. o

" THE PRELIMINARY DESIGN
OF A
STUDENT ADVISCRY SYSTEM

by
RONALD J. VIETH

B.S., Xansas State University, 1979
M.S., Kansas State University, 1984

A MASTER'S REPCRT
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE
Department of Computer Science
KANSAS STATE UNIVERSITY

Manhattan, Kansas
1984

Approved by:s

/ZWT/W%«

Major ?ﬂfessar

LB A11202 kk533k

L;‘fﬁf TABIE OF CONTENTS

LIST OF PICUHER woseness e smnsassspamansnensnsnin s ¢ nunerasssransoviseninms
STUDENT ADVISCRY SYSTEM REQUIREMENTS «.csceessacecscocossosssasacncransacs
TIPES OF QUERIES ssssosssacvesissessbsionsoosvinsssossinssssisasssnsvisoss
DEVELOPMENT STRATEGY EMERGES ¢ ececececsssecssscecsacsoncacsseccssssasncons
DEVELOPUENT (F BIDRNY wonevmnnnessassmanssonuesmusissessissnssnsensensses
DEVELOPMENT OF IMSTRUDTOR «oesssosns sosossoonnacaiaonsassssavneassasssavss
DEVELOPMENT OF DEPARTMENT «oocccoscseocsacecsasesasasenssaescsassesascasss
DEVELOPMENT OF CURRICULUM ¢eccosecsccoscsaserssnsascssscssesscsencsosoanes
INTERACTION BETWEEN CATEGORIES +soeeecosscsosscocascsssscassossoocsssanses
INTERACTION BETNERN DATABABES o0 vsmuenrsnnunseonsnpssenussssssssnssvssians

Bmmm PRI ReR RPN RORRRRAIRRRIPRR PR R RPN RECQRORRIReRARRRPROERS

AFPENDICES

A cmsn Smmm DMTIM fsedsdacdopearpecanneedacReatRRnRe
cmg mwm cm 0000080000000 0evateesrOodRcosoPRORROOReS
cn m mm (AR RS R AR R R RN R R R R R R R R REE RN RN RN NRERN K]
smm smm‘ mﬂm PN ETPP PP PROROROIARARTORORRORRRERRPRTEDS
mmm smm nmn 00000 QRO0ROPROPRIRNROEOIBROEORCGRUBROERPOPROS
WIT! sm Mﬂm 2006000000000 00000sdevdobovaneen
cm smm mﬂm L A A A Rl R R R N N R R Y R RN
DEPAM sm mmn €0 P00 ERREPOO0RRRsRRRRRERtSREY
mcm sm mnm 000000000 DISRITEDIOROIRRRRNRROS

QEEEUOW

(¥

S - ™ -

14
20
25
29
32
35
38
39
39
39
b1
A=2
A=l
A-11
B-1
c-1
D-1
E-1

F=1
G-1

Figure

0 o o \n F W LM

[S
L]

-
b
[arY

LIST OF FIGURES

GOURSE BoR DESETAR wewvywes vumeasmsponossnvese s sossyensanserssrey
GOURSE Data: BXCRotee « vs o1 esnsusvsanennsnniess s s sonasusaseseyey
STUBENT B-R DISETAR: sumwnns § 4 paaw e iaasnsaasassons s Soswseaianeyns
STUDENT Dats STEUCLUTE wases o st ssvanennaassafocs s o i asssaaovaserss
IRSTRUCTOR BB DAREEAR: wuiisisisonsssnnmvaviviniies ssasasswivive
INSTRUCTCR Data StTUCLUT® seceessccrscressssscsssassnsscassacases
UNIVEHSITY/cctLEcE/DEPARTnEnT/cumnICULUM E-R Diagram eecescoccvss
DNTVRRSTTY Data Stroeture. svass s o s o enmnsvnnsmenonsas & » Sampuniensnn
GOLIEGE Date SErustime wvcasavs 1o o ¢ FSEEEEREERERPTEDS 8 VESERERTEN
BEPARTMENT Data SLructire sseceveses sesssassveevasenis ssmavannaning
CURRICULUM Data Structur® scececesessvessncscsssonsscescssscansas

COURSE Data Structure Supplement c.vcscsess0sc0000000vasasncosens

11

page
?

11
15
18
21
23
26
28
3t
M
37
A-i6

ACKNCOWLEDGMENTS

I would 1like .to express sincere gratitude +to Dr. Roger Hartley,
Professor in the Computer Science Department, Kansas State University.
Dr. Hartley was an extremely cooperative and helpful factor in the
development of the preliminary design of the Student Advisory System.

I would 1like to thank Dr. Clifford Stark, Professor in the Computer
Sclence Department, Kansas State University, for helping to get the
rreliminary design of the Student Advisory System off the ground.

I would also like to thank Thomas Rodenbaugh, undergraduate student
in the Computer Science Department, Kansas State University, for providing
coded procedures used to support part of the Student Advisory System.

To my wife, Kaye, and four children, without thelr encouragement and
cooperation this report would not have been written. Sincere appreciation

goes to my wife for assisting in the editing of this report.

111

INTRODUCTION

The scope of this report is to develop and document the
preliminary design of an automated student advisory system.
The KSU Computer Science Department wants to develop an
automated student advisory system which wéuld essentially
take the place of student advisors. The Student Advisory
System may be implemented with the UNIX Operating System,
but the decision to do so 1s not final. The system is to
contain information which addresses seven different
categories. The categories are as follows: Student,
Course, Instructor, University, College, Department, and
Curriculum. Each of the <categories contain associated
information that can assist university students in planning
the pursuit of an educational goal. Students throughout the
university may eventually be allowed access to the student
advisory system.

This report documents all of the effort which has gone
into the preliminary development of an automated student
advisory system. The report documents work with the Course
category which began in the spring 1984 Implementation
Project course, CMPSC 690. The report covers the
development of the Course category that took place in CMPSC
690 as well as the development of the other six categories.
The products of the preliminary design effort include
Entity-Relationship (E-R) diagrams and data structure
diagrams. Structure declarations for each of the seven

categories will be provided in the Appendix.

REQUIREMENTS REVIEW

2

The development of the student advisory system began
with a review of the student advisory database requirements
specification. The requirements specification 1s a listing
of the major categories and their associated contents. The
Student Advisory System requirements specification 1is
provided below.

Numbers are provided which indicate the sizes of the
different items. The numbers after each of the major
categories indicate the number of occurrences of that
category. For example, the Student category will accomodate
about 1000 students. The numbers after each of the
individual items indicate the information size of that item.

For example, SSN under Student will contain 9 characters.

STUDENT ADVISORY SYSTEM REQUIREMENTS

STUDENT: (1000)
name (30)
SsN (9)
declared major (6)
entry date to college (6)
ACT score (5)
high school GPA (3)
declared minor (if any) (6)
standing (fr, so, jr, sr, grad etc.) (&)
courses taken (with grade obtained) (8 * 50)
individual curriculum (8 * 50)
technical electives taken (8 * 25)

total hours obtained (3)

GPA (4)
transfer credits (if any) (3)
major professor (grad only) (30)
committee members (grad omly) (30 * 4)
interests (20 * 5)
career goals (20 * 5)
preferred workload (20 * 5)
history of query sessioms (20 * 100)
bad times of day (20 * 2)
perceived strengths and weaknesses (20 * 6)
COURSE: (3500)
course number (8)
reference number (8)
name (30)
catalog description (20 * 10)
number of credits (1)
prerequisites (20)
instructor (30)
current enrollment (3)
maximum enrollment (3)
place (5)
time (9)
frequency offered (1)
INSTRUCTOR: (2000)
name (30)
department (5)
major area (20)
type of appointment (10)

courses usually taught (8 #* 5)

evaluation record (10Q)

3

perceived strengths and weaknesses (20 * 6)
graduate faculty status (3)
UNIVERSITY:
entrance prerequisites (20 * 10)
math requirements (20 * 10)
degree requirements (20 * 10)
colleges (9)
COLLEGE: (9)
name (30)
general requirements (20 * 10)
special requirements (20 * 10)
departments (80)
DEPARTMENTS: (80)
name (30)
general requirements (20 * 10)
special requirements (20 * 10)
contact person (30)
curriculum (215)
CURRICULUM: (215)
curricula (10)

curricula requirements (20 * 10)

TYPES OF QUERIES

User queries will vary with the students. Basically,
there are two types of students: new students and old
students. Typically, new students will wuse the system for
two purposes. The first purpose will be to ascertain an

educational goal, and the second purpose will be to

5

ascertain a semester schedule. New student queries will
access a greater portion of the student advisory database
than does the queries of old students who have been at the
university for some time. Typically, old students will use
the system to ascertain a semester schedule or to determine
what further requirements must be met in order to graduate.
Thus the queries are basically goal oriented or schedule
oriented.

