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CHAPTER I
INTRODUCTION

A life support system is a system for creating, maintaining, and con-
trolling an enviromment so as to permit personnel to functiaﬁ efficiently.
The control of temperature is perhaps the most important role of the life
support system, This report contains the results of the investigation
on the optimum temperature control of life support systems by means of
the modern control theory.

The need for providing an automatic control system to an air-conditioning
system has long been recognized [19, 28]. It is also a well known fact
that use of automatic control is necessary for the life support system
of a space cabin or submariﬁe or underground shelter [29, 30]. It appears
that analysis and synthesis of the control systems for the air-conditioning
and life support systems have so far been carried out by the classical
approach [19, 28, 29, 30]. This approach is essentially a trial and error
procedure or a disturbance-response (or input-output) approach. Extensive
use is made of the transform methods such as the Laplace transform (s-domain)},
Fourier transform (w-domain), and z-transform (discrete time-domain)., Even
though mathematics is extensively used, the classical approaqh is essentially
an empirical one [27].

| In recen; years, an approach to the analysis and synthesis of a control
system, which is distinctly different from the classical one, has been
developed. This modern approach is generally called the modern (optimal)
control theory [2, 8, 21, 22, 24, 25, 27]. It is based on the state-space

characterization of a system, The state space is the abstract space whose



coordinates are the state properties of the system or the variables which
define the characteristics of the system [27]. This approach involves
mainly maximization or minimization of an objective function (functional)
which is a function of state and control variables which are in turn
functions of time and/or distance coordinate. The objective function is
specified, constraints are imposed on the state and decision variables,
and an optimal control policy is determined by extremizing the objectivé
function by means of mathematical techniques such as the calculus of
variations, maximum prinéiple, and dynamic programming [2, 9, 24], This
modern approach is entirely theoretical in the sense that no trial and
error procedure is involved in "adjusting the controller".

There are reasons to believe that the classical approach suffices
in the analyses and syntheses of the control systems for a majority of
air-conditioning and life support systems because usually the requirements
are not extremely critical and specifications are not very -tight. It is,
therefore, justifiable that most of the comtrol and dynamic investigations
be based on the classical approach. There is, however, a certain in-
centive in applying the modern approach to analysis and synthesis of
automatic environmental control systems in spacecrafts, submarines, under-
ground civil defense shelters and certain medical facilities. In these
systems, very strigent requirements in the response time, control effort,
etc are imposed; For example, the control system of a space-craft must
have an extremely small response time and furthermore, the amount of
energy-rEquifed for the control must be very small because of the weight

limitation imposed on the space-craft.



Modern control theory has been applied to life support systems in
{10, 11, 12, 13, 14, 15]. In [11], the mathematical models representing
several different systems have been derived., In [12], modern control
tileory has been applied to minimum time problems, where the heat dis-
turbance is considered to have an impulse form, The resultant control
is of bang-bang type. The maximum principle has been advantageously
applied to evaluate the number of switching points of the bang-bang
control policy via the switching function and adjoint vector. Bellman [3]
has proved that the number of switching points is one less than the
dimension of the problem., In [13] the optimal control of a system with
equality state variable constraints imposed at the end of the control
period is considered., The problems of controlling a system with con-
straints imposed on the state variable have been dealt with in [14]., In
[15] some aspects of sensitivity analysis have been discussed,

The system considered in this report consists of a confined space.
subjected to a heat disturbance and a heat exchanger. In chapter 2, the
performance equations which represent the dynamic characteristics of the
system for a step function heat disturbance are derived. The model is
simulated on a digital computer, In chapter 3, Pontryagin's maximum
principle is applied to establish the optimal policy for this system
when the objective function ié to minimize the sum of integrated deviation
of the state of the system from the desired one and the integrated effort
required to maintain the system in the desired state over a specified
control period. The optimal control in this case is of continuous type.
In chapter 4, the maximum principle is applied to obtain optimum control

policy when the heat disturbance has an impulse form. The objective



function to be minimized in this case is the integrated effort required
to bring the system back from the deviated state to the desired one in

the shortest time., The optimal control is again of continuous type.



CHAPTER II
ENVIRONMENTAL CONTROL SYSTEMS - MODELING AND SIMULATION

The basic model of a environmental control system consisting of a
confined space subjected to step heat disturbance and of a heat exchanger
is developed., The performance equations which represent the dynamic
characteristics of the system and system components are derived. The
procedure for deriving the performance equations is féirly general and
can be extended to cases in which the heat disturbances have forms other
than the step function. The model is tested by carrying out a simulation
on a digital computer, The performance equations of a system in which
the flow of air in the confined space can be characterized by the 2 CST's-
in-series model are also derived. This model is also simulated.

2.1 MODELING

A control system usually consists of three elements: the feedback
element, the control element, and the system proper [7]. The feedback
element in a life support control system or an envirommental control
system may be composed of a thermostat, humidstat and pressure regulator,
or any combination of these, depending on the purpose of control. The
control element may include a heat exchanger, humidifier, dehumidifier,
Mwu,wn%kahwmﬁHMH,Mawcmﬁmﬁmofm%%d@mﬂu
on the objective of control. For instance, both the thermostat and
heat exchanger are often used to control the air temperature inside a
building. The system proper may be a confined space, e.g., an under-

ground shelter, a space vehicle, a space suit, a submarine or a building.



The system considered here is shown schematically in Fig. 1. The
confined space may be a typical office located in a multi-story building
or the cabin of a space ship. Air or oxygen or a mixture of oxygen
and nitrogen is circulated through the room or confined space via an
air duct by mechanical means, e.g., a blower or a fan. Control of air
temperature in the system is accomplished with a duct system. The thermo-
stat in the system adjusts the position of the control valve of the heat
exchanger in order to provide the desired temperature,

The performance equations of the system, which represent the dynamic
characteristics of the system and system components are derived,

2.1.1 The System Proper

The following three main assumptions are made concerning the system
proper:

i) Room or cabin air is well mixed, i.e., alr temperature within
the system proper is uniform throughout at any instant in time,

ii) The thermal capacitance of room walls, floors, ceiling, and
window is neglected, as well as that of any furniture within the system
proper,

iii) Heat loss through the walls and windows is negligible.

The performance equation of the system proper can be obtained by

using the heat balance. Thus referring to Fig. 2, we have

{heat in] - [heat out] = [heat accumulation] (1)
[heat in] = q; + 94, + 94 (2)
[heat out] = 91 + 92 (3)
[heat accumulation] = q (4)

s
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Fig. 1 The system, an air-conditioned room
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Fig. 2 The system proper: heat flow rates



where
9, = heat flow into the system proper by circulation air in Kcal/sec
9, = heat flow into the system proper by fresh air in Kcal/sec
a5 = heat flow out of the system proper by circulation air in
Keal/sec
99, = heat flow 6ut of the system proper by fresh air in Kcal/sec
94 = Step heat disturbance rate in Kcal/sec
q_ = rate of heat stored inside the system proper in Kcal/sec

Inserting equations (2), (3) and (4) into equation (1) gives
lag; + a49 + 4.0 = [ap; + 9,1 = g4 | (5)
Assuming perfect mixing, the expressions for 4515 9590 9012 and 99 a;e
4y = P G (g, - t)
=Qr Cp T, _ (6)7
9, =Qy P Cp (£, = t))

qo]_ = Ql P CP (tC ™ ta)

=Q Cp T ) (8)

qoz = Qz Y Cp(tc - ta)

=Q,p C T, | ‘ 9)

P

The heat disturbance is assumed to be a step input form such as
= (@, +Qp) p C, Ty Upla) | (10)
where Uo(a) is the unit step function. The rate at which heat energy is

accumulated in the system proper can be expressed as



where

5

10

dt

[+]
% p da

lDC

dT

c —= (11)

vl P p da

specific heat of air in Kcal/Kg °c

air flow rate by circulation in m3/sec

flow rate of fresh air in m3/sec

room volume in m3

arbitrary and suitable reference temperature in %

" Q

room temperature in C

disturbance temperature in g

temperature of the circulation air into the system
o

proper in C

outside air temperature in °c

(t

t ) in %
c a
[s)
(ti - ta) in C
o
(t2 - ta? in C
o
(td - ta) in C
time in sec

air density in Kg/ma

The insertion of equations (6) through (11) into equation (5) yields

Yy

p

dT

C ) -

+Q e C T, + (@ + Q) »r C; Tq Ug(e)
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Ql' Qz, P, Cp’ Vl and Td are considered to be constants. The rate of
heat loss through walls and windows can be included in the d4g term,
The above equation can be simplified by dividing both sides of the

uation b + C_as
eq y (@ +Q)rp 5

dT

T —£+Tc=rT + r.T

13 1Ty * EpTy + Ty Ugla)

(12)

'1‘c = Tco at a =0

Note that o = 0 is the time just before the heat disturbance occurs and
o = d+ is the time just after the heat disturbance has occured. When
the heat disturbance has a form of a step function it is not necessary
to distinguish the state variables between time a = 0 and time a = 0+
because the values of the state are the same. However, in the case

of impulse heat disturbance the state variables are changed between
oa=0 and a = 0+ and it is important to specify the time e#actly.

Equation (12) can be rewritten in a dimensionless form as

1

s +x) = 1%, + rZKa + Uon(t)
(13)
X = latt=20
where

r Ql

1 Q1 + Q2

Q

T, = . 1l - rl
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e - i_ i a
2 TcO tcO - ta
. ta_ fa" %
s Tco tco -t
t ='%— = dimensionless time
1
R = T2 - t2 B ta
e TcO tcﬂ - ta

Ty = time constant of the system proper in sec which is equal
to the mean resident time of air in the system proper
. .
Q+Q
'I'co = room (system proper) temperature at a = 0

2,1.2. The Control Element

The heat exchanger which is the control element of the system under
consideration can perform its control function in various ways, for
example, by changing the temperature or flow rate of the heat tramsfer
medium, or changing both.

The performance equation of the control element of the system can

be obtained again-by employing the heat balance, which can be expressed as
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[heat in] - [heat out] = [heat accumulation] (14)
[heat in] = LY + 942

[heat out] = 901 + 902

[heat accumulation] = Uns

where

Qi1 = heat brought into the heat exchanger by circulation air
in Kcal/sec

949 = heat brought into the heat exchanger by cooling water
in Kcal/sec

Q01 = heat flow out of the heat exchanger with circulation
air in Kcal/sec -

902 = heat flow out of the heat exchanger with cooling water
in Kcal/sec |

Ios = rate of heat accumulation in the heat exchanger in
Kcal/sec

Inserting these definitions into equation (14) gives'

lapgy * 9pea) = la501 * 9po2! = e ' Wil
Assuming perfect mixiﬁg of both air and the heat transfer medium in .the
heat exchanger, ignoring the heat loss through the shell and neglecting

the thermal capacitance of the heat exchanger, the expressions for g {1°

Ui2® 901’ and 4., 3re as follows

pil = Ql P Cp (tc - ta)
(16)

=Qq e C T,

P
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Ini2 = Qw P pr (twc - ta)

(17)
= Qw p_ C T
w pw wcC
9no1 ~ Q1 P Cp (ti - ta)
(18)
= ql 3 Cp Ti
mo2 = % Py cpw (toh ~ ta)
. (19)
= Qw P pr Twh
The rate at which heat energy is stored in the heat exchanger can be
expressed as
dti
Uns v2 P Cp da
(20)
dT
_ i
= V2 p Cp v
where
C__ = specific heat of coolant in Kcal/Kg °c

Qw = flow rate of coolant in m3/sec

o
= inlet temperature of coolant in C

we

twh = oputlet temperature of cooclant in %

V2 = volume of the heat exchanger occupied by air in m3
Py ™ density of coolant in Kg/m3

Insertion of equations (16) through (20) into equation (15) gives

(Ql p Cp Tc + Qw Ou pr Twc) - (Ql p Cp Ti ® Qw P pr Twh)

dT.
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or dividing by Q1 p Cp

dTi _'Qw‘}w pr (Twh B Twc)

1, —+ T, =T
2 da i c Ql P Cp

(21)

where Ty is the mean residence time of air in (the time constant with

respect to air fow of) the heat exchanger in sec, and is defined by
T = Vol

Note that QW Py pr (Twh

- Twc) is the amount of heat added or removed
from the system which can be controlled by adjusting either Qw’ when P
pr and (Twh - Twc) are constant, or (Twh - Twc) when Qw’ Py and pr are

constants or both Qw and (Twh - Iwc) when Py and pr are constant.

