'INFORMATION FLOW COMPL EXITY,
by

Pakarat Udomphorn

B.A., Ramkhamheang University, Thailand, 1277

A MASTER'S EEPORT

submitted imn partial fulfillment of
the requirement for the degree

YASTER OP SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1984

APPROVED BY:

ézfjﬁzgé

MAJOR PROFESSOR

AL1202 L0083

LD

A4

Ry ACKNOWLEDGZMENTS
13774

i1 36
c, 2

I would like to express my sincere gratitude to nmy
major advisor, professor David Gustafson for his gquidarnce,
patience and encouragement. He has made this a pleasant and
rewarding learning experience. I also would like to extend
a personal thank you to nmy comittee meabers, Professor
William Hankiey and Professor Rod Bates for their helpfull

sucgestions ard coamments.

I an grateful to my mother for her constant suppor= and
encouragement which have been of utmost importance *o the

success of ay education.

ILLEGIBLE
DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN

THE ORIGINAL

THIS IS THE BEST
COPY AVAILABLE

2.

3.

h.

S5e

CONTENTIS

INTRODUCTIOR . « o = = =« = =

Organization of the Reporct
Complexity MeasuUres. . . .
Types of Flow
Internodule Control flow
Intermodule Information
Intramodule Control Flow
Intramodule Information
Relating Information Flow

INFORMATION FLOWN . . . « . .

Explicit Information Flow
Ioplicit Information Flow

DESIGH L] - - L] * - . - .] l.

Requirement Specification
IFC input progra® .« - « «
IFC OULPULES « o o = o « =«
RUDDIBG IFC & 5 o o o o
Data Structure « « « < =« &

THPLEMENTATION . o« 2 o =« = =«
System diagrams <« « <« +
System logic « « &« & & o

IFC sample program « . » .

CONCLUSION AND EXTENSION

REPERENCES. - « « 2 o 2 « =« =

Appendix

A.

B.

C.

D.

GLDOBAL VARIABLES AND ROUTINES
IFC PROGRAM LISTING
USER'S GIDE « « + o ¢ s « o+

SAHPLE PROGRAN LISTINGS . . .

L] » » -
L] - L] -
Flow .

- - L]

Flow .

DD d N E W

« 21
. 22
. 24
. 26

-
. 21

« 35
o 43
. G4e

. 100

- 106

Figures

2.1 Explicit irformation flow graph « « =« o« « o « « - «

2.2 Explicit information flow grapk of I/0 sta<emRenz. .

2.3a Explicit information flow graph of

2.3b Explicit information flow graph of

2.4

2.5

.10 EBxample for

with returned value. . .
Implicit information flow

Implicit ipformation flow

Implicit information flow

Implicit information flow

Imblicit information flow
Realating data structure.
A sample of relating data
System diagralle « « + «
Hizrarchical diagram of
Hierarchical diagram of
Hierarchical diagram of
Hisrarchical subdiagraam
and PROCESSPROC routine .
Hierarchical diagram of

Hisrarckical diagram of

Hierarchical diagram of

Hi=ararchical diagram of

routine heading

coutine heading

graph s @ = @ « = = 3 % &

graph of YHILE statemernt,

graph of IF THEN ELSZ . .

graph of FOR statenent. .

graph of REPIAT statcement

StrucCctlUre o« o 2 « = = = =

- » » L] L] - & »] [] 2 L] -

Body routine. .« .+ .+ 4+ ¢ &
PROCESSVAR_TYPE routine . .
PRGCESSPROC routine

of PROCESSVAR_TYPE

- - - - - - - - - - - - -

PROCESSBEGIN routine. . . .
ACCESSBLOCK routine
simple statements routire .
ANALYSIS routice. + « + + «

explaning INDXTABae o« o « o s « = = « &

4.71a INDXTAB stack after the analysis of I/0 statement

4. 11b INDXTAB stack after the analysis of

assignpent. .

4.12 IFC sample program and output . . . « « « « « . .

Page

» 13

- 15

20

.« 39
. 39
. 43
- 45
. U5

. 48

CHAPTER ONE

INTRODUCTIOR

This report describes the purpose, desiqgn and
implementation of a software tool that determines +he
information flow inm Pascal ©progranms, Informatior flow
refers to the dependency of a variable on the value of other
variables. The software tool is called the informatior £low
complexity (IFCQ) Progran. It is implemented om a PDQ-3
computer. The IFC will be used as a research tool <o

investigate *the complexity of software.

Saftware 1is becoming nmore complex because of an
increase 1n the user's needs and because o0f *he rapid
advanczment in hardvare technology. Rapid advancements in
hardvare cause ne¥ system software to become desirable or
necessary. Extensions to existing system software are
regquired in order to take full advantage of the new hardware
capabilities. With the increasing complexi*y of new and
existing software, there is an increasing need for powerful
and adaptive development tools and technigues. Maintenance
costs tend to dramatically increase the «costs of +the
software systen, often costing more thac the rest of the

softvare over its life cycle.

2

Complexity metrics attempt to gquantify +<he complexity

of software. Complex software may be wvery Lhard to
undestand. Some program Rmodules may be @more complex than
others and harder +to understand, More precisely, the

complexity of a program is related to the difficul*y people
have 1in understanding the function implemented by *he
software {Chap 79) (Bak 77). This report is concerred with

the use of information flow as a possible complexity metric.

ORGANIZATION OF THE RE-PORT

Chapter one discusses ah overview of the recent work
concerning information/control flow. Chapter two in<roduces
a description of the IFC, describing the informatior flow
featuras associated with the flow structure. Chapter three
explains in detail the specification of IFC inpu*t prograns
and the ouatputof +the IFC. Ircluded are the major data
structures used ipn the implementation. Chapter four
illustrates the system diagram and describes how +to build
and use the data structure to analyze the information
transfer in the input progranm. Chapter five discusses the
conclusions and extensions which can be doue to make the IFC
program more powerful. There are appendices provided for
users who need to use or modify the IFC program. Appendix A
contains the 1listing of global variables and routines.
Appendix B contains the listing of IFC programn. Appendix C
contains user's guide. aPpéndix D contains the listing of

ten sample programsSe.

COMPLEXITY MEASDRES

Evaluating software quality is bLecomirg a very
important activity. Much of the recent work in sof+tware
engineering has been concentrated in various measures
concerning software complexity. Thus +he definition of
complexity has various meanings depending on the object of
interest. The metrics may be used in a software development
tool as a mechanism for judging the technical quali+y of
softvare and the adequacy of +the design. Several of these
complexity measures concentrate on specific s=tructural
characteristics of progranms. Falstead's sof<+ware scierce
counts operators amd operands{Hal 77). McCabe's cyclometric
complexity counts the number of basic paths through +he
program {(McC 7€) . The study of Zolonowski and Simons {Zol
77) includes the nmeasurement of programming stvles and
methods and involves the relationship between ©progran
characteristics and program error aRouRnts and types.
Berlinger (Ber 80) sees the need to derive a measure of

mathematical and intuitive correctness.

Types of Flow

Iu attempting to evaluate software quality, there are
many methods frequently mentionec in +the area of informa*ion
{data) and control flow. The informazion flow involves the
flow relation of program variables that have an influence in
transferring the value of information upon the <£flow
structure {Denn 76). Data apd control flow have been
characterized by Withwort as follows:

"Regarding software as a mechanism for ou+pus
production reduces the problem of understand-

ing a software desiqn to the problem of under-

standing the flow of control and resulzing

derivation of the system outputs. Control flow

analysis involves tracing paths through the

design and understandirg the logical condition

associated with branchinqg and loopirqg in the

sttucture., Dataflow analysis involves tracing

some internmediate data and ul*imately to systen

inputs and constants." (With 80)

The various mRmeasures cover either *he intramodule or
intermodule complexity. The intramodule complexity measures
deal with the complexity of algorithms (i.e. the irnner
working of individual system modules). The ir+termodule
complexity measures deal with the interconnection of the
system modules. Based on these observations, comnplexity
measures concerning data/control flow can be ciassified into
four types: (1) intermodule control flow; (2)intermodule

information flow; {3) intramodule <control flow; {4)

intramodule information flow.

(n

{2)

w

Intermddule Control Flow.

Intermodule control flow attempis %2 examine a basic
flow graph of a »progran, the unders+anding of how
program control is passed from module +to module,
regardless of program loops and program characteristics.
An exanple is McClure's coaplexity me<xric (McC 7¢) which
involves ab examination of the possible execution paths,
the control structures and the variables used to direct
path selection. In a well-structured progran, tbe
execution hierarchy of a proqram 1is determined by the
values of control variables in a program loop. She
defines three sources for module complexity: {1y +the
control structures used in module imnvocation, {2y the
control variables referenced in module invocation, (3)
the commonality of a module which is a par%t of the
execution hierarchy. She suggests +that the complexity

can be controlled by the following two rules: The

or

complexity of each module should be minimized, and the
complexity among modules in a well-structured proqgran

should be distributed.

Intermodule Information Flow,

Intermodule information flow metrics are concerned
with the interfaces between procedures, modules, and/or
subroutines. This can be viewed as the mapping of the

inputs to the outputs from a module to module. Previous

&
work on flow metrics was done by Chapir (Chapir 78). His
complexity measure is described by the difficulty 1in
unierstanding softvare's function based on *he
input/output sets in modularized programs ard systens.
He defines four roles of data {(any one item of data may
kave more than one role): (n C_control role, {2)
P_processing role, (3) T_pass_throughk role, (4) HM_modify
role. Data in the C_control role cortribute +*he most to
complexity when considering the source of <C_da<a. The
sources of data may come from within the module (or are
constants), within the subordinate loop body, or froa
outside of the loop body. He urilizes the techniques of
identifying and parsing functiopal-oriented design
conplexity, and sets of dependent variables, For large-
scale systems, Heanry & Kafura (Hen&kaf 81) proposed
that in measuring complexity, an examina*ion of tte
connection between the system components must fLe
included. The relations gererated for each comporert
show the flow of information from input parame*ers +*o
output parameters, and through the global data
structures. The complexity measure 1is composed of the
complexity of the procedure's code which is represented
by its length and the complexity of the procedure's

connection to its environment.

{3} Intramodule Control Flow.

(4)

vl

Intramodule control flow atteapts +o neasur
complexity by measuring the «con*rol flow structure of
the software. An example 1is McCabe's cyclometric
Complexity (McC 76) which describes the decision-making
structure of the program. This measure utilizes a graph
theoretic technique to assign a complexity measure to a
program based on the ﬁumber of linearly-independent:
control paths in the progral. McCabe sees that the
complexity metric must include the measurement of tke

rnumber of possible execution patks

Intramodule Information Flow.

Intramodule information flow can be viewed as the
interconnection of data within program modules which are
designed +to be as independent and exclusive of each
other as possible{Mac 80). The result is <that the
interconnection of data within modules should - be
absﬁlutely clear. To understand 50w +he inner working of
the module is performed, an information flow graph is
used to show the flow of information between the
variables which participate in the processing of dat*ta

for the creation of the desired output.

RELATING INFORMATIQN FLOW

The intramodule control flow and +he in*ermodule
information flow can help analysts or progranners to
understand the control of the systen by describing
input/output and the control variables used to direct the
execution path in the program. However,it does not always
measurs the use of global variables, thke value that may be
changed during the information flow £from input to output.
More precisely, a procedure or function which alrers zhe
value of non-local variables during thke execution is said +o
have side-effects. For example, the read statemert recads a
value from an input file and that value is assigned to a
global variable instead of using its own variable declared
within the procedure or function. This may do no harm to the
system execution, but it makes +the system harder to

understand and to work with.

To enhance the effectiveness of the computer software,
it is essential to develop a better understanding of ways *o
deal with information flow. It turns out that comzbining the
study of these four types; metric and irformation f£low graph
may be used to analyze the complexity of +the information
flow among the program variables. This may 1lead to an
improved understanding of +the design. By *racing the

connection among the program variables from the initial node

5
to every other node that exists, prograr variables can be
identified whether they are dJdepenient or 1independen=z, A
variable is called dependent if it value is affected by the
value of other variables. The dependent variable can ko
shown by flow graph describing the information flow from the
source node +*o the destination node. Arn independent
variable can be defined as a program variable whose value
does not change as the result of processing of the proqraan
module, Thus the IFC program 1i1s presented *o accep~ tka
input Pascal progran. Every program statement cont*tained
vithin the input program module needs -o be examinea for the

information transfere.

10
CHAPTER THO

INFORMATION FLOW

Information flow can be defined as the transfer of
information from one object to another. The obijects are
prograR variables. Each variable may or may not be involved
in an information +trapnsfer during the proqram executiorn.
Operations of the program concerned in this repor+ involve
assignment, I/0, calli statement, with statement and control
statenent, During program eXxecution, the informatiorn
transfer usually has a transitive relation. The flow
relation (FR) is transitive if, whenever {(i,B) is in F2 and
(B,C) is in FR, {A,C) 4is im PR also. This car be described
by showing that among the program variables A, B, C +here is
an information transfer from A to B and from B +to C, thus,

there is an information transfer from A to C {(Denn 7¢).

The features of information flow can be viewed as :
{)explicit informatiom flow; (2) implicit information flow.
The following section gives the definitions and explains how
the information flow can be represented by a flow graph.
Each node represents a variable declared in the program. An
arc represents the information flow +that transfers fram the

source node to the destinationrn node.

11

EXPLICIT INFORMATION FLOW.

Explicit information flow can be viewed a3 a
straightforwvard and obvious transfer of information between
objects in simple =statements{Mac 81). The transfer may
occur directly or indirectlye. Direct transfer can be
described as a transfer of information from source object ro
destination object which results in a final outpu*. Indirecrt
flow is very much like direct transfer except it involves
one or more statements participating in processing a final

output.

(a)
{b) A 3

(]
he
u u
w o
+
0
z//vé——-—u
b=
w

Figqure 2.1 Explicit information flow grapkh.

Figure 2.7 consists of two assigonment statements.
Statement (b) uses statement {a) to produce a firal outpu+
A. The £flow graph shows a direct information transfer fron
object D to C in an assigonment {a), and also has a transfer
from object B to A and from C to A in an assignment (b).
However, the result of flow graph shows an indirect
informa tion flow,namely, transitive relation , from object D

*o A in processing these two assignments.

12

Simple statements used in the explicit inforﬁation Llow

in this project are composed of three types: {1) assignoen<+
statements, {2) input/output statements, ard {3)

procedure/function call statements.’

(1) ASSIGNMENT statement.

The assignment statement symbol is denoted by ':=',
The object which appears on the left hand side{LHS) on
an assignment symbol is defined as the destination. The
object on the right hand side(RHS) is defined as =he
source object. It may contain either an expression or a
function call statement. LHS := RHS shows the direct
explicit flow which tranfers the informa*ion from the

RHS to LHS.

{2) INPUT/0UTPUT statement.

The input/output statement 1is used to +ransfer
values to or from the progranm. Only the I/0 statemen*
that performs a value read or write is involved in this
analysis. For exaample, 1in figure 2.2 “he statcement
READ (A) shows the explicit information flow which is
the transfer of an assigned value from the input file *o
the object A. The statememt: WRITE(B, 'sample') shows
the direct explicit flow which is +he transfer value

from the object B to the output file.

13
READ () ; In ouT

WRITE{ B, 'sample'); I
3

b

Figure 2.2 FExplicit information flow graph
of I/0 statements.
{3) PROCEDURE_FIONCTIOFV statement.

Wwhen a call statement 1s executed, a mapping dis
performed depending on the procedure/function
declaration. Consider a procedure call with parameter
passing. It is obvious that *here is at least a direct
+ransfer from the éctual parameter to <he formal
parameter, and a possible direct transfer from the
formal parameter back to the actual parameter depending
on how the procedure heading is declared. The function
call can be only used in an assignmen* statemen- while a
procedure call can be used by a call statemert. These
can not be used or contained in any boolean expression
of the control statements and in the I/C statement. At
the point 0of call, the exact number of actual parameters
and formal parameters are reqguired. Actual parameters
must use the variables declared in the prefix

declaration, thus they cannot be constants, subprogranms

or be contained in the expression.

-

In fiqure 2.3a, the procedure call statement:

ADD {A,B,C) causes the explicit flow from actual

14
parameters A,B,C to formal parameters XxX,v,c of the
routine heading: PROCEDURE ADD({X,Y,Z:real). In figqure
2.3b, the routine heading declared as:
PRICEDURE{X,Y:real; VAR Z:real) causes the explicit flow
from actual parameters A,B,C to formal parameters X,Y,Z,
andl also the transfer from formal parameter 7 back to

actual parameter C in the call statement ADD(A,B,Q).

