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ABSTRACT

In this paper a regularized spectral estimation formula and a regularized iterative

algorithm for band-limited extrapolation are presented. The ill-posedness of the

problem is taken into account. First a Fredholm equation is regularized. Then

it is transformed to a differential equation in the case where the time interval is

R. A fast algorithm to solve the differential equation by the finite differences is

given and a regularized spectral estimation formula is obtained. Then a regularized

iterative extrapolation algorithm is introduced and compared with the Papoulis

and Gerchberg algorithm. A time-frequency regularized extrapolation algorithm

is presented in the two-dimensional case. The Gibbs phenomenon is analyzed.

Then the time-frequency regularized extrapolation algorithm is applied to image

restoration and compared with other algorithms.
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GLOSSARY OF SYMBOLS
USED IN THIS PAPER

1. F : Fourier transform on any space; F(f) is also denoted f̂ .

F−1 : inverse Fourier transform; F−1(f)(t) := 1
2π
f̂(−t) =: f̃(t).

2. [−T, T ] : The time interval.

3. Supp F : the support of F , the closure of the complement of F−1(0).

4. [−Ω,Ω]: The band(=support) of Fourier transform.

5. R : The set of real numbers.

6. C : The set of complex numbers.

7. f(t): The time domain signal.

8. f̂(ω): The frequency domain signal.

9. η : The noise function on any subset of R .

10. δ : The bound of the error energy on any subset of R .

11. fδ(t): The noisy time domain signal on any subset of R .

12. α : The regularization parameter.

13. Θ: The stabilizing functional.

14. Mα : The smoothing functional.

15. Fα(ω): The regularized frequency domain signal.

16. fα(t): The regularized extrapolation.

17. fE(t): The exact time domain signal.

18. fT (t): The exact time domain signal restricted to [−T, T ] .

19. f̂E(ω): The exact frequency domain signal.

20. A : An operator from metric space D into metric space U .

21. Az = u , z ∈ D and u ∈ U : The operator equation.

22. R(u, α): The regularizing operator for the above operator equation.

23. d(δ): The error of the regularized solution.
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24. Fα,j : The value of the regularized solution at ωj .

25. F h
α,j : The value of numerical regularized solutions at ωj with step size h .

26. 1S : indicator function of subset S of R .

27. PT : The operation of multiplying a function on R by 1[−T,T ] or 1[−T1,T1]×[−T2,T2] .

28. PΩ : The operation of multiplying a function on R by 1[−Ω,Ω] or 1[−Ω1,Ω1]×[−Ω2,Ω2] .

29. A := B and B =: A mean B is the definition of A .

30. (∗, ∗): the inner product in a Hilbert space.

31. Discrepancy: ρU(Azα, uδ).

32. ℜ : the real part of a complex number.

33. ℑ : the imaginary part of a complex number.

34. C0,Ω : {F ∈ C[−Ω,Ω]|suppF ⊂ (−Ω,Ω)} .

35. C1[a, b] : {F : F ′ ∈ C[a, b]} .

36. W 1
2 : Sobolev space.
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Chapter 1

INTRODUCTION

The extrapolation of band-limited signals, or functions has been discussed in

many previous papers([1]-[10]). This procedure is widely used in many applied and

theoretical fields such as Fourier analysis, spectral estimation and image restoration.

The definition of band-limited functions is:

Definition: For a positive constant Ω, a function f ∈ L1(R) is said to be

Ω-band-limited if f̂(ω) = 0 ∀ω ∈ R \ [−Ω,Ω]. Here f̂ is the Fourier transform of

f :

f̂(ω) := F(f)(ω) :=

∫ +∞

−∞
f(t)eiωtdt, ω ∈ R (1)

We then have the inversion formula:

f(t) := F −1(f̂)(t) :=
1

2π

∫ Ω

−Ω

f̂(ω)e−iωtdω, a.e. t ∈ R (2)

This integral is defined for all t ∈ C and furnishes an analytic extension of f to

C .

