collection 

Vaginal and Uterine Samples  

Vaginal samples were collected immediately following initial detection of a follicle ≥ 35 

mm and then again 48 hours post-insemination for cycles 1 and 2. Uterine efflux was collected 

immediately after collection of both vaginal samples. Prior to sample collection the tail was 

wrapped and held out of the way with a tail tie. The perineum was cleaned with water and dilute 

Ivory soap and dried. For vaginal samples, a sterile obstetrical sleeve with sterile lubricant was 

donned and a double-guarded sterile swab was inserted into the vagina. Once location within the 
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vagina was confirmed through identification of the cervix, a sample was taken from of the 

epithelium of the floor of the vagina roughly 5 cm from the cervix. Swabs were returned to the 

protective casing and removed. They were then placed into sterile 50 mL conical tubes and 

stored at -20° C until further analysis. For uterine samples the investigator donned a sterile 

obstetrical sleeve with sterile lubricant and a sterile uterine lavage tube was manually passed 

through the vulva, vagina and cervix into the uterine body. The uterine lavage tube was fixed in 

place just past the cervix with a balloon filled with 60-100 mL of air. Next, 120 mL of sterile 

phosphate buffered saline was infused into the uterus via a sterile 60 mL syringe. The fluid was 

collected via gravity flow into two sterile 50 mL conical tubes. Recovery of fluid ranged from 

48-100 mL. Tubes were then centrifuged at 400 x g for 10 min. Supernatant was removed and 

transferred to a separate sterile conical tube, leaving the pellet and approximately 2 mL of fluid 

in the original tube. Conical tubes containing supernatant and pellets were stored at -20° C for 

later DNA analysis.  

 Fluid and Fecal Samples  

Blood and fecal samples were collected only once from each mare following detection of 

a follicle ≥ 35 mm during the first estrous cycle. A 10 mL blood sample was collected via jugular 

venipuncture into Vacutainer® tubes for plasma (Becton, Dickson and Company, Franklin Lakes, 

NJ). Blood was spun at 1,400 x g for 15 min at 25° C and white blood cells/platelets were 

removed and frozen into 1 mL aliquots. Fecal samples were collected via a rectal grab using a 

lubricated sterile shoulder-length sleeve. Approximately 5-50 g of feces were placed into a sterile 

50 mL conical tube. Five semen collections resulted in sufficient volume post-AI for a 2-5 mL 

sample to be taken from raw semen using a sterile pipette and deposited into a 10 mL sterile 
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conical tube. All fecal, blood, and semen samples were stored individually at -20° C for later 

DNA analysis.  

 DNA Extraction and PCR  

 Total DNA was extracted from the uterine efflux, vaginal swabs, and blood using the 

QIAamp® DNA Mini Kit (Qiagen; Hilden, Germany) according to manufacturer protocols for 

bacteria. Total DNA was extracted from feces using the E.Z.N.A® Stool DNA Kit (Omega Bio-

tek; Norcross, GA). The concentration of DNA was quantified using Quant-iTTM PicoGreeenTM 

dsDNA Assay Kit (Thermo Fischer Scientific; Waltham, MA).  

Amplification of the V4 region of the bacterial 16S rRNA gene was done using PCR 

primers (515F/926R) according to Earth Microbiome Project protocols [18]. Fecal samples were 

amplified through triplicate PCR reactions on a Mastercycler® nexus (Eppendorf; Hamburg, 

Germany) in a 25 uL solution of 5 uL 5x PCR master mix (Promega; Madison, WI), 0.5 uL of 

the forward and reverse primers, 0.2 uL of dntps, 1 uL of 1% BSA, 0.2 uL of GoTaq® DNA 

Polymerase (Promega; Madison, WI), 16.6 uL PCR grade H2O and 1 uL template DNA for 25 

cycles. For the low template samples (≤ 10 ng/μL DNA), which included blood, vaginal, uterine, 

and semen samples, a modified solution of 12.6 uL PCR grade H2O and 5 uL template DNA was 

run for 30 or 35 cycles based on previous protocols used in our lab [19]. Each PCR reaction was 

run with a positive and negative control to ensure amplification and to check for contamination. 

Agarose gel electrophoresis was utilized to check the PCR products for amplicon length and then 

PCR product triplicates were pooled for library preparation. Excess primers and unincorporated 

nucleotides were enzymatically removed using the ExoSAP-IT™ PCR Product Cleanup Reagent 

(Thermo Fischer Scientific; Waltham, MA). Total DNA in each sample was then quantified 

using the Quant-iTTM PicoGreeenTM dsDNA Assay Kit (Thermo Fischer Scientific, Waltham, 
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MA) and approximately 100 ng of DNA from each sample was combined into a 1.5 mL 

microcentrifuge tube. The combined library was loaded into a 2% agarose gel and then extracted 

using the QIAquick® Gel Extraction Kit (Qiagen; Hilden, Germany) to ensure a uniform library 

size of 500 bp.  

 Bioinformatics and Statistical Analysis  

 The final 500 bp library was submitted to the K-State Integrated Genomics Facility for 

analysis and sequencing. The library was analyzed for amplicon length and bacterial DNA 

concentration using the Agilent 2100 Bioanalyzer (Agilent Technologies; Santa Clara, CA) and 

qPCR. To improve base call quality, 10% PhiX was added to the library. Amplicons were then 

sequenced using the 500 cycles MiSeq Reagent Kit v2 for a single paired-end run on the Illumina 

Miseq.  

