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CHAPTER 1

INTRODUCTION

The subject of this report is a paper by Werner Frei and Chung-
Ching Chen entitled "Fast Boundary Detection: A Generalization and a
New Algorithm" [1]. This paper introduces a mathematical concept of
boundary detection in digital images and presents results of the re-
lated implementation. This report consists of an introduction to the
subject of boundary or edge detection, a description of their concept,
and independent implementation results.

| One of the motivations for research in edge detection in digital
images is that computers and humans can easily record images but do
not as easily analyze and understand the information in the images.
Edge detection is one method for increasing the ability to understand
an image by highlighting boundaries or edges found in the image. For
example, edge detection may enhance the ability to identify objects in

an image by making distinct outlines of the objects.



CHAPTER 2

SOME FUNDAMENTALS

To define the problem of edge detection there must first be an
understanding of digital images, as recorded by a computer. A simple
way to understand digital images is to imagine a black and white
photograph that has been carefully cut into, for example, 256 horizontal
strips of the same width. Then the picture is cut intoc 256 same width
columms. Each of the resulting squares, called picture elements or
pixels for short, is then compared to a scale of grey tones which vary
in brightness from black at one extreme, to white at the other. There
are 256 levels of grey tomes, each assigned a number, Fér example, 0
may be assigned to black and the numbers increase and tones brighten
until whitz is reached with the assigned value of 255. When the
average grey tone of the pixel matches the grey tone of the scale the
pixel is assigned that number. A computer thus records an image by
keeping track of the row and column that a pixel is in and the
corresponding grey scale value. To a computer then, an image consists
of a set of numbers which represents to it the tones of grey that the
human eye perceives.

A needed additional understanding is what is meant by the term
edge. A general definition would be that an edge is where two regions
of different homogeneous content meet. For example, in a color photo

of the flag of the United States, an edge would be where a white stripe



meets a red stripe. If the same photo was in black and white the edge
would no longer be between regions of different colcr but between
regions of different grey tomes. This type of edge between regions of
different grey tomes, is the type of edge of interest in the paper by
Frei and Chen [1]. In a digital image, where numbers represent grey
tones, edges are thus where these grey scale numbers change between
one group of pixels and another.

These changes in pixel grey scale values are the basis for two
opposite methods of edge detection. The first method is to start with
an image and find small groups of pixels tﬂat have similar grey scale
levels. Then adjacent pixels are added to these groups until the
adjacent pixels have different enough grey scale values to judge them
as being from a different group. Thus small "seed" regions in a
picture are "grown'" until they meet other regions and edges are formed.
In this method the emphasis is on looking for pixels with similar grey
scale values.

The second method is tc start with an image and find adjacent
pixels that have different grey scale values. On the basis of the size
of the difference, a decision is made as to whether the pixels are
part of an edge. The algorithm of Frei and Chen is one of several
algorithms that use this method for finding edges.

Unfortunately the problem of edge detection is not as simple as
just finding the difference between the grey scale values of two
adjacent pixels. One complicating factor is noise which can come
from the lighting of the scene being recorded, f{rom the photosensitive

parts of the camera and/or the digitizing of the grey tones. Noise



has the effect of randomly and sometimes not randomly changing the
grey scale value of pixels. This tends to blur digital images and
make those pixel value changes at edges erroneously larger or smaller.
Another complicating factor caused by noise, the limitations of
camera hardware and by the reality of true edges is that sometimes
edges are not recorded completely by just two pixels. For example,
consider three pixels in ome row. Assume these pixels are a digital
image of an edge and the pixel values, in order, are 130, 120 and 110.
The difference between adjacent pixel values is 10. If the criterion
for there being an edge was a difference of 15, no edge is detected.
If, however, the two outer pixel values are considered, the difference
is 20 and an edge is detected as it should be. If noise were added to
this example so that the values changed to 127, 119 and 113, then even
with consideration of hie outer two values, an edge would not be
detected. To correct for this problem of noise, pixel values adjacent
to the 127 and 113 valued pixels could be considered and, for example,
averaged. The resulting averages could then be differenced and an
edge determined. This averaging, for eiample, may have the advantage
of less errors caused by noise, but by involving large number of pixels
increases computation time and increases the possibility of not detecting
two edges separated by only one pixel width.

Often algorithms vary from user to user because of new insight
as well as different applications. However, most of them follow the
same pattern of first processing an image with a simple edge detector.
The edge segments found are then linked together and thinned to obtain

the best results. Frei and Chen mention several published algorithms



including ones by Roberts [2], Kirsh [1], Sobel [4], Prewiit [5] and
Robinsen [6]. They then mention that these algorithms revealed
similarities which led to the development of their algorithm which is

introduced in the next sectiom.



CHAPTER 3

BASTC CONCEPTS AND DEFINITIONS

The problem of determining if a pixel element is an edge element,
as defined by Frei and Chen, but using terminology from the first
section of this report, is as follows: given a3 set of n® adjacent scale
values from a small portion of . an image, called a subarea, determine
whether the subarea contains an edge pixel between two regions of
different homogeneous grey scale values. Frei and Chen also add that
it may be of interest to determine if the subarea contains a line, a
line being two edges so close together that they are difficult to
distinguish as being separate.

To further define the problem, Frei and Chen define three ideal
images that can occur in a subarea: the ideal edge, the ideal line and
the ideal point.

The image of an "ideal edge' occurs when the edge is straight
and passes through the center of the subarea [see Fig. 1(b)]. When
this subarea is digitize& the result will be pixel grey scale values of
El on one side of the edge and pixel grey scale values of 52 on the
other. With the convention B,>b then a direction Bo for the edge can
be uniquely determined with respect to some arbitrary fixed direction.
The edge in this subarea is then characterized by its "magnitude" = ]51— EI
and direction 6,,0<€.<2w.

The image of an "ideal line'" occurs when a straight stripe passes
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through the center of the subarea which has a width of about one pixel
width [Fig. 1(c)]. When this subarea is digitized the pixels on the
line will have value El and those on either side Sz . As with the edge,
a direction 62 can be determined but its range is only 0<8,<m. Again,
the "magnitude" = %El_gzl and angle 82, with the addition of polarity
(51-52), characterize the line.

Finally, the image of an "ideal point" occurs when there is a
region in the center of the subarea whose area is about equal to the
area of one pixel {Fig. 1(c)]. When this image is digitized the center
pixel will have a wvalue El’ surrounded by pixels with value EZ' This
point is characterized by its "magnitude" = |51—52| and its polarity
(51-52). More definitions which apply to the problem of edge detection
concern the mathematics involved. This mathematics is simply vector
and matrix mathematics. The rows and columns of a matrix correspond
directly to the rows and columns of pixel grey scale values of a
digital image. Thus the digitized pixel values bij (b: represents
pixel grey scale value, i: pixel row, j: pixel colummn) can be represented

by a matrix. For example, if the subarea was a set of n? pixels and

n=3, the pixel values cculd be representad by the matrix B:

11 712 "13

b [See Fig. 1(a)]

21 P2a bag

b31 b32 b33

An alternate method is to arrange the pixel values into a vector b:

b= [by;, Dygs Bygs byys Bpys bygs byys byys bygle
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With this notation the mathematical operation of inmer or dot

product (.,.) between matrices is defined as

n n
B,C) =% I b,.c,..
®.8 = jep 13743

For vectors, the inner product is a simpler operation:
1'12 —
(b,ec) = kiibkck.
This is simpler because the pixel values now have one index corres-
ponding to their order in the vector instead of two indices, one for
the row and one for the columm.

These definitions are not unique to the algorithm of Frei and
Chen. They apply, with perhaps some slight modifications to all the
algorithms referenced, as well as others which fall in a general
category of enhancement/threshold edge detector algorithms. Enhance-
ment refers to the process of determining the quantity of a certain
quality in a subarea of a digitized image. Threshold refers to the
decisicn then made based on the quantity. If the quantity does not
exceed the threshold level, the subarea is judged to not possess the
desired quality. If it does exceed the threshold, the subarea is

judged to possess that quality.
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Chapter 4

CATEGORIES OF ENHANCEMENT/THRESHOLD EDGE DETECTION METHODS

Enhancement/threshold edgé detector algorithms fall into two
categories [1], [7], based on their method of enhancement. The
difference is in the types, numbers, and combination of results of
operators designed to enhance certain qualities of a subarea.

One category uses differential operators which perform a discrete
differentiation on a subarea to yield a result corresponding to the
gradient. This category includes the Roberts (2], Prewitt [5], and
Sobel [4,p.271] operators [see Fig. 2]. The basic assumption for
this approach is that subareas containing edges will yield a large
gradient because of the difference between the grey scale values
between regions on either side of the edge. If the edge operators
are indicated as matrices Wl and Wz, and the same size image subarea
as matrix B, the magnitude of the gradient is obtained by the

equation:

A= BW)2+ (B,W)2 112, w0

If the scalar value A is greater than some threshold, then the center
pixel of the image subarea is considered an edge pixel. 1If it is
less than the threshold then the center pixel is not considered an
edge pixel. An equation that is sometimes used as a gradient

indicator because it is simpler than equation (1) is:

A=| @W) | +] BW) |. (2)
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There is also an equation for the approximation of the angle of the

edge with reference to direction of the operators:
® = arctan [ (B’Wl) / (B,Wz} 1w

A comparison of the response of these operators, using equations

(1) and (2), to an ideal edge being rotated through 45°, shows that

there are differences [see Fig. 3]. These and other differences can
be seen in an article by Abdou and Pratt [7]. Robinson [6] tabulates

the normalized response of these operators to a 45° ideal edge

resulting in the table:

Operator [see Fig. 2] Angle Amplitude A (equ. 1)

Prewitt 45° 0.943
Sobel © 45° 1.067
Isotropic 45° 1.000

The response amplitude of the isotropic operators has been
added to Robinson's table. From these responses, Robinscn chose the
Sobel operators [see Fig. 2] because he feels its greater response to
45° edges compensates for lower visual acuity in diagonal directioms.
Bowever, Frei and Chen chose the isotropic operators because they
are the best of the operators shown in Fig. 2 at being invariant in
amplitude response to changes in edge angle.

