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INTRODUCTION 

X-ray Diffraction from Single Crystals 

The Fourier transform and the reciprocal la t t ice . Whenever radiation 

fa l l s upon matter it i s scattered. Conversely, whenever we see radiation 

being scattered, we infer the existence of matter. By analyzing the pattern of 

scattered waves it may be possible to find out some things about the matter 

that is scattering the radiation. 

In crystal structure a n a l y s i s , a beam of radiation is allowed to fal l on a 

small (usually l e s s than 1 mm^) single c r y s t a l . The crystal scatters the radi-

ation in many directions and this so-ca l led "diffraction pattern" is recorded. 

In order to obtain a meaningful diffraction pattern the wavelength of the radi-

ation used must be of the same magnitude as the scattering objects (atoms in 

the crystal) . X-rays fulf i l l this requirement and are the most common type of 

radiation employed, although electrons and thermal neutrons are sometimes 

used. Figure 1 schematically i l lustrates the diffraction process . 

The aim of crystal structure analysis i s to find the arrangement of atoms 

in the crystal that produced the diffraction pattern. The scattering experiment 

produces a diffraction pattern, and the task i s to synthesize an image of the 

S C A T T E R E D 

X - R A Y S 

Fig. 1 
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crystal given the diffraction pattern. Figure 2 i l lustrates the reciprocal 

nature of these two operations. 

Fig. 2 

In the case of opt ics , scattered light emanating from an object can be focussed 

by means of a lens to produce an image of the object . For X-rays there ex is ts 

no such " l e n s " . The lens must be replaced by a mathematical transformation. 

Before discuss ing the exact nature of this transformation, it i s wel l to exam-

ine how X-rays are scattered. The full mathematical treatment of X-ray s c a t -

tering i s covered thoroughly in such books as Compton and All ison (1935), 

Buerger (1960) and McLachlan (1960). Because the material i s voluminous, 

only an outline of the theory is presented in what fo l lows. 

Consider a plane wave s^ incident upon a particle at the origin of coor-

dinates , and another particle at some general position A. (See Fig. 3). If r 

i s a vector between 0 and A, the path difference between the rays striking 0 

and A wil l be ] r )cos ^ - I r [ c o s v as shown. The phase difference wil l be 

27r/\times the path dif ference. In other words a path difference of one wave 

length corresponds to a phase difference of 27! . If we replace the point s c a t -

terer at A with an electron distribution p(*r)dV and integrate, we arrive at the 



Fig. 3 

expression for the total scattered wave: 

G = - cos%>)dV 

= - ^ d V . 

Replacing s/\ - by H we obtain 

G(H) = y ^ , ( V ) e x p 2 n i l ^ - H d V . (1) 

For the wave scattered from the n ^ atom relative to the origin, we have 

G(H) = y ^ ( 7 ) e x p 2 n i ( 7 * + - H*dV 

= f n ( H ) e x p 2 n i H . H * . (2) 

3 

The factor f^(H) = exp(2?rit\ H)dV is the atomic scattering factor for 

the n ^ atom type. Values of h^v^ been calculated for al l the elements 

by Hartree-Fock se l f -cons is tent f ield theory and other methods (Henry and 

Lonsdale, International Tables for X-ray Crystallography). Summing over the 

N atoms in the unit c e l l , we obtain 
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(3) 

for the scattering from the entire unit c e l l . Note that the vector r^ ranges 

over the space of the crystal (real space) while the vector H is defined in 

the space of the Fourier transform of p( r ) . This space i s commonly called 

"reciprocal space" . The intensity of the scattered radiation i s the product of 

the transform and its complex conjugate: 

Because the crystal i s made up of many unit ce l l building b locks , the 

observed transform is not that of a single unit c e l l , but that of the entire c r y s -

ta l . It can be shown [see Lipson and Taylor, ( 1958)], for example, that the 

observed diffraction pattern is a sampling of the modulus of the transform of a 

single unit ce l l by a three-dimensional periodic delta function. That i s , one 

can observe the modulus of the transform only a discrete points and nowhere 

between these points. The points themselves are referred to as "reciprocal 

latt ice points" . Because the diffraction pattern is defined at these points only, 

the reciprocal latt ice vector H can assume only certain values: 

where a* = 1 / a , b* = 1/b, c* = 1 / c , (a ,b ,and c are the lengths of the 

edges of the unit cell) and h, k , and 1 are integers. If 

I = G(H) - G*(H) . (4) 

(5) 

(6) 

N 

G(H) = y / n ( H ) e x p 2 n i ^ . H 
n=l 
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(7) 

The magnitude of each sampling point of the transform is cal led a "structure 

factor" and i s indexed by h, k , and 1. The intensity of each discrete beam of 

radiation i s given by 

It i s clear that the concept of the Fourier transform is intimately con-

nected with the diffraction process . The experimentor measures the intensi-

t ies of the discrete beams of radiation coming from the crysta l , and converts 

them to F ^ ^ v a l u e s . (A number of factors including polarization and the geom-

etry of the X-ray recording device must be considered here). He must then use 

an inverse Fourier transformation from reciprocal space to real space to obtain 

p ( r ) = p ( x , y , z ) , the electron density . 

The electron density function provides the crystal "image" that i s sought. 

The great obstacle to the routine application of the inverse transformation is 

d iscussed next. 

The phase problem. In general, the structure factors F ^ are complex 

quantities. When the intensity 

(8) 

i s a vector from the origin of the unit ce l l to the n ^ atom in the c e l l , the 

transform becomes 
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i s measured, all phase dependency i s l o s t . That i s , 

Ihkl<* t^hkl^-

This phase dependency must be recovered in order to make the correct inverse 

transformation. Herein l ies what i s known as "the phase problem of X-ray 

crystal structure a n a l y s i s " . 

The actual form of the inverse transformation is that of a Fourier series 

since the F, , , are discrete: 
hkl 

The phase angles ^ ^ seen to be a function of the 3N atom coordinates 

which are, of course, unknown. The calculation of p(xyz) cannot be carried 

out here because these <*hki cannot be measured experimentally. 

Many crystals are centrosymmetric. That i s , 

p ( x , y , z ) = p ( x , y , z ) . (11) 

This implies that 

Fhkl = - [ F h k l ! 

i s a real quantity. Thus in a centrosymmetric crysta l , the phase problem 

reduces to a problem of giving either a + or a - sign to each of the measured 

where 
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I F^ki! . The problem appears, offhand, to be indeterminate by reason of the 

missing p h a s e s . W. L. Bragg, in his presidential address before the section 

on Physics and Mathematics of the British Association for the Advancement 

of Sc ience , said in 1948: 

The inherent diff iculty of such work consists in i ts being 
very rarely possible to deduce the structure directly from the 
observations. On a strictly analytical b a s i s , the observed 
diffractions might be caused by an infinity of structures since 
the relative phases of the periodicities do not e f fec t the strengths 
of the diffracted beams, and the solution only becomes unique 
when we impose certain conditions, in general that the pattern-
unit consists of a discrete number of atoms of known form. No 
way has as yet been found of arriving directly at a solution 
consistent with these conditions, by a mathematical treatment, 
though attempts to do so have been made, and crystallographers 
have to fal l back on a process of trial and error. In e f f e c t , one 
has to guess a l ikely structure, calculate how it would di f fract , 
and compare with observation. If there i s no correspondence, 
a fresh guess has to be made. So in solving a crystal with one-
hundred parameters, one i s trying to guess s u c c e s s f u l l y all 
their values simultaneously. [From Buerger (1959), page 2] . 

The possibi l i ty of trying out all possible sign combinations until the 

"correct" combination is found is fut i le . For a centrosymmetric crystal with 

100 F, - , , there are 2 ^ ^ sign combinations. If each combination could be hkl 
1 R 

checked within 1 microsecond, it would require 10 years to exhaust all 

combinations. 

Fortunately, although the phase problem has not yet been solved, A. L. 

Patterson and others have discovered that certain c lues pertaining to the miss-

ing phases were contained in the intensity data. Some of these c lues can be 

uncovered by several ingenious approaches developed by many workers in the 

field.* Primary to all of these approaches was the discovery by Patterson of a 
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functional relationship between the observed data and the electron density . 

[See Buerger (I960)] . If F ^ i is replaced by F ^ F ^ in the electron 

density function, a phase less Fourier series (Patterson function) results which 

i s equal to the auto-convolution of the electron density function. 

(13) 

Let us assume that the electron density function consists of 5 discrete peaks 

outlining the molecule as in Fig. 4a. 

Fig. 4 

Then the Patterson function wil l contain 20 peaks besides the peak at the 

origin (Fig. 4b). Further, it wil l contain 5 interwoven images of the electron 

density function, plus 5 centrosymmetrical equivalent images. In general, if 

the electron density function contains N discrete peaks denoting atom loca-

t ions, the Patterson function wil l contain N*(N-1) non-origin p e a k s . The 

Patterson function contains a characteristic origin peak which is higher than 
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any of the other peaks of the function. This is caused by atoms folding with 

themselves. Another property of the Patterson function is that it i s always 

centrosymmetric regardless of whether the crystal i tself is centrosymmetric. 

The calculation of the Patterson function is straightforward, though 

tedious and time consuming. This calculation is described in Appendix I . 

With the Patterson function ca lculated, it i s then a matter of de-convo-

luting or "unfolding" the function to obtain the electron density function. This 

process amounts to finding one of the images of the electron density function 

within the Patterson function. If the atoms were point scatterers , this task 

could be carried out without too much di f f icul ty . In actual i ty , the electron 

density distribution of each atom is more or l e s s Gaussian shaped, so the v o l -

ume of a Patterson peak due to the folding of two atoms with each other i s 

roughly eight times the volume of an electron density peak. Thus, a great 

amount of overlapping occurs for crystals with more than just a few atoms per 

unit c e l l . Except for simple c a s e s , this overlapping tends to obliterate all 

images of the electron density function. Buerger (1959) has developed " image-

seeking functions" which "seek out an image" of the crystal despite overlap-

ping. This has resulted in only limited s u c c e s s . Harker and Kasper (194 7) 

have developed certain methods based on the recognition that the F^^^ are 

related to each other by the Fourier transform of the unit c e l l . Several other 

procedures have been developed, but it i s beyond the scope of this thesis to 

d iscuss these methods in detai l . Only the procedures used in the study of 

sodium hypo nitrite wi l l be d i s c u s s e d . 
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Sodium Hyponitrite 

Infrared Studies. Several plausible structures for the ^ O g ion have 

been postulated by workers using infrared and Raman spectra studies . Figure 

5 shows ( a ) trans-structure, (b) c is-structure, and (c) isoelectronic struc-

ture . 

Fig. 5 

Hunter and Partington (19 33) concluded from chemical evidences that the 

trans-structure (Fig. 5a) i s present in the hyponitrous ac id . Also indicated 

was the possibi l i ty of free rotation around the oxygen bonds. 

Kuhn and Lippincott (1956) worked with sodium, s i lver , and mercury 

hyponitrites in addition to an aqueous solution of Na^N^O^. Here again, the 

trans-structure was indicated. 

Goubeau and Laitenberger (19 63) measured the infrared spectrum of 

sodium nitrosyl prepared by a reaction of NO with Na in liquid ammonia. The 

- 2 

existence of the dimeric ion N2O2 is derived as not being identical with the 

hyponitrite ion, but the c is form is the preferred structure. The resonance 

structure proposed is shown in Fig. 6. 
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O O O CT " o O 

(a) (b) (c) 

Fig. 6 

From these ev idences , it seemed that either the trans- or the c i s -

structures were possible for the hyponitrite ion. Further investigation uti-

lizing X-ray diffraction is necessary to determine the correct structure. 

X-ray Studies. Unit ce l l and reciprocal la t t i ce . Cox, Jeffrey and Stadler 

(1949) performed an X-ray study of crystall ine potassium dinitrosulphite, 

K^SC) N O . Their work indicated that the RLO group was planar and was 
2 3 2 2 2 2 

of the c is form. The valence diagram for the molecule can be represented as 

a hybrid of the following three molecular structures shown in Fig. 7. Figure 

7a was thought to be the most l i k e l y . 

Fig. 7 

The bond lengths of N=N and N-O were found to be 1 .33 A and 1.28 A, 

respect ive ly . 



Lee (1958) attempted to solve the crystal structure of ammonium hydro-

gen hyponitrite, but no definite result fol lowed. 

Chang (19 63) conducted an extensive X-ray diffraction study of sodium 

hyponitrite. Powder patterns were taken of anhydrous Na-N O^ with CuKa 

radiation and diffraction patterns were taken using single crystals prepared by 

evaporating an aqueous solution in a dessicator over sulfuric acid. Rotation, 

Weissenberg and precession photographs were obtained. The intensit ies of 

the diffraction spots were measured both v isual ly by comparison with a c a l i -

brated film strip and by using an optical densitometer. Crystalline structure 

factors iFl were calculated from the measured intensit ies using the relation 

I = L p c 2 l F ) 2 e x p [ - 2 B ^ ^ ] , (14) 

2 

where I i s the intensity read from the recording photographic film, c i s an 

absolute sca le factor obtained from a Wilson plot [see for example, Buerger 

(I9 60)] , B i s the temperature factor obtained from the Wilson plot, L i s the 

Lorentz factor which depends upon the geometry of the recording d e v i c e , and 

p is the polarization factor obtained from Thomson scattering theory. 

In addition, the unit ce l l parameters were calculated from the reciprocal 

lattice spacings . The results are shown as fol lows: 

a = 7.22 + 0.03 A 

b = 1 7 . 1 0 + 0 . 0 7 A 

c = 6 . 0 1 ± 0.02 A 

^ = 90° 

12 
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p = 90° 

Y = 1 0 7 . 5 ± 0.40° 

v = 706 ± 10 A^ 

It was found that there were systematic extinctions on the recording film 

due to the presence of symmetry elements in the crysta l . The conditions 

restricting possible ref lections are as fol lows: 

h k 1, no conditions 

h k 0, k = 2n 

0 0 1, 1 = 2n 

The last of the above conditions was found from a precession photograph, 

these conditions indicated that the space group of the crystal was P2^/b, no. 

14 in the International Tables for X-Ray Crystallography. The symmetry e l e -

ments of P2^/b are shown in plate I , along with the symmetry equivalent 

molecular posit ions. For this space group, there are 4 molecules per unit c e l l . 

Possible bond lengths and waters of hydration. Bond lengths for N-N, 

N - O , and N a - 0 have been obtained from X-ray, infrared and chemical studies 

of several compounds. These are reported in the International Tables for X-Ray 

Crystallography, Vol. Ill and are reproduced here in Table I . From these 

values it was concluded that the N-N separation for 2 should be 

1 . 2 3 - 1 . 4 0 A, the N-O separation should be 1 . 2 2 - 1 . 4 5 A, and the Na-O 

0 
separation should be 2 . 3 — 2 . 4 A. 



EXPLANATION OF PLATE I 

Fig. 1 . This figure shows the symmetry elements of space 
group P2^/b. Circles denote inversion centers, 
while the symbols ) denote 2-fold screw a x e s . 

Fig. 2. This figure shows the equivalent positions of space 
group P2^/b. Numbers denote the z-coordinates of 
the molecules with respect to the base plane. The 
symbols (Q) denote left-handed molecules . 



PLATE ! 

F ig . 2 

Fig.1 
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TABLE I . Bond lengths for N - N , N - O , and Na-O. 

Bond Type Avg. Distance No. of Deter. 

r triple 1.0976 1 1 
partial triple 1 . 1 3 1 10 5 
double 1.24 1 3 

N-N-S single 1.44 4 4 
extended single in: 

N2O4 (g) 1 . 64 3 1 
L N2O4 (s) 1 . 7 5 1 

in NO (g) 1 . 1507 4 4 
in NO2 (g) & nitrosyl 

compounds 1 . 1 8 8 
i n N O ^ a n d N O ^ 1.24 7 

N - O S N-O inHNOg (s) 1.29 6 8 
N-O in nitryls & HNO3 1 .22 20 
N-OH in HNO3 (g) 1 . 4 1 2 1 

in NH2OH 1.47 3 1 
in NH3OCI 1 .45 4 1 

^ inKSO^NHOH 1 . 5 1 4 1 

^ 4-fold coordination 2.38 2 
5-fold " 2.37 2 

N a - 0 < 6-fold " 2.44 16 
( 7-fold " 2.53 1 

16 
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The density of sodium hyponitrite was found by Chang to be /0= 1.85 
3 

±0.03 gm/cm based on 4 molecules per unit c e l l . This value favors the 

presence of a pentahydrate state . Data obtained by Shah (1946) and others 

indicated the possibi l i ty of a trihydrate state. Because of i ts great affinity 

for water and carbon dioxide present in the air, exact density measurements 

of ^ 2 ^ 0 2 ' n l ^ O and determination of the number of waters of hydration 

n could not be carried out. Further work of both experimental and theoretical 

nature was carried out by G. Stucky, G. P. Reese and the present author to 

determine the number of waters of hydration and is presented in the following 

p a g e s . 

Purpose of the Thesis 

With the unit ce l l parameters, space group and probable bond lengths 

determined, the theory and technique of X-ray methods can be used to deter-

mine the electron density function and the atom locations referred to the unit 

ce i l a x e s . This eventual elucidation of the exact structure of the crystal i s 

contingent, of course, on the solution of the phase problem. The purpose of 

this thesis i s to explain various phase-determining techniques that were 

applied during the work and what their e f fec t was on the problem, to present 

results obtained to date, and to point out areas where future work can be 

conducted. 
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EXPERIMENTAL & CALCULATIONS 

Data 

The table of structure factors prepared by S. C . Chang were used. They 

were found from the relation [see Eq. (14)] 

(15) 

where y i s the angle of inclination from the zero- leve l line in reciprocal 

s p a c e , and 5 i s the distance between the tips of the unit vectors *s* andl^ 

(see Fig. 3) projected to the plane perpendicular to the rotation a x i s . 

The polarization factor i s 

(17) 

Scale and temperature factors were determined from the Wilson plot and 

solving the relations 

(18) 

The Lorentz factor for the Weissenberg recording method is given in gen-

eral by 

(16) 



where # i s a zone of reciprocal space about a given di f f ract ion point , ( I *> o^ 
i s the average observed intensities in this zone modified by the Lp factor, 

and f̂  is the atomic scattering factor for the i ^ atom. For the 468 observed 

ref lections it was found 

B = 1 .95 A^ c = 6.6 

After substituting these values into Equ. (15), a table of corrected intensit ies 

was obtained (see Table II). Table II thus provided the bas ic starting point 

for all the calculations to fol low. 

Patterson Functions 

The patterson function of the crystal was calculated by squaring each 

jF[ and substituting into Eq. (13). While this seems on the outset to be a 

simple task , in actuality great care must be taken in order to perform the c a l -

culation in a reasonably short time. Appendix I i s a detailed description of 

this calculat ion. 

If only the hkO c l a s s of ref lections are used, Eq. (13) reduces to 

P(x,y) = E E F ^ F ^ e x p - 2 * n i ( h x + ky) . (19) 
h k 

When this i s done, a projection of the function in the direction of the z - a x i s 

i s obtained. For sodium hyponitrite this i s a most useful projection since it 

l i es in the direction of the symmetry elements (see Plate I). 