Goal oriented queries should access several major
categories of information contained in the database system.
Goal oriented queries will address University, College,
Department, and Curriculum. Accessing these categories will
provide the user with information about general and specific
requirements within the university.

Schedule oriented queries should access several major
categories of information contained in the database system.
Schedule oriented queries will address Student, Course, and
Instructor. Accessing the Student category will provide "the
user with informatiom about the student's current status,
Accessing the Course category will provide the user with
information about the course offerings. Accessing the
Instructor category will provide the wuser with information
about specific instructors.

Overall, the student advisory database system has to be
versatile enough to handle queries from old students as well
as new students. Basically, queries will be either goal
oriented or schedule oriented. Each type of query will
access different categories of information contained in the

advisory system.

DEVELOPMENT OF COURSE

The E-R Diagram

Initial development efforts began with a focus on the
course category. Different E-R diagrams were-proposed which
modeled the course category. A final E-R diagram emerged,
and it takes into account several changes suggested during
the creation of the earlier E-R diagrams. The final E-R
diagram for the Course category 1is provided in Figure 1.
Points of controversy with earlier E-R diagrams involved
where to place the instructor attribute and how to diagram
class types (such as lectures, recitations, and laboratories
all under one course name).

As the E-R diagram took on a final form, it became
immediately obvious that the course category would include
at least two files: a course information file and a schedule
information file. With the idea of two files in mind, it
was decided that the instructor attribute most appropriately
belongs to the schedule information file since instructor's
names appear in the line schedule im actuality.

Class types deserve special attention. Since some
courses have lectures as well as recitations and
laboratories, it was decided to try and show this
possibility in the final E-R diagram. The portion of the
E-R diagram that deals with class types comprises the bulk
of the final E-R diagram, and this portion of the E-R
diagram deals with the schedule information file.

The E-R diagram for the Course category includes four

entities: Course, Class_Type, Catalog_Info, and

Figure 1.
COURSE E-R Diagram

Schedule_Is
Sch““l.-mo \R't;m’.. |
Prof
Emroll
Max Enroll

8

Schedule_Info. The Course entity has two attributes:

Crse Num and C_Name. The Crse Num attribute represents the
— skt ——
course number for a givem course. The C_Name attribute
represents the name of a given course. The other entities
in the Course E-R diagram hinge off of the course entity in
one way or another.

The Class_Type entity is related directly to the Course
entity. The Class_Type entity has three attributes: Lec,
Rec, and EEE' The Lec attribute represents lectures. The
Rec attribute represents recitations. The Lab attribute

represents laboratories.

The Schedule Info entity is related directly to the

Class_Type entity. The Schedule Info entity has seven
e G ==

attributes: Ref Num, Place, Days, Time, Prof, Enroll, and

Max Enroll. The Ref Num attribute represents the reference
number for a given class type under one course. The Place
attribute represents the building and room number in which a
given course will be taught. The Days attribute represents
the days of the week a particular class will meet. The Time
attribute represents the time of the day a particular class
will meet. The Prof attribute represents the name of the
instructor teaching a given <class. The Enroll attribute
represents the number of students enrolled in a given class.
The Max Enroll attribute represents the maximum enrollment

figure for a given class.

The Catalog Info entity is related directly to the

Course entity. The Catalog Info entity has four attributes:

Description, Frequency, Credits, and Prereg. The
Y ~LELE]

Description attribute represents the catalog description for
B e —

9

a given course. The Frequency attribute represents the
semesters in which a given course 1is offered. The Credits
attribute represents the number of credit hours a particular
course is worth. The Prereq attribute represents the course

prerequisites for a given course.

The Data Structure

After finalizing the E=R diagram, effort concentrated
on developing a physical structure for the Course category.
The dinitial physical structure proposals were modified
several times and redrawn to handle all of the controversial
aspects. As the «class type structure deserved a special
structuring effort, the decision was made to include some
kind of offset pointer scheme for the different class type
information which could appear under one course name, The
decision was made to include a <class field in the course
information file structure which would have a length field
and an offset pointer field. The length field indicates the
number of records appearing in the schedule information file
for a given course,. The offset pointer field indicates
where the course lecture, recitation, and laboratory records
appear in the schedule informatiom file,

A special field in the course information file is the
course description field. This field contains two pieces of
information which are a length field and an offset pointer
field. The length field indicates the length of character
string information in a course description file. The offset
pointer field indicates where the description for a given

course appears in the course description file by the use of

10
an offset from the top of the file.

Another development in the physical structure of the
course category is the proposal to wuse a course table file
for pointing at the appropriate course numbers in the course
information file. This suggestion saves space in the course
number field of the course information file. The course
table file consists of a structure with three fields. The
first field is a character field for representing the course
number department prefix. The second field 1is a length
field to 1indicate how many course numbers in the course
information file pertain to a particular department. The
third field consists of an offset pointer which points to
the first course pertaining to a department in the course
information file.

As it stands at this point in time, the physical
structure of the course category for the student advisory
database project consists of four files: Course_Table File,

Course_Info_File, Description Info File, Schedule_Info_File,

All of the files are interrelated through means of some
pointer information, and thus this structure bears out some
of the flavor of a database. The physical structure of the
Course category is provided in Figure 2.

The Course Table File is a record structure for getting

at the appropriate course 1in the Course_Info File. The

Course_Table File consists of three fields: Prefix, CI_Len,

and CI_Ptr. The Prefix field contains the departmental

prefix for given courses. The CI _Len field indicates the

number of courses in the appropriate portion of the

Course_Info File. The CI_Ptr field indicates the amount of

11

FIGURE 2.
COURSE Data Structure

*g sandyy 9ag

ortd erqel 1039nIjsul

F S

lomuy ([Yoxuy xey

oTTd oJuyY ernpeyog

4 10

I na™1s

14 Joag 141 wlwg

o[T4 ojul uogjdiIoeeq

et 1q

ey I8

eouyd odAl wny jey

g17pexn fouenbexy woyydizoweq

soRy) oww 0 Wy eexd

o{T4 o Ul eemon

4 10 u¥ 10 xiJead

o114 o[q®] ewamoy

12
offset at which a particular set of courses from one

department will appear from the top of the

Course_Info File.

The Course_Info File 1is a record structure which

consists of six fields: Crse_Num, C_Name, Class,
Description, Frequency, and Credits. The Crse Num field

represents the course number for a given course. The C Name

field represents the name of a given course. The Class

field is broken down 1into a subrecord structure with two

fields: SI Len and SI_Ptr. The SI_Len field indicates the

number of classes in the Schedule_Info File for a particular

course. The SI_Ptr field indicates the amount of offset at

—

which a particular course first appears from the top of the

Schedule Info_File.

The Description field is broken down into a subrecord

structure which contains two fields: DI _Len and DI Ptr.
— ey

The DI_Len field indicates the length of the description of

a” particular course which is described im the

Description_Info File. The course description in the

Description_Info File also includes mention of the course

prerequisites. The DI_Ptr field indicates the amount of

ey

offset at which a particular course description will appear

from the top of the Description Info File. The Frequency
w— == =

field indicates the semesters in which a particular course

is usually offered. The Credits field indicates the number
e

of credit hours a particular course is worth.

The Description_Info File 1s a textual file. This

textual file contalns course descriptions for all the

courses taught at this university. The

13

Description_Info File is pointed at by pointers in the

Eourse_lnfq_File for each of the different courses.