 The sequencing data were analyzed using the QIIME2 (version 2019.7) bioinformatics 

pipeline [20]. Raw sequencing data in the form of FASTQ files were demultiplexed and filtered 

for quality. Operational Taxonomic Units (OTUs) and taxonomy were assigned according to 

97% sequence similarity using the GreenGenes database (version 13.8). Known reagent and 

laboratory contaminants and contaminants found in the negative controls were removed from the 

data prior to further analysis [21]. All alpha and beta diversity analyses were performed in 

QIIME2. Alpha diversity was calculated using Shannon index and observed OTUs. Statistical 

significance of alpha diversity metrics was determined by Kruskal-Wallis one-way ANOVA 

tests and linear mixed effects models for body site, time point, and treatment [22]. Beta diversity 

was calculated using Bray-Curtis dissimilarity which was then ordinated into Principal 

Coordinates Analysis (PCoA) plots. Pairwise PERMANOVA tests were used to determine 

compositional differences between sample types, time points, and treatments based on beta-
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diversity. Relative abundance of taxa was summarized in plots created in QIIME2. Differential 

abundance comparisons were calculated in R (version 3.6.1) using ANCOM (Analysis of 

composition of microbiomes; version 2) [23]. Longitudinal and pairwise comparisons of body 

sites and treatments and were done at the phylum and genus level using taxa-wise multiple 

correlation and α = 0.05. The W statistic was used to determine significance of differentially 

abundant genera; this statistic represents the number of times that the null-hypothesis (the 

average abundance of a given genus in a group is equal to that in another group) was rejected for 

a given genus [24–27]. Venn diagrams of shared taxa were constructed using Venny (version 

2.0) based on presence/absence tables constructed in QIIME2 [28].  

 Results  

Initial data analysis and quality filtering yielded 1,356,938 sequences in 128 samples, 

consisting of 16 fecal, 4 semen, 54 vaginal and 54 uterine samples. Blood samples were removed 

from the analysis and will not be reported on due to insufficient microbial DNA detected in those 

samples following PCR. Samples were grouped by type, treatment and time of collection. Data 

analysis was performed at 407 sequences in each sample for normalization of alpha and beta 

diversity metrics based on rarefication curves. Therefore 21 samples were excluded, of which 19 

were uterine and 2 were vaginal samples. On average, there were 19 days between sample 

collections for the mares that went through 2 estrous cycles.  

 Alpha Diversity  

There were no differences in Shannon diversity or observed OTUs between time points or 

treatments for both the uterus and vagina, so all uterine and vaginal samples were pooled for 

comparison to other sample types. Fecal samples were higher in diversity according to the 

Shannon index than all other sample types (Fig. 2.1, P<0.01). The uterus and vagina were also 
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greater in diversity than semen (Fig. 2.1, P<0.01), however there was no difference between the 

uterus and vagina (P>0.05). Similar results were seen when alpha diversity was evaluated using 

observed OTUs (Fig. 2.2). Feces had greater observed OTUs than all other sample types (Fig.2.2, 

P<0.05). Semen had fewer observed OTUs than the uterus and vagina (Fig. 2.2, P<0.05). There 

was no difference between the uterus and vagina (P>0.05).   

 Beta Diversity  

The Bray-Curtis dissimilarity index was used to create Principle Coordinate Analysis 

(PCoA) plots to compare microbial composition. There was a significant clustering according to 

sample type when mare fecal, uterine, vaginal and stallion semen samples were compared (Fig. 

2.3, P<0.01). When vaginal samples were compared across four time points over two 

consecutive estrous cycles there was significant separation in microbial composition between the 

two cycles pre-AI and post-AI (Fig. 2.4, P<0.01). There was no difference between the pre-AI or 

post-AI vaginal samples between cycle 1 and 2 (P>0.05). There were no differences between 

treatments for vaginal samples (P>0.05). There were also no differences in beta diversity for 

uterine samples between treatments or time points (P>0.05).  

 Differential Abundance  

Relative abundance of the main phyla of each location/time point/treatment are 

summarized in Figure 2.5 with the main genera summarized in Figure 2.6. 

To investigate possible links between body sites, shared genera were determined and 

summarized in a Venn diagram in Figure 2.7. Between fecal, uterine, vaginal, and semen 

samples 28 genera were shared. The uterus and vagina shared 169; and 25 and 4 were shared 

between feces and the vagina and uterus, respectively. Between the vaginal, uterine, and semen 
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samples, 26 genera were shared. There were 35, 38, 14, and 0 genera exclusive to the uterine, 

vaginal, fecal, and semen samples, respectively.  

Analysis using ANCOM found all detected genera and phyla to be differentially abundant 

between feces and the uterus and vagina (Table 2.1). Uterine and vaginal samples from each 

treatment were compared across the four time points using ANCOM. In both EXT and RAW 

uterine samples Mobiluncus was more abundant pre-AI than post-AI for cycle 1 (Fig. 2.8). There 

were no differentially abundant taxa between cycles or in cycle 2 for uterine samples. 