19 



Table II. The observed structure factors of Na2N202 as rendered to 
absolute scale and corrected for thermal vibration. 

h 

0 

k 

2 

1 

0 

|F| : 

5.94 

h 

6 

k 

0 

1 

0 

IF| : 

0 

h 

5 

k 

6 

1 

0 

|F| 

8 . 1 5 
0 4 0 18.92 6 2 0 14.92 5 8 0 8.50 
0 6 0 63.53 6 4 0 28.92 5 10 0 0 
0 8 0 5 . 6 1 5 12 0 0 
0 10 0 0 7 0 0 24.42 5 14 0 23.28 
0 12 0 89.68 7 2 0 18.26 
0 14 0 18.40 6 2 0 0 
0 16 0 40.59 1 4 0 47. 32 6 4 0 9.09 

1 6 0 59.09 6 6 0 0 
1 0 0 19.34 1 8 0 17.44 6 8 0 122.66 
1 2 0 1 5 . 7 5 1 10 0 16.36 6 10 0 16.76 
1 4 0 8.93 1 12 0 1 4 . 1 2 
1 6 0 14 .41 1 14 0 4 1 . 2 6 7 2 0 18.97 
1 8 0 56.46 1 16 0 43.81 7 4 0 26.83 
1 10 0 30.70 7 6 0 0 
1 12 0 25.95 2 2 0 9.49 7 8 0 15.47 
1 14 0 0 2 4 0 109.51 
1 16 0 24.48 2 6 0 129.86 0 2 1 18.35 

2 8 0 23.74 0 3 1 51 .39 
2 0 0 76.85 2 10 0 0 0 4 1 22.05 
2 2 0 19.70 2 12 0 0 0 5 1 8.81 
2 4 0 20.77 2 14 0 25. 68 0 6 1 23.12 
2 6 0 0 2 16 0 73.83 0 7 1 25.86 
2 8 0 5 1 . 7 4 2 18 0 42.81 0 8 1 45.04 
2 10 0 8. 63 0 9 1 56.72 
2 12 0 2 1 . 5 3 3 2 0 31. 62 0 10 1 1 9 . 1 7 
2 14 0 54.33 3 4 0 4.97 0 11 1 33.86 

3 6 0 74. 64 0 12 1 19.37 
3 0 c 29.07 3 8 0 64.38 0 13 1 33. 69 
3 2 0 23. 60 3 10 0 0 0 14 1 8.92 
3 4 0 20.98 3 12 0 0 0 15 1 15 .14 
3 6 0 15 .65 3 14 0 0 0 16 1 8.09 

3 16 0 8.50 
4 0 0 0 1 0 1 4 .72 
4 2 0 7 .22 4 2 0 80.31 1 1 1 50.75 
4 4 0 35.24 4 4 0 96.55 1 2 1 12.91 
4 6 0 0 4 6 0 19.92 1 3 1 21. 63 
4 8 0 81 .45 4 8 0 20.36 1 4 1 52.88 
4 10 0 29.28 4 10 0 0 1 5 1 4.58 

4 12 0 0 1 6 1 10.25 
5 0 0 9.88 4 14 0 0 1 7 1 24.94 
5 2 0 0 4 16 0 35.27 1 8 1 22.25 
5 4 0 0 1 9 1 0 
5 6 0 26.24 5 2 0 38.18 1 10 1 23.72 
5 8 0 38.83 5 4 0 23.12 1 11 1 1 7 . 1 7 

20 



Table II (Cont.) 
h k 1 |Fl : h k 1 |F| : h k 1 |Fl 

1 12 1 15.59 4 9 1 12. 65 2 1 1 72.43 
1 13 1 23.93 4 10 1 12.09 2 2 1 9.01 
1 14 1 0 4 11 1 20.57 2 3 1 30.27 
1 15 1 0 4 12 1 9.08 2 4 1 28.26 
1 16 1 19.54 2 5 1 4.33 

5 0 1 29.32 2 6 1 48.52 
2 0 1 22.31 5 1 1 0 2 7 1 54. 33 
2 1 1 36.33 5 2 1 0 2 8 1 8.02 
2 2 1 98.71 5 3 1 12.80 2 9 1 50.00 
2 3 1 60.63 5 4 1 0 2 10 1 43.57 
2 4 1 20.34 5 5 1 0 2 11 1 23.10 
2 5 1 109.54 5 6 1 21 .96 2 12 1 0 
2 6 1 42.22 5 7 1 0 2 13 1 21.70 
2 7 1 0 5 8 1 0 2 14 1 8.98 
2 8 1 22.69 5 9 1 18.98 2 15 1 0 
2 9 1 11 .60 5 10 1 8.43 2 16 1 0 
2 10 1 0 2 17 1 0 
2 11 1 0 6 0 1 18. 26 2 18 1 14.24 
2 12 1 9.07 6 1 1 24.25 
2 13 1 12.28 6 2 1 11 .05 3 1 1 21 .77 
2 14 1 27 .61 6 3 1 22.53 3 2 1 32. 67 

6 4 1 0 3 3 1 0 
3 0 1 7 . 2 1 6 5 1 1 4 . 1 6 3 4 1 27.24 
3 1 1 56.90 6 6 1 13.08 3 5 1 0 
3 2 1 20.38 3 6 1 13. 65 
3 3 1 42.77 7 0 1 15 .57 3 7 1 2 9 . 1 1 
3 4 1 18.43 7 1 1 0 3 8 1 24.81 
3 5 1 14 .91 7 2 1 6.59 3 9 1 44.83 
3 6 1 18.72 3 10 1 7 .53 
3 7 1 44.03 1 1 1 13.06 3 11 1 33.21 
3 8 1 8.78 1 2 1 9.49 3 12 1 8.58 
3 9 1 12 .76 1 3 1 12.24 3 13 1 9.02 
3 10 1 20.49 1 4 1 0 3 14 1 18.23 
3 11 1 0 1 5 1 0 3 15 1 27.99 
3 12 1 0 1 6 1 15.59 3 16 1 8.37 
3 13 1 7.84 7 1 10.86 3 17 1 10.57 
3 14 1 13.87 1 8 1 46.48 

1 9 1 0 4 1 1 4 1 . 68 
4 0 1 13 .61 1 10 1 12.08 4 2 1 34.35 
4 1 1 34.73 1 11 1 0 4 3 1 24.09 
4 2 1 12.88 1 12 1 0 4 4 1 14.03 
4 3 1 7 .79 1 13 1 17 .79 4 5 1 18.82 
4 4 1 27.04 1 14 1 17 .96 4 6 1 0 
4 5 1 44.62 

1 
15 1 8.92 4 7 1 17.48 

4 6 1 15.48 
1 

16 1 0 4 8 1 0 
4 7 1 0 

1 
17 1 18.14 4 9 1 5 .56 

4 8 1 0 
1 

18 1 14. 65 4 10 1 37.87 

21 



Table II (Cont.) 22 
h k 1 [F : h k 1 F : h k 1 F 

4 11 1 30.21 0 6 2 20.11 3 5 2 0 
4 12 1 27.02 0 7 2 4 .23 3 6 2 44.93 
4 13 1 59.88 0 8 2 73.23 3 7 2 0 
4 14 1 20.61 0 9 2 60.51 3 8 2 0 
4 15 1 19 .31 0 10 2 16.87 3 9 2 9.98 
4 16 1 20.86 0 11 2 37.36 3 10 2 26.04 

0 12 2 9 .79 3 11 2 
0 

5 1 1 24.92 0 13 2 0 3 12 2 0 
5 2 1 0 0 14 2 0 3 13 2 29.00 
5 3 1 9.95 0 15 2 16. 63 
5 4 1 19.04 0 16 2 40. 69 4 0 2 32. 13 
5 5 1 0 4 1 2 32. 13 
5 6 1 17 .54 1 0 2 19.03 4 2 2 0 
5 7 1 28.05 1 1 2 51 .50 4 3 2 0 
5 8 1 0 1 2 2 65.99 4 4 2 22.72 
5 9 1 34.50 1 3 2 5.33 4 5 2 19. 12 
5 10 1 0 1 4 2 5 .01 4 6 2 33.80 
5 11 1 1 9 . 1 6 1 5 2 37 .91 4 7 2 69.84 
5 12 1 23.89 1 6 2 0 4 8 2 20.48 
5 13 1 10.80 1 7 2 34.60 4 9 2 17. 12 
5 14 1 0 1 8 2 0 4 10 2 0 
5 15 1 15.87 1 9 2 0 4 11 2 7.46 

1 10 2 0 
6 1 1 31 .94 1 11 2 0 5 0 2 9 .71 
6 2 1 30.32 1 12 2 21.88 5 1 2 0 
6 3 1 0 1 13 2 34.90 5 2 2 11 .98 
6 4 1 0 5 3 2 34. 12 
6 5 1 25.83 2 0 2 54 .51 5 4 2 27.86 

5 5 2 0 
6 6 1 0 2 1 2 12. 76 5 6 2 32. 56 
6 7 1 0 2 2 2 14.66 5 7 2 11 .06 
6 8 1 0 2 3 2 8.00 5 8 2 0 
6 9 1 0 2 4 2 64.76 5 9 2 5.43 
6 10 1 28.23 2 5 2 0 
6 11 1 24.51 2 6 2 0 6 0 2 43. 11 
6 12 1 0 2 7 2 8.22 6 1 2 19.08 
6 13 1 18.37 2 8 2 39.91 6 2 2 9.43 

2 9 2 16.25 6 3 2 0 
7 1 1 12.7 2 10 2 39.84 6 4 2 0 
7 2 1 1 3 . 1 1 2 11 2 37.04 6 5 2 

0 

7 3 1 0 2 12 2 0 6 6 2 17 . 16 
7 4 1 13.42 2 13 2 9 . 1 6 

7 1 2 15. 16 
0 1 2 3 1 . 3 1 3 0 2 10.89 
0 2 2 14 .14 3 1 2 53.98 

1 
1 2 12.27 

0 3 2 70.55 3 2 2 18.23 1 2 2 36.33 
0 4 2 5 6 . 1 5 3 3 2 14. 60 1 3 2 28.09 
0 5 2 4.82 3 4 2 15 .57 1 4 2 5.06 



Table II (Concl . ) 
h k 1 |F| : h k 1 F h k 1 F 

1 5 2 25.50 4 1 2 38.54 7 1 2 12.35 
1 6 2 5.38 4 2 2 29.00 7 2 2 0 
1 7 2 19.67 4 3 2 21 .87 7 3 2 24.89 
1 8 2 40.35 4 4 2 16.47 7 4 2 0 
1 9 2 0 4 5 2 49. 66 7 5 2 11 .87 
1 10 2 35.34 4 6 2 34.55 7 6 2 23.36 
1 11 2 41 .30 4 7 2 0 7 7 2 1 5 . 1 6 
1 12 2 31.06 4 8 2 47.04 7 8 2 0 
1 13 2 21 .78 4 9 2 18.98 7 9 2 0 
1 14 2 25.80 4 10 2 0 7 10 2 33.86 
1 15 2 9.39 4 11 2 0 
1 16 2 0 4 12 2 27.48 
1 17 2 14.04 4 13 2 0 

4 14 2 9.38 
2 1 2 15 .43 4 15 2 27.02 
2 2 2 36.99 4 16 2 9.07 
2 3 2 44.73 
2 4 2 4.99 6 1 2 9. 60 
2 5 2 5.38 5 2 2 0 
2 6 2 9.07 5 3 2 26.19 
2 7 2 40.84 5 4 2 0 
2 8 2 5 1 . 60 5 5 2 27.82 
2 9 2 29.35 5 6 2 0 
2 10 2 0 5 7 2 9.66 
2 11 2 0 5 8 2 9.84 
2 12 2 21 .96 5 9 2 29.84 
2 13 2 1 1 . 9 1 5 10 2 33. 66 
2 14 2 21.64 5 11 2 0 
2 15 2 76.67 5 12 2 0 
2 16 2 48.48 5 

5 
13 
14 

2 
2 

0 
0 

3 1 2 6 . 13 5 15 2 17.98 
3 2 2 22.36 
3 3 2 37.94 6 1 2 0 
3 4 2 0 6 2 2 0 
3 5 2 28.81 6 3 2 0 
3 6 2 13.58 6 4 2 21 .97 
3 7 2 14.44 6 5 2 13.90 
3 8 2 28.62 6 6 2 

0 

3 9 2 18.38 6 7 2 15.00 
3 10 2 0 6 8 2 31 .74 
3 11 2 33.04 6 9 2 24.92 
3 12 2 2 1 . 4 1 6 10 2 0 
3 13 2 0 6 11 2 33.92 
3 14 2 37.22 6 12 2 32.58 
3 15 2 9.24 
3 16 2 0 
3 17 2 6.81 

23 
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This calculation was carried out using the computer program described 

in Appendix I . Plate II shows the resul ts , in terms of a contour map. Peaks 

in this map represent foldings between the electron density distributions of all 

the atoms in the unit c e l l . Because of the great number of foldings, there is 

much overlapping and superposition of Patterson densi t ies . While the actual 

unit ce l l axes are inclined at an angle of 107.5 ± 0.40° it was found con-

venient to make a transformation from the actual space of the crystal to a rec-

tilinear space with orthogonal a x e s . In this way it was possible to print maps 

on the output device of the computer which were then contoured direct ly . The 

small numerals and letters v is ib le in Plate II are the actual computer print-

outs. (See Appendix I). 

Because of the great amount of overlapping present in the Patterson pro-

ject ion, any interpretation was di f f icul t . It was decided to compute the en-

tire three-dimensional Patterson function in order to eliminate overlapping. 

Using the computer program described in Appendix I , 149,810 values of the 

function were computed in l e s s than seven hours. Forty sect ions were taken 

through the unit ce l l perpendicular to the z - a x i s . Each section was plotted 

by the computer and contoured directly onto a 24" x 30" g l a s s sheet. These 

40 sheets , when stacked together in the proper order, comprised a "picture" 

of the function. Three dimensions of space were present, and the functional 

values were represented by the contour leve ls creating a "fourth dimension". 

Plate III shows the completed array of g lass sheets . 



EXPLANATION OF PLATE II 

This plate shows the projection of the Patterson function of sodium. 
hyponitrite on the x - y plane. Contour intervals are arbitrary but equal . 
Symbols ( d e n o t e screw axes; (O) denote inversion centers. 





EXPLANATION OF PLATE III 

This plate shows the 4-dimensional graph of the 3-dimensional 
Patterson function of sodium hyponitrite. Forty g lass sheets were 
used to create 40 contoured sections through the function. Individual 
s labs through the function were illuminated by an edge-l ighting 
technique. 
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PLATE III 
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The three-dimensional function provided an exact knowledge of the 

distribution, s i z e s , and shapes of the Patterson peaks with much greater 

resolution than that provided by the projection alone. 

Methods of Solution 

Interpretation of Peak Heights. An attempt was made to calibrate the 

heights of the various peaks present in the three-dimensional Patterson func-

tion. The height of a Patterson peak is roughly proportional to the product of 

the number of electrons in each of the two atoms folding together to make up 

the Patterson peak. The height of the origin peak in a Patterson map is propor-

tional to the sum of the squares of the electron counts of each atom in the unit 

c e l l . Thus it i s possible to predict the heights of peaks appearing in the 

Patterson maps by knowing what types of atoms are present in the crysta l . The 

relation governing peak heights is 

where Hij i s the height of the Patterson peak resulting from the folding of the 

ith atom with the jth atom, Ho is the height of the origin peak in the Patterson 

map, Zk2 is the sum of the squares of the number of electrons in each atom. 

Zi and Zj are the electron counts of the ith and jth atoms, respect ive ly . 

For sodium hyponitrite, assuming 3 waters of hydration per molecule, 

Zk2 = 2040 k 
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Using the height of the Patterson origin, Hij were calculated for all 

possible combinations of atom types and were compared with the actual ob-

served peak heights in the three-dimensional Patterson map. In nearly all 

c a s e s the peaks on the map were higher than the predicted peaks . This was 

thought to be due to the large symmetry present which permitted overlapping 

to occur even in the three-dimensional function. Further analys is of the 

various peaks in the Patterson function revealed clues for possible atom 

foldings which were later used to help determine trial structures. 

Application of Harker-Kasper Inequalit ies . Harker and Kasper (1947, 

1948) showed that there ex is t relations between the structure factors for 

centrosymmetrical crysta ls . They began by making use of the wel l known 

Schwarz inequality 

(21) 

The fundamental scattering from the crystal can be written 

(22) 

Z Na Z Na = 100 100 

z Na ZO = 90 
Na O 

90 

Z Na Z N = 70 Na N 70 

ZO ZO = 81 ZO ZO = 81 

63 ZO ZN = 63 

z z 49 . 
N N 
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For Schwarz's inequality, let 

(24) 

(25) 

(26) 

(27) 

(28) 

Introducing the unitary structure factor 

be the electron content of the unit c e l l , we obtain 

we obtain 



Using the identity 

(33) 

(30) 

we have 

(31) 

Substituting in Eq. (21), we obtain 

For substitution into Schwarz's inequality, let 

(29) 

32 
Sodium hyponitr i te has 2- fo ld screw axes para l le l to c . Thus we may 

write 

The unitary structure factor then reduces to 



For sodium hyponitrite, a table of unitary structure factors 

were ca lculated, but unfortunately, so few were large enough to sat i s fy Eq. 

(34) that the method had to be abandoned. 

Application of the Karle-Hauptman symbolic addition procedure. The 

application of this procedure to the solution of the phase problem has been 

described by Karle, Britts, and Brenner (1964) and by Sax, Beurskens, and 

Chu (1964) in the solutions of the crystal structures of 1 -cyc iohexenyl -1 -

cyclobutenedione and ortho-nitroperoxybenzoic ac id , respect ive ly . The 

theoretical derivation of the method is beyond the scope of this thesis but the 

application of the method is straightforward. 

First, a complete set of normalized structure factors E, , , were obtained 
hKi 

from the relation given by Karle, 

From Eqs . (25) and (28), this becomes 

(34) 
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(35) 

Equation (34) i s the desired inequality and can be used to determine p h a s e s . 

For example, suppose that i s known for a particular ref lect ion. If 

tained. 

may be either positive or negative and no information is ob-

is pos i t ive . If then 1 i s even and 

then 



where F are the structure factor magnitudes previously obtained, f,'^, i s 
hkl hkl 

the atomic scattering factor for the atom evaluated at the acattering angle 

determined by h, k , 1; N i s the number of atoms in the unit c e l l , and € is 

a constant which depends on the symmetry of the crystal . For P2^/b, * = 1 

except for the hkO and 001 ref lections where t =2. 

The distribution of the normalized structure factor magnitudes was as 

fol lows: 
Experimental Theoretical 

l E l > 3 .87% .3% 
l E l > 2 3 .3 5.0 
[E[> 1 3 1 . 1 32.0 

The theoretical values are those for a centrosymmetric crystal with atoms 

located randomly. Statist ical averages for the normalized structure factors 

are as follows: 

Experimental Centrosymmetric Nonce ntro symmetric 

<|E|> 0.748 0.798 0.886 
<lE2^-1|> 1.039 0.968 0.736 
<IE2|> 1 .012 1.000 1.000 

The experimental values were in c lose agreement with the theoretical values 

indicating that the Wilson plot was probably correct. 

To initiate the phase-determining procedure, three linearly independent 

|Ehkl| were chosen to speci fy the origin of coordinates. Plus (+) signs 

were given arbitrarily to these three ref lect ions . Since the probability of a 

correct sign depends on the magnitude of the three initial were 

chosen to be large. From these initial s igns , other signs were generated for 



the large |Ehkl's from the relation [Karle & Karle ( 1963)]: 35 

where s = "sign of" and = "is given by" . The greater the number of 

interactions with Eq. (36), the greater is the probability that a phase is 

correctly determined. The probability that a phase determined by Eq. (36) 

is positive is given by [Woolfson (1961)]: 

(37) 

where N is the number of interactions. 