PROCEDURE add(X,Y,Z:real); X,%¥,z2

LY
v
LN
[2
- %
[4

BEGIN END;

add (a,8,C) ; T

Figure 2.3a Explicit informa*ion flow graph

of a call statement.

PROCEDURE add(X,Y:real; var Z:realj ;

BEGIN EXND; X,T z
add (4,8,C); A,B &

Figure 2.3b Explicit information flow graph

of a call statement with a returned value.

15

IMPLICIT INFORMATICON FLOW.

Implicit ioformation flow can be caused by conditional
statements{Mac 81). Conditional statements are composed of
two parts: +*he conditional part and the computa*tional bhody.
The conditional part consists of a boolean expression that
needs to be evaluated to specify whether to carry on or +3
terminate the computational phase. During *the evaluating of
the conditional phase, if there is any variable contained in
the boolean expressions, that variable will have an implici-
information flow +to the appropriate variables contained in
the computational bhody. The computational par* consists of
executable statements which éan be a simple statenment,
conditional statement, or compound statemen* composed of a
grounp of statemgnts introduced by BEGIN ané terminate by

END.

WHILE A>B DO BEGIN READ(X);

Y := 1;

)
(1]
I
3
o
[
=

Figqure 2.4 Implicit information flow

10
Pigura 2.4 shows the variables used in a WHILE
statement. There is an implicit information flow from A and

B +to its computational body: ¥,Y ard Z , and the explicis

information flow from IN to X in an I/0 statement.

Statements involved in the implicit information flow
measure consist of WHILE DO statements, IF THEN 2LSE
statements, FOR statements, and REPEAT UNWNTIL statements.
The basic concept and rules of each statement are priefly

described in the following section.

{1) WHILE statement.

In a loop statement, WHILE <bool> DU <s1>, the
conditional part contains a boolean expression that
needs to be evaluated to specify whether to continue or
terminate the computational body. If there 1is any
variable participating in the boolean expression,
<bool>», that variable will have the implicit informarion

flow to the compuational body, <S1>.

Figure 2.5 shows an implicit information flow
from A and B to the appropriate variables contairned in
+he computational body, a procedure call statement. In
fact, the evaluation of A>B causes +he changirng of
actual parameter C after the procedure call ADD is

invoked. Thus it is important to recogrnize that there

(2)

17
is an implicit information flow from obkject A, ard B to
object C. There also is an explicit informatior flow

which was previously described.

PEOCEDURE ADD (X,Y:real;VAR Z:real):
BEGIN END;

WHILE A>B DO ADD (A,B,C);

&L

N

.
N

Figure 2.5 WHILE flow graph.

IF THEN ELSE statement.

A conditional statement, IPFP <bool> THENY <s1> else
<s2>, enables tﬁe process to select one of the two
actions. The selection 1is made by evaluating the
boolean expressiocn, <hool>,' in the conditional phase.
If there is any variable participating in the evaluation
of the boolean expression, there will be an implicit
information flowv from that control variable to both the

THER and ELSE computational bodies, <S1> and <S2>.

(3)

13

In figqure 2.6, the corditional phase, i>»o,

causes the implicit information transfer from ohject D
to *he object C in an I/0 statement, and object E which
appears on the iHS of +the assignment statenment. The
assignment statement, E := F, causes the explicit
information flow transfer from object F *o obiject E.

There also has an implicit flcw from IV to object C in

an I/0 statement,READ(C).

I? D>0 THEN E := F

ELSE RTEAD({C)

Ee— T

Cé TN

Figure 2.€ IF THEN ELSE flow graph

FOR statement.

The information flow in *he s*atement; FQRE <id>
:= <booll1> {TO|DOWNTO) <bool2>» DO <s1», will work the
same way as the WHILE statement except +the obiject nid"
will not bhe involved in an implicit information
transfer. When the wvariable "id®" appears in the body,

S1, it will be an explicit transfer.

19
FOR I := A T0O B DO BEGIVY
C 1= D+1;
writeln (R ;

END;

A8 — Cé— D

L

Figure 2.7 FOR statement flow graph.

OUT¢ E

Figure 2.7 shows the implicit information £flow from

A and B to object C in an assignment,

statement.
D to C in

statement.

{4} REPEAT

There also is an explicit

the assiqgnment,

Statement,

and from

ard to OJT in the I/0
information flow fron

E +*o0 outr in the I/0

The body of the REPEAT statement looks very much

liXxe a compound statement, except that BEGIY and EWD are

missing. ONTIL serves to introduce the boolean

expression that needs

statement.

Any variable used in

to be tested to terminare the

the evaluation of the

boolean expression will cause an implicit dinformation

flow to its body.

20

Py

re————T1}
REPEAT ///////a

READ (R) ; D
C := D+B; C
UNTIL E>10; B

Figure 2.8 REPEAT_until flow graph.

Figure 2.8 shows the implicit informa*ion flow fron
object E to C in the assignment statemen*t, and to A in
the I/0 statement. The assignment statement, C := D+3B,
causes the explicit flow from the objects D and B to C.

The I/0 statement, READ {a) ,causes arn explicix

information flow from IN to A.

21

CHAPTER THREE

DESIGH

The information flow complexity ({IFC) program is
designed to run under the P-system operating system. The P-
system supports UCSD Pascal on many 2icrocomputers. This
implementation of IFC is done on the PDQ-3 microcoaputer
systen. This chapter.explains in detail the requirement
specifications, input sonarce program and output, major data
structures used in the implementation, system overview and
structure diagram that leads to the pseudo code described in

the next chapter.

REQUIREMENT SPECIFICATION.

IFC is concerned only with how the informa<ion is
transfered, thus it is assumed that the input progranm is
100% free from syntax errors. The 'following section assunes
that the user already knows the concepts and syntax of the
Standard Pascal lanquage definition. Only Stapdard Pascal

language is allowed in the input programs.

22

IFC Input Program.

There are keywords that the input pragram wmay not

contain

comnnents:

unless they are part of the program statemernt or

ARRAY BEGIN CONST DO

DOWNTO ELSE END FOR

FUNCTION IF oF PROCEDIIRE
PEOGRAM READ READLN RECORD

REPETE THEN TYBE JHTI

VAR HHILE HITH WRITE

WRITELN

Beside the keywords described above, there are

additional requirements for input program:

(]) .
(2) -

(3) -

comments must start on a new line.

each input lipe buffer must be terminated by using
semi-colon unless it is the end of the progran
indicated by '.?

The input line buffer can only contain 80
characters. A line of input is read and
accunmulated to the inpput buffer urtil a semi-colon

is reached. The following is an example showing a

program statement that 1is npot yreatrer tharn
characters.
IF a >10 THEN
WHILE b<> 0 DD

BEGIN 4 := 2% ¢
The input line buffer would comtain:

IF a >10 THEN WHILE b<>0 DO BEGIN 4 := 2% e;

Standard Pascal Statements.

23

80

Ten operations are acceptable in *he IFC input progran.

They are in the following:

(1.
(2) .
3)-
(4) .
{5) .
6)-
7N .
(8) -
9).

(10) .

assignment statement

BEGIN_END |

FOR_DO

function call

IF THEN ELSE

1/0 statement: WRITE, WRITELN, READ, READLWN
procedure call

REPEAT_UNTIL

WHILE_DO

WITH statement

24

IFC outputs

There are three normal outputs: +he listing of the
input source program, and fhe arrays KEYTAB and METRIX which
are illustrated in the following. The rest of the tables
built during the analysis may be printed on the hard copy,
if requested (refer to glcbal data structures 1in this

chapter) .

KEYTAB

1 IN

2 00T

3 RaiDe.-A
4 mpain...B
5 main...E
6 main...D

EE 38 9® S0

METRIX

TO

1 2 3 4 2 6 cee

w N -
o S o (s A S e S ittt B e St 80

=

FROM

(<2 ¥

Ll

-
e e s e s — ———

The statement: IF A>10 THEN WHIL1Z B8<>0 DO BEGIN D:=
2%E; causes an explicit £flow from ®EW +«o "D" anéd the
implicit flow from "A"™ and "B"™ to "C", <This is shown by the

array KBYTAB and METRIX aborve.

26

Running IFC

To run IFC, the input source program nust be created
and kept on the floppy disk. Ten IFC inpu+ sample prog-aers
are provided in this report. The sample ©program listings
and their results can be found in the appendix D. Appendix C
briefly describes how to run and operate the exis+ting input
pPrograns. To analyze a user's input progranm, it 1is
important for the user to read and understahd the user's

quide to the P-systen.

27

DATA STRUCTURE

IFC is used to report the flow of information between
objects. These objects, program variables, must he
collected in tables., The IPC proqgram uses six *tables. The
first three tables: TYPTABLE, INFOTABLE, PROCTAB are built:
during the scanning of the declarations while +he last three
tables: INDYTAB, KEYTAB and METRIX are built during the
scanning of the body routines. The INDXTAB is used to store
the temporary variables during the scanning of prograa
statement execution, The KEYTAB and METRIX are the outpu+*s
that are printed after the end of an inpu* file is
eccountered, The following sections descrihe tke six
tables.

{1} TYPTABLE

buring the parsing of a type declaration, names of
both record types and arrays of record are stored in the
TYPTABLE. This table is used for record type checking
of program variables declared in the declaration
section. The matching of record name and the suspect
type of variable in +the TYPTABLE will return the
location of first record field kept in the INFOTABLE.

TYPTABLE is an array of records. Each recoréd
contains two fields of information: TYPENAHMZE and
PIRSTFIELD. TYPENAME represents the name of the record
and FIRSTFIELD contains a value pointing to the location

of the appropriate record field of INFOTABLE.

28
(2) INFOTABLE.

INFPOTABLE 1is the nmost important +*able in the
data structure. It keeps all program variable names angd
function/procedure names that may or may not have an
entry in METEIX.

The INFOTABLE is an array of records. Fach
record is composed of five fields: INFOWAME, NEXTINFO,

POINTOINDEX, SCOPE and PARAMTYP. INFONAME represen*s

one of these four kinds: {1) a record field , (2) a
program variable, {3) .a parameter passed in the
procedure heading or (4) function name. REXTINFO

contains a value pointing +to the next field of the
record structure. POINTOINDEX contains a value poinzting
to the first field of the record structure if i+ has a
value greater than zero. Zero indica*es a sinple *ype.
SCOPE represents two kinds of variables: global
variableé and local variables, A SCOPE equal <o zero
represents a global variable from the main routire, A
number greater than 2zero indicates the location of its
procedure name in the procedure table. PARAMTYP
indicates two types of parameter passing : PARAMTYP is
one when the parameter passed is a returned parameter
while PARAMTYP equal to zZero indicates a formal

parameter passed vwithout a value returned.

(3)

29
PROCTAB.

This table is created when scanning the routine
heading and is used for checking the existing procedure
name whenever a procedure name is invoked. Ttre
procedure call statement perfornms the information
transfer between modules by the use of PROCTAB. The
table has a value indicating the location of the first
formal parameter kept in the INFOTABLE. PROCTAB 1s also
used for the termination of the procedure block. The
table keeps track of the number of actual paramesers
passed as kept in the INFOTABLE. Thus INFOTABLE can
update its index which points to where +the last formal
parameter passed is located. Local variable nawmes will
be deleted from INFOTABLE because they will ro+ be used
again in the progran.

PROCTAB 1is an array of records desigred for
storing procedure and function names and their de+ails.
Each record 1is composed of four fields: 2ROCHNANME,
PARAM _CT, TOINPO and PROCTYPE. PROCNAME cortains the
procedure or function name of the block in which +*he
name 1is defined. PARAM_CT represents the number of
parameters passed. TOINFO contains a number that points
to the first parameter in the INFCTABLE. PROCTYPE
represents the kind of routine, a "1" is coded for a
function routine and a "0" 1is coded for a procedure

Toutine.

30

{4) INDXTAB.

This table performs as a stack mackine. & stack
counter is incremented when a new proqram statement is
encountered and decremented after finishing scanring the
program statement. During the scamnning, the current
stack is used to keep all the possible program variables
that may have an information transfer. The variables
that are kept 4in the INDXTAB must be successfully
checked through the IHNFOTABLE and stored as unique Xey
nuebers associated with the KEYTAB. . How the INDITA3Z is
used will be discussed in the system overview in this
chapter.

INDXTAB is an array of records. Zach record
contains four fields: MODE, BLOCK, NEXT and INDXAERATY.
MODE has a value range of "0" through "e". mgw is
coded for simple statements. "in is coded for am IF
THEN ELSE statement and "2" is coded for an IF THEW
statement. n3n is coded for FOR and WHILE DO
Statements. yn for REPEAT statement "5" for ¥HITH
statement and "6" for entering of the routine body.
BLOCK = t 1f +*he statement following the condirtrional
statement is a compound statement, BILOCK = 0 for siaple
statement. INDXABRAY is an array type with a maximum
size of ten. It is used to store program variables in
th2 unique key number <+that 1is successfully searched

through the INFOTABLE, NEXT keeps track of how many

(3)

(€)

N

unique keys are kept in the INDXIARRAY.

KEYTAB.

KEYTAB is an array of character s+*rings.
KEYTAB (1) represents information read-in, while
KEYTAB{2) is the information written-out. Other
elaments contain program variables according to IUFONAHME
in . INFOTABLE. REYTAB 1is wused *o0 register progran
variables before making any information transfer =9

METEIX.

METRIX.

METRIX is a two dimensional array. Each row andé
column represent the +transfer of information fronm
source (row) to destination(col). The source and
destination indices are obtained +through KEYTAB (see fig

3.14).

TYPTABLE

point to first record field >

point to first formal param)

INFOTABLE

PROCTAB

point to subroutine where a fo

and local variables are declared

Data structure used during the analysis

of the PREFIX declaration.

KEYTAB key# that stored in the "INDXARAY!

T ROW and COL refered to key#

METRIX

>

, Iinformation transfer from ROW to COL

INDXTAB

-

Data structure used during the analysis of a routine body

Figure 3.1
Relating data structures

32

33

TYPTABLE INFOTABLE
| TPAE | FIRSTFIELD INFONAME NEXTINFO| FOINTOINDEX|Score |parawrye
1| apD 1 1| nae 2 0 0
2| monE 3 0 0
\...-—-—"N 3| ADDRESS | &4 0 0
4| accmum| o 0 0
5 cus'rormL 0 i 0
é | pEpr 0 0 0 -
7 | cacer 0 0 1 0
8| cosr 0 0 1 0
9| BaL 0 0 1 1
PROCTAB —
1| PocNAME [TomvFo | PARANMCT| FROC_TYFE \\
1| sa= 7 3 1 ~—
e A S R R R e Y
PROGRAM sample;
TYPE - add = RECORD name : string;
phone : integer;

adderss : string)
acetnum : integer;
end|

VAR customer : array(l..50) of add

dept : string;

PROCEDURE sale (cacct, cost : integer; VAR bal : integer);

BECIN END:

Figure 3.2

A sample of relating data structures.

34

CHAPTER FOUR

INPLEMENTATION

IFC as implementated on the PDQ-3 microcomputer
consists of approximately 1500 lines of <code including
imbedded comnments., The implementation is stored in the disk
library with named files of *IFC.text' and 'IFC.code'.
IFC.text can be found in appendix B. The IFC.code which is
the result of the successfully compiled translation of
I¥C.text 1is kept in P-code and ready for *he user +to

execute.

The following sections help the user to understand the
logic of the prograg. The listing of routines and global
variables used during the implementation appears ir appendix
A. Included are the hierarchical systenm diaqrams, and an

IFC sample prograi.

MATN
{
INITIALIZE BODY PRINTOUT
Figure 4,1 SYSTEM design
BODY
READALINE GETFIRSTWORD
PROCESSVAR_TYFE PROCESSBEGIN PROCESSFROC

Figure 4.2 Hierarchical diagram of Body routine.

35

36

PROCESSVAR_TYPE

ACCESSLINE

SAMESTATUS

ACCESSRECORD

1

v

i

Figure 4.3 Hierarchical diagram of

PROCESSVAR_TYPE routine.

PROCESSPROC

INFOENTRY

PARAMTEST

ACTUALPAR AM

ACCESSLINE

i

i

Figure &.4 Hierarchical diagram of

PROCESSFROC routine.

37

1
r
TYPENTRY ' INFOENTRY
|
GETTYPE . CHECKTYPE CHOPALINE
Figure 4.5 Hierarchical subdiagram of
PROCESSVAR_TYPE and PROCESSPROC routines
PROCESSBEGIN
INDIRECT ACCESSBLOCK MARK_UNUSED

Figure &.6 Hierarchical diagram
of PROCESSBEGIN.

ACCESSBLOCK
CHECK_OPERATOR ACCESSFOR
CK_CALL ACCESSWHILE
: 5
ACCZ3SCALL ACCESS_IF STMT
: ;
ASSIGHMENT ACCESSWITH
£ J
1/0_STMT ACCESSUNTIL
: 3
POP_END INDIRECT ELSE_STMT
_"push stk"

Figure J.7 Hierarchical diagram of
ACCESSBLOCK routine.