The other category of enhancement/threshold edge detectors uses
template matching operators [see Fig. 4]. These operators are seis of
matrices representing discrete approximations to ideal edges of
various orientations. These operators include the ccmpass gradient

operators introduced by Prewitt [5], the Rirsch operators [3], and
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the 3- and 5-level simple operators [6]. With these operators the
inner product of the image matrix B with each template matrix T is
i

computed and the largest response is retained. The equation is:
A = MAX (B’Ti) i=1,2,..,9

If the response magnitude A is greater than some arbitrary
threshold then the subarea is considered to contain an edge pixel.
If not, then there is no edge pixel. The basic assumption of this
category is that if there is an edge in the subarea it will be
enhanced by one of the templates which approximate all possible
edges. This assumption can also be applied to the detection of
lines and points by using templates that are discrete approximations
of ideal line and point images. Figure 5 shows some examples of

such templates.
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Chapter 5

THE EDGE DETECTION ALGORITHM OF FREI AND CHEN

In the formulation of their algorithm Frei and Chen used vector
mathematics. Since the definition of projection from vector mathe-
matics is: given two vectors B and W, the projection of B on W is the
vector [ (B,W) / (W,W) ] * W. They conclude that all previous
enhancement/threshold algorithms are thresholding the magnitude of
the projection of the image subarea vector B on the differential or
template matching operator vectors. They also draw other conclusions
about the relationship between the subarea vector B and the operator
vectors. One conclusion they draw is that the image vector B and
the operator vectors are only a few of the vectors in a "space'.

This "space" is defined by vector mathematics as all possible n?
element vectors. Another conclusion is that the purpose of the
operator vectors is to describe a smaller set of vectors or a
"subspace' which is part of this space. For example, the subspace
described by the gradient operators W1 and W2 are all vectors W such
that |

W= clw

¥ )
1+ SN,

Since the thresholded value is the magnitude of projection onto these
subspaces the desire of users of these vectors is to design operators
that very closely describe all possible image edge vectors.

Again, from an application of vector mathematics, Frei and Chen
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realize that this magnitude of projection is not the only quantity
between a vector and a subspace that can be thresholded. There is also
the angle between the vector and the subspace. Between two vectors B

and T the angle is defined as:

8 = arccos [ (B,T) / ( IIBII * ||T|[ ) 1.

Frei and Chen use this angle 6 to determine how well the image
vector B "fits" the ideal edge subspace described by certain operator
vectdrs.

In order to choose these operators, Frei and Chen used vector
mathematics to understand the n?-dimensional space with which they
are working. They realize that if there is a set of n? vectors
W

W W o from this n?-dimensional space, which have the property
n

12? 21";

c, W, +c.W, + ,.:, +c W, =20
L™k 272 ot n? u2

only if Cis Chsnes 2 = 0, then these vectors would form a basis set
of vectors for the space. This property called linear independence
implies that given any possible vector V in the space, the set would

be a basis set because this equation would always be true:

W

vV = c.lW1 + c2W2 * ysiy T w2

cnz
It is not mathematically difficult to show that if a set of n? vectors
are orthogonal, that is they have the property

i=j

(w :w ) L
1 i#3

k.
R

then they are also linearly independent.

In order for their angle algorithm to work, Frei and Chen realize
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that the operator wvectors they work with must be orthogonal. If they
are not orthogonal then an inaccurate angle walue would result. With
this understanding they realize the restrictions they are working
under. In the space they are working with, they must choose e
orthogonal vectors [ TyseesTy ] which describe an "edge" subspace.
This subspace may be the same as those described by vectors of

previous algorithms [see Figures 2,4 ], but now there is a restriction

of orthogonality. Once these e "edge" vectors are chosen then there

2

are n‘-e ''non-edge" vectors | Tn2 . Tnz ] to choose to complete a

-a?*
basis set for the n?-dimensional space. Once this is dome then the

angle between the image subarea vector B and the "edge" subspace is
e n?
& = arccos [ £ (B,T,)%/ ¢ (B,Tj)2 12,
i=1 j=1
Since the angle f quantifies the similarity between the image
subarea and the edge subspace, Frei and Chen propose that if the
resulting angle 8 is less than some threshold, that the image subarea
contains an edge pixel.
Realizing that since the set of vectors TI"" T , are a basis
n
set so that
n2
(8,B) = I (B,T,)? , (4)
i=1
Frei and Chen simplify their algorithm to thresholding the magnitude
of this equation:

e
£ (8,T,)% / (8,B). (5)
i=1
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In comparing this equation (5) to equation (1) and (2} used in
previous algorithms, it is clear that the only difference is the use
of the denominator. To understand the effects of this denominator
consider that (B,B) is the square of the length of the image vector.
The equation then becomes one of finding the ratio between the
projection of the image vector on the edge subspace and the projection
of the image vector on itself. It is as if the image vector were
divided into two new vectors, an edge vector and a non-edge vector.
A comparison is then made between the size of these vectors and the
size of the original vector. If the edge vector is large enough in
length. then an edge pixel has been discovered. Previous algorithms
have not used this comparison and so may erroneously classify pixels
as edge pixels when the length of the non-edge vector may havg been
as large,-if not larger than the length of the edge wector.

A good comparison of the differences with with this new algorithm
can be seen in Fig. 6 [1]. Frei and Chen describe this figure as

"two subarea vectors B, and B, are shown, projected

onto the "edge" and ''mon-edge" subspaces, respectively.

Clearly B; poorly fits an ideal edge vector, because

its projection to the "non-edge'" subspace is large. B,

is rejected by our criterion, whereas it is classified

as an edge vector by a conventional threshold decision.

Conversely, B, is a good fit to the ideal edge element.

It is classified as such by the 6 criterion but rejected

by the conventional decision rule."

Frei and Chen go on to point out that if the non-edge basis wvectors
described line or point subspaces [see Fig. 5] that the same criterion

could be used to find line or point pixels.
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Another effect as mentioned by Frei and Chen is that equation
(5) is invariant to scene illumination. This can be shown by
considering the light reaching the camera as a function of
illumination I of the scene and the reflectance rij of the objects
in the scene. By substituting rij*I for pixel grey scale values bij

in equation (5), it can be shown that if Ty; is independent of I then

i
I will cancel out of the equation. This means that the new criterion
extracts the reflective properties of object boundaries if the small
subarea has a comnstant illumination. The effect isan increased
ability to find edges in poorly illuminated areas of an image.

In order to be mathematically precise in equations (3), (4), and
(5) it is important to remember that upon implementation the operator
vectors must be used in a unit vector form. That is, each operator
vector Wi’ when used in an equation must satisfy this equation:
(Wi,Wi) = 1. This is not a hardship as the unit vector of any vector
Wi is wi f (wi,wi)lfz. This is a point not mentioned by Frei and Chen
as they are discussing general concepts but is a necessity when

implementing their algorithm.
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CHAPTER 6

THE ORTHOGONAL FEATURE BASIS OF FREI AND CHEN

To find a suitable set of orthogonal vectors to be a basis for
the n?-dimensional space, Frei and Chen considered the operator
vectors and subspaces for edges and lines used in other algorithms
[see Figs. 2, 4]. From the large number of possible orthogonal
vectors they chose the nine vectors shown in Fig..7. These vectors
can be grouped to describe three subspaces, the edge, the line and the
average subspace. Within each subspace they can be paired on the basis
of similarity.

| There are two pairs of vectors in the edge subspace. The first
pair of vectors W, and W, are termed the "isotropic gradient" vectors
and are taken directly from Fig. 2. The second pair, Wa and W, ,
termed the "ripple" pair, have, to quote the authors, "a distinctive
higher order aspect (three zero crossings instead of one)". The
origin of these vectors W, and W, is not clear as they are not similar
to any previously defined edge subspace. This may be the reason they
are found to contribute little to the edge subspace.

In the line subspace there are also two pairs of vectors. The
origin of these vectors is the templates found in Fig. 5(a). The
vectors W and Wy, the "line" vectors, which appear to have directional
preference are simply 1/3(T,-T;) and 1/3(T2#Tk) respectively of the

vectors in Fig. 5(a). The vectors H7 and WS, the "discrete Laplacian"
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vectors, which are without directional preference are (T,+T,) and
(T1+T3). The authors note that the sum (W7+WB) is equal to the point
vector of Fig. 5(b) and that this pair is a basis for all discrete
realizations of the discrete Laplacian [9].

The remaining vector is Wy, the average vector which completes

the basis.
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CHAPTER 7

SOME RESULTS AND DISCUSSION

Figure 8(§) shows the image of size 512x512 pixels which was used
to obtain the results that are presented in what follows.

Tables I, II and III show the variance of the magnitude of pro-
jection of the image of Fig. 8§(a) onto various subspaces composed of
the nine orthogonal basis vectors of Fig. 7. The magnitude of the
variance is an indication of the msponse of the image to the subspace.
Table I contains the response of the image to each of the nine ortho-
W

gonal vectors W ...Wg of Fig. 7. Table II.contains the variance

1 "2?

of the response to the "edge", "ripple'", "line", and "discrete
Laplacian"” pairs of vectors of Fig. 7, and Table III the variance of
the response to the '"edge'" and "line" subspace of Fig. 7.