Once a starting set of signs was established, these were used in Eq. 

(36) to generate even more phases until all possible interactions were ex-

hausted. Because of the scarcity of data for the Miller index (see Table II) 

in sodium hyponitrite, not enough interactions were established with high 

enough probabilities to be successful in solving the structure. Accordingly, 

this approach was eventually discontinued. 

While the more direct methods of Harker and Kasper or Karle and Hauptman 

offer many advantages, they could not be applied to the available sodium hy-

ponitrite data with success. Particularly, the Harker-Kasper inequalities 

depended upon large unitary structure factors, and these in turn depended upon 

the presence of heavy atoms or planar groups in the crystal. Overlying the 

difficulty in interpreting the Patterson function directly was the uncertainty 

in the number of waters of hydration present. Because of these considerations, 



it was decided to study in detail the Harker section of the Patterson function, 

and to relate it to the Patterson projection. 

Harker Section. [See Buerger (1959)]. Certain special sections 

through the three-dimensional Patterson function do not suffer from overlap of 

peaks as do projections. To explain the nature of a Harker section consider 

two equivalent sets of atoms, A and B, related to each other by a two-fold 

rotation axis parallel to c . The coordinates of the atoms in the equivalent 

sets are: 

Set A: xaSet B: x ^ z ^ x ^ . 

It will be recalled that the Patterson function can be considered to be an auto-

convolution of the electron density function. That is , the Patterson function 

contains peaks located at the ends of all the interatomic vectors in the unit 

ceil , where each vector has its tail located at the Patterson origin. The 

coordinates of the interatomic vectors are: 

Symmetrical Vectors: 

Unsymmetrical Vectors: 



All the unsymmetrical vectors have a very general form, whereas the symmet-

rical vectors ail contain a z-coordinate of zero. If a section of P(xyz) were 

computed at the section z=0, it would contain peaks due to the symmetrical 

vectors, but in general would not contain peaks of the more general unsym-

metrical vectors. This Harker section P(xyp) at p=0 is a great simplifica-

tion of the Patterson function which materially aids in its interpretation. 

The general form of the full three-dimensional Patterson synthesis is 

Expanding by means of the identity 

(38) 

(39) 

(40) 

The terms in brackets are simple numerical summations and can be 

or 



(42) 

(43) 

(44) 

For sodium hyponitrite, P equals 1/2 due to the two-fold screw axes. In 

this case, 

represented by coefficients 

With this simplification we have 

The P(xy 1/2) section was computed by means of the program described 

in Appendix I, and is shown in Plate IV. 

It is likely that much non-Harker background was present in the Harker 

section due to chance foldings between non-symmetry related atoms that 

differed by 1/2 in their z-coordinates. In spite of this possibility the 

Harker section should have contained an image of the electron density function. 

A comparison was made between the Patterson projection (Plate II) and 

the Harker section (Plate IV). Many similarities between the two functions 

exist and certain distributions of peaks suggest foldings by chemically rea-

sonable atom groupings. At this stage in the work, many trial structures 

were inferred from peaks in the Harker section. A calculation was made for 

each trial structure to see how it would scatter X-rays. The calculated 



EXPLANATION OF PLATE IV 

This plate shows the (x ,y ,1 /2) Harker section of sodium hyponitrite. 
Contour intervals are arbitrary but equal. Lowest contour levels have 
been omitted for clarity. 
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scattering was compared with the observed scattering from the crystal. In 

this way a measure of fit was obtained. Reasonably good agreements were 

obtained for several trial structures and the most promising was singled out 

for further investigation. 

Trial Structure and Refinement Processes. The chosen (2-dimensional) 

trial structure scattered X-rays in good agreement with the observed scatter-

ing and at the same time agreed closely with the postulated bond distances 

for sodium hyponitrite given in Table I. The hkO structure factors for the 

proposed structure were calculated using the computer program described in 

Appendix II. The expression for the structure factor is that given by Eq. (7): 

(4 6) 

where fn (hkl) is the atomic scattering factor for the nth atom; xn, yn , zn , are the coordinates of the nth atom, and N is the number of atoms in the unit cell . The atomic scattering factors are those based on Hartree-Fock self-consistent field calculations [see Norman and Lonsdale (1952)], and are shown as functions of (sin in Plate V. 

The criterion used to determine how closely a trial structure matched 

the observed scattering was based on the definition of a residual R given by 



EXPIANATION OF PLATE V 

This plate shows the atomic scattering factor curves for the elements 
sodium, oxygen and nitrogen as functions of sin O/. 



PLATE V 



where the Fo are the observed structure factors, and the Fc. are the calcu-

lated structure factors (see Appendix II). In general, the lower the value of 

R, the better was the trial solution. The R value calculated for the proposed 

solution was R = . 4 9 . Buerger (1960) states that centrosymmetric models 

with an R value less than 0.5 are worth attempting to refine. 

Refinement for the trial structure was carried out in a number of ways. 

Computer programs were written by R. D. Dragsdorf and G.P. Reese of the 

Kansas State University Physics Department based on least-square methods, 

steepest descents, and differential synthesis. The mathematics of conver-

gence of a crystal structure model is beyond the scope of this thesis. [See, 

for example, 3uerger (I960)]. These programs greatly speeded up the many 

calculations necessary for the convergence process and made possible the 

ultimate refinement of the structure. 

At many steps during the refinement, the validity of the structure was 

tested by the structure factor program (Appendix II). The output of this 

program consisted of a list of observed and calculated structure factors for 

hkO reflections. (These are the reflections which define the x -y projection 

of the crystal). If for a particular hkO, agreed closely with |Fo|, the 

algebraic sign of Fo was transferred t o | F o | . In this way the observed 

structure factors supplied magnitudes, while the calculated structure factors 

furnished the missing algebraic signs. The validity of this process lies in 

the assumption that the trial structure is "close" to the actual structure. 

If this is the case, small changes in the atom locations of the trial structure 



produce changes in the magnitudes of the Fc's but unless the Fc 's are small, 

their signs will remain unaltered. 

From Eq. (9), it is seen that the electron density function is express-

ible as a Fourier series. In order to synthesize an approximation to the 

actual electron density function, it is not necessary to include all of the 

Fourier coefficients Fhkl. Consequently, if one includes only those Fhkl 

for which Fo and Fc agree closely, and these happen to be among the larger 

Fo's, a trial electron density map can be constructed which should yield an 

approximate "picture" of the molecule. 

During the refinement process several trial electron density maps were 

calculated in this manner using the program described in Appendix I. As the 

value of R became lower, the outline of the sodium hyponitrite molecule 

became clearer. These trial maps are shown in Plate VI. 

Karl-Fischer Titration Study. It became apparent during the refinement 

process that several of the higher peaks in the trial electron density maps 

could be attributed to the waters of hydration. It became necessary to know 

from a chemical viewpoint, just how many waters of hydration per molecule 

to expect in the crystal. Work of this nature was carried out by Stucky, 

Lambert, and Dragsdorf (19 65) of Kansas State University Departments of 

Chemistry and Physics. This work was closely related to the X-ray inves-

tigation of the crystal and is presented here in summary form as it relates to 

the trial electron density maps. 



EXPLANATION OF PLATE VI 

Trial electron density maps for sodium hyponitrite. 

Fig. 1. R = .49 

Fig. 2. R = .42 
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O 1/2b Fig. 1 
a 

a 

Fig. 2 



Karl-Fischer titrations for water content were performed using Karl-

Fischer reagent standardized against Fisher ACS reagent Na2C4H4O6 - 2H20. 

The titrations were performed on samples taken fresh from a constant humidity 

dessicator. The samples were stored in a nitrogen atmosphere to prevent 

contamination by CO2 present in the atmosphere. 

The results obtained indicated that no hydrates greater than the 5 -

hydrate exist in a well-defined form and that 3 or 3 1/2 waters of hydration 

per molecule was quite likely. 

In accordance with these findings, three of the larger peaks in the trial 

electron density maps were assigned to waters of hydration. Upon including 

these coordinates in the structure factor calculations, a reduction of the value 

of R was apparent and a trial electron density map was made (Plate VII, Fig. 

1). At this point an attempt was made to locate a water molecule on an 

inversion center of the crystal to be shared by two sodium hyponitrite mole-

cules. This attempt was not successful. Plate VII, Fig. 2 shows the current 

map with R = .3179. 

RESULTS AND CONCLUSION 

Molecular Configuration and Atom Locations 

Plates VI and VII indicated a highly symmetric trans-structure with 

three waters of hydration for the sodium hyponitrite molecule. The peak 

heights were acceptable although not quite the same for equivalent atom types. 



EXPLANATION OF PLATE VII 

Trial electron density maps for sodium hyponitrite. 

Fig. 1. R = .34 

Fig. 2. R = .3179 



PLATE VII 

O Fig. 1 1/2 b Fig. 1 
a 

a 

C Fig. 2 1/2b 



The bond d i s t a n c e s from the tr ial e lec t ron dens i ty project ion (Plate VII, Fig. 
2) were a s fol lows: 

N-N = 1.32 A 
N-O = 1.44 A 

N a - 0 = 1.84 A. 

These va lues were compared with the pos tu la ted bond lengths in Table I . The 
N-N and N-O lengths were a c c e p t a b l e . The Na-O length was short and 
indica ted that the Na atoms were in a d i f fe rent z - p l a n e than the r e s t of the 

molecu le . For a bond length of 2 . 3 A, the Na atoms would have to be 1.17 A 
above or below the oxygen a toms . 

A carefu l inspec t ion of the sequence of t r ia l e lec t ron dens i ty maps s t a r t -
ing with Plate VI, Fig. 1 and ending with Plate VII, Fig. 2 revea led that the 
symmetry of the molecule i tself became sl ight ly dis tor ted as R went from 
R = .49 to R = .3179 . While th i s asymmetry in no way vio la ted the math-
emat ica l symmetry of the space group, i t was unl ikely that the molecule 
would ac tua l ly suffer th i s d i s tor t ion . Also, at th i s s tage in the ref inement proc-
e s s , small d i sp lacements of the atoms did not yield a s igni f icant ly lower R 
va lue . These observa t ions pointed out the l ikelihood tha t one or more water 
molecules were incorrect ly l oca t ed , or that perhaps a water molecule that 
should be present had been l e f t out en t i re ly . I t was l ikely that during the 
convergence p r o c e s s , al l of the atom loca t ions were "s t ra ined" s l ight ly out 
of their true pos i t ions in trying to compensate for a miss ing or incorrect ly 
p laced water molecu le . 



Attempts were made to find other loca t ions for water molecu les and 
both the Pat terson project ion and the Harker sec t ion were checked for i n c o n -
s i s t e n c i e s . 

Because the waters of hydration were extremely loose ly bound in sodium 
hyponi t r i te , they were l ikely to have large thermal vibrat ion pa ramete r s . This 
mani fes ted i tself by a broadening and lowering of the water molecule p e a k s . 
There was some conjec ture that at l e a s t some of the water molecules were 
bound in the l a t t i ce in a random fa sh ion , or f ree to move in the l a t t i c e . This 
would introduce a random component in the sca t te red X-rays which could only 
be interpreted in terms of s t a t i s t i c a l a v e r a g e s . 

The f inal atom loca t ions ca lcu la ted from the work to date are a s fol lows: 

x y z 
Na1 .823 .068 
Na2 .057 .098 
O1 .651 .167 
O2 .245 .000 
N1 .542 .091 
N2 .357 .071 
W1 . 350 . 195 
W2 .248 .263 
W3 .090 .250 

plus centrosymmetr ical equiva lent l oca t i ons . Calcula t ions for the z - c o o r d i -
na te s have not been carried out at th i s time because it was thought bes t to 
reso lve the water molecule d i f f icu l ty before making the more e lebora te t h ree -
dimensional c a l c u l a t i o n s . 



Three-Dimensional Representat ion 

In order to v i sua l i ze atom groupings and t r ia l s t ructures during the work, 
a un iversa l c rys ta l model was des igned and const ructed by G . P . Reese , M. 
F. Roth and the author . (See Pla tes VIII and IX). This model was unique 
and offered severa l advantages over other modelling schemes that have been 
sugges ted in the p a s t . Atoms were represented by paint ing cork b a l l s . These 
ba l l s were mounted on ver t ica l g l a s s rods between horizontal shee t s of p l ex i -
g l a s s . The rods were equipped with spr ing- loaded rubber f ee t so that the cork 
ba l l s could be s ta t ioned anywhere within the volume def ined by the model . 
Bonds between the "atoms" were provided by spr ing- loaded t e lescop ing b rass 
t u b e s . Plate VIII, F igs . 1 and 2 show the proposed crys ta l structure viewed 
from the 100 project ion a x i s , and the 010 project ion a x i s . Plate IX, Figs . 
1 and 2 show the proposed crys ta l s t ructure viewed from the 001 project ion 
a x i s , and the 110 project ion a x i s . Plate IX, Fig. 1 i s to be compared with 
Pla tes VI and VII. 

Observed and Calculated Scattering 

A comparison between observed and ca lcu la ted sca t ter ing (structure 
factors) a s func t ions of (sin ) / is shown in Plate X. There was fair ly 
good agreement , e spec i a l l y on the larger s tructure f a c t o r s . Overa l l , there was 
a tendency for the observed sca t te r ing to be s l ight ly higher than the c a l c u -
la ted sca t t e r ing . This could be due to a miss ing water molecule in the proposed 
s t ruc ture . 



EXPLANATION OF PLATE VIII 
This p la te shows the 3-d imensional tenta t ive structure of sodium hyponitri te 

on the universa l c rys ta l model . 
Fig. 1. 100 pro jec t ion . 
Fig. 2. 010 pro jec t ion . 



Fig. 1 Fig-2 
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EXPLANATION OF PLATE IX 
This p la te shows the 3-d imens iona l ten ta t ive s t ructure of 

sodium hyponitr i te on the universa l c rys ta l model . 
Fig. 1. 001 pro jec t ion . 
Fig. 2. 110 pro jec t ion . 
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Fig. 1 

Fig. 2 



EXPLANATION OF PLATE X 
This p la te i s a comparison between the observed x - r ay sca t te r ing and the 

ca lcu la ted x - r ay sca t te r ing from the proposed model , as func t ions of sin / . 
The magnitude of Fhkl i s plot ted for each rec iprocal l a t t i ce poin t . Calcula ted 
va lues are shown in b lack , while the observed va lues arc shown on the t r a n s -
parent over lay in red . 





The res idua l fac tor R def ined by Eq. (47) has been given addi t ional 
meaning by Luzzati [See Buerger (I960), p . 586]. If 

(48) 

i s the d i s t ance of a point hkl from the origin of rec iprocal s p a c e , and if 
| r|is the mean of the absolute errors in atomic pos i t ion , then the va lues 

of R are re la ted to the va lues of | r| | hkl| a s shown in Table III . hKl| 
Thus a to ta l ly incorrect s tructure would have R = .828 for the cent rosymmet-
r ical c a s e whereas R would have the value R = 0 .000 for a completely cor -
rec t s t ruc ture . The b e s t value for sodium hyponitr i te obtained to date i s 
R = .3179 . Further conc lus ions about the structure cannot be made until the 
ult imate ref inement in three dimensions i s carried ou t . 

EXTENSIONS 

Primary to extending the work i s tne need of addi t ional data for the 
Mil ler index . This can only be obtained by regrowing sodium hyponitri te 
c rys t a l s under the same careful ly controlled condi t ions and taking X-ray data 
by means of Weissenberg or s ingle crystal orienter methods . 

The search for poss ib le water loca t ions should be continued and r e f ine -
ment in three d imensions ay a general l e a s t squares approach should be under-
t aken . 

I so t ropic and anisot ropic temperature fac tors for each atom should be 
taken into cons idera t ion and a t tent ion should be paid to the poss ib i l i ty of 
f ree water molecules in the l a t t i c e . 





APPENDIX I — THE FOURIER-PATTERSON CALCULATION 

Introduction 

One of the most ted ious and t ime-consuming jobs of the c rys t a l log ra -
pher i s the Fourier ca lcu la t ion of Pa t t e r son- and e l ec t ron -dens i ty f unc t i ons . 
Until recent y e a r s , t he se ca lcu la t ions were limited to one and two d imens ions , 
and the ca lcu la t ion of a funct ion involving, s a y , 400 terms at a grid in terval 
of 1/30 of the unit ce l l required days of e f fo r t . 

The advent of the h igh - speed computing machine has made poss ib le the 
routine ca lcu la t ion of t he se func t ions in a matter of hours or minu tes . Complex 
organic c rys t a l s with 50 or more atoms per asymmetr ic unit are now being solved 
with the aid of the computer. 

Many programs have been wri t ten to carry out the Fourier-Pat terson c a l c u -
l a t i o n s . The following i s a represen ta t ive although incomplete l i s t ing of t he se 
programs: 

Ahmed, F. R. , (National Research Counci l , O t t awa , 
Canada . ) Written for IBM 650. 

S. Block and J. R. Holden, (U. S. Bureau of Standards 
and U. S. Naval Ordnance Laboratory), Written for IBM 704. 

L. Born and E. Hel lner , (Min. a. Petrogr. I n s t . , Kiel, 
Germany). Pat terson func t i ons , monoclinic or orthorhombic 
space groups . Written for IBM 704. 

J. H. Bryden, (U. S. Naval Ordnance Test ing Stat ion, 
Cal i fornia) . Written for IBM 704. 

R. D. Dragsdo and R. L. Hol l i s , here desc r ibed . 
R. E. J o n e s , R. P. Dodge, and D. H. Templeton, (Univ. 

of Cal i fornia) . Written for IBM 701. 



R. Shiono, D. H. Ha l l , and S. C. Chu, (Universi ty 
of Pi t tsburgh, Pi t tsburgh, P a . ) . Written for IBM 1620. 

W. G. Sly and D. P. Shoemaker, ( M . I . T . , Cambridge, 
M a s s . ) . W r i t t e n f o r I 3 M 704. 

R. G. Treuting and S. C. Abrahams, (Brookhaven Nat ional 
Laborator ies , Bell Telephone Laboratories) . Ca lcu la tes the 
e lec t ron dens i ty on any one general p l a n e . Written for IBM 704. 

D. Van Der Helm and A. L. Pa t te rson , (Dept. of Chemistry , 
Univ. of Oklahoma, Norman, O k l a . ) . Written for IBM 1620. 

A. Zalkin, (Univ. of Cal i f . Radiation L a b . , Livermore, 
C a l i f . ) . Written for IBM 704. 

As can be inferred from th is l i s t , most of the programs have been wri t ten 
for e i ther small computers (IBM 650, 1620) or very large computers (IBM 701, 
704). Many of the programs writ ten for the IBM 704 have been re -wr i t ten for 
the IBM 709, 7090, and 7094. Recently, many medium-sca le computers (such 
a s IBM 1410) have become avai lab le for u s e . With r e spec t to the IBM 1620 
and IBM 7090, t he se computers are intermediate in speed and storage c a p a c i t y . 
The p resen t program arose out of the need for a Four ier -Pat terson program s u i t -
able for the med ium-sca le computer . 

FOURIER i s a very f lex ib le program writ ten in FORTRAN II l anguage , and 
i s therefore readi ly adaptable to many mach ines . It may e a s i l y be upgraded 
to l a r g e - s c a l e mach ines , where advantage may be taken of inc reased core 
s torage and speed . The dec i s ion to write the program in FORTRAN II symbolic 
language was based upon two r e a s o n s . Firs t , i t was thought very des i rab le 
to have a program wnich could be run on a var ie ty of machines with few or no 
modif ica t ions and second , the programming time and de-bugging time was 



considerably shortened over what i t would have been had the program been 
writ ten in a more machine-or ien ted assembly l anguage . 