Defining a hypothetical temperature ‘1‘r as

T =qQ p_C_ (T

T w w pw = wh - Twc”Ql . cp

equation (21) can be written as

dT

i 3
e T e T, (22)

or in dimensionless form

Ta % '
SRR LIRS )
where

I -

KB - 2T (Trmax Trmin)
c0

S

Ky 2T (Trmax * Trmin)

c0
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= control variable

Tr
— =K 8 + K
TcO B Y

Note that 6 = 4+1 when T_ =T and 8 = -1lwhen T_ =T . Also T
r rmax r rmin ) T

is positive whenever heat is removed and negative whenever heat is added.
Equation (23) is the performance equation of the heat exchanger which is
shown schematically in Fig. 3.
2.1.3, The Feed-back Element - Thermostat

Here it is assumed that the sensing element measures the room temper—
ature instantaneously and that there is no accumulation of heat in the
element, or for simplicity, it will be assqmed that the sensing element
is the zero order element with its time constant, Tas equal to zero., A
detailed discussion of the response of the thermostat can be found in [7].
2,2, SIMULATION

With the model a simulation should now be carried out by means of a
digital computer or an analogue computer., The results should then be
compared to the known characteristics of the systemtor to experimentally
obtained data to determine the goodness of the model.
2,2,1, EXAMPIE 1, As a-simple case consider a system in which the tiﬁe
constant of the heat exchanger is negligibly smaller as compared with the

time constant of the system. For this system, equation (22) is simplified to



Fig. 3 Schematic diagram of the heat exchanger
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T. =T -1T (24)

Inserting equation (24) into equation (12) gives

dT
c
LT + r, Tc =-1 Tr + r, '1‘2 + Td Uo(u)
Tc = TcO at a=0 (25)

The steady state value of Tr before disturbance can be evaluated by in-
serting

ch
Tc = TCO’ Td = 0, and-E;— =0

into equation (25). Hence

T = "2 (Tz _ Tco) r. # 0
r0 Ty ! _ 1 :

The final desired value of Tc ig TcO' The steady state value of the
hypothetical temperature, which represents the capacity of the heat
exchanger, denoted by Trf’ can be obtained by letting

dr
Tc = TcU' e @ @

into equation (25). This gives rise to

1
Trf ='¥I [Td Uo{a) + rz(T2 - TCO)] (26)

Simulation of the model can be carried out when the form of T and the
numerical values of the parameters are known. In case Tr is the step

function, i.e., Tr remains constant after ¢ = 0, Tr can be adjusted to
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the value '1‘rf given by equation (26) to maintain the system in the desired

state,
* NUMERICAL EXAMPLE
It is assumed that the volume of the system proper (room or cabin),
Vl, is
Vl = 3m x 4m X 5m
= 60 m3

The flow rate of air in the system proper, Q, is

(cross sectional area of the system)

Q

x (air velocity in the system)

(3m x 4m) (.1m/sec)
= 1,2 ﬁ3/sec
and flow rates of circulation and fresh air are
Q, = O.EQ = 0,96 mslsec
Q2 = 0.2Q = 0.24 m3/sec
The time conétant of the system proper, Tl,'is

Vi Y1 60

T = e— D

= 50 sec

Other numerical values employed are

= 24°c, T, = 36°C

Teo 2

: o
Trmin =0e

From equation (26) the steady-state heat removal capacity of the heat

exchanger, Trf’ for a given disturbance temperature Td’ can be calculated as

1 -
T.e= 0.8 [T, + 0.2 (36 - 24))
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or

Trf = 1.25Td + 3

The result is shown schematically in Fig. 4.

Similarly, it is possible to carry out the simulation using dimension-
less form of the performance equation. The performance equation for the
system can be obtained by combining equations (13) and (23) and setting

12 = 0 as

dxl 3
:Er-+ r, X; =T, Ka + o =T KBB - KY (27)

The initial conditions is
xl(O) =1 at t=20

The required control 6 can be obtained by setting

.dx1

It =L

=0 and xl

in equation (27). This gives

1

rl KB

8 =

[r2 (Ku - 1) - Ty KY + os}

Considering an example which corresponds to the example solved in dimensional
form and further assuming that the upper limit for Tr’ T , equal to

3000, the values of the constants Ka, KB’ and KY become

c 36
Ku TT T 24 1.5
c0
1
KB 2T [ rmax Trmin]
cO



0 5 10 15 20 25 30 35

Fig., 4 The required heat removal capacity of heat exchanger vs the
step heat disturbance at the steady-state condition
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1
=7 x 24 30 -0
= 0.625
1
K = [T +T_ . ]
Y ZTCO rmax rmin
1
“7Tx s 0F0
= 0.625

Substituting these numerical constants in equation (28) gives
s

The result is shown in Fig, 5. This result indicates that to maintain
the room temperature, X; = 1, during the step heat input disturbance
given by Ogs the control, 8, of a heat exchanger with constants KB and
KY' can be taken as given by equation (28).

Equation (27) can be integrated if thé functional form of control,
8, is known, When the control is constant equation (2?) can be integrated

as
x, = Ae + K (29)
where A is the integration constant and K is the particular solution

given by

‘- rzKu + Gs - rlKBB - r151

Ty

The constant A in equation (29) can be determined by using the initial

condition

22
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=1,0 - i 1 L
0 0.2 0.4 0.6 0.8 1.0

g
s

Fig. 5 The required control vs the step heat disturbance at the steady-
state condition '
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A=1-K

Hence, the solution is

-r,t

x; = (1-Ke A S (29a)

The steady state value of x, can be obtained by substituting t = = in
equation (29a). This gives

xl -+ K as t >

Figure 6 shows the behaviour of Xy for different values of 6 and O

2.2.2 EXAMPLE 2, Consider a system in which the time constant of the
heat exchanger is not negligible, i.e., Ty # 0, The performance equations

for such a system have been derived as [equations (13) and (23)]:

dxl :

-d'-t— + Xl = rl 1{2 + '.L'z KCI + Us Uo(t) (13)
dx2

rra + X, = rX; - rKBB - rKT (23a)

with the boundary conditions

xl(O) =1 at t=20
l1-1r Ka
xz(D) = - at t=0
1
where
T
t =
2

The above equations can be simulated for different values of control ©,



Fig. 6 Result of simulation of example 1

25
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Thus eliminating x, from the two equations gives

2
dle dxl
dtz + (r + 1) TR (r -1 r) X = rr, K + ro_ - rry (KY +K36)
(30)
The solution of this equation is
Alt J\zt
x,(t) = Aje + Aje + K (31)

where A, and A, are constants of integration. A, and A, are roots of the

1 2

characteristic equation

A2+(r+1))\+(r-rlr)=0

and

+ - -
o 1-1:21(0l ros rrlKBB rl:-lls'.‘L
r-nr
) rzKﬂ + 05 - rlKBG - rle
ta

Note that ll and A?. are negative since 0 < ri < 1. The solution of X,

is obtained as

llt Azt
+ (1+12)A2e +K-1r Ka - 0‘8] (32)

l G
xz(t) = -;; [(l-H\l)Ale 2

The constants Al and A2 can be determined by applying the initial conditionms

to equations (31) and (32) as



1

= —=————= (0_ - A, +K),)
1 (g -2,) s "2 2

AZ =1- Al - K

The steady state of the system can be obtained by substituting t =

in equations (31) and (32). This gives

and

Figures 7 and 8 show the results of simulation of this example for two
different sets of parameters. The results of the limiting case of r = =,
i.e., when the time constant of the heat exchanger is negligible are

also shown in these Figures. The numerical values used in Fig. 7 are

T, = 0.8, r, f 0.2
Ku = 1,5, KB = 0,625
K = 0.625, 8 =1

Y

c =0,75

s

It should be noted that as r + «, i.e., Ty 0, the results are reduced
to the results of example 1. The graphs of Xy for r = 100 and r = = in
Fig. 7 are almost the same,

In Fig. 8 the following numerical values are used



1.1

0.5

2.0

-1-0

Fig. T Result of simulation of example 2, g_ = 0.75, K

2.0

28

=K = 0.625

Y



1.15

1.10

0 0.5 1.0 1.5 2.0
t
x2 > -0.TS5es t + =
-l.c 1 - 1 1
0 0.5 1.0 1.5 2.0
t
Fig. 8 Result of simulation of example 2, T = 0.825

=1l.2, K =K
Y

B

29



r, = 0.8, r, = 0.2
Ku =1.,5, KB = 0.825
K = 0,825, g =1

Y

o =1.2

s

From these figures the effect of the time constant of the heat exchanger
upon the system responses Xy and X,y is evident. When the time constant
of the heat exchanger is significantly large, which is equivalent to
emaller value of r, the temperature of the room, xl,-increases for a
short time and then decreases exponentially. The response of the heat
exchanger, Xy, decreases slower when the time constant of the heat

exchanger is significantly larger at the beginning. After t = 0.5 the

response of the heat exchanger becomes stable and decreases very slowly.

2.3. PERFORMANCE EQUATIONS FOR TWO COMPARTMENTS MODEL

Consider now the case in which flow of air in the room can be
characterized by two completely stirred compartments in series model
(2 CST's-in-series model), The following assumptions are made for the
system proper:

a) The room is divided into two well mixed compartments in series.
Volume of each pool is denoted by vll and V12’ and the temperature in
each pool is denoted by Tcl and Tc2'

b) Backflow of air from the second compartment to the first
compartment is negligible.

¢) Disturbances are equally distributed over the system.

30
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d) Fresh air comes into the room at a constant flow rate, while
exhaust air is released from the second compartment at a constant flow
rate.

The schematic diagram of the system is shown in Fig. 9. The per-
formance equations for each pool can be obtained by using the heat balance
around each compartment, Thus, for pool 1,

[heat in] - [heat out] = [heat accumulation]

or
[Q,T C_ +Q.T c+b( +Q,) T C‘U()]
QT3 P Gt QT e Gy T Q) Tg P G Bole
dT
cl
- [(Q; + @) Tclpcp]=VllpCp'a-&-" (33)

Dividing the equation by (Ql + QZ) p Cp gives

aT 5 T11
13 T T =TTy P Tyt W Ta Yo

(o) (34)

Tcl = TclO_ at a=0

where 1., is the time constant of pool 1 and is defined by

11

v
11
S & S (35)
179, +4q,

Similarly, for pool 2 we have

.V . )
12

dT

_ cl
- [@Q + QZ) Ty P cp] =Viy P cp o



Vi V12 q
=g
l VI ds l Vl ds
e e S S [ ittt T
I 1 |
] i :
| | ,
|
T i 1 T
Ql | ] T If_ 1
I cl | c2 |
| 1 |
! 1 -
i 1 '
e s i e i sl
]tl l*r'
QZ’T2 QZ ’Tc2

Fig. 9 Schematic representation of the 2 CST's-in series model
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Again dividing by (Ql + Qz) p Cp yields

aTeo 12
2% e " Tat T Ta Yol 8
Tcz = Tc20 at a =0
where T12 is the time constant of the second pool and is defined as
v

. 12
T 2 e = . (37)

12 Ql + Q2 .

For the heat exchanger the following equation has been derived as

equation (21)

d’I‘i

23 TTT Tt _ (38)

i c2 r

Equations (34), (36) and (38) can be written in dimensionless form as

Fr t T1p %12 = T1p X110+ 9 Upl®) (40)

dx

2 -
-EE— + rx2 = rx12 - aSB - a6 (41)

with the initial conditions
xll(O)-= x12(0) =1 at t=0

1l -~ r2K ‘
x,(0) = —_— at t=0 (41)

L
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where
. Tcl K = T2
5 -
11 TclO " TclO
T
c2 1
X.n = s K, = (T -T 1
12 TclO B 2Tc10 rmax rmin
T
i 1
X = ’ K = [T + T ]
2 Tclo 2Tclo rmax rmin
811 = T1%310 a2y, = T11%%,
T
1
8. = rK ’ r = eem—
5 B 11 T11
T
a, =1k, r,, = —
6 12 T10
r =t ; el
L
Ty 1 Q+Q
I - Ml . Q,
- ]
1 Ql + Q2 2 Ql + Q2
v
2 a
T, = 7= t =—
2 Ql Tl
o] = Td
5 Tao

2.4 SIMULATION OF THE 2 CST'S-IN-SERIES MODEL
The performance equations (39), (40) and (41) can be used to simulate

the 2 CST's-in-series model, Thus if the time constant of the heat
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exchanger is negligibly small, the performance equations of the system

become

dxll
& T T*in T 11“12 - - 2K+ ag, + o Uyt (42)
b +r..%X.. =T, % .+ 0U(E) (43)
at T12%12 = T12%11 7 %570
with the initial conditions
= x = ] at t=20 (44)

i G T T

Now eliminating X11 from equations (42) and (43) gives rise to the

following differential equation.

fffl2_+ (ryq + Ti,) Eflg + (r..r,. T )x
o2 1t @ 11512 ~ 211712
ay, 1, + 0 (xy tr,5) = 27y K8 = 2y Tk, (45)

Solution of equation (45) can be obtained if the functional form of the
control variable 6 and the numerical values of the parameters are known.

In case 8 is a step function, equation (45) can be integrated as

llt ?\211
Xip = Ae + Aze + K (46)

where Al and Az are roots of the characteristic equation

2
AT+ (r11 + rlz)k + r11r12 - allrl2 =0
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and Al and A. are constants of integration. K is the particular solution

2
of the differential equation and given by

31Tt 0T * T T AnTioRed T AnTioly

T11F12 T %1112

K

From equation (42) the solution of X, can be written as

1 llt lzt
= ;I; [(r12 +_l1)Ale + (rl2 + lz)Aze + r12K - cs] (47)

*11

The constants in equations (46) and (47) can be determined by applying

the initial conditions which yield

A1 +.A2 +K=1
(r12+11)A1 + (r12+)\2).A2 + rliK -0, =Ty
Thus the solution of these simultaneous equations yields

=712 —_12K ~ B
i S W=

2 1

and

Ay=1-K=-4

The steady state values of the responses can be obtained by letting t > =

in equations (46) and (47). Thus,

and
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Numerical Examples:

The following numerical values are used

r 0.8, r = 002

1

K
a

1.5, 6 =1

Figure 10 shows the results of simulation when the constants of the heat
exchanger, KB and KT’ are both equal to 0.625 and the step heat disturbance
o is equal to 0,75. The result of the one CST model when the time

constant of the heat exchanger is negligible is also shown for comparison.