Three observations, two of which have applications, can be made
from these data. By comparing the magnitude of the variances of the
projection onto the individual vectors, the pairs of vectors and the
subspaces, it is evident that the image has more edge content than line
content. A second observation, also based on comparison of the magni-
tude of the variance, is the minimal contribution, individually and as
a pair, of the "ripple" vectors, W, and W, to the "edge" subspace. Frei
and Chen point this out and use it as a reason to exclude these basis
vectors from the computation of the "edge” subspace. This reduces

computation time with little loss of information.
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Magnitude of Projection Variance of
onto each Vector Magnitude of Projection
(B,W,) 125.65
(B,W2) 118.95
(B’WS) 8.56
(B,Wq) 8.26
(B,Ws) 10.66
(B,Wg) _ 24.61
(B,W,) 4,43
(B, WB) 14.34
(B,Wy) 15180.03

Table I. Variance of Magnitude of Projection onto Orthogonal Vectors
of Figure 7. B = Image Vector

Magnitude of Projection Variance of
onto pairs of Vectors Magnitude of Projection
[(B,W,)2 + (B,W,)2]!/2 145.94
[(B,W, )2 + (BW)2]1/2 5.05
[(B.H)2 + (B.Wg)2]1/2 13.87
[(BIW3)2 + (B,Wg)2]1/2 6.71

Table II. Variance of Magnitude of Projection onte pairs-of Vectors of
Figure 7. B = Image Vector

Magnitude of Projection Variance of
onto Subspaces Magnitude of Projection

Edge Subspace

4
[ £ (B,W,)2]1/2 141.86
i=1

Line Subspace

8
[z (B,u))2]1/2 16.87
i=5

Table III. Variance of Magnitude of Projection onto "edge' and

"line" subspaces of Figure 7. B = Image Vector
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A third observation is the large variance of the response to the
"average'' basis vector W of Fig. 7 in Table I. This variance is also
the response to the "average" subspace of Fig. 7. In comparison to the
variance magnitudes of the "edge'" and "line" subspaces of Table III, it
is eawident that with most image vectors, the projection onto the
"average' subspace is a dominant component. Because of its size it
tends to dominate the denominator of equations and compresses the range
of the result. The authors note this and provide a new equation to

solve this problem. This equation in modified form is

]
L (B,W;)?/((B,B)-(B,%9)?) (6)
i=k
with k and j as appropriate for the desired subspace. The actual

equation given by Frei and Chen is

] - -

I (8,W;)%/(8-B,B-B) ©)

i=k
with k and j as appropriate for the desired subspace and §=(B,W§). The
denominator of equation (7) is not mathematically precise as B is a
scalar value and B is a vector. This makes the intention of the

denominator (B-B,B-B) unclear. The rational for the modified denominator

in equation (6) is that since

4 8

(B,B)= % (B,W,)%+ I (B,W,)%+(B,W)2,
. i i
i=1 i=5

the "average' component of image vector B can be removed from the
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denominator by simple substractionm of (B,Wg)2. This enhances the
range of the result of equation (6) compared to equation (5), as
the new denominator is the magnitude of the projection of the image
vector onto a new subspace composed of only the "edge'" and "line"
subspace without consideration for the average subspace. The range
is now 0 to 1.

Figure 8(b) shows the result of equation (6) when applied to the
image in Fig. 8(a). As Frei and Chen note, their algorithm brings
out very fine edge detail even in darker areas of the picture, such as
the thigh of the child. This is probably a result of the observation
made earlier, that in equation (6) reflectance factors remain while
illumination factors cancel. Unfortunately the algorithm, in being
sensitive to such edges, is also sensitive to smooth luminance gradients.
This can be seen in the sky portion of the picture being cluttered
with edge points, on the right forearm of the child and elsewhere.
Methods suggested by Frei and Chen of removing erroneous edge points
are to reapply their algorithm, but this time find the respomse of
the "edge" image (Fig. 8(b)] to the "line" subspace since the lines of
the "edge" image are the edges of the original image. Another method
suggested and used by Frei and Chen is to find the response of the
"edge" image [Fig. 8(b)] to the "point" vector [Fig. 5(b)]. The

point pixels thus detected are then removed from the "edge' image.
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(a) (b)

(e) (d)

Figure 8. (a) Original Image,
(b) Results of Frei and Chen algorithm using equ. (6), i=1,j=2,
(c) Image (b) thresholded with 10% of pixels retained,

(d) Thresholded results using Sobel operators of Figure 2
and equ.(1l). 10%Z of the pixels remain,
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CHAPTER 8

COMPARISONS

This point detection method was used as the first step in
processing the '"edge'" image of Fig. 8(b) into the image of Fig. 8(c).
Approximately five percent of the pixels in the "edge" image, that
responded the strongest to the "point" template of Fig. 5(b), had
their grey scale value zeroed. Then the resulting image was
thresholded so that approximately ten percent of the pixels remained.
The result is Fig. 8(c).

Figure 8(a) is an image for comparison to Fig. 8(c). It is
the result of the original image im Fig. 8(a) being projected, using
equation (1), onto the subspace formed by the two Sobel operators
found in Fig. 2. The resulting image was thresholded so that as with
Fig. 8(c) approximately ten percent of the pixels remained.

Figure 9(a) is another image, this time of size 256x256 pixels,
to which the algorithm of Frei and Chen was applied. It is an infra-
red image of a man standing beside an elevated box with a wire fence
behind and to his right. The unprocessed result of the algorithm
of Frei and Chen can be éeen in Fig. 9(b). The image in Fig. 9(c)
is the image of Fig. 9(b) processed the same way as the image of
Fig. 8(c). And for comparison Fig. 9(a) shows the original image
processed in the same way as Fig. 8(d).

A comparison of the images in Fig. 8(c) and Fig. 8(d), Fig. 9(c)



(a)

(c})

Figure 9. (a)
(b)

(c)
(d)
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(b)

(d)

Original Infra-Red Image,

Image (a) processed with Frei and Chen algorithm using
equ. (6) with i =1, j = 2,

Image (b) thresholded to retain 10% of pixels,

Image (a) processed with Sobel operators of Figure 2 and
equ. (1), then thresholded to retain 10% of pixels.
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and Fig. 9(a) reveals that for approximately the same number of pixels,
more detail is visible using the algorithm of Frei and Chen. Advantages
listed by Frei and Chen of their algorithm as '"clearly revealed" by the

results are:

1) much more subtle'edges are detected,

2) "strong" edges are detected as thinner lines
(minimizing the need for "thinning" operations),

3) edges in dark areas of the image are more likely

to be detected.

Disadvantages are an increased sensitivity to noise and additional

computational time.
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CHAPTER 9

MORE RESULTS AND DISCUSSION

For a more thorough understanding of the algorithm of Frei
and Chen, a computer program was written [See Appendix B] which
produces an ideal edge, at an arbitrary angle, in an image subarea.
More images are generated as this edge is shifted away from the center
of the subarea. The result is a sequence of images of an ideal edge
shifting across the subarea. This sequence of images was then
enhanced using the algorithm of Frei and Chen and the response studied.
The idea for this program came from a péper by Abdou and Pratt [7].

The response of the algorithm of Frei and Chen to these generated
images shows several properties of the algorithm. One property is
that the response is invariant to the average value of the pixels in
the generated images. This was tested by adding a constant to the
generated images and resulted in no change in the response. This
was expected and is also a property of the algorithm of Sobel [4].

Another property is that the response is not a function of the
magnitude of the edge. As defined previously, the magnitude is the
difference in the grey scale values of the pixels on either side of
the edge. This property was tested by multiplying the generated
images by a constant. This multiplication increased the difference
in grey scale values but resulted in no change in the response. The

response of the algorithm of Sobel [4], which uses equation (1), did
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change and was propertional to the magnitude,

This property of invariance to magnitude partially explains
several characteristics of the algorithm of Frei and Chen. It
explains why fine detail edges and edges in dark areas of the picture
with magnitudes of, for example, 2 are enhanced equally with strong
edges in lighter portions of the image with magnitudes of, for example,
150. It also explains why smooth luminance gradients which can be
identical to edges with small magnitudes, are enhanced and why pixel
values in a subarea need only be changed slightly by noise for the
subarea to be enhanced as an edge. Of course, this property is based
6n the mathematics of equation (6). Evidently the effects of
magnitude are constants which can be separated from the numerator
and denominator of equation (6) and cancelled.

The response of the algorithm of Frei and Chen to images of
shifted edges, reveals that the response is a function of the distance
from the edge to the center of the subarea and of the edge angle. The
response is shown in Fig. 10 to the subarea images of a vertical
edge rotated 0 degrees, 23 degrees and 45 degrees respectively, as
the edge is shifted away from the center of the subarea. The hori-
zontal axis of Fig. 10 indicates in fractions of one pixel width the
distance the edge has been shifted. These responses lead to the
conclusion that the criterion for edge enhancement is based on the
position of the zero crossing point between pixel values of the
subarea, once the average value of the pixels has been removed. The
position of zero crossing can be determined by comparing the power of

the cosine and sine waveforms which sum to form the image subarea.
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CHAPTER 10

COSINE AND SINE COMPONENTS OF A 3x3 SUBAREA

To understand the cosine and sine components of an image
subarea, it is necessary to first consider a narrow strip of an image
in the horizontal, vertical or diagonal direction. If this strip is
considered as a continuous signal x(£) where £ is distance along the
strip and x(£) is considered periodic, then x(£) can be expanded into
the sum of an infinite number of harmonically related cosine and sine

terms; i.e.,

=]

x(E) = ag/2 + I ( a cos mw,& + b sin mw,€ ) (8)
m=1
where
NSi/z
a ) = (2/88,) f x(£)cos mu§ dE (9
and
NS;/2
by = (2/¥8y) [ x(£)sin ms € dE (10)
-Ns;/2

The terms in this expansion are defined as follows:

NS; = period of waveform (N = # of pixels, S; = pixel width),

£, = fundamental cyclic frequency = 1/NS;,
wy = fundamental radian frequency = 21f,,
m = integer defining order of harmomic.
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When this strip x(£) is digitized, aliasing and folding over
occurs for frequencies above 1/25;. This means that if the digitized
signal was used to regenerate a continuous signal the resulting signal
x'(£) could now be expanded into the sum of a finite number of
harmonically related cosine and sine terms. How close x'(E) depends
on the original frequency bandwidth of x(£).