We consider the so-called band-limited extrapolation problem:

Assume that f : R → R is an Ω-band-limited function and T is a positive

constant.

Given f(t) for t ∈ [−T, T ] ,

(3)

find f(t) for t ∈ R\[−T ,T ] .

The fact, noted above, that f is effectively an entire function means that its

values on [−T, T ] determine all its values. Hence, this problem is, in principle,

solvable.
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From the knowledge of f only on [−T, T ] we cannot construct f̂ , and so we

cannot use (2) to find the values of f in R \ [−T, T ] . What we plan to do is to

solve the Fredholm integral equation

AF (t) :=
1

2π

∫ Ω

−Ω

F (ω)e−iωtdω = f(t), t ∈ [−T, T ] (4)

for

F ∈ C0,Ω := {F ∈ C[−Ω,Ω]|suppF ⊂ (−Ω,Ω)}

given

f ∈ L2 := L2[−T, T ].

We will want F to be supported in [−Ω,Ω] and F to lie in L2(R), so that we can

form F̃ (t) = 1
2π
F̂ (−t). Equation (4) says that the function F̃ , which lies in L2(R),

satisfies

F̃ (t) = f(t) for all t ∈ [−T, T ].

Then F̃ on the whole of R is our candidate to solve the original problem (3) of

recovering (extrapolating) f from knowledge only of f |[−T,T ] .

Note that A is a bounded linear operator from the max-norm into the L2 -norm,

where

||F ||C0,Ω
:= max

−Ω≤ω≤Ω
|F (ω)|, ||f ||L2 := {

∫ T

−T

|f(t)|2dt}1/2.

The problem of solving (4) is ill-posed on the pair of spaces (C0,Ω, L
2) ([11]-[13]),

as we show by an example in section 2.2, after the definition of “ill-posedness” is

given in section 2.1.

In 1974 and 1975, Papoulis and Gerchberg ([1], [2]) made a pioneering contri-

bution to this important problem. They designed the following iterative algorithm

for an Ω-band-limited function f ∈ L2(R) for which only f(t) for t ∈ [−T, T ] is

given .

Papoulis-Gerchberg algorithm:

f [0] := PTf.
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For l = 0, 1, 2, ... ,

f [l+1] := PTf + (I − PT )F−1PΩFf [l],

where

PT (f) := f · 1[−T,T ], PΩ(f̂) := f̂ · 1[−Ω,Ω].

The convergence ||f [l] − f ||L2(R) → 0 is proven in [1] by Papoulis.

Here F designates the Fourier transformation in L2(R). Recall that L1(R) ∩
L2(R) is dense in L2(R) and that according to Plancherel’s theorem (see, for

example, [29]), f̂ ∈ L2(R) and ||f̂ ||L2 = 1√
2π
||f ||L2 for every f ∈ L1(R) ∩ L2(R).

Consequently, the Fourier transformation on L1(R) can be uniquely extended to

a 1√
2π

-multiple of a bijective isometry (= unitary operator) of L2(R). We will

continue to designate it by F and ∧ . Instead of (1), the f ∈ L2(R) satisfy

f̂(ω) = F(f)(ω) = lim
N→∞

P̂Nf(ω)) = lim
N→∞

∫ N

−N

f(t)eiωtdt, for a. e. ω ∈ R, (1)2

since PNf = 1[−N,N ] · f ∈ L1(R) ∩ L2(R) and converge to f in the L2 -norm.

In [8] the Papoulis-Gerchberg algorithm was generalized to signals in the wavelet

subspaces of L2(R). There are also many other extrapolation algorithms ([3]-

[7], [9]). In [3]-[6], iterative methods were presented. In [7] Sabri and Steenaart

presented an extrapolation process requiring only a single matrix operation, but

their proof was shown inadequate in [4]. However [4] gives an alternative proof using

Toeplitz equations and the solution can be stabilized by adding a small positive

constant to the diagonal terms of the coefficient matrix [4].