Unclassified kingdom bacteria, order Bacteroidales, and genera Cupriavidus, Staphylococcus, 

Comamonas, Caulobacter, Curvibacter, Mobiluncus, Porphyromonas and 

Phascolarctobacterium were differentially abundant across time points in EXT vaginal samples 

(Fig. 2.8).  The families Propionibacteriaceae and Coriobacteriaceae, and genera Streptococcus, 

Porphyromonas, Mobiluncus, Arcanobacterium and Comamonas were differentially abundant 

across time points in RAW vaginal samples (Fig. 2.9). When the post-AI uterus and vagina were 

compared between the EXT and RAW groups the only differentially abundant genus was 

Helcococcus, which was more abundant in the uterus of EXT mares post-AI in cycle 2 compared 

to RAW mares. When semen was compared to the post-AI uterus and vagina, there were several 

differentially abundant taxa between semen and EXT and RAW at both the phylum (Table 2.2) 

and genus level (Uterus: Table 2.3, Vagina: Table 2.4).  
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Figure 3.1 Alpha diversity, as measured by the Shannon diversity index, of mare fecal (n=16), 

uterine (n=35) and vaginal (n=52) samples, and stallion semen (n=4) samples. Fecal and semen 

samples were collected prior to artificial insemination (AI); uterine and vaginal samples were 

collected pre and post-AI. No differences were detected between time points or treatments in 

vaginal or uterine samples, so they were pooled by body site. Boxes represent the interquartile 

range, the horizontal line within the box is the median, and the x represents the mean. Sampe 

types lacking a common superscript differ (a,b,cP<0.01).  
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Figure 3.2 Alpha diversity, as measured by observed OTUs, of mare fecal (n=16), uterine 

(n=35) and vaginal (n=52) samples, and stallion semen samples (n=4). Fecal and semen samples 

were collected prior to artificial insemination (AI); uterine and vaginal samples were collected 

before and after AI. No differences were detected between time points or treatments in vaginal or 

uterine samples, so they were pooled by body site. Boxes represent the interquartile range, the 

horizontal line within the box is the median, and the x represents the mean. Sample types lacking 

a common superscript differ (a,b,cP<0.01). 
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Figure 3.3 Principle coordinates analysis (PCoA) of Bray Curtis dissimilarity representing 

comparisons of the microbial composition of mare fecal (n=16), uterine (n=35) and vaginal 

(n=52) samples, and stallion semen samples (n=4). Fecal and semen samples were collected prior 

to artificial insemination (AI); uterine and vaginal samples were collected before and after AI. 

Uterine and vaginal samples were pooled according to body site. Points in three-dimensional 

space represent individual samples, which are colored according to sample type. Percent variance 

explained by the PCoA is indicated on the axes. There was a significant clustering according to 

sample type (P<0.01).   
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Figure 3.4 Principle coordinates analysis (PCoA) of Bray Curtis dissimilarity representing 

comparisons of the microbial composition of mare vaginal samples over two consecutive estrous 

cycles. Points in three-dimensional space represent individual samples, which are colored 

according to time point: C1-Pre (n=16), C1-Post (n=15), C2-Pre (n=7), C2-Post (n=10) where 

“C” denotes the first or second estrous cycle, “Pre” indicates samples collected ≤ 24 hours prior 

to artificial insemination (AI) and “Post” indicates samples collected 48 hours post AI. The 

percent variance explained by the PCoA is indicated on the axes. There is significant separation 

between C1-Pre and both C1-Post and C2-Post (P<0.05). There is also a significant separation 

between C2-Pre and both C1-Post and C2-Post (P<0.05).  
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Figure 3.5 Relative abundance at the phylum level of mare fecal (n=16) and stallion semen 

samples (n=4) collected prior to AI; uterine samples collected from mares bred with extended 

semen: U C1-Pre/Post EXT (n=8) and U C2-Pre/Post EXT (n=4); uterine samples collected from 

mares bred with raw semen only: U C1-Pre/Post RAW (n=8) and U C2-Pre/Post RAW (n=7); 

vaginal samples collected from mares bred with extended semen: V C1-Pre/Post EXT (n=8) and 

V C2-Pre/Post EXT (n=4); vaginal samples collected from mares bred with raw semen only: V 

C1-Pre/Post RAW (n=8) and V C2-Pre/Post RAW (n=7). U: Uterus; V: Vagina; C: the first or 

second estrous cycle; Pre: samples collected ≤ 24 hours prior to artificial insemination (AI); Post: 

samples collected 48 hours post AI.  
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Figure 3.6 The 10 most relatively abundant genera or lowest taxonomic level of mare fecal 

(n=16) and stallion semen samples (n=4) collected prior to AI; uterine samples collected from 

mares bred with extended semen: U C1-Pre/Post EXT (n=8) and U C2-Pre/Post EXT (n=4); 

uterine samples collected from mares bred with raw semen only: U C1-Pre/Post RAW (n=8) and 

U C2-Pre/Post RAW (n=7); vaginal samples collected from mares bred with extended semen: V 

C1-Pre/Post EXT (n=8) and V C2-Pre/Post EXT (n=4); vaginal samples collected from mares 

bred with raw semen only: V C1-Pre/Post RAW (n=8) and V C2-Pre/Post RAW (n=7). U: 

Uterus; V: Vagina; C: the first or second estrous cycle; Pre: samples collected ≤ 24 hours prior to 

artificial insemination (AI); Post: samples collected 48 hours post AI. All other genera are 
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grouped into “Other”. Taxa with k__ represent kingdom as the lowest taxonomic level, o__ 

represents order, and f__ represents family.  

 

Figure 3.7 Venn diagram of shared genera between mare fecal (n=16), uterine (n=35) and 

vaginal (n=52) samples, and stallion semen samples (n=4). Fecal and semen samples were 

collected prior to artificial insemination (AI); uterine and vaginal samples were collected before 

and after AI. Vaginal and uterine samples were pooled according to body site. Overlapping 

circles indicate the number of shared genera and percentage of total genera shared between 

sample types.  
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Figure 3.8 Genus that differed between pre-artificial insemination (AI) and post-AI in the uteri 

of mares bred with extended semen (EXT, n=8) or raw semen only (RAW, n=8) according to 

longitudinal Analysis of Composition of Microbiomes (ANCOM). C: Cycle; Pre: samples taken 

≤ 24 hours prior to artificial insemination (AI); Post: samples taken 48 hours post AI. The genus 

was differentially abundant at time points within EXT or RAW with different superscripts 