If %(E) is considered one row of an image and is copied into
every other row of the image then the resulting image I(£) could
be expanded into an infinite sum of cosine and sine images which vary
only with row distance §. If this continuous image is digitized and
the continuous signal regenerated from the digital values, the
resulting image I'(E) could be expanded into a finite Suﬁ of
harmonically related cosine and sine images. The same can be said
if %(E) is considered a column or a diagonal strip of'an image.

In the case of rows or columns, the fundamental harmonic
frequency of the cosine and sine images will be 1/NS;, where N is the
number of pixels in the row or column and S; is the pixel width or
sampling interval. This sampling interval S; also limits the
maximum harmonic frequency of the finite sum of cosine and sine images
to 1/28;.

In the case where x(£) is a diagonal strip of an image, the
sampling interval is not the same as along a row or colummn. If the
sampling interval along a row is S; then the sampling interval along
a diagonal is Si = (/5?2)31. The reason is that samples of the image
taken anywhere along a perpendicular line to the diagomnal are true
samples of the image along the diagonal. They are true samples

because the diagonal strip x(£) was copied to adjacent diagonal strips.



42

If an NxN pixel image is assumed, then the number of samples in the
diagonal direction is 2N and the fundamental harmonic frequency is
l/2NSi. The maximum harmonic frequency is 1/2S}.

Figure 12 shows the resulting pixel wvalues of a 3x3 subarea of
each of the harmonic cosine and sine images along a row. They are
digital samples of each of thelharmonic images, referenced so that the
cosine waveform crosses zero at the center of the subarea.

Because they are orthogonal, the three masks M;, My, and Mg of
Figure 12 can be called a basis set for any possible subarea which
varies only along its row distance. These three masks, developed from
knowledge of the harmonic frequency comﬁonents of the total image,
imply that any possible image subarea which varies only along its rows
can be considered as a combination of an average ccnstant, a cosine
waveform of harmonic frequency less than or equal to 1/NS; and which
crosses zero at the center of the subarea, and a sine waveform of
equal frequency. The power relationship between the cosine and sine
component is thus an indication of the position of the zero crossing
point in an image subarea. These three masks, if rotated ninety degrees,
generate the same results for an image which varies only along its
columns.

Figure 13 shows the resulting pixel values of a 3x3 pixel subarea
of each of the harmonic cosine and sine images possible that vary
according to diagonal distance. The cosine and sine masks are
orthogonal to each other but masks within each category are not. Part
of the reason for this is that an inner product, in this case, is a
discrete integration of the product of two sinusoids of different

frequency. The integration result is not zero because the integration
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Frequency (f=1/NSLl Cosine Sine
0 0 0 0 1 11
0 0 O I 11
0 0 O 111
M;: O zero crossing
0 < nf < 1/25, 1 0-1 -1 2-1
1 ¢6-1 -1 2-1
1 0-1 -1 2-1
M;: 1 zero crossing
1/2s; 0 0 0 -1 2 -1
0 0 0 -1 2 -1
0 0 0 -1 2 -1

Figure 12. Digitized cosine and sine images in

Ma: 2 zero crossings

row direction.



Frequency (f=1/ZHSLl

Cosine

0

D~ uE < 1/55£

1/48]

1/3s!

t
1/23i

Figure 13. Digitized cosine

0 0 0

0 0 0

i 0.00 0.95 0.59

0.00 0.95
i -0.59 -0.95 0.00
Zy: 1 Q:.crossing

0

j=]
[

-1 01
0-1 0|

Z,: 2 0 crossings

Zg: 3 0 crossings
0 0 0
0 0 0

0 0 0
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and sine images in

Zy: 0 zero crossing

0.72 0.01 -1.10

0.01 0.72 0.01

-1.10 0.01 0.72

Z3: 2 0 crossings

8§ =1--10
-1 8 -1
=10 =1 8

Zg: 2 0 crossings

Z7: 2 0 crossings

4 -5 4

-5 4 -5
4 =5 4

ZB: 4 0 crossings

one diagonal direction.
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distance is not a complete number of cycles for each frequency.
Another fact to note is that images that vary diagonally also vary in
the row and column direction. This means that some of the diagonal
subareas are not orthogonal to some of the row subareas. However
because the cosine and sine subareas of Figure 13 are orthogonal there
is again an indication of the possibility of separating a diagonal
image subarea into three general components, an average value, a cosine
waveform which crosses zero in the middle of the subarea and a sine
waveform of equal frequency. And as before the power relationship
between the cosine and sine components gives an indication of how
close is the zero crossing to the center of the subarea.

If nine orthogonal subareas are selected from those in Figures
12 and 13, the most obvious ones to choose first are MI,THZ, M2
rotated 90°, M, and M, rotated 90° of Figure 12. The only subareas of
Figure 13 which are orthogonal are Zes Zg rotated 90°, Z, and Z,
rotated 90°. These nine orthogonal basis vectors are shown in Figure
14 as vectors Dy, Dy,.., Dg.

The relationship between the "cosine" vectors Dy,.., Dy of
Figure 14 and the edge subspace vectors W;,.., W, of Figure 7 is
fairly clear. Both sets look like cosine waveforms that cross zero
at the center of the subarea. W; and W, look like cosine waveforms
in the column and row direction. The sum (Wl + W,) looks like a
cosine waveform in the diagonal direction with one zero crossing and
W, and W, look like cosine waveforms in the diagonal directionms with
three zero crossings.

The relationship between the "sine" vectors Dg,.., Dg of Figure

14 and the line subspace vectors Wg,.., WB of Figure 7 is more tenuous



Figure 14. Nine

13.

0 -1 11 1
0 -1 0 0 0
0-1] | -1-1-1
1-1 5 I S
0 1 1 0-1
-1 0 ] ’ 0-1 1
D, D,
2 -1 [ l -1-1-1
2 -1 l l 2 2 2
2 -1 | -1-1-1
Ds Ds
-1 2] | 2-1-1
2 -1 | -1 2 -1
-1 -1 I -1 -1 2
Dy Dg
11
1 1
11|
D

1= "cosine" vectors

}- "sine" vectors
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orthogonal subarea vectors taken from Figures 12 and
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but also direct. Wg = (1/3)(D5-D6), We = (1!3)(D7-D8), W, =.(D,+Dg),
and WB = (DS+DS)' Both sets are similar to sine waves with peaks at
at the center of the subarea. W5 and Ws look similar to sine waveforms
in the row and column direction and Wé and W7 look similar to sine

waves in the diagonal direction with W, being of higher frequency as

there are four zero crossings.
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CHAPTER 11

CONCLUSIONS

With the relationships between '"cosine” and "edge' vectors and
between "sine'" and "line" vectors of chapter 10 in mind, an explanation
for the edge detection criterion of Frei and Chen can be given. Due
to the limitations of only three pixel values in the row and column
direction and five sample values in the diagonal direction, all infor-
mation in 3x3 image subareas can be expanded as the finite sum of
cosine and sine waveforms. Cosine waveforms are defined as having a
zero crossing at the center of the subarea and sine waveforms as
having a peak. There is one cosine and one éine waveform for rows,
for columns and for each of the diagonal directions.

As the edge subspace of Figure 7, chosen by Frei and Chen,
consists of all cosine waveforms, the implication is that an ideal
edge subarea can be expanded with only cosine terms. The criteriomn
for edge detection found in equation (6) can now be explained as a
ratio of the power in the cosine waveforms of a subimage versus the
total power found in the cosine and sine waveforms. This ratio is an
indication of how close the zero crossing is to the center of the
subarea.

As the line subspace of Figure 7 consists of all sine waveforms
the implication is that an ideal line subarea can be expanded as a

finite sum of sine waveforms. The criterion for line detection can
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then be the ratio of the power in the sine waveforms versus the total
power in the sine and cosine waveforms.

The advantages of this power ratio for edge detection are
"thinner" edges due to greater sensitivity to actual edge position
in a subarea and true edges with small magnitudes, such as those in
dark areas of an image, being qetected.

Some disadvantages, because of sensitivity to actual edge
position and not to magnitude, is sensitivity to smooth luminance
gradients and to noise. A possible method to lessen this problem in
addition to those methods listed by Frei and Chen is to use two
thresholds. One threshold is used for the magnitude of an edge.

This threshold is set to eliminate the small magnitudes of smooth
luminance gradients and noise with minimum loss of true edge infor-
mation. The other threshold is used for the power ratio between cosine
waveforms and total sinusoid power. This ratio is set to eliminate

edges which are not close to the center of the image subarea.
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APPENDIX A

This appendix contains the Fortran listings of five programs

used on the Data General VAX computer of the Engineering College of

Ransas State University. These programs let the user generate

vector files, find the responce of images to these vectors and

display the results.
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“ROGEAR CRMASK.FOR

THIS FROGRAM LETS THE USER CREATE AND MODIFY
7 ELEHENT DATA FILES USED AS MASX VECTORS IN
PROGRAM FRECHEN.FOR.

REAL%4 AR(?)
CHARACTER¥10 CHO
LOGICAL ANS
Ici=1

102=2

HFOINT = @

CALL REPLY(S MODIFY OLD FILE (Y/N)7 “sANS)
IF (ANS)
THEN
CALL SGOFEN(IOLs’REAR’." OLD FILE? ', "MONAME’»"REAL’MNPT)
CALL SGTRAN(ICL,s READ’s’REAL’sAR/NPOINT)
oND IF

CALL SGOPEN{(IOQ2,’/YRITE’,»’ NEW FILE? ‘, NOMAME’» REAL‘NFOIHT?