The Schedule Info File consists of eight fields:

Ref_Num, Type, Place, Days, Time, Prof Ptr, Max Enroll, and

Enroll. The Ref Num field indicates the reference number

for a given class. The Type field indicates whether a class

e

is a lecture, recitation, or laboratory. The Place field

indicates the building and room number in which a particular
class is to be taught. The Days field indicates the days of
the week a particular class 1is to meet. The Time field

indicates the times of the day a particular class is to

meet. The Prof Ptr field is a pointer field which points to

the location of a table named Instructor_Table File. The

Max_Enroll field indicates the maximum number of students

that can be enrolled in a particular class. The Enroll
field indicates the total number of students enrolled in a

particular class,

DEVELOPMENT STRATEGY EMERGES

After completing the preliminary design of the Course
category, it was decided upon to attack the remaining
categories in a more organized fashion. The general
approach used in developing the E-R diagram for the course
category was to draw a rough diagram which encompassed the
requirements specification for that category. Several
different E-R diagrams were drawn for the Course category.
Each successive E-R diagram took into account a number of
different refinements to prior versiomns. After devoting

considerable time to just the Course category, hindsight

L
demonstrated the need to bridge the gap between having a
requirements specification and developing an E-R diagram for
a given category.

The strategy that emerged was to outline a given
category from the given specification. Outlining each of
the remaining six categories was a tremendous leap toward
developing satisfactory E-R diagrams. Since the outlining
strategy was merely an aid to obtalning appropriate E-R
diagrams, the outlines used in this effort are not provided
in this report.

I1f one were to use the outline approach, the techaique
is simple. As with the bulk of the student advisory system
categories, the technique is to use major outline heading as
entities in the applicable E-R diagram. If a particular
outline heading contains several subheadings, each

subheading then becomes an entity related to the appropriate

category.

DEVELOPMENT OF STUDENT

The E-R Diagram

The Student category was initially outlimed into major
headings in an effort to arrive at a suitable E-R diagram.
The E-R diagram for the Student <category is provided in
Figure 3. The Student category was broken down into seven

different entities: Student, Past_Transactions, Standing,

Intentions, Advisors, Coursework, and § Personal. The

Student entity contains two attributes: S_Name and SSN.

S_Name represents the name of - the student, and SSN
- Y Esm——p

15

FIGURE 3.
STUDENT E-R Diagram

amy =
{amg a0y) p—

epeIy suwIl
A ueyv] mesan '
{ 71001d Yoo -

JI0KEE.IMOD

e1ug Arjuy

LN LT TET 4

Foxg 3of uy 9] wyu] [vuoeleq g

SIOGTAPY

Bugpuwyg =T =
9X¥ suojjuejuy . —

o] Puppuwy
Q quopnyg IV suoyyousuay

@ D

[wwoszey g

16

represents the social security number of the student. The
Student entity is also related to the remaining entities,
and it appears to be the center of a spoke-like arrangement
where all the other entities surround Student through

different relationships. The Past_Transactions entity has

no attributes.

The Standing entity comtains five attributes: HS_GPA,

ACT Score, Yr_In School, Curr GPA, and Hrs_0Obt. HS_GPA

represents the student's high school grade point average.
ACT Score represents the student's American College Test

score. Yr_In_School represents the student's year in

college. Curr_GPA represents the student's current grade
point average. Hrs_ 0Obt represents the total number of hours
a student has completed in college.

The Intentions entity has three attributes: Entry Date,

Dec Major, and Dec Minor. Entry_Date represents the date a

student was admitted into a particular college within the
university. Dec_Major represents a declared major area of
study. Dec Minor represents a declared minor area of study
if applicable.

The Advisors entity has two attributes: Major_Prof and
— e

Comm Membs . Maj9£=Prof represents the major professor a
student is working under provided the student is a graduate
student. Comm Membs represents the members on a graduate
student's committee.

The Coursework entity has four attributes:
s =S

Tech Elects, Crses_Taken, Trans_Creds, and Tent_Curr.

Tech Elects represents the technical electives a student
e

intends to complete. Crses_Taken represents the courses a
—

17

student has already completed. Trans_Creds represents the
transfer credits a student has obtained in work at another
college. Tent_Curr represents the tentative coursework a
student intends to complete in order to obtain a given

goal.

The S_Personal entity has five attributes: Interests,
e el

Goals, Prefs, Str/Wkn, and Poor_Times. Interests represents

a students particular interests which may include favorite

pasttimes and hobbies. Goals represents what educational

and career goals a particular student has in mind. Prefs

P i)

represents what preferences a student may have in regards to

courses or instructors. Str/Wkn represents the student's
—

perceived strengths and weaknesses. Poor Times represents
=S ————]

the times at which a student can not possibly be on campus,

The Data Structure

After completing the E-R diagram for the Student
category, effort was focused on the development of an
appropriate physical structure for this category. The
physical structure of the Student category is provided in
Figure 4. The overall structure of Student is a record

structure with fields for the following: S _Name, SSN,

Past_Trans Ptr, Standing, Intentions, Advisors, Coursework,

and § _Personal. The S Name field contains the name of the
P e I —————————
student. The SSN field contains the social security number

of the student. The Past_Trans Ptr 1is a pointer which

indicates the location of a file named Past_Trans_File for

containing a history of all queries a particular student

makes with the student advisory system.

18

R P N

~

Figure 4.
STUDENT Data Structure

orTd TRUOsIed ¢ \

oT1d suwal 3eed

I14 mewyl Joog _\\. \
uey semi] Iood 4
EEF i | VECT a3d amg juel _ o114 YIomesmop
ueT WAK/11§ uel amgy jual
4 w3e1d I3d spexy suwil \\
uet syeig Uef EpOI) swel] Hauel wmoy 100 9IH
x4 eT¥0D a4 ueye] sow ¢ quel wwop Ydo zmp
ueT sTRON ueT ueyel mesIpD 2awel wwop | FouyH oeq | rooyog ur ag
14 w3gexequl a3d 30017 yoe] Tqwey wwop | 3ol vl oeq emog 10V
ue] ejselejul ueT s300TH 4oel Joxy Tofwy | e3eq Axyuy v49 SH /
TeuosIsd ¢ FIoMegIno) SI0BTADY ,-raﬁ:ﬂ._.m Sutpuuyg g ouwrr yweg NEE oweN g

oTTd OJul juepnig

19

The Standing field 1is broken down into a subrecord

structure which contains five fields: HS_GPA, ACT Score,

Yr_In School, Curr GPA, and Hrs_Obt. The HS GPA field

T

indicates a particular student's high school grade point
average. The ACT Score field indicates a particular
student's score on the American College Test. The ¥Yr_In

L

School field indicates the student's year in college. The

Curr_GpA field indicates the student's current grade point

average in college. The Hrs Obt field indicates the total

e

number of hours a particular student has completed.

The Intentions field is broken down intc a subrecord

structure which contains three fields: Entry Date,
e ey

Dec_Major, and Dec Minor. The Entry Date field indicates

e, s

the date on which a student became enrolled in a particular

college. The Dec Major field indicates the student's

T ———

desired area of major work. The Dec Minor field indicates

the student's desired area of minor work.
The Advisors field is broken down intoc a subrecord
structure which contains five fields: Major_Prof,

Comm Membl, Comm Memb2, Comm Membl, and Comm Membé. The

Major_Prof field will contain the name of a graduate

student's major professor. Each of the other four fields
contain the names of the graduate student's committee
members,

The Coursework field is broken down into a subrecord
structure which contains fields for each of the attributes
of the TsursewerX entity. Each attribute has a length field
and a pointer field. The length field represents the length

of a portion of a file named Coursework File which will

20

contain textual information relative to that attribute., The
pointer field indicates the amount of offset at which the
textual information relative to a given attribute appears

from the top of the file named Coursework File.

The S Personal field is broken down into a subrecord
structure which contains fields for each of the attributes
of the S_Personal entity. Again the attributes are paired
off into length and pointer fields. These length and

pointer fields relate to a file named Personal File which is

a text file for containing the information pertinent to the

Personal entity.

DEVELOPMENT OF INSTRUCTOR

The E-R Diagram

The Instructor category was initially outlined into
major headings in an effort to arrive at a suitable E-R
diagram. The E-R diagram for the Instructor category is
provided in Figure 5. The Instructor category was broken

down into four different entities: Instructor, Specialty,

Status, and I Personal. The Instructor entity contains two

e e

attributes: I_Name and Dept. I Name represents the name of

the instructor. 2322 represents the mname of a department
the imstructor works for. The Instructor entity is also
related to the remaining entities, and it appears to be the
center of a spoke-like arrangement where all of the other
entities surround Instructor through different
relationships.