It is seen from the figure that as the time constant of the pool 1 decreases,
i.e., 794 increases, the temperature of pool 1 decreases faster and to a
lower value, The temperature of the pool 2, X199 increases for a short

time and then starts dropping down, The curves for X4 and x,, are
approximately parallel for the different values of I, after t = 0.5,

When r,, - 1, the 2 CST's—in-series model approaches the-one CST

11
model. The results of the 2 CST's-in-series model, in this case, should
be reduced to that of the one CST model. In Fig. 10, graphs of X1 for
Ty < 1.2 and ry1 = 1.0 have approximately the same form. As 4 >
the 2 CST's-in-series model again approaches the one GST model. In this
case X;, should have approximately the same formras that of X, in Fig. 6
(6 =1, o, = 0.75). |
Figure 11 contains the results of simulation for KB = 0,825, KY = 0,825

and o, = 1.2. The results are similar to that of Fig. 10.



38

0.8 1 . L

Fig., 10 Result of simulation of the 2 CST's-in-series model

c =0,75, K, =K = 0.625
s B Y

2,0
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CHAPTER 1I1

APPLICATION OF PONTRYAGIN'S MAXIMUM PRINCIPLE TO OPTIMAL ENVIRONMENTAL

CONTROL OF CONFINED SPACES WITH STEP HEAT DISTURBANCE

The basic form of Pontryagin's maximum principle which is a major
part of the modern control theory is presented. The principle is used
here to determine optimal temperature control policies of life support
systems, The procedures and computational approaches employed for ob-
taining the optimal control policies are given in detail. Three concrete
examples concerning the temperature control of a life support-;ystem
consisting of an air-conditioned room or cabin subjected to step heat
disturbance and of a heat exchanger are considered.

The step heat disturbance arises from various sources, such as
opening a window or a door, a temperature change in the incoming air,
and heat generated Ey the people or animals. Sudden start up of a
machine or a process (furnace, engine etc.) in the confined space will
also give rise to a step heat disturbance. In this type of disturbance

the rate of heat input in the control period is constant.

3.1 INTRODUCTION

The mathematical models of a life support system have been established
in the preceding chapter. In this chapter the application of the basic
algorithm of Pontryagin's maximum principle for determining optimum control
poliéies for such systems is illustrated., Application of the maximum
principle provides only the necessary condition for the optimum control
and'almost always gives rise to a split-boundary value problem, However,

the maximum principle still provides in most cases a practical approach
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to process-systems optimization,

The basic form of Pontryagin's maximum principle is stated first and
it is then applied to obtain optimal control policies for environmental
control systems,

The problem is to maintain the system in a desired state over a
fixed control period with minimum effort. Thus, the objective function
to be minimized is the sum of the integrated deviation from the desired
state of the system and the integrated effort required to maintain the
desired state over a specified control period. Thus, the performance

index to be minimized is

S = fT[bB2 + c(x, - x )zldt
0 1 1d
where b and c are suitable weighting factors.and the desired state of the
system is taken as X4 = 1.

The desired state may be the comfort conditions in a life support
system or as in the case of a biomedical process, the optiﬁum temperature
required for a chemical reaction. The effort is the amount of fuel re-
quired to achieve the desired control action. By giving appropriate values
to the weighting factors it is possible to achieve the uniformity of units
and the desired objective funqtion. For example, if it is very important
to maintain the system in a desired state, a high value of c will be used.
On the other hand, if the fuel is scarce a high value will be given to b,

In the first example the time constant of the heat exchanger is con-
sidered to be negligibly small, In the second example the time constant
of the heat exchanger is not neglected, In the third example the optimal

policy of the two CST's-in-series model is derived, the time constant of

the heat exchanger is again neglected.
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3.2 STATEMENT OF ALGORITHM
Consider that the dynamic behavior of a controlled system can be

represented by a set of differential equations

-c-l-x--i-u £, [x,(t), X, (t), eoe, X (£); 6.(t), 6,(t), v., 8 _(O)]
dt e Rl s A w St d S hhed Vgl A g
i=1,2, ..., s, tpsts<T (1)
or in vector form
-‘dl—: = f[x(t), 8(v)], tg 2t <T - (1a)

where x(t) is an s-dimensional vector function representing the state of
the process at time t and 6(t) is an r-dimensional vector functidn |
representing the decision at time t [9, 24]. The functions fi’ 1=1,2,..0,8,
are single valued, bounded, differentiable with respect to the x's with
bounded first partial derivatives, and are continuous in the 8's on a
product region x6, where x and 6 are closed regions in the s—dimensional
x-space and r-dimensional 8-space respectively., Note that we are dealing
with the autonomous systems in which the right-hand side of the performance
equation, equation (1), depends implicitly on time t. The non-autonomous
systems are those in which the right-hand side of the performance eqﬁation,
equation (1), depends explicitly on time L.

A typical optimization problem associated with-such a process is to
find a piecewise continﬁous decision vector function, 6(t) subject to the

p-dimensional constraints
hy[6(B)] < 0, i=1, 2, eous P (2)

such that the performance index
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s
S= ) ¢ x, (1), c, = constant (3)
i=1

is minimum (or maximum) when the initial conditions
xi(tD) = X0 L Xy 25 wany 8 (4)

are given. The duration of control, T, is specified and the final con-
ditions of state variables are unfixed. This type of problem is often
called the free right-end problem (with fixed T). The decision vector
(or a collection of control variables) so chosen is called an optimal
decision vector (or optimal control variables) and is denoted by 8(t).

The procedure for solving the problem is to introduce an s-dimensional

adjoint vector z(t) and a Hamiltonian function H which satisfy the following

relations
s
H[x(t), 6(t), z(t)] = [ z,(t) £ [x(t), 6(r)] (5)
i=1
dz s of
-—-—é'—=_iH—=_ z z-——i' 131,2’ sesy B (6)
dt axi jeul j Bxi
zi(T) = ¢, i=1, 2, ..., s @))

The set of equations, equations (1), (4), (6) and (7), constitutes a
two—point split boundary value problem, whose solution depends on 8(t).
The optimal decision vector B(t) which makes S an extremum also makes
the Hamiltonian an extremum for all t, i.e., t0~£ t <T[9, 24, 25).

A necessary condition for 5 to be an extremum with respect to 6(t) is
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2-o, 121, 2, cauy 1 (8)
i

if the optimal decision vector is interior to the set of admissible decision
8(t) [the set given by equation (2)]. If 6(t) is constrained, the optimal
decision vector B(t) is determined either by solving equation (8) for
8(t) or by searching the boundary of the set. More specifically, the
extremum value of Hamiltonian is maximum (or minimum) when the control
variables are on the comstraint boundary., Furthermore, the extremum value
of the Hamiltonian is constant at every point of time under the optimal
condition. It is worth noting that the final conditions of the adjoint
variables, zi(T), are often given as -y instead of c; as shown in
equation (7), in imploying the maximum principle of Pontryagin. The use
of such final conditions of zi(t) gives rise to the condition that the
Hamiltonian is maximum when the objective function is minimized, and min-
imum when the objective function is maximized as stated in the original
version of the maximum principle of Pontryagin [9, 24]. |

If both the initial and final conditions of state variables are given,
the problem is said to be a boundary value problem, The basic algorithm
presented except the condition given by equation (7) is still applicable [9].

If optimization (usually minimization) of time t is involved in the
objective function in a problem with an unfixed duration of control, T,
the problem is then called a time optimal problem. 1In this case, the basic
algorithm presented is still applicable with an additional condition that
the extremal value of the Hamiltonian is not only a constant but also

identical to zero. The simplest example of the time optimal control

problem is one in which the performance index is of the form



45

T
s =/ dt 9
0

Such a problem is often called a minimum time problem.

3,3 EXAMPLE 1., Consider a life support system consisting of an air-
conditioned room or cabin and a heat exchanger of negligibly small time
constant (12 = 0) and subject to a step heat disturbance, The performance

equation of such a system has been derived as (see equation (27) of

Chapter 2)
dx; '
rre + r2x1 = rZKa = rlKBB - 1:11(.Y + Us
X = 1 at t=0 (10)

The objective function to be minimized is the sum of the integrated control
effort to maintain the state of the system in the desired state and the
integrated deviation from the desired state over a specified control time
and is given by
x 2 2

S = £ [b8° + c(x; - x, )7 1dt (11)
where b and ¢ are weighting factors, The desired state, X1 4 is equal
to one,

Introducing another state variable xz(t) such that

t

x,(t) = J [be2 + c(xl—l)zldt
‘ 0
it follows that
dx -
2 _ 2 132 e
g = bo" + c(xl -, 32(0) =0 (12)
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The problem is thus transformed into that of minimizing x,(T).

The Hamiltonian is

2 2
H= zl[—r x, +r Ka -r. K8 - rIKY + os] + zZ[bB + c(xl-l) ]

271 2 18
(13)
The adjoint variables are defined by
dz
1__ 380 _ . " -
il 331 = Ty2; 222 c(xl 1Yy zl(T) 0 (14)
dz
2 _  9H _ _
I T 0, zz(T) =1 (15)
2
From equation (15) the solution of z, is obtained as
zz(t) =1, 0<t<T (16)
The Hamiltonian can now be rewritten as
H=z[-rx, +7r K -rK6-rK +0 ]+ b82 + c(x —1)2 il?)
17271 2 a 18 1y s 1
%
The variable portion of H that depends on 6, H , is
* 2
H = —rlKlea + b (18)

%
Inspection of H shows that the optimal control is of continuous type

and is obtained from the following necessary condition for optimality [9]

*
aH _
S5 = 0= - rKgz, + 200 (19)
which gives
r.K
B omB y : (20)
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Using this relationship into equation (10) and eliminating Xy from

equation (10) and (14) give

a’s 2 . ¢ 2
;:5“ = [r2 +'E'(r1KB) ]zl = 2c(r2 + r2Ka + rlKY - cs)

The solution of this equation is

2 Alelt +A e—lt

’ 5 + K _ (21)

where

2 c 2
A =j T, + 5 (rlKB)

2c(r2Ku - rle + oy = rz)
2 c
Lty

K =
2
(rlKB)

and Al and A, are constants of integratiom,

2
The solution of x, can be obtained from equations (14) and (21) as

t

1 At =-A
xl(t) =32 [(rz-A)Ale + (r2+l)A2e + r2K]A+ 1 (22)

Now employing the initial condition, xl(O) = 1, in equation (22) yields

(’rz-A)Al + (r,¥A)A, + 1K =0 (23)

Applying the final conditionm, zl(T} = 0, to equation (21) yields

AT -
Ale + Aze

ATixk=0 (24)

The constants Al and Az can be determined from equations (23) and (24)

by applying Cramer's rule as
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-r.K r +A
2 2 AT
=AT r K(l-e ) + AK
K. ~K e - 2
1 -AT AT

rz—l r2+l (rz-k)e - (r2+A)e

AT =AT
e e
rz—l -r2K
ekT -K rzK(elT-l) + MK

A2 = T

L AT —AT X
(rz—A)e - (r2+k)e (rz—h)e - (r2+l)e

The optimal control policy can now be determined from equations (20) and

(21) as

r.K
18 At =it
[Ale + Aze

8(t) =5

+ K] (25

The response of the system can be found from equation (22).
In the cases where O is appreciably large compared to constants KB
and KY' the optimal control given by equation (25) will violate the

constraint |e| < 1. Therefore the condition

does not yield the admissible control action. The optimal control for

0<t<t is
- =g

0 = +1
where tg is the time when the saturation period ends, which is to be

determined., With 6 = +1 equation (10) can be integrated as

t
+ K"

-T

le

2
x,(t) = B " 0<tc<e (26)
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where

The constant of integration, Bl, can be determined by employing the initial

condition in equation (26) which yields

= R
Bl 1-K

With the solution of xl(t) given by equation (25), equation (14) can be

integrated as

r.t cB, -r,t v
2.(t) =B, * +—L¢ * 42D 0<tcst (27)
1 2 r, r, — = g

where B2 is the integration constant to be determined later.
After time t the control action will no longer be saturated and

thus the condition

can be used to determine optimal condition. Thus the optimal control,
optimal state, and adjoint variable given by equations (25), (22), and

(21) can be used for ts < t < T. The constants Al and A

9 in equations

(21) and (22) can be determined by using the fact that x, and z, are con-

1

tinuous with respect to t. Hence at t = te

i
o
i}
+
>
[]

z2i(t) = A 2

(28)
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At -At

1 s s
xl(ts) T [(rz—A)Ale + (r2+A)A2e + r2K] +1

= B_e + K' (29)

Also at t = ts’ p = 1, Hence from equation (20) and (21) we have

r1KB th -lts )
35 A8 +tAe T +K)=1 | (30)

Using the final condition in equation (21) yields

Ale"T + Aze"u +K=0 . (31)

There are four unknowns Al' Az, B2 and t, in equations (28), (29), (30),

and (31). The constants A1 and A2 can be solved from equations (28) and

(29) in terms of,B2 and tB as

=it
: s r,.t cB -r,t =r,t
_e 27s 1 2°s 2°s
A1 g {(ri+k)[Bze +-—;;.e ] - ZCBle
'—
+ [2C(K 1) _ K]} (32)
r -
2
At
.t cB -r, t -r,t
. - 2°s 1 27s, _ 27s
A2 e {(l-rz)[Bze + —;; e ] 2cB1e
"
+ A[ZC(K 1) K]} (33)
T2

Substitution of equations (32) and (33) into equation (30) and (31) leaves
two equations with two unknowns B2 and ts. These equations can be solved
simultaneously using a search technique to determine theése constants.

