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 

Abstract—This paper extends previous research on using a 

Bayesian network model to investigate impacts of time (month) 

and weather (number of fair weather days in a week) on 

animal-related outages in distribution systems.  Outage history 

(outages in the previous week) is included as an additional input to 

the model,  and inputs and outputs are classified systematically to 

reduce errors in estimates of outputs.   Conditional probability 

table obtained from the historical data are used to estimate weekly 

animal-related outages which is followed by a Monte Carlo 

simulation to find estimates of mean and confidence limits for 

monthly animal-related outages. Comparison of results obtained 

for four cities of different sizes in Kansas with those obtained 

using a hybrid wavelet/neural network model shows consistency 

between the two models.  The methodology presented in this paper  

is simple to implement and useful for the utilities for year-end 

analysis of the outage data to identify specific reliability related 

concerns. 
 

Index Terms—Animal-related failures, Bayesian network, 

Monte Carlo Simulation, Power distribution systems, Power 

system reliability. 

I. INTRODUCTION 

Although animals cause significant number of outages in 

overhead distribution systems [1-7], the exact causal 

relationship between them has not been addressed adequately 

in literature. Practical techniques for mitigating animal-caused 

outages have been presented [1, 2].  Chow et al have focused on 

identifying and classifying animal-caused outages [3, 4]. 

Models for estimating outages caused by animals with time of 

the year and weather conditions as inputs have been proposed 

previously by the authors of this paper [5-6]. A discrete 

Bayesian network model with two inputs to study these effects 

was presented in [5].   Division of inputs and outputs into 

different discrete levels was based on an ad-hoc approach and 

outages were assumed to follow Poisson distribution for 

estimating the statistical upper bound of outages in the 

specified time duration.  A hybrid model with wavelet 
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decomposition and neural networks for estimation of 

animal-related was presented in [6].  This study illustrates that 

incorporating outage history in the model results in 

significantly enhanced performance.   

Simplicity of applying Bayesian network models make them 

very attractive for representing effects of animals on outages in 

distribution systems. Therefore, additional research was 

conducted to refine the model presented in [5].  A systematic 

approach was used to classify inputs and outputs into different 

discrete levels for the Bayesian network model to reduce errors 

in estimates of outputs.  Details of this approach are available in 

[7].   

The main focus of this paper is to apply the modified 

Bayesian network model to study animal-related outages over a 

period of ten years in four cities in Kansas and to compare the 

results with those obtained with wavelet/neural network hybrid 

model [6].  A Monte Carlo simulation is implemented to 

estimate the monthly outages and to determine their upper and 

lower confidence bounds.  The results of this research are 

consistent with those of the published hybrid model, 

highlighting the effectiveness of the proposed method.   

The four cities included in this study are Manhattan (7 

distribution substations with 176 miles of distribution feeders at 

12.47 kV), Lawrence (7 distribution substations with 193 miles 

of distribution feeders at 12.47 kV), Topeka (22 distribution 

substations with 560 miles of distribution feeders mostly at 

12.47 kV and a very small portion at 4 kV), and Wichita (42 

distribution substations with 1165 miles of distribution feeders 

mostly at 12.47 kV and a very small portion at 4 kV).  Although 

the study covers a rather protracted period of ten years, prior 

discussions with utility engineers revealed that the grid 

topology changed little during this interval.  Thus we have 

assumed that the grid structure remained the same throughout 

our analysis.    

The methodology presented in this paper is simple to 

implement and is a useful tool for utilities in their year-end 

analysis of outage data, to identify specific reliability related 

concerns.  Comparison of the observed outages with the 

estimated upper limit gives an indication of the reliability of the 

distribution system over the specified period.  Observed 

outages exceeding the upper limit may warrant corrective 

actions to be taken by the utility. The results can also be used by 

utilities to justify higher than usual outages, as long as they are 

below the upper limit, in their reports to the state utility 

commissions.       
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Outages in Overhead Distribution Systems 
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II. BAYESIAN  NETWORK MODEL  

A Bayesian network is a probabilistic graphical model that 

represents a set of random variables and their conditional 

interdependencies by means of a directed acyclic graph [8-12]. 