(EXT:a,b; RAW:c,d) 
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Figure 3.9 Genera or lowest taxonomic level that differ in the vagina of mares bred with 

extended semen (EXT) across different time points over the course of two estrous cycles 

according to longitudinal Analysis of Composition of Microbiomes (ANCOM). C1: cycle 1 

(n=8); C2: cycle 2 (n=4); Pre: samples taken ≤ 24 hours prior to artificial insemination (AI); 

Post: samples taken 48 hours post AI. Titles of taxa with k__ represents kingdom. Only taxa with 

mean relative abundance >1% in at least one time point were included in this figure. Error bars 

represent SEM. Time points within individual taxa with different superscripts are differentially 

abundant (a,b). 
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Figure 3.10 Genera or lowest taxonomic level that differ in the vagina of mares bred with raw 

semen only (RAW) across different time points over the course of two estrous cycles according 

to longitudinal Analysis of Composition of Microbiomes (ANCOM). C1: cycle 1 (n=8); C2: 

cycle 2 (n=7); Pre: samples taken ≤ 24 hours prior to artificial insemination (AI); Post: samples 

taken 48 hours post AI. Titles of taxa with f__ represents family. Time points within individual 

taxa with different superscripts are differentially abundant (a,b). Only taxa with mean relative 

abundance >1% in at least one time point were included in this figure. Error bars represent SEM.  
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Table 3.1 Summary of Analysis of Composition of Microbiomes (ANCOM) results of differential abundance, using phylum as the 

lowest taxonomic level, contrasting mare fecal (n=16), uterine (n=35) and vaginal (n=52) samples. Fecal were collected prior to 

artificial insemination (AI); uterine and vaginal samples were pooled according to body site and include samples collected pre/post AI 

in the first and second estrous cycle. All detected phyla were differentially abundant.  

Phyluma Fecesb  Uterusb Vaginab  

k__Bacteria;__ 0.14 ± 0.11 1.18 ± 2.42* 1.70 ± 3.77* 

Actinobacteria 0.34 ± 0.13 18.11 ± 17.53*  23.76 ± 15.96* 

Bacteroidetes 38.02 ± 3.81 20.25 ± 18.27* 19.92 ± 14.25* 

Fibrobacteres 2.98 ± 1.49  0.19 ± 0.61* 0.06 ± 0.13* 

Firmicutes 37.97 ± 4.27  26.18 ± 21.16* 35.44 ± 17.50*  

Fusobacteria 0 ± 0  2.89 ± 4.79* 2.20 ± 3.13* 

Proteobacteria 0.66 ± 0.32  21.60 ± 23.71* 8.55 ± 11.33* 

Spirochaetes 6.16 ± 3.24  3.42 ± 6.74*  1.78 ± 2.92*  

Tenericutes 1.38 ± 0.63  0.46 ± 1.29*  0.24 ± 0.44* 

Verrucomicrobia 11.46 ± 4.45 4.09 ± 6.18* 5.35 ± 7.65* 
aOnly taxa with mean relative abundance >1% in at least one sample type were included  
bPercent mean relative abundance ± standard deviation 

*Denotes taxa that were found to be differentially abundant from mare feces  
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Table 3.2 Summary of Analysis of Composition of Microbiomes (ANCOM) results of differential abundance, using phylum as the 

lowest taxonomic level, contrasting semen and the post-AI vaginal and uterine samples of mares bred with extended semen in cycle 1 

(C1-Post EXT, n=8), bred with raw semen in cycle 1 (C1-Post RAW, n=8), bred with extended semen in cycle 2 (C2-Post EXT, n=4) 

and bred with raw semen in cycle 2 (C2-Post RAW, n=7). 

aOnly taxa with mean relative abundance >1% in at least one sample type were included  
bPercent mean relative abundance ± standard deviation  

*Denote taxa that were found to be significantly different from semen  

 

 

 

 

 

 

 

 

 

 

 

 
Semenb  Uterusb  Vaginab 

Phyluma  
 

C1-Post EXT C2-Post EXT C1-Post RAW C2-Post RAW C1-Post EXT C2-Post EXT C1-Post RAW C2-Post RAW 

k__Bacteria;__ 3.87 ± 0.86  0.13 ± 0.24*  3.66 ± 5.59 9.28 ± 6.77*   28.47 ± 34.83*  9.04 ± 8.02*  22.61 ± 11.01*  10.06 ± 5.36*   11.11 ± 6.90*  

Actinobacteria 33.94 ± 21.38 28.80 ± 23.73*  20.38 ± 21.21*  20.49 ± 24.66*  11.45 ± 8.04*   26.26 ± 11.64*  13.12 ± 18.42*  25.24 ± 21.58*   26.90 ± 12.54 

Bacteroidetes 35.48 ± 13.23 12.11 ± 19.22*  19.37 ± 6.79*   38.79 ± 21.46*   23.73 ± 24.41*  43.98 ± 23.90*  37.95 ± 7.10 40.30 ± 18.30*   42.78 ± 10.87*   

Firmicutes 26.45 ± 21.14 29.75 ± 31.32*  37.97 ± 24.58 0.14 ± 0.36*   0.72 ± 0.93*   0.13 ± 0.23*  0.55 ± 0.71*  0.16 ± 0.17*  0.57 ± 0.93*   

Spirochaetes 0 ± 0  0.26 ± 0.59*   0.84 ± 1.05*   8.54 ± 8.20*   1.23 ± 1.21*  2.79 ± 3.14*  11.25 ± 12.29*   5.95 ± 6.96*   2.91 ± 2.30*   