Then the optimal policy and response are summarized as follows:
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6=+1, O<t<t
- - 8
_.rzts (33a)
x, = Bje + Kf, 0tz
(33b)
r.K
~ _ 18 At -At
8 T [Ale +Aze + K], ts_-:_ti'r
(33¢)
X =l—[(r-?\)Aelt+(r+A)Ae"At+rK]+l t <t<T
1 2c 2 1 2 2 2 ’ S T
(334d)

The following four cases are considered in this efample:

case 1l: b ¢ =0,1

|
=
-

case 2: b c=1

]
=
-

case 3: b =1, c =10

case 4: b=1, ¢ = 100
The results of this example for T = 1 and T = 5 are shown in Figs. 1, 2, 3
and 4, The numerical values of the system constants with which the
model was simulated are used in this example.

In case 1, where more weight is given to the control effort, 6,
than to the state deviation, the optimal control has a very small positive
value, In case 4, where more weight is given to the deviation of X from
the desired value, the optimal control 8 has an approximately constant
value that is required to maintain the system in the desired state, i.e.,

x. = 1, This value of 6 for a given g, can be found from Fig. 5 of

1
Chapter 2., Cases 2 and 3 are intermediate between the two extreme cases
1 and 4,

It should be noted that the control 6 in all the cases drops down

to zero at the end of control period T.
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Fig. 2 Optimal control policy and system response of the one CST model
with 1, = 0 (Ex. 1), B 0.75, K, = KY = 0.625, T =5

2 B
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Fig. 3 Optimal control policy and system response of the one CST rmodel

with T, = 0 (Ex. 1), g, = 1.2, I\B = K\r = 0.625, T =1
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Fig. 4 Optimal control policy and system response of the one CST model

with T, = 0 {Fx. 1), g™ 1.2, KB = KY = 0.825, T =1
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In Fig. 3 for case 4 the optimal control policy corresponds to the

optimal policy given by equations (33a) and (33c).

The optimal control

is at the upper limit, & = +1, in the period (O, ts). The time t, at

which the saturation period ends is 0.92. After the saturation period

the control switches to the continuous control given by equation (33c)

and drops steeply to zero at the end of the control period T,

3.4 EXAMPLE 2.

Consider a life support system consisting of an air-

conditioned room and a heat exchanger and subject to a step heat dis-

turbance as in the first example, the time constant of the heat exchanger,

however, being not negligible.

The performance equations for such a

system have been derived as [equations (13) and (23a) in Chapter 2]

=

E;— + xl = rlxz + rZKu + Us
——2-+ rx, = rx, - rk 6 - 1K
dt 2 1 B Y
with

X, = 1 at t=20

l-1rK

2 a

x2 = . at t=20

The objective function to be minimized is

T

5=

[be? + c(xl-l)zldt
0

where T is the specified final control time,

state variable x3'such that

(34)

(35)

(36)

Introducing an additional



t

x(t) = [ [b6% + c(x;-1)2)at
3 0 1
it follows that
dx
3_ .2 2 ~
F T be”~ + c(xl-l) . x3(0) =0

The problem is thus transformed into that of minimizing xB(T).

The Bamiltonian is

. o5 dxy Cy
H[Z(t), X(t), e(t)] = zlr"' 22 ?i-t—-'- 23 :i-t_

= zl[—xl + Ii%, + rZKu + cs] + zz[—-rx2 + X, - IKBB - rKY]
+ 25007 + c(x-1)%]

The adjoint variables are defined as

dz
1 _ ol _ - _
& T TR Zezy(xy-1)
.f]i..z. - .ai. = -r_Z + rz
dt axz 171 2
dz
3 __38 _ -
d& " Taxy mglly =1

From equation (41) the solution of z, is obtained as

z4(t) = 1, ~<t<T

The Hamiltonian can now be rewritten as

57

(37)

(38)

(39)

(40)

(41)

(42)
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H= zl[-x1 + T %, + rzKa + cs] + zz[-rx2 + X, - rKBB - rKT]

+ b92 + c(xl-l)z (43)

*
The portion of H that depends on 8, H , is

B = —rK.z.0 + boZ b4
: -tK,2, _ (44)

*
Inspection of H shows that the optimum control should be of the con-
tinuous type. The optimum control is obtained by the necessary condition

of optimality

*
s _ @ o
5 = a8 - 0 rKle + 2b8
as
e
9=-£Tb~22 (45)
The boundary conditions for equations (39), and (40) are
zy = o, z, = 0 at t=T (46)

The Hamiltonian must remain constant at every point of its response under
the optimal conditions. Substituting equation (45) into equation (35)
and eliminating X, from equations (34), and (35) gives

d2x1

dt2

+ (r+l)‘§;l-+ (r—rlr)xl = rrz‘Ku + o

2
r, (rK.)
- rr. K - L 8

1%y 7 %2 47
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Now eliminating z, from equations (39) and (40) gives rise to

2er, (x,-1) .
2, = = s (48)
D = (xr+1)D + (r—rlr)

Inserting equation (48) into equation (47) gives

4 2 2
d x dx (r.X,) ¢
41- (2r1r+r2+1)----];+ rz(r§+-—l—8—-—
dt dt

)

2

(rerKZ}c
6 -rr.r,K + 18
2°s 12y b

_ 2 2
= (rzr) Ka +r'r
The solution of this equation is

At At -t At :
xl(t) = Ale + Aze + Ble + B,e + K (49)

-where_ 11, )\2, —11, —12 are roots of the following characteristic equation

2
4 2 5 . . 9 "'i‘(sc
A =k

-{2r1r+r + 1)A +r(r2+ 0

Al, Az, Bl’ and B, are constants of integration. The particular solution,

2

K____2<1 2 172 b
21(2
r-K. c
r2+ 18
2 b

The solution of X, can be obtained from equation (34) as
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1 Alt lzt -Alt
= = —A
X [1+A1)Ale + (1+12)A2e + (1 l)Ble

2 rl

-Azt
+7(1-A2)Bze + K - rzKa - Gs] (50)

From equations (30), (31), (36) and (26) the solution of z, becomes

t At

1 2 2
+ [Az + (r+l) + rzr] Aze

2 2

PRETRER .- - {{xz + (cH)h. + ror]A el
1 1t Torldy
(rKB) r

2 -Agt 5 -A,t
+ [Al - (r+l)ll-+ rzr]Ble + [12 - (?+1)A2 + rzr] B2e

- - +
rrzKa o + rrlKY rrzK} (51)

And now from equations (51) and (40)

ALt
__ % 3, .2 2 1
z; = P )2 (Al + ll rAl(r1-+ r) T rz]Ale
178
ALt
3 2 2
+ [lz + AZ - r)xz(r1 +r) -r r2]Aze
3. .2 : 2 ks 3% (2 2
+ [-11 + kl + rAl(rl +r) -r rlele + [—lz + kz + rAZ (rl +r) -1 r,
-A. .t
2 2 2 2 2
Bze + r rZKa +r 05 - rle] + r rzK} (52)

Now using the boundary conditions, equation (36), equations (49), (50,

(51) and (52) give
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A+ A2 + B, +B, +K=1 (53)

(1+kl)Al + (l+)\2)A2 + (l—Al)Bl + (1—%2)32 + K

=1+ o (54)
2 l\lT 9 ALT
[Al + (r+1)Al + rzr]Ale + [Az + (r+1):\2 + rzr]Aze
2 —llT 2 =-A,.T
+ [AZ - (r+1)l1 + rzr]Ble + [12 - (r+L)12 + rzr]Bze
- rrzKu - 0, + rrng + rrzK =0 , (55)
A,T
3 2 2 1 3 2
[Al + Al - rll(ri+r) - r2]A1e + [Az + xz - rJ\z(r1 + 1r)
AT -3, T
2 2 3 2 2 1
- r2]A2e + [—ll + Al + rkl(ri+r) - rZ]Ble
4 [-x3 + 12 + A (r,+r) - rzr 1B edsz + rzr K + rzu - r2r K + rzr K=0
2 2 271 2972 2 a s 1Yy 2

(56)
Subtracting equation (53) from equation (54) and r times equation (55)

from equation (56) gives

AlAl + A2A2 ', AlBl = AZBZ L ‘ (57)

AT J\ZT

\2 | 1 2
MDA+ A ryrlae T+ 2,00+ (HA, 4 r,rlA e

2 -l\lT : 2 AZT
-11[11 - (r+1)7tl + rzr]Ble —12[12 - (r+1))L2 + rzr]Bze =0

(58
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The set of equations (53), (55), (57), and (58) can be solved simultaneously
to determine the constants Al’ AZ’ Bl and BZ' The optimal policy © and
system responses Xy and x, can then be determined from equations (45),
(51) and equations (49) and (50) respectively. The solutions for three
different values of r are shown in Figs. 5, 6, and 7. The results for
X, and 8 are similar to the results of example 1. The response X, drops
steeply downwards from the initial state to t = 0.1 and then increases
slowly and approximately linearly to the final time t = T in Figs. 6 and
7. When the time constant of the heat exchanger becomeé negligible as
compared to the time constant of the system proper, i.e, for large values
of r, the results of this example approach the results of example 1,

Thus, in Fig. 17 the results of X and 6 are approximately the same as

that of Fig. 1.

3,4 EXAMPLE 3: Consider a life support system consisting of an air-
conditioned room and a heat exchanger as in the previous two examples,
except that the flow of air in the room is characterized by the two CST's-
in series model. The performance equations for such a system have been
derived [equations (39), (40) and (41)] of Chapter 2. Now assuming that
the heat exchanger has negligibly small time constant, the performance

equations become:

dx
11 _
=t Ty%y < ap¥p - 2akg® mAanf et 0 Up(t) (59)
%19
Tt T1%12 = Tr* t 9% () (60

with the initial conditions
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=x,,=1 at t=0 (61)

11 12

The problem is to minimize

T 2 2 2
S = g [be™ + c(xll-l) + c(xlz—l) ldt
where T is the specified final control time and b and c are constants.
If an additional state variable is introduced as
(t) = ft[baz + e~ * el ~1)21de
x4 ! elxyq c(x,,

it follows that

dx, 2 2 2 :
at = b + c(xll—l) + c(x12_1) v 33(0) =0 (62)
and
T 9 2 2
S = g [bO° + c(xlljl) + clx),-1) lat = x,(T)

The problem is thus transformed into that of minimizing x3(T).

The Hamiltonian is

dxll dx dx3

. 12 3
Blz,x,00 = 2p; q¢— + T 2133

212 dt

= zp -1 g% + ag %y - 8K - apK +ap, o]

2 2 2
+ z2),[-1 %), F T Xy H 0]+ 25007 + elx) -1+ e(x -7 (63)

The adjoint variables are defined by the following differential equations,

dz;;  om

dt | Bxll

= T)y2yp ~ Tip%pp ~ 22360 mD), 2g4(T) = 0 (64)

Z =0

XL

66
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dz; 3H
& - " axp,  f12 11T %11 1T 2z3e(x1,-1), 2,(T) = 0 (65)
212 =0
dz
3 H
Tl —']—‘; = 0, 23('1') =1 (66)

The solution of equation (66) is

_24(8) =1, 0<t<T (67)

The Hamiltonian can be rewritten as

B = zy[-r);%) + a5;%), = 8Kg8 = a K+ 8, + &)y + 0]
bz [t X+ Tk + 0 ]+ Db0%+ elx, -1+ elx, -2 (68)
1207T19%12 T T19%11 T 9 11 (%15
®
The portion of H that depends on 6, H , is
*
H = K z..0 + b62 ' (69)

B b1 L

*
An inspection of H shows that the optimum control should be of the con-

tinuous type and is found from the condition of optimality:

®
3  dH
0 - s - 0 = —81%g%1n t 29
as
a .k
~ 2115
0 = 55 %11 (70)

The maximum principle requires that the system equations and the adjoint
variables, equations (59), (60), (64) and (65) are integrated in such a

manner that the two-point boundary conditions
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xll(O) = xlz(ﬁ) =1

%), (T) = 2,,(D) = 0

are satisfied, Meanwhile, the Hamiltonian must remain constant at every

point of its response under the optimal condition. Thus eliminating Z49

from equations (64) and (65) gives

2
D7 = (ryy + 1p,) D+ (ryy7yy = 31479012y,

= 2cr12(x12-1) - Zc(D-rlz)(xll—l) (71)

From equation (60)

% r—l— [ (D+r 1 (72)

}x. .—0
12 127712 “s

11

Substituting equation (72) into equation (64) and eliminating Z19 from

equations (64) and (65) gives

02 .
2c{ (=~ T - 21.'12):.-:]_2 - 2:12 - crs}
B 12
i 1 S (73)
D" = (ryy+Tp)D + (ryyr5mayTyy)

Also inserting equations (72) and (73) into equation (71) gives

2 + (r D + (r

117712 1171278117120 1%12

(allKB}zc
= ma) Ty K Foap,ry, v (riTg) b

2 2
120%1p + 2¥35 + 0.1y,)

7
D = (ryytry )0 + (ryy7y,-a0,7)

[(D2 - 2r




or

4 2 c 2. 2
{D + [ (rggtry )" + 2rygry, - ATy -5 (apKg) D

2 2 c 2
+ [(ryyryy - aygTp) + 2rp5 3 (apKe) ]}xlz

= (r)ryp = 8Ty [may 7K+ agyryy + 0 (ryptry))]

2
(a..K )¢
et B 5 2

b 12 ¥ 9570}

From equation (74) the solution of X;, can be written as

llt Azt -A. L —lzt
le = Ale + Aze + Ble + Bze + K

where Al’ 52' Bl,rand B2 are integration constants, and 11, 12,

-A2 are roots of the following characteristic equation

4

2 c 2 2
A= [y +r)" g (agRg) T = 2(ryry, = agyr ) A

2 c

+ [(x )2 + 2r12 E-(allKB)zj =0

11712 T %11"12
The particular solution, K, is given by

r..K +a, .r. B + cs(r11+r12)] + (allKB)

