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Abstract

Milk protein concentrates (MPC) are ideal dairy ingredient to provide nutritional and
functional benefits in high-protein dairy and food products. However, one of the key challenges
encountered by the MPC manufacturers during the spray drying is the high viscosity after
ultrafiltration and evaporation. Reducing viscosity and aiding an increase in the solid levels
before spray drying can offer significant savings on the overall energy cost during spray drying.
On the other side, it is also a challenge for the end-user to incorporate the MPC powders in a
formulation due to their poor rehydration properties. Therefore, simple and innovative strategies
to reduce viscosity before spray drying while also improving final powder properties are of
critical consideration for the dairy industry. Moreover, the dairy industry's eco-efficiency
strategy focuses on manufacturing high-quality dairy products at a low cost with minimal
environmental impact are gaining more attention. For instance, reduced energy usage while
keeping high permeation flux values is critical for eco-efficiency. In this research, application of
bulk nanobubbles (NBs) for improving the processability and functionality of various dairy
concentrates were evaluated.

The chapter 3, 4, and 5 investigated the use of NBs generated by hydrodynamic and
acoustic cavitation for improving the processability of dairy concentrates, rehydration/flow
properties of MPCs. Control and NB-MPC dispersions were evaluated in terms of rheological
behavior and microstructure. Additionally, MPC dispersions were spray dried after the NB
treatment and the resultant NB-MPC powders were characterized and compared with the control
MPCs in terms of rehydration characteristics and microstructure. NB-MPC powders exhibited

better rehydration properties than the control MPC powders. Overall, these studies therefore,



recommends the possibility of using NB treatment for more efficient drying while improving the
functional properties of the resultant MPC powders.

The chapter 6 evaluated the influence of NB incorporation during the UF process of skim
milk. Both lab and pilot-scale UF experiments were conducted to evaluate the effect of NB
incorporation on UF process by evaluating permeate flux, membrane microstructure, fouling
resistance, energy consumption, and skim milk concentrate characteristics. For both the lab/pilot-
scale runs, after the initial water flux measurements, the membrane was fouled with the skim
milk concentrate dispersions operated at 20°C under a constant transmembrane pressure 30 psi in
constant concentration mode (the permeate was returned to the feed tank at regular 10-min
intervals) and the total run time was fixed for 1 hour. The results revealed that NB treatment had
a significant effect on permeate flux in both the lab and pilot-scale runs. Overall, the NB
treatment helped to improve UF membrane performance and therefore this study suggests the

potential of using NB treatment for a more efficient UF processing.
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Chapter 1 - Introduction

The global milk powder market is predicted to reach ~13 million tons by 2023 and to a
value of ~71 billion USD by 2027. Dairy powders are manufactured using unit operations like
evaporation and spray drying. Spray drying is a widely used technology for the manufacture of
dairy powders; however, it is very energy-intensive, contributing mainly to the total energy
consumption. For example, skim milk is concentrated in a multiple effect evaporator (MEE) to a
concentration of approximately 50% TS and subsequently spray-dried in a spray dryer. The
energy consumption in a typical MEE is 260-330 kJ/kg water removal. On the other hand,
energy consumption in a typical spray dryer is approximately 4,000 kJ/kg water removal which
is 10 times more compared to a MEE. It is logical to remove as much water as possible in a MEE
to reduce the operating cost of milk powder manufacture. Therefore, any technological
approaches that can be coupled with spray drying to optimize the process better are critical from
a sustainability perspective. One of the major concerns for the manufacture of dairy powders is
the energy-associated environmental footprint. There have been findings that state that the
energy footprint for milk powders is seven times more than packaged milk; therefore, to meet the
future need for a significant reduction in energy consumption, innovative technologies are
needed (Flysjo, 2012; Moejes et al., 2018). This could be attributed to the high-water content in
milk and the energy-intensive thermal processing required for this water removal. Thus, ideally,
for an energy-efficient process minimizing thermal inputs is the key. This could be achieved by
pre-concentration and pre-treatments of the liquid before spray drying. Chamberland et al. (2020)
reported that pre-concentrating cheese whey and milk ultrafiltered permeate to 20% and 22%
w/w dry matter, respectively, by reverse osmosis prior to evaporation reduced the natural gas and

electricity consumption by 36% and 10%, respectively. Pre-treatments such as high solids



content drying could also help with energy efficiency. Remarkably, Fox et al. (2010) reported
that an increase in just 2% dry matter could achieve 6% energy reduction. However, high-solids
drying is challenged by equipment performance constraints and product quality due to feed
concentrate physical properties. Particularly viscosity is a significant concern while increasing
dry matter content in the feed concentrate. Reducing viscosity also translates to reduced fouling
of heat exchangers, improved heat transfer during evaporation, and a reduced amount of
blocking in the spray drying nozzles. It is important for the dairy industry to adapt new
technologies and strategies to reduce the viscosity of spray dryer feed even at higher total solids;
this can offer significant savings on the overall energy cost of powder production. Therefore, any
innovative approaches for reducing the viscosity of high solids concentrate could be a promising
step to higher energy savings. Many processing strategies have been investigated to reduce the
viscosity of the feed concentrates. This can be achieved either by altering the protein-protein
interactions and/or by employing techniques like hydrodynamic/acoustic cavitation, high-
pressure homogenization, carbon dioxide injection, etc.

Milk protein concentrate (MPC) is an ideal dairy ingredient to provide nutritional and
functional benefits in high protein dairy and food products. However, one of the key challenges
encountered by the MPC manufacturers during the processing is the high viscosity after
ultrafiltration and evaporation. Reducing viscosity and aiding an increase in the solid levels
before spray drying can offer significant savings on the overall energy cost of powder
production. On the other side, it is also a challenge for the end-user to incorporate the MPC
powders in a formulation due to their poor rehydration properties. Therefore, simple and
innovative strategies to reduce viscosity before spray drying while also improving final powder

properties are of critical consideration for the dairy industry producing MPCs. In the present



work, we are exploring the possibility of utilizing micro-and nano-bubbles (MNBs) for
improving the processability and rehydration properties of MPCs. One of the common methods
that are reported to produce bulk MNBs are based on hydrodynamic and acoustic cavitation.
Several types of generators have been developed using the principles of the venture effect, swirl
liquid flow, and pressurized dissolution. The size of bubbles generated can be governed by
controlling pressure, temperature, flow rate applied to the flowing fluid. However, applied
studies on MNBs in the food matrix are relatively nascent. Despite the theoretical challenges in
understanding the existence of NBs in a complex matrix, they are being applied in various areas,
and there is a constant surge for more innovation using the MNBs. In recent years, ultrasound
has been widely investigated at a laboratory scale to reduce the viscosity of skim milk
concentrate. High-intensity ultrasound (>20 kHz) employs mechanical waves at a frequency to
generate acoustic cavitation. The bubbles expand to full size and then collapse violently
generating a shock wave formation that is able to consequently reduce the viscosity of the feed.
Ultrafiltration (UF) is one of the most often utilized membrane processes in the dairy
industry, particularly for fractionation and concentration of milk components. Several products,
including milk concentrate for cheese manufacturing, low-lactose dairy products, milk protein
concentrate, and serum proteins for dietary supplements, may be made using this method. The
permeate flow (the phase moving through the membrane), the rate of fouling, and the fraction of
soluble components rejected determine the efficiency and cost of a membrane pro