The requirement of speed has made e s s e n t i a l the Beevers-Lipson (1934) 
t ransformation into t r ip le -products of s ines and c o s i n e s , and fac tor iza t ion in to 
three o n e - d i m e n s i o n a l summat ions . It has b e e n es t imated by D. Van Der Helm 
and A. L. Pat terson that th is r e su l t s in twenty t imes fewer s teps than without 
the t ransformat ion. Also, i t was decided to use integer ar i thmetic throughout 
the program to el iminate t ime-consuming f loat ing addi t ions and mul t ip l i ca t ions . 
It was decided to use a f ixed word length of 8 decimal d ig i t s , and to incorpo-
rate automatic sca l ing wherever n e c e s s a r y . It h a s been found that this r e su l t s 
in a f inal accuracy of 3 or 4 s ign i f ican t f i gu res , which i s at l e a s t equal to the 
accuracy of the input d a t a . In addi t ion , a grid of 120 d iv i s ions in the x - , y - , 
and z -d i r ec t ions was accepted which res t r ic ted the required angles to a small 
number which could be stored in a t ab l e . Thus general s i n e - c o s i n e subroutines 
could be replaced by a f a s t table look-up opera t ion. 

The program as i t i s p resent ly writ ten i s now being run on an IBM 1410 
data p rocess ing system with 40 ,000 decimal digi ts of core s torage and seven 
magnet ic tape u n i t s . Four uni ts are used as working f i l e s , one unit for input , 
one unit for output , and one unit for the System Operat ing Fi le . This should 
be considered the minimum machine conf igura t ion. Operated in this minimum 
conf igurat ion, the program will accep t almost any s ize problem, limited only 
by the time involved in carrying out the ca lcu la t ion . Any number of X-ray 
re f lec t ions may be inc luded , sub jec t to the requirement that no Miller index 
e x c e e d s 99. There are no res t r ic t ion with regard to space groups . 



Because of core - s to rage l imi ta t ions , the program i s segmented in to f ive 
l inks which are chained together ser ia l ly to perform the ca lcu la t ion . In th i s 
way , only one link r e s ides in core at any t ime. Plate XI shows the l inkage 
sequence of the program. Individual l inks are represented by rectangular 
b o x e s . For the ca lcula t ion of a three-d imens ional funct ion or sec t ion l inks A, 
B, C, D, and E are required. These same f ive l inks may be used for c a l c u l a t -
ing a p ro jec t ion , but with some lo s s in e f f i c i ency . For maximum ef f i c iency in 
p ro jec t ion , link B i s r ep l aces by link Bproj, link C i s replaced by link CDproj, 
and link D is omit ted . No other changes are n e c e s s a r y . Work t apes required 
by the respec t ive l inks are shown at the le f t of each l ink . The input and o u t -
put for each link i s shown at the r ight . Mach ine -coded input t apes required 
for a given link are shown direct ly above tnat l ink . Thus program link D, for 
example , requires tape uni ts 4 and 7 for opera t ion . The f i l e s on units 4 and 7 
are prepared by link C or link CDproj. Anything t h a t i s i l lus t ra ted with a dashed 
line i s optional, and i s controlled ay the se t t ing of the s e n s e switch indica ted 
next to the dashed l i ne . Thus if switch 1 i s turned on in link A, punched ou t -
put will be produced in addit ion to the printed ooutput. If switch 1 i s o f f , no 
punched output will r e s u l t . In link B or Bproj, if s ense switch 2 i s turned on , 
the machine-coded tapes produced by link A will be read as input . If switch 
2 i s o f f , input will be from the cards punched by link A. These cards then 
take the p lace of tape uni ts 4 and 7, and s ince no intermediate f i l e s are wr i t -
ten on uni ts 4 and 7 during the execut ion of link B or Bproj, t hese uni t s are 

shown in dashed l i n e s . As another example , if switcn 2 i s turned on in link D, 



EXPLANATION OF PLATE XI 
This p la te shows the logical l inkage and information flow 

of the program. Deta i l s are expla ined in the t e x t . 
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the machine-coded f i le on unit 4 will be read . If switch 2 i s o f f , cards wil l 
take the p lace of the f i le on unit 4 . The f i l e on unit 7 i s required by link D 
and cannot be replaced by card input . Program l inks B, Bproj, C, and Cproj 
have provision for intermediate output u se fu l for observing the resu l t s of pa r -
t ial summation, and for d iagnos t ic pu rposes . Because the program i s divided 
into separa te l i nks , each link may be run independent ly . This i s advantageous 
for a long ca lcula t ion if a cont inuous time period is not ava i l ab l e . 

In addi t ion , the ranges of ca lcu la t ion in the x - , y - , and z -d i r ec t ions are 
independent ly va r i ab le . Thus for a large problem port ions of the unit cel l may 
be c a l c u l a t e d independent ly of other por t ions . Also, in th i s way, advantage 
may be taken of symmetry e l emen t s . 

The increments in the x - , y - , and z -d i r ec t ions can be inaependent ly va r -
ied and are res t r ic ted to 1 /120 , 1 /60 , 1 /40 , 1 /30 , or 1/15 of the unit cel l e d g e . 

It i s d i f f icu l t to es t imate the ac tua l running time of the program because 
of the large number of fac tors involved. As an example , the ca lcu la t ion of the 
th ree-d imens iona l Pat terson funct ion of sodium hyponitr i te on the IBM 1410 
computer involved 4 60 x - r a y re f lec t ions and required 13.2 minutes per sec t ion 
with 3600 points in each sec t ion . A "bru te - force" appl ica t ion of the un fac -
tored Pat terson equat ion using f loat ing point ar i thmetic and power se r ies sub -
rout ines for s ine and cos ine would have taken over a year of continuous run-
ning "Lime on the IBM 1410! 



Mathemat ica l Treatment 

The e lec t ron dens i ty may be writ ten 

(49) 

where X i s a sca le f ac to r . The Pat terson dens i ty may be obtained by s u b s t i -
tuting Fhkl F*hkl for Fhklin the e lec t ron dens i ty equa t ion . Separating into rea l 
and imaginary pa r t s , 

(50) 

where the imaginary unit i i s included in Here the sums are taken over 
pos i t ive and zero va lues of all three Mil ler ind ices h , k , and l, and over n e g a -
t ive va lues of at l e a s t two of them in the most general c a s e (PI). The s ine and 
cos ine terms can then be expanded a s tr iple products of s ines and c o s i n e s . 
When th is i s done , the summations can be fac tored so that the e lec t ron dens i ty 
may be wri t ten 

(Beevers and Lipson (1934)). Here the summations are taken only over zero 
and pos i t ive va lues of the Mil ler i n d i c e s . The coe f f i c i en t s are given by 

(51) 



(52) 

In the fac tored equa t ion , summations are performed over ind ices ranging 
from zero to the maximum va lues of h , k , and l, and no summations are taken 
over negat ive i n d i c e s . For th i s r e a s o n , the Okl, hO1, hkO, hOO, OkO, and 001 
re f l ec t ions must be given spec ia l cons ide ra t ion . Terms including t h e s e r e f l e c -
t ions are modified by the multiplier and are t rea ted as fol lows: 

Okl Reflect ions: 

(51) 



Utilizing the relations 

(53 con t . ) 

hO1 Reflect ions: 
Similarly for hOl r e f l e c t i o n s , we have 

hkO Reflect ions: 
For hkO r e f l e c t i o n s , 



If two ind ices are s imul taneously ze ro , we have the following addi t ional 
r e la t ionsh ips : 

(58) 

(59) 

OkO Reflect ions: 

001 Reflect ions: 

(60) 

Terms of the form 



must be summed over h , k , and 1 only o n c e . If th i s i s the c a s e , we see from 
the above cons idera t ions that the multiplier mhkl must be def ined as fol lows: hkl 

mhkl =1 
mOkl = mhO1 = mhkO = 1/2 (62) Okl nOl hkO 

mhOO = mOk0= m 0 0 1 = 1/4 

In program link A, the input data i s arranged in the following order on each 
80-column card: 

A(hkl), A(hkl), A(hkl), A(hkl), B(hkl), B(hkl), B(hkl), B(hkl). 

As far a s the input data are concerned , zero ind ices are to be t rea ted a s p o s i -
t ive i n d i c e s . Thus the real part of an Okl re f lec t ion would be regis te red with 
A(hkl) and no entry would be made for A(hkl). Similarly, the imaginary part 
of an hOl re f lec t ion would be regis tered with B(hkl) and no entry would be 
made for B(hkl). If th is procedure i s fo l lowed, the mult ipl icat ion by 
will be accompl ished impl ic i t ly . 

Operation of the Program 

If a th ree -d imens iona l funct ion or a sec t ion through a th ree-d imens iona l 
funct ion i s being computed, l inks A, B, C, D, and E are u s e d . For a pro-
j ec t i on , greater e f f i c i ency will resu l t by us ing l inks A, Bproj, CDproj, and 
E a s descr ibed in the in t roduct ion. The following are brief descr ip t ions of the 
operat ion of each program l ink . 



A(hkl), A(hkl), A(hkl), A(hkl), B(hkl), 3(hkl), B(hkl), B(hkl). 

Thus for example , a 481 re f lec t ion would appear on the same card as a 481 
re f l ec t ion . Since all of the terms n e c e s s a r y for the ca lcu la t ion of Eqs . 
(52) are together on each card , they are ca lcu la ted immediately af ter each 
card i s r ead . These ca lcu la ted coe f f i c i en t s are then modified according to 
whether h , k , or 1 i s zero , as d i s c u s s e d in the mathemat ical t rea tment . 
Three t e s t s of va l id i ty are then performed: 

(1) Cneck to see if any h , k , or 1 i s nega t ive . (Summations 
are performed over pos i t ive ind ices only) . 

(2) Check to see if all h , k , and l are ze ro . (This i s a 
safeguard aga ins t acc iden ta l inc lus ion of a blank card . 
F000 cannot be inc luded) . 

(3) Check to see if the coe f f i c i en t jus t ca lcu la ted i s too large 
for the operat ion of link B. (All coe f f i c i en t s must have 
magnitudes l e s s than 104 in order for the automatic sca l ing 
procedures in l inks B, C, and D to work properly. For 

Link A. Input to link A c o n s i s t s of the Mil ler ind ices h , k , and 1 of 
the ref lec t ing p lanes of the c rys t a l , and the coe f f i c i en t s or Fhkl or F2hkl d e -
pending, r e spec t i ve ly , on whether an e lec t ron dens i ty or Pat terson funct ion 
i s d e s i r e d . The order of these coe f f i c i en t s i s i r re leven t . A sca l ing fac tor 
var iable from 0 to 1 may be included and will multiply ail of the c o e f f i c i e n t s . 
Also, the direct ion of project ion or sec t ioning and the "handedness" of the 
coordinate system i s en te red . 

As descr ioed in the mathemat ical t rea tment , the input data i s arranged 
on each 80-column card as fol lows: 



grea tes t numerical accuracy , the sca l ing factor should 
be ad jus ted so that the la rges t coef f ic ien t i s equal to 
8899). 

The program terminates with an error message if any of these three checks are 
v io la t ed . After pas s ing these c h e c k s , h , k , and l are permuted to agree 
with the se l ec t ed direct ion of sect ioning or pro jec t ion , and then the permuted 
ind ices and the coe f f i c i en t s are writ ten on a work t a p e . (See comment cards 
in program l i s t ing) . This procedure cont inues unti l a l l of the data have been 
r ead . 

The work f i le containing the permuted ind ices and coe f f i c i en t s i s then 
rev/ound and a t h r ee - l eve l sort i s in i t ia ted using three adc i t ional tape un i t s . 
This sorting procedure r e su l t s in a f i le containing the ind ices and c o e f f i c i e n t s , 
ordered so that the third index var ies l e a s t rapidly , the second index var ies 
more rapid ly , and the f i rs t index var ies most rap id ly . This sort operation i s 
n e c e s s a r y for calculations us ing the factored Eq. (51) and i s an integral 
part of the entire program. The terms " f i r s t index" , "second index" , and 
"third index" refer to the f i r s t , s econd , and third permuted i n d i c e s . Thus if 
h, k, l, has been permuted to h , l, k; h i s the f i r s t index , l i s the second 
index , and k i s the third index . During the sort operat ion a 4th check i s 
performed: 

(4) Check to see if any Mil ler ind ices are dup l i ca t e . (This 
guards aga ins t the acc iden ta l inc lus ion of a card with a 
mispunched structure fac tor but with correct ly punched 
h , k , l; along with a correct ly punched card) . 



During and af te r the sort opera t ion , t ab l e s are prepared containing all 
of the unique va lues of the Mil ler i n d i c e s , and the number of unique va lues 
of each index . Along with the sorted c o e f f i c i e n t s , th i s information i s t r a n s -
mitted to link B for further u s e . 

Link B. To great ly s implify d i s c u s s i o n s of program l inks B, C, and 
D, it wil l be assumed that h , k , and l have been le f t unpermuted. That i s , 
arrangement XYZ, ITEM = 1, has been se lec ted (see link A list ing) and 
that a cont inuous run through a l l f ive l inks is des i red. 

With the coe f f i c i en t s properly prepared by link A ava i lab le on a work 
f i l e , s torage i s c leared by the System Monitor and link B i s p laced in core . 

Link B requ i res , in addit ion to the output of link A; the minimum and 
maximum va lues of x , y , and z (in 1/120ths of the unit cell) and the 
increments to be taken in the x - , y - , and z - d i r e c t i o n s . Link B a l so requires 
a deck of 150 cos ine v a l u e s , s tar t ing from the cos ine of 3 degrees and going 
3 degree increments to 450 d e g r e e s . Each cos ine value mus t be multiplied 
by 10 4. 

All of the coe f f i c i en t s a s s o c i a t e d with the f i r s t value of k and l are 
read and s to red . Then input i s suspended and summation i s carried out over 
all va lues of h a s soc i a t ed with the f i r s t value of k end l. When th is sum-
mation i s completed , input i s resumed unti l a l l va lues of the coef f ic ien t s 
a s s o c i a t e d with the second value of k and the f i r s t value of l arc read and 
s tored . Then another summation over h t akes p i e c e , and so on . Thus by 
summing over the h index link B reduces the e lec t ron dens i ty funct ion 



[Eq. (51)] to the form 

These summations are carried out for all va lues of x , and the r e su l t s of 
the summations are wri t ten on a work f i l e . The sums for ai l va lues of x are 
stored in core unti l they are wri t ten ou t . Before the summation i s performed 
for each value of x , a brief table of s ines and cos ines n e c e s s a r y for the 
summation i s ext rac ted from the main table of c o s i n e s . The program a lso 
keeps track of the l a rges t summation occurring and t ransmits t h i s information 
to link C for sca l ing pu rposes . 

Link C. Link C begins by determining a sca le fac tor based upon the 
magnitude of the l a rges t sum computed in link B. This sca le factor i s used 
on all data to keep the resu l t s of link C l e s s than or equal to 8 digi ts in 
l eng th . 

At th i s point , summation over h has been carried out for all va lues of 
x . The next t a sk i s to sum over k for a l l va lues of y . Because of the very 
large number of sums involved, i t i s no longer poss ib le to store the sums for 
all va lues of y in core at the same t ime. Thus sums must be formed for all 
y a s s o c i a t e d with each value of x , and the resu l t s wri t ten on a work t ape . 
However, in th is c a s e even the coe f f i c i en t s for each summation require more 
core s torage than i s ava i l ab le . If the program is res t r ic ted to calculat ing 



single terms of the summation for each value of x and writing them on tape 
for all va lues of y , the time involved in reading and writing becomes a dom-
inat ing fac tor which ser ious ly in te r fe res with the speed of the program. The 
most e f f i c i en t u t i l iza t ion of core s torage and magnet ic tape d ic t a t e s that a 
compromise be made between tne se severa l a l t e rna t ives . 

The procedure used in the program is to read in b locks of coe f f i c i en t s 
(1st d imension sums) and sum over b locks of k va lues within each range of 
cons tan t 1. The larger t h e s e b locks a r e , the l e s s reading and writing on 
magnet ic t a p e , and hence the f a s t e r the ca lcu la t ion . The s ize of the blocks 
i s controlled by a parameter (MMM) within the program and i s limited by the 
amount of core s torage ava i l ab l e . (See l i s t ing for l inks C and CDproj). 
Since link C usua l ly requires more running time than the other l i nks , carefu l 
ad jus tment of th i s parameter to take advantage of the core s torage avai lab le 
wil l r esu l t in a cons iderable saving of t ime. 

In the operation of link C, a block of coe f f i c i en t s i s read and par t ia l 
sums are formed. These par t ia l sums are wri t ten on a work f i l e . When the 
sums for al l va lues of x and y are wr i t ten , th i s tape i s rewound and the next 
block of coe f f i c i en t s (1st dimension sums) are r ead . These coe f f i c i en t s are 
then summed and combined with the par t ia l sums from the work f i l e . The new 
par t ia l sums are wri t ten on a d i f ferent work f i l e . When the third block of 
coe f f i c i en t s i s r ead , the iden t i t i es of t h e s e two f i l e s are switched and the 
procedure con t inues . When the value of 1 i s about to change (the l a s t 
block for the current 1 value has been read) the program dec la res that 



summation i s completed and the sums are writ ten on a f i le for use by link D. 
The process i s then repeated for the new value of 1 and ca lcu la t ion cont inues 
unti l a l l of the input data to link C is exhaus t ed . 

By summing over the k index , link C reduces the e lectron dens i ty 
funct ion [Eq. (63)] to the form 

The summations from link C form the coe f f i c i en t s for link D. 

Link D. The plan of act ion for link D is d i f ferent from that of link C 
and B. Ins tead of ranging over al l va lues of z for each term of the summa-
tion over 1 i s performed. In th i s way , sec t ions through the th ree-d imens iona l 
funct ion are ca lcu la ted independent ly of each o ther . 

Link D begins by determining the sca le factor to be u s e d . No scheme 
such a s that used in link C can be used for working with blocks of c o e f f i -
c ien ts , b ecause of the huge quanti ty of numbers that are now avai lab le for 
c o e f f i c i e n t s . The output f i le from link C is read and terms of the form 

D ^ ) c o s 2 i r l z + D ^ s i n 2 n l z 

are created and writ ten on a work f i l e . Tnen the tape i s rewound, the value 
of 1 i s changed , new terms are formed and added to the previous terms read 
from the work f i le and the r e su l t s are writ ten on a di f ferent work f i l e . For 
the next value of 1, the ident i t i es of the tape units are switched and the 
p rocess i s r epea t ed . When the l a s t 1 value is encountered , the f inal r e su l t s 



are written on a file to be read by link E. At this point, a sect ion through 

the three-dimensional function has been calculated. If only a single sect ion 

is desired, the program exits to link E. If more than one section is desired, 

the value of z i s changed and the whole process is repeated. The maximum 

and minimum values of the entire function are now available and are trans-

mitted to link E. 

Link E. Link E converts the output from link D into a usable form. 

Two output tapes are provided. One output consis ts of a numerical l isting 

of the functional values; the other output is in the form of contour maps . 

From the maximum and minimum values of the function, a sca le factor i s 

computed. This sca le factor divides the function into 45 contouring intervals . 