2 ¢

69

(74)

(75)

—11 and

2

[2r12 +csr

b 12]

& (ry37957311 190 -2y 70K * 35,7,
2 c )2

)
)7 2rg, po(aggKg

(r19739 = 213712

The solution of X, can now be written from equation (60) as
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X9 = T\ [(rl2 + Al)Ale + (rlz + Az)Aze
llt lzt
+ {rlz-kl)Ble + (rlz-kz)Bze + rlzK - GS] (76)

Substituting equations (75) and (76) into equation (59) the solution of

zll can be written as

At

2b 1

= p)
(a);Kg) 1y,

Z

11 {layyryy = (ryta) (ryyFAy)]Ace

ALt
_ - 2
+ [a)gr), = (r ) (rphAg)lAe & 4 [agry, -

ALt A

t
1
(ry,mA) (xy72 ) 1Bje &+ [a 7y, = (=R (ry4=25) 1B,e

2

* o + ety T AaTRy T Pt TN “n

" And from equation (64) the solution of z,, can be written as

(., -1,)
_ 11" "1 2c_
12" ({0 £c.)2 [a)17y5 = (7P (e ] = 75 (r12+"1)}
f1178%12 12
At 2b(r,,-2,)
1 11722
s . E x5 [a)y7y, = (Fpp#a) (x4 ]
1156712
ALt 2b(x, ,+A,)
2¢ 2 11"
"2 (r12+“2)} B Y nL ) (23735 = (x3p = AP (ryy2p))
12 411712
ALt 2b(r_.+21.)
2c 1 11 2
2 (r12'A1)} Bie T {3 [ayTyy - (rpphp) (rgyhy))

1o (a) KTy ;)



lt r

2c 2 ~11
i o | =
2 (F13 2)} Boe (rpy= 12)° * 2ot T oAk
r i
12
2 2c Gs
= {xjf —H@ eyl =g I8 =l - r12] (78)
T12
The constants Al, Az, Bl’ and B2 in equations (75) through (78) can be

determined by applying the boundary conditions, Thus, at t = 0, from

equations (75) and (76)

A + A, + B +B,+ E=1 (79)

(r )A + (r AZ)A2 + (rl2 1)B + (r12 2)3 + rlZK

12

or subtracting r,, times equation (79) from equation (80)

llAl + AZAZ - llBl - Asz =0 (81)

and at t = T from equations (77) and (78)

AT
1
[a);775 = (rypFA)(ryhA ) 1A e &+ fagyr g = (x4, (2,000 ]

AT AT
Aje T+ [agyry 4=y =2 ) (ry4-2) JBye + lagyry5-

=-A,T

(ry,7A ) (r A ) IBye 2 + (x

Tio7A, )c + a T

111712 12512 =~ 8117125

= (rgyTyy = 71530k =0 ‘ (82)

71
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2b{r,,—A,)
11 "'1 2c
o kel T (rpp # AP0y + AP =775 (g # "1)}
115712 12
A,T 2b(r,, = A,)
1 11~ M
aym - F e F ool [a)3715 = (Fyp + 2 (xyy + 2)) -
11%8%12
AT 2b(xr,, + A.)
2c 2 11 1
—2 (¥ "2)} & la)37p = (Fpp = AP
12 . 1178712
AT 2b(x, ,+7.) :
2c 1 11 "2
(ryy = M) =755 by - "1)} s ST (313715
12 8117p 12
ALT r
2c 2 11
~(ryy = M) (xyy = 2] = =55 (x) = X)) Bye © + = (xy, +ryy)o
r 12
12
+ 85,71 < 815115 - (rli - anT Zeygela+ e ) =0
Y T12 T12 T12

, (83)
With the values of Al, Az, Bl, and Bz determined, the optimal policy

can be established from equations (70) and equation (77). The system
responses X;, and x,, at any time, 0 < t < T, can be found out from
equations (75) and (76) respectively.

The results of this example are shown in Figs., 8, 9, 10 and 11. Again
four cases are considered

case 1: b =1, c=0.1

case 2: b =1, c=1

‘case 3: b =1, c =10

case 4: b =1, c = 100



X12

1.3

1.4

1.3

1.2

s B

1.0

1.0

0.5

0.0

Fig.

73

0.1

series model (Ex, 3), T, = 1.2

0 0.2 0.4 0.6 0.8 1.0
t
g
5 L ]
/‘/./
L
/'/
B ./ —-"_-—
= e ——— ———TT
1 1 1 1
0 0.2 0.4 0.6 0.8 1.0
t
: q--“-“--..
"-n-.__...\‘-
'h-\\\
..-"h‘.
—_——— S~
e -—-°"“'-—--_;:f‘-
1 [ 1 4 !—
0 0.2 0.4 0.6 0.8 1.0
t
8 Optimal control policy and system responses of the 2 CST's-in-



74

0 0.2 0.4 0.6 0.8 1.0
t
1.4
/././
1.3 } /./ g
'/‘ J‘.ﬂ
_/ ’--"’
1.2 = - -
o~ . B - -
o /:- il ____,..._..---"""/
- il — — ——.—--.—_-— o
1.1 F -:_f;-—"
1.0 . 1 L :
0 0.2 0.4 0.6 0.8 1.0
t
10 B
\\
\\
\‘-
\h
_____ " --...,,_\
@ 0.5 t -‘-"'"'---...__ ‘\‘-‘-...,-.
-'"‘-.____- \\
"'"-q.,_‘.\‘ "'h-\\
e S e S TSN
-'_‘"‘l—l--..___q_.::"h-
0.0 . v [ ]
0 0.2 0.4 0.6 0.8 1.0
t

Fig. 9 Optimal_a:ontrol policy and system responses of -the 2 CST's~
in-series model (Ex. 3), Ty = 1.5



75

1,2

¢ = 0.1
——c =1 g
----- = 10 —
1.11 o — E
— ! ——=—c = 100 e
H .—"‘"/‘ -
FS __‘.—' ”
.-—-_"._-—'. ,“’
LS —— e /—/
\Q‘-‘h ______ .--—-"_'_—"-— '/’
0.9} ~ T ]
5 \___-‘____-_—-—__'_.__,
1 [] 'l L
0 0.2 0.4 0.6 0.8 1.0
t
1.4
/'/
1-3 = ./. ’.—’,
./ ,—"’
'/ .-"‘--- -
v o~ ,.-—-"‘-’ __-'/
K'-. 1,2- ./;",.—‘:— -___...---""- -
G "
}’/’
1-1 - /.;/}‘- -
&=
1.0 [ L ; :
0 0.2 0.4 0.6 0.8 1.0
t
1.0
™
\\
A S
\\
\
0.5 “\ <
___________ ——
D "-—-.__b_. ———
y ._________""--..___\-
--‘-""-..__ \
""--.__.__-\\
I T e S ] ‘-""--...__':
0.0 e
L 1 [} 3
0 0.2 0.4 0.6 0.8 1.0
t

Fig. 10 Optimal control policy and system responses of the 2 CST's-in-
series model (Ex. 3), Ty = 2.0



*11

1.

1

2

.1

c
—— —

————C

0.1

10 A
100

0.5L

0.0 \\_ ‘__=-._--;

Fig. 11 Optxmal control policy and system responses of the 2 CST's-

jn-series model (Ex. 3), T = 5.0

0

76



77

In case 1, where more weight is given to the control effort, 6, has a very
small positive value. In case 4, where more weight is given to the deviation

of X1 and X9 from the desired states, 6 has a high value, Cases 2 and

3 are intermediate between cases 1 and 4. In all the cases 0 drops to
zero at the final time T.

From the figures it can be seen that as ri1 increases, i.e., §olumg
of pool 1 decreases, the rise in temperature of pool 1, X190 is gmaller;
however the rise in temperature of pool 2, X199 is higher at tbe end of
the control period T, In cases 3 and 4, the temperature of pool 1,_x11,
is seen to drop for a short time and then rise,

As r., - 1 the 2 CST's-in-series model approaches the one CST model.

11

Thus, and 8 in Fig. 8 have approximately the same form as that of

%11

and 8 in Fig., 1. Also as r,, » « the 2 CST's-in-series model again

*1 11

approaches the one CST model, In this case the response X109 and control

® should have the same form as that of Xy and 6 in Fig. 1.
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CHAPTER IV

APPLICATION OF MODERN CONTROL THEORY TO ENVIRONMENTAL CONTROL OF CONFINED

SPACE WITH IMPULSE HEAT DISTURBANCE

The performance equations for a life support system consisting of a
confined space subjected to an impulse heat disturbance are presented, A
different form of dimensionless forms of the performance equations have
been derived in [11). These performance equations are used in this chapter
to illustrate the application of modern control theory in the determination
of optimal control of environmental control systems.

4,1 INTRODUCTION

In [12] the modern control theory has been used to establish the optimal
control for the minimum time problems, The resulting optimal control is of
bang-bang type. In this chapter the application of modern control theory
to problems in which the optimal control is continuous is illustrated,

The problem concerned in this chapter is to déterminE'B(t), subject
to the constraint -1 < 6(t) < 1, so that the response of the system can be
brought to the desired state in a minimum period of time and with minimum

effort, that is to minimize

- 2
s =/ (a+b8)dt
0
where a and b are suitable weighting factors. By giving appropriate
values to these weighting factors the units of the objective function can
be unified. i

The three examples used in this chapter to illustrate the application

of modern control theory are similar to the examples of chapter III,
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4.2 PERFORMANCE EQUATIONS OF THE SYSTEM BASED ON THE DIMENSIONLESS
PARAMETERS DEFINED IN CHAPTER III
In chapter III, the performance equations have been derived for the
cases in which the disturbance is of the form of step function. However,
the procedure for deriving the performance equations is fairly general
and can be extended to cases in which the disturbances are of the form
other than the step function.

The impulse heat disturbance has the form
Q4 = lecpTdﬁ(a)

Replacing the step heat disturbance term by this term, the performance
equations of the system proper, equations (12) and (13) of chapter 3,

become

dT
c —
LS + Tc = rzT2 + rlTi + TleG(u) (@)

Tc = Tco— at a=20

or in dimensionless form

dx
1 -
dt+x—1‘

1 Ka + r.x_ + ciﬁ(a) (2)

2 172

X, = 1 at t=20 or xl(O )y =1
where

T

g =

: for impulse heat disturbance.

c0
Note again that t = 0~ is the time just before the disturbance occurs and

-+
t = 0 is the time just after the disturbance has occurred. This distinction



is very important in the case of impulse heat disturbance

dx2 .
T + TX, = IX; - rKBB - er (3)
1 - r2Ka _
x,(0) =s———=—at t=20
2 r1

The performance equations of the two CST's-in-series model cam similarly

be derived as

dxyq
To -t Tir¥in = 8p1%pp to2pp t958(0) (4)
dx;,
Fo t T1o¥yp = Tyop¥pp t 948(D) (5)
ax, .
T + X, = rx12 - a59 - a3 7 (6)
with

X117 = %19 = 1 at t=20 or xll(l] ) = x12(0 )y =1

1 -1rK
xz(O—) o« o - 2 o

1

It is possible to rewrite equation (2) in another form in which the effect
of the heat disturbance is taken into account in the initial condition im-

mediately after the onset of the process:

x, =1+0¢ at t =20 . (7
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Similarly for the 2 CST's—in-series model, equations (4) and (5) can be

rewritten as

dx

11 _
&t T T e T G2 (8)
dx
12
e T T12%12 T T12¥u1 (9)
with
= X =1+4+0 at t = 0+

4.3 PERFORMANCE EQUATIONS BASED ON DIMENSIONLESS PARAMETERS DEFINED IN [11]
The performance equations of the system can be written in a variety of
ways by defining the state variables X4 and X, in different ways. A

different set of performance equations in dimensionless form are given

in [11]. The set is reproduced below for reference

dx r. K.x
1 _ 112
%y —-——-K& + K+ Klas(t) (10)
__Z_+ rx. = rx, —a_fb - a (11)
dt 2 1. 5 6
with
x, =0
1 } at t=0
x2 =1
where
e Bk - Q
3
1 T T2 1 +Q
I S L
: 2
2 ‘I'10 'I'2 2 Ql + Q2
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g = Eﬂ T, = vl
= 1 =
T, 1 Q +4Q,
T
2 _ 1
Ky =7 Ky =37 [Trmax - Trmin]
c0 2
T
2 1
K, ==, K, = 5= [T +T_ . 1]
4 T10 3 2T2 rmax rmin
T =ig- T u-:l
;]
2 By )
ag = rK2K4, ac = rK3K4

E e
TcO = room temperature at a = 0

' +
TiO = temperature of the circulation air into the system at a = 0

Note that the initial condition xl(O—) = (0 means that Tc =0 ata= 0—,
i.e., the reference temperature is the room temperature before the heat
disturbance, that is, a = 0 . In the case of heat disturbances other
than the impulse heat disturbance when TC(O-) = TEO = O-this set of
performance equations cannot be used since X and Kl can not be defiped.
In these céses the reference temperature should be chosen in such a way
that Tc 7

0

should be other than the room temperature at a = 0,

is not equal to zero. This means that the reference temperature

Equation (10) can be written in another form in which the effect of

the disturbance is taken into account in the initial condition as

- dt 1 K 271
4
=1 at t =0 ' (12)



The performance equations for the 2 CST's-in-series model are [11]

where

.g.x.;l]—'-l-r ® ]
dt 11711

dle

gt T1o%ia T 2% T oapsf)

dx,
Tp T Ry = SRy — #0 = By
" W ¥ 17
o 3
1n =T T,
x, - Toa K10 7o
- - ,
L Teoo T,
S S
2 Tio T2
831 = K179/, »
313 = TgKy1/Tory; »

23 = TgK12/ToTq5

r = e
E »
11 ‘[11 ,

a) %, + a), + a;,6(t)

Ry =

1 Tao

K. =2
12 TcZD

a5 = 117551

351 = T1Ky,/Kyy

3, = K, /Ky
I
12 112
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(13)

(14)

(15)

If the time constant of the heat exchanger is negligible then equation (11)

becomes
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x2 = xl - K2K48 - KBKé

and equation (10) can be rewritten as

dx

1 _
e + rX = rlKlee rlK1K3 + r2K1 (16)

Also the performance equations of the 2 CST's-in-series model, equations (13)

and (14), become

where

dx

il - ' - T '
o Ti¥l © 211®ioF12 T %1n%s® T fnf% T %12 (17

daxy,
at T F12%12 T Fa1*n1 18
| B
a4y = K4/Kqy
¥ -
a; = KK,
M =
8, = Kik,

4.4 EXAMPLE 1. Suppose that the dynamic behaviour of a life support

system consisting of an air-conditioned room or cabin subject to the

impulse heat disturbance and a heat exchanger of negligibly small time

constant (12 —+ 0), can be represented by the following equation

[equation (16)].

with

dx

1

To Ty = Ty KRy - KGRy (19)
+

X

(0) =1 at t =0



xl(T) =0 at t=T
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where T is the unspecified final control time. It is desired to determine

8(t), subject to the comstraint -1 < 8(t) < 1, so that the response of the

system can be brought to its desired state in a minimum period of time and

with minimum effort, that is to minimize

+ 2
s =/ (a+be7)dt
0
where a and b are suitable weighting factors.