38

2
| |
CKZLST VETRIX_TTRY
| |
SXPLICITFLOW TL3Z_STMT ANALYSIS
TRAVIRSE_STACK

1

ANALYSIS

Figure 4.8 Hierarchical diagram for simple statements

1

PARANFASSTYG

—_—

KZTRIX_E TRV

|

EZPLICITFLOW

TRAVERSE_STACK

Plgure 4,9 Vierarchical i agram

of

ACCESSC AT
|
ABLE_LOCKUP
[|
FINDTOKE: | JErrTvEy
! |
RECORIFLON KZYZTRY
-1
RECENTRY CKRECFTILY

A Pap
9

ATY3IS routine.

39

49

SYSTZIM LCGIC.

IFC logically divides the inpu* ©program 1irto a
standard prefix declaration part and a body routine part.
The Standard prefix declaration consists of constant, type,
variable declarations and routine headings. Since cons*an*s

remain the same during the program execution, <the use of

cons*ants may be 1ignored. Variables and *ypes have to he
iden«ified and entered 1into the appropriate tables. A
progran variable of type array, will he coun*ed as orne
object Guring the scanning of the program statements. For
examnple, statemerts A(i) := BR{j) ané A:= B cause the

information “rarsfer Zrom object B to object A.

(1) Standarld Prefix Declaration.

The IFC scans an input prograr line by 1l1line fror
*op to bo%t*om. The IFC will accumula*e ar input bufier
by making a first call <o procedure FEADLLI&E ancé the
suhsegquert call to procedure GETFIRSTWORD, 1ii order +o
get the first word which is a charac*ter s*ring seperated
by a klank. The word must be in ore of +the keywords:
TYPE, VAR, PEOCEDURE, FUNCTION, arcé BEGIN in order to
enter onc of these three subroutines: PROCESSVAR_TYPL,
PEOCESSPZ0C, or PROCESSBEGINK. These three rou*ines, and

READALINE and GETFIRSTWORD are performed in a while_loop

(2)

a1
which is terminated when}the enéd of the inputr file is
encountered. To enter the PROCESSVAE_TYPE, the current
word must he either VAR or TYPE while the curren: word
of either PROCZDURE or FUNCTICON causes an ertry into
praocedure PROCESSPROC. The routine PRUCESSVAR_TYPE will
collect record names, program variables and keep them imn
the INFOTABLE and TYPETAB during scanning of the type
an? variable declaration sections. The next input
buffer is read after scanning the ocurrent buffer and
the first word is detected i ordcr *o check whethrer <o
contipue or to +terminate the routine. The routine is
+*ernirated only if the current woré is 4in one of the
keyvords. DProcedure PROCIESSPROC is used to scarn routine

leacings. Procedure aud function names are kep* in +*he

PEDOCTAR and their parameiers are kept in the INFOT2B.

Body Routine Analysis.

after +he Starndard prefix declaratiorn has Dbeen
analyzed, the body of the routine, which is a seguence
of statement introduced by BEGIN and *ermirated by END,
is examined by procedure PRCCESSBEGIN. The procedure
uses INDXTAB, a stack, +*o aralyze =he eiffect of t*the
program s*atements which carn be classified as: simple
statements, control statemen*ts and nesting. An entry

is aéded <o the stack with a specific MCDEZ and RLOCK

u2
wherever a nevw statement is encountered. The entry for
a simple non-nested statement is dele*ted inpmediately
after that program statement is analyzed. Than the
next input program statement 1is read and analyzed.
This continues until the end of the routine body.
Fntering a routine body causes a new INDXTARB en*try to
be added and this entry is deleted when the end of the
routine body is encountered. BLOCK is the key point *o
determine whether +to remairn or to delete <+he current
stack entry. The stack entries show the number of <+he
control statement and nestinga Concep+ually the
operation of a simple statement <*hat may idrLvolve the
explicit flow will bhe done on *he current stack en+ry.
The subsequent implicit flow will be done by “Traversing
down the remaining stack entries. Trhese stack entries
will remain on the stack uptil the compu*tational bodies

are completely analyzed.

PEOGERAM sample;
Va2 a,b,c,d,e:integer;
BEGIN KEAD {a,b);
REPEAT
READ (<) ;
IF a>10
THEN WHILE b<>0
DO BEGIN d:= 2%e;
END;
ONTIL c=0;
END.

Considering only the body of the routire, the input
buffers would be the following:

Buff....BEGIN READ {a,b);
=ss+ REPEAT READ (C);
eeesIF a>10 THEN WHILE b<>0 DO BEGIN d:= 2%e;
ewes LND;
eses UNTIL c=0;

.c.tEND.

43

lire

Figure 4.10 Exanmple for explainirg INDXTAB.

44

The following relates how INDXTAB stack is used

when the routinme of Figure 4.10 is izput. The entries
are shown in Piqure 4.11a and 4.11b. The firs+* lire
tuffer; BEGIN READ {a,b); is read. 1BEGILK' of +he main
body causes the first entry to be added *o the stack
with MODE=6. The second erntry is added with MODE=0 for
the I/D statement READ {a,bh); and is decleted afrer the
statemnent is analyzed. The next input buffer: RIPEAT
READ {(c); 1s read. A stack entry is added with HODE=5

or FEIPEAT s*atement. The second entry is adéed to *he

+h

stack for the I/0 statement and i+ is dele+*ed afzer +he
statement has heen arnalyzed. The statement READ {c):
will firs* make arn explicit flow from IN Lo M"“c" +hen
traverse down the remainning stack for an implici+t flow.
In tlkis case, *the previous stach is <he FEPEAT sta-erment
of MODE=5; +the variable "c" will be kep+* on this entry
until *he UNTIL statement is analyzed. rigure 4. 11a

shows *he remaining stack entries after <the statement

READ {(c); is analyzed.

45

=

il ey Sy
(e}

e i, i i
wad

T B B e Sepee———
[

r---._u.__..ﬁ-._.l-—u-_d

b o e e b o e o)

KODE BLOCK NEXT INDXAPRAY

Figure 4.11a

3 1 1 b

2 0 1 a

4 1 1 c,d
£ 1 Q

o e b
b e g e i e e B S e s aof
e B B s S mn bt dmian e s — G o
i e T Ty
bt s P i e e, S e b e B da e i)

¥O0DE BLOCK NEXT TINDXARRAY

Figure 4.11b

The next line buffer; IF a>10 THEN WHILZ b <> 0 DO

IGIY di=2%e; is read. Their ertries are pu*t or the

4y

stack. First, arn entry is put on for ar IF statement
wi*h MODE=2. Second for the WHILE statemer+* with MODE=3
and BLoCF=1 arnd third for *he assiqmment statecmen*t. The
current entry is dele*ed after +he assigrnment i3
analyzed and traversed down the renaining stach en-ries.

Figure 4.11bh shows the remaining stack entries af<ter theo

46
assignment is completely analyzed. The next line buffer
END; causes two entries to be deleted from the stack:
first, for the WHILE statement because of the matchking
pair BEGIN_END and second, the entry for the IF
statement with nesting. If BLOCK cortaims a value equal
to one, this entry will remain on the stack until the -
mat ching pair is encountered. If there is an ELSE
statement, this entry will remain on the stack and the
MODE is changed from 2 to 1 before the ELSE statement
will be analyzed. The next line buffer, UNTIL c=0, 1is
read. An entry is added on the stack. There is an
implicit flow from the variable names stored in the
current stack entry to the variable names stored in the
pravious entry (REPEAT). Then +hese two entries are
deleted from the stack and the next iine buffer is read.

The line buffer, END., whkick is the end of the
input program causes the last entry to be deleted fron
the stack. If it is the END of the subroutine,
INFOTABLE needs to clean up all the local variables, if
any, because they will not be used again in the program.

This is done by procedure MARK_UNUSED.

u7

IFC Sample Progran.

This section shows a sample program and output in
which users are assumed to be testing one of the provided
input progranms. Ten dinput programs havg been created arnd
kept 1in the 1list directory under prefix name of "IpP#é&w,
where "##" represents the number 1..10. More than_that to
update, modify, create and run the input programs, the user
needs to read and understand the short manual of
instructiorns and commands, { refer +*o USER's GUIDE in

appendix C.) .

FROGREAM SAMPLE:
v IPd 0
YAR A B.C.DGE @ IWNTEGER:S

EBEGIM
FEEARD (H. B
REFEART
RERD G
IF A>1ia THEM MWHILE E <28

DO BEGIN D:= 2%E:

EMD:
UWMTIL CC=@);
EHD,

IMFOTARBLE

THDER IHFOMAME HEXTINFGO FOIMNTCQIRDE?

i
- P WA S

ST, R A

5
!
o
£i
i

Mo om
Lo o By oy

LT
MRIM ..
FIAIH. . .
MATH. .
MRIH. .
FMAIM . .

m e WD

Lo

FrTRIN

TR Y Y S

E I N) e

i 2 = 4 5 = v
] 5] i 3 i & i3
e 5] i%] 5 | =
= 51)] 51 5] 1
S 5 & & = & 1
i I i = 1 2 i
& = 5| & &= = 1
G} =i ! Il = 5 1]

SCOFPE

U U U R

48

a9

CHAPTER FIVZE

CONCLUSION and EZZTENSICNS

In summary, the *ask of the IFC program is *o report
overall information transfer between objects in <the inpu=*
progranm. The resulting output, the matrix table, can be
used in various ways in the area of software development and
software testing techniques. The information flow graph carn
be derived from the matrix table. The flow graph may be
used t5 analyze the complexity in tracing +he connections
amonqg the program variables from the initial node %o every
other node that exists. Path testing of the irformation
flow graph may be used to identify whether the proaqraa
variable is dependent or independent. Combining both the
graph flow and the matrix table can help designers and
programmers to understand the 1logic of +*he system desiqgn
_that may lead to reduce the number of test cases in path

testing.

Path +testing may be defined as the ©process of
finding a set of program variables +t+hat force the path
predicates to the truth value that corresponds %o the
desired path. Since the information *ransfer is ©based on
the program variables associated with the function

performed, it can be used as an adaptive development tool

for the management of the path-testing. Subsequently, +the
matrix table can be summarized as the selected ser of the
dependent program variables needed to develop, execute and
evaluate the +est case. Thus +he independent prograax
variables whose wvalues do not change as the result of

processing need not be included in the test case.

FOTURE EXTENSIONS

The IFC program CcoOvVers only the simpple dafa
struc*tures and program statements which were described in
previous chapters. Iﬁ attempting to make the IFC progran
more powerful, there are some future extensions that may be

included in this IFC program.

1. Input specification.

Increase of the input line buffer to greater
than 80 characters per line of program statenmert.
This would allow the user to consIruct aore
complicated statement ar nested statements
especially in the repetitior sta tements and

conditional statements.

51
2. Standard Prefix declaration.

The following could be added 1in the analysis of
label declaration {for GCTO statements), ernumera*tion
types, dynamic allocation with the use of pointer
variables associated with record structures. In the
routine heading, the analysis of FORWARD routine may

be included in the declaration.

3. More executable program statements.

IPC should involve the use of the case staremert
and the UCSD Pascal statements such as CONCAT, COPY,
INSERT as well as the use of mnltiple exi+* routine
and goto statements. Included are implicit
subroutine and function calls as contained 1in I/D
statements and boolean expressions of the control

statenents.

4. OUTPUT Specifications.

The IFC output could provide statistics based
on the information transfer of either intramodule or
intermodule. The examples are the total ~rnumber of
routines used in the input program, *otal number of
the program variables and number of *he occurences

of the transfer of information.

If the items discussed above can be included in the

IFC program, IFC should apply to most UCSD Pascal programs.

(Ber 80)

{Cha 78)

{Chap79)

{Che 78)

{Cha 79)
{Den 76)
(Eal 75)

(Kaf 81)

{kaf 81)

REFERENCES.

=

Berlinger, E.,"An Information Theory Hase
Complexity Measure", National Computer Corference,
1980.

Chapin, N, ,"INPUT/CUTPUT Tables in Structure
Design", Structure anralysis and Desiqn (Vol 2),
Infotech, 1978.

Chapin, N.,"A Measure Conmplexity", Yatioral
Computer Conference, 1979.

Chen, E.T.,"Progran Complexity and Prograi
Productivity"®, 1IEEE Transactions on Sof<ware
Engineering, vol. SE-4, No.3, May 1978, pp.187-19
Chapin,¥.,%Punction Parsing in Structuce Design',
Infotech Internmational, 1979

Denning, D. E.,"A Lattice Jdodel of Secure
Information Flow", CACM, #5, May 7¢, pp 236-243
Halstead, M. H, ,"Software Physic: Basic
Principles", Watson Research Center, 1975

Xafura, D. G., and Herry, S. M.,"2 Viewpoint on
Sof tware Quality Metrics : Criteria, OUse and
Integqration"., Paper sumitted to Sig Sorf+ Symposium
on Tool and Methodology Evaluation, Pingqree Park,
Co, June 9-11,1981

Kafura, D. G., and Henry, S. M.,"Software Structure

Metrics Based on Information Flow", IEEE

{Mac 81)

(McC

{aci

{3cT

(Hay

{Zol

(¥hi

76)

7¢)

80)

7

7)

80)

53
Transaction on Software Engineering, vol. sSs=-7,
No. 5, Sep 1981, pp 510-518
Allen L. Mennie, and Glern H. MacEWAN, "Information
Flow Certification Using an Intermediate Code
Proqram Code Progranm Representat ion", IEEZ
Transaction on Software Engineering, vol.SE-7,
No.&, Nov 1981.
McCabe, TadJd.,"A Complexity HMeasurement", IEZEE Trans
on Software Engiperring vol SE-2 (1976).
dcClure, C. L,,"Formalization and Applicatioa of
Structure Program and Program Complexi+ty", Ph.D.
Thesis, Illinois Institute of Technoloqy , Chicaco,
197 ¢,
HcTap, J. L.,"The Complexity of 1Individual
Pfogram", National Computer Conference, 1980
Mayer, G. J.,"An Extension +o The Cyclometric
Measure of Program Complexity", ~Aca SIGPLAN
Notices, Oct 1977, pp €1-64
Zolnowski, J., and‘Simons,_D. B. ,"Measuring Program
Complexity in é COBOL Environment"®, Hazional
Computer Conference, 1977
Whitwort, M. H., and Szulewski, P. H. ,"The
Measurement of Control and Data Flow Complexity in

Sof+ware Design', IEEE COMPSAC , 1980,pp 733-735

VARIABLE NAMES AND2 RCUOTIHES LISTI

54

APPIEEDIX A

=
"y

Glotal variables listing

VARIABLES NAME

ACTICHN

BUFF

CALL

FLAG

INDX

INDXTAB

DESCRIPTION

scope of the current progran

status

contains first word of
repetition statements -0
determine kind of curren*
operation.

a boolear flag is set to 'true!
while accessing the procedure
call -

a boolean flaq used to indicaze
end of input source proqrém
index to INDXTAB

table used for holding proqranm
variables that successfully
checked through INFOTABLE and

may have the information

INFOINDEX

INFCTABLE

IPFILE

KEYINDX

KEYTAB

LETTER

LN

METRIX

NAME

NAMEREC

NMAMESPACE

transfer between objects.

index to INFCTABLE

t*able used for keeping progran
variables that may have the
information transfer during
scanning of program startemerts.
temporary file <for an input
program

index to KEYTAB and HMETRIX
ocoutput *able used for srtoring
program varliables ananes that
have an access to information
metrix

a..zZ lowercase only

the curren* input line buffer
table used for information
transfer from row +*o c¢olumn,
The number of row and column
are refered by XKEYINDX

name of input source progran
hold record name which
currently in accessed.

contains temporary values that
have the same type during the
scanning of the variable

declaration section and routine

HUMBERS

OP, OPZRATOR

OUTFILE

PARAM_ENTRY

PROCINDX

PROCTAB
STATUS
TYPEINDEX
TYPETABLE

WITH_STHT

WORD

56
heading.
0w s 9
represert the current oaperation
of program statement only use
for repetition statements and
WITH statenent.
temporary file for output
contains location of INFOTABLE
wvhere +he first parameter is
kept
index to PROCTAB
table used for Keepling the
procedure names and their
information
scope of the current rogran
status
index to TYPETABLE
table used for keeping +tvpe
names of record +type and links
to first record field
a boolean flag used *o indicate
wvhether WITH statement is being
used or not

first word of the line buffer

MAIN Routimes listing

ROUTINE

.BODY
GETFIRSTWORD
INITIALIZE
PRINTOOUT

READALINE

57

FUNCTION

to denerate all possible inforwmation
transfer of the input progranm.

to isolate a first word from current
input line buffer.

to define the initial wvalue of
static program variables

output +tables printouts upon user
requested.