The nodes of this graph are the random variables. A directed 

edge from one node (parent) to another (child) indicates a direct 

causal relationship between the corresponding random 

variables. The probabilistic nature of the child node‟s 

dependence on its parents, is quantified by a conditional 

probability table present at that node [10].    

A two-layer Bayesian network with Time, Weather, and 

Outage History as inputs and Outages in the week as output is 

shown in Fig. 1.   

 

 

 
 

Fig.1. A two-layer Bayesian network with three inputs for estimation of weekly 

animal-related outages  

 

A. Model Variables 

1) Time  

Time, defined by the month of the year, is classified into 

three discrete levels similar to that in [6], which are Low 

(January, February and March), Medium (April, July, August, 

and December), and High (May, June, September, October, 

November).  This grouping is based on the expected level of 

animal activity.  

2) Weather  

Since animals are more active during fair weather 

(temperature between 40 and 85 F and no other weather 

activity), weather for a week is classified into three levels based 

on the number fair weather days in the week. These three levels 

are Low (0 fair weather days), Medium (1 to 3 fair weather 

days), and High (4 or higher fair weather days) in the week) 

representing low, medium, and high probability of outages 

based on animal activity.  With all possible combinations of  

time and weather, there are totally 9 input states for the 

Bayesian network  model with these two inputs. 

3)  Outage History  

Given the same month and same weather conditions, the 

outages vary in a certain range due to the probabilistic nature of 

the outages.  In the previous study based on wavelet/neural 

network hybrid model [6], it was found that using outages in 

weeks prior to the current week as additional inputs improves 

the model performance.  To capture this feature, previous 

week‟s outage level is used as the as the third input in the 

Bayesian network model.  Dividing the previous week‟s 

outages into two levels (High and Low) as well as three levels 

(High, Medium and Low) were investigated.  It was found that 

two levels are better suited for modeling [7], as it improves the 

model performance while preventing the conditional 

probability table from becoming needlessly large.  The 

marginal improvement obtained from three levels is more than 

offset by a significant computational overload.  With two levels 

for previous week‟s outages there are a total of 18 possible 

combinations of inputs for the model that are henceforth 

referred to as „states‟ in this paper. The cutoff for High outage 

level in the previous week is set at 70th percentile, which means 

weeks with outages higher than those occurring in 70% of the 

480 weeks are defined as High.  

                  

4) Outage Level 

Histograms (number of weeks with outages in the given 

range) of weekly animal-caused outages in the four cities 

considered for the study for the past ten years or a total of 480 

weeks are shown in Fig. 2.  Analysis based on different levels 

for outages [7] showed that classification with nine outage 

levels is the most suitable for all cities. It was observed that the 

average absolute error in the Bayesian network model‟s outage 

estimates decreased as the number of discrete outage levels was 

increased from one to nine.  However, no further improvement 

could be obtained beyond this point.  Therefore, a total of nine 

discrete outage  levels have been used uniformly in the present 

study. 

Due to the differences in sizes, the disparity in the outages 

occurring in each city was high, even under similar input 

conditions. Unfortunately, early attempts at normalization 

based on size of the city as well as length of feeders did not 

yield satisfactory results.  Therefore, in this paper, the outage 

levels were discretized separately for each city, such that each 

outage level contained roughly the same number of outages. 

These ranges are shown, separately for each city, in Table I. 

 
TABLE I 

OUTAGE LEVEL RANGES FOR EACH CITY 

 
Outage 
Level 

Wichita Topeka Lawrence Manhattan 

    1     0 to 9     0 to 7     0 to 3        0 

    2   10 to 13     8 to 10     4 to 5        1 

    3   14 to 17   11 to 13        6        2 

    4   18 to 21   14 to 16     7 to 8        3 

    5   22 to 25   17 to 19     9 to 10     4 to 6 

    6   26 to 32   20 to 24   11 to 12     7 to 8 

    7   33 to 42   25 to 29   13 to 15     9 to 13 

    8   43 to 63   30 to 36   16 to 20   14 to 24 

    9   64 to 143   37 to 86   21 to 33   25 to 30 

III. MODEL IMPLEMENTATION 

A. Conditional Probability Table (CPT) 

   The historical data is used to learn the parameters of the 

model, which are the entries in the conditional probability table, 

i.e. the conditional probability of each outage level given the 

Time (month type), Weather (the level of fair weather days), 

Time

Weather 

Outage History

Outages

http://en.wikipedia.org/wiki/Graphical_model
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and Outage History (the level of outages in the previous week), 