Verrucomicrobia 0 ± 0  6.38 ± 10.54*  1.58 ± 2.76*   1.98 ± 3.25*  2.25 ± 3.04*  2.13 ± 2.76*  1.07 ± 0.24*  2.33 ± 2.37*   3.15 ± 6.10*   
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Table 3.3 Summary of Analysis of Composition of Microbiomes (ANCOM) results of differential abundance, using genus as the 

lowest taxonomic level, contrasting semen and the post-AI uterine samples of mares bred with extended semen in cycle 1 (C1-Post 

EXT, n=8), bred with raw semen in cycle 1 (C1-Post RAW, n=8), bred with extended semen in cycle 2 (C2-Post EXT, n=4) and bred 

with raw semen in cycle 2 (C2-Post RAW, n=7). 

aOnly taxa with mean relative abundance >1% in at least one sample type were included  
bPercent mean relative abundance ± standard deviation  

*Denote taxa that were found to be significantly different from semen 

 

 

 

 

 

 

 

 

 

 
Semenb  Uterusb  

Taxaa  C1-Post EXT C1-Post RAW C2-Post EXT C2-Post RAW 

k__Bacteria; Unclassified  3.87 ± 0.86 0.13 ± 0.24*  0.14 ± 0.36*  3.66 ± 5.59*  0.72 ± 0.93*  

o__Bacteroidales 15.24 ± 15.71  1.69 ± 4.78*  0.01 ± 0.02*  0.53 ± 0.81*  1.63 ± 2.69*  

1-68 3.57 ± 3.11 0.16 ± 0.44*  0.36 ± 1.01*  0.83 ± 0.78*  0.32 ± 0.64*  

Clostridium 20.40 ± 18.49 0.09 ± 0.23*  0.35 ± 0.55*  3.62 ± 7.11*  0.57 ± 0.79*  

Corynebacterium 31.65 ± 22.84  21.96 ± 24.12*  16.93 ± 23.48*  14.29 ± 19.17*  7.26 ± 4.93*  

Helcococcus 0 ± 0  1.99 ± 4.84  0.85 ± 1.69*  10.67 ± 12.29*  0.26 ± 0.35  

Mobiluncus 0.45 ± 0.43  0.34 ± 0.96*  0.08 ± 0.15*  1.85 ± 2.68  1.62 ± 3.64*  

Peptoniphilus 1.40 ± 0.78  0.10 ± 0.28*  0.05 ± 0.09*  0.74 ± 0.94*  0.51 ± 0.79*  

Porphyromonas 19.76 ± 21.93  5.11 ± 11.89*  1.9 ± 3.55*  7.26 ± 7.69*  7.25 ± 6.91* 
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Table 3.4 Summary of Analysis of Composition of Microbiomes (ANCOM) results of differential abundance, using genus as the 

lowest taxonomic level, contrasting semen and the post-AI vaginal samples of mares bred with extended semen in cycle 1 (C1-Post 

EXT, n=8), bred with raw semen in cycle 1 (C1-Post RAW, n=8), bred with extended semen in cycle 2 (C2-Post EXT, n=4) and bred 

with raw semen in cycle 2 (C2-Post RAW, n=7). 

aOnly taxa with mean relative abundance greater than 1% in at least one sample type were included  
bPercent mean relative abundance ± standard deviation  

*Denote taxa that were found to be significantly different from semen  

 Semenb  Vaginab  

  C1-Post EXT  C2-Post EXT  C1-Post RAW  C2-Post RAW 

Taxaa      

k__Bacteria 3.87 ± 0.86 0.13 ± 0.23*  0.55 ± 0.71* 0.16 ± 0.17*  0.57 ± 0.93*  

o__Bacteroidales 15.24 ± 15.71 0.004 ± 0.01* 2.59 ± 5.0*  0.24 ± 0.42* 0.32 ± 0.54* 

o__Bacteroidales.f__g__ 0.01 ± 0.001  1.27 ± 1.47 6.26 ± 6.83*  2.38 ± 2.70  1.03 ± 1.19 

f__Lachnospiraceae 0 ± 0 0.22 ± 0.23  1.13 ± 1.14*  0.75 ± 0.95 0.29 ± 0.31 

f__RFP12 0.004 ± 0.01  2.58 ± 2.96*  11.1 ± 12.19*  5.66 ± 6.54* 2.69 ± 2.03* 

f__Ruminococcaceae 0.001 ± 0.003  0.48 ± 0.42  1.26 ± 1.57*  1.06 ± 0.98  0.36 ± 0.61 

f__Ruminococcaceae 0.001 ± 0.002  0.97 ± 0.95  3.05 ± 4.63*  3.09 ± 3.78 1.12 ± 1.31  

1-68 3.57 ± 3.11 0 ± 0*  0.51 ± 0.93* 0.014 ± 0.04*  0.71 ± 1.63*  

Arcanobacterium 0 ± 0 2.41 ± 3.21 1.49 ± 1.28* 1.14 ± 0.79*  4.15 ± 7.34  

Bacteroides 0.002 ± 0.003  2.74 ± 7.34  2.43 ± 4.01* 0.08 ± 0.18  0.07 ± 0.07  

Clostridium 20.40 ± 18.49  0.21 ± 0.26*  0.19 ± 0.22* 0.46 ± 0.44 0.24 ± 0.22  

Corynebacterium 31.65 ± 22.84  20.68 ± 9.24*  10.75 ± 18.48* 22.71 ± 20.61* 13.03 ± 10.43* 