*o read an input line of code one at
a time and accumulate .into an inpu+*
buffer. The routine return *o caller
when end of statement,':'., or end

of input file is encour*ered.

58

Routiones used to analyze the Prefix Declarations.

ROUTINE

ACCESSLINE

ACCESSRECORD

ACTUALPARAM

CHECKTYIPE

FONCTION

+o0 1isolate ©program variables or
actual parameters contained in the
current line buffer and save them in
the INFOTABLE.

to collect record name and rTecord
fields of record data ét:ucture tha~
may be used bo+th in type declaration
and variable declaration. The record
name declared in the type
declaration is kept in the TYPETAB,
othervise it is kept in *he
INFOTABLE. The routine scans line
per line until tke currert 1line is
*end' of record structure.

to store each actunal parameter in <o
the INFOTABLE and keep +he <+otal
number of actual parameters declared
in the PROCTAB.

to searsh a given type through the
TYPETAB. If the search is failed,
value return is zero. IF not, It is

the type of record structure , the

CHOPALINE

GETTYPE

INFOENTRY

PARAMTEST

PROCESSPROC

59
routine returns thke valne cor+aired
the location of the firs= rcecord
field kept in *he INFOTABLZE.
to seperate progranm variables
contained in the current line and
temporary Xxept in the NAMESPACE,
data of an array type.
to 1isolate a type string +tha* 1is
associated with program variables or
record structure declared 1ir +he
prefix declaration If it is an array
type, it will get the string of type
of that array. For example, routine
will return the valne <strirqg> of
the following declacation '...array

{1.<10) of <STEING>;!

to increment a counter of INPOTABLE

and deposit variable names,
parameters and record fields into
the INFOTABLE.

to isolate the actual parameter
string declared in +he proc=dure
heading and Xeep then 1in the
PROCTAB.

to parse a procedure heading ard

correct the informa*tion needed to

PROCESSVAR_TYPE

SAMESTATUS

TYPENTRY

€0
keep in the PROCTAB.
to parse variable and Tyre
declaration and collect necessary
information. in to TYPETABLZ and
INFOTABLE
to determine wkether to termirate or
to continue the current operatiorn.
The status is changed wher +tlre
current word contained in zha
keyword 'type!, tvar?', ! orocedure’,
'function' and 'begin!'.
to add a record name and its details

to the TYPETAB.

€1

Routines used to analyze the Routine Body.

ROUTINE

ACCESS BLOCK

ACCESSCALL

FUNCTIOW

use *0 generate program sStatements
and is dome in a series of
operations in side of a big case
Statement. Bach operation perforn
its function by ©pushing the proqraa
variables that may be contained in
the statement on*o <the s*tack in
order to get ready for informatior
transfer. A new 1input buffer is
read when finished scanning each
simple statement and MITIL
statement. For the Tepetition
statement, the curreat 1line buffer
is updated, the statement body
becomes the current line, exclading
'BEGIN' in a compound statement., The
routine then returns to the caller.

to make the implicit 4information
transfer from formal parameters to
actual parameters, if anvy. The
passing paraneter string nust

contain program variable names +that

ACCESSFOR

ACCESSIF_STHNT

ACCESSUNTIL

ACCESSWHILE

ACCESSNITH

g2
have been predeclared irn the prefix

declaration. Bxplicit information

transfers of tlke repeti*ion

statement are done by searching down

the stack.

add a program variable +to IKNDXTAB
with mode = 3 and block =1 1if the
body statement is a conpound
statement. TO save control

variables on the current s+acik &V

calling procedure analysis.

simialarly to ACCESSFOR routine

except enter MODE = 2.

keeps a control variable contained

in an expressior oL the s+tack by

calling the ANALYSIS rou*ine. HMakes

the implicit information transfer

from the current +op{until) to *he

previous stack, with MODE=5 for a

REPEAT sta*ement, its first word

seperated and returns to caller.

similarly to ACCESSFCR routine
except enter MODE=3.
add a stack with mode = 4 ard block

If the computational statemernt

= 1.

body is a compound statement, sets a

ANALYSIS

ASSIGNMERT

CHECKCALL

CKELSE

flag WITH_STAE ané calls the
ANALYSIS <toutine with stringy of
record nane.

to isolate a program variable fromo a
given string, searches for +he
isolated string in INFOTAB. If a
match 1s found, assigqned a key
nunber and kept in KEYTAB. The key
number will be kept on the current
stack in INDXARRAY and will make =he
information traasfer for that
program statement, if any.

to make an information *ransfer froa
the variables <contained 2n the RHS
of the assignment to the variable on
the LHS. The RHS and LHS strirnqg are
examined by the ANALYSIS routine.

to search for a given string through
PROCTAB. 1f | the search is
successful, the returned value
points to the first parameter,

to seperate a current line fron an
IF THEN ELSE statement to be the
line vhich follows the ZLSF
statement. The previous statement

will be returned to caller.

CK_OPERATOR

CKRECFIELD

DEFINEKEY

ZLSE_STHT

EXPLICITFLOW

FINDTOKEN

FUNCT_CALL

€4

-+o determine the type oi the progran

statement currently beinyg scanned.

to search a given string which may
be a record field or progranm
variable while a WITH statement is
in effect. According to *he global
data NAMEREC, it will link =o all
validated fields. If +he search is
successful, the routine will call
DEFINEKEY routine to gqet *he urnique
number.

to search for the program variables
in the KEYTAB and return is a unigue
key to the caller.

to change the status in the INDXTAB
if it is the IF THEN ELSE statement
from MODE equals to 2 to 1.

to examine an explicit information
flow after each statemen*t being
scanned.

to searck for a given tokeL proceeds
from bottom to top of the INFOTABLE.
The routipe returns the location
where the match is founrd.

to determine a function call

INDIRECT

IC-STHT

KEY_ENTRY

MARK_UNUSED

PARAMPASSING

POP_END

PBOCESSBEGIN

€5
to increment *he stack cournter of an
INDXTAB.
+to compute an information transfer,
and check for explicit irnformation
flow
to add a new Kkey nuaber and keep tkhe
given string in the KEYTAB if it has
not been strored 1in the +able.,
Return the key nunber to caller.
dispose all 1locai variables <fron
INFOTABLE
to generate the information +*ransfer
from formal parameters to actual
parameters.
decrement index counter of INDXTAB
to mark an eptry into *he body
routine by adding a stack entry in
INDXTAB with 40DE=6, BLOCK=1 and
NEXT cohtains the location where the
current body routine is being
accessed. Progranm stateuments
contained in the body routine are
handled by procedure ACCESSSELOCK,
After the body routine is
terminated, INFOTABLE needs to clean

up all local variables.

RECORDFLOW

RECENTRY

SKIP

TABLE_LOOKUP

cE
to scan the WITH stateselt. The
variables contained in a given
string may be Or may not be a record
field. If it is found 1in the record
field, it must be concatemnate to the
record name before assign *the Kkey
number in the KEYTAB.
to find the last record name in the
given string and return its first
field where 1its kept 1in INFOTABILE.
For example: agiven string &
recl.rec2.recl.field3" >, +he
routine will returr a value that
indicates the location in IKFCTABLX
of +the first field of <rec3>.
to delete array subscription and
string contained in the gquota*ion
mark,!' from the current input line.
to determine whether a given token
is a program variable or not. If it
is, KEYTAB 1is checked tefore an
entry 1is made for a neWw variable
name. The number associa*ed with
KEYTAB 1is entered as a rTow and

column to metrix

TRAVERSE_STACK

METRIX_ENTRY

67
to sort and examine +the variable
that kept in +the INDXTAB.
+0o make an informa*ion trarsfer *o

the METRIX table.

APPENDIX B

IFC PROGRAM LISTING

PROGRAM IFC;

CONST COMMA = v, 0.

EQUAL = =1,

ENDSTNT = ';°';

COLON = &g

BLANK =% us

MAXTABSIZE = 20;

LYPZE

TYPREC = RECCRD
TYPNAME:STRING;
FIRSTFIELD:INTEGER;
END;

INFOTYPE = RECORD
INPONAME : STRING:
NEXTIKFO : INTEGER;
POINTOINDLEX : INTEGER;
PARAMTYP :0..1;
SCOPE : INMTEGER;
END;

PROCTYP = RECORD
PROCNAME:STRING;
TOINFO :INTEGER;
PARAMCT : INTEGER:
PROC_TYPE : 0..1;
END;

INDITYP = RECORD
BLOCK N I
MODE : INTEGER;
NEXIT : INTEGER;
INDXAERAY:ARRAY 1..10 OF INTEGER;:
END:

STATUSKIND = (SVAR,STYPE,SPROC,SFUNCT, MAIN) ;

OPKIND = (WHILES,WRITES,WRITES_LN,READS,READS_LY,
ENDS, ENDD, END_ELSE, REPEATS, UNTILS,FORS,
WITHS,IFS, NONE) ;

68

(@)Y
Ne]

VAR

IPPILE,OOTFILE:TEXT;

PROCTAR : ARRAY[1..MAXTABSIZE] OF PRECCTYP;
INDXTAB s ARRAY[1..MAXTABSIZE] CF INDXTYP;
TYPTABLE =: ARRAY[1..MAXTABSIZE] CF TYPREIC;

INFOTABLE : ABRAY[7..MAXTABSIZE] OF INFOTYPE;

NAMESPACE : ARRAY[1..10] OF STRING;

MATRIX : ARRAY[1..MAXTABSIZE, 1..MAXTABSIZE] OF INTEGLCR;:
KEYTAB : ARRAY{ 1..20] OF STRING;

BUFF : ARRAY[WHILES..IFS] OF STRING;
WITH_STMT,CALL, FLAG : BOOLEAN;
RECNAME,NAME,LN,WORD : STRING;

OP, OPERATOR : OPRIND;

ACTION,STATUS : STATUSKLIND;

ALPHA, LETTERS, NUMBERS : SET OF CHAR;

RKEY INDX, INXX, PROGCIDX, TYPINDX, INFOINDEX : INTEGER;
FIELDENTRY, PARAM_ENTRY : INTEGER;

' s ae

PROCEDURE READALINE; FORWARD;
PROCEDURE GETFIRSTWORD; FORWARD;
PROCEDURE ACCESS_CALL(ENTRY:INTEGER;ST:STRING)FORWARD;

70

{*********#**********#*#****************#****##**##*&*##********)

(FEEFREEREE
(% %k kkk ok dkx ROUTINES USED TO
(REkkkEdkk

(FEFHEEERKK ANALYZE PREFIX DECLARATIONS
(**********

¥ RFEFEERER)
¢ 3 % ok o ok e ol ek)
s % 3ok % 2 3 K XK
ko kE Rk Rk ¥)
e o o e 3o e oK)

(ot ok ot sk ok sk ok R ok okoloR ok sk ek ok ok e ok R R kR ook ek kR ok)

PRCCEDURE CHOPALINE (VAR CT:INTEGER; CLN:STRING) ;

(*** GLOBAL : NAMESPACE
{(*** CALLED BY : ACCESSLINE,ACCESSRECORD

VAR P:INTEGER;
DONE:BOOLEAN;

(=0
we t-_.
th
(]

N I

= CT+1;
:=POS{COMMA,CLH) ;

F p=0

THEY BEGIN NAMESPACE[CT] := CLN;
DONE := TRUOE;
END

ELSE BEGIN MNAAESPACE[CT.Y :=

DELETE (CLN,1,P) ;

EWD:

e

UNTIL DONE;
END (*CHOPALINE®) ;

FONCTION SAMESTATUS:EOOLEARN;
{*** GLOBAL 2 WORD
{#*** CALLED BY : PROCESSVAR_TYPE

BEGIN IF (WORD='TYPE') OR {WORD='VAR')
OR (WORD='PROCEDURE') OR (WORD ='BEGIN')
3R (WORD = 'PUNCTION')
THEN SAMESTATUS := PALSE
ELSE SAMESTATUS := TRUE;
END (*SAMESTATUS*) ;

* k%)
***)

COPY (CL%, 1,P-1) ;

* %%)
* %)

PROCEDURE INFOENTRY (I,NEXTFIELD,LCCATIONINFO:INTEGER) ;

{(*%*%* GLOBAL : INFOTABLE,IYFOINDEX,NAMESPACE, **%*)
{*** STATUS, ACTION =3k x)
(*** CALLED BY : ACCESSLINE, ACCESSRECORD * % %)
BEGIY

INFOINDEX := INFOINDEX+1;

IF INFOINDEX > MAXTABSIZE

THEN WRITELN('INFOTABLE TOO SMALL')
ELSE WITH INPOTABLE INFOINDEX DO]

BEGIN
INFONAME := NAMESPACE[IT;
NEXTINFO := NEXTFIELD;

POINTOINDEX := LOCATIONINFO;
IF ACTION=MAIN THEN SCOPE := 0
ELSE SCOPE := PROCIDX;
END;

END {*I NFCENTRY*) ;

PROCEDURZ CHECKTYP (VAR MATCH:BOOLEAN; VAR TOINDEX:INTEGEL;
TOKEN : STRING; VAR INDZEX : INTEGELE) ;

[*** GLOBAL 2 TYPTABLE, TYPINDEX ¥ k%)

(¥*** CALLED BY : ACCESSLINE, ACCESSRECORD * %k)

VAR J = INTEGER;
NAME : STRING;
DORE : BOOLEAYN;

BEGIN MATCH := FALSE;
Jd := 0;
DONE z:= FALSE:
TOINDEX:=0;
INDEX:=0;
WHILE ©NOT DONE DO
IF (TYPINDEX=0) THEN DONE:=TRUE
ELSE BEGIN J:=J+%1;
IF J>TYPINDEX THEN DONE:=TRUOE
ELSE BEGIN NAME := TYPTABLE J).TYPNAME;
- IF TOKEN=NAME
THEN BEGIN MATCH:=TRUE;
TOINDEX:=TYPTABLE[J). FIRSTFIELD;
DONE:=TRUE;
INDEX:=J;
END;
END;
END:

END (*CHECKTYPE*) ;

71

PRCCEDURE TYPENTRY (TOKEN:STRING; MNEXTFIELD:INTEGER);

{**% GLOBAL : TYPTABLE,TYPINDEX * %xx)
{(*** CALLZD BY : ACCESSLINE, ACCESSRECORD * k)
BEGIN

TYPINDEX := TYPINDEZ+1;

IP TYPINDEX > MAXTABSIZE

THEN WRITELW('TYPE_TABLE TOO SH#ALL')
LSE WITH TYPTABLE[TYPINDEX DO

BEGIN
TYPNAME := TOKEN;
FPIBSTFIELD := NEXTFIELD;
END;

END(*TYPENTRY*) ;

PROCEDURE GETTYPE (VAR TYTOKEN:STRING; GSIGN,GLYN:STRING):
(*** CALLED BY : ACCESSLINE, ACCESSRECORD, * %k)
% %% PROCESSPROC * k%)

VAR P,Q:INTEGER;

3EGIN
IF POS (*ARRAY',GLN) > 0
THEN P := POS(' OF ',GLN) + 4
ELSZ BEGIN
P := POS(GSIGN,GLN) + 1;

IF GLN|P] = BLANK
THEN P = P+1;
END;

Qg := POS(';'",GLN);
TYTOKEN := COPY{(GLN,P,Q-P);

END {*GETTYPE*) ;

72

PECCEDURE ACCESSLINE(ASIGN,ALN:STRING; VAR COUNT:INTEGER);
(*¥*** GLOBAL : TYPTABLE, STATUS. it
(¥*** CALLED BY : PROCESSVAR_TYPE, PROCESSPROC *#x)

VAR MATCH:BOOLEAN;
INDEX,I,J, LOCOFINFO:INTEGER;
TOKEN,STR:STRING;

BEGIN
GETTYPE (TOKEN,ASIGN, ALN) ;
CHECRTYPE (MATCH,LOCOFINFO, TOKEN, INDEX) ;
I := POS(ASIGN,ALN)-1;
WHILE ALN[I }=BLANK DO I:=I-1;
CASE STATUS OF
STYPE : BEGIN
' IF MATCH
THEN BEGIN
TOREN:=COPY (ALN, 1,I) ;
LOCOFINFO:=TY2TABLE[INDEX . FIRSTFIELD
TYPENTRY (TOKEN,LOCOFINFO) ;
END;
END;
SVAR,
SPROC,
SFUNCT : BEGIN
STR := COPY {(ALN,1,I);
CHOPALINE(COUNT, STR):

IF MATCH
THEN LOCOFINFO :=TYPTABLEl INDZX).FIRSTFIFLD;
FOR I == 1 TC COUNT DO

INFOENTRY (I,0,LOCOFINFO);
END;