The Specialty entity has two attributes: Crses_Taught

Figure 5.
INSTRUCT(R E-R Diagram

Specialty Is

Status_lIs

Grad Facty

Rcd.

I_Personal_Data_ls

I_Personal

21

22

and Major_Area. Crses_Taught represents the courses a

particular instructor usually teaches. Major_Area

represents the area or areas of major interest to the
particular inmstructor.
The Status entity has three attributes: Type Appt,
—————w e

Grad Facty, and Eval_Red. Type_Appt represents the

particular type of teaching appointment for the particular
instructor. Grad Facty represents whether the particular
instructor is graduate faculty. Eval Rcd represents the
evaluation record for a given instructor.

The I_Personal entity has two attributes: Strgths and

—man

Wkness. Strgths rtepresents the perceived strengths of a

particular imstructor. Wkness tTepresents the perceived

weaknesses of a particular imstructor.

The Data Structure

After completing the E-R diagram for the Instructor
category, effort was focused on the development of an
appropriate physical structure for this category. The
physical structure of the Imstructor category is provided in
Figure 6. The overall structure of Instructor is two record

structures and a text file: Instructor_Table File,

Instructor_Info File, and I_Persomal File.

The Instructor_Table File is a record structure which

contains two fields: I Name and Instr_Ptr. The I_Name

field will contain the name of a given instructor and all

instructors are placed im the Instructor_Table File in

alphabetical order. The Imstr_Ptr field indicates the

————————aay

amount of offset at which the particular instructor

INSTRUCTCOR Data Structure

Instructor_Table_File
I_Name Instr_Ptr

23

"
Instructar_Info File
Specilalty Status I__rPersonal
Mz jor_Area Type_Appt | Strgths Len
Crses_Taught Grad_Facty || Strgths_ptr
Eval _Red Wkness_lLen
Wkness_pPtr

I_Personal File

24
information appears from the top of the file named

Instructor_Info File.

The Instructor_Info File contains five fields: I_Name,

iy

Dept, Specialty, Status, and I_Personal. The I_Name field

will contain the name of a given instructer amd all

instructors are placed in the Instructor_Info File. The

Dept field contains the name of the department the
instructor works for. The Specialty field is brokem down
into a subrecord structure which contains two fields:

Major_Area and Crses_Taught. The Major_Area field contains

the name of the major area in which an instructor is most

interested. The Crses_Taught field contains a small list of

courses a particular instructor usually teaches. The Status
field is broken down into a subrecord structure which

contains three fields: Type Appt, Grad_Facty, and

Eval Red. The Type Appt field represents a particular
instructor's type of appointment. The Grad Facty field
represents whether a particular instructor is on the
graduate faculty. The Eval Rcd field contains evaluation
record information.

The I_Personal field is broken down into a subrecord

—_————————aaaagy

structure with four fields: Strgths_Llen, Strgths_Ptr,

Wkness_Len, and Wkness_Ptr, The fields are pairs of length

and pointer fields for indicating appropriate information
about the strength and weaknesses of a particular
instructor. The strengths and weaknesses information is

contained in a textual file named I_Persomal File.

As was just stated, the I Personal File is a textual

file for containing information about the strengths and

25

weaknesses of given instructors. The I_Perscnal_File will

contain strengths and weaknesses information for all

instructors in the university.

DEVELOPMENT OF UNIVERSITY

The E-R Diagram

The University category was initially outlined into
major headings in an effort to arrive at a suitable E-R
diagram. See the appropriate portion of the E-R diagram
provided in Figure 7. The University category was broken

down into four different entities: Ent Prereq, Math Req,

Deg_Req, and Colleges.

The Ent_Prereq entity has three attributes: Ent_Frman,

e ey

Tran_Stdnt, and Int_Appl. The Ent_Frman attribute
represents the entrance requirements for entering freshmen.
The Tran_Stdnt attribute represents the entrance
requirements for transfer studemnts. The Int Appl attribute

represents the entrance requirements for international

applicants.

The Math_Req entity has two attributes: Math_ Prereq

and Deg Prereq. The Math_Prereq attribute represents the
mathematical background that a student should have before
entering college. The Deg Prereq attribute represents any
other prerequisites that a particular student should be able
to meet for any particular degree.

The Deg Req entity has three attributes: Comm Deg,

Under_Deg, and Dual_Deg. The Comm Deg attribute represents

common degree requirements for all college students. The

Figure 7.
UNIVERSITY/COLLEGE/DEPARTMENT /CURRICULUM E-R Diagram

Depts

University

Ent_Prereq

7TS
(Ent_Frnan)| (Tran_stdat)

26

27

Under_Deg attribute represents the different requirements

e

for undergraduate degrees. The Dual Deg attribute

represents the requirements for dual degrees.

The Data Structure
After completing the E-R diagram which included the

University entity, effort focused on developing the physical

structure for the University category. The physical
structure of the University category 1is provided in Figure
8. The overall structure of University 1is one record
structure and three text files.

The record structure is named University Info File and

contains four fields: Ent_Prereq, Math_Req, Deg_Req, and

Colleges. The Ent_Prereq field is broken down into a

subrecord structure with six fields. The six fields of

Ent_Prereq are three pairs of length and pointer fields as

follows: Ent_Frman Len, Ent_Frman Ptr, Tran_Stdnt Len,

Tran_Stdnt Ptr, Int_Appl Len, and Int_Appl Ptr. Each length

field indicates the length of the appropriate information

appearing in a textual file name Ent_Prereq File. Each

pointer field indicates the amount of offset at which the
appropriate information appears from the top of the

Ent_Prereq File.

The Math_Req field 1is broken down into a subrecord

structure with four fields: Math_Prereq Len,

Math Prereq Ptr, Deg Prereq Lem, and Deg Prereq Ptr. The

four fields of Math Req are two pairs of length and pointer

fields which indicate appropriate information about math

prerequisites and degree prerequisites contained in a text

Figure 8.

UNIVERSITY Data Structure

University_Info_File

Ent_Prereq Math_Req Deg_Req Colleges
Ent_Frman_Len Math_Prereq_Len Comm_Deg_Lan CollegeX_Len
Ent_Frman_Ptr Math_Prereq_Ptr Comn_Deg_Ptr | Collegex_Ptr

Tran_Stdnt_Len Deg_Prereq_Len Under_Deg_Len
Tran Stdnt_Ptr Deg_Prereq_Ptr Under_Deg_Ptr
Int_Appl_Len Dual_Deg_Len
Int_Appl_Ptr \ Dual Deg_ Ptr
Ent_Prereq_File lhth_Roq_Filo\ Deg_Req_File
5 T~
> =

College_Table_File

See Figure 9.

28

29

file named Math_Req File.

The Deg_Req field is broken down inte a subrecord

ey

structure with six fields: Comm Deg Len, Comm Deg Ptr,

Under_Deg Len, Under_Deg_Ptr, Dual Deg_Len, and

Dual Deg Ptr. The six fields of Deg Req are three pairs of

length and pointer fields which indicate appropriate
information about degree requirements contained in a text

file name Deg Req File.

The Colleges field is broken down into a subrecord

structure with two fields: CollegeX Len and CollegeX Ptr.

The CollegeX Len field indicates the number of colleges

appearing in a table ©named College Table File. The

CollegeX Ptr field indicates the locations of the table

named College Table File.

DEVELOPMENT OF COLLEGE

The E-R Diagram

The College category was initially outlined into major
headings in an effort to arrive at a suitable E-R diagram.
See the appropriate portion of the E-R diagram provided in
Figure 7. The Colleges entity represents the different

colleges within the university. The College entity contains

four attributes: G_Name, Degrees, Coll Req, and Prog Opt.

The G _Name attribute represents the name of a particular
college within the university. The Degrees attribute
represents the different degrees which can be obtained from

a given college within the university. The Coll Req

attribute represents the requirements that pertain to a

30
particular college. The Prog Opt attribute - represents

different program options that are available within a given

college.

The Data Structure

After completing the E-R diagram which included the
College entity, effort focused on development of an
appropriate physical structure for this category. The
physical structure of the College category is provided in
Figure 9. The overall physical structure for the Course
category consists of two record structures and three files

as follows: College_Table File, College Info File,

Degrees_File, Coll_Req File, and Prog Opt_File.