An alphameric symbol is se lected for each of the 45 levels and is printed out 

to form a continuous map that can be contoured directly. The available sym-

bols are those which follow: 

- . , + * = ) ($ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 

No provision is made for skew axes or adjustment of the length of the unit 

ce l l edges . 

Logical Diagrams and Fortran II Coding 

In this sect ion, each link is outlined by block diagrams using more or 

l e s s standard flow charting symbols. These symbols are defined as follows: 



Card image on the input tape unit. 

Print image on the output tape unit. 

Entry point for each program link. 

This symbol spec i f i cs the direction of normal 
program flow. 

This symbol speci f ies tne direction of optional 
program flow or conditional flow in program 
loops. 

Major connector. The number within this 
symbol is an actual statement number of the 
program. 

Off-page connector. This i s not an actual 
connector point of the program. 

Arithmetic calculation or defined procedure. 

Logical decision point. 

FORTRAN do loop statement. The range of the 
do loop is specified and terminates with a 
major connector. Return to the go loop s ta te -
ment is specified by a conditional flow symbol. 

Tape unit operation. A W appearing within the 
symbol denotes a write operation on tne unit 
specif ied. An R denotes a read operation. 



Rewind specified tape unit. 

Backspace specified tape unit one logical 
record. 

Externally defined subroutine. 

Stop. 

Plate XII shows the assembled program deck ready for operation. The 

form of the input cards for each link is specified in the FORTRAN listing by 

comment cards. It is intended that the actual coding be self-explanatory 

since comments are included l iberally. Many of these comments can be 

keyed directly to the flow diagrams. For detai ls of the FORTRAN coding see 

IBM manual J 2 4 - 1 4 S 8 - 1 IBM 1410/7010 Operating System (1410-PR-108) 

FORTRAN. 



EXPLANATION OF PLATE XII 

This plate shows the card deck sequence necessary for the operation 
of the program, using the IBM 1410-PR-108 monitor system. Card decks 
shown in parentheses are normally replaced by the corresponding tape file 
if a continuous run is desired. 



PLATE XII 



EXPLANATION OF PLATE XIII 

This plate (next three pages) shows the logical steps and 
flow of information within program link A. The pentagonal boxes 
carry the program flow from page to page. 



PLATE XIII 







EXPLANATION OF PLATE XIV 

This plate (next 9 pages) i s the FORTRAN II symbolic 
coding for program link A. 



PLATE XIV 90 

BCP F O U R I E R A 08 08 
C *********** 6 F O U R I E R A *********** 

C W R I T T E N M A R C H , 1964 R A L P H L . H O L L I S 
C M O D I F I E D JULY 1 8 , 1964 
C T H I S P R O G R A M A S S E M B L E S THE S T R U C T U R E F A C T O R S INTO THE F O U R I E R 
C C O E F F I C I E N T S FOR P R O G R A M F O U R I E R 8 . 
C SENSE S W I T C H 1 ON FOR BOTH C A R D AND TAPE O U T P U T . 
C S E N S E S W I T C H 1 OFF FCR TAPE O U T P U T TO F O U R I E R 8 . 
C NH = A C T U A L H M I L L E R INCEX OF C R Y S T A L . 
C NK = A C T U A L K M I L L E R INDEX GF C R Y S T A L . 
C NL = A C T U A L L M I L L E R INDEX OF C R Y S T A L . 
C N A 1 S T = A ( + H , + K , + L ) 
C N A 2 N D = A ( - H , + K , + L ) 
C N A 3 R D = A ( + H , - K , + L ) 
C N A 4 T H = A ( + H , + K , - L ) 
C N 8 1 S T = B ( + H , + K , + L ) 
C N 8 2 N D = B ( - H , + K , + L ) 
C N 8 3 R D = B ( + H , - K , + L ) 
C N B 4 T H = B t + H , + K , - L ) 
C P E R M U T A T I O N T A B L E FCR X Y Z . . . 
C L A B E L 2 IS M A P P E D A C R O S S THE P A G E , L A B E L 1 IS M A P P E D DOWN THE 
C P A G E , AND P R O J E C T I O N OR S E C T I O N I N G IS DONE IN THE L A B E L 3 
C D I R E C T I O N . T H E C O E F F I C I E N T S FOR F O U R I E R B ARE N U M B E R E D ONE 
C T H R U E I G H T AND WILL M U L T I P L Y T R I P L E P R O D U C T S OF S I N E S (S) AND 
C C O S I N E S (C) AS SHOWN IN THE T A B L E B E L O W . 
C 
C LLL 
C 1 AAA NA1 NA2 NA3 NA4 NB1 NB2 NB3 NB4 
C T BBB 
C E EEE 1 2 3 4 5 6 7 8 
C M LLL 
C 123 

C 1 XYZ CCC CSS SCS SSC SSS SCC CSC C C S 
C 2 YZX CCC SSC CSS SCS SSS CCS SCC CSC 
C 3 ZXY CCC SCS SSC C S S SSS CSC CCS SCC 
C 4 XZY CCC CSS SSC SCS SSS SCC CCS CSC 
C 5 YXZ CCC SCS CSS SSC SSS CSC SCC CCS 
C 6 ZYX CCC SSC SCS CSS SSS C C S CSC SCC 

C T H E O R D E R OF THE CARDS AT 0 3 J E C T TIME IS AS F O L L O W S . . . 
C (1) ID C A R D . 
C (2) S E N S E S W I T C H S E T T I N G S C A R D (IF O N E ) . 
C (3) O B J E C T DECK FOURIER A . 
C (4) A B L A N K C A R D . 
C (5) C A R D C O N T A I N I N G I T E M , L A B E L l , L A B E L 2 , AND L A B E L 3 , 
C PER FORMAT 5 2 . 
C (6) C A R D C O N T A I N I N G S C A L I N G F A C T O R TO BE USED ON D A T A , 
C PER F C R M A T 5 5 . 
C (7) D A T A DECK NH, N X , N L , N A 1 S T . . E T C . , PER F O R M A T 1 . 
C C O L U M N 8C M U S T BE LEFT B L A N K . 
C (8) A C A R D WITH 1 P U N C H E D IN C O L U M N 8 0 . 
C 



C AT THE C O M P L E T I O N OF T H I S P R O G R A M , T A P E S 4 AND 7 WILL C O N T A I N 
C D A T A FOR THE O P E R A T I O N OF F O U R I E R B . 
C 

D I M E N S I O N N N 1 ( 1 0 0 ) , N N 2 ( 1 0 0 ) , N N 3 ( 1 0 0 ) 
1 F 0 R M A T ( 3 I 3 , 8 ( 3 X , I 5 ) , 6 X , I 1 ) 
2 F 0 R M A T ( 1 X , 4 0 H H , K , OR L N E G A T I V E — C O R R E C T AND R E R U N ) 
6 F 0 R M A T ( 1 X , 4 1 H H , K, AND L ALL ZERO — C O R R E C T AND R E R U N ) 
8 F 0 R M A T ( 1 X , 4 6 H T W C CARDS HAVE SAME M I L L E R I N D I C E S — C O R R E C T , 
1 9 H A N D R E R U N ) 

50 F C R M A T ( 1 X , 4 3 H O U T P U T TOO LARGE FOR O P E R A T I O N OF F O U R I E R 8/ 
1 1 X . 4 7 H C H 0 0 S E A S M A L L E R SCALE F A C T O R AND R E R U N P R O G R A M ) 

51 F 0 R M A T ( I I , 3 X , 3 A 1 ) 
52 F O R M A T ( 1 X , 4 6 H T H E O U T P U T IS B E I N G A U T O M A T I C A L L Y O R I E N T E D TO , 

1 1 3 H C O N F I G U R A T I O N , 1 X , 3 A 1 , 1 H . / 
2 1 X , 4 1 H T H E C U T P U T CF F O U R I E R E WILL BE S U C H T H A T , I X , A l , I X , 
3 2 6 H I S M A P P E D A C R O S S THE P A G E , , I X , A l , I X , 
4 2 8 H I S M A P P E D DOWN THE P A G E , AND/ 
5 1 X , A 1 , 1 X , 3 1 H I S M A P P E D AS O V E R L A P P I N G P A G E S . / 
6 1 X , 5 3 H I F A P R O J E C T I O N IS C A L C U L A T E D , P R O J E C T I O N WILL BE IN , 
7 3 H T H E , 1 X , A 1 , 1 1 H - D I R E C T I O N . ) 

53 F O R M A T ( 2 H $ , 3 I 3 , 8 ( 3 X , I 5 ) 3 X , I 4 ) 
54 F 0 R M A T ( 1 H 0 , 1 4 H T O T A L C O U N T = ,I4) 
55 F 0 R M A T ( F 6 . 3 ) 
56 F 0 R M A T ( 2 H $ , 3 I 3 , 8 ( 3 X , I 5 ) , 3 X , I 4 ) 
5 7 F O R M A T ( 2 X , 3 1 3 , 8 ( 3 X , I 5 ) , 3 X , I 4 ) 
61 F O R M A T ( 1 H 0 , 3 X , I H H , 2 X , 1 H X , 2 X , 1 H L , 5 X , 3 H N A 1 , 5 X , 3 H N A 2 , 5 X , 3 H N A 3 , 

1 5 X , 3 H N A 4 , 5 X , 3 H N E 1 , 5 X , 3 H N B 2 , 5 X , 3 H N 3 3 , 5 X , 3 H N 3 4 , 2 X , 5 H C 0 U N T ) 
62 F O R M A T ( 1 H 0 , 3 X , 1 H X , 2 X , 1 H L , 2 X , 1 H H , 5 X , 3 H N A 1 , 5 X , 3 H N A 4 , 5 X , 3 H N A 2 , 

1 5 X , 3 H N A 3 , 5 X , 3 H N B l , 5 X , 3 H t \ 8 4 , 5 X , 3 H N B 2 , 5 X , 3 H N B 3 ; 2 X , 5 H C 0 U N T ) 
6 3 F O R M A T ( 1 H 0 , 3 X , 1 H L , 2 X , 1 H H , 2 X , 1 H X , 5 X , 3 H N A 1 , 5 X , 3 H N A 3 , 5 X , 3 H N A 4 , 

1 5 X , 3 H N A 2 , 5 X , 3 H N B 1 , 5 X , 3 H N 8 3 , 5 X , 3 H N B 4 , 5 X , 3 H N B 2 , 2 X , 5 H C 0 U N T ) 
64 F O R M A ( 1 H 0 , 3 X , 1 H H , 2 X , 1 H L , 2 X , 1 H X , 5 X , 3 H N A 1 , 5 X , 3 H N A 2 , 5 X , 3 H N A 4 , 

1 5 X , 3 H N A 3 , 5 X , 3 H N B 1 , 5 X , 3 H N B 2 , 5 X , 3 H N S 4 , 5 X , 3 H N B 3 , 2 X , 5 H C 0 U N T ) 
6 5 F O R M A T ( 1 H 0 , 3 X , 1 H X , 2 X , 1 H H , 2 X , 1 H L , 5 X , 3 H N A 1 , 5 X , 3 H N A 3 , 5 X , 3 H N A 2 , 

15X , 3 H N A 4 , 5 X , 3 H N B 1 , 5 X , 3 H N B 3 , 5 X , 3 H N 3 2 , 5 X , 3 H N 3 4 , 2 X , 5 H C 0 U N T ) 
66 F O R M A T ( 1 H O , 3 X , 1 H L , 2 X , 1 H X , 2 X , 1 H H , 5 X , 3 H N A 1 , 5 X , 3 H N A 4 , 5 X , 3 H N A 3 , 

1 5 X , 3 H N A 2 , 5 X , 3 H N B 1 , 5 X , 3 H N 8 4 , 5 X , 3 H N B 3 , 5 X , 3 H N B 2 , 2 X , 5 H C 0 U N T ) 
6 7 F 0 R M A T ( 2 H $ , 1 3 ) 
68 F O R M A T ( l X , I 3 ) 
69 F O R M A T ( 2 H & , 3 1 3 ) 
70 F 0 R M A T ( 1 X , 3 I 3 ) 

C I N I T I A L I Z A T I O N . 
R E W I N D 4 
R E W I N D 8 
N C 0 U N T = 0 
R E A D INPUT T A P E 5 , 5 1 , I T E M , L A B E L 1 , L A B E L 2 , L A B E L 3 
W R I T E O U T P U T T A P E 6 , 5 2 , L A B E L 1 , L A B E L 2 , L A B E L 3 , L A B E L 2 , L A B E L 1 , 

1 L A B E L 3 , L A B E L 3 
R E A D INPUT T A P E 5 , 5 5 , S C A L E 
M A X 1 1 = 0 
M A X 2 2 = 0 
M A X 3 3 = 0 

C I N I T I A L I Z A T I O N C C M P L E T E . 



40 READ INPUT T A P E 5 , 1 , N H , N K , N L , N A 1 S T , N A 2 N D , N A 3 R D , N A 4 T H , N B 1 S T , 
1 N B 2 N D , N B 3 R D , N B 4 T H , M 

C IF M IS NOT Z E R O , W R I T E H E A D I N G S A N D S T A R T S O R T O P E R A T I O N . 
IF (M) 5 , 7 , 5 

7 N C 0 U N T = N C O U N T + 1 
C B E G I N S C A L I N G OF D A T A . 

N A 1 S T = S C A L E * F L O A T F ( N A 1 S T ) 
N A 2 N D = S C A L E ^ F L 0 A T F ( N A 2 N D ) 
N A 3 R D = S C A L E * F L 0 A T F ( N A 3 R D ) 
N A 4 T H = S C A L E * F L 0 A T F ( N A 4 T H ) 
N B 1 S T = S C A L E * F L O A T F ( N B 1 S T ) 
N B 2 N D = S C A L E * F L O A T F ( N B 2 N D ) 
N B 3 R D = S C A L E * F L O A T F ( N B 3 R D ) 
N B 4 T H = S C A L E * F L 0 A T F ( N B 4 T H ) 

C S C A L I N G C O M P L E T E . 
C C A L C U L A T E C O E F F I C I E N T S FOR F O U R I E R B 

N A 1 = + N A 1 S T + N A 2 N D + N A 3 R D + N A 4 T H 
N A 2 = - N A 1 S T - N A 2 N D + N A 3 R D + N A 4 T H 
N A 3 = - N A 1 S T + N A 2 N D - N A 3 R D + N A 4 T H 
N A 4 = - N A 1 S T + N A 2 N D + N A 3 R D - N A 4 T H 
N B 1 = - N B 1 S T + N B 2 N D + N B 3 R D + N B 4 T H 
N 3 2 = + N B 1 S T - N B 2 N D + N B 3 R D + N B 4 T H 
N B 3 = + N B 1 S T + N B 2 N D - N 8 3 R D + N B 4 7 H 
N 8 4 = + N B 1 S T + N B 2 N D + N B 3 R D - N B 4 T H 

C M O D I F Y F O U R I E R C O E F F I C I E N T S A C C O R D I N G TO W H E T H E R H , K , OR L 
C A R E Z E R O . 

I F ( N H ) 7 2 , 7 3 , 7 2 
73 N A 3 = 0 

N A 4 = 0 
N B 1 = 0 
N B 2 = 0 

72 I F ( N K ) 7 4 , 7 5 , 7 4 
75 N A 2 = 0 

N A 4 = 0 
N B 1 = 0 
N B 3 = 0 

74 I F ( N L ) 7 6 , 7 7 , 7 6 
77 N A 2 = 0 

N A 3 = 0 
N 3 1 = 0 
N 3 4 = 0 

C C O E F F I C I E N T S ARE NOW C A L C U L A T E D . 
C C H E C K TO SEE IF H , K , AND L ARE ALL Z E R O . 

76 IF:(NH+NK+NL)12,4,12 
4 T Y P E 6 

W R I T E O U T P U T T A P E 6 , 6 
S T O P 0 0 0 0 1 

C C H E C K TO SEE IF ANY H , K , OR L IS N E G A T I V E . 
12 I F ( N H ) 3 0 0 , 3 0 1 , 3 O 1 

301 I F ( N K ) 3 0 0 , 3 0 2 , 3 O 2 
302 I F ( N L ) 3 0 0 , 3 0 3 , 3 O 3 
300 T Y P E 2 

W R I T E O U T P U T T A P E 6 , 2 



S T O P 0 0 0 0 2 
C C H E C K TO SEE IF ANY C O E F F I C I E N T IS TOO L A R G E FOR THE 
C O P E R A T I O N OF F O U R I E R 3 . 

303 I F ( N A 1 - 9 9 9 9 ) 1 4 , 1 4 , 1 3 
14 I F ( N A 2 - 9 9 9 9 ) 1 5 , 1 5 , 1 3 
15 I F ( N A 3 - 9 9 9 9 ) 1 6 , 1 6 , 1 3 
16 I F ( N A 4 - 9 9 9 9 ) 1 7 , 1 7 , 1 3 
17 I F ( N B 1 - 9 9 9 9 ) 1 8 , 1 8 , 1 3 
18 I F ( N B 2 - 9 9 9 9 ) 1 9 , 1 9 , 1 3 
19 I F ( N B 3 - 9 9 9 9 ) 2 0 , 2 0 , 1 3 
20 I F ( N B 4 - 9 9 9 9 ) 2 1 , 2 1 , 1 3 
13 T Y P E 50 

W R I T E O U T P U T T A P E 6 , 5 0 
S T O P 0 0 0 0 3 

C 
C S E L E C T C O R R E C T A R R A N G E M E N T FOR C O E F F I C I E N T S A C C O R D I N G TO THE 
C V A L U E OF I T E M , AND W R I T E THEM ON A WORK T A P E . ITEM C O N T R O L S 
C T H E D I R E C T I O N OF P R O J E C T I O N OR S E C T I O N I N G , AND THE 
C H A N D E D N E S S OF THE C C O R D I N A T E S Y S T E M . (SEE P E R M U T A T I O N T A 8 L E 
C FOR X Y Z ) . IN EACH C A S E , THE M A X I M U M V A L U E OF H , K , A N D L 
C IS D E T E R M I N E D , ANO C O N T R O L IS R E T U R N E D TO S T A T E M E N T 4 0 . 
C A N O N - Z E R O M W I L L SEND C O N T R O L TO S T A T E M E N T 5 . 
C 

21 GO T 0 ( 1 0 1 , 102, 1 0 3 , 104, 1 0 5 , 1 0 6 ) , ITEM 
101 W R I T E TAPE 4 , N H , N K , N L , N A 1 , N A 2 , N A 3 , N A 4 , N B 1 , N B 2 , N B 3 , N B 4 

M A X l l = X M A X O F ( N H , M A X l l ) 
M A X 2 2 = X M A X 0 F ( N K , A X 2 2 ) 
M A X 3 3 = X M A X 0 F ( N L , M A X 3 3 ) 
GO TO 40 

102 W R I T E TAPE 4 , N K , N L , N H , N A 1 , N A 4 , N A 2 , N A 3 , N B 1 , N 8 4 , N 3 2 , N B 3 
M A X 1 1 = X M A X 0 F ( N K , M A X 1 1 ) 
M A X 2 2 = X M A X 0 F ( N L , M A X 2 2 ) 
M A X 3 3 = X M A X 0 F ( N H , M A X 3 3 ) 
GO TO 4O 

103 W R I T E TAPE 4 , N L , N H , N K , N A 1 , N A 3 , N A 4 , N A 2 , N B 1 , N B 3 , N 3 4 , N B 2 
M A X 1 1 = X M A X 0 F ( N L , M A X 1 1 ) 
M A X 2 2 = X M A X 0 F ( N H , M A X 2 2 ) 
M A X 3 3 = X M A X 0 F ( N K , M A X 3 3 ) 
GO TO 40 

104 W R I T E TAPE 4 , N H , N L , N K , N A 1 , N A 2 , N A 4 , N A 3 , N B 1 , N B 2 , N B 4 , N B 3 
M A X 1 1 = X M A X 0 F ( N H , M A X 1 1 ) 
M A X 2 2 = X M A X 0 F ( N L , M A X 2 2 ) 
M A X 3 3 = X M A X 0 F ( N K , M A X 3 3 ) 
GO TO 40 

105 W R I T E TAPE 4 , N K , N H , N L , N A 1 , N A 3 , N A 2 , N A 4 , N B 1 , N B 3 , N B 2 , N B 4 
M A X 1 1 = X M A X 0 F ( N K , M A X 1 1 ) 
M A X 2 2 = X M A X 0 F ( N H , M A X 2 2 ) 
M A X 3 3 = X M A X 0 F ( N L , M A X 3 3 ) 
GO TO 40 

106 W R I T E TAPE 4 , N L , N K , N H , N A 1 , N A 4 , N A 3 , N A 2 , N B 1 , N B 4 , N B 3 , N B 2 
M A X 1 1 = X M A X 0 F ( N L , M A X 1 1 ) 
M A X 2 2 = X M A X 0 F ( N K , M A X 2 2 ) 
M A X 3 3 = X M A X 0 F ( N H , M A X 3 3 ) 



GC TO 40 
C 
C S E L E C T A H E A D I N G AND W R I T E I T . 