Most algorithms perform poorly when the observed data fδ contain noise or

distortion:

fδ(t) := f(t)+ηδ(t) t ∈ [−T, T ] (5)

where ηδ(t) is the noise or distortion satisfying

∫ T

−T

|ηδ(t)|2dt ≤ δ2. (6)
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The integral
∫ T

−T
|ηδ(t)|2dt is called the error energy.

Remark: The use of the word “energy” in this context is inspired by its meaning

in electrical circuitry. Our integral has similar properties. The circuitry situation

is the following:

If v(t) is the voltage at time t measured across a resistor of resistance R (which

can always be normalized by proper choice of units to be 1), the instantaneous power

dissipated in the resistor at time t is

P (t) = v(t)i(t) =
v2(t)

R
= i2(t)R,

where i(t) is the current at t . The energy expended in the circuit is

E =

∫
P (t)dt =

∫
v2(t)

R
dt =

∫
i2(t)Rdt.

To understand the difficulty which noise creates, we observe that theoretically

the Ω-band-limited extrapolation problem is equivalent to the problem of solving

a Fredholm integral equation which is highly ill-posed (see definition 2.1).

In [11] the next theorem is asserted:

Theorem: Consider any pair of positive numbers ǫ and θ , with ǫ < θ , and

any Ω-band-limited function f : R → R and any fδ satisfying (5) and (6). Let P

be any real number with |P | > T . Then there exists an Ω-band-limited function

Ψǫ,P ∈ C(R) ∩ L1(R) that satisfies

||Ψǫ,P − fδ||L∞[−T,T ] ≤ ǫ,

but

|Ψǫ,P (P ) − f(P )| ≥ θ.

This theorem shows that small noise in the interval [−T, T ] of the signal may

produce large errors outside the interval. Worse, the extrapolation does not exist

if ηδ is not the restriction to the interval [−T, T ] of a band-limited function.

4



The author is unable to verify the proof in [11], but can offer an example of his

own as follows:

Let

fn(t) :=
n[1 − cos Ω(t− n)]

(t− n)2
∈ L1(R) ∩ L∞(R).

Then f̂n(ω) = einω · nπ · 1[−Ω,Ω](ω) · (Ω − |ω|) and fn → 0 uniformly in [−T, T ] as

n→ ∞ .

But fn(n) = Ω2n/2 → ∞ as n→ ∞ .

Therefore, given 0 < ǫ < θ , we can pick n so that Ω2n/2 > θ and so that

|fn(t)| < ǫ for all t ∈ [−T, T ] , and we can consider

η := fn, P := n.

Then η ∈ L∞(R) ∩ L1(R) is Ω-bandlimited and satisfies |η(t)| < ǫ for all t ∈
[−T, T ] and |η(P )| > θ .

Regularization methods were introduced to solve this ill-posed problem([13]).

There are many other papers where regularization methods have also been used([14]-

[17]).

One regularization method often used is to discretize the Fredholm integral

equation first. Then algebraic regularization is used for the resulting system of

linear equations. Chen [15] proposed a regularization method of this type for the

band-limited extrapolation problem and obtained the following estimate:

d2 = O(δ2
n) +O(α(δn)) +O(Ω2/n2) +O(T 2/n2)

in which d is the error of the regularized extrapolation, δ2
n is a bound for the error

energy, α(δn) is the regularizing parameter.

In this paper, we reverse the order of regularization and discretization. First,

in section III, we regularize equation (4) with a variational problem and obtain its

Euler equation, which is an integro-differential equation. Its direct discretization

5



will lead to an algorithm which requires O(n3) computational steps. In section IV,

we show that the Euler equation can be converted to a simple ordinary differential

equation, a standard discretization of which yields a fast algorithm for the problem

of computing the Fourier transform of the function sought. In section V, we obtain

a regularized Fourier transform formula. In section VI, we introduce a regularized

iterative extrapolation algorithm. In section VII, we present some numerical results

and compare them with the Papoulis-Gerchberg algorithm. Section VIII is a brief

conclusion. In the appendix we prove the main Theorems stated in section III, IV

and V.
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Chapter 2

THE CONCEPTS OF
WELL-POSED AND ILL-POSED

PROBLEMS AND THE
REGULARIZATION METHOD

In this chapter we introduce the concept of ill-posed problems and regularization

methods. Much of this material is taken directly from [13].