END{*CASEx*) :

END (#*ACCESSLINE*) ;

PROCEDUEE ACCESSRECORD (POSITN:INTLEGER;PSIGH:STEING) ;

{*%%* GLOBAL : INFOTABLE,INFOINDEX,TYPTABLE, ¥%%)
(¥ ** STATUS,LN * %%)
(*** CALLED BY : PROCESSVAR_TYPE % *¥)

YAR NEXTFIELD, I, J, N : INTEGER;
INDEX, COUNT, LOCOFINFO : INTEGER;
TOKE¥, STR : STRING;

FIND : BOOLEAN;

BEGIN
-I = POS (PSIGN,LN)-1;
IFP LN[I1=BLANK THEN I:=I-1;
CASE STATUS OF
STYPE : BEGIN
TOKEN :=COPY (LN, 1,I);
HEXTFIELD := INFOINDEX+1;
TYPENTRY (TOKEN,NEXTFIELD) ;
END;
SVAE : BEGIN
STR := COPY (LN,1,I);
CHOPALINE{COUNT,STR);
NEXTFIELD := INFOINDEX+COUNTI+1;
FOR I:= 1 TO COUNT DO
INFOENTRY (I,0,NEXTFIELD);
END;
END {*CASE%*) ;
M := POSITN+6;
DELETE(LY,1,%);
WHILE POS ("END;',LN)=0 DO
BEGIN
GETTYPE (TOKEN,COLON,LN):
CHECKTYPE (FIND,LOCOFINFO,TOKEN,INDEX) ;
:= POS{COLON,LN)-1;
IP LN[{IT=1LANK THEN I:=I-1;
STR:= COPY (LN,1,I);
CHOPALINE(COUNT,STR) ;
IFP FIND
THEN LOCOFINFO:=TYPTABLE}INDEX|.FIRSTFIELD;
FOR I z= 1 TO COUONT DO
BEGIN REITFIELD:=INFOINDEX+2;
INFOENTRY(I,NEXTFIELD,LOCCOFINFO);
END;
READALINE;
END;
INFOTABLE[INFOINDEX JoNEXTINFO:=0;
END (*ACCESSRECORD*) ;

74

PROCEDURE PROCESSVAR_TYPE;
{*** GLOBAL : FLAG, WORD, LN, STATUS

{#** CALLZD BY : HAIN

VAR DONE:BOOLEAN;
SIGYN:STRING;
P,0,COUNT :sINTEGER;

BEGIN

DONE := FALSE;

IF STATUS=STYPE

THEN SIGN := EQUAL

ELSE SIGN := COLON;

DELETE (LN, 1, POS (BLANK,LN));

WHILE ¥OT DONE DO

BEGIN
P:= POS ('RECORD',LY) ;
Q:= POS({'ARRAY',LN);

I7 { [(P>0) AND ([©>0) OR (P>0}))

THEN ACCESSRECORD (P, SIGH)

ELSE ACCESSLINE(SIGN, LN, COUNT) ;

READALINE;
GETFIRSTWORD;
IF NOT SAME STATUS OR FLAG T
THEN DONE := TRUE;
END;
END (* PROCESSVAR_TYPE *)

PROCEDURE PARAMTEST (VAR PARMSTR:STRING) ;
VAR STR:STRING;

BEGIN WHILE POS(';?,PARMSTR) >0

DO BEGIN STR:= (COPY(PARMSTR,1,POS{';',PARMSTR}));

ACTUALPARAM (STR) ;

DELETE (PARMSTR, 1,LENGTH {STR)) ;

PARAMTEST (PARMSTR) ;
END;
END (* PARAMTEST *):

* %%)
* ek)

7e

PROCEDURE PRCCESSPROC;

{*%* GLOBAL s LN, PROCTAB, PROCIDX, ok
(*%x* INFOTABLE, INFOINDEX A)
(#*** CALLED BY : MAIN *¥X)

VAR CT,P :INTEGER;

PROCEDURE ACTODALPARAM ({S:STRIXNG) ;
VAR I,PARAM,COUNT:INTEGER;
STR:STRING:
BEGIN STR:=S:
IF POS{'VAR ',STR) >0
THEN BEGIN PARAM:=1:
DELETE (STR,1,POS({(*VAR ',S5TR) +3) ;
END '
ELSE PARAM:=0;
I:=%;
WHILE STR[I J=BLANK DO I:=I+1;
IF I>1 THEN DELETE{STEK,1,I-1);
ACCESSLINE(COLOW,STR,COUONT) ;
IF COUNT>1 THEN FOR I:=1 TO COUNT-1 DO
INFOTABLE] INFOINDEX-I|.PARAMTYP := PARAM:
INFOTABLEf INFOINDEX 1. PARANTYP := PARAN;
CT := CT+COUNT;
END ; {*ACTUALPARAM*)

BEGIN (* PROCESSPROC¥)
DELETE (L¥, 1,LENGTH (WORD) + 1) ;

P 2= 13

WHILE LN{P] IN LETTERS + NUMBERS DO P := P+1;
NAMESPACE[1] := COPY(LN,1,E-1);

CT = 0;

PROCIDX := PROCIDX+1;
WITH PROCTAB[PROCIDX] DO
BEGIN PROCNAME := NAMESPACE|1];
I? ACTION = SFUNCT
THEN BEGIN INFOENTRY (1,0,0);:

PROC_TYPE := 0; END
ELSE PROC_TYPE := 1;
TOINFO == INFOINDEX+1;

END;

IP POCS{'{',L¥) >0

THEN BEGIN

LN:={ COPY{LN,POS("(',LN)+1,POS{")',LN)=POS (' (',LN)-1));
LE:=CONCAT{LN,':');
PARAMTEST (LX) ;
END;

PROCTARBf PROCIDX J. PARANCT := CT;

READALINE;

GETFIRSTWORD;

END {(*PROCESSPROC*) ;

17

[(FFERE ER AR Rk R R R R R R TR AR AR R R IR RRFE XA RTRE XX R RRRXF)

{(F % ok kkokkok Fodokdkokk kK k)
S EET L E LT ROUTINES USED ™0 RERkERXKRE)
(o ok ok ek ok S)
(Fkkkkdkdk ANALYZE BOUTINE BODY 20 32 o e o e 3 %)
(FFwkk kxR ok ok ke k)

(3 3 o dcak e e e sk ool ik 3 3 383 ok e ok ek vk 3 3 ok ok e A S ok sl e sk ek e R e ok e ol 3k ok ok ok ok e e ek k)

PROCEDURE MATRIX_ENTRY (R,C:INTEGER);

(*** GLOBAL : MATRIX *kk)
{***% CALLED BY : TRAVERSE_STACK,ASSIGNMENT, * % %)
(£x* ACCESSUNTIL,ACCESS_CALL,IO_STMT*%*)
BEGIN

MATRIX[R,C] 2= MATRIZXZZ,C]1 + 13
END; '

PROCEDJRE INDIRECT (INBLOCK, INMODE:INTEGER);

(* GLOBAL : INDITAB, INDX *)
(* CALLED BY : ASSIGNMENT,ACCESSFOR *)
{* ACCESSUNTIL, ACCESS_IF_STMT *)
(* I0O_STMT, ACCESS_CALL, %)
{* ACCESSBLOCK, PROCESSBEGIN =)
BEGIN
INDY z= INDX + 1;
WITH INDXTAB{INDX] DO
BEGIW
BLOCK := INBLOCK;
MODE := INMODE;
NEXT =:= 0;
END;

END; (*INDIRECT *)

PROCEDURE EXPLICITFPLOW({ I,NUM:INTEGER);
(* GLOBAL : INDXTAB, INDX %)
{* CALLED BY : ASSIGNMENT, IO_STMT, ACCES5_CALL ¥)

VAR J,M,K,RO07 : IHTEGER;
PROCEDURE TRAVERSE_STACK;

BEGIY
WITH INDITAB|I}{ DO
BEGIN IF NEZXT >1
THEN BEGIN M := 1;
WHILE M< NEXT DO
BEGIN J == M;
WHILE J<> NEXIT DO
BEGIN IFP INDXARRY|J|=INDXARRBRAY)J+1[
THEN BEGIN K= J+1;
WHILZ R<> NEXT DO

BEGIN .
INDXARRAY]|K|z:= INDXARRAY]|K+1j:
K = K+1;
END;
NEXT := EK-1;
END;
IF J <> NEXT THEN J = J+1;
END;
M :=M+1;

EXND;

END;

IF NEXT>0 THEN

FOR J:= 1 TO NEXT DO

BEGIN ROW := INDXARRAY[J;
MATRIX_ENTRY {(ROW,NUM) ;
END;

END:
END {*TRAVERSE-STACEK*) ;

BEGIN
9HILE (INDXTAB[IJ.MODE < 6) DO
BEGIN
CASE INDXTAB[I].MODE OF
1,2,3 : TRAVERSE_STACK:

5 : WITH INDXITAB[I] DC
BEGIN
NEXT = NEXT + 1
INDXARRAY NEXT] := NUH;
END;

END({* CASE *);
I = I-1;
END;
END{ * EIPLICITFLOW #*);

PEOCEDORE TABLE_LOOKUP {(N:IFNTEGER; LTOKEN:STRING;

VAR KEY,J:INTEGER);
{#*** GLOBAL : INFOTABLE, PROCTAB, KEYTAB, KEYINDX k)
{*** CALLED BY : ANALY sSis mEK)
VAR ST:STRING;

PROCEDITRE KEY_ENTRY (KSTR:STRING; VAE KEY_EN : INTEGER) ;
VAR M : INTEGER;

BEGIN
M= 1;
WHILE ({KEYTAB(4] <> KSTR) AND {M <=KEYINDX)
DO H := H+1; ’
IF KEYTAB[M] = KSTR THEN KEY_EN := ¥
ELSE BEGIN
KEYINDX := EKEYINDX+1;
KEYTAB[KEYINDX] := KSTR;
KEY_EN := KEYINDX;
ERD;
END {* KEY_ENTRY #*) ;

PROCEDURE FINDTOKEN(OBJECT:STRING; VAR L:INTEGER);

BEGIN
IF INFOTABLE[L].INFONAME = OBJECT THEN L:=L
ELSE BEGIN
FHILE (INFOTABLE[L].INFONAME<> OBJECT) AND (L<>1)
DO L := L-1;

IF L=1 THEN IF INFOTABLE[L].INFONAME=OBJECT
THEN L:=1 ELSE L:=0
END;
END {*FINDTOKEN*)

PROCEDURE DEFINEKEY:
VAR K:INTEGER;

STR:STRING;
BEGIN

K := INPOTABLE[N].SCOPE;

IF K=0 THEN STR:='MAIN’

ELSE WITH PROCTAB[K] DO
IF PROC_TYPE=1
THEN STR := CONCAT (' PROC/', EROCNAME)
ELSE BEGIN

80

IF (PARRAHMCT>Q) AND
{PROCNAME = LTOKEN)
AND {ACTIGH<>SFUNCT)
THEN J := K;
STR := CONCAT({'FUNCT/',PROCHAHXE) ;
- END;
STR := CONCAT(STR,'"aw.');
STR := CONCAT(STR,LTOKEN) ;
KEY_ENTRY (STR,KEY) ;
END; (*DEFINEKEY*)

PROCEDIRE CKRECFIELD (STR:STRING);
VAR J:INTEGER;

BEGIN
J:= FIELDENTRY;
WHILE J<>0 DO WITH INFOTABLE|J| DO
BEGI¥ IP INFONAHE=STR
THENF BEGIN STR:=CONCAT (RECNAME,'.',LTOKEN) ;
KEY_ENTRY (STR,KEY);

J:=03
ERD
ELSE BEGIR J:=NEXTINFO:

IF 3=0

THEN BEGIN TFINDTOKEN{STR,N);
DEFINEKEY;
END:

END;

END;
END; {(*CKRECFIELD%*)

PROCEDURE RECENTRY (STR:STRING; M:INTZGER VAR K:INTEGER) ;
VAR TMP:STRING:
BEGIHN
=0
DELETE (STR,1,POS(*.*,5TR));
IF POS{'."',STR}) >0
THEN TMP:;=COPY (STR,1,POS({'.',STR)-1)
ELSE TMP:=STR;
WHILE M<>0 DO WITH INFOTABLE IM! DO
IF INFONAME=TMP
THEN BEGIN IF TMP=STR THEN K:= POINTOINDEX
ELSE RECENTRY(STR,POINTOINDEX,X) :
:=0;
END
ELSE M:=NEXTINFO;
ERD; (*RECENTRY *)

wr

PROCEDGRE RECORDFLOW;

VAR P:INTEGER;
NAMEFIELD:STRING;

BEGIN
IF RECNAME="!
THEN BEGIN
IF POS{'.',LTOKEN)>0
THEN BEGIN
PINDTOKEN (COPY (LTCKEN,1,POS{'." ,LTOKEN} -1),¥);
DEFINEKEY;
RECENTRY (LTOKER,INFOTABLE|¥}.POINTOINDEX,P);
FPIELDENTRY:=P;
INDX~-1;
. EWD
ELSE IF POS('.',LTOKEN) >0
THEN BEGIN
NAMEFIELD:=COPY (LTOKEK, 1,POS{'.',LTOKEN)~-1);
CKRECFIELD (NAMEFIELD) ; :
END '
ELSE CKRECFIELD (LTOKEN) ;
END ; {*RECORDFLOW*)

BEGIN (*TAELE_LOGKUP*}
J:=0;
KEY:=03
CASE WITH_STMT OF
FALSE : BEGIN
IF POS{'.',LTOKEN) >0
THEN PINDTOKEN (COPY{LTOKEN,1,P05('."',LTOKEY}-1),¥)
ELSE FIFDICKEN (LTOEKEN, N}
IF §>0 THEN DEPINEKEY;
ERD;
TRUE : RECORDFLOW;
END; (*CASE¥%)
END{* TABLE_TOOKUP*) ;

PROCEDURE ANALYSIS(GSTR:STRING; VAR KEY:INTEGER),

VAR FNCALL,TCEXP,I,K : INTEGEZR;
STR,LTCKEN : STRING;

PROCEDURE SKIP:
VAR P:INTEGER;

BEGIN
IF POS{' ',GSTR) >0
THEN BEGIN P:=POS{' ! ,GSTR) ;
DELETE(GSTR,P,POS (' ' ,GSTR) -P+1);
SKIP;
END
ELSE IF POS('''',GSTR) >0
THEN BEGIN P:=POS('''' ,GSTR);
DELETE(GSTR,P, 1)
DELETE(GSTR,P,PCS('"t''! ,GSTR)=-D+1);
SKIP;
END;
GSTR: =CONCAT(GSTR," ') ;
END; {* SKIP *)

PROCEDURE PARAMPASSING;

VAR J,ROW,COL:INTEGER;
PARAM_NAME:STRING;

BEGIN
ROW := KEY;
PARAM_NAME := INFOTABLE[PARAM_ENTRY]. INFONAME:
TABLE_LOOKUP{PARAM_ENTRY, PARAM_NAME,COL,J) :
MATRIX_ ENTRY (ROW,COL);
IF INBFOTABLEl PARAM_ENTRY].PARAMTYP
THEN BEGIN
METRIX_ENTRY (COL,ROW) ;
EXPLICITFLOW (INDX—1,ROW) ;
END;
END; (*PARAMPASSING¥*)

1

33

BEGIN (* ANALYSIS *)

I:=1;
SKIP;
WHILE I<=LENGTH{GSTR) DO
BEGIN
IF GSTR[I] IN LETTERS
THEN BEGIN K:=I;
WHILE GSTERII+1] IN ALPHA DO I:=1I+1;
LTOKEN := COPY(GSTR,EK,I-K+1) ;
TABLE_LOOKUOP{INFOINDEX,LTOKEN,KEY,ZNCALL) ;
IF FNCALL>O
THEN IFP (GSTR|I+1[='(") OR (GSTR|I+2[="'(")
THEN BEGIN
STR:=COPY(GSTER,I+1,POS({(")',GSTR)-I);
TEMP 1= KEY;
ACCESS_CALL {FNCALL ,S5TR) ;
KEY:=TEMP;
I:=I+POS{")',S5TR);
END
ELSE CALL:=FALSE;
IF CALL
THEN BEGIN IF KEY>»0 THEN PARAMPASSING;
PARAM_ENTRY:=PARAM_ENTERY+1;
END
ELSE IF KEY>O0
THEN WITH INDITAB[INDX)]

DO BEGIN
NEXT := NEXT + 1;
INDXARRAY[NEXT] := XEY:
END;
END:
I:=I+1;

END;

END; (* ANALYSIS *)

PROCEDURE ACCESSWITH;
VAR N,NUM : INTEGER;