Helcococcus 0 ± 0  2.82 ± 4.22  1.24 ± 2.14*  1.36 ± 2.19  3.09 ± 4.30 

Leptospira 0 ± 0  2.06 ± 2.78*  0.76 ± 0.16*  2.20 ± 2.42 3.13 ± 6.11* 

Peptoniphilus 1.4 ± 0.78 0.10 ± 0.14*  0.28 ± 0.48*  0.07 ± 0.15*  0.10 ± 0.20*  

Porphyromonas 19.76 ± 21. 93 1.07 ± 1.24*  5.53 ± 6.51*  1.80 ± 3.63*  6.25 ± 7.23  

Streptococcus 0.001 ± 0.002 30.61 ± 24.80* 16.00 ± 15.77* 18.95 ± 20.43* 26.68 ± 12.22*  
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 Discussion 

As a first objective, the microbial composition and diversity of stallion semen and fecal, 

uterine and vaginal samples from the healthy mares were analyzed and compared. The dominant 

phyla of mare feces were Bacteroidetes and Firmicutes, followed by Verrucomicrobia and 

Spirochaetes. With genus as the lowest taxonomic level, the dominant taxa were Bacteroidales, 

RFP12, Ruminococcaceae, Treponema, Lachnospiraceae and Prevotella. Composition of mare 

feces was similar to previous work done in our lab as well as other studies that have investigated 

the adult equine gut microbiome [19,29,30].  

Although only one animal is represented, to our knowledge this is the first study to 

characterize the microbial composition of equine semen using NGS. The main phyla in this 

stallion’s semen were Actinobacteria, Bacteroidetes and Firmicutes. The dominant taxa in semen 

with genus as the lowest level were Corynebacterium, Clostridium, Porphyromonas, and 

Bacteroidales. Corynebacterium are aerobic Gram-positive bacteria; they have frequently been 

isolated from the semen and the genital tract of men using NGS as well as from stallions using 

culture-based methods and are generally considered to be commensal [8,31,32]. Clostridium, 

which is typically thought to be pathogenic, has been cultured from equine semen however it is 

more frequently found in feces, indicating that the high abundance found here may be due to a 

contamination source rather than being inherently present in semen [11,29,33]. The same 

rationale could be applied to Bacteroidales, which are also more typically isolated from equine 

feces and have not been cultured from equine semen previously [30]. Porphyromonas are 

obligate anaerobes that have also been detected in semen of men using NGS and stallions using 

culture-based methods, as well as the vagina and uterus of several species [32,34–36]. A more 
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in-depth analysis of the semen microbiome utilizing a greater number of stallions and time points 

throughout the breeding season is necessary to confirm these preliminary findings.  

Microbes were detected in all the uterine and vaginal samples. The dominant phyla in the 

uterus and vagina were Bacteroidetes, Firmicutes, Actinobacteria, Proteobacteria, and 

Verrucomicrobia. In the uterus Corynebacterium was the dominant genus followed by 

Porphyromonas, Enterobacteriaceae, and Streptococcus. Corynebacterium was also the 

dominant genus in the vagina, followed by Streptococcus, Porphyromonas, and RFP12. 

Corynebacterium has been previously cultured from the equine uterus and was dominant in the 

uteri of lactating dairy cows using NGS [37,38]. Porphyromonas and Streptococcus have also 

been isolated from the uterus and vagina of dairy cattle, although they were not the most 

dominant genera [36]. As expected, due to the close proximity and anatomical configuration of 

the anus and vagina, common fecal microbes, Enterobacteriaceae and RFP12, were also found in 

the vagina. Streptococcus was found in the vagina of all mares and only absent from the uterus in  

2 mares. The dominance of Streptococcus within both the uterus and vagina was surprising due 

to the prevalence of Streptococcus in mares diagnosed with endometritis; however, none of these 

mares displayed any symptoms of endometritis and all became pregnant following the first AI 

after completion of this study [39,40]. One explanation for the presence of these pathogens could 

be that because NGS is not capable of differentiating between live and dead bacteria, the mares’ 

immune system was able to neutralize them, but their DNA remained in the uterus/vagina.  

The microbiome of the mare vagina has not, to our knowledge, been investigated 

previously using NGS. Culture-based studies have also detected potentially pathogenic microbes, 

such as Streptococcus zooepidemicus and Escherichia coli, in vaginal vestibule and clitoral fossa 

swabs of healthy mares with no reproductive issues [4]. Lactobacillus has been detected in the 
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mare vagina using culture techniques; but growth counts were lower than humans and similar to 

cattle [41]. Several human studies have demonstrated the dominance and importance of 

Lactobacillus spp. in the vagina and uterus of healthy women [42], however in the present study 

the genus Lactobacillus was present at a very low abundance in the mare uterus and vagina, at 

0.02% and 0.01% respectively. As suggested by Fraga et al. [43], the lower abundance of 

Lactobacillus could be related to pH, as the mare has a much higher vaginal pH (6-8) compared 

to women (3-5).  

In terms of the uterine microbiome, our results are consistent with previous work that 

found bacteria in the uterus of mares with positive and negative culture results [17], however 

they are in contrast to another recent study that detected bacteria in only 30% of mare uterine 

lavage samples using NGS [44]. Many of the dominant taxa isolated from the uteri in this study 

have also been detected in the uterus of healthy mares, and mares with endometritis, using 

culture-based techniques [5,38,39].  