CONTINUE

FORMAT(A)

TYFE 100, "$ENTER:PRINT,MOLIFY OR QUIT (E:FPsMs0)7 7
ACCEFT 100.CHO

IF (CHD(131).EQ.‘P’) THEN
FORMAT (¢ ARRAY('sIls’) = ';F15.9)
ng I = 1.9
TYFE 101:1sAR(I}
END DO
G0 70 19
END IF

IF (CHO(1:1).EB."H') THEN
CONTINUE
TYFE 100s’$WHICH ELEMENT TO CHANGE (1-%)7
ACCEPT %,NELE :
IF {(NELE.GT.?.0R.NELE.LT.1} GO TO iS5
FORMAT ('3 ARRAY(/sIls’) = %)
TYPE 10ZsNELE
ACCEPT XsAR(NELE)
60 7O 10
END IF

IF (CHO(1:1),EQ.7E’) THEN
o I=1,9
TYPE 10251
ACCEPT XsARC(I)
ENE LD



GO TO 10
Efdl IF

CaLL SGTRAN(IOZs HRITE’s REAL‘+ARsNFOINT)

EXD
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FEOGRAM IHVAR.FOR

THIS FPROGRAM FINDS THE MAXIMUN VALUE, THE MINIMUM
VALUE, THE MEAN AND VARIANCE OF THE RESFONSE OF

# OPERATOR TO AN IMAGE.

REAL¥8 SUMSQsSUHM

PEAL RMIMsRMAX:FOINTS:RMEAN:DX

IMTEGER%2 IMA1{(312,5312)

INTEGER NN MMsHUMsNFDINT

REAL HSK(%sP}sLEN(?)RL,REIRT

LGZICAL ANS

=

#

Y

SKIOL = 1
= 2

b

I
10

-

30
4

-

.

INFUT SURSFACE VECTORS

CALL SGOPEM(MSKIOI,’READ’,‘ VECTOR FILE 7 ‘ HONAME’,» REAL‘:NFOINT)
CALL SGTRAM(MSKIOIs'READ’s‘REAL’MSKsNFOINT)

NUM = NPOINT/?

INFUT IMAGE FILENAMES

TALL IMOPENCIMIODI»'READ,/INFUT IMAGBE FILE? 7, HONAME'»NN,HM)

CALL IMTRAN(IMIOI. READ’ . INTEGERX2’,IMALsS12,NNsMN)

INPUT DIFFERENT PICTURE SIZES IF DESIRED

IRST =1
IEST = 1
IREN = MM
ICEN = MN
TYFPE ¥

TYFE %’ NUMBER OF ROUWS = 7»HM
TYFE ¥s° NUMBER OF COLUMNS = ‘+NN
CALL REPLY(’ IS THE REAL FICTURE SMALLER (Y/N)T ‘:ANS)
IF (ANS) THEN
CALL INFUT(’ STARTING ROW?T ‘»1sMMsIRST)
CALL INPUT(’ ENDING ROW? ‘s IRST MM,IREN)
CALL INPUT(’ STARTING COLUMN? ‘»1:NNsICST)
CALL INPUT(‘ ENDING COLUMN? ‘,ICST:NNsICEN)
END IF

FINI LENGTH OF BASIS VECTORS

no #Mi=1,HUH
LEN(ML) = 0.0
00 M2=1,% .
LEN(M1) = LEN(M1) + MSK{MZ,M1)¥HSK{HZ,N1)
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END IO
LEN(H1) = LEN(M1)%%0.5
END DO

FIRST FIND MAGNITULDE

SUMSA = 0,0

SUK = 0.0

RHAX = -10000,0
RAIN = 10000

RT = 0.0

LD 200 LX = IRST»IREN-2
Do 100 LY = ICST.ICEN-2
Lx1 LX 1
LX2 = LX .
Lyl Ly
Ly2 LY

o IR e
(R

{2 T I 1§

RS = 0.0

ne Mi=1,NUM

Ri = MERC(1oMIYRINALCLY LX) + MSK{2,MI)RIMAL(LYL,LX) +
MEK(3sMIdRIMAL(LY2LX) + MSK(4,M1I)KRIMALC(LYSLXL) +
MSK(SoM1IDXIMAL(LY1,LX1) + MSK(& M1)XIMAL(LYZ2sLX1: +
HEK(7-ML1IXIMAL(LY LX2) + MSK(B,ML)XIMALIC(LY1,LX2: ¢
MIK(PsMIVEIMALILY2,LX2)

e o 09 g

1 /7 LEN(HL)
S+ Rl XKL

o

R
R

W A

EMD [0

RS = RS¥%0.3
IF(NUM.EQ.1) RS = R1
UM = SUM + RS
SUHSE = SUHSA + REXRS
RHAX = AMAX1{RHAX+R3)
. RHIN = AMINLI(RMINIRS)
1a¢ CONTINUE
200 CONTINUE

FOINTS = (IREN-IRST+1)%(ICEN-ICSTH1)
RMEAN = SUM / FOINTS
RUAR = SUMSQ / FOINTS - SUMXSUM / (FOINTSAFOINTS)

TYPE %y’ MAXIMUM ‘yRHAX
TYPE %,/ MINIMUM ‘sRMIN
TYPE %»° MEAN = ’sRMEAN

TYFE ¥,’ VARIANCE = ‘sRVAR

un

END
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IHFUT ZOUNDED INTEGER FRUM TERMINAL

[ I 4]

SURROUTINE INFUT (FROMFTs FIRSTs LASTs VALUE)

(o]

IMFLICIT NONE

CHARACTER®(X) FPROMPT
INTEGER FIRSTs LAST,» VALUE
LOGICAL  UYALID

[ ]

FORMAT (A}

Far IR B

VALID = ,FALSE.
GG WHILE (.NOT.VALIDD
TYPE 1+ “$°//FRONPT
READ ¥, VALUE
IF (VALUE.LT.FIRST) THEN

TYFE %
TYFE %s ‘rasronse can not be smsller than -+
TYPE X
ELSE IF (VALUE.GT.LAST) THEN
TYFE %
TYFE %+ ‘resronse cezn not be larger than -2
TYPE %
ELSE
vaLIlD = ,TRUE.
END IF
END LD
RETURN

END
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FEOGREAM IAHIST,FOR

THI5 PROGRAM INFUTS AN IMAGE FILE AND FIMDS
THE HISTOGRAHM. ON REGUEST IT WILL RETURN

TO THE USER THE FERCENT OF TOTAL FOINTS THAT
ARE ABOVE THE INFUTED CUTOFF VALUE.

HHEN & DESIRED CUTOFF YaLUE IS REACHED THE
IMAGE IS5 RINARIZED AROUNDI THE CUTOFF VALUE.
EINARIZED MEANS ALL VALUES BELOW OR EGUAL TO
CUTOFF ARE SET TO ZERO AND THOSE AFROYE ARE SET

T aco
10 255,

LOGICAL AN3 :

REAL HIST(NIZ25S5)s+SUHsTOT.FER
INTEGER%2 IHA1(512,312),1142(5312,512)
INTEGER CYALHOISP»VOISP s NNsHN

IMIDI
100

3
2

CALL IMCPENMCIMIOL.'READZs’ INFUT FILET * s’/ HOHANE’ »NNsHH)
CALL IMOFEN(IMIQO.’WRITE’,’ OUTPUT FILE? ’ s NONAME’,HNsMM)

FIND HISTOGRAH
CALL IMTRANCIMIOI, READ’,»’INTEGERX2’,IMAL,512,MN,HH)
Do LX=0s255

HIST(LX) = 0,0
END [0

INPUT DIFFERENT PICTURE SIZES IF DESIRED

IRST = 1
ICST = 1
IREN = MM
ICEN = NN
TYFE X%

TYPE %, NUMRER OF ROWS = ‘sMM
TYPE %.‘ NUMBER OF COLUMNS = 'sNN
CALL REPLY(’ IS THE REAL FICTURE SMALLER (Y/N)7 ‘s+ANS)
IF (ANS) THEN
CALL INPUT(’ STARTING ROWT ‘s+1,MMs»IRST)
CALL INPUT(’ ENDING ROW? ’sIRSTsMMsIREN)
CALL INPUT(‘ STARTING COLUMN? ’,1sNNsICST)
CALL INPUT(’ ENDING COLUHNT “»ICSTsNN,ICEN)
END IF

08 L¥X = IRST,IREN
DO LY = ICST.ICEN

57
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I = IMAL(LY LX)
HIST(I) = HIST(D) + 1
END DO
END D0

TOT = (IREM-IRSTH+1)%(ICEMN-ICST+1}
CONTIMUE
CALL INPUT(’ CUTOFF VALUE (0->254)% /,0:234,CVaAL)

UM = 0,0
20 LX = CYAL$1,255

SUM = SUM + HIST(LX)
END D0

FER = (SUM/TOT) % 100.9

FCRMAT(’ CUTOFF =’sI4»" FERCENT = "»F%.2}
TYPE 9%9,CVAL,PER

CALL REPLY(’ MEW CUTOFF PERCENT (Y/N}? ‘,aANS)
IF (ANS) GO TO 10

0 LX = IRST:IREN
[ LY = ICST+IZEN
IF(IHALICLY LX) .GT.CVAL)

THEN
IMA2(LY,LX) = 233
ELSE
IMAZ2(LYsLX) = 0.0
END IF
END DO
END DO
CALL REPLY{’ CLEAR SCREEN (Y/N)T ‘»ANS)
IF {(ANS)
THEN
CALL IMIMIT(‘ERASE")
ELSE
CALL IMINIT(’NOERASE")
END IF

CALL INPUT(‘’ HORIZONTAL DISPLACEMENT (0-2341)7 ’,{0s254sHIISP)
CALL INFUT(’ VERTICAL DISPLACEMENT (0-254)7 ‘r0s234:VDISP)

CALL IMIISP(’WRITE’,’INTEGER¥2’,INA2s512sNNsHMsHDISPVDISF, "WHITE")