that is,  

P (OL = i MT = j, FWDL = k, PWOL = l)   

where OL is the outage level,  MT is the month type, FWDL  is the 

level of fair weather days, and  PWOL is the level of outages in 

the previous week, and    

i = 1,…,9;  j =1,2,3;  k = 1,2,3; l = Low or High. 

The 18 input states represent all possible combinations of 

three input variables. The number of weeks in the historical 

data belonging to each  state are shown separately for each city 

in Table II.  Some input states such as those numbered 13 and 

16 have nearly all zeros or mostly zero entries, which implies 

that no or very few weeks matched conditions of these states. 

These two states represent conditions where the month type is 1 

(or low animal activity), previous week outage level is high, 

and the fair weather day level is medium and high, respectively.  

Since animal activity is low in these months, even higher level 

of fair weather days is unlikely to produce many outages.  

Therefore, these combinations are very unlikely to occur in real 

life, which explains the lack of sufficient number weeks in 

these states.  Similarly, states 10 and 17, which have fewer 

weeks, are very unlikely to occur.  Therefore, even though we 

have limited data for these states, their impact on determination 

of expected number of outages in a time period would be 

minimal.  

 

 

 

 
(a)  Wichita 

 
(b) Topeka 

 
(c) Lawrence 

 
(d) Manhattan 

 

Fig. 2.  Histograms of weekly animal-related outages in different cities from 

1998 to 2007 
 

 

 

TABLE II 
NUMBER OF WEEKS PER STATE FOR FOUR CITIES 

 

 
Input 
State 

MT FWDL PWOL 

Number of 
Weeks 

WCT* TPK* LRC* MHN* 

1 1 1 Low 73 71 72 88 

2 2 1 Low 58 48 44 56 

3 3 1 Low 11 7 6 14 

4 1 2 Low 34 39 38 22 

5 2 2 Low 46 56 55 53 

6 3 2 Low 30 20 32 45 

7 1 3 Low 12 8 8 4 

8 2 3 Low 35 39 40 30 

9 3 3 Low 47 49 64 65 

10 1 1 High 1 2 2 4 

11 2 1 High 13 7 12 13 

12 3 1 High 9 8 12 7 

13 1 2 High 0 0 0 2 

14 2 2 High 6 8 9 4 

15 3 2 High 34 42 35 34 

16 1 3 High 0 0 0 0 

17 2 3 High 2 2 0 4 

18 3 3 High 69 74 51 35 

 

*WCT:  Wichita, TPK: Topeka, LRC: Lawrence, MHN: 

Manhattan 
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 Since the graph structure is fully known with fully observed 

historical data, Maximum Likelihood Estimation was used to 

learn values in the CPT.  Hence, the equation to compute the 

conditional probabilities for input state m is: 

 

P (OL = i Input State = m) = Ni /Nm 

 

Where  Ni is the number of occurrences in outage level i in  state 

m  and Nm is the total number of occurrences in state m.  

B. Estimation of Animal-related Outages 

 In order to get the expected number of outages for a given 

week with a given state, weighted sum of average value or 

median value of outages in each level weighted by conditional 

probability, has to be obtained. In the previous work, median 

values were used [3], but we have chosen the average values as 

they better represent the historical outage data. The median 

values are based on range of outages in each outage level, but 

the average values take account of the distribution of outages 

within the outage levels and thus can provide better 

characterization of  the outage levels.  

The expected number of animal-caused outages in each input 

state can thus be computed by the following equation : 

   E (Number of outagesInput state = m) =  

  




9

1i

P (OL = iInput State = m) Avg(OL=i))            

for  m = 1,…, 18. 

 

Where P (OL = i Input State = m) is the conditional probability 

of occurrence of outage level i, given input state m and 

Avg(OL=i) is the average value of outages in the outage level i. 