5 W R I T E O U T P U T T A P E 6 , 5 4 , N C O U N T 
GO T 0 ( 5 0 1 , 5 0 2 , 5 0 3 , 5 0 4 , 5 0 5 , 5 0 6 ) , I T E M 

501 W R I T E O U T P U T T A P E 6 , 6 1 
GO TO 750 

502 WRITE O U T P U T T A P E 6 , 6 2 
GC TC 750 

503 W R I T E O U T P U T T A P E 6 , 6 3 
GG TO 750 

504 W R I T E O U T P U T T A P E 6 , 6 4 
GO TO 750 

505 W R I T E O U T P U T T A P E 6 , 6 5 
GO TO 750 

506 W R I T E O U T P U T T A P E 6 , 6 6 
750 I C O U N T = 0 

C 

C * S T A R T SORT O P E R A T I O N * 

C 

C T H E M A X I M U M V A L U E S OF H , K , AND L FOR ALL THE DATA HAVE NOW 
C BEEN D E T E R M I N E D . U N I T Y IS A D D E D T0 T H E S E V A L U E S . 

M A X X 1 1 = M A X 1 1 + 1 
M A X X 2 2 = MAX22+1 
M A X X 3 3 = M A X 3 3 + 1 

C S E T C E R T A I N S T O R A C E L O C A T I O N S TO Z E R O IN P R E P A R A T I O N FOR 
C S U M M I N G AND W O R K I N G WITH P A R T I A L L Y F I L L E D A R R A Y S . 

IXX=0 
IYY=0 
IZZ=O 
I T W I N 1 = 0 
I T W I N 2 = 0 
I T W I N 3 = 0 
DC 700 I X = 1 , M A X X 1 1 

7 0 0 N N 1 ( I X ) = 0 
DO 701 I Y = 1 , M A X X 2 2 

7 0 1 N N 2 ( I Y ) = 0 
DO 702 I Z = 1 , M A X X 3 3 

702 N N 3 ( I Z ) = 0 
C G E T THREE WCRK TAPES R E A D Y AND R E W I N D TAPE 4 W H I C H C O N T A I N S 
C THE C O E F F I C I E N T S FOR F O U R I E R B. 

R E W I N D 3 
R E W I N D 7 
R E W I N D 3 
R E W I N D 4 

C 
LL = C 
DO 160 N N N = 1 , M A X X 3 3 
M C O U N T = 0 

C PICK CFF V A L U E S CF THE THIRD M I L L E R INDEX T H A T ARE EQUAL TO 
C LL AND W R I T E T H E M ON WORK TAPE 8 . M C C U N T WILL BE THE N U M B E R 



C Of W R I T E - C U T S . 
200 D0 151 N = 1 , N C 0 U N T 

R E A D TAPE 4 , N 1 , N 2 , N 3 , M 1 , M 2 , M 3 , M 4 , M 5 , M 6 , M 7 , M 8 
I F ( N 3 - L L ) 1 5 1 , 1 5 0 , 1 5 1 

150 W R I T E TAPE 8 , N 1 , N 2 , N 3 , M 1 , M 2 , M 3 , M 4 , M 5 , M 6 , M 7 , M 8 
M C O U N T = M C O U N T + 1 

151 C O N T I N U E 
C P I C K OFF C O M P L E T E D FOR A P A R T I C U L A R V A L U E Of L L . 

R E W I N D 4 
R E M I N D 8 

C I N C R E M E N T LL IN P R E P A R A T I O N fOR N E X T G O - A R O U N D . 
L L = L L + l 

C IF ANY V A L U E S WERE P I C K E D O F F , S T A R T W O R K I N G W I T H 2 N D M I L L E R 
C I N D E X . O T H E R W I S E , GO TO 160 AND S T A R T ON N E X T V A L U E Of THE 
C T H I R D I N D E X . 

I F ( M C O U N T ) 2 5 0 , 1 6 0 , 2 5 0 
C S T A T E M E N T S 250 TC 251 ARE A N A L O G O U S TO S T A T E M E N T S A B O V E 
C S T A R T I N G W I T H LL=C TO 2 5 0 . 

250 K K = 0 
DO 159 M M M = 1 , M A X X 2 2 
J C 0 U N T = 0 

201 DO 152 M = 1 , M C O U N T 
R E A D TAPE 8 , N 1 , N 2 , N 3 , M 1 , M 2 , M 3 , M 4 , M 5 , H 6 , M 7 , M 8 
I F ( N 2 - K K ) 1 5 2 , 1 5 4 , 1 5 2 

154 W R I T E TAPE N 1 , N 2 , N 3 , M 1 , M 2 , M 3 , M 4 , M 5 , M 6 , H 7 , M 8 
J C 0 U N T = J C 0 U N T + 1 

152 C O N T I N U E 
R E W I N D 3 
R E W I N D 8 
K K = K K + 1 
I F ( J C 0 U N T ) 2 5 1 , 1 5 9 , 2 5 1 

C S T A T E M E N T 251 THRU W R I T E TAPE 7 ARE A N A L O G O U S TO SOME Of THE 
C S T A T E M E N T S A B O V E . 

251 J J = 0 
DO 158 J J J = 1 , M A X X 1 1 
D0 155 J = 1 , J C 0 U N T 

R E A D T A P E 3 , N 1 , N 2 , N 3 , M 1 , M 2 , M 3 , M 4 , M 5 , M 6 , M 7 , M 8 
I F ( N 1 - J J ) 6 1 0 , 1 5 7 , 6 1 0 

157 I C O U N T = I C O U N T + 1 
W R I T E TAPE 7 , N 1 , N 2 , N 3 , M 1 , M 2 , M 3 , M 4 , M 5 , M 6 , M 7 , M 8 , I C O U N T 

C AT THIS TIME ANY A C C I D E N T A L D U P L I C A T I O N Of M I L L E R I N D I C E S IN 
C T H E INPUT DATA WILL H A V E BEEN SORTED SO AS TO BE SIDE BY 
C S I D E ON TAPE 7 . WE NOW C H E C K FOR T H I S P O S S I B L E O C C U R A N C E . 

I F ( N 1 - I T W I N 1 ) 9 8 0 , 9 8 1 , 9 8 0 
981 I F ( N 2 - I T W I N 2 ) 9 8 0 , 9 8 2 , 9 8 0 
982 I F ( N 3 - I T W I N 3 ) 9 8 0 , 9 8 3 , 9 8 0 
983 T Y P E 8 

W R I T E O U T P U T TAPE6,8 
S T O P 0 0 0 0 4 

9 8 0 I T W I N 1 = N 1 
I T W I N 2 = N 2 
I T W I N 3 = N 3 

C E N D Of C H E C K R O U T I N E . 



C IF CARD GUTPUT IS D E S I R E D , GO TO 4 0 0 . 

I F ( S E N S E SWITCH 1 ) 4 0 0 , 4 0 1 

4 0 0 WRITE GUTPUT T A P E 6 , 5 6 , N 1 , N 2 , N 3 , M 1 , M 2 , M 3 , M 4 , M 5 , M 6 , M 7 , M 8 , I C 0 U N T 

GO TO 156 

4 0 1 WRITE OUTPUT T A P E 6 , 5 7 , N 1 , N 2 , N 3 , M 1 , M 2 , M 3 , M 4 , M 5 , M 6 , M 7 , M 8 , I C 0 U N T 

C CHECK TO SEE IF ANY MILLER INDEX IS ZERO . 

C IF SO , TURK ON SENSE L I G H T . 

156 I F ( N l ) 8 0 0 , 8 0 1 , 8 0 0 

801 SENSE LIGHT 1 

8 0 0 I F ( N 2 ) 8 0 2 , 8 0 3 , 8 0 2 

803 SENSE LIGHT 2 

8 0 2 I F ( N 3 ) 8 0 4 , 8 0 5 , 8 0 4 

8 0 5 SENSE L IGHT 3 

C CHECKING COMPLETED . 

C STORE MILLER INDICES IN LOCATIONS ONE HIGHER THAN THE VALUE 

C OF THE INDICES THEMSELVES . 

8 04 N N 1 ( N 1 + 1 ) = N 1 

N N 2 ( N 2 + I ) = N 2 

N N 3 ( N 3 + l ) = N 3 

6 1 0 CONTINUE 

155 CONTINUE 

J J = J J + 1 

158 REWIND 3 

159 CONTINUE 

160 CCNTINUE 

C END OF NESTED DO-LOOPS . 

REWIND 3 

REWIND 4 

NSTPCD=-1 

NDUMMY=0 

C WRITE A DUMMY RECORD ON TAPE 7 . THIS RECORD IS THE LAST 

C RECCRD ON TAPE 7 AND IS USED BY FOURIER B TO SENSE THE END 

C OF THE F I L E . 

WRITE TAPE7 , KDUMMY,NSTPCD ,NS7PCD ,NDUMMY , NDUMMY ,NDUMMY , 

1NDUMMY,NDUMMY,NDUMMY,NDUMMY,NDUMMY,NDUMMY 

REWIND 7 

C TAPE 7 IS NOW READY FOR FOURIER B . 

C IF THERE WAS A FIRST MILLER INDEX EQUAL TO ZERO (SENSE L IGHT 

C 1 TURNED ON) WRITE IT ON TAPE 3 . 

I F ( S E N S E LIGHT 1 ) 8 5 1 , 8 5 2 

8 51 WRITE TAPE 3 , N N 1 ( 1 ) IXX=1 

C WRITE ALL REMAINING NON-ZERO F IRST I N D I C E S ON TAPE 3 . 

8 52 DC 850 I X = 2 , M A X X 1 1 

I F ( N N l t I X ) ) 6 5 6 , 8 5 0 , 8 5 6 

8 5 6 WRITE TAPE 3 , N N 1 ( I X ) 

I X X = I X X + 1 

8 5 0 CCNTINUE 

C IXX IS NOW THE TCTAL NUMBER OF DIFFERENT VALUES OF THE F I R S T 

C MILLER INDEX . 

C STATEMENTS THRU 860 ARE ANALOGOUS TO THE STATEMENTS FROM 

C I F ( S E N S E L IGHT 1 ) 8 5 1 , 8 5 2 TO STATEMENT 8 5 0 . 

I F ( S E N S E LIGHT 2 ) 8 6 1 , 8 6 2 



861 WRITE TAPE 3 , N N 2 ( 1 ) 

IYY = 1 

862 DO 860 I Y = 2 , M A X X 2 2 

I F ( N N 2 ( I Y ) ) 8 6 6 , 8 6 0 , 8 6 6 

866 WRITE TAPE 3 , N N 2 ( I Y ) 

I Y Y = I Y Y + 1 

8 6 0 CONTINUE 

C STATEMENTS THRU 870 ARE ANALOGOUS TO THE STATEMENTS FROM 

C I F ( S E N S E LIGHT 1 ) 8 5 1 , 8 5 2 TO STATEMENT 8 5 0 . 

I F ( S E N S E LIGHT 3 ) 8 7 1 , 8 7 2 

871 WRITE TAPE 3 , N N 3 ( 1 ) 

IZZ=1 

872 D0 870 I Z = 2 , M A X X 3 3 

I F ( N N 3 ( I Z ) ) 8 7 6 , 8 7 0 , 8 7 6 

876 WRITE T A P E 3 , N N 3 ( I Z ) 

I Z Z = I Z Z + 1 

8 7 0 CONTINUE 

REWIND 3 

WRITE TAPE 4 , I X X , I Y Y , I Z Z 

C IF CARD OUTPUT IS DESIRED GO TO 8 8 0 . 

I F ( S E N S E SWITCH 1 ) 8 8 0 , 8 8 1 

8 8 0 WRITE OUTPUT T A P E 6 , 6 9 , I X X , I Y Y , I Z Z 

GO TO 882 

881 WRITE OUTPUT T A P E 6 , 7 0 , I X X , I Y Y , I Z Z 

C IF CARD OUTPUT IS DESIRED EXECUTE 8 8 3 THRU 8 8 7 . OTHERWISE 

C EXECUTE 884 THRU 8 9 7 . 

8 8 2 I F ( S E N S E SWITCH 1 ) 8 8 3 , 8 8 4 

8 8 3 DC 885 I X = 1 , I X X 

READ TAPE 3 , N N 1 ( I X ) 

WRITE T A P E 4 , N N 1 ( I X ) 

885 WRITE OUTPUT T A P E 6 , 6 7 , N N ( I X ) 

DO 886 I Y - 1 , I Y Y 

READ T A P E 3 , N N 2 ( I Y ) 

WRITE T A P E 4 , N N 2 ( I Y ) 

8 8 6 WRITE OUTPUT T A P E 6 , 6 7 , N N 2 ( I Y ; 

D0 887 I Z = 1 , I Z Z 

REAC T A P E 3 , N N 3 ( I Z ) 

WRITE T A P E 4 , N N 3 ( I Z ) 

8 8 7 WRITE OUTPUT T A P E 6 , 6 7 , N N 3 ( I Z ) 

GO TO 9 0 0 

884 DO 895 I X = 1 , I X X 

READ T A P E 3 , N N 1 ( I X ) 

WRITE T A P E 4 , N N 1 ( I X ) 

8 9 5 WRITE OUTPUT T A P E 6 , 6 8 , N N 1 ( I X ) 

DO 896 I Y = 1 , I Y Y 

READ TAPE 3 , N N 2 ( I Y ) 

WRITE T A P E 4 , N N 2 ( I Y ) 

8 96 WRITE OUTPUT T A P E 6 , 6 8 , N N 2 ( I Y ) 

DO 897 I Z = 1 , I Z Z 

READ T A P E 3 , N N 3 ( I Z ) 

WRITE T A P E 4 , N N 3 ( I Z ) 

8 9 7 WRITE OUTPUT T A P E 6 , 6 8 , N N 3 ( I Z ) 

9 0 0 CONTINUE 



C * END SORT OPERATION * 

c 
REWIND 3 

REWIND 4 

C TAPE 7 NOW CONTAINS THE COEFFICIENTS AND TAPE 4 CONTAINS THE 

C TOTAL NUMBER OF DIFFERENT VALUES OF EACH INDEX , AND L I S T S OF 

C ALL OF THE D I S T I N C T I N D I C E S . 

CALL EXIT 

STOP 

END 



EXPLANATION OF PLATE XV 

This plate shows the logical steps and flow of information 

within program link B. The diagram is the same for link Bproj. 



PLATE XV 100 



EXPLANATION OF PLATE XVI 

This plate (next 10 pages) is the FORTRAN II symbolic 

coding for program links B and Bproj. 



PLATE XV! 102 

BOP FOURIER B 0 8 08 

C 

C WRITTEN 3 / 1 4 / 6 4 H O L L I S 

C MODIF IED JULY 2 0 , 1 964 TO ACCEPT OPTIONAL TAPE INPUT FROM 

C FOURIER A . 

C MODIFIED AUGUST 1 , 1 964 TO OPERATE WITHOUT NH TABLE . 

C 

C T H I S PROGRAM I S TO BE PRECEEDED BY FOURIER A AND FOLLOWED BY 

C FOURIER C . 

C MINX = MINIMUM VALUE OF X 

C MAXX = MAXIMUM VALUE OF X 

C INCX = INCREMENT GF X ( 1 2 0 T H S OF UNIT C E L L ) 

C MINY = MINIMUM VALUE OF Y 

C MAXY - MAXIMUM VALUE OF Y 

C INCY = INCREMENT OF Y ( 1 2 0 T H S OF UNIT C E L L ) 

C MINZ = MINIMUM VALUE OF Z 

C MAXZ = MAXIMUM VALUE OF Z 

C INCZ = INCREMENT OF Z ( 1 2 0 T H S OF UNIT C E L L ) 

C N O T E . . . M I N X , MAXX, MINY , E T C . BECOME M I N X + 1 , MAXX+1 , 

C M I N Y + 1 , E T C . , AFTER THE PROGRAM HAS BEGUN IN ORDER TO 

C SATISFY DO LOOP REQUIREMENTS . 

C MVALUE = A TABLE OF 150 C O S I N E S , COVERING 1 1 / 4 C I R C L E S . THIS 

C D I V I D E S THE C IRCLE INTO 120 PARTS , WITH ONE COSINE VALUE 

C EVERY 3 D E G R E E S . SINE VALUES ARE PICKED OUT OF THE TABLE 9 0 

C DEGREES AFTER EACH COSINE VALUE , OR 30 TABLE ENTRIES FORWARD. 

C FOURIER C O E F F I C I E N T S . . . 

C NA1 = + A ( + H , + K , + L ) + A ( - H , + K , + L ) + A ( + H , - K , + L ) + A ( + H , + K , - L ) 

C NA2 = - A ( + H , + K , + L ) - A ( - H , + K , + L ) + A ( + H , - K , + L ) + A ( + H , + K , - L ) 

C NA3 = - A ( + H , + K , + L ) + A ( - H , + K , + L ) - A ( + H , - K , + L ) + A ( + H , + K , - L ) 

C NA4 = - A ( + H , + K , + L ) + A ( - H , + K , + L ) + A ( + H , - K , + L ) - A ( + H , + K , - L ) 

C NB1 = - B ( + H , + K , + L ) + B ( - H , + K , + L ) + B ( + H , - K , + L ) + B ( + H , + K , - L ) 

C NB2 = + B ( + H , + K , + L ) - B ( - H , + K , + L ) + B ( + H , - K , + L ) + B ( + H , + K , - L ) 

C NB3 = + B ( + H , + K , + L ) + B ( - H , + K , + L ) - B ( + H , - K , + L ) + B ( + H , + K , - L ) 

C NB4 = + B ( + H , + K , + L ) + B ( - H , + K , + L ) + 8 ( + H , - K , + L ) - B ( + H , + K , - L ) 

C THE FOURIER C O E F F I C I E N T S ARE CALCULATED BY PROGRAM FOURIER A . 

C NUMH = THE NO . OF D IFFERENT VALUES OF THE 1ST MILLER I N D E X . 

C NUMK = THE N O . OF D IFFERENT VALUES OF THE 2ND MILLER I N D E X . 