The College Table File 1is a record structure which

contains two fields: G_Name and Coll Ptr. The G_Name field

indicates the name of a particular college within the table.
College names appear in this table in alphabetical order.
The Coll Ptr field indicates the amount of offset at which

particular college information appears from the top of the

College Info File.

The College Info File 1is a record structure which

contains five fields: G_Name, Degrees, Coll Req, Prog Opt,

and Depts. The G_Name field indicates the name of a given

college contained in College Info File. The Degrees field

is broken down into a subrecord structure with two fields:
Deg Len and Deg Ptr. The Deg Len field indicates the length

of information about particular degree requirements

contained in the Degrees_File. The Deg Ptr field indicates

the amount of offset at which particular degree requirements

COLLEGE Data Structure

College_Table File
G_Name Coll_Ptr

Figure 9,

College_Info File

N

Coll_Req Prog_Opt Depts
' Deg_len Coll_Req_Len Prog_Opt_Len DeptX_len
| Deg_Ptr Coll_Req Ptr | Prog_Opt_Ptr DeptX_Ptr
Degrees_File Coll_Req_Plle Prog_Opt_File
3288
{
!

Dept_Table_File

See Figqure 10,

A

32

appear from the top of the Degrees_File,

TR

The Coll_Req field is broken down into a subrecord

A,

structure with two fields: Coll Req Len and Coll_Req Ptr.

The Coll Req Len field indicates the length of information
about particular college requirements contained in the

Coll Req File. The Coll Req Ptr field indicates the amount

of offset at which particular college requirements appear

from the of the Coll Req_File.

The Prog Opt field is broken down into a subrecord

structure with two fields: Prog Opt_Len and Prog_Opt Ptr.

The Prog Opt_Len field indicates the length of information
about particular program options contained in the

Prog_Opt_File. The Prog Opt Ptr field indicates the amount

of offset at which particular program options appear from

the top of the Prog_ Opt_File.

The Depts field is broken down into a subrecord
structure with two fields: DeptX_Len and DeptX Ptr. The
DeptX Len field indicates the number of departments

contained in a table named Dept_Table File. The DeptX Ptr

field indicates the location of the table named

Dept_Table File.

DEVELOPMENT OF DEPARTMENT

The E-R Diagram

The Department category was initially outlined into
major heading in am effort to arrive at a suitable E-R
disgram. See the appropriate portion of the E-R diagram

provided in Figure 7. The Depts entity represents the

33
different departments contained withim a given college. The

Depts entity contains four attributes: D Name, Dept_Req,

Grad Req, and Cont_Per. The D Name attribute represents the
name of a particular department within a given college. The

Dept_Req attribute represents the different requirements

that exist for a given department. The Grad Req attribute

represents the requirements within a department for graduate

students. The Cont_ Per represents the mname of a contact

person for a given department.

The Data Structure

After completingg the E-R diagram which included the
Department entity, effort focused on the development of an
appropriate physical structure for this category. The
physical structure of the Department category is provided in
Figure 10. The overall physical structure for the
Department category consists of twoe record structures and

two text files as follows: Dept_Table File, Dept_Info File,

Dept_Req File, and Grad_Req File.

The table named Dept_Table File 1is a record structure

which contains two fields: D _Name and Dept_Ptr. The D Name

e

field indicates the mname of the department in the table,
Department names are placed in the table in an alphabetical
order. The Dept_Ptr field indicates the amount of offset at

which a particular department appears from the top of the

Dept_Info_File,

The record structure Dept_Info File consists of five

fields: D Name, Dept_Req, Grad_Req, Cont_Per, and

Curriculum., The D Name field 1indicates the mname of a
Pt)

10.

DEPARTMENT Data Structure

Dept_Table_File
D_Name . Dept_Ptr

o

Dept_Info_File

D_Name Dept_Req Grad Req Cont._Fex

Curriculum

= Dept_Req_len Grad_Req_lLen

GurriculumX Len

Dept_Req_Ptr ' Grad_Req_Ptr

Dept_Req_File

Grad_Req_File

CurriculumX Ptz

Gurls_Table File

See Figure 11. <+

35

particular department within the Dept_Info File. The

Cont_Per field indicates the name of a contact person within

a given department.

The Dept_Req field is broken down into a subrecord

structure which contains two fields: Dept_Req Len and

Dept_Req Ptr. The Dept Req Len field indicates the length

of departmental requirements which appears in a text file

named Dept_Req File. The Dept_Req Ptr field indicates the

amount of offset at which particular department requirements

appear from the top of Dept_Req File,

The Grad Req field is broken down into a subrecord

e

structure which contains two fields: Grad_Req Len and

Grad_Req Ptr. The Grad Req Len field indicates the length

of graduate requirements informatiom which appears in a text

file named Grad Req File. The Grad Req Ptr field indicates

the amount of offset at which particular graduate
requirements information appears from the top of

Grad_Req File.

The Curriculum field is broken down into a subrecord

structure which contains two fields: CurriculumX Len and

CurriculumX_Ptr. The CurriculumX Len field indicates the

number of differemt curriculas a particular department has

to offer as contained in a table named Curlm Table File.

The CurriculumX Ptr field indicates the location of the

table named Curlm_Table_File.

DEVELOPMENT OF CURRICULUM

The E-R Diagram

36

The Curriculum category was not initially outlined into
major headings in order to arrive at a suitable E-R diagram.
See the appropriate portion of the E-R diagram provided in
Figure 7. The Curriculum entity represents the different
curricula offered within a particular department. The

Curriculum entity has two attributes: Curricula and

e

Curr_Req. The Curricula attribute represents the different

—

curricula in a given department. The Curr_Req attribute

represents the particular requirements that must be met in a

given curricula,

The Data Structure

After completing the E-R diagram which included the
Curriculum entity, effort focused on the development of am
appropriate physical structure for the Curriculum category.
The physical structure of the Curriculum category is
provided in Figure 1ll1. The overall physical structure of
the Curriculum category consists of two record structures

and a text file as follows: Curlm Table File,

Curlm Info File, and Currla Req File.

The table named Curlm Table File is a record structure

which contains twe fields: Curricula and Curla Ptr. The
e e ey

Curricula field indicates the name of different curricula
offered within a given department, The names of the

different «curricula appear in Curlm Table File 1in an

alphabetical order. The Curla Ptr field indicates the

amount of offset at which particular curricula appears from

the top of Curlm Info_File.

The Curlm Info File is a record structure which

Figure 11.

CURRICULUM Data Strueture

Curla_Table File
Curriculs Curla_Ptr

Curricula

)~ Curlm_Info_File

Currla_Req

Curria Req-Len

Currla Req_Ptr

Currla Req File

37

38

consists of two fields: Curricula and Currla Req. The

—

Curricula field 1is the name of the particular curricula

—_—

offered within a given department. The Currla_Req field 1is

P)

broken down into a subrecord structure which comsists of two

fields: Currla_Req Llen and Currla_Req Ptr. The

Currla Req len field indicates the length of the particular

curricula requirements information appearing in a text file

named Currla Req File. The Currla Req Ptr field indicates

the amount of offset at which particular <curricula

requirements appear from the top of Currla_Req File.

INTERACTION BETWEEN CATEGORIES

Basically the seven different categories comprise three
different databases. The Student category can be thought of
as one database. The Instructor and Course categories
comprise the second database. The University, College,
Department, and Curriculum categories comprise the third
database. Since the Student category pertains to a
particular student and no other students when a user
accesses the Student Advisory System, it 1is feasible to
think of the Student database as personal information
maintained only on a student's own personal medium such as a
floppy disc. The idea of the use of a floppy disc for the
Student category information 1is sound for the sake of
privacy. As the Course category interacts with the
Instructor category, it is feasible to think of these two
categories as one database. Since the University category
interacts with the College, Department, and Curriculum

categories, it is feasible to think of these four categories

39

as one database.

INTERACTION BETWEEN DATABASES

Basically the Student database will interact with each
of the other two databases in the Student Advisory System.
The Student database interacts with the other databases
because it needs to maintain a history of all queries a
given student performs with the system. Since there are no
pointers from either the Course or Instructor data
structures to the University, College, Department, or
Curriculum data structures, it 1is not likely that any

interaction will exist between these two databases.