BEGIN

ERD;

DELETE (LN, 1,LENGTH(WORD) +1);

IF POS ('BEGIN',LN)>0

THEN INDIRECT(1,4)

ELSE INDIRECT (0,4);

WITH_STMT:=TRUE;

ANALYSIS (COPY(LN,1,P0S{' DO',LN)-1),K0H4);
IF INDXTAB[INDX].BLOCK = 1

THEN DELETE (LN,!,POS{'BEGIN',LN)+5)

ELSE DELETE(LN,1,P0S(' DO ',LN) +3);

GETF IRSTWORD;

{*ACCESSWITH*)

PROCEDURE ELSE_STMT;
(* GLOBAL : WORD, INDXTAB *)
(* CALLED BY : ASSIGNMENT, TO_STMT, ACCESSBLOCK *)

BEGIN
GETFIRSTWORD;
WITH INDXTAB[INDX] DO

IF WORD ='BEGIN'
THEN BEGIN BLOCK := 1;
MODE =:= 13 .
DELETE (LN, 1,LENGTH(WORD) +1) ;
GETFIRSTWORD;
END
ELSE BEGIN BLOCK

END (*END_ELSE*) ;

PROCEDURE CKELSE;

BEGIN
IF POS({' ELSE ',LN)>0
THEN BEGIN WHILE (INDXTAB[INDX].MODE<>2) AND
(INDXTAB[INDX].BLOCK<>1) DO
BEGIN IF INDXTAB[INDX].MODE=4
THEN BEGIN RECNAME:="'"';
WITH_STMT:= TRUE;

END;
DELETE (LN, 1,POS(' ELSE ',Li)+5);
ELSE_STMT
END

ELSE BEGIN WHILE (INDITAB[INDX].BLOCR=0)
DO BEGIN IF INDXTABJINDX].MODE =4
_THEN BEGIN RECNAME:='';
WITH_STMT:= TRUE;

END;
INDX := INDX-1;
END;
READALINE;
GETFIRSTWORD;

END;
END; (*CK ELSE%*)

PROCEDURE ACCESS_CALL (*ENTRY:INTEGER; *) 3
{* GLOBAL : CALL, LETTERS, PROCTAB, INFCTABLE, ILDX*)
(* CALLED BY : ACCESSBLOCK *)

VAR 4,NUH:INTEGER;

BEGIN
M:= POS{'(',ST);
IF M>0

THEN BEGIN
INDIRECT {0,0) ;
CALL := TRUE;
PARAM_ENTRY := PROCTAB{ ENTRY]-TOINFO;
WRITELN ('PAR ENTRY..', PARAN_ENTRY) ;
ANALYSIS (COPY (ST,M,POS ('} ',ST)—=M),NUH) ;
CALL := FALSE;
INDX:=INDX-1;
IF ST=LN THEN CKELSE;
END

FLSE IF ST=LN THEN BEGIN READALINF; GETFIESTWCGRD;

td
=)

END (*ACCESS_CALL¥*) ;

PROCEDURE POP_END{VAR PROC_DONE : BOOLEAN);
{#* GLOBAL : INDXTAB, INDX, ACTION *)
{* CALLED BY : ACESSBLOCK *)

BEGIN PROC_DONE := FALSE;
CASE INDXTAB{ INDX]« MODE OF
1,2,3,4 3 BEGIN
INDX:=INDX-1;
WHILE (INDXTAB|INDX{.BLOCZX=0)
DO BEGIN
INDX := INDX-1;

IF INDXTAB|INDX).MODE=4
THEN BEGIN RECNAMEz2=1'';
WITH_STMT := FALSE; E¥D;
END;
READALINE;
GETFIRSTWORD;
END;
6 ¢+ BEGIN INDX := INDX -1

PROC_DOWNE := TRUE;
ACTION := MAIN; END;
END;:
END (¥ POP_END¥)};

PROCEDURE ASSIGHMENT,;

{* GLCBAL : L¥N, LETTERS, INDXTAB, I¥NDX %)
{(* CALLED BY : ACCESSBLCCK *)
VAEK P,Q,R,ROW,N,NUN:INTEGER;

STR, TOKEN : STRING;

BEGIN
INDIRECT{0,0);
WHILE LN[1}=3LANK DO DELETE (LN, 1, 1};

P z= POS(':=',LN);
-R = 0;
IF POS{* ELSE *,L¥) > O
THEN BEGIN
Q = POS{' ELSE ',LN);

ROW := INDXTAB|INDXY{.INDXARRAY
MATRIX_ENTRY (ROW,NUM):
END;
INDX := IHDX - 1;
EXPLICITFLOW{INDX,NUH) ;
IF 3=0 THEN BEGIN
WHILE INDXTAB[{ INDXJ]1.BLOCK = @
DO WITH INDXTABI INDX] DO
BEGIN I¥NDX := IHNDX-1;
I7 MODE=4
THEN BEGIN RECNAME:=1'1;
WITH STHMT := FALS3E:
END;
END;
READALINE;
GETFIRSTWORD;
END;
IF 3 > 0 THEN BEGIN
WHILE (INDXTAB[IND X].BLOCK=0)AND
(INDXTAB[INDX]. MODE<>2)
DO WITH INDXTAB[INDX]
DO BEGIX IFNDX:= INDX-1:
IF MODE=4
THENY BEGIN RECYNAME:=1'1:
WITH_STHT:=FALSE;
END:
END;
DELETE({LN,?1,R) ;
ELSE_STMT:
ERD;
END (* ASSIGNMENT =*);

8¢

37

PROCEDURE ACCESSWHILE;
(* GLOBAL : LN, LETTEES, WORD *)
(# CALLED BY : ACCESSFOR, ACCESSBLOCK ¥*)

VAR P,N,NUM : INTEGER;

BEGIN P := POS{'" DO ',LN);

ANALYSIS (COPY(LN,1,P) ,NUM) ;

DELETE (LN, 1,P+3};

GETFIRSTWORD;

IFP WORD='BEGIN'

-THEN BEGIN
INDXTAB[{ INDX]1.BLOCK == 1;
DELETE(LN,1,LENGTH (VORD)+1);
GETFIRSTWORD;
END;

END (* ACCESSWHILE #*);

PROCEDURE ACCESSFOR;
(* GLOBAL : LN, LETTERS *)
{* CALLED BY : ACCESSBLOCK %)

VAR P,Q,NUM : INTEGER;

BEGIN INDIRECT(0,3);
Q := POS (' DO '",LN);
ANALYSIS {COPY(LN,POS{':=",LN) ,Q~P),NIN)
P 2= POS{%¥:=",LN};
ANALYSIS {(COPY ({LN,1,P),NUH) ;
WITH INDXTAB[INDX] DO
IF NEXT>1
THEN BEGIN
FOR P:=1 TO NEXT-1 DO
MATRIX_ENTRY (INDXARRAY[P], NUH)
BEXT := NEXT-1; _
END;

DELETE (LN, 1,0+3);

GETFIRSTYORD;

IF WORD='BEGIN!

THEN BEGIN INDXARRAY[INDX].BLOCK := 1;
DELETE{LN,1,LENGTH (WCRD) +1)
GETFIRSTWORD;

END;

LX)

-4

END; (* ACCESSFOR *)

38

PRCCEDURE ACCESSUNTIL;

(* GLOBAL : WORD, LN, LETTERS, *)
{* FLAG, INDXTAB,INDX *)
{(* CALLED BY : ACCESSBLOCK ¥)

VAR 4,8,I,J,R0W,COL,RUM : INTEGER;

BEGIN INDIRECT(!,5);
DELETE (LN,1,LENGTH (WORD) +1) ;
ANALYSIS (COPY{LN,1,POS(';',LN)) ,NOH};
8 ;= INDXTABfINDX-1].NEXT;
N.:;= INDXTAB[INDXl.NEXT;
IF (N>0) AND (M>0)
THEN BEGIN
FOR I:=1 TO N DO
BEGIN ROW := INDXTAB[INDX1.INDIARRAY[I];
FOR J:= 1 TO M DO
BEGIN COL := INDXTAB{IWDX-11.INDIARRAY[JI;
MATRIX ENTRY (ROW,COL);
END;
END;
END;
INDX := INDX-2;
WHILE (INDXTAB{ INDX].BLOCK = Q)
DO BEGIN INDX := INDX-T1;
WITH INDXTAB[INDX] DO
IF MODE=4 THEN BEGIN EECNAME:='!';
WITH STMT:=TALSE;
END;

]

END;
READALINE;
GETFIRSTHWORD;
END(* ACCESS UNTIL *);

PROCEDURE ACCESS_IF_STHT;
{*¥** GLOBAL 3 LN, LETTERS, INDXTAB, INDY %)
{*¥** CALLED BY: ACCESSBLOCK kK

VAR N, NUM:INTEGEER;:

BEGIN INDIRECT{0,2);
ANALYSTIS{COPY{LN,4,POS(' THEN ',LN)-4), NUM);:
DELETE (LN,1,P0S (' THEN ',LN) +5) ;

GETFISTWORD;

IF WORD = 'BEGIN!

THEN BEGIN

INDXTAB[INDX 1« BLOCK := 1;
DELETE({LN,1,LENGTH (WORD) +1} ;
GETFIRSTWORD;

END;

EFND(* ACCESS IF_STHNT *);

PROCEDURE IO_STHNT;

(* GLOBAL : OPERBRATOR, LETTERS, INDXTAB, IUDX, =*)

(* CALL %)
(* CALLED BY : ACCESSBLOCK *)
VAR N,NUM,KEY,I,J :INTEGER;
BEGIN

I := POS('{',LN);

IF I>0

THEN BEGIN

INDIRECT (0,0) ;

IF POS(' ELSE',LN)>0 THEN J:=POS{' ELSE ',LY)
ELSE J:=POS{';',LN);

ANALYSIS (COPY {LN,I+1,J-I),NUH) ;

WITH INDXTAB{INDX] DO

IF NEXT >

0

THEN IF (OPERATOR = WRITES) OR (OPERATOR = WRITIZIS_LW)

THEN

ELSE

BEGIN FOR I := 1 TO NEXT DO

MATRIX_ENTRY {INDXARRAY{I,2) :

CALL := TROE;

EXPLICITFLOR (INDX-1,2):

CALL := FALSE:;

END

FOR I := 1 TO NEIT DO

BEGIN MATRIX_ENTRY(1,INDXARRAY]I|):
CALL := TRUE;
EXPLICITFLOW(INDX-1,INDXARRAY|I]) ;
CALL := FALSE;
END;

CKELSE;

END

ELSE BEGIN READALINE; GETFIRSTWORD; END;

END (*I0_STMT*) ;

39

99

PROCEDURE CHECK_CALL (CTOKEN:STRING; VAR PROC_CALL:BOOCLEAN;
VAR AT_PROC_ENTRY: INTEGER);

{* GLOBAL : PROCTAB, PROCIDX *)

(* CALLED BY : ACCESSBLOCK *)

VAR I : INTEGER;

BEGIN
PROC_CALL := FALSE;
AT_PROC_ENTRY := 0;
IF PROCIDX>0 THEN FOR I := 1 TO PROCIDX DO
-IF PROCTAB[I). PROCNAME = CTOKEN
THEN BEGIN '
PROC_CALL := TRUE;
AT_PROC_ENTRY :=I;
I := PROCIDX +1;
END;
END { *CHECK_CALL*) ;

PRCCEDIRE ACCESSBLOCK;
(¥ GLOBAL : LN, WORD, OPERATOR, OP, LETTERS *)
(* CALLED BY : PROCESSBEGIN *)

VAR DONE,YES := BOOLEAYN;
I, ENTRY:INTEGER;
STR:S5TRING;

PROCEDURE CK_OPERATOR(TOKEN:STRING) ;

BEGIN FOR 0OP:=WHILES TO IFS DO
IF BUFF[OP =TOKEN
THEN BEGIN OPERATOR:=0QP
OP 2= NONE;
END
ELSE OPERATOR := NONE;
END (* CK_OPERATOR *) ;

BEGIN (* ACC2SSBLOCK *)

DONE := FALSE;

DELETE (LN,1,LENGTH{WORD) +1) ;

GETFIRSTWORD;

CK_OPERATOR (¥ORD) ;

WHILE (NOT DGCGNE) DO

BEGIN

CASE QPERATOR OF
WHILES : BEGIN

INDIRECT(D, 3} ;
DELETE({LN,1,LENGTI{(WORD)Y+1);

ACCESSHYHILE;
END3
WRITES,WRITES_LN,
READS ,READS_LN s I0_STHT;
ENDS,ENDD : POP_END (DOYE) ;
END;
END_ELSE : BEGIN .
DELETE(LN,1,PCS5(' ELSE ',Lu)+5);.
BLSE _STHT;
END;
EEPEATS : BEGIN
INDIRECT(1,9) ;
DELETE (LN, !,LENGTH (WURD) + 1) ;
GETFIRSTHCGED;
END;
UONTILS : ACCESSUNTIL;
FORS : ACCESSFOR;
WITHS : ACCESSWITH;
IFsS : ACCESS_IP_STMNT;

NONE: BEGIN
CHECK_CALL (WORD,YZS,ENTRY) ;
IF YES AND ((ACTION=HAIN)
OR {(ACTION=SPROC))
THEN ACCESS_CALL (ENTRY,LN)
ELSE IF (POS(':=',LE)>0
THEN ASSIGNMENT
ELSE
WRITELY ("#*ERROR**INVALID STATZMENT');
END;
END (* CASE ¥%);
IF HOT DONE THEN CK OPERATOR{WDRD).
END;
EFD (* ACCESSBLOCK ¥);

PROCEDURE MARK_UEUSED;
{* GLOBAL : PROCTAB, PROCIDX *)
(* CALLED BY : PROCESS BEGIN *)

VAR I,J : INTEGER;

BEGIN
IF PROCIDX >0
THEN WITH PROCTAB[PROCIDX] DO

IF PARAMCI>O THEN INFOINDEX:= TOINTO + PARARCT

END (* MARK_UNUSED *) ;

PROCEDURE PROCESSBEGIN;
{* GLOBAL : INDXTAB, INDX ¥*)

32

(* CALLED BY : MAIN *)
BEGIN

CASE ACTION OF

SFUNCT, SPROC : BEGIN INDIRECT (1,6):

INDXTAB[INDX J. NIXT := PROCIDX:
END;
MAIN : INDIRECT(1,6);
END;
ACCESSBLOCK;

MARK_UNUSED;
IF BOT FLAG THEN BEGIN
READALIVE;
GETPIRSTWCRD;
END;
END (* PROCESSBEGIN *) ;

[2 3%k ek ok skok ko ok ok ok Rk kR kR kR R R Rk Rk ok kR Rk Rk kR kR Rk Rk kR Rk RF)
*oA ok kR R FF k)
% % 3k ok X KK Kk)
e ok R OKK R)

[##*******#

(% Fox Rk ook ROUTINES USED TO
(%% ok ek ANALYZE MAIN RONTINE
{******##**

PROCEDURE INITIALIZE;

PROCEDURE MATRIXINIT;

VAR I,J : INTEGER:

BEGIN

FOR I := 1 TO MAZTABSIZE DO

CR J =1 TO

MAXTABSIZE DC

MATRIX[I,Jd] == 0;

END (*MATRIXINIT *);

PROCEDURE BODYINIT;

BEGIN
BUFPF[WHILES]
BUFF[WRITES]
BUFF[WRITE_LN)
BUPF[READS]
BUFF[READS_LN]
BUFF[ENDS]
BUFF[ENDD 1
BUPF{ END_ELSE]
BUFF[REPEATS]
BUFF{UNTILS]
BUFF[FORS]
BUFF[WITHS]
BUPF[IFS)

4b gu B0 84 49 89 g4 e S0 g e V0 g

END; (* BODYINIT =)

YWHILE';
YWRITE?';
YWRITELN';
t READ';
TREADLN?;
"END;:';
"END. '
*END';

" REPEAT';
YONTIL';
'FOR?;
YWITH?;
IIP!:

*##**#*##**)
(**t#**#****#**#**#************###**##**##**#****###*****#*)

3.3

BEGIN {(* INITIALIZE ROUTINE =)

WRITELN ("ENTER FILE NAME WHICH TO BE MEASURIL?') ;

READLN {NAME) ;

NAHE := CONCAT{NAME,?'.TEXT');

RESET {IPFILE,NAME) ;

REWRITE(OUTFILE,'PRINTER:") ;

INFOINDEX := 03

TYPINDEX := 0;:

PROCIDX 3= 03

INDX := 0;
PARAM_ENTRY:=0;
FIELDENTRY := 0;
KEYTAB[1] :=*IN?';
KEYTAB[2] := 'OU0UT';
KEYINDX 1= 23

STATUS := MAIN;
ACTION += MAIN ;