C NUML = THE NO . OF D IFFERENT VALUES GF THE 3RD MILLER I N D E X . 

C MAXSUM = ABSOLUTE VALUE OF THE LARGEST TERM COMPUTED. 

C SENSE SWITCH 1 ON FOR PRINT OUT OF J S U M 1 , J S U M 2 , J S U M 3 , J S U M 4 , 

C OFF TO IGNORE PRINT O U T . 

C SENSE SWITCH 2 ON TO ACCEPT TAPE INPUT FROM FOURIER A . 

C OFF TO ACCEPT CARD I N P U T . 

C 

C THE ORDER OF THE CARDS AT OBJECT TIME IS AS F O L L O W S . . . 

C 

C (1) I D E N T I F I C A T I O N CARD 

C ( 2 ) SENSE SWITCH SETTINGS CARD ( I F O N E ) . 

C ( 3 ) OBJECT DECK FOURIER B . 

C ( 4 ) A BLANK CARO. 

C (5) CARO CONTAINING M I N X , M A X X , . . . I N C Z , PER FORMAT 15 

C ( 6 ) THE MVALUE TA8LE DECK ( 150 C A R D S ) , PER FORMAT 1 6 . 

C IF SENSE SWITCH 2 IS O N , OMIT (7) THRU ( 1 2 ) 



C INCLUDE ( 7 ) THRU ( 1 2 ) ONLY IP SENSE SWITCH 2 IS O F F . 

C ( 7 ) CARD CONTAINING NUMH, NUMK, NUML, PER FORMAT 1 7 . 

C ( 8 ) DECK OF ALL DIFFERENT VALUES OF F IRST MILLER INDEX 

C PER FORMAT 1 8 . (NUMH CARDS) 

C ( 9 ) DECK OF ALL DIFFERENT VALUES OF 2ND MILLER INDEX 

C PER FORMAT 1 8 . (NUMK CARDS) 

C ( 1 0 ) DECK OF ALL DIFFERENT VALUES OF THIRD MILLER INDEX 

C PER FORMAT 1 8 . (NUML CARDS) 

C (11) DECK OF MILLER INDICES AND FOURIER C O E F F I C I E N T S , 

C PER FORMAT 1 , CRDERED AS F O L L O W S . . . 

C ( A ) THE THIRD MILLER INDICES ( C O L S . 7-9) MUST 

C BE AN UNBROKEN ASCENDING SEQUENCE. 

C ( B ) THE SECOND MILLER INDICES ( C O L S . 4-6 ) MUST 

C BE AN ASCENDING SEQUENCE WITHIN EACH BLOCK 

C OF CONSTANT THIRD MILLER I N D I C E S . 

C ( C ) THE F I R S T MILLER I N D I C E S ( C O L S . 1-3) MUST 

C BE AN ASCENDING SEQUENCE W I T H I N EACH BLOCK 

C CF CONSTANT SECOND MILLER I N D I C E S . 

C ( 1 2 ) A CARD WITH -1 PUNCHED IN COLS 5 - 6 , AND -1 PUNCHED 

C IN COLS 8-9 . 

C AT THE COMPLETION OF TH IS PROGRAM, TAPE 3 WILL CONTAIN THE 

C F IRST D IMENSION SUMS AND TAPE 4 WILL CONTAIN DATA NECESSARY 

C FOR THE OPERATION OF FOURIER C . 

C 

D IMENSION J S U M 1 ( 1 2 1 ) , J S U M 2 ( 1 2 1 ) , J S U M 3 ( 1 2 1 ) , J S U M 4 ( 1 2 1 ) 

D IMENSION N H ( 1 0 0 ) , N K ( 2 0 ) , N L ( 2 0 ) 

D IMENSION N A 1 ( 1 0 0 ) , N A 2 ( 1 0 0 ) , N A 3 ( 1 0 0 ) , N A 4 ( 1 0 0 ) 

D IMENSION N B 1 ( 1 0 0 ) , N B 2 ( 1 0 0 ) , N 8 3 ( 1 0 0 ) , N B 4 ( 1 0 0 ) 

DIMENSION N C H ( l 0 O ) . N S H ( 1 O O ) 

D IMENSION M V A L U E ( 1 5 0 ) 

C * * * * * I M P O R T A N T * * * * * I M P O R T A N T * * * * * I M P O R T A N T * * * * * I M P O R T A N T * * * * 

C * MVALUE, N K , AND NL MUST BE D IMENSIONED EXACTLY AS THEY * 

C * ARE D IMENSIONED IN PROGRAM FOURIER C . * 

C * * * * * I M P O R T A N T * * * * * I M P O R T A N T * * * * * I M P O R T A N T * * * * * I M P O R T A N T * * * * 

1 F 0 R M A T ( 3 I 3 , 8 ( 3 X , I 5 ) , 2 X , I 5 ) 

13 F 0 R M A T ( 1 X , 3 I 3 , 8 ( 3 X , I 5 ) , 2 X , I 5 ) 

14 F 0 R M A T ( 3 X , 2 I 3 ) 

15 F 0 R M A T ( 9 ( I 3 , 3 X ) ) 

16 F O R M A T ( I 6 ) 

17 F 0 R M A T ( 3 I 3 ) 

18 F 0 R M A T ( I 3 ) 

19 F 0 R M A T ( 5 ( I 4 , 3 X ) ) 

2 0 F 0 R M A T ( 1 X , 1 4 H M I N I M U M X = , I 3 / 1 X , 1 4 H M A X I M U M X = , 1 3 / 

1 1 X , 1 4 H I N C R E M E N T X = , I 3 / 1 X , 1 4 H M I N I M U M Y = , 1 3 / 

2 1X . 14HMAXIMUP Y = , I 3 / 1 X , 1 4 H I N C R E M E N T Y = , 1 3 / 

3 1 X , 1 4 H M I N I M U M Z = , I 3 / 1 X , 1 4 H M A X I M U M Z = , 1 3 / 

4 1 X , 1 4 H I N C R E M E N T Z = , 1 3 ) 

21 F 0 R M A T ( 1 H 1 , 3 5 H 0 U A N T I T I E S USED IN TH IS C A L C U L A T I O N / / ) 

22 F 0 R M A T ( 1 H 0 , 1 9 H I N T E R M E D I A T E 0 U T P U T / 1 H 0 , 3 H M X , 3 X , 9 H J S U M 1 ( M X ) . 

1 3 X , 9 H J S U M 2 ( M X ) , 3 X , 9 H J S U M 3 ( M X ) , 3 X , 9 H J S U M 4 ( M X ) , 9 X , 3 H N K 1 ) 

2 3 F O R M A T ( I X , 1 3 , I 1 2 , I 1 2 , I 1 2 , I 1 2 , I 1 2 ) 

24 F O R M A T ( 1 H O , I 1 2 ) 

2 5 F 0 R M A T ( 1 X , 4 4 H D A T A CARDS CUT OF ORDER — CORRECT AND RERUN) 



REWIND 3 

REWIND 4 

REWIND 7 

MAXSUM=0 

C DEFINE RANGE TO BE COVERED, AND INCREMENTS 

READ INPUT T A P E 5 , 1 5 , M I N X , M A X X , I N C X , M I N Y , M A X Y , I N C Y , M I N Z , M A X Z , 

I INCZ 

C READ COSINE TABLE 

READ INPUT T A P E 5 , 1 6 , ( M V A L U E ( M ) , M = 1 , 1 5 0 ) 

C IF TAPE INPUT IS D E S I R E D , TABLES ARE READ FROM TAPE 4 . 

C O T H E R W I S E , INPUT IS FROM C A R D S . 

I F ( S E N S E SWITCH 2 ) 6 0 0 , 6 0 1 

6 0 0 READ TAPE 4 ,NUMH ,NUMK ,NUML 

D0 602 M1=1 ,NUMH 

6 0 2 READ TAPE 4 , N H ( M 1 ) 

DO 603 M2=1 .NUMK 

6 0 3 REAO TAPE 4 , N K ( M 2 ) 

D0 604 M3=1 ,NUML 

6 0 4 READ TAPE 4 , N H M 3 ) 

REWINO 4 

GO TO 605 

6 0 1 READ INPUT T A P E 5 , 1 7 , N U M H , N U M K , N U M L 

READ INPUT T A P E 5 , 1 8 , ( N H ( M 1 ) , M 1 = 1 , N U M H ) 

READ INPUT T A P E 5 , 1 8 , ( N K ( M 2 ) , M 2 = l , N U M K ) 

READ INPUT T A P E 5 , 1 8 , ( N L ( M 3 ) , M 3 = 1 , N U M L ) 

6 0 5 WRITE OUTPUT T A P E 6 , 2 1 

WRITE OUTPUT T A P E 6 , 2 0 , M I N X , M A X X , I N C X , M I N Y , M A X Y , I N C Y , M I N Z , 

1 M A X Z , I N C Z 

C ADD UNITY TO R A N G E S . 

MINX=MINX+1 

MAXX=MAXX+1 

MINY=MINY+1 

MAXY=MAXY+1 

MINZ=MINZ+1 

MAXZ=MAXZ+1 

NC0UNT=0 

C FOR TAPE INPUT GO TO 6 1 0 , CARD INPUT GO TO 6 1 1 . 

C STATEMENT 32 IS THE STARTING POINT OF THE CYCLE OVER K . 

32 I F ( S E N S E SWITCH 2 ) 6 1 0 , 6 1 1 

C-610-READ A RECORD TC DETERMINE N K 1 , N L 1 . 

6 1 0 READ TAPE 7 , N N N 1 , N K 1 , N L 1 , N N N 2 , N N N 3 , N N N 4 , N N N 5 , N N N 6 , N N N 7 , 

1 N N N 8 , N N N 9 , N N N 1 0 

BACKSPACE 7 

CO TO 6 1 2 

C-611-READ A CARD TO DETERMINE N K 1 , N L 1 . 

6 1 1 READ INPUT T A P E 5 , 1 4 , N K 1 , N L 1 

BACKSPACE 5 

C IF NL1 IS N E G A T I V E , TH IS IS THE LAST RECORD . 

6 1 2 I F ( N L 1 ) 3 3 , 3 5 , 3 5 

3 5 J=0 

C FOR TAPE INPUT GO TC 6 1 3 , CARD INPUT GO TO 6 1 4 . 

34 I F ( S E N S E SWITCH 2 ) 6 1 3 , 6 1 4 

6 1 3 READ T A P E 7 , M H , M K , M L , M A 1 , M A 2 , M A 3 , M A 4 , M B 1 , M B 2 , M B 3 , M B 4 , I C 0 U N T 



GO TO 6 1 5 

6 1 4 READ INPUT T A P E 5 , 1 , M H , M K , M L , M A 1 , M A 2 , M A 3 , M A 4 , M B 1 , M 8 2 , M 8 3 , M B 4 , 

1 ICCUNT 

C I f MK CHANCES VALUE , ALL OF THE C O E F F I C I E N T S FOR A G IVEN K 

C HAVE BEEN R E A D . 

6 1 5 I F ( M K - N K 1 ) 3 1 , 3 0 , 3 1 

C WRITE AN OUTPUT RECORD. 

3 0 WRITE OUTPUT T A P E 6 , 1 3 , M H , M K , M L , M A 1 , M A 2 , M A 3 , M A 4 , M B 1 , M B 2 , M B 3 , 

1 M 8 4 , I C 0 U N T 

C CHECK TO SEE IF CARDS ARE IN CORRECT ORDER . 

I F ( I C 0 U N T - ( N C 0 U N T + l ) ) 6 2 0 , 6 2 1 , 6 2 0 

6 2 0 TYPE 25 

WRITE OUTPUT T A P E 6 , 2 5 

STOP 0 0 0 0 5 

6 21 NC0UNT=IC0UNT 

C REDEFINE N K 1 . 

NK1=MK 

J = J + 1 

C ASSIGN STORAGE LOCATIONS TO THE C O E F F I C I E N T S . 

N H ( J ) = M H 

N A 1 ( J ) = M A 1 

N A 2 ( J ) = M A 2 

N A 3 ( J ) = M A 3 

N A 4 ( J ) = M A 4 

N B 1 ( J ) = M B 1 

N B 2 ( J ) = M B 2 

N B 3 ( J ) = M 8 3 

N B 4 ( J ) = M B 4 

GO TO 34 

31 JMAX=J 

C MK HAS CHANGED VALUE . BACKSPACE ONE RECORD TO PREPARE 

C FOR NEXT INPUT C Y C L E . 

I F ( S E N S E SWITCH 2 ) 7 0 0 , 7 0 1 

7 0 0 BACKSPACE 7 

GO TO 7 0 2 

7 0 1 BACKSPACE 5 

C IF INTERMEDIATE OUTPUT IS D E S I R E D , PRINT COLUMN H E A D I N G S . 

7 0 2 I F ( S E N S E SWITCH 1 ) 5 0 0 , 5 0 1 

5 0 0 WRITE OUTPUT T A P E 6 , 2 2 

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

C * BEGINNING OF DO LOOP OVER X . * 

C . 

5 01 D0 50 M X = M I N X , M A X X , I N C X 

NX=MX-1 

C CALCULATE ARGUMENTS AND LOOK UP C O S I N E S AND S I N E S NECESSARY 

C FOR THIS INPUT C Y C L E . 

DO 10 J = 1 , J M A X 

N A R G = N H ( J ) * N X 

N A R G 1 = N A R G / 1 2 0 

NARG2=NARG-120*NARG1 

I F ( N A R G 2 ) 3 0 0 , 3 0 1 , 3 0 0 

301 NARG2=120 

3 0 0 N C H ( J ) - M V A L U E ( N A R G 2 ) 



10 N S H ( J ) = M V A L U E ( N A R G 2 + 3 0 ) 

C TABLE LOOK UP COMPLETED . 

C SET STORAGE LOCATIONS TO ZERO IN PREPARATION FOR SUMMING. 

JSUMT1=0 

JSUMT2=0 

JSUMT3=0 

JSUMT4=0 

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

C * THE SUMMATION OVER H BEGINS HERE * 

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

D0 107 J = 1 , J M A X 

C REMOVE SUBSCRIPTS ON NCH AND NSH TO INCREASE S P E E D . 

N C = N C H ( J ) 

N S = N S H ( J ) 

J T 1 = ( N A I ( J ) * N C + N B 2 ( J ) * N S ) / 1 0 0 

J S U M T 1 = J S U M T 1 + J T 1 

J T 2 = ( N B 3 ( J ) * N C + N A 4 ( J ) * N S ) / 1 0 0 

J S U M T 2 = J S U M T 2 + J T 2 

J T 3 = ( N B 4 ( J ) * N C + N A 3 ( J ) * N S ) / 1 0 0 

J S U M T 3 = J S U M T 3 + J T 3 

J T 4 = ( N A 2 ( J ) * N C + N B 1 ( J ) * N S ) / 1 0 0 

107 J S U M T 4 = J S U M T 4 + J T 4 

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

C * THE SUMMATION OVER H BEGINS HERE * 

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

C THE ABSOLUTE VALUE OF THE LARGEST SUMMATION IS NOW 

C DETERMINED . 

C J S U M T 1 , . . . , J S U M T 4 , ARE STORED IN ARRAYS . 

N N = X A B S F ( J S U M T 1 ) 

I F ( M A X S U M - N N ) 6 0 , 6 1 , 6 1 

6 0 MAXSUM=NN 

61 J S U M 1 ( M X ) = J S U M T 1 

N N = X A B S F ( J S U M T 2 ) 

I F ( M A X S U M - N N ) 6 2 , 6 3 , 6 3 

6 2 MAXSUM=NN 

6 3 J S U M 2 ( M X ) = J S U M T 2 

N N = X A B S F ( J S U M T 3 ) 

I F ( M A X S U M - N N ) 6 4 , 6 5 , 6 5 

64 MAXSUM=NN 

6 5 J S U M 3 ( M X ) = J S U M T 3 

N N = X A B S F ( J S U M T 4 ) 

I F ( M A X S U M - N N ) 6 6 , 6 7 , 6 7 

66 MAXSUM=NN 

6 7 J S U M 4 ( M X ) = J S U M T 4 

C DETERMINATION OF MAXSUM ACCOMPLISHED . 

50 CONTINUE 

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * C * END OF DO LOOP OVER X . * 

C *************************************************** 

C F IRST INDEX SUMMATION HAS NOW BEEN COMPLETED FOR ALL VALUES 

C OF X, AND A PARTICULAR VALUE OF K . WRITE SUMS ON TAPE 3 . 

WRITE T A P E 3 , ( J S U M 1 ( M X ) , J S U M 2 ( M X ) , J S U M 3 ( M X ) , J S U M 4 ( M X ) , N K 1 , 

1 M X = M I N X , M A X X , I N C X ) 



C IF INTERMEDIATE OUTPUT IS D E S I R E D , PRINT SUMS. 

I F ( S E N S E SNITCH 1 ) 4 C , 3 2 

4 0 WRITE OUTPUT T A P E 6 , 2 3 , ( M X , J S U M 1 ( M X ) , J S U H 2 ( M X ) , J S U M 3 : M X ) , 

1 J S U M 4 ( M X ) , N K 1 , MX=MINX ,MAXX , INCX ) 

C GO TO 32 FOR DATA ASSOCIATED WITH THE NEXT VALUE OF K . 

GO TO 32 

C THE DUMMY RECGRD WRITTEN BY FOURIER A HAS SEEN READ . WRITE A 

C DUMMY RECORD ON TAPE 3 FOR FOURIER C . 

33 JSUMT1=0 

JSUMT2=0 

JSUMT3=0 

JSUMT4=0 

NK1=-1 

WRITE TAPE 3 , ( J S U M T 1 , J S U M T 2 , J S U M T 3 , J S U M T 4 , N K 1 , 

1 M X = M I N X , M A X X , I N C X ] 

REWIND 3 

REWIND 4 

REWIND 7 

C WRITE RANGES, COSINE TABLE, E T C . , ON TAPE 4 . 

WRITE TAPE 4 , M I N X , M A X X , I N C X , M I N Y , M A X Y , I N C Y , M I X Z , M A X Z , I N C Z , 

1 MVALUE ,NUMH,NUMK ,NUML ,NK ,NL ,MAXSUM 

REWIND 4 

WRITE OUTPUT T A P E 6 , 2 4 , M A X S U M 

CALL EXIT 

STOP 

END 



BOP FOUR B PR 0 8 08 

C * * * * * * * * * * FOURIER B PROJECTION L INK * * * * * * * * * * 

C WRITTEN 2 / 1 8 / 6 5 H O L L I S 

C FOR COMMENTS ON VARIABLES AND THE ORDER OF THE CARDS AT 

C OBJECT T I M E , SEE PROGRAM FOURIER B . 