2.1 The Definition of Ill-posed Problems

The concept of well-posed problems was introduced by Hadamard.

Here we borrow the following definition from [13]:

Definition 2.1: Assume A : D → U is a continuous operator, where D and U

are metric spaces with distances ρD(∗, ∗) and ρU(∗, ∗), respectively. The problem

of determining a solution z in the space D from the “initial data” u in the space

U to the equation

Az = u

is said to be well-posed on the pair of metric spaces (D,U) in the sense of Hadamard

if the following three conditions are satisfied ([13] pp.7,8):

i) For every element u ∈ U there exists a solution z in the space D ; in other

words, the mapping A is surjective.

ii) The solution is unique; in other words, the mapping A is injective.

iii) The problem is stable in the spaces (D,U): ∀ǫ > 0,∃δ > 0, such that

ρU(u1, u2) < δ ⇒ ρD(z1, z2) < ǫ.

7



In other words, the inverse mapping A−1 is uniformly continuous.

Problems that violate any of the three conditions are said to be ill-posed.

Remark. It should be emphasized that the definition of an ill-posed problem

is with respect to a given pair of metric spaces (D,U); the same problem may be

well-posed in other metrics.

2.2 Examples of ill-posed problems

A typical example is the R-valued Fredholm integral equation of the first kind

with continuous kernel K on [c, d]×[a, b] for which ∂K
∂x

exists and is also continuous:

Az(x) :=

∫ b

a

K(x, s)z(s)ds = u(x), c ≤ x ≤ d (∗)

where z is the unknown function in a space D and u is a given function in a space

U . We will measure changes in the right-hand member of the equation with the

L2 -norm defined by

||u1 − u2||L2 := [

∫ d

c

|u1(x) − u2(x)|2dx]1/2

and measure changes in the solution in either the L2 -norm, or the C -norm defined

by

||z1 − z2||C := max
s∈[a,b]

|z1(s) − z2(s)|.

To see the ill-posedness of the problem, suppose z1 satisfies (*) with u = u1 . Note

that for any ω ∈ R , N ∈ N

z2(s) := z1(s) +N sinωs, s ∈ [a, b]

is then a solution of equation (*) with right-hand member

u2(x) := u1(x) +N

∫ b

a

K(x, s) sinωsds, c ≤ x ≤ d.

Then

||u1 − u2||L2 = |N |{
∫ d

c

|
∫ b

a

K(x, s) sinωsds|2dx}1/2 → 0

8



as |ω| → ∞ . This can be seen as follows:

According to the Riemann-Lebesgue Lemma, for each x0 ∈ [c, d] ,
∫ b

a
K(x0, s) sinωsds→

0 as |ω| → ∞ .

So ∀ǫ > 0, ∃M(x0, ǫ) > 0 such that

|
∫ b

a

K(x0, s) sinωsds| < ǫ, whenever |ω| > M(x0, ǫ).

Since |K(x, s) −K(x0, s)| → 0 uniformly in s as x→ x0

|
∫ b

a

K(x, s) sinωsds−
∫ b

a

K(x0, s) sinωsds| ≤
∫ b

a

|K(x, s) −K(x0, s)|ds→ 0

uniformly in ω as x → x0 . Consequently there exists δ(x0, ǫ) > 0 which is inde-

pendent of ω such that

|
∫ b

a

K(x, s) sinωsds| < ǫ, whenever |ω| > M(x0, ǫ) & x ∈ (x0−δ(x0, ǫ), x0+δ(x0, ǫ)).