Introducing an additional state variable as

E 2
x,(t) = [ (a+ be7)de
0
it follows that
dx
2 2
'a'g——a+b9, x2(0)—0

The problem is thus transformed into that of minimizing xz(T).

The Hamiltonian is

H[z(t), x(t), 6(t)]

dxl dx2
2y T % ae

= zl(—r x, + r.K. - r K. K 6 - rlK ) + zz(a + bez)

g%y + 1Ky - KK,y 1¥3

The adjoint variables are defined by

dt Bxl 271
dz

Z _ 3H _ -
dt  ex 0, zZ(T) 3

(20)

(21)

(22)

(23)

(24)
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Solutions of equations (23) and (24) are

(25)

]
o
[0

zl(t)

0+:t:1‘ (26)

It
[
-

zz(t)

where A is the integration constant., Substitution of equation (26) into

equation (24) gives

g .
H = 2, (-1,% + 5K - T;KK,0 = 1;K;K5) + a + be (27)

*
Therefore H , the portion of H which depends on 6, is

* 2
H = - rKK,z,6+bo ~(28)
Hence the optimum control is continuous and is found from the necessary

condition for optimality as

*
dH  38H
56 - B8 - 0= —rlglezl + 2bb
that is,
r.K.K
1172
o vt g (29)

The integration constant A in equation (25) can be determined using
+
the condition that minimum H is zero at all the process time. At t =20,

from equations (25), (27), (29) and the initial condition

x(0) =1 at t=0

give
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2 2
(r,K,K.) (r.K.K.))

17172 1172 2
A(—-r2 + r2K1 - T A - r1K1K3) + a+ D A
=0

that is

2 ("11"“11(2)2
A T + A (rz - r2K1 + rlKlKS) -a=290 (30)

The solution of equation (30) gives a positive value f_or A as

2, a 2
_ —(r2 - r2K1 + r151K3) -I:/(r2 - r2K1 + rlKle) + g-(rlglxz)
A= 5 (31)
(%K)
2b

Now substituting equation (31) into equation (19), xl(t) can be integrated

2
=r, .t r.Xk. - r.K.K (r.K )
_ 2 271 1’173 1

xl(t) = Ale + I -

K o
172 Ae 2 (32)

4hr2

The constant of integration Al can be determined using the initial condition
that xl(O) =1, at t = d+ as

2

)

(r.K.K
112 A (33)

1
A, =1-—(r
1 r, ﬁbr2

oFiKg) +

The final time T can be determined by letting xl(T) = 0 in equation (32)

2
-r, t (r,K.K.) r, T
2 1 112 2
Ale +‘;; (r2K1 - rlKlKS) +-——-Zg;;ﬂ— Ae =0
or
2 2

(r.K.K.) r T r, T

11 2 1 2 ~

bt A[e ] "z (rK) - rjKKyde ™ -4, =0
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This gives

)
1 1 2, (r K%,
T (r Ky = 1RKg) 4 =5 (rK -rKiKy) - + —=—— A)A
r2T 2 r2 2
e = 5 (34)
(r,KKy)
2br 4
2

NUMERICAL EXAMPLES:

(1) The following values for the various constants are used.

r, = 0.8 r, = 0.2
Kl =0,5 Kz =1,5

K3 = 1.5 o=2
a=1 b=1

Substituting the above numerical values into equation (30) yields

0.09a2 + 0.7A -1 =0 (35)

The solution of equation (35) gives

= 1.258

Hence
2 (8) = 1,258¢0+ % (36)
o(t) = 0.3774e°2E (37)

From equation (33), we have

Al = 4,055

substituting into equation (32) gives
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0.2t

x, (£) = =2.5 - 0.555e0°2E + 4.055¢" (38)

At t = T from equation (38), we obtain

~2.5 4+ (2.5)% + 8.999
7 % 0.555

0.2T
e ==

= 1,265

This gives final time T = 1.18
(2) Again taking the same values for the various constants consider the
case for which a= 1, b = 10.

From equation (30)

0.009a2 + 0,7A -1 =0

This gives A= 1,432
Hence

z,(t) = 1.432e0+2¢

2t

a(t) = 0.04295¢ " (44)
From equation (33) we have

Al = 3,563
Then eqﬁation {(32) becomes

x,(€) = -2,5 - 0.063e”" %% + T P (45)

At t = T from equation (34)

-2.5 + (2,5)2 + 0.898
2 x 0,063

0.2T
e =

1,38
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This gives final time T = 1,60
(3) Taking same values for the various constants as in (1) and (2) and

changing b = 0,1, from equation (30) we have

0,942 + 0.7A-1=0 (39)

From which
A= 0,736
Hence

0.2t

zl(t) = 0,736e "’ (40)

8(t) = 2.208e0°2t (41)

Since 68(0) > 1 in equation (41), we take 6(0) = 1, Now the control is
of bang-bang type and 6(t) = 1 for 0 < t < T. Substituting in equation (32)

and solving it we have

x (£) = =5.5 - 6,56 0°2F | (42)

At t = T from equation (42), we obtain

e—0.2T o 2.5
6.5
and
T = 0,8353

The results of this example are shown in Fig. 1 and Table 1., It should
be noted that for the case a = 1, b = 0,1 the optimal control is of bang-
bang type which has the bang part only. For cases (2) and (3) the optimum

control approximately linearly increases upto the final time T.



Table 1

Optimal solutions of the one CST model together with T, = 0 (EXAMPLE 1)

Case Number

1

2

Weighting Factor
a=1,b=1
a=1,b =10

a=1,b=0.1

Final Time T
1.1800
1.6001

0.8353

921



92

=1, b=1
=1, b=10
=1, b= 0.1
4
®
"~ | i
~..
~..
1.4 1.6
t
1.0 ]
008 ™ -
Oc6 - -
o
0.4 k ' -
0.2 } -
0 -—-—_-L—o——.‘——-—-J—-.—.l_- ._-“—-_._I.—-_:._-_—- -
0 - 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
t

Fig. 1 | Optimal control policy and system response of the one CST model
with T, = 0 (Example 1)
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4,5 EXAMPLE 2, Generally, responses of the heat exchanger as well as
the cabin are not always instantaneous. Suppose that for the system
considered in the first example, the time constant of the heat exchanger,

Tos is not so small as to be ignored. The performance equatioms for

such a system are

—_ X =2 X + a - (46)

2+ x - a6 -a _ (47)
with the initial conditions

xl(O) =1, x2(0) =1 at t=20

and the final desired state

xl(T) = 0, x2(T) =1 at t=T
The objective function to be minimized is

i 2
S =/ (a+be%)dt , (48)
0 -

Introducing another state variable as

t

x3(t) = f (a +-b62)dt
0
it follows that
% 2
-&'-1':'- =a+ b8, 33(0) =0 (49)
and
z 2
x3(T) = f (a + b87)dt = S

0



The problem is thus transformed into that of minimizing x3(T)

The Hamiltonian is

H(z(t), x(t), 8(t))

d.xl dx2 dx3

219t T %23 T%4d

1

"

zl[- Xy + a;%, + a2] + zz[- T X, + a, Xy = ag 6 - 36]
+ z3[a + b62]

The adjoint variables are defined by

2 _
£ ——a}_zl+r22
dz3
-a-t—'=0, 23(T)=1

From equation (53) the solution of Zq is

za(t) = 1 0+:t_§_'1‘

Hence, the Hamiltonian can be rewritten as

H=zl(-x1+alxz+a2)+z2(—rx2+a4x1-ase—36)

+a+b62

. .
and H , the portion of Hamiltonian which depends on 6, is

94

(50)

(51)

(52)

(53)

(54)

(55)
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*
R = a2, 6+ be? (56)

%
Inspection of H shows that the optimal control is a continuous one and

is given by the necessary condition that

*
odH _ B8H _ _
—6-39 —0——352‘.2+ 2b8
This gives
a_z
_ 572
b = —5 (57)

Now the maximum principle requires that the system equations and
adjoint variable equations, equations (46), (47), (51), (52) and (53) be

integrated simultaneously with the split boundary conditions

31(0) =1 Xl(T) =0
xz(O) = 17 xZ(T) =1
x3(0} =0 . xS(T) = undetermined
zl(G) = undetermined zl(T) = undetermined
22(0) = undgtermined ZZ(T) = undetermined

Also the Hamiltonian must remain at zero at every point of its response
under the optimal conditionm.

Eliminating zy from equations (51) and (52) yields

2
d z, dz2
dtz - (r +.1)-E?—-+ (r - a, a4)22 =0 (58)

The solution of this equation is

At
+ Ae ", 0<t=<T - (59)

zz(t) = Ale o
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where Al, and A2 are integration constants, and Al and Az are roots of
the characteristic equation

kz - (L+)r+ {r - alaa) =0

From equation (53), the solution of zl(t) is

P - Azt

z,(£) = %‘-I [z - ) Ae 1" 4 ¢z - Ay Age 2 ] (60)

Also from equation (57), the optimum control can be written as

a At ALt
0Ct) = 5o [Aje & + Aye ] (61)

. +
Since the minimum H must remain at zero for all process times, at t = o,

from equation (55), we have

1
= [(x - il) Al + (r - Az)Azl(-l + a; + 32)

1
2 2
g ' ag 2
+(AI+A2){—r+a4—EB—(A1-A2)—36]+a+-zg(Al+A2) =0
or simplifying
a§ 2 1-a,
-4—b-(Al+A2) +(A1+A2}(-— a, +tag+ N )
1 . _
+-é-1- (- 1+ a; + az)(llAl + 12A2) -a=0 . (62)

Eliminating X, from equations (46) and (47) and substituting equation (61)

gives
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dzx1 dxl ala§ klt Azt
dtz + (r+l) — + (r- a,a 4) =Ta, = 3,8, - 5 (Ale + Aze )
(63)
The solution of this equation is
-A t -A,t ra, - a,a
x() =pe T oane sz 1%
174
t lzt
225 31“ M S -
2b ZA (r+1) 212(r+l)
since —Al and -RZ are roots of the characteristic equation
AZ + (e+1)A + (r-aqa,) =0
: 174
Writing
ra, - a,a
K = 2 176
r - aa,
- =31""5**1
1 4bA1(r+l)
2
e B
2 4b12(r+1) 2
equation (64) can be rewritten as
=it -A,t At At
_ 1 2 1 2
xl(t) = Bje + Bye +K - Eje E,e (65)

Also from equation (48)
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—llt -Azt

1 i
xz(t) = e [(1- ll)Ble + (l—Az)Bze

1

At A t
- (1+A1)Ele - (1+ Az) E,e + K - a2] (66)

Applying the initial conditioms to equationms (65) and (66) gives

Al+Bz+K-E1—E2=l (67)

(l—ll)B1 + (1—12)32 - (l+kl)E1 - (l+k2)E2 + K - a, =2, (68)

Now employing the final conditions at t = T, equations (65) and (66) give

=-A. T -A,T AT ALT
1 2 .3 Z
Ble + Bze + K - Ele - E2e =0
(69)
—RlT -lzT llT
(l—ll)Ble + (1—12)Bze - (1+A1)Ele
—12T )
-(1+A2)E2e + K - a, = 2 (70)
Subtracting equation (695 from equation (70) yiel&s
—llT —lzT AT AT
—llBle - lsze -_AlEle - AzEze -a, =23 (71)

The five unknowns Al, AZ’ By» B2 and T can now be determined by solving
equations (67), (68), (69), (71) and (62) simultaneously with the help
of a search technique; The optimal control 8(t) in equation (61) and

the responses xl(t) and xz(t) of the system in equations (65) and (66)

can be calculated,
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In the numerical examples it is found that the optimum control variable
® has a value less than -1 at t = T, Thus, there has to be a switching
from the continuous control to a constant control at ® = -1, Equations (61),
(65) and (66) are applicable for 0 < t < t_, where t is the time at which
switching occurs. Also equations (69) and (70) are not applicable in
this case,