FUTURE WORK

The next phase in the development of the Student
Advisory System should deal with the implementation
procedures associated with all the different files designed
thus far. Procedures have been coded but not tested for the
Course category. The coded procedures for the Course
category are discussed in the Appendix.

As was discovered in writing programs for the Course
category, extra data structures may have to be developed for
accessing certain files in the system. At the preliminary
design level of this system, it is rather difficult to
ascertain whether any additional tables or files are needed

other than the ones that have been provided thus far.

CONCLUSION

The seven different categories specified in the

4o
requirements specification have been analyzed and developed
into appropriate E~R diagrams and data structures. Data
structure declarations for the different categories are
provided in this report, but they are more appropriately
presented in the Appendix. The technique used to develop
the majority of the categories was to wuse an outlining
approach to bridge the gap between having a requirements
specification and creating an E-R diagram.

The data structures for each of the seven categories
consist of an arrangement of flat files which model each of
the different E-R diagrams. The different flat files
essentially form three separate databases for the Student
Advisory System. The only interaction between the databases
is between the Student database and each of the other two

databases.

i.

24

3.

41

BIBLIOGRAFHY

Cook, John L., Master's Report, "Graduate Student Records Relational
Data Base Design," Kansas State University, 1982.

Kroenke, David M., Database Processing, Science Research Associates,
Inc., A subsidiary of IEM, Second Editiom, 1983.

Ullman, Jeffrey D., Principles of Database Systems, Computer Science
Press, Inc., Second Biition, 1982.

APPENDIX A

COURSE STRUCTURE DECLARATIONS
COURSE PROCEDURES CCDE
COURSE PROCEDURES DISCUSSION

A-1

COURSE STRUCTURE DECLARATIONS
struct course_table file §
char prefiz [4];
int ci_len;
int ci_ptr;
13
struct course_info file §
char crse_num [2];
char c¢_name [29];
gstruct class §
int si_len;
int si_ptr;
1
struct description §
int di_len;
int di_ptr;
L
char frequency;
int credits;
| H
struct schedule info file §
int ref num;
char type [2];
char place [3];
char days [4];
char time [8];
int prof ptr;
int max_enroll;

int enroll;

/*
/*
/*

/*
[*

/*
/*

/*
/*

/*
[*

/=
/*
[*
[*
/*
/%
/*
/*

represents
represents

represents

represents

represents

represents

represents

represents

represents

course
number

offset

course

course

number

offset

number

offset

prefix */
of lines */

pointer */

number */

name *f

of lines ¥/

pointer %/

of lines */

pointer */

s=spring, m=summer, f=fall */

represents number of hours */

represents reference number */

lec=lecture, rec=recitation,
lab=laboratory */
building and room number */

example is mtwhf */

example is 1130-0130 %/

represents offset pointer */

represents maximum number */

represents current number */

t

struct description_info file §
char di_text [19]; /*
LK

struct descrip_table file §

char prefix [4]; /%
int crse_num; [*
int di_len; /*
int di_ptr; /%

t;
struct temp descrip file §
char td_text [19]; /*

T3

represents

represents
represents

represents

line of text */

course prefix */
course number */

number of lines */

represent offset pointer */

represents

line of text */

A=l
COURSE PROCEDURES CODE

get_course(dept,c_num);

/* this function finds the locatiom of the course number

*f
§
int num byte; /* variable for the read */
int ¢_num; /% parameter %/
char dept[4]; /* parameter */
course_table ct_rec; [* represents course table file
record */

course_info ci_rec; [* represents course info file
record ¥/
char prefix[4]; /* the department in the course table
file =/
int number; /* the course number */
int offset; /* the offset into the files */
int 1b,ub,mp; /* binary search operators */
/* perform a search on the course table for the
department */
1b=0;
ub=0;
while(1lb<=ub)§
lseek(ct _file,0,0);
mp=(1b+ub)/2;
lseek(ct_file,mp*sizeof(ct_rec),0);
num_byte=read(ct_file,ct rec,sizeof(ct_rec));
if(dept < ct_rec.prefix)
ub=mp-1;

else

if(dept>ct_rec.prefix)
1b=mp+1;
else
1b=ub+1;
t
/* test to see if the proper record was found #*/
if (dept=ct_rec.prefix) §
if (number != 0) §
/* perform a binary search on the course info file
*/
lb=ct_rec.ci_ptr; /* init the variables %/
ub= lb+ct_rec.ci_length;
/* begin searching */
while(1b<= ub)§
lseek(ci file,lb*sizeof(ci_rec),0);
mp=(1b+ub)/2;
lseek(ci file,mp¥*sizeof(ci_rec),0);
num_byte=read(ci_file,ci rec,sizeof(ci_rec));
if{c_num < ci_rec.course_num)
ub=mp—-1;
else
if(c_num > ci_rec.course_num)
1b=mp+l ;
else
1b=ub+l;
t /* end while */
t /% end if */
t /* end if */

offset=mp*sizeof(ci_rec);

return(offset); t /* function */
copy_description(dept,c_num);
/* Perform linear search on the description table */
int c¢_num,num byte;
char dept[4];
§
course_table table rec;
numbyte = read(desc_info,table rec,sizeof(table rec));
while((table rec.prefix != dept) && (numbyte)) §
numbyte = read(desc_info,table rec,sizeof(table rec));
if (numbyte != 0) §
/* Perform a linear search o the course numbers */

while((table rec.course _num != ¢_num) && (numbyte))

numbyte =
read(desc_info,table _rec,sizeof(desc_rec));
if (numbyte != 0) §
offset := table rec.ptr;
num_rec := table rec.length;
/* Transfer the records to the new file */
lseek(desc_info,(num rec*sizeof(desc_rec),0);
while(num _rec != 0) §
num_byte -

read(desc_file,desc_array,sizeof(desc_array));

write(tem desc file,desc_array,sizeof(desc_array));

num_rec = num _rec - 1;

A=6

A=7

t
table rec.offset = tell(tem desc_file);
lseek(desc_info,-sizeof(table rec),l);
write(desc_info,table rec,sizeof(table_rec));
return{num_byte}; /* a do nothing statement */

t table add(dept,c num) /* this function adds a new course
to the table that */ /* holds the info to the description
file */

§

char dept[4];

int ¢_num; /* parameter */

struct table rec §

char prefix[4];
int course_num;
int length;

int offset;

table rec recl,recl;
int numbyte;
1 _seek(desc_table,0,0);

/* find the position of the new entry */
numbyte= read(desc_table,recl,sizeof(recl));
while((recl.prefix != dept) && (numbyte));

numbyte = read(desc_table,recl,sizeof(recl));

/* insert the record into the table */
rec2.prefix = dept;
recZ,.,course _num = ¢_num;

rec2.lenth = 0;

A-8
rec2,0ffset = 03
/* position the file pointer to the previous record */
lseek(desc_table,~sizeof(rec2),l);
while(num byte != 0) §
write(desc_table,rec2,sizeof(rec2));

rec2.prefix = recl.prefix;

rec2.c_num = recl.c_num;

]

rec2.lenth recl.lenth;
rec2.0ffset = recl.offset;
numbyte = read{desc_table,recl,sizeof(recl));
t
return(num _byte) /* a do nothing statement */
t new_description(dept,c_num,desc_line)
/* this procedure replaces the description of the
department */
/* and the course number in the description file
*f
§
char deptl[4];
int ¢_num,num byte;
char desc_line[19];
char line[19];
table_rec recl;
/* if ¢ num <> o then don't search for the c_num */
if (c_num =0) §
/* init the pointers in the files used ¥/
lseek({desc_table,0,0};
lseek(tem desc_file,0,2);

/* find the position in the description table */

numbyte = read(desc_table,recl,sizeof(recl));
while(recl.prefix != dept) && (recl.course_num != c—num)
num_byte= read(desc_table,recl,sizeof(recl));
recl.length=0;
recl.offset = 0;
position=(1l/(sizeof(recl)) * tell(tem desc file);
T /* end if */ [/* place the contents of the array into the
file */
write(tem_desc_file,desc_line,sizeof(desc_line));
lseek(desc_table,-sizeof(recl),l);
num_byte=read(desc_table file,recl,sizeof(recl));
recl.length = recl.length + 1;
lseek{desc_table,-sizeof(recl),l);
write(desc_table,recl,sizeof(recl));
return(num byte); /* a do nothing statement */ ft
table delete(dept,c_num)
/* This function deletes a table entry */
§
struct table rec §
char prefix[4];
int course_num;
int lemngth;
int offset;
+
char dept{4]; /* the department */
int ¢ num; /* the course number */
table rec recl;,
int numbyte;