CALL := TALSE;

FlAG :=FALSE;
WITH_STMT := FALSE;
LETTERS = ["A'..'2"'];
NUMBERS == [¥0',.'9'];
ALPHA =

RECNAME g= s
BODYINIT:

MATRIXINIT;

END(*INITIALIZE*) ;

PROCEDURE PRINTOODT;

(#** PROCEDURE P1 IS USED
{(*** PROCEDORE P2 IS USED
(¥*** PROCEDUORE P2 IS USED

[(E**
(*** GLOBAL : INFOTABLE,
(%% INFOINDEX,

(*** CALLED BY : MAIN

VAR Q,I,J,K : INTEGER;

PROCEDURE P1;

BEGIN
READ(Q) ;

FOR PRINT
FOR PRINT
FOR PRINT

TYPTABLE,
TYPIDNDX,

LETTERS+NOMBERS+['.*' 1;

INFOTABLE k)
TYPTABLE AND PROCTAB *=¥x)
KEYTAB AND METRIX kY

***)
PROCTA3,KEYTAB, MNATRIX®%%)
PROVIDX,KEYINDX. * k)

***)

9y

FOR I:= 1 TO 2 DO WRITELW(OUTFILT);
WRITELN (OUTFILE, 'INFOTABLE') ;
WRITELN (OUTFILE) ;
WRITELN {OUTPILE,'INDEX*,' *:5,"'INFONAME',' ':5,
' NEXTINFO',* ':5,'POINTOINDEX',' ':4,'SCO2E');
WRITELY (OUTFILE);
FOR I:=1 TO INFOINDEX DO
WITH INPOTABLE[I] DO
BEGIN IF I<10 THEN J:=1 ELSE J:=5;
IF NEXTINFO<10 THEN K:=1 ELSE K:=2;
WRITELN (OUTPILE,' ':2,I,' ':10-J,INFONANE,'..",
v 1: 1S5-LENGTH{(INFONAME) -2,NEXTINFO,"' ':14-K,
POINTOINDEX,' *":11,SCOPE);
END;
END; (* P1 *)

PROCEDUKE P2;

BEGIN
IF TYPINDEX >0
THEN BEGIN ,
FOR I:= 1 TO 2 DO WRITELN{OUTFILE):
WRITELN (OUTFILE, 'TYPTABLE') ;
WRITELNW (OUTFILE,'INDEX"," ':8,'TYPE NAMZ',
v #:5,'T0 INFOINDEX");
FOR I:=1 TO TYPINDEX DO
WITH TYPTABLE|I}| DO
BEGIN
IF I<10 THEN J:=1 ELSE J:=2;
WRITELN (OUTFILE,"* *:2,I," ':15-J,TYPNAME,
v *:15-LENGTH(TYPNAME) ,FIRSTPIZLD);
END;
END;
IF PROCIDX > O
THEN BEGIN
FOR I:= 1 TO 2 DO WRITELN(OUTFILE) ;
WRITELN (OUTFILE,' PROC_TABLE') ;
WRITELN (OUTFILE,'INDEX',"* ':10,'PROCHAME*,"' ':7,
"TOINFO?',' ':5,'PARANMN COUNT?',' ':3,'FROC TYPE');
WRITELN (OUTFILE) ; :
FOR I:= 1 TO PROCIDX DO
WITH PROCTAB|I] DO
BEGIN
IF I<10 THEN J:=1 ELSE J:=2;
WRITELN (OUTFILE,* ':2,I,' t:15-J,
PROCNAME,"' '":15-LENGTH(PROCHAME) ,TOINFO,
1 *:12,PARANMCT,' ':14 ,PROC_TYPE);
END;
EXD:
END; (* P2 *)

PROCEDURE P3;

BEGIN
FOR I:= 1 TO 3 DO WRITELN (QUTFILE) ;
WRITELY (OUTFILE,'KEY TABLE') ;
WRITELN {OUTFILE)
FOR I := 1 TO KEYTINDX DO
BEGIN IF I<10 THEN K :
WRITE (OUTFILE,I,
END;
FOR I :=1 TO 3 DO WRITELN({OUTFILE)
WRITELN (OUTFILE,'NETRIX?);
WRITELN (OUTFILE) ;
)R I:=1 T0O KEYINDX DO
BEGIN IP I< 9 THEN K:=4 ELSE K:=3;
WRITE (OUTFILE,I,"' ':K) ;
END;
WRITELN {OUTFILE):
FOR I:= 1 TO KEYINDX DO
BEGIN IF I<10 THEN K:=5 ELSE K:=U;
WRITE (OQTFILE,I,"' ':K) ;
FOR J 2= 1 TOo KEYINDX CO
WRITE (OUTFILE,METRIX[I,J],' ':4);
WRITEL¥Y {OUTFILE) ;
END;
FOR I:= 1 TO 3 DO WRITELKR{OUTFILE) ;
END; {* P3 =)

4 ELSE K == 3;
":K,KEYTAB[I 3

BEGIN (* PRINTOUT *)
FOR I:= 1 TO 16 DO WRITELN;
WRITELN{'IFC PRINTOUT:="') ;
WRITELN;
WRITELN (°® 1. PRINTOUT KEYTAB AND METRIX. ') ;
WRITELN; .
WRITELN (' 2. PRINTOUT KEYTAB, METRIX,
INFOTABLE, TYPETAB AND PROCTAB!) ;
FOR I:=1 TO 3 DO WRITELN;
WRITELN {'ENTER NUMBER YOU WANT TO BE PRINTED 2');
READ (I);
IF TI=! THEN P3 ELSE
IFP I=2 THEN BEGIN P1;P2;P3 END
ELSE BEGIN
WRITELN ("**ERROR**:ENTER NUMBER EITHEE 1 QR 2');
PRINTOUT;
END;
ERD {(*PRINTOUT *);

PROCEDURE READALINE; '
{¥** GLOBAL : LN, IPFILE,QUTFILE * k%)

(**% CALLZD 3Y : ACCESSRECORD,PROCESSVAR_TYPL R
(¥ %% PROCESSPROC ,ASSIGNMENT ,ACCESSUNTIL, *#*x*)
St I0O_STMT,ACCESS_CALL,PRCCESSBEGIN, *x=)
{**x MAIN xER)

VAR LINE:STRING;
P,0,R:INTEGER;
MARK, DONE:BOOLEAN;

BEGIN
IF EDF(IPFILE}Y THEN FLAG:=TRUE
ELSE BEGIN
LY:=?;
MARK:=FALSE;
DONE:=FALSE;
WHILE NOT DOQONE DO
BEGIN
READLN (IPFPILE,LINE) ;
WRITELN {*READesess."',LINE) ;
WRITELN (OUTPILE,! 1 ,LINE);
IF (LENGTH({LINE)})>0) OR {(LINE <>'')
THEN BEGIN
R := 1;
§HILE LINE{R =BLANK DO R:=R+1;
DELETE{(LINE,!,R-1);
IF ({(POS{'{*'",LINE)=D)
THEN BEGIN
P:=POS(YEND.',LINE);
Q:=POS{(';"'",LINE) ;
IF P>0 THEN BEGIN
DONE:=TRUE;
LN :=CCORCAT(LINZ,BLANK):
END
ELSE IF Q>0
THEN BEGIN
LINE:z=CONCAT{LINE,BLANK) ;
IF MARK
THEN LN:=CONCAT{LN,LINE)
END;
END;
END;
END;
WHILE Pos(? t,L¥M) >0 DO DELETE ({LN,POS (! LLNY , 1Y
ZND;
END (*READALINE=*);

97

PRCCEDURE GETFIRSTWORD;

{*F*xx
(#**
{#**
(**#
[**%

VAR

BEGI

GLOBAL
CALLED BY

P:INTEGER;

a
Pe=4;

: WORD,LN,FLAG ok)
: PROCESSPROC,ELSE_STNT, * % k)
ASSIGNMENT ,ACCESSWHILF,ACCESSUNTIL,%***)
ACCESS_IF_STMT,IC_STHT,ACCESS_CALL,**=)
ACCESSBLOCK, PROCESSBEGIN,MAIN * %)

WHILE LN{P] = BLANK DO P := P+1;

DELETE (LN, 1

«P2=1);

P := POS({(BLANK,LN) ;
HORD := COPY(LN,1,P);
IF WORD='END. ?

THEMN BEGIN

WORDz="END.!';
FLAG:=TRUE
END

ELSE IF (WORD='END; ') OR (WORD='END ')

THEW

DELETE (WORD, LENGTH (WORD) , 1)

ELSE BEGIN

P:=1;

WHILE (WCRD[P] IN LETTERS)

AND (P<=LENGTH (WORD)) DO P:=P#1;

WORD:=COPY (WORD, 1,P-1);

END ;

END; {*GETFIRSTWO RD%¥)

98

PROCEDURE BODY;

BEGIN
PEADALINE;
GETPIRSTWORD;
WHILE NOT FLAG DO
BEGIN
IF WORD=‘TYPE!
THEN BEGIN STATUS:=STYPE;
PROCESSVAR_TYPE ; END
ELSE IF WORD='VAR'
THEN BEGIN STATUS := SVAR;
PROCESSVAR_TYPE ; END
ELSE IF WORD='PROCEDURE’
THEN BEGIN ACTION:=SPROC;
STATUS:=SPROC;
PROCESSPROC; END
ELSE IF WORD = ' FUNCTIGH'
TUEN BEGIN ACTION:=SFUNCT;
STATUS:=SFUNCT;
PROCESSPROC; EMD
ELSE IP WORD='BEGIN'
THEN PROCESSBEGIN
ELSE BEGIN READALINE;

GETFIRSTHWORD;

END {(* WHILE #*)
END (*BODY*) ;

BEGIN (* MAIN *)
. INITIALIZE:
BODY;
PRINTOUT;
END.

END

99

100

APPENDIX C
USER's GUIDE.

This section serves to instruct the user on hov to
operate-the P-systen. The user should read and understand
this short manual before he attempts to operate the bpP-
systen, The following briefly describes the necessary
ckaracteristics and features of the P-system and illus+trates

how to run the IFC program step by step.

The operation of the P-system is based on the command
level modes. The example are F({ile mode and E(di+ mode.
Each mode has a different set of subcomnands that must only
be used in that mode. The user may type "?" or the keyboard
to have more suobcommands displayed on the screen. IF a
different mode is desired, user must exit *he current node
before .entering to the new mode. After bootirg *he systenm,
the case for the command mode will display on the screen:

COMMAND: E(dit,R (un,F(ile,C(omp,X{ecute,A(ssen,H(al*?
The follwing section will breifly explain some suhcoammands
and their use in the file mode and the editor mode. Since
the input program to IFC needs to be error free, the user
may dse the C{ompile command to check for syntax errors that
might occur in his input program before executing IFC

progranm.

101

THE FILE SYSTEM.

Pressing "F" for F{ile will enable user *to enter the
file mode. The file system is used to maintain the storing
and retrieving of information or i*ems on the disk storage.
The information stored on the disk may be given by the disk
directory command L{dir. In this case, a file name with *he

prefix "IPpP" refers to an input Pascal program to IFC program

F{ile : G{(et, S{ave, W{hat, N{(ew,L(dir, R (en, C (hng, Q(uir ?

L(dir list all the files kep%t in the disk
directory User may reques* for IFC inpu=
file 1listing by typeing "IP*.text" on
the kevyboard after *the proapt line: disk
what vol?

G {et get the reques*ed file crame from disk
into the current workfile.

C {hng to change the name of the file in the

directory to a new name.

N (ew create a new work file, clear the
current work file.
R (em removes files from the disk library.

Q{uit exits from FILER mode.

102

THE EDITOR

The user presses "E" for the E(di* command at +he
cormani level. The editor allows the user to enter, change
and modify the prograam {(Standard Pascal). The editor will
ask for-the name of the file the user wants *o keep or the
disk library. In this report, a file with the nprefix of
"IP#3" is recommended, where "##" is the user file nane.

E{dit:A{djust, C{py, D(elete, F(ind, I{nsert, J(ump, Q{ui= ?

I (nsert insert characters in to the text buffer
as they are typed in.

D (elete deletes characters from the text huffer.

J(ump moves the cursor +o +*he beginning,
ending or from marker to marker where a
marker is pre defined using the 7"set"
instruction.

F {ind locate a string of characters in the
text buffer

Q{uit exits the EDITOR with options, one of
the the four options must be selected by

typing U, E, R or W.

103

IBPUT SPECIFICATION

*x

*

input a Standard Pascal progran.
use a '";' to seperate every progran sStatements, B4
characters per input line.
comments must start at the new line.
use only lowercase characters.
Ao nested record structure in the type declaration.
acceptable input program statements.
- assignment statenent
— BEGIN-END
- repetition statements:
FOR, WHILE_DO, REPEAT UNTIL
- conditional statement
IF THEYN ELSE
- call statement:
call by name only
use function call in *he gssiqnment only
- WITH statement
I/0 statement:

READ, READLN, WRITE, WRITELN

104

OPERATION CONCEPTS

In an attempt to demonstrate a sample prograa ard
describe the concepts to operate +he IFC prograi, IP9% 1is

selected as an input program to IFC.

{1) Booting the P-system

the following prompt line will appear on the screen

Command: E(dit, R{un, F(ile, C{omp, L(ink, S{ubkit,

X{ecu+te, ?

(2) To create and update a rtext file
2.1 Enter to FILER mMOd@usesseecsce=aF(ile.
2.2 To create a text file:
Clear WOTK filCuuaeewsmosceceosanal! {EBW,
continue to step 2.4
2.3 To update an existing file:
Get existing filEeeececsecsceeeal T,
2.8 Exit PILER Bodewee swwewsnesnwsas o0t
2.5 Enter EDIT MOd€asceesecenessass E(dit,
(nodify your program)
2.6 Exit EDIT mode..................Q(uit;
{3) User presses the key "X" on the keyboard.

the following prompt line will appear on the screen:
Execute what file?

3.1 User types "IFC" on the keyboarad,

{#

(5

105
+he following prompt 1line will appear on the

sSCcreein:

Enter input filepame *o bhe run on IFC?

3.2 User types: "IP9" on the kevboard.
The following promp* lines display the echo of
the input source program. Af+ter the IFC progran
has finished scanning the input source progranm,
the following prompt lines will appear on the

SCreen:

IFC printout:

1. priantout: KEYTAB, METRIX.

2. printout: KEYTAB, METEIYX, INFOTABLE,

TYPTAB and PROCTAB.

Enter number you wish *o have the printout?
3.3 User presses either "1" or "2" on the kevboard,
the input source program 1listing and the tables
according to the number pressed will he printed
on the printer.
repeat the first step if the user wants to tes*t more
input programs.

Press l{alt to leave the systenm.

Sample

IMTEGER:

UNTIL <C=8&2;

- ey —
IHFCTRELE

IRTEN IHFCOHAKE

THEEN HENTINF
i = u]
& = 5]
= i &
4 & a
i =) x}

=

]
il
-
m

i I
= ouT
5 FEIN. .. &
< MAIK. .. B
b MEIK. .. C
= MRiM .2
o MeEIM D
WMETRI

i & g 4 L
5 o] 5 & i 1
& I & & & &
= & o a G jc
o = i = & i
o & @ = K] 4
= i = & i3 G
il i i @ @ &

APPENDIX D
Program Listings

RESD <R, B2:
REFPEAT
READLC);
IF A>i& THEMN WHILE B

“E
DO BEGIH D= 2%E;
=3 el

G POINTOINDES

© G E @ @ @@
N T DN S R

SCOPE

RO o N o R

106

=14

=4

Ios

-
e
Lee]

m

et BT R SRR RN I R o

m

FREOGRAM IF:

YAR SA . ARRAYLL. . 161 OF STRING:
IA : ARRAYC4. . 1631 OF INTEGER:

POINTOINDE.

SCOPE

Foo L MAM KMAR INTEGEF:
CH : CHRF:
T MAIM PROGRAM +3
2EGIM
K = 41
MAX =
FEFERT
WREITE< “SCORE“ »:
READCIARLK 10;
IF NOT EOF THEN
EEGIN
WREITES “HAME " 2;
READCSAL K J12;
LN = IALK1:
IF IACK I > MAX THEMN
BEGIN
MA» = IARCK I
FMR® = ki
EMD
o= K+i1:
EHIy
LMTIL EOQF OFR <k > 4185
HEITELRM:
HRITELHC “BEST SCORE: . IRLKMAX I © 7, SACKMAK 12;:
g p
TRELE
& IMFONAME HEXTINFO
SH. . %] G
IA.. iz g
K. . & 5
LM . = A
Me=, . & &
KA. . 5] 3
CH. - (5] a

107

KEY

DO B I IR CT I VI o

TRELE

IM
OuT

MAIM. ..
MAIM. . .
MAIM. ..
MAIM. ..
MARIM. ..
MAIM. ..