For L2t < T the optimum control 6 is equal to -1, Substituting
this value of 6 into equation (47) and eliminating x, from equations

(46) and (47) gives

4 ““1

—5 (r+l) =— + (r-a

a,) = ra, + a,a. - a,a
dt 175 176

124 2

The solution of this equation is

|
o
m
+
=
m
+
s

Xy 1 2 ' (72)

where

and Dl and D2 are constants., The solution of xé can be obtained from

equations (46) and (72) as

-A.t e PR
1 1
+ (1_—)\2) Dze

x, == [(1—;\1)Dle +K' - a,] - (73)
1

The constants D, and D2 can be determined by noting that Xy and x, are
continuous with respect to t. Thus, at t = t.s from equations (65), (66),

{72) and (73)



_ 1l's 2's '
xl(ts) = Dle + D2e + K
-2, t =-A,t At ALt
1ls 2 -"17s 2's
Ble + B2e K- Ele - Eze
—Alts —Azts
= e— — - ' -
xz(ts) 2, [(1-2,)D,e + (1 AZ)D e + K_ a2]
=X, t =-A,t
1 1's 2°s .
a, [(1-2,)B e + (1-2,)Be +K -
At A.t
17s 2°s
Ele - Eze - a2]
Solving for b, and D2 from these equations yields
At At
Ay(R-K") + (A #A))E e fxnBe " ® oAt
D. = B. + 2 272 & 1s
1 1 (A —Al)
"1"5 g ety
D e 4 A (K—K ) + 2)\1 l + (A1+12)E2e elzts
2 2 . (?ll—k )
Also af t = ts, & = -1, hence
a P o At
5 1ls 27
75 [Ale +_A2 ] = -1

Employing final conditions in equations (72), and (73) gives

e + D,.e +K'=0

100

(74)

(75)

(76)

(77
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~-A,T —AZT
e b — v — -
(1 Al)Dle + (1 Az)Dze + K a, = a; (78)
Subtracting equation (78) from equation (77) gives
—llT —AZT
llDle + 12D2e + a, = -a; (79)

There are six unknowns Bl’ 32, A Az, ts and T in equations (62), (67),

(68), (76), (77), and (79).

to determine these constants.

ag At At
8(t) = 5 [ae ™ +Ae ™ ] 0<t
= =] t <t
g —
The system responses are
=it =i, t At A t
1 -T2 -1 -2
xl(t) = Ble + Bze + K - Ele - Eze
=it A, t
- 1 2 T
= De * Dze + K
and
i fllt flzt
xz(t) ='§I [(1f11)313 + (lfhz)Bze + K
At Ayt
—(1+11)Ele - (L+A2)E2e ]
-t =i, t
_1 1 2%, o
== [(1—11)D1e + (1—R2)Dze + K']

1

These equations can be solved simultaneously

The optimal policy can be summarized as

IA
rt

| A
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The results of this example for various values of r are shown in Figs,
2, 3 and 4 and are tabulated in Table 2. Hooke and Jeeves pattern
search was used to determine the unknowns Bl, B2’ Al, A2, ts and T,
Three different cases, as in example 1, are considered:

casel a=1, b=0.1

I

case 2 a=1, b=1

case 3 a=1, b=10
The optimal control is approximately constant at the beginning and then
decreases to a value -1, and remains constant at this value upto the
final time T. The value of the final time is larger for smaller value
of r because of the time lag of the heat exchanger.

For case 1, the response x, increases and then drops down to the
final value of 1, For cases 2 and 3, the response X, decreases for a
short time at the beginning and then increases approximately linearly
and then drops to the final value of 1.

As the time constant of the heat exchanger decreases, i.e., r in-
creases, X, responds more quickly. As the time constant of the heat
exchanger becomes negligible as compared to the time constant of the
system proper the results of this problem should be reduced to the

results of example 1, In Fig. 4, the optimum control has approached

to the bang-bang type control,

4,6 EXAMPLE 3, Suppose that a life support system comsists of an air-
conditioned room and a heat exchanger of negligibly small time constant
(12 + 0) as in example 1, However, the flow of air in the room can be
characterized by the two-CST's in series model, The performance equations

of such a system are



Optimal solutions of the one CST wmodel together with T, # 0 (EXAMPLE 2)

Table 2

103

Case No. Weighting Factors r Switching Final

Time Ts Time T

5 1.0932 1.4237

5 4 a=1,b=1 10 1.1663 1.3200°
50 1.1826 1.2254

5 1.6323 1.8621

2 a=1, b=10 10 1.5864 1.7621
50 1.5663 1.6035

5 0.7884 1.2053

3 a=1,b=0,1 10 0.9678 1.0978
50 0.9006 0.9L423




104

1.0
a=1,b=1
N —.—a=1,5b=10
\'\\\. ______ a=1,b=0.1
~ -
\\\\_
0.5 \\\ \ -
x-n \\\ \‘\
\\ \
‘\\ '\_\
iy —
-~ —,
0.0 . — - e
0 0.5 1.0 1.5 2.0
t
6
(o]
9
2.0

- ]

0 0.5 1.0 1.5 2.0

Fig. 2 Optimal control policy and system responses of the one CST
model (Ex.2), r=5
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1, b=1
1, b =10
1, b = 0.1
o
\
: 2.0
t
)
o~
Eed
2.0
- ]
2.0

Fig. 3 Optimal control policy and system responses of the one CST
model (Ex. 2}, r = 10



,b=1
, b =10
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Fig. 4

Optimal control policy and system responses of the one CST
model (Ex. 2), r = 50
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11 _ . _ A '
qc T T11 ¥i1 T 21 34 %127 21 359 - 25y 3t 3y, (80)
dx
12
dc T T12 %12 T 21 *11 (81)
The initial and final conditions are
x,.(0) = x,.(0) = 1 t t=oF
11 = Fptt = =
x (D = x,(0) =0 at t=T | (82)

where final time T is unspecified. The objective function to be minimized
is
¥ 2
s = (a+ b8“)dt - (83)
0

Introducing an additional state variable

£ 2
x3(t) = [ (a+ b87)dt
0
it follows that
dx4 2
-5 = A% B8 x,(0) = 0 7 (84)

The problem is thus transformed into that of minimizing XB(T)
The Hamiltonian is

H(z(t), x(t), 6(t)]

- _ 1 _ 1y v

= zy,(= 1)) Xyt Ay 80 Xg, — 8y 258 - ap; ag toay)
2 5

+ 212(— ¥y Xq9 + a,q xll) + 23(3 + be") (85)

The adjoint variables are defined by
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dz
11 s _
it - ", . f11 %1 T %21 Fn2 1862
11
dz
12 8H _ _ '
F T x| f1fe i * Y9 %12 (&%)
dz
3_._s8i -
& " Ty 23(T) =1 (88)
The solution of Zq from equation (88) is
z5(t) = 1, 0<t=<T (89)
Hence equation (85) can be rewritten as
0 = = 1 - ' - '
H(z, x,0) = 2),(- Ty X)) + ay; 3,5 X, = 8y a5 6 - ay; 3+ ay))
+z (-1, X, + a,, X,.).+ a+ b62 (90)
12 12 712 21 117
*
Therefore, H , the portion of H which depends on 6, is
* 2
H 6 + bo (91)

B 1
411 95 11
Hence the optimum control should be of continuous type and is found from

the necessary condition

x
SH _ 3H _ - 1
5 = 38 0 all a5 zll + 2b8
or
a)y ag
o 3 %11 (91)
Eliminating 219 from equations (86) and (87) gives
dzzll dzll
-— Kl — ' -
3 (rgp + T g+ (rpy T1p ~ 211 3 220) %1170 (92)

dt
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The solution of this equation is

Allt Agnt

z,,(t) = Ae + Aje s 0<t=<T (93)

where lll and A12 are roots of the characteristic equation

2

- ' -
AT - (rgg T Ak (g Ty, -2y 8, 85,) =0 (94)

and A., A. are constants of integration to be determined later.

1’ =2

From equation (86) the solution of zlz(t) can be written as

A
[(ryy = A1) Age

t A
+ (x5 = 112) Aje

t

A ] (95)

1 12

a

z . (t) =
12 21

Also from equation (91) the optimal control is

1
2y 85 At » "12t]

e(t) = 5 {Ale + Az e (96)

Now elimipating %4 from equations (90) and (91) gives rise to the dif-

. ferential equation

2

47219 dx,,
—— - L]
o2 +(rgy Y1) ot (T Tip <23y 24 21) *io
(a); ag 2 257 Mt R T a
= e - )
= 5 [Ale + Aze ] all a21 a6
+ay, ay (97)
The solution of this equatioen is
-A,.t =i, At A, L A, AL
~ 11 12 11 - *12
xlz(t) = Bje + Bze + K - Elg + E2e (98)

where
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- t
%12 %1 7 %11 %21 %

K— 1
11 Ti2 T 211 %21 %42
(a a‘)2 a
L = Bl 4
1 4bAll(rll + rlz)
(a a')2 a,.. A
R £ Ml S
2 Abllz(rll + rlz)
and By» BZ are constants of integration. From equation (91)
-, t =A. .t
- 1 11 12
x;1(8) = B [(ryy = 2yy) Bye +(r), = Ap) Bye
Aot L
11 12
+ 1K= (r), + A )E e = (ry, + Ap,) Ege (99)
Now employing the initial and final conditions in equations (98)
and (99) give
Bl+Bz+K-E1-E2=1 {100)
(3, = A39)By + (rpy = App) By + 1 K = (ry, + A5)E)
- (rl2 + 112)32 = a, (101)
-2,.T -, T AT AL.T
1 12 11 12"
Ble + Bze + K - Ele - EZE =0 (102)
-X..T -, T
11 12
(r12 -All) Ble + (rl2 - 112) Bze + rlZK
A.4T T |
A 127 _
- (r12 + kll)Ele - (rl2 + Alz)Eze =0 (103)
+

Since minimum H must remain at zero for all process times, at t =0,

from equation (96)



(Al + Az) [-r - (a

1
811 342

+ —

251 [(ryy = 29p) &4 + (1 -

or

2
(a;; ag

2
7 (Al + Az)
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There are five unknowns Al, AZ’ B

equations (100) through (104).

to determine these unknowns.
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11 35
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- (Al + AZ) [+ a

Az)

1’

g (A

1

+A)
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A,11-

[- ry,

12

- { ]
11 342 ~

+ a

] +

a! +

311 %6

' + a 2]

a+

a

+ 321] -a=20

Bz and the final time, T, in five

These equations can be solved simultaneously

(311 5
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(A1+A ) =0

(104)

These values can then be substituted into

equations (96), (98) and (99) to give the optimal control policy 6(t) and

the responses xll(t) and xlz(t).

In the numerical examples it is found that there has to be a switch

from the continuous type of control to a constant control at 6 = -l.

In

this case, equations (96), (98), and (99) are applicable for 0 < t < t

and equations (102) and (103) no longer hold.

When the control is constant at ©

where

= =1 Xq1 and x12

can be integrated

(106)
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1
a198y1 + ayy8y085 — 3)78,.8¢

K = r,.r. ., - 1
11512 7 %11%21 42

The constants of integration Dy and D2 can be determined by noting that

X171 and X, are continuous with respect to t. Thus, at t = t,

xlz(ts) = Dle_lllts + Dze-xlzts + K

i} Ble"‘nts N Bze"‘lzts ek o Ele"nts ) Eze"lzts . _—
xp (e = % ((rlz"‘u) Dle_lllts * (mymhp)ly . B rlzK']

. % [( r 73 B e_lllts + (r1,711,)B, e_hllts % % K

+ (£,4h)E, Qs (ry,;7, )E, . 12" (108)
o(t.) = alz‘ia;’ [Alelllts + AzellztSJ = -1 (109)

Solving for D

1 and D2 from equations (107) and (108) we have
XL Al At
11s 127 s
(K—K ) - (111 12) 18 - ZAzEze AMits
D, =B, + e
1l 1 ha e )
12 711
Ass L S
117s 127s
1
Ay () = 20 K. = (At p)E e A2ty
D2 = B2 + ST e
) 11 712
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Using the final conditions in equations (107) and (108)

LT AT
D,e 1 + Dye 12° v g =0 (110)

=i, T -1, ,T

M1 12 -
(rlz-lll)nle + (rlz-klz)nze + rlZK =0 (111)

Subtracting r

12 times equation (111) from equation (110) yields

) W -2, .T :
11 12* \
Alll)le + }.12D2e _- 0 (112)

There are six unknowns Al’ Az, Bl’ BZ’ ts and T in equations (100), (101),
(104), (109), (110) and (112). These equations can be solved simultaneously
to determine these constants. The optimal policy and system responses

can be determined as

1: At -
a3 12 -
8(t) = 2bA1 Dt=t
= -1 t St<T (113a)
“A;.t Ay t As ot kit
11 - 12 - 711 - 712
xlz(t) Ble + Bze + K - Ele - Eze 0<t=x ts
=Xyt -A,t
=De11+De - + K' t <t<T
1 2 s — -
(113b)
A .t At
11 _ - 12
(0 =37 [ (ry572110810 + (ry521)B,e *orgf
At t
11 12
= (¥ ,72;4)E 1 - (£, ,)E, e } 0<tst,
. o S
1 11 12 ;
21{( Vi G b * (r)ymhgp)De ok }
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The results of this example for different values of parameter Ty
are shown in Figs., 5, 6 and 7 are tabulated in Table 3. Again three
different cases are considered:

Case 1: a 1

n
=
™
o
]

Case 2: a=1, b=10

Case 3: a=1, i:= 0.1

The Hooke & Jeeves pattern search was used to determine the unknowﬁs.
The results are similar to the results of the preceeding examples. The
dimensionless temperature of the room can become negative in ;his problem,
For ry; < 2.0 the control time is maximum. When ry 1. and e the

2 CST's-in-series model approaches the one CST model, Thus, for

T =1,2 and r

11 1= 10 the results are approaching the results of example 1.