This is the first time, to our knowledge, that the microbiome of the equine uterus, vagina, 

semen and feces have been compared. We found feces to be the most diverse while semen was 

the least diverse with no difference in diversity between the uterus and vagina. For beta diversity, 

each sample type clustered independently from all others. These results are consistent with work 

in dairy cattle that found feces to be more diverse than the uterus and clustering based on sample 

type for cow feces, uterus, and vagina in terms of Bray-Curtis dissimilarity [36]. In contrast to 

our findings, human semen is more diverse, with greater observed species, compared to the 

vagina; however, authors did not compare human semen to the uterus or feces and did not make 

any comparisons using beta diversity as we did in this study [45]. Only 28 genera were shared 

between all 4 sample types including the dominant genera of the uterus/vagina: 
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Corynebacterium, Streptococcus, and Porphyromonas. The most genera were shared between 

the uterus and vagina at 334 total genera shared. Of note, the uterus and vagina shared the same 

54 genera with semen. Feces and semen shared the least genera with 28. Differential abundance 

analysis determined all phyla and genera tested to be differentially abundant between mare feces 

and the uterus; the same result was found when feces were compared to the vagina. This result is 

not unexpected due to the clear separation between feces, uterus and vagina in the PCoA plot of 

Bray-Curtis dissimilarity, which indicated that each sample type has a unique microbiome.  

As a second objective we sought to investigate the effects of breeding healthy, PBIE-

resistant mares with either raw or extended semen over the course of 2 consecutive estrous 

cycles on the microbial composition of the reproductive tract. This is an area of importance in 

the equine industry as bacteria and debris introduced into the mare uterus during breeding have 

been associated with PBIE; which has a major impact on fertility in mares [3]. Breeding, through 

artificial insemination or natural service, induces an inflammatory response and uterine 

contractions which clear bacteria and excess semen from the uterus. Inflammation is typically 

resolved in 48 hours in most mares and has no adverse effects on pregnancy establishment [3]. 

The efficacy of various antibiotics on reduction of the bacterial content of semen, and thus a 

reduction of bacterial contamination of the uterus, has been thoroughly investigated [10–14]. The 

most common antibiotics added to stallion semen extender are beta-lactams (potassium penicillin 

G), which target Gram positive organisms including Streptococcus, and aminoglycosides 

(amikacin or gentamicin), which target both Gram positive and negative bacteria and are 

particularity potent against the family Enterobacteriaceae but are generally ineffective against 

Streptococcus and Enterococcus [14,46,47]. The extender utilized in this study, INRA 96, 



110 

 

contains penicillin and gentamicin. To our knowledge, this is the first time NGS has been 

utilized to compare the effects of raw or extended semen on the mare uterus or vagina. 

We found no differences in alpha diversity or beta diversity between treatments or time 

points in the uterus. This is supported by the results for differentially abundant taxa using 

ANCOM, where uterine and vaginal samples from EXT and RAW were compared pre-AI and 

post-AI over the two estrous cycles. Only one genus and one phylum were found to be 

differentially abundant in the uterus of either treatment between pre and post-AI in the first 

cycle, none changed between the first and second cycle and none changed between pre and post-

AI in the second cycle. Mobiluncus decreased in the uterus of EXT and RAW post-AI in cycle 1, 

and Bacteroidetes decreased in the uterus of RAW post-AI in cycle 1. Mobiluncus is interesting 

as it is typically associated with bacterial vaginosis in women, however to our knowledge, it has 

not been isolated from the equine uterus using NGS [48,49]. Although there was not a significant 

increase in Mobiluncus between post-AI of cycle 1 and pre-AI of cycle 2, it does appear that 

Mobiluncus returns to pre-AI levels in both EXT and RAW mares in the pre-AI samples of the 

second cycle. The lack of significant change could be due to the reduced number of mares 

utilized in the second estrous cycle. Overall there were only 4 phyla and 9 genera that were 

differentially abundant between the uterus and semen (excluding differentially abundant taxa that 

were present at <1% abundance in both sample types), and the majority were more abundant in 

semen. This might suggest that the uterus and semen share a similar core microbiome, which 

could possibly explain the lack of change seen post-breeding in these mares.  

The overall stability of the mare uterine microbiome post-AI is not altogether surprising 

considering the inflammatory response that is initiated post-breeding is typically resolved by 48 

hours post-breeding in clinically normal mares [3]. Previous work using culture-based techniques 
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and mares resistant to PBIE has demonstrated that breeding with natural service does not result 

in increased bacterial contamination or inflammatory reaction in samples collected 48 hours 

post-breeding compared with those bred using extended semen via AI; which is consistent with 

our findings [2,50]. In contrast, Bollwein et al. [15] found that insemination with semen and 

antibiotic-containing extender resulted in less severe bacterial contamination of the uterus at 48 

hours post-AI compared to insemination with raw semen using culture techniques. It is worth 

noting however, that only 6 mares were utilized in that study and the significance level of their 

claim was not stated. Our results indicate the healthy mare uterus contains a core microbiome 

that is stabilized, perhaps by the immune response to breeding, by 48 hours post-AI and the use 

of extender with semen does not result in a significant difference in microbial community 

composition compared to insemination with raw semen. Since our results are limited to samples 

that were collected 48 hours post-AI, it is unclear if a more significant, but temporary, shift from 

the pre-AI microbial composition may have occurred at some point before 48 hours. There may 

also be more significant changes in the uterine microbiome following repeated inseminations 

throughout a breeding season or with breeding to different stallions. Both areas warrant further 

investigation in order to determine the effects of breeding on the mare uterine microbiome.  