The expected number of outages at each input state is 

computed and listed in Table III. This value is considered as the 

estimate of outages for the weeks with this state. Estimating 

outages over a larger time period, such as a month, can be 

readily obtained by summing all the weekly estimated values 

for that month.  However, since no prior probability distribution 

of the outages for each state is assumed, it is not possible to 

compute the variance and confidence limits directly for a 

meaningful comparison of computed values with observed 

values of outages.  We attempted to fit different probability 

distributions to the outage data, but that did not provide 

consistent results. Therefore, Monte Carlo simulation as 

detailed in the next section was used to obtain the variance and 

the confidence limits.  

IV. MONTE CARLO SIMULATION  

A. Probability Distribution Functions 

To implement Monte Carlo simulation, we have to determine 

the probability distribution function (pdf) of outages in each 

input state. Therefore, the entries in the CPT for each state are 

normalized by the size of the bin related to each outage level to 

obtain pdf for each state.  A sample pdf thus obtained is shown 

in Fig. 3.  It corresponds to Input State 18 for Wichita. Also 

shown in this figure are the normalized probabilities for 

specific outage values.  The pdf gives the correct trend as state 

18 is expected to have the highest number of outages.  As this 

graph shows, probability of outages is zero for very low values, 

it is low for very high values, and it is high for in between 

values.  

 
 

 
Fig. 3.  The normalized histogram and CPT for Input State 18 for  Wichita 

 

B. Simulation Procedure  

Stepwise implementation of Monte Carlo simulations is 

provided below:  

 

1. Find the input state for a given week. 

2. Generate a uniform random number. 

3. Using roulette wheel with this random number select 

an outage level based on the pdf for that state. 

4. Generate another uniform random number. 

5. Using roulette wheel with this random number select 

a value for outage from the selected outage level. 

The outages follow uniform distribution within one 

outage level. 

6. Repeat the simulation 10000 times for each week.  

0 50 100 150
0

0.01

0.02

0.03

0.04

0.05

0.06

 

 

CPT normalized by
outage level size

Normalized histogram
for input state  18

TABLE III 
THE EXPECTED NUMBER OF OUTAGES IN EACH STATE FOR  FOUR CITIES  

 
 

Input 
State MT FWDL PWOL 

Expected Number of Outages 

WCT TPK LRC MHN 

1 1 1 Low 9.57 7.95 3.40 1.93 

2 2 1 Low 16.35 12.91 4.51 2.43 

3 3 1 Low 25.24 16.92 8.04 4.91 

4 1 2 Low 10.73 8.00 4.02 1.49 

5 2 2 Low 18.73 15.42 6.29 3.02 

6 3 2 Low 26.72 16.67 9.22 4.81 

7 1 3 Low 12.22 13.48 2.46 1.96 

8 2 3 Low 18.39 13.37 4.75 2.32 

9 3 3 Low 29.76 25.08 8.42 4.20 

10 1 1 High 11.39 13.50 8.41 2.46 

11 2 1 High 27.87 16.36 6.16 3.76 

12 3 1 High 33.31 33.32 11.10 6.74 

13 1 2 High 0.00 0.00 0.00 0.50 

14 2 2 High 19.35 13.79 6.92 4.33 

15 3 2 High 44.60 33.36 13.35 6.74 

16 1 3 High 0.00 0.00 0.00 0.00 

17 2 3 High 13.45 16.44 0.00 4.12 

18 3 3 High 51.66 37.58 13.72 8.21 
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b
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Fig. 6.  Observed values of outages and monthly estimates with 95% limits by Monte Carlo simulation using the Bayesian network model for Wichita 

 
 

 
Fig. 7.  Observed values of outages and monthly estimates with 95% limits by wavelet/neural network hybrid model for Wichita 
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 Since the simulation is repeated 10000 times, we get 

10000 simulated sample points for each week. By simply 

adding up the sample points of four weeks in the same month in 

an iteration, we get 10000 sample points for monthly outages.  