/* Find the position of the entry to be deleted */

lseek(desc_table,0,0);
numbyte = read(desc_table,recl,sizeof(recl));
while(recl.prefix != dept)

numbyte = read(desc_table,recl,sizeof(recl));

while((recl,prefix != dept) && (recl.course_num !=

¢_num))

¥

numbyte = read(desc_table,rec,sizeof(recl))
lseek(desc_table,~sizeof(recl)*2,1)
while(numbyte != Q) §
write(desc_table,recl,sizeof(recl));
numbyte= read(desc_table,recl,sizeof(recl));
numbyte= read(desc_table,recl,sizeof(recl));
lseek(desc_table,~(sizeof(recl)*2),1);
t

return(numbyte); /* a do nothing statement */

A=10

A-11

COURSE PROCEDURES DISCUSSION

The next phase in the development of the course
category addresses implementation level procedures. At
first glance, several different programming requirements
were considered. The 1initial 1idea was to address the
accessing of a course, the imserting and deleting of
courses, the inserting and deleting of descriptions, the
inserting and deleting of schedules, and description
updating. After considerable thought and discussion, it was
finally resolved that a yearly update routine would have to
be written by an applications programmer which would address
course insertion and course deletion. An application
programmer will also have to write a semester update routine
which handles schedule deletion and schedule insertion. The
implementation level .programs will address accessing a
course as well as description information updating.

Actual code has been written which deals with accessing
a particular course and updating description information. A
function entitled Get_Course deals with a user's request to
obtain a particular record related to a given department and

course number. Four functions entitled Copy_Description,

Table_Add, New Description, and Table Delete deal with the

necessity to updating course description information. These
functions are discussed in more detail in the following
paragraphs.

The Get Course function uses two input parameters. It

uses a parameter named Dept which is used in a binary search

on the Course_Table File. The binary search of the

Course_Table_File looks for the appropriate department in

A-12
order to get to the rtight area of course numbers in the

Course_Info_File. The binary search for Dept yields an

offset value which points to the appropriate area of records

in the Course Info File. The Get_ Course function also uses
e ey

a parameter named C _Num which 1s used in another binary

search on the Course Info File. The binary search of the

Course_Info File looks for the appropriate course number

under a given department, The binary search with C_Num

returns an offset value which indicates the exact record in

the Course_Info File that pertains to a given department and

course number. Thus Get_Course consists of two binary

searches: One binary search with Dept on the

Course_Table File and apother binary search with C Num on

ety

the Course_Info File, Function Get_Course returns an offset

value (displacement from the top of the file) for the
location of a desired course number within a given
department. Note: There is a special circumstance

regarding’ the input parameter C Num., If C_Num equals zero,

the binary search for a particular course number is
bypassed., This feature allows the user to scan a number of
different course number records within a given department.
Before actual code was writtem for the updating of
description information, the question arose as to how to

access the description information in the Descrip_Info File,.

The only means of accessing this file to this point in time

is through the appropriate fields of the Course Info File

associated with each course number. This was deemed as
extremely awkward, and ap alternative approach was developed

which includes another table. This latest table is named

A-13

Descrip_Table File, and it was designed solely for updating

description information. In addition, a temporary
description file is also used for the same updating purpose.

The temporary description file is named Temp_ Descrip File.

The Descrip Table File consists of a structure with

four fields. The fields are as follows: Prefix,

Course_Num, DI_Len, and DI_Ptr. The Prefix field represents

a department. The Course_Num field represents a course

number. The DI_Len field represents the length of a course

description in the Descrip_Info File. The DI_Ptr field

——g

represents the offset to a given descriptiomn 1in the

Descrip_Info File.

The main purpose of the Descrip_Table File 1is for

indicating where descriptions are contained in the

Descrip_Info File. As new descriptions are added or old

descriptions are deleted, the Descrip Table File must be

modified accordingly. This brings up the reason for a

Temp_Descrip_File, The Temp Descrip_File is used to

temporarily hold updated description information. If an old
description is wvalid, it is copied into the

Temp_Descrip_File from the Descrip_Info_File. If a new

description is desired, a mnew description is entered into

the Temp_Descrip_File a line at a time. As new descriptions

are entered into the Temp Descrip File, modifications must

be made on the DI Lemn and DI_Ptr fields of the

Descrip Table File to account for the new information. Once

all course descriptions are properly placed 1in the

Temp_Descrip_File, it 1is renamed to replace the old

Descrip_Info File.

A-1l
As mentioned earlier, four functions address the
description information wupdate, Each of these functiocns

work with the Descrip_Info_File, Descrip_Table File, and

Temp_Descrip_File. All four functions are used only as

procedures, They return a value for Num Byte, but it is not
meant to be used for anything purposeful.

The Copy_Description function is used to copy a valid

course description from the Descrip Info File into the

Temp Descrip File. This function uses twe input parameters

named Dept and C_Num., The parameters are used with a linear

search on the Descrip_Table_File. The linear search is used

to find the location of the description from the

Descrip_Table File. This function then copies the wvalid

course description pointed at in the Descrip_Info File. It

copies the course description ome 1line at a time. It then

updates the DI_Ptr field in the Descrip_Table File.

The Table Add function is used in the event that a new

course must be added to the courses already in the system.
This function uses two input parameters named Dept and
———

C_Num. When desireable to add a new department and course

number, the mnew information 1is inserted in fromt of the
first course number for a given department 1in the

Descrip Table File., In order to do this insertiomn, every

successive entry must be moved down one slot in the

Descrip_Table File. This function will always be used when

adding a new description to the Temp Descrip File.

The New Description function is used to add a new

description to the Temp_Descrip_File. This function uses

three input parameters named Dept, C _Num, and Desc Line.

A=-15

The parameter Desc_Lime 1is an array of twenty characters

used when creating a line of description for the generation

of a new description. The New Description function then

adds a line of new description information to the

Temp Descrip_File. The New_Description function also

performs a linear search on the Descrip Table File for the

purpose of locating where to wupdate the DI_Len and DI_Ptr

fields that are pertinent to a new description entry. The

input parameter C_Num is used to indicate how to modify the

R e

DI_Len and DI_Ptr fields of the Descrip Table File. When

first entering a new description for a given course number,
C_Num will be greater than zero. When C Num is greater than

zero and one new line of course description has been entered

into the Temp Descrip File, DI _Len 1is assigned a value of

one and DI_Ptr is assigned the offset value which points to

ey

the beginning of the new description. When C Num is equal

—_—

to zero and another new line of course description has been

entered into the Temp Descrip_File, DI_Len is incremented by

one for each successive entry but nothing more is dome to

DI_Ptr. In this manner the DI_Len field of the

Descrip Table File for the new course will indicate the

appropriate length of the entire new course description.

The Table Delete function is used when desireable to

delete a course description from the Descrip Info File.

This function uses two input parameters named Dept and

C_Num. It uses a linear search with Dept and C Num on the

Descrip_Table File in order to find the entry to delete.

Once an entry has been deleted, it them compacts the

remaining entries in the Descrip Table File by moving the

A-16

rest of the entries up one slot.

Flgure A-l.