In the vagina, ANCOM revealed several differentially abundant taxa in both treatments 

between pre-AI and post-AI for cycle 1, and between post-AI cycle 1 and pre-AI cycle 2. There 

were no differentially abundant taxa between pre-AI and post-AI in cycle 2. In the vagina of 

EXT mares, Phascolarctobacterium and Bacteroidales decreased post AI in cycle 1 while 

Staphylococcus, Cupriavidus, Comamonas, and Caulobacter increased post-AI. In the vagina of 

RAW mares Mobiluncus, Porphyromonas and Propionibacteriaceae decreased while 

Streptococcus and Comamonas increased post-AI in cycle 1. Phascolarctobacterium, 
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Bacteroidales, and Propionibacteriaceae are all gut microbes and their decrease post-AI is most 

likely due to the immune response associated with breeding or through natural expulsion from 

the vagina [3,30,51,52]. Of the bacteria that increased in the vagina, Cupriavidus, Comamonas, 

and Caulobacter are all Gram-negative bacteria that are typically found in environmental 

samples [53–55]. Given their low relative abundance in the vagina (<3.5%) these are all possible 

contaminants introduced during the breeding process. Also, these bacteria did not increase in the 

uterus post-AI and were present at very low abundance in the uterus (<1.5%). Staphylococcus, 

which is typically considered a pathogen as it has been associated with pneumonia, metritis, and 

blood infections in horses, and Streptococcus, which is a known reproductive tract pathogen, 

increased post-AI in the vagina of EXT and RAW mares respectively [56]. However, 

Staphylococcus was present at only 1.52% mean relative abundance in the post-AI EXT mares. 

Streptococcus is of more concern as it was present at approximately 19% mean relative 

abundance in the post-AI RAW mares. Staphylococcus species have become increasingly 

resistant to antimicrobials, including penicillin; however gentamicin is considered to have good 

activity against Staphylococcus [47,56]. The opposite case is true for Streptococcus, in that 

penicillin is generally effective against these microbes while gentamicin is not [47]. The extender 

utilized in this study, INRA 96, contains both penicillin and gentamicin and would have 

encountered the vaginal microbes as the semen/extender was removed from the uterus through 

contractions. Perhaps the antibiotic dosage was not sufficient to inhibit growth of Streptococcus 

or Staphylococcus in the vagina post-AI, or both antibiotics reduced the abundance of other 

inhibitive bacteria, allowing for the growth of these pathogens. Another explanation could be 

that the antibiotics were successful at eliminating an influx or resident population of these 

pathogens, but bacterial DNA/debris remained in the vagina. In RAW mares, both Mobiluncus 
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and Porphyromonas decreased post-AI. As discussed above, Mobiluncus has been associated 

with bacterial vaginosis in women and Porphyromonas is part of the core semen, uterine, and 

vaginal microbiomes. The decrease in these genera could also be attributed to the inflammatory 

response to breeding, however it is surprising that Porphyromonas decreased post-AI 

considering its high abundance in semen.  

When post-AI vaginal samples of cycle 1 were compared to the pre-AI samples of cycle 

2 there were differentially abundant taxa in each treatment. Interestingly, Porphyromonas 

returned to the pre-AI level seen in cycle 1 for RAW mares, which would indicate that these 

bacteria are able to recover from losses, possibly due to the inflammatory response to breeding, 

indicating their possible necessity to the core vaginal microbiome. In the vagina of EXT mares, 

Mobiluncus and Porphyromonas increased between the two cycles, again indicating that there 

may be some physiological control mechanism that attempts to maintain a stable microbial 

population within the vagina.  

Lastly, the vaginal and seminal microbiomes were compared. One kingdom, 5 phyla, and 

17 genera were differentially abundant between the vagina and semen. Typical gut microbes, 

Bacteroidales, Lachnospiraceae, RFP12, Ruminococcaceae, Bacteroides, and Clostridium varied 

between being more abundant in the semen or vagina, indicating that certain gut microbes, such 

as RFP12 and Ruminococcaceae may be more easily translocated to the vagina than to the 

external genitalia/semen of stallions. As expected, certain microbes that are more typically 

associated with semen, 1-68 (from the urine microbiome), Corynebacterium, Peptoniphilus, and 

Prophyromonas, were more abundant in semen than the vagina [7,57–59]. Known reproductive 

tract pathogens, Arcanobacterium, Leptospira, and Streptococcus, were all more abundant in the 

vagina than semen, but with no clear differentiation between EXT or RAW mares and with no 
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apparent clinical symptoms, indicating that they had little to no impact on the reproductive 

efficiency of these mares [60–62]. The relatively low number of differentially abundant taxa 

would indicate that like the uterus, the core microbiomes of semen and the vagina are similar. 

This is supported by work done in humans that found couples to have highly similar 

seminovaginal microbiomes with 85% shared phylotypes [45]. Given our results and previous 

studies there may be a physiological or immunological system responsible for maintaining the 

uterine, vaginal and seminal microbiome.  

 Conclusion  

This study confirmed the presence of microbes within the uterus, vagina, feces and semen 

of equines using NGS. There was a distinct microbial composition when fecal and seminal 

samples were compared to uterine and vaginal samples. We demonstrated for the first time the 

impact of breeding with raw or extended semen on the uterine and vaginal microbiomes. The 

uterine microbiome was fairly stable across timepoints and between treatments, indicating that 

the uterus is able to effectively stabilize the microbial population by 48 hours post-AI despite 

introduction of foreign bacteria within semen and antibiotics present in extender. The vaginal 

microbiome is more dynamic and susceptible to fluctuations compared to the uterus as it was less 

stable across time points and treatments. Lastly, there was a high level of similarity between the 

seminal microbiome and that of both the uterus and vagina, indicating that there may be similar 

control mechanisms within the mare and stallion to recognize commensal bacteria within the 

reproductive tract or it could simply be due to the similar environment that the mares and stallion 

were exposed to. Further research is necessary to determine the specific roles of bacteria that 

make up the core microbiome of the uterus, vagina, and semen of equines and the physiological 

mechanisms that maintain the stable microbial composition at these sites.  
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