CALL REPLY(’ TRY NEW CUTOFF (Y/N)? ‘yANS)
IF (ANS) GO TO 19

CALL IMTRANCIMIOOD,‘WRITE’» INTEGER®2’yIMAZ2s312sNN»HM)
END
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(033330002202 83¢833000 020033000203 83 300000 882004¢81

C
C INPUT BOUNDED INTEGER FROM TERMINAL
5

SUBRDUTINE INPUT (PRONMPT, FIRST, LAST: VALUE)
c

IMPLICIT MONE

CHARACTERX () PROMFT

TNTEGER FIRSTs LASTs VALUE

LOGICAL  VALID
C
H FORHAT (A)

YaLID = ,FALSE,
ng  WHILE (.NOT.VALID)
TYFE 1. *$'//PROMFT
READ ¥r VALUE
IF (VALUE.LT.FIRST) THEM

TYFE %
TYFE %+ ‘resronze can not be smaller thsn -» ‘» FIRET
TYFE %
ELSE IF {VALUE.GT.LAST) THEHN
TYFE ¥
TYFE %X» ’‘resronse can not be lzrger tham -> 7y LASBTY
TYFE ¥
ELSE
YaLIll = ,TRUE,
END IF
END D0
RETURN

END
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FaOGRAM IACOH.FOR

THIS PROGRAM INFUTS TWO IMAGE FILES. IT COMFARES THE
VALUES IN THE SECOND IMAGE TQ A CUTOFF VALUE AND IF ITHM
IS GREATER THAMN CUTOFF IT ZEROS THE VALUE IN THE

FIRST IMAGE FILE. IT DISPLAYS THE RESULTING IMAGE

FILE AND THEN IF DESIRED WILL DUTFUT THE RESULT.
DIFFERENT CUTOFF VALUES CAN BE USED AND THE RESULTE
OISPLAYED BUT BECAUSE OF THE UWAY THE PROGRAM WORKS
START WITH LARGEST CUTOFF VaLUE AND HORE YOUR HAY

HAY DOUN.

INTEGER®Z IHAI(S12,512),IMA2(512,312)
INTEGER CUALNN-HMHM
LOGICAL ANS

IMIDI1
IMiglI2
IMIBg = 3

o
[ e ]

CALL IMOPEN(IMIODIL»’READY:’ FILE #17 7/, 'NONAME' NN, HH)
CALL IMOPEN(IMIOI2, READ’»’ FILE #27 7, NOMAME’ »NN»HM)

INPUT DIFFERENT PICTURE SIZES IF DESIRED

IRST = 1
ICST = 1
IREN = MM
ICEN = NN
TYPE %

TYPE ¥,‘ NUMBER OF ROMS = ‘,MM
TYPE %s’ NUMBER OF COLUMNS = ‘sHNN
CALL REPLY{’ IS THE REAL PICTURE SHALLER (Y/NI}? “»ANS)
IF (ANS) THEN
CALL INPUT(’ STARTING ROW? “:1,MMsIRST)
CALL INPUT(’ EMDING ROW? ’sIRST:MHsIREN)
CALL INPUT(’ STARTING COLUMN? ‘»1,NN,ICST)
CALL INPUT(" EMDING COLUMN? “,ICST+NNsICEN)
END IF

CALL IMOPEN(IMIOO:; WRITE’»’ OUTPUT FILE? ‘» NONAME' NN,MM)

CALL INPUT(’ CUTOFF VALUE FOR FILE #2 (0->253)7 ’:0,255:CVAL)

CALL IMTRAN(IMIOIl,’READ’»‘INTEGER¥2,INAL1:312:NN:HM)
CALL IMTRAN(IMIOIZ,‘READ’,’INTEGER¥2’sIHAZ>T12sNNsNM)

CONTINUE
DO LX = IRST.IREN
Do LY = ICST.ICEN
IF(INMA2C(LYLX).GT.CVAL) IMAL(LY:LX) = 0



3

ENTI D0
END [0

CALL IWMINIT(/ERASE’}
CALL IMDISP('WRITE’,’INTEGERX2’,IMAL1,312,NNsMM»0+0, WUHITE")

CALL REPLY(’ TRY ANOTHER CUTOFF VALUE? ‘sANS)
IF (AM5) THEN
TYFE %»’ OLD CUTOFF VALUE = 7,CVAL
CALL IMPUT(‘ NEY LOWER CUTCFF? /,0,255.CVAL)Y
G4 70 20

£ D IF

CALL IHTRAM(IMIDO: ‘WRITE'+ IMTEGERX2’sIMALsS12yNM.MM)

END

61
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CRRERR R KA KRR R R AR KRR KRR KRR R R R R R KRR KK
CRAR R AR R XXX R Rk XKk

C INFUT BOUNDED INTEGER FROM TERMINAL
c

SUERDUTINE INPUT (PROMPTs FIRSTs LASTs VALUE)
C

IMPLICIT HONE

CHARACTER2(X) FPROMPT

INTEGER FIRST: LASTs VALUE

LO2ICAaL YALID
C
H FORMAT (a)
C

IO WHILE (.NOT.VALID)
TYFE 1 ‘$///FPROMPT
READ %» VALUE
IF (VALUE.LT.FIRST) THEN
TYPE %
TYPE %:» ‘resronse c3n not be smazller tham -> ‘s FIRST
TYPE %
FLSE IF (VALUE.GT.LAST) THEN
TYPE ¥
TYFPE %» ‘resronse can not be larder than -> ’» LAST
TYFE #
ELSE
YaLID = .TRUE,
END IF
END D0
RETURN
END
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PROGRAM FRECHEN.FOR

THIS PROGRAM FINDS THE MAGNITULE OF FROJECTION ONM

OR THE ANGLE BETWEEN THE NINE DIMENSIONAL SUBIMAGE
VECTDRS IN AN IMAGE ANDII THE SUEBSFACES DEFIMNED BY

THE USER.

LOGICAL ANGrANS

THTEGER®Z IMA1(S512,512),IMA2(512,512)

INTEGER NNrMMsNUHsNPOINTIRST,ICST»IRENSICEN
REAL MSK(?:9)sLEN{9)sR12RE»BEBRWP: BUT VAR NADG

MSKIDI = 1
IMIDI = 2
INIOD = 3

FIND ANGLES OR MAGNITUDRE OF PROJECTION

CALL REFLY(’ FIND ANBLES (Y/N)? ’sANG)
IF (ANG)
THEN
TYPE %+’ OQUTPUT WILL BE ANGLES!’
ELSE
TYFE %+ QUTPUT WILL RE MAGNITUDES!’
TYPE X
FORKAT(A)
TYPE 1s‘% ENTER MAX MAGNITUDE = °
ACCERT XsMAG
END IF

INPUT SUBSPACE VECTORS

CALL SGOPEN(MSKIOI,‘READ’,’ VECTOR FILE 7 /' MONAME’s REAL’sNFOINT)
CALL SGTRAN(HSKIOIs‘READ’ s REAL‘MSKsNPOINT)

NUM = NPOINT/?

INPUT IMAGE FILENAMES

CAaLL IMOPEN(IMIOI,’READ’,’ INPUT IMAGE FILE? ’»’/NONAME’sNN,MM)

CALL IMOPEN(IMIOO, WRITE‘s’" OUTPUT IMAGE FILE? ‘»'NOMNAME’sNN:MM)
CALL IMTRAN(IMIOI,’READ’,’INTEGER¥2’,IMAL1,512,NNsNHM)

INFUT DIFFERENT PICTURE SIZES IF DESIREL

IRST = 1

IC3T = 1

IREN = MM

ICEN = NM
ES

TYPE
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TYFE Xy’ NUMBER OF ROWS = ‘.MM
TYFE %s’ NUMBER OF COLUMNS = ‘sNN
CALL REPLY(’ IS THE REAL PICTURE SMALLER (Y/N)T ‘sANS)
IF {ANS) THEN
CALL INPUT(’ STARTING ROW? ‘,1,4M,IRST)
CALL INFUT(’ ENUDING ROW? ‘s IRSTsMM»IREN)
CALL TMPUT(’ STARTING COLUMN? “s1,NNsICST)
CALL INFUT(’ ENDING COLUMN? ‘sICSTsNNsICEN)
END IF

FIND LENGTH OF BASIS VECTORS

0o di=1.HUM
LEMINL) = 0.0
a0 H2=1,9
LEN(HM1) = LEN{H1) + MSKI{M2sH1)XHSK{(H2,M1}
END DI}
LEN(MLY = LEN(M1)%X¥0.3
END DO

FIRST FIND MAGNITUDE

D0 200 LX = IRST»IREN-2
00 100 LY = ICSTsICEN-2Z
LX1 LX 1
LX2 = LX
Lyli = LY
LY2 = LY

TR T}
R e

FJ = P

RS = 0.0

IO Mi=1,NUM
R1 = MSK{1sM1)XIMAL(LYsLX) + MSK{2,MI)RIMALILYL LX) +
MEK(3 M1 RIMAL(LYZ, LX) + HSK(4sMI)RIMAL(LY,LX1) +
HER(SsMIDRIMAL(LY1,LX1) + MSK{GsML)RIMAL(LYZ LX) +
MEK{7,MLIXIMAL(LY,LX2) + MSK(3s+MLI}EXIMAL(LYI,LXZ) +
MEK(9 s M1)XIMALLLYZ,LX2)

Rl
R&
END DO

R1 / LEN(HD)
RS + R1 % Ri

IF (ANG)
THEN
ER = 0.0
BW? = 0.0
00 Li=0s2y1
0 L2= 02241
VAR = THAL(LY+L2sLX+L1)
B2 = BB + VAR % VAR
BY? = BWY + VAR
ENDI BOQ



END DO
BW? = (BW9XBWY?) / 9.0
BBW? = BB - BW?
TF(BRWS,.EQ.0)
3 THEM
RS = 2.0
ELSE
RS = RS / BEW?
END IF

L T

EXPAMD FRACTION 0->1 TO RANGE D->25%5
IMA2(LYLsLX1) = RS % 235.90
ELSE
IF{NUN.EQ.L)
& THEN
RS = 127,95 + R1 % 127.5 / HAG
IF (RS.LT.0) RS = 0.0
ELSE