Since {(x0 − δ(x0, ǫ), x0 + δ(x0, ǫ)) : x0 ∈ [c, d]} covers [c, d] , there exist x1, ..., xn ∈
[c, d] such that

n⋃

i=1

(xi − δ(xi, ǫ), xi + δ(xi, ǫ)) ⊃ [c, d].

Let M(ǫ) = max1≤i≤nM(xi, ǫ). Then

|
∫ b

a

K(x, s) sinωsds| < ǫ, ∀ |ω| > M(ǫ) and ∀x ∈ [c, d].

However, as soon as |ω| ≥ π/(b− a)

||z1 − z2||C = max
s∈[a,b]

|z1(s) − z2(s)| = max
s∈[a,b]

|N sinωs| = |N |,

and

||z1 − z2||L2 = |N |{
∫ b

a

sin2 ωsds}1/2

= |N |[b− a

2
− 1

2ω
sinω(b− a) cosω(b+ a)]1/2 → |N |(b− a

2
)1/2

as |ω| → ∞ .

So this problem is ill-posed in each of the pairs (C,L2) and (L2, L2).
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2.3 The concept of regularizing operator

For the equation

Az = u (6a)

suppose that the continuous operator A is such that its inverse A−1 exists but is

not continuous on the set AD and AD 6= U .

In this case, the uniqueness condition is satisfied, but the existence condition

and stability condition are not satisfied, so this problem is ill-posed.

Remark. If D and U are each Banach spaces and A is linear, AD 6= U is a

consequence of the fact that A−1 exists and is not continuous on the set AD ; for

the Open Map Theorem says that a continuous linear bijection between Banach

spaces is necessarily bicontinuous.

Definition of regularizing operators (taken from [13], p.47):

Let D and U be metric spaces and A : D → U be an operator for which

problem (6a) may be ill-posed. Assume

AzE = uE, (6b)

where zE ∈ D and uE ∈ U . An operator R(u, α) defined for certain u and certain

α > 0 (see below) is called a regularizing operator for the equation Az = u in a

neighborhood of uE if

1) there exists a positive number δ1 such that the element R(u, α) of D is

defined for every α > 0 and every u ∈ U for which

ρU(u, uE) ≤ δ1

and

2) for every ǫ > 0, there exists a positive number δ(ǫ) ≤ δ1 and for each positive

δ ≤ δ(ǫ) a number α(δ) > 0 such that

u ∈ U & ρU(u, uE) ≤ δ ≤ δ(ǫ)

10



imply zα(u) := R(u, α(δ)) satisfies

ρD(zα(u), zE) ≤ ǫ.

The procedure of finding a computable regularizing operator for the equation

Az = u is called regularization of the problem. The numerical parameter α is

called the regularization parameter.

Thus the problem of finding an approximate solution z such that z ≈ zE reduces

to

i) finding regularizing operators,

ii) determining the regularization parameter α = α(δ) as a function of δ such

that the condition 2) in the definition of regularizing operators is satisfied.

Remark. Of course

R(u, α) := zE, ∀u ∈ U, ∀α > 0.

is trivially a regularizing operator. But it is useless, as zE is the unknown being

sought; hence the italicized word “computable” used above.

The approximation zα = R(u, α) to the exact solution zE obtained by a method

of regularization is customarily called a regularized solution of (6b), although this is

an abuse of language, since no zα need be equal to the actual solution zE of (6b).

2.4 Methods of constructing regularizing operators

Definition of stabilizing functionals:

Assume A is continuous and 1-1. Let Θ denote a continuous nonnegative

functional defined on a subset D1 of D that is everywhere dense in D . Suppose

that

i) zE ∈ D1

ii) ∀c > 0, {z ∈ D1 : Θ[z] ≤ c} is a compact subset of D1 .

Θ is then called a stabilizing functional or simply a stabilizer.

11



Note. It is called a stabilizer since we can obtain stable solutions with its help.

Suppose the right-hand member of equation (6a) u = uδ is known with an error

δ ; that is, ρU(uδ, uE) ≤ δ .