COURSE Data Structure Supplement

Descrip_Table_File

Prefix Crse_Num DI_Len DI_Pir Descrip Info_File
LN —r
|
I
T
l
l
r\/__"'Jl—\-/\—w

copy of old

deseription
'
|
, I
Temp_Descrip File |
, i
currently points !
here “'——'—-'-—---’

APPENDIX B
STUDENT STRUCTURE DECLARATIONS

B-2
STUDENT STRUCTURE DECLARATIONS

struct student info_file §

char s_name [29]; /* represents student name */

int ssn [8]; /* represents social security
number */

int past_trans_ptr; /* represents offset pointer */

struct standing §

int hs_gpa [2]; /#* represents high school grade
point average */
int act_score [4]; /* represents American College

Test score */
int yr_in_school [3]; /* represents year in school */

int curr_gpa [4]; [* represents current GPA */
int hrs_obt [2]; [* represents hours obtained */
s

struct intentioms §

int entry_date [5]; /* represents college entrance
date */

char dec major [5]; /* represents declared major */

char dec_minor [5]; /* represents declared minor */

s

struct advisors §
char major_prof [29]; /* represents major professor */
char comm_membl [29]; /* represents committee member */
cﬁar comm_memb2 [29]; /* represents committee member */
char comm_memb3 [29]; /* represents committee member */
char comm_memb4 [29] /* represents committee member */
s

struct coursework §

int tech elects_len; [* represents number of lines */
int tech elects ptr; /* represents offset pointer */
int crses_taken_len; /* represents number of lines */

int crses_taken_ptr; /* represents offset pointer */

int
int
int

int

struct
int
int
int
int
int
int
int
int
int

int

T3

trans creds_len;
trans_creds_ptr;
tent curr_len;

tent curr_ptr;

s_personal §
interests_len;
interests_ptr;
goals_len;
goals_ptr;
prefs_ len;
prefs ptr;
str/wkn_len;
str/wkn_ptr;
poor_times_len;

poor_times_ptr;

struct past_trans_file §

char pt_text [19];

s

struct coursework file §

char cw_text [19];

L

struct s_personal_file §

char sp_text [19];

1

/*
/%
/%
[*

/%
/%
/*
/*
[*
/*
/*
/%
[*
[*

/*

j*

represents
represents
represents

represents

represents
represents
represents
represents
represents
represents
represents
represents
represents

represents

represents

represents

represents

number
offset
number

offset

number
offset
number
offset
number
offset
number
offset
number

offset

of lines */
pointer */
of lines */

pointer */

of lines */
pointer */
of lines =*/
pointer */
of lines */
pointer */
of lines */
pointer */
of lines */

pointer */

line of text */

line of text */

line of text ¥/

B=3

AFPENDIX C

INSTRUCTCR STRUCTURE DECLARATIONS

INSTRUCTOR STRUCTURE DECLARATIONS

struct instructor_table file §

char i_name [29];
int instr_ptr;
s
struct instructor_info file §
char i_name [29];
char dept [4];
struct specialty §
char major_area [19];
char crses_taught [39];
s
struct status §
char type_appt [9];
char grad_ facty [2];
char eval_rcd [9];
s
struct i_personal §
int strgths_len;
int strgths_ptr;
int wkness_len;
int wkness_ptr;
LK
T3
struct i_persomal_ file §

char ip_text [19];

s

/*
/*

/*
[*

/*
/*

/*
/*
/*

/*
/*
/*
1*

/*

represents

represents

represents

represents

represents

represents

represents

instructor name */

offset pointer */

instructor name */

department name */

major specialty */

course taught */

type of appointment */

yes means graduate faculty =%/

represents

represents
represents
represents

represents

represents

evaluation record */

number of lipes */
offset pointer */
number of lines ¥/

offset pointer */

line of text */

APPENDIX D
UNIVERSITY STRUCTURE DECLARATIONS

UNIVERSITY STRUCTURE DECLARATIONS

struct university_info file §

struct
int
int
int
int
int
int
s
struct
int
int
int
int
13
struct
int
int
int
int
int
int
T3
struct
int

int

ent_prereq §
ent_frman len;
ent_ frman ptr;
tran_stdnt_len;
tran stdnt_ptr;
int_appl len;

int_appl ptr;

math_req §

math prereq len;
math prereq ptr;
deg_prereq len;

deg _prereq ptr;

deg req §

comm deg len;

comm deg ptr;

under_deg_len;
under_deg_ ptr;
dual_deg_len;

dual_deg_ptr;

colleges §
collegex len;

collegex ptr;

/*
/%
[*
[*
/=
/*

/%
[*
I*
/*

/*
/*
/*
/*
[*
[*

/-k
/*

represents
represents
represents
represents
represents

represents

represents
represents
represents

represents

represents
represents
represents
represents
represents

represents

represents

represents

number
offset
number
offset
number

offset

number
offset
number

cffset

number
offset
number
offset
number

offset

number

offset

of lipes #*/
pointer */
of lines ¥/
pointer */
of lines */

pointer */

of lines */
pointer */
of lines */

pointer */

of lines */
pointer */
of lines */
pointer */
of lines */

pointer */

of lines */

pointer */

D=2

struct ent_prereq file §
char ep_text [19];
s

struct math req file §
char mr_text [19];
t;

struct deg req file §
char dr_text [19];

L

[/* represents line of text */

/* represents line of text */

/* represents line of text */

APPENDIX E

COLLEGE STRUCTURE DECLARATIONS

COLLEGE STRUCTURE DECLARATIONS

struct college table file §

char g name [29];

int coll ptr;

L

struct college info file §

char g_name [29];

struct
int
int
T3
struct
int
int
LB
struct
int
int
L
struct
int

int

degrees §
deg len;

deg ptr;

coll req §
coll req len;

coll req ptr;

prog_opt §

prog_opt_ lemn;

prog_opt_ptr,

depts §
deptx_ len;

deptx_ptr;

struct degrees_file §

char df_text [19];

s

struct coll_req file §

cSOR YR_text [19];

/*
[*

/*

[*

/*

l*
/*

/*
[*

/*
/*

/*

/*

represents

represents

represents

represents

represents

represents

represents

represents

represents

represents

represents

represents

represents

college name */

offset

pointer */

college name */

number

offset

number

offset

number

offset

number

offset

of lines */

pointer */

of lines */

pointer */

of lines ¥/

pointer */

of lines */

pointer %/

line of text */

line of text #*/

L
struct prog_opt_file §
char po_text [19];

s

/* represents line of text %/

APPENDIX F
DEPARTMENT STRUCTURE DECLARATIONS

F-1

DEPARTMENT STRUCTURE DECLARATIONS

struct dept_table file §
char d_name [29];
int dept_ptr;
3
struct dept_info_file §
char d_name [29];
struct dept_req §
int dept_req_len;
int dept_req_ptr;
s
struct grad req §
int grad_req len;
int grad_req_ptr;
1
char cont_per [29];
struct curriculum §
int curriculumx len;
int curriculumx_ptr;
L
s
struct dept_req file §
char dr_text [19];
s
struct grad_req file §
char gr_test [19];

s

l*

/*

/*

/*

/*

f*

/*

/*

/%
/*

/*

/*

represents

represents

represents

represents

represents

represents

represents

represents

represents

represents

represents

represents

department name */

offset pointer */

department name */

number of lines */

offset pointer */

number of lines */

offset pointer */

contact person */

number of lines */

offset pointer */

line of text */

line of text */

F=2

APFENDIX G
CURRICULUM STRUCTURE DECLARATIONS

G-1

CURRICULUM STRUCTURE DECLARATIONS

struct curlm_table file §
char curricula [9];
int curla_ptr;
s
struct curlm info file §
char curricula [9];
struct currla_req §
int currla req len;
int currla req ptr;
s
1
struct currla_req file §
char cr_text [19];

s

/*
/*

/*

/*
/*

/*

represents

represents

represents

represents

represents

represents

name of curricula */

offset pointer */

name of curricula */

number of lines */

offset pointer */

line of text */

THE PRELIMINARY DESIGN
OF A
STUDENT ADVISCRY SYSTEM

by

RONALD J. VIETH

B.S., Kansas State University, 1979
M.S., Kansas State University, 1984

AN ABSTRACT OF A MASTER'S REPORT

submitted in pertial fulfillment of the

requirements far the degree

MASTER OF SCIENCE

Department of Computer Scilence

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1984

ABSTRACT

The scope of this report is to develops and document the preliminary
design of an automated Student Advisary System. The Student Advisory
System 1is to support information pertinent +to seven major categories:
Course, Student, Instructor, OUniversity, College, Department, and
Curriculum.

The preliminary design of the Student Advisory System entails
mapping the requirements specifications for each of the categories into
Entity-Relationship diagrams, data structure diagrams, and the appropriate
strueture declarations.

The report documents work which began with this project in the spring
semester of 19684. The 1984 spring semester work dealt with one category
of the seven different categories. The report goes on to develope the
other six categories and documents the results of this effaort.