3.0 / MAG

END IF

IF (RS.6T.253.0) RS = 233,90
IMA2(LYL,LX1} = RS

END IF
C
109 CONTINUE
200 CONTINUE
C
C [0 FOUR THINGS
C 1)} COPY 2ND' LINE INTO FIRST,
C 2) COFY 2ND TD LAST LINE INTOD LAST LINE.
c 3y COPY 2ND COLUMN INTO FIRST.
c 4) COPY 2ND TOD LAST COLUMM INTO LAST COLUNMN.
C
D0 LY = ICST+1,ICEN-1
THAZ2{LYsIRST)Y = IMA2(LY,IRST+1)
IHA2(LYsIREN) = IMA2(LYsIREN-1) ;
END DO
c
00 LX = IRST:IREN
IMA2(ICST.LX) = IMAZ(ICST+1,LX)
IHA2(ICENsLX) = IMAZ(ICEN-1+LX)
END DO
C
C BUTPUT FILE
c

CALL IMTRAN(IMIOO»‘WRITE’» INTEGER¥Z'sIMAZsS12NN,HH)

[ ]

END
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C
C INPUT BOUNDED INTEGER FROM TERMINAL
C
SUBROUTINE INPUT (PROMPT, FIRST. LAST, VALUE)
c
IMPLICIT NONE
CHARACTER® (%) FROWPT
INTEGER FIRSTs LAST. VALUE
LIGICAL  VALID

FORRAT (A

R

YaLID = ,FALSE.
00 WHILE (.NOT.VALIDD
TYFE 1s “$°//PROMFT
READ x» VALUE
IF (VALUE.LT.FIRST) THEM

TYPE X%
TIYFE %5 ‘resronse can not be smaller than -+ “» FIRST
TYPE %
ELSE IF (VALUE.GT.LAST) THEHN
TYPE %
TYFE %» ‘resronse can not be larder than -> ‘s LAET
TYPE X%
ELSE
VALILI = ,TRUE.
END IF
END [0
RETURN

END
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APPENDIX B

This appendix contains the Fortran listings of five short
programs used on the Data General NOVA computers of the Electrical
Engineering Department of Kansas State University. These programs
generate vector files, generate image subareas of ideal edges being
rotated and shifted, find magnitude of projection response of edge

subareas to vectors and find angle response between edge subareas

and wvectors.



48

RSP ¢ e o030 00 Rt ettt it it i st ts bt ieectt st et
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100

200

CRFL
DB FORTRAN 5 SOURCE FILENAME: CRFL.FR

DEPARTMENT OF ELECTRICAL ENGINEERING KANSAS STATE UNIVERSITY

REVISION DaTE PROGRAMMER
00.0 NOV 13,1982 DANIEL B. SCHOWENGERDT
01.0 DEC 31,1982 DANIEL B. SCHOWENGERDT

KRR R R KRR R A KRR R R R R TR R XXX KX X

DOUBLE PRECISICN DD(30)
REAL D(30)

ND1 =0

NSEC 0

CALL QUERY('MODIFY EXISTING FILE? "»IANS)
IF (IANS.NE.1) GO TD 100
CALL OPENR(0,"OLD FILENAME? "+4,SIZE)

CONTINUE
CALL OPEMW{1,"'MEW FILENAME? '»4,5IZE)

CONTINUE

NSECT = NSECT + !

WRITE(10s1) NSECT

FORMAT("%xx SECTION NUMBER "sI2»" X&x*)

TYPE * °

ACCEPT °*NUMBER OF DATA VALUES IN THIS SECTIONT ®sND

IF (IANS(NE.1) GO TO 530

00 400 I400=1sND
CALL READR(O,I4004ND1,D(1400):1,IER)
DD(I400) = DBLE(D(I400))

CONTINUE

CONTINUE

D0 500 I500=1,ND
TYPE * D(*»1500,°) = *»DD(IS00)
CONTINUE

CALL QUERY(" CHANGE THESE VALUES Y/N 7 "sIANS1)
IF (IANS1.NE.1) GO TO &30

CONTINUE
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630

700

00 400 I4600=1,ND
WRITE(10:35) I400
FORMAT("  D(*sI2+%) = *»7)
ACCEPT DDB{I&00)

CONTINUE

G0 TO 450

CONTINUE
B0 700 I700=1sND

D(1700) = DD(I700)

CALL WRITR(1,I700+NDi,D(I700)s1sIER)
CONTINUE
NOB1 = ND1 + ND
CALL QUERY(" ALL SECTIONS DONET "»IANS2)
IF (IANS2.NE.1) GO TO 200

END
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FROGRAM ROEDGE.FR

THIS FPROGRAM CREATES 46 3Iu3 DISCRETE SUBAREA
IMAGES OF AN IDEAL EDGE ROTATING THROUGH

446 DEGREES OF ROTATION. THOROUGHOUT

THE ROTATION THE EDGE IS A CONSTANT

DISTANCE FROM THE CENTER OF THE SURAREA.

DOUBLE FPRECISION LINE(1806)sRAD,INCL -
REAL INIT,IM(?),DENOM
INTEGER ISHFT,PIXsST

TYPE *
TYFE * WELCOME TO THE WONDERFUL WORLD OF EDGES?*
TYPE * *
CONTINUE

ACCEPT ® DISTANCE FROM CENTER OF SUBAREA (0-451)7 *sISH

IF(ISHFT.LT.0.DR.ISHFT.GT.451) G0 7O 10
CALL OFENW(0s"'" ELGE FILENAME? ®+36,SIZE)
THPE @ °

INITIALTIZE DISCRETE LINE-w—=rm—ssmaimmaimaie ¥
SET BOUNDARY VALUES

INIT = 203.0

DO 100 I1 = 15,1806
IF(I1.GE.1356) INIT
LINE(I1) = INIT

CONTINUE

0.0

FORM DISCRETE LINE

DENOM = 301.0 x 301.0

D0 290 I1=1:446
RAD = (DATAN(1.0) / 45.0) % (Ii-1)
IF({(I1-1).EQ.0) GO TO 140
LINE(1355) = 451.0
INCL = 1.0 /7 DTAN(RAD)

B0 120 I2=1,451

LINE(1355-12) LINE(1355-12+1) + INCL

LINE(1355+12) LINE(1335+1I2-1) - INCL
IF(LINE(1355-12).6T.903.0) GO TO 130
CONTINUE
CONTINUE

IFC(LINE(1355-12).GT.903.0) LINE(1355~12) =
IF(LINE(13554I2).LT.0,0) LINE(1355+12) = 0.
CONTINUE

203.0
0



- - ——

INTEGRATE===m=m==m == m e e e X
D0 190 I2 = 1,9
IN(I2) = 0.0
CONTINUE

ST = 9204.0 - ISHFT/DCOS(RAD)
PIX = 8T - 301

D0 270 I2 = 1.3
FIX = PIX + 301

00 260 I3 = FIXsFIX + 300
IF(LINE(I3)-402.0) 200,200,230
CONTINUE
IF (LINE(I3)-301.0) 210,210,220
CONTINUE
IM(6+12) = IM(6+412) + LINE(I3)

GO TO 25

CONTINUE

IM(3+41I2) = IM(3+4I2) + LINE(I3) - 301.0
GO TO 240

CONTINUE

IM(I2) = IM(I2) 4+ LINEC(I3) - 602.0
IM(3I+I2) = IM(3+I2) + 301.0

CONTINUE
IM(6+12) = IM(6+I2) + 301.0
CONTINUE
CONTINUE
CONTINUE
0o 280 12 = 1,9
IM(I2) = INM(I2) / DENON
CONTINUE
CALL WRITR(O-I1,IM»1,IER)
CONTINUE
TYPE * 46 TANTALIZINGC IMAGES®
TYFE * FOR YOUR VIEWING FLEASURE.®

CALL CLOSE (0»IER)
END
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PROGRAM SUBED33.FR

THIS FPROGRAM CREATES 46 3x3 DISCRETE SURAREA
IMAGES OF AN IDEAL EDGE MOVING COMPLETELY
THROUGH THE SUBRAREA.

DOUBLE FRECISION LINE(1804)sRADsINCL
REAL INIT,»IM(9?),DENOM
INTEGER IDEGsFIX»ST

TYFE * *

TYFE " WELCOME TO THE WONDERFUL WORLD OF EDBGEST®
TYFPE * *

CONTINUE

ACCEFPT * ANGLE OF EDGE (0->435)(I)7? ",IDEG
IF(IDEG.LT.0.0R.IDEG.GT.45) GO TO 10

CaALL OPENW(Os" EDGE FILENAME? ",36s5IZE)

TYFE * °

INITIALIZE DISCRETE LINE-=--—-----mmccon—- X

SET BOUNDARY VALUES

INIT = 203.0

Do 100 I1 = 1,1806
IF(I1.6E.1356) INIT = 0.0
LINE(I1) = INIT

CONTINUE

FORM DISCRETE LINE

RAD = (DATAN(1.0) / 45.0) % IDEG
IF(IDEG.EQ.0) GO TO 140
LINE(1353) = 431,90

INCL = 1.0 / DTAN(RAD)

N0 120 I1=1,451
LINE(1355-1I1) LINE(1355-I1+41) + INCL
LINE{1355+I1) LINE(1355+I1-1) - INCL
IF(LINE(1355~1I1).6T.903.0) GO TO 130
CONTINUE

CONTINUE
IF(LINE(1355-11),6T,903.0) LINE(1355-11) = 903.0
IF(LINE(1355+4I1),LT.,0.0) LINE(1355+I1) = 0.0
CONTINUE

INTEBRATE========m == e e X
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250
260
270

DENOM = 301.0 % 301.0

B0 2920 I1 = 1:44
DO 190 I2 = 1,9
IM(I2) = 0.0
CONTINUE

ST = 904.,0 - ((FLOAT(Il)-1.