MATRI

R PN

DO ORI

10

i

[y e}

U el il S CUR o RO N U

e
A

DI DR E 3

Dot B e N B OV B S o B G 8

G B B B B B S O S |

@D RS

DR RO R LU Y |

DR R I ol el LN R

108

FROGRAM IFZ: 109
VAR M. YW.Z. W . INTEGER:

EEGIH
READC <L ¥
IF @w<ig THEW BEGIN
RERDCZ 2
IF >S5 THEM WRITELMC WYY = “.¥2
ELSE W = Z+Y:
EMD
ELSE BEGINM
FREARD MY
IF Y@ THEW WRITELHCYY
ELSE 2 = W + ¥

oD

E il
WRITELH M, ¥ 20 Wa;

EhiLe.

INFOTHRELE
IHDER IMFOHEME MEXTIMFO FOIMTOINDE. SCOPE

&

i
i

BN O =

i B o Ry

14

EF
D@D o

LT

MAIM. . . X
MAIM .. ¥
MAIM. .
MAIM. . M

1) -

Ch O e 4 f b

FMATRIN

1 b = 4 b &
1 i &3 i 1 i 1
= A i o B) 5
= i = 5] = 2 =
5] 3 5 i 2 2
5 = gl & = 5} 1
= i = o 5] 1 5

PROGRAM IF4:

CONST

MASLERGTH = 1830;
THFE

IMDES = 1. . MAMLEMNGTH:

FEOWMTYPE = ARERAYL IMNDE=] OF IMTEGER:
AR

INROW : BROWTYFE:
COUMT ;. & . MESLENGTH:
I o INDE;
PROCEDIRE SIORT <WAR ROM: ROMTYPE: LENGTH
WERE
JUMP. Mo W THDES:
TEMFP : INTEGER:
ALLDONE : BOOLERMS
BESINM ’
JUMF = LEMNGSTH:
WHILE JuUMFP - 4 DO
BEGINM
JUMP = JUMP DIV 2:
REFEART
ALLDONE = TRLUE:

FOR M =4 TO LEMITH - JUMF DO

BEGIN
H o= M+ JUMF:
IF ROMWIMI > ROMWIKMI]
THEM BEGIH
TEMF = ROMLM:
FOWLMI @ =
FOMLMI = TEHMF:

ALLOONE = FHRLSE:

ErTs:
EMEL
UMTIL ALLDOME:

COUMT = Bu
FRERD < IMROML COUMT + 4 I3
HHILE MWNOT EOF DO
EEGIN)
COUMNT = COUMNT+L1;
READC IMNROWLD COUHT+1 10:
EHD.
IF COUMT > &
THEM EEIGIM
SORT CIHREDR . COLRT 2
FORE Ix = 41 TO COUMT [
HREITEC IMROWE Ix 30
EMD
ELSE WRITES RO IMNPUT 2;

FORE M 1

110

IMFOTHELE
IHDE= IMFOMNAME

IMREOM. |
COUMT.
Ix. .
(SR
LENIGTH.

O Fe Ld) B

FROC_THELE
IHDES FROCHAME

1 SORT

5
-
-l
I
m
3
m

I
OuUT
PROCSOET. . . LEMGTH
FROCAZORT. . JUMP
FEOC-SORT. . . ALLDOM
FROCSSORT. . . M
FROC-SORT. . O M
FPREOC/S0ORT. . . ROW
FROCSORT. . . TEMP

i MAIM | COUNT

i MAIH. .. IHREOH

RORS R LR RO N o

MATRI

F = = 4
1 & = & B
= i = (5] &
= 5] 5 & 1
< G 5 5 2
= 5 = = (B
= {5 & & &
T | = = 5]
B 5] A 5 =
S 5 &] i
is & = i &
1219 & A] =

MEXTINFO

E

L B B o Y (R R I S s B

&

T

g

VD DT

&

IMFO

4

111

POINTOINGER SCOPE

@ &
& &
5 i
@ 1
5 i

FARREAM COUNT FROC TYFE

z 4,

[
[y—‘n I

T = = 15 11
5 = & A =
(5] 5} 5]] &
i =2 i 5] 5]
3 4 2 5] o
I 2 1 & 51
1 & %] 5] 5]
(5] 5] %] i &
15| = = @ 1
£ 1 & & 51
5} 5 i

& 5]

[

IHFT

b

o

-

L —
: -
=

bt BRI S I 5

LEY

) = Y I O I

Y

FROGREAM IPZu

YRR R E.C.D0E INTEGER:

EEGIN
FEADCH: B Ca Dok
REFERT
IF RA>E THEH

IF C>8 THEM EBEGIM

UNTIL CE=Bl;
ERE.

THELE

IHFOMARE

mo=omo

THELE

IM

AT
MEIM ..
MAIM .
MARIN. . .
MAIM. . .
MAIM. ..

T mon

L

m

MATRI

oLl [b

e R

o
I
LR g

2
i
i=l &=
] i =1
i i 5]
i3 B & i3
1 51 5]

U]

Y
1

o
(KA

WRITECD. E:
MHILE <E>B83

EmL:
ELSE READ

5]
=
i

it
5]

POl |

[t I Y

@@

HEXTIMFO

e ol EVTN OO I

POIHTOIMNDEK

Fom b B @ ey

Lt D=

i
=
5
)
G

SCOFE

[A I R o]

112

FROGRAM IF&:

o

-

E.

VAR A IMTEGEFR:

a

FUMCTION DO

VAR M. M INTEGER:

¥ INTEGERS §

113

IMTEGER:

BEGIH
FERD M. Mo
IF A THEH D = C =*= M
ELSE D = C # M
EHMD.
EEGIHN
FEAD <H. T2
B = DA CF + 4
E kL.
IWFOTRELE
INDE- IHFOMNEME HESTIHFO POIMNTOIMDES SCORPE
1 .. 5] (5] &
= E . 2 5] ia
= B & a &
4 Ce. . 5] 5 1
= o & a 1
& . A & 1
FROC_TASLE
IHDE:- FROCHAME TOIMFO PREAM COUMT FEOC TYFE
i L 5 2 &=

114

QT
FUMCT AT . . M
FUMCTALD. . . M
MAIK. . . B
FAIM .. C
FURCTAT. .. D
FURCT AT, L
FIINCT AL L Y
MRIM. .. E

| Sli) CRC B O R S-S VN (S

o

MATR I

4 = = 4 5 = i o = 1@
1 & & 1 1 1 1 @ (o @ 5]
pe] & & & 5] 5] = & 5 5] &
= & £ & 5] & =] 1 a 5] 5]
4 5 5| & 5] 5] 5] 1 a & 5]
= = = & 5 & o] = i) (5]
= G) & Jo & & & & 1 @
7 &) &] 5] & &] 1
s i 5] =] i 5] 51 = 3 | 5]
2 5] i 5] iz & a & & B 5]
13 & 5] i i = 5} 5 5] &

FROGRAM IPT:

WHE B2

IMTEGER:

w s To W INTEGER:

FUMCTION DoYARR M: INTEGER:

BEGIN

ER

BEGIMN

EMD.

INFOTRELE

b CRCCHRCH e V) (RS N I OV I

FROC_TARELE
IHDEX

4
e

IF W THEM D
ELSE [

nu
O N
.{.
-2

RERD CHL Y. S0
IF W18 THEW BEGIM
2 =4+ Ci
EMD
ELSE BEGIN
2 =2
IF ¥ 2> S THEHW W:= DiF.%y + 2
ELSE # = H+%s
EMC
WEITELRNCM, W ¥ 22

IMFOMAME NEXT INFO FOINTOIMNDE:S

=3 @ a
g 5] &
. @ &
: A %] =
Z. . & 5]
b & &
L. . & =]
. . & 5
H. . 5] (5]

M:INTEGER? : INTEGER:

SCOPE

N R R R R R

PROCHSME TOINFG FARAM COLNT

w: - -
L = =

FROC

115

TWPE

=

116

FEY TRELE

I

T

MEIMN. .. KW
MAIN .. C
FUMCT T .. D
MAIH. . . =
MAIH . Y
MAIW. . . Z
FUMCTSD. .. H
FUMNCTAD. . . M

[B ey [R < 0 I LI

L)

MRTRIX

i 2 = 4 o = 7 £ o) i&
i]] o] 1 & 1 i 5 & &
= {5 5 & (5] G 5] 5] i@ a A
= i3 i 6] 5 P 5 o {5 & &
< = o 5] G Py & (5] 1 i 5
T i a 1 & G 2] & £ 5 1=}
< i3 d = (5] 2] i = 2 1 o
T i 1 = (5] = 1 5} & = ul
= G 4 1 o (5] a & i & £
= G Dl o G a 1 5} & i@ (5
1 & = 5| (5] = 5] = = | =

TYFE
RTYFE = RECORD RA STRIMG:
: AE INTEGER:
AC . BOOLERM:
EMD;
ETYPE = RECORD ER STRIMG:
BC : IWTEGER:
EMD:
WHRFR A RTYFE.
E:ETYFE:
C.D IMTEGER:
E . BEOOLEAMN
BEGIM
RERD CC.[is:
IF C > [THEH
MITH A OO
EEGIM
READ AR, AE»:
B . BA = AR
EM
EHD
IHFOTHRELE
THDEX IMFOMAME MEMT IMFO POIMNTOIMDES
£ 7. . 2 =
2 HE. = &
= AC. 5] &
! EH. . b 5
=7 B, . 5 B
= A. . o] i
T E . i3 =
] .. (0] a
=] 0. . & o]
i8 E. . 5] &
TYFTRELE
IMDE TYFE HAME TO IMFOINDEH
i RTYFE 1
= ETYPE 4

PROGRAM IPE;

N

[w]

[}

LU o ot o

e

117

o
L

LD

REY TRELE
4 IH
z ouT
T MAIN. ..
4 MR IH,
S MAIN ..
£ MRIM. ..
T OMAIN ..
MATRIN

1
1 i
z i
z i
4 i
= i
g &
7 &

C]

A. AR
A. /E

PO R R R U I S R

SRS DD 2R LA

DS RS E

Dor R B e I el el v ol

Rl D TR T

118

PROGRRAM IFP9:

TFE
ATYFE = RECORD AR : =STRING:

AE : IMTEGER:
Rz . EOOLERM:

EMC
VAR A B ATYRPE
C. D INTEGER:
E : BOOLEAM:
EESIH
READ T, D
IF . > [» THEN
HITH A& DO
EESIM
READCHAA. RE 2
B. AH = AA:
L =D + AB:
ErMD:
HRITELHCE. AT
R AE = C + E. ABi

ITHOEX IHFOMAME NESTINFO

00 = Ty O L dsd B

TYFTRELE
IHBEX TYFE HMHAME

i

!_"'_l !:l_l :'_[l
[cn L ET I o

COmID D nD
L A]

mo
[It B |

ATYFE 4

POINTOIMDES

DU R o S R

TO INFOIMDES

SCOPE

D RS I I e I e B 1 |

119

120

FEY TRELE

iH

2T
MAIMN ..
MAIM. .
MEIM ..
MARIM. ..
MAIN. ..
MAIM. .
MAINM. .

AA
HE:
AA
T
HE:

o) iy O L) T b

mmm T m oo

MATR I

i = =, 4 b) i a =]
1 & = 14 1 1 1 & it =
= & 5]] 5] @ & = 5]
= 5] & 1 (5] 1 =y 1 5} 5]
3 i i z 5] 1 1 .- 5] I
i i & = 3 i i i & o
= e & 1 i3 5 5] = 5] (5]
F & 5] 5 5] A i G 5] @
= & 1 & & 5} i & & 5
= e} 5] 5} G (5 i 2 (5] o

FROGRAM IFP1iD

COMET
FIRST = 2

AR
MUMERA. DEMOMIMNA, LAST. COUMT . IMTEGER:
I.INTEGER:

PROCEDURE LOWTERMAVAR WUM. DEMN : INTEGERDY;

L;‘Hi:.:
HMZORY . DENCOFY. REMRINDER : INTEGER.
sEGIM
MUMCOPY = MHUM;
CEMCOPY = DEM:
HHILE DEMCOPY <> @ 00
BESIHM
FEMAIMDER := MUMCOPY MCOD DEMCOPY
HUMCOPY = DEMCOPY:
CEMZOPY = REMAIMCER:
EMC:
IF MUMCOPY 2 4
THEM EEGIM
ML o= M DIV MHLUMCOPY:
DEM = DEM DIV MUMCOPY:
EMD:
et

FROCEDURE ADODRATIOHARLS (VAR HUML, DEML . INTEGER: HUM2. DEMZ
BEGIHM

MMy = MHUML + DEMZ2 + HUMZ * DEMNL;
GEML = DEML * DEMNZ:
EMD
EEGIM
MIMERA = 1:
DERDMIMNA = 1;
RERDCLAST. COUMT &
FOR I = FIRST TO LAST Do
EEGIHM
ADDRATIOMALS CMUMERH, DENOMIMA, LAST., COLMT 2
LOMTERMCHUMERRA, DENOMIMNAY ;.
WRITELNCHUMERA 1. 7/ 7. DEMOMIMNA 13
ST

EHT

121

c INTEGER 2

122

IMFOTRELE
IMHDE™ IMNFOMAME HEMTIMFO FOIMTOINDES SCOPE
1 HLMERR. . a & 5]
ped BEMNOMIMA. . & a %]
= LRST. . @ 3 G
4 COLIMT. . 53 a i
o L. i %])
& TR G a 1
v LEM. . 5] i 1
g LML, . 5] & 2
= CERY. . 5] & 2
ia HUM2. . A = 2
14. LEMZ. .] 5] 2
FROC_THRELE
IMBEN FROCHAME TOIMNFG FRRAM COUNT FROC TYFE
1 LOWTERM) p) i
= ADCRATIONALS = 4 1

FEY THELE

INM
QT

MRIM. . . LRST
MRIM, . COUNT

el Sl Ll Sl sl IO Y N RO RN B R

L B O B A O e e

MATRIN

MU BUCR Y B RO EURE Y

!

[}

Lol e o e R R Ry BCCR PO)

ol andlLondil LI CUBS NEUCPRLE QRN B (0 S

DO E DD S DS S 53

5]

i g
i o}
Az) i
1= 5] 1
14 & 1
15 5] u]

FROC-LOWTERM. . .
PROGCALOMTERHM, | .
PROCALMTERM. | .
FROC LOWMTERM. . .
FROC/LOWTERM. . .
PROCVACDRATIGONALS. . . HUML
FROC/SDDRATIGHALS. . . DENZ
PROCADDRATIONALS. . . NUM2
FROC RODRETIONALS. . . DEML
MAIN. .. HUMERR

MRIM. .. DEMOMINA

iy

HLEC DRy
CEM
DEMCIPY
REMAINDER

O R DD RS0
DA IODIDDDERNDCOD N

OO DDDIDEREPEOE D00

QMO D OS]

X1

L)

L i R R

DADE RSO0 0RO

a
2

1A

Loy R oy o o R RN B B oy BT

|_‘l.
'

DFODO00 5000000 05

FOPORORDOO00 0O I
SRDOH0O 00008 S0

R ARl PN R R Rl e R R R)

123

14

a

XA B

)
o]

=

3
13
A

[}
[
5]

DRI @A

=

INFORMATION FLOW COMPLEXITY

by

Pakarat Udomphorn

B.A., Ramkhamheang University, Thailand,

AN ABSTRACT OF MASTER'S REPORT

submitted in partial fulfillment of
the requirement for the degree

MASTEE OF SCIERCE

Department of Computer Science
KANSAS STATIE UNRIVEFSITY
anha+ttan, Kansas

1984

1977

ABSTRACT

The areas of control flow and information flow are
frequently mentioned in techniques for measuring software
complexity. Control flow refers +o the execution sequence
of the statements and information flow Tefers to the
dependency of a variable on the values of other variables.
The various measures usually cover either intermodule or
intramodule flow. The features of the informat+tion flow can
be either explicit £flow caused by simple statements or

implicit flow caused by control statements,

A tool, the information flow complexity (IFC) progran
was designed to report the overall information transfer
betvween objects (program variables) in a Pascal progran.
The IFC was written im UOCSD Pascal and runs under the P-
system on the PDQ-3 microcomputer. A metric which
represents the information flow is the output. A flow qgraph
can be derived from this metric and may ke used to analyze
the complexity of the information flow among *ke progranm
variables. 1In addition, this me*ric can be used +to identify
*he program variables which are dependent or independert.

This may lead to an improved understandianqg of +*he design.

Presented in this report is an overview of the recent
work, a description of IFC, *the IFC source code and sanple

input program listings.