The mean, variance, and the corresponding 95% confidence 

limit for monthly outages are then computed from the 10000 

samples. Although the same approach can be used to determine 

yearly outages, examination of the results showed that many 

details are lost if yearly aggregation is considered. On the other 

hand, weekly observations showed too much noise and 

fluctuations.              

V. RESULTS  

The Monte Carlo simulation methodology presented in the 

previous sections was applied to all the four cities of this study 

to estimate outages and the associated 95% upper limit for 

every month of the 10 year duration. Fig. 4 and 5 show 

examples of histogram for selected months obtained from the 

Monte Carlo simulation with the Bayesian network model for 

Wichita and Manhattan.  In both cases, the results closely 

resemble Gaussian distribution. Similar results were obtained 

for all the cities for all the months. From these plots estimated 

monthly mean and 95% percent limits can be easily computed. 

Fig. 6 gives the monthly observed outages, estimated outages 

and the associated 95% upper limit for Wichita for all the 

months computed with the Monte Carlo simulations. Fig. 7 

gives similar results obtained with wavelet/neural network 

 
Fig. 4.  Histogram of outages in May 2007 in Wichita based on Monte Carlo 

Simulation 

 
Fig. 5.  Histogram of outages in May 2007 in Manhattan based on Monte Carlo 

Simulation 
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hybrid model [6] over the same duration for Wichita. It can be 

clearly seen that the estimated values follow the observed 

values in both cases. However, the results of the wavelet/neural 

network hybrid model follow the outages more closely with a 

smaller variance compared to the Bayesian network model. 

Similar results were obtained for the other cities.  Absolute 

Average Error (AAE) and the maximum error between the 

estimated and observed values of outages with the two models 

for the four cities are shown in Table IV. Both the AAE and the 

maximum error are lower for all the cities for the 

wavelet/neural network model.  The maximum error decreases 

with the size of the city except that it is higher for Manhattan 

than Lawrence.  However, this is true for both the models, 

which could be due to uncertainties in the data.   

 
TABLE IV 

AAE AND MAXIMUM ERROR FOR THE TWO MODELS 

 

 
Bayesian Model Wavelet/ANN Model 

AAE Max Error AAE Max Error 

Wichita 22 142 15 70 

Topeka 18 80 14 76 

Lawrence 6 29 5 19 

Manhattan 5 37 4 28 

 

 The monthly observed values were found to be below the 

95% upper limit in all but four cases (May 2001, August 2001, 

October 2001, and March 2002) in Wichita, three months (May 

2000, August 2001, April 2004)  in Topeka, two  months in 

Lawrence (January 2006 and May 2006), and two months 

(December 2001 and October 2004) in Manhattan with the 

Bayesian network model.  With the wavelet/neural network 

hybrid model observations for four months (October 1999, May 

2001, October 2001, and September 2004) in Wichita, five 

months in Topeka (October 1999, May 2000, May 2003, May 

2004, and May 2006) five months in Lawrence (May 1999, 

September 2001, February 2004, May 2005, and May 2006), 

and three months in Manhattan (May 2003, May 2004, and 

September 2004) were found to be above the 95% limit.  Only a 

few observations (May 2001 and October 2001 for Wichita, 

May 2000 for Topeka, and May 2006 for Lawrence) were 

higher than the upper limit of both the Bayesian network model 

and the wavelet neural network model. Table V shows selected 

(some of the months with observed outages higher than the 

estimated outages from either models) results for each of the 

four cities.  Rows with observed outages higher than the upper 

limit of either of the models are shaded with their entries shown 

in bold. Note that in several cases the observed outages are only 

slightly higher than the upper limit.  Results for other years 

were very similar and thus are not included in the paper.  

Estimation of yearly outages using these methods did not yield 

meaningful results because month to month temporal variations 

cancelled out in the yearly aggregate.  

VI. CONCLUSIONS 

The main focus of this paper is to present a modified 

Bayesian network model and apply it to study animal-related 

outages over a period of ten years in four cities in Kansas and 

compare the results with those obtained with wavelet/neural 

network hybrid model [6]. The Bayesian network model 

presented in this paper is able to capture the time-based pattern 

in animal-related outages. 