D IMENSION J S U M 1 ( 1 2 1 ) , J S U M 2 ( 1 2 1 ) 

D IMENSION N H ( 1 0 O ) , N K ( 2 0 ) , N L ( 2 0 ) 

D IMENSIGN N A l ( 1 0 O ) , N A 2 ( 1 0 0 ) , N A 3 ( 1 0 0 ) , N A 4 ( I 0 0 ) 

D IMENSION N B l ( l 0 0 ) , N B 2 ( l 0 0 ) , N 8 3 ( 1 0 0 ) , N B 4 ( 1 0 0 ) 

D IMENSION N C H ( 1 0 0 ) , N S H ( 1 0 0 ) 

D IMENSIGN M V A L U E ( 1 5 0 ) 

C * * * * * I M P O R T A N T * * * * * I M P O R T A N T * * * * * I M P O R T A N T * * * * * I M P O R T A N T * * * * 

C * MVALUE, N K , AND NL MUST BE D IMENSIONED EXACTLY AS THEY * 

C * ARE D IMENSIONED IN PROGRAM FOURIER C . * 

C * * * * * I M P O R T A N T * * * * * I M P O R T A N T * * * * * I M P O R T A N T * * * * * I M P O R T A N T * * * * 

1 F O R M A T ( 3 1 3 , 8 ( 3 X , 1 5 ) , 2 X , 1 5 ) 

13 F C R M A T ( 1 X , 3 I 3 , 8 ( 3 X , I 5 ) , 2 X , I 5 ) 

14 F 0 R M A T ( 3 X , 2 I 3 ) 

15 F O R M A T ( 9 ( 1 3 , 3 X ) ) 

16 F C R M A T ( I 6 ) 

17 F 0 R M A T ( 3 I 3 ) 

18 F O R M A T ( I 3 ) 

19 F C R M A T ( 5 ( I 4 , 3 X ) ) 

20 F O R M A T ( I X , 1 4 H M I N I M U P X = , I 3 / 1 X , 1 4 H M A X I M U M X = , 1 3 / 

1 1X , 14H INCREMENT X = , I 3 / 1 X , 1 4 H M I N I M U M Y = , 1 3 / 

2 1X .14HMAXIMUM Y = , I 3 / I X , 1 4 H I N C . . E M E N T Y = , 1 3 / 

3 1 X , 1 4 H M I N I M U M Z = , I 3 / 1 X , 1 4 H M A X I M U M Z = , 1 3 / 

4 1 X , 1 4 H I N C R E M E N T Z = , 1 3 ) 

21 F O R M A T ( 1 H 1 , 3 5 H Q U A N T I T I E S USED IN T H I S C A L C U L A T I O N / / ) 

22 F O R M A T ( 1 H 0 , 1 9 H I N T E R M E D I A T E 0 U T P U T / 1 H 0 , 3 H M X , 3 X , 9 H J S U M 1 ( M X ) , 

1 3 X , 9 H J S U M 2 ( M X ) , 9 X , 3 H N K 1 ) 

23 F O R M A T ( l X , I 3 , I 1 2 , I 1 2 , I 1 2 ) 

24 FORMAT (1HO, 1 1 2 ) 

2 5 F O R M A T ( I X , 4 4 H D A T A CARDS OUT OF ORDER -- CORRECT AND RERUN) 

REWIND 3 

REWIND 4 

REWIND 7 

MAXSUM=0 

C DEFINE RANGE TO BE COVERED, AND INCREMENTS 

READ INPUT T A P E 5 , 1 5 , M I N X , M A X X , I N C X , M I N Y , M A X Y , I N C Y , M I N Z , M A X Z , 

1 INCZ 

C READ C O S I N E TABLE 

READ INPUT T A P E 5 , 1 6 , ( M V A L U E ( M ) , M = 1 , 1 5 0 ) 

C IF TAPE INPUT IS D E S I R E D , TABLES ARE READ FROM TAPE 4 . 

C O T H E R W I S E , INPUT IS FROM CARDS . 

I F ( S E N S E SWITCH 2 ) 6 0 0 , 6 0 1 

6 0 0 READ TAPE 4 ,NUMH ,NUMK ,NUML 

DO 602 M1=1 ,NUMH 

6 0 2 READ TAPE 4 , N H ( M 1 ) 

DC 603 M2=1 ,NUMX 

6 0 3 READ TAPE 4 , N K ( M 2 ) 

DC 604 M3=1 ,NUML 

6 0 4 READ TAPE 4 , N L ( M 3 ) 



REWIND 4 

GO TO 6 0 5 

6 0 1 REAC INPUT T A P E 5 , 1 7 , N U M H , N U M K , N U M L 

READ INPUT T A P E 5 , 1 8 , ( N H ( M l ) , M 1 = l , N U M H ) 

READ INPUT T A P E 5 , 1 8 , ( N K ( M 2 ) , M 2 = 1 , N U M K ) 

REAC INPUT T A P E 5 , 1 8 , ( N L ( M 3 ) , M 3 = 1 , N U M L ) 

6 0 5 WRITE OUTPUT T A P E 6 , 2 1 

WRITE OUTPUT T A P E 6 , 2 0 , M I N X , M A X X , I N C X , M I N Y , M A X Y , I N C Y , M I N Z , 

1 M A X Z . I N C Z 

C ADD UNITY TO R A N G E S . 

MINX=MINX+1 

MAXX=MAXX+1 

MINY=MINY+1 

MAXY=MAXY+1 

MINZ=MINZ+1 

MAXZ=MAXZ+1 

NC0UNT=0 

C FOR TAPE INPUT GO TC 6 1 0 , CARD INPUT GO TO 6 1 1 . 

C STATEMENT 32 IS ThE STARTING POINT OF THE CYCLE OVER K . 

32 I F ( S E N S E SWITCH 2 ) 6 1 0 , 6 1 1 

C-610-READ A RECORD TO DETERMINE N K 1 , N L 1 . 

6 1 0 READ TAPE 7 , N N N 1 , N K 1 , N L 1 , N N N 2 , N N N 3 , N N N 4 , N N N 5 , N N N 6 , N N N 7 , 

1 N N N 8 , N N N 9 , N N N 1 0 

BACKSPACE 7 

GO TO 6 1 2 

C-611-READ A CARD TO DETERMINE NK1 , N L 1 . 

6 1 1 READ INPUT T A P E 5 , 1 4 , N K 1 , N L 1 

BACKSPACE 5 

C IF NL1 is N E G A T I V E , TH IS IS THE LAST RECORO . 

6 1 2 I F ( N L 1 ) 3 3 , 3 5 , 3 5 

35 J = 0 

C FOR TAPE INPUT GO TO 6 1 3 , CARD INPUT GO TO 6 1 4 . 

34 I F ( S E N S E SWITCH 2 ) 6 1 3 , 6 1 4 

6 1 3 READ T A P E 7 , M H , M K , M L , M A 1 , M A 2 , M A 3 , H A 4 , M B 1 , M B 2 , M 8 3 , M B 4 , I C 0 U N T 

GO TO 6 1 5 

6 1 4 REAC INPUT T A P E 5 , 1 , M H , M K , M L , M A 1 , M A 2 , M A 3 , M A 4 , M B 1 , M B 2 , M B 3 , M B 4 , 

1 ICOUNT 

C IF MR CHANGES VALUE , ALL OF THE C O E F F I C I E N T S FOR A G I V E N K 

C HAVE BEEN READ . 

6 1 5 I F ( M K - N K 1 ) 3 1 , 3 0 , 3 1 

C WRITE AN OUTPUT RECORD. 

30 WRITE OUTPUT T A P E 6 , 1 3 , M H , M K , M L , M A 1 , M A 2 , M A 3 , H A 4 , M B 1 , M 8 2 , M B 3 , 

1 M B 4 , I C O U N T 

C CHECK TC SEE IF CARDS ARE IN CORRECT ORDER . 

I F ( I C O U N T - ( N C O U N T + 1 ) 6 2 0 , 6 2 1 , 6 2 0 

6 2 0 TYPE 25 

WRITE OUTPUT T A P E 6 , 2 5 

STOP 0 0 0 0 5 

621 NCOUNT=ICOUNT 

C REDEFINE N K 1 . 

NK1=MK 

J = J + 1 

C ASS IGN STORAGE LCCATIONS TO THE C O E F F I C I E N T S . 



N H ( J ) = M H 

N A 1 ( J ) = M A 1 

N A 2 ( J ) = M A 2 

N A 3 ( J ) = M A 3 

N A 4 ( J ) = M A 4 

N 3 2 ( J ) = M B 2 

N 3 3 ( J ) = M B 3 

N B 4 ( J ) = M B 4 

GO TO 34 

31 JMAX=J 

C MK HAS CHANGED VALUE. BACKSPACE ONE RECORO TO PREPARE 

C FOR NEXT INPUT CYCLE . 

I F ( S E N S E SWITCH 2 ) 7 0 0 , 7 0 1 

7 0 0 BACKSPACE 7 

GO TC 7 0 2 

701 BACKSPACE 5 

C IF INTERMEDIATE OUTPUT IS D E S I R E D , PRINT COLUMN H E A D I N G S . 

7 0 2 I F ( S E N S E SWITCH 1 ) 5 0 0 , 5 0 1 

5 0 0 WRITE OUTPUT T A P E 6 . 2 2 

C * BEGINNING OF DO LOOP OVER X . * 

501 DO 50 MX=MINX ,MAXX , INCX 

NX=MX-1 

C CALCULATE ARGUMENTS AND LOOK UP COSINES AND SINES NECESSARY 

C FOR THIS INPUT CYCLE . 

DO 10 J = 1 , J M A X 

N A R G = N H ( J ) * N X 

NARG1=NARG/120 

KARG2=NARG-I20*NARG1 

I F ( N A R G 2 ) 3 0 0 , 3 0 1 , 3 0 0 

301 NARG2=120 

300 NCH (J )=MVALUE (NARG2 ) 

10 N S H ( J ) = M V A L U E ( N A R G 2 + 3 0 ) 

C TABLE LOOK UP COMPLETED. 

C SET STORAGE LOCATIONS TO ZERO IN PREPARATION FOR SUMMING. 

JSUMTI=0 

JSUMT2=0 

C * THE SUMMATION OVER H BEGINS HERE * 

DO 107 J = 1 , J M A X 

C REMOVE SUBSCRIPTS ON NCH AND NSH TO INCREASE SPEED . 

NC = N C H ( J ) 

N S = N S H ( J ) 

J T 1 = ( N A K 1 ( J ) * N C + N B 2 ( J ) * N S ) / 1 0 0 

JSUMT1=JSUMT1+JT1 

J T 2 = ( N 8 3 ( J ) * N C + K A 4 ( J ) * N S ) / 1 0 0 

107 JSUMT2 = JSUMT2-. JT2 

C * THE SUMMATION OVER H ENDS HERE * 



C THE ABSOLUTE VALUE OF THE LARGEST SUMMATION IS NOW 

C DETERMINED. 

C JSUMT1 , JSUMT2 ARE STORED IN ARRAYS. 

NN=XABSF (JSUMT1 ) 

I F ( M A X S U M - N N ) 6 0 , 6 1 , 6 1 

60 MAXSUM=NN 

61 JSUM1(MX)=JSUMT1 

N N = X A 8 S F ( J S U H T 2 ) 

I F ( M A X S U M - N N ) 6 2 , 6 3 , 6 3 

62 MAXSUM=NN 

63 JSUM2 (MX)=JSUMT2 

C DETERMINATION OF MAXSUM ACCOMPLISHED. 

50 CONTINUE 

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

C * END OF DO LOOP OVER X . * 

C * * * * * * * * * * * * * 

C F IRST INDEX SUMMATION HAS NOW BEEN COMPLETED FOR ALL VALUES 

C OF X, AND A PARTICULAR VALUE OF K . WRITE SUMS ON TAPE 3 . 

WRITE T A P E 3 , ( J S U M I ( M X ) , J S U M 2 ( M X ) , N K 1 , 

1 M X = M I N X , M A X X , I N C X ) 

C Tf INTERMEDIATE OUTPUT IS D E S I R E D , PRINT SUMS. 

I F ( S E N S E SWITCH 1 ) 4 0 , 3 2 

4 0 WRITE OUTPUT T A P E 6 , 2 3 , ( M X , J S U M 1 ( M X ) , J S U M 2 ( M X ) , N K 1 , 

1 M X = M I N X , M A X X , I N C X ) 

C GO TO 32 FOR DATA ASSOCIATED WITH THE NEXT VALUE OF K . 

GO TO 32 

C THE DUMMY RECORD WRITTEN BY FOURIER A HAS BEEN READ. WRITE A 

C DUMMY RECORD ON TAPE 3 FOR FOURIER C . 

33 JSUMT1=0 

JSUMT2=0 

NK1=-1 

WRITE TAPE 3 , ( J S U M - T l , J S U M T 2 , N K l , 

1 M X = M I N X , M A X X , I N C X ) 

REWIND 3 

REWIND 4 

REWIND 7 

C WRITE RANGES, COSINE TABLE , E T C . , ON TAPE 4 . 

WRITE TAPE 4 , M I N X , M A X X , I N C X , M I N Y , M A X Y , I N C Y , M I N Z , M A X Z , I N C Z , 

1 MVALUE ,NUMH,NUMK,NUML ,NK ,NL ,MAXSUM 

REWIND 4 

WRITE OUTPUT T A P E 6 , 2 4 , M A X S U M 

CALL EXIT 

STOP 

END 



EXPLANATION OF PLATE XVII 

This plate (next two pages) shows the logical steps and 

flow of information within program link C . The diagram is the 

same for link CDproj. The pentagonal boxes carry the program 

flow from page to page. 
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EXPLANATION OF PLATE XVIII 

This plate (next 10 pages) is the FORTRAN II symbolic 

coding for program links C and CDproj. 
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EXPLANATION OF PIATE XIX 
This p la te (next two pages) shows the log ica l s t eps and 

flow of information within program link D. The pentagonal 
boxes carry the program flow from page to p a g e . 
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EXPLANATION OF PLATE XX 
This p la te (next 5 pages) i s the FORTRAN 11 symbolic 

coding for program link D. 
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EXPLANATION OP PLATE XXI 
This p la te shows the logical s t eps and flow of information 

within program link E. 
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EXPLANATION OF PLATE XXII 
This p la te (next 3 pages) i s the FORTRAN II symbolic 

coding for program link E. 
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APPENDIX II 

Along with the Fourier ca l cu la t ion , perhaps the next most important 
ca lcu la t ion performed by the crys ta l lographer i s the ca lcu la t ion of s t ructure 
f a c t o r s . The structure fac tor i s given by 

(65) 

where fn(hkl) i s the atomic sca t te r ing fac tor for the nth atom, N i s the num-
ber of atoms in the unit c e l l , and xn, yn , zn are the coordinates of the nth 
atom. With th i s e q u a t i o n , one can ca lcu la te the sca t te r ing from a pos tu la ted 
s tructure cons i s t ing of a col lec t ion of atoms of known type and posi t ion in 
the unit c e l l . The program descr ibed here ca l cu la t e s Fhkl va lues and the 
res idua l R given by 

The program i s completely general and there i s no l imitat ion to the quanti ty 
of input d a t a . 

Input to the program c o n s i s t s of a table cf observed structure f a c t o r s , 
a tab le of atomic sca t te r ing fac tors for each atom type and each se t of h , k , l , 
va lues ; and the types and atomic coordinates of the a toms . 

Plate XXIII shows the program l i s t i n g . This l i s t ing i s intended to be 
s e l f - exp l ana to ry . 



EXPLANATION OF PLATE XXIII 
This p la te (next 3 pages) snows the FORTRAN II coding 

for the structure fac tor program. 
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The va lence s t a t e s between nitrogen and oxygen have been s tudied by 
many chemis t s a s wel l a s p h y s i c i s t s . The s t ructures of ni trogen oxides have 
been studied in recent y e a r s , yet there are many things that are s t i l l unknown. 
For the c a s e of the N2O2-- ion inves t iga t ions by infrared and Raman Spec-
t roscopic methods in the vapor and liquid p h a s e s indicated the t r a n s - c o n f i g -
ura t ion . On the other hand preliminary X-ray s tud ies of some N2O2 com-
pounds indica ted the c i s - con f igu ra t ion . It was therefore important to de t e r -
mine the structure of the N2O2 ion using the mathemat ical t echniques of 
X-ray d i f f r ac t ion . Data in the form of s tructure fac tors had been prepared by 
S. C. Chang for sodium hyponi t r i te , and the se were used to obtain a t e n t a -
t ive s t ruc tu re . 

Crysta l l ine sodium hyponitr i te has a monocl inic ce l l with space group 
The ce l l parameters were determined to be 

a = 7 . 3 2 ± 0 . 0 3 A 
b = 17.10 ± 0 . 0 7 A 
c = 6 . 0 1 ± 0.O2A 

= 90° 
= 90° 
= 107.5 ± . 0 4 ° . 

The Pat terson project ion was computed a s wel l a s the th ree -d imens iona l 
Pat terson func t ion . Peak height in terpreta t ion was conducted in order to 
predict the he ights of Pat terson peaks due to atom fo ld ings . Unitary s t ruc -
ture fac tors were ca lcu la ted and the inequa l i t i e s of Harker and Kasper were 



appl ied . Because there were few large unitary structure f ac to r s , t hese 
inequa l i t i e s could not be u s e d . The symbolic addit ion procedure of Karle 
and Hauptman was appl ied , but absence of suf f ic ien t data for the 1 Miller 
index prevented the s u c c e s s of th i s method. The Harker sec t ion for P2 1/b 
was c a l c u l a t e d . Clues were obtained from the Harker sec t ion and Pat terson 
projec t ion which enabled trial s t ructures to be pos tua l t ed . R va lues were 
computed and a structure was se l ec t ed for re f inement . Refinement stopped 
at R = . 3 1 7 9 . 

The molecular form was found to be of t r ans - s t ruc tu re with three waters 
of hydra t ion . Atomic coordinates obtained to date are given a s fol lows: 

x y z 
Na1 .823 
Na2 .057 

O1 .651 
O2 .245 

N1 .542 
N2 .357 
W1 .350 
W2 .248 
W3 .090 

Inves t iga t ion of the convergence p roces s indica ted that one or more waters 
were probably misp laced or mi s s ing . Thus the s tructure obtained remains 
ten ta t ive unt i l further work can be done . 

During the work it was n e c e s s a r y to develop a large number of computer 
programs. A f a s t two- and th ree -d imens iona l Four ier -Pat terson Program with 
a high degree of f lex ib i l i ty was wri t ten . Minimum machine requirements 



included 40 ,000 decimal d ig i t s of core s to rage , and at l e a s t four magnet ic 
tape uni t s in addit ion to those units required for input , output , and the 
system monitor. A ca rd - to -magne t i c tape unit and a t ape - to -p r in t e r unit 
were required per ipheral equipment . The program was writ ten in FORTRAN II 
symbolic language and could therefore be run on many medium and large s c a l e 
computers . High speed operat ion was obtained by us ing the Beevers-Lipson 
fac tor iza t ion procedure , table look-up for s ines and c o s i n e s , and integer 
ar i thmetic throughout . The use of magnet ic tape was governed by the amount 
of core s torage avai lab le ; the running time could be optimized for a par t icular 
problem by su i tab le choice of a parameter within the program. Any number 
of X-ray re f l ec t ions could be included sub jec t to the requirement that no 
Mil ler index exceeded 99. The ful l unit ce i l could be ca lcu la ted in a s ingle 
run without r e s t r i c t i ons , or any portion of tne unit ce l l could be ca lcu la ted 
sepa ra t e ly . In addi t ion, the program was segmented into f ive l i nks , each of 
which could be run independent ly if d e s i r e d . Link A sorted the input data 
and ca lcu la ted the coe f f i c i en t s for the Beevers-Lipson fac to r i za t ion . Links B, 
C, and D performed summations over the f i r s t , second and third Mil ler i n d i c e s , 
r e s p e c t i v e l y . Link E created contour maps and numerical l i s t ings of the 
r e s u l t s . Link D could be b y - p a s s e d if a project ion were c a l c u l a t e d . The 
grid in terval could be 1 /120 , 1 /60 , 1 /40 , 1 /30 , 1 /20 , or 1/15 of the unit 
c e l l , and could be di f ferent for each d i rec t ion . 

A program was a l so writ ten to ca lcu la te structure f a c t o r s . 