PIX = 8T - 301 -

Do 270 I2 = 143
PIX = PIX + 301

0)%10,0)/COS(RAD)

0o 260 I3 = PIXHPIX + 300
IFCLINE(I3)-602.0) 200,200,230

CONTINUE

IF (LINE(I3)}-301.0) 210,210,220

CONTINUE

IM(6+I2) = TH(6+412) + LINE(I3)

GO TO 250
CONTINUE

IM(3+12) = IM(3+4I2) + LINEC(I3) - 301.0

G0 TO 2490
CONTINUE

IM(I2) = IM(I2) + LINEC(I3) - 402.0
IM(3+I2) = IM(3+I2) + 301.0

CONTINUE

IM(6+I2) = IM(6+1I2) + 301.0

CONTINUE
CONTINUE
CONTINUE

00 280 I2
IM(I2)
CONTINUE

1,9
IM(I2) /7 DENOM

CALL WRITR(OsI1sIMs1»IER)
CONTINUE
TYPE * 46 TANTALIZING IMAGES®
IYFPE * FOR YOUR VIEWING
CaALL CLOSE (0sIER)
END

PLEASURE."
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THIS FROGRAM FINDS THE RESFONSE OF THE

VECTOR FILE VECTORS TO THE
IMAGES IN THE IMAGE FILE.
THE CHOICES FOR RESPONSE ARE

1) aMP = ({(I+V10%%2 + (IsV2)%k%x2)1%%0.5

2) AMP = ABS((I,V1))+ABS((I,V2))

INTEGER I00/0/,I01/1/+ANSsICNT

REAL MSRKR(?,%)sX{P)»SIZEsRL1IRS+LEN(F)

TYFE ' MASK RESPONSE FROGRAM °
TYPE * °

CALL OPENR(IDO»* YECTOR FILE? ",36.51IZE)

NUMY = SIZE / 36
REALD IN MASK VALUES FROM FILE.

00 150 I1=1,NUMV

CALL READR(IOO»I1,MSK(1+I1)s1,

CONTINUE
CALL CLOSE (IDOsIER)

IER)

CALL QUERY(" SUM OF SQ.(Y) OR ABS.(N) (Y/N)? "1ANS)
IF(ANS.EQ.1) TYPE ®* A = ({(I»V1)X%%2 + (I,V2)AX2)%kX%0,3°
IF(ANS.NE.1) TYPE " A = ABS((I+V1)) + ABS((I.,V2))"*
CALL OPENR{IOO:,* IMAGE FILE? *»36,SIZE)

NUMI = SIZE / 34
CALL OPENW(IO1,"* RESPONSE FILE?

r45SIZE)

COMPUTE MASK RESPONSE AND COMBINE ACCORDIMNGLY.

DO 350 I6 = 1,NUMV
LEN(I&) = MSK{1,I6)%MSK(1,14)
MSK{3sI&)XMSK(I,15)
MSK(Ss+I&)KMSK(T»16)
MSK(7sI6)XMSK(7,14)
MSK(?yI6)KMSK(P»16)
LEN(I&) = LEN(IA)%%0.5
CONTINUE

D0 500 IS5 = 1»NUMI
CaLL READR(IDO,IS»Xs1:IER)
RS = 0.0
00 400 I4=1,NUMV

+ MSK(2,I8)%XMSK(2+s158)
+ MSK(4,I4)%MSK(4,516)
+ MS5K{6s16)%XMSK(6:16)
+ MSK(8,I48)%XMSK(8sI6)

Rl = MSK(1,I4)%X(1) + MER{(2,I4)%X(2) +



75

MSK(3,I4)%X(3) + MSK(4,I43%kX(4) +
MOSK{S,I4)%XX(5) + MSK(4:I4)%X(4) +
MSK{(7+I4)%X(7) + MSK(B8sI4)%X(8) +
MSK(2,I14)%X(?)
R1 = R1/LEN(I4)
IF(ANS.EQ.1) RS
IF{ANS.NE.1) RS
400 CONTINUE
IF(ANS.EQ.1) RS = RSxx0.5

T

RE + R1XR1
RS + ABS(R1)

CALL WRITR(IO1,IS+RS»1,IER)
300 CONTINUE

CALL CLOSE(IOOsIER)

CALL CLOSE(IO1,IER)

TypPg * *

TYFE * THIS IS THE END *
END
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S0 2 0223028003200 3000 0000058000000 E SRy
FRECHEN

THIS FPROGRAM USES THE DATA FILE CREATED RY
THE FROGRAM MEDGE AND COMBINES IT WITH THE
THE MASKS INFUTTED BY YOU.

IT USES THE FREI AND CHEN ALGORITHHM

OR JUST GIVES MAGNITUDE RESFONSE.

EQUATION FOR FREI AND CHEN IS

SUM (BrWH)RX2/((BsB)=((BsWP)/IUWP! ) RXKD)
NOTE ESFECIALLY THE DENOMINATOR!!I!

THIS FPROGRAM USES THE DATA FILE CREATED BY
THE FROGRAM MEDGE AND COMBINES IT WITH THE
MASK INPUTTED BY YOU.

IF FINDS THE MAGNITUDE OF THE FROJECTION OF
THE IMAGE VECTOR ONTO THE MASK VECTOR.

THE MASK VECTOR IS MADE INTD A UNIT VECTOR.
FROJECTIONS ONTO SUBSPACES DESCRIBED

EY MORE THAMN ONE MASK ARE FOSSIEBLE.

L9 SO v B A B A e T v A o o e T o o o A B o I B e I B B |

CHERERRKIEARR KRR KKK RKERA R KKK KRR KKK KKK
L

INTEGER I00/0/,101/1/sANS»ICNT
REAL MSK(2s9)sX(9),SIZEsR1,RS+SUMsAVESLEN(?)
REAL EBRB,BW?,BEW?

c
TYFE * MASK RESFONSE FROGRAM *
TYPE *
CALL OPENR(IOO,' VECTOR FILE? *+36,SIZE)
NUMV = SIZE / 34

c READ IN MASK VALUES FROM FILE.

c

0 150 Il=1,NUMV
CALL READR(IOO»I1,MSK{(1»I1)»1sIER)
1350 CONTINUE
CALL CLOSE (IO0OyIER)D
cC
CALL QUERY(" ANGLES (Y/N)T 'sANS)
IF(ANS.EQ.1) TYPE * RESPONSE IN ANGLES.®
IF(ANS.NE.1) TYPE * RESFONSE IN MAGNITULDE.®
CALL OPENR(IOO," IMAGE FILE? "»36sSIZE)
NUMI = SIZE / 36
CALL OPENW(IO1,' RESPONSE FILE? *»4,SIZE)

COMPUTE MASK RESPONSE AND COMBINE ACCORDINGLY.

oo I or B o I 40 |

OO0 350 Ié6 = 1)NUMV
LEN(I&Y = MEK(1,I46)%MSK(1,16) + MSK(2,I4)%XMSK(2,14)
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400

4350

440

300

S, e g

e N

~

NN

CON

nao

CON

(-1
CAL
TYP
TYP
END

MESK{3+»I48)XMEK{(3s16)
MSK(SsI&)XMSK(S5,16)
MSK{(7sI6)XMSK(7:16)
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+ MSK{4,I6)%MSK(4515)
+ MSK(4:I16)%XMEK(6,14)
+ MSK(8,»I&)*kMSK(8,14)

HER(P?sI4)XMER(P:16)

LEN(I&) =
TINUE

LENCIS)YXX0.3

500 IS = 1sNUMI
CALL READR(IQO,IS:Xs1,IER)
RS = 0.0
DO 400 I4=1,NUNMV

R1 = MSK(1,I4)%X (1)}
MSK(3,I4)%X(3)
MEK{(S» T4 XX (35
MEK(7,I14)%X(7)
MEK(Z:14)%X(?)
RIZLEN(IA)
RS + R1xkR1

R1
RS
CONTINUE
IF(ANS.NE.1) GO TO 4350
BB = X(1)%X(1) + X{(2)%X(2)
X(4)%xX(4) + X(Z)kX(3)
X(7)%X(7) + X{(8)xX(8)
BU? = ( X{(1) + X{(2) + X(3)
X{4) + X(3) + X(&6) +
X{8) + X(9) ) / 3.0

BW? = BW? % BUWY

REW? = BE - EBUW?

RS = RS / BEW?
GO TO 4490
CONTINUE

RS = RS%X0.3
CONTINUE

CALL WRITR(IOD1+I5+RSs1,IER)
TINUE

L CLOSE(IOOyIER)

L CLOSE(IO1,IER)

E ] |

E * THIS IS THE END *

+ MSK(2,I4)X%XX(2)
+ MSK(4,14)%X(4)
+ MSK(&6»I4)%X(&)
+ MSK(8,I4)%X(8)

+ + + +

+ X(3IRX(3) +
+ X(&)%X(6) +
F OX(9IRX(D)
+

X(7) +
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ABSTRACT

This masters report deals with edge detection in image processing.
This report is a study and discussion of an enhancement/threshold edge
detector algorithm presented by Werner Frei and Chung-Ching Chen in
their published paper, "Fast Boundary Detection: A Generalization and
a New Algorithm". In their paper they present a set of orthogonal
functions related to distinctive image features which allows extraction
of boundary elements.

This masters report gives a short introduction to the subject of
edge detection and then presents and discusses the edge detector
algorithm of Frei and Chen. Results are presented which agree with
claims, made by Frei and Chen, of improvements over existing techniques.
Results of additional testing are also presented, the discussion of which
leads to a generalization of image subareas as sums of sinusoid subareas.
These sinusoid subareas are then used to explain subarea features such
as edges and lines and to explain the edge detection criterion for

the algorithm of Frei and Chen.