 
TABLE V 

OBSERVED VALUES, ESTIMATED VALUES, AND 95% UPPER LIMITS FOR 

OUTAGES IN DIFFERENT CITIES FOR SELECTED YEARS   
  

 
Observed 
Outages 

Bayesian Model Wavelet/ANN Model 

Estimated 
Upper 
Limit 

Estimated 
Upper 
Limit 

Wichita (2001) 

Jan 61 56.89 91 61.70 102.96 

Feb 30 30.35 52 32.17 73.43 

Mar 65 36.56 67 49.67 90.93 

Apr 82 67.63 97 77.81 119.07 

May 271 169.18 270 225.92 267.18 

Jun 182 204.30 339 242.13 283.39 

Jul 114 84.08 131 102.14 143.40 

Aug 149 95.24 145 136.09 177.35 

Sep 205 220.12 353 183.25 224.51 

Oct 372 230.37 364 326.18 367.43 

Nov 162 211.54 346 232.45 273.70 

Dec 116 84.03 132 116.53 157.79 

Topeka (2000) 

Jan 41 49.44 79 68037 105.02 

Feb 43 33.11 55 28.49 65.14 

Mar 42 38.45 63 27.72 64.37 

Apr 60 49.31 71 81.46 118.13 

May 212 131.77 205 135.52 172.17 

Jun 172 149.94 229 226.04 262.69 

Jul 54 54.74 82 61.71 98.36 

Aug 68 48.72 80 64.46 101.11 

Sep 188 142.01 214 167.70 204.35 

Oct 155 168.29 253 170.00 206.65 

Nov 94 109.63 169 90.03 126.68 

Dec 31 49.57 79 64.28 100.93 

Lawrence (2006) 

Jan 45 23.45 37 44.20 59.43 

Feb 17 16.67 25 22.20 37.43 

Mar 17 13.41 24 19.69 34.92 

Apr 26 15.12 26 21.97 37.20 

May 75 46.43 72 58.55 73.78 

Jun 68 59.56 89 78.88 94.11 

Jul 37 28.65 43 42.48 57.71 

Aug 31 24.30 38 31.88 47.11 

Sep 48 43.89 70 35.06 50.29 

Oct 53 52.24 78 59.60 74.83 

Nov 56 56.14 84 65.87 81.10 

Dec 19 26.15 40 15.45 30.68 

Manhattan (2004) 

Jan 9 10.83 21 12.45 23.45 

Feb 5 6.16 13 5.30 16.09 

Mar 7 6.85 14 5.03 15.82 

Apr 18 12.96 23 15.81 26.60 

May 46 28.05 54 33.78 44.57 

Jun 46 28.06 53 60.66 71.45 

Jul 7 11.48 23 14.13 24.92 

Aug 19 12.43 24 17.40 28.19 

Sep 27 19.85 41 14.65 25.44 

Oct 65 27.94 53 81.01 91.81 

Nov 29 27.65 53 28.74 39.27 

Dec 16 11.28 22 16.84 27.74 
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  Monte Carlo simulations with the Bayesian network model 

enable determination with great accuracy of the mean and 

confidence limits for the monthly estimates of outages.   The 

upper and the lower limits provide a range within which the 

total outages are expected to lie 95% of the time. The upper 

limits are particularly useful to utility companies as they 

provide a benchmark on animal-caused outages for each month 

of the given year. The utilities would need to do field 

evaluations should the observed outage counts exceed the 

upper limit.  

Comparison with results obtained from the wavelet/neural 

network hybrid model show consistency in performance of 

both models.  Although the wavelet/neural network hybrid 

model tracks the outages more closely and has lower variance, 

both models were equally effective in screening the outages to 

determine months with observed outages higher than the upper 

limit. The Bayesian network model is attractive because of its 

simplicity and ease of implementation.   

The methodology presented in this paper is designed for 

year-end screening of past year‟s reliability performance of the 

distribution systems.  Only if the observed values for a given 

month are higher than the estimated upper limit, the utilities 

would have to do additional investigations to locate the causes 

of problems and devise remedial measures.  Further, the results 

would allow utilities to justify relatively large outages 

occurring in their systems in their annual reports to the state 

utility commissions as long as they remain below the model‟s  

upper limit. 
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