Optimal solutions of the 2 CST's-in-series model with 71, = (EXAMPLE 3)

Table 3

115

Case No. Weighting Factors rll Switching Final
i Time ts Time T

1.2 1.0418 1,3362

2.0 1.1629 1.6935

1 a=1,b=1 5.0 1.2075 1.4934
10.0 1.1770 1.3278

1.2 1.590% 1.7828

2.0 1.6583 2.0327

2 a=1, b =10 5.0 1.6113 1.8346
10.0 1.5917 1.7630

1.5 1.0981 1.3285

2.0 1.06L7T 1.6761

3 a=1, b=20.1 5.0 1.0296 1.3315
10.0 1.1103 1.2823
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1.0
1, b=1
1, b = 10
1, b = 0.1
0.5 &
—
—
"
0.0 B .
3 § 1
0 0.5 1.0 1.5 2.0

2,0

2,0

Fig. 5 Optimal policy and system responses of the 2 CST's-in-series
model (Ex. 3), ¥y; 21,2
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1 1 1

0 "~ 0.5 ' 1.0 1.5 2.0

Fig. 6 Optimal control policy and system responses of the 2 CST's-in-
series model (Ex. 3}, L 2.0
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—
—
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1.5 2.0

0.5 1.0 _ 1.5 2.0

Fig. T Optimal control policy and system responses of the 2 CST's-in-

series model (Ex. 3), r;; = 5.0
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CHAPTER V

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

The methodology and procedure used in this report can also be employed
for constructing and simulating models for other systems in which mass and
momentum transfer take place in addition to heat transfer. The modern
control theory can be applied to establish optimal control policy for
such systems and to the environmental control of life support systems in
general, including controls of humidity, purity and noise. The maximum
principle has a certain advantage over other modern optimal techniques
in that it can be applied not only to the system with linear performance
equations but also to those with non-linear performance equations. The
maximum principle can handle constraints on the state variables, Thus,
any environmental control problem in which the temperature of the confined
space has to be higher than a cértain temperature - e.g. a biomedical
process can be solved by means of the maximum principle [12].

The objective function can have terms other than thosé considered
in this report, For example

T

s=[ dt
0

= 2
s = [ [a+by(x)%]at
0

T
s =/ te1%at

0

T 2 2
s = [ [by(x)” + e(8) )dt

0

T 2 2
s = [ [a+ by(x))" + c(8)7)de

0
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T
s = [ |eldt

0

The objective functions have different physical significance [29, 30].
Some problems which are extemsion of the envirommental control

systems treated in chapters 3 and 4 are listed below., The optimal
policies of these problems can be obtained by the similar approach pre-
sented in the preceding chapters,
Problem 1: This proposed problem is extension of Example 1 in chapter 3.
The life support system consisting of an air-conditioned room and a heat
exchanger of negligibly small time constant and subject to a step heat
disturbance. The performance equation, the initial condition and the
objective function are the same, however, the end condition of the state
variable, the temperature, is fixed.

The performance equation then becomes

dx

— +tr, % =71

7 2*1 KG -r. K6 - r.K + os

2 e 1y

with

xl(O) =1 at t=0
xl(T) =1 at t=T
The objective function to be minimized is

Ees o 2
S = g [be® + c(xl - xld) ]dt
where the final time, T, may or may not be specified.
The problem is to find an optimal control, 8(t), which minimizes the

objective function, S, subject to the performance equation and satisfy

the initial and end conditioms.
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Problem 2: The system concerned is the same as in problem 1, however,

the objective function is to include the optimal time term, i.e.,

x 2 2
S = £ [a + bE" + c(x1 - xld) ldt
where the final time, T, is not specified. The initial condition and

the end condition of the state variable are given.

Problem 3: The system is the same as in problems 1 and 2, however, the

objective function is of the form

¥ 2
s=[[a+ c(x1 - 1)7]dt
0
where the final time, T, is not specified. The initial and the end con-

dition of the state variable are given.

Problem 4: If in problems 1, 2, and 3 and also in examples 1, 2, and 3
of chapter 3 an inequality constraint on the state variable that the
temperature of the confined space should not exceed a given upper limit

such as
x,(t) < m 0<t<T

is imposed, these problems will be transformed into a new set of problems.
The maximum principle, with a slightly modified algorithm, can handle

constraints on state variables [14].

Problem 5: In the previous problems it is assumed that initially the
system is in the desired state, however, this may not be the case in some
practical problems. In this example the system is the same as in the

previous problems. The performance equation of the system (assuming the
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time constant of the heat exchanger as negligible is

dxl

T + X = rzKu - rlKBB - rle + o

The initial and the final conditions are

xl(ﬂ) =

I
2

[
=

x,(T)

The problem is to find optimal controls, 6(t), which brings the state
from the initial, ays to the final desired state, 1, and minimizes the

following objectives.

O 2
s = [ [b6” + c(x; - )7)at
0
x 2 2
s =[ [a+be” + e(x; - 1)7]dt
0
T
s={dt
0

where T may or may not be specified in the first objective function, but

T are not specified for the second and the third objective functioms.

Problem 6: Examples 1 and 2 of chapter 4 can be extended to include

objective functioms of the form

T
(1) s=[[a+ b (x; - xld)zldt
0
- z 2 2
(i1) s = [ [by(x; = x; )% + e(0) ]de

0
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T

(iii) s = [ [by(x; - xld)z + c(8)?1at
0
T
(iv) s = [ |e]dt
0
T
) s=/fdt
0

The life support system in this problem consists of an air-conditioned
room subjected to an impulse heat disturbance and a heat exchanger, The

performance equations of this system are

—_—+ rx, = a4x1 - af - a6

with the boundary conditions

4
xl(O) =1, x2(0) =1 at t=0
xl(T) =0, xz(T) =1 at t=T

Problem 7: In the 2 CST's-in-series model, the case in which the heat
disturbance is distributed only on one pool can also be considered,
Methodology and procedure used in this report can be employed in this
case to derive the performance equations and to apply maximum principle
for the solution of optimal policy.

In a summary, the variations of these proposed extension problems
can be classified into three general types: (1) variation in the specifi-
cation of initiai or final conditions; (2) variations in the form of objective

function; and (3) variation in the constraints on the state variables,
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n

Weighting factor in the objective function in Chapter b4

r £2 Kh
K2 Kh
r Kq K), in Chapter L,

K3 Kh

Ty Epy By
Ty T Ky

T Kll / T2 r
K

d

rip Kip /Ky
T, o / T, T
rK, /K,

in Chapter

11

12

Ky / K10
Integration constant

Integration constant

/ K) in Chapter L,

NOMENCLATURE

L,

rKB

rK

11

11

in Chapters 2 and 3

in Chapters 2 and 3

r. in Chapters 2 and 3

1

2

Weighting factor in the objective function

Integration constant

Integration constant

Weighting factor in the objective function

Constants defined in equation (3) of Chapter 2, i =1, 2,

Specific heat of air in Keal/Kg °C

Specific heat of coolant in Kcal/Kg °C

Integration constant
Integration constant
A constant

A constant

r Ka in Chapters 2 and 3

125
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hi[x(t)] = Function defined in equation [2) of Chapter 3, i =1, 2, ..., P

H{z(t),x(t),8(t) = Hamiltonian function defined in equation (5) of Chapter 3

K = A constant
K? = A constant
o2
1 Tco
= 1
K2 - 2T2 (Tr max r min)
1
= o +
K3 2T2 (Tr max Tr min
k=2
L Ts0
K, _l2
1 TlcO
K = T2
12 T2c0
T2
Ka =7
c0
1
K = (T -7 . ]
B 2Tc0 T max r min
_
KT T or [Tr max = Ty min]
e0
Mi = vl P cp Td
9 = Impulse heat disturbance in impulse form in Keal/sec
O = Step heat disturbance in Kcal/sec

9, = Heat flow into the system proper by circulation air in Keal/sec
9y, = Heat flow into the system proper by fresh air in Kcal/sec

Heat flow intc the heat exchanéer by circulation air in Kecal/sec

£

Qpso = Heat flow into the heat exchanger by cooling water in Kcal/sec
Qo1 ‘= Heat flow out of the heat exchanger by circulation air in Kcal/sec

Heat flow out of the heat exchanger by cooling water in Keal/sec

{
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Heat stored in the heat exchanger in Kcal/sec

Heat flow out of the system proper by circulation air in Kcal/sec
Heat flow out of the system proper by fresh air in Kcal/sec

Rate of heat accumulation in the system proper

Q, + Q,, flov rate of air in the system propef in m3/sec

Air flow rate by circulation air in m3/sec

Flow rate of fresh air in m3/sec

Flow rate of coolant in m3/sec

T

—l, the ratio of time constant of system proper to that of heat
2 exchanger

G4+

25-1;15— s the fraction of fresh air
1 2

1

, the fraction of circulation air

=

— , dimensionless time
1

~A |2

Reference temperature in &'

Room tempersture in °c

Disturbance temperature in °c

Temperature of incoming circplation air in C
Inlet temperature of coélant in °cC

Outlet temperature of coolant in OC

Outside air temperature in °c

Final tiﬁe, dimensionless

(t, - t,), room temperature in P
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T .
r min
r0
we

wh

Uo(t)

i2

xl(t}

"
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+
Room temperature at a = 0 in c

Temperature of pool 1 in “e

Temperature of pool 1 at & = 0+ in °C
Temperature of pool 2 in °c

Temperature of pool 2 at a = o'

(td - ta), disturbance temperature in ¢

(ti - ta), temperature of theocirculatian air into the
system proper, in C

Temperature of the circulation air into the system proper at
o = 0% in ©°C

Qw pw cnw (Twh - Twc)
le cp

s hypothetical temperature

Final steady state value of Tr
Upper bound of Tr in °c

Lower bound of Tr in oC

Value of Tr at ¢ =0 in oC

t -t in %
wC a

. o
twh - ta in C

Step heat disturbance function

Volume of room in m

Volume of pool 1 of two completely stirred tanks in series
model in m

Volume of heat exchanger in m3

Volume of gool 2 of two completely stirred tanks in series
model in m
T

c . &
Er— , dimensionless room temperature
cO
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X1a = Desired value of Xy
T
x (t) = Dimensionless temperature of the circulation air, = 1 in
£ T TcO
Chapters 2 and 3, = 'I'L in Chapter b
io
Tcl
%, =T dimensionless temperature of pool 1
clo
s
X0 = Dimensionless temperature of pool 2, = Tc2 in Chapters 2 and 3,
cl0
Tc2 .
=7 in Chapter L
c20
z = Adjoint variables defined in equation ( ) of Chapter 3
i

GREEK LETTERS

a = Time in sec.
§(a) = Impulse heat disturbance function, see ™
p = Air density in Kg/m3
Py = Density of coolant in Kg/m3
Td
o =7 dimensionless disturbance temperature in Chapter b
2
Td
o, =T dimensionless disturbance temperature in Chapters 2 and 3
c0
vy
T = , time constant of the system proper in sec
. Qe
vll ) =
T = , time constant of pool 1 in sec
11 R, + Q
1 2
\
1'2 = a— , time constant of heat exchanger in sec
1
V12 .
715 = FQ_ , time constant of pool 2 in sec
_ 2
T, = % (Tr max ¥ Ty m'n)
0 = = , control variable

1
T _E(T )

+ 7T ;
r max r max r min
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{‘l at T =T
r r max
-1 at T T
r

r min

8(t) = Optimum value of 8(t)
by = Root of characteristic equation
A = Roots of characteristic equation
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ABSTRACT

Mathematical models of an environmental control system which consists
of a confined space or cabin, a heat exchanger and a feedback element such
as a thermostat are presented. The performance equations representing the
dynamic behaviour of the system are derived. In the basic model, the
air in the confined space is considered to be in a state of complete
mixing. To determine the goodness of the system model a computer simu-
lation has been carried ouf and the results are compared with the known
characteristics of the system. The performance equations for a life support
system in which flow of air in the confined space is characterized by the
two completely stirred tanks-in-series (2 CST's-in-series) model have also
been derived.

The report illustrates the application of Pontryagin's maximum principle
to obtain the optimal control policies of environmental control systems.

The problem concerned in this report is to establish an optiﬁal control
policy that will minimize the sum of integréted deviations of the state

of the system and the integrated control effort required to maintain the
system in the desired state over a specified control period when the system
is subjected to a step heat disturbance. Three concrete examples are
considered. The first example treats the case in which the time constant

of the heat exchanger is negligible. “The second example considers the

case in which the time constant of the heat exchanger is not ignored. 1In
the third example the 2 CST's-in-series model is studied. The time constant
of the heat exchanger is again neglected.

The case of an impulse heat disturbance is also considered. The ob-

jective function to be minimized in this case is the inteérated effort



required to bring the system back from a deviated state to the desired
one in the shortest time. The optimal control policy is established
by again applying Pentryagin's maximum principle for three concrete
examples.

The procedures and computational approaches used for obtaining optimal
control policies of the enviromnmental control system are given in detail.
The modern control theory can advantageously be applied to automatic
environmental control systems in space crafts, submarines, underground
civil defence shelters and certain medical facilities. In these systems

very stringent requirements on the response time, control effort, etec.

are imposed.