Lemma 1 ([13], pp.51-53). Let Qδ := {z : ρU(Az, uδ) ≤ δ}, D1,δ := Qδ ∩D1 .

Then there exists zδ ∈ D1,δ that minimizes Θ[z] over z ∈ D1,δ .

Let

Θ0 := inf
z∈D1

Θ[z]

and

M0 := {z ∈ D1 : Θ[z] = Θ0}.

Lemma 2 ([13], pp.55-56). If for each δ > 0 there exists a zδ ∈ M0 ∩ D1,δ ,

then zδ approaches zE as δ → 0.

For the case M0 ∩ D1,δ = Ø, we import the concept of quasi-monotonic func-

tionals.

Definition. The functional Θ is said to be quasi-monotonic if, for every element

z0 ∈ D1 \M0 , every neighborhood of z0 includes an element z1 ∈ D1 such that

Θ[z1] < Θ[z0] .

Lemma 3 ([13], p.56). Let uδ , D1,δ , Θ and M0 be as in in Lemma 1, and

suppose M0 ∩D1,δ = Ø. The greatest lower bound of Θ on D1,δ is attained for an

element zδ for which ρU(Azδ, uδ) = δ .

Remark: We can use this lemma to solve the problem of minimizing the func-

tional Θ, not just within the set D1,δ , but within the set D1 under the condition

that the minimizing element z being sought satisfies

ρU(Az, uδ) = δ.

This is a conditional extremum problem. So we can solve it by the method of unde-

termined Lagrange multipliers; that is, for each α > 0 we minimize the functional

Mα[z, uδ] := ρ2
U(Az, uδ) + αΘ[z]

12



over all z ∈ D1 .We will call Mα[z, uδ] a smoothing functional.

2.5 The construction of regularizing operators by minimiza-

tion of a smoothing functional

Theorem 2.1 ([13], p.63). Let A denote a continuous operator from D into

U , Θ a stabilizing functional on a dense subset D1 of D . For every element u ∈ U ,

and every α > 0, ∃zα(u) ∈ D1 for which the functional

Mα[z, u] = ρ2
U(Az, u) + αΘ[z]

attains its greatest lower bound:

inf
z∈D1

Mα[z, u] = Mα[zα(u), u].

Remark. By this theorem, for every α > 0, an operator R1(∗, α) is defined from

U to D1 so that for each u ∈ U the element

zα(u) =: R1(u, α)

minimizes the function Mα[z, u] over all z ∈ D1 . For notational simplicity, we will

use zα instead of zα(u). We plan to show that R1(∗, α) is a regularizing operator

according to the definition in 2.3. So we use the same symbol zα(u) here as in the

definition in 2.3.

For any positive number δ1 , denote by Tδ1 the class of functions that are non-

negative, nondecreasing and continuous on an interval [0, δ1] .

Theorem 2.2 ([13], p.65). Let zE denote a solution of equation (6a) with

right-hand member u = uE ; that is,

AzE = uE. (6b)

Then, for any δ1 > 0, ǫ > 0 and any functions β1 and β2 in the class of Tδ1 , such

that β2(0) = 0 and δ2/β1(δ) ≤ β2(δ) for all sufficiently small δ > 0, there exists a

positive number

δ0 = δ0(ǫ, β1, β2) ≤ δ1

13



such that for u ∈ U and δ ≤ δ0 the inequality ρU(u, uE) ≤ δ implies the inequality

ρD(zα, zE) ≤ ǫ , where zα := R1(u, α) for all α satisfying the inequalities

δ2

β1(δ)
≤ α ≤ β2(δ).

2.6 The choice of stabilizing functionals

Suppose that a dense subset Φ of a metric space D admits a metric ρΦ which

in general is different from the metric ρD that D comes with. If for some z0 ∈ Φ

and every d > 0 the ball

{z ∈ Φ : ρΦ(z, z0) ≤ d}

is compact in D according to the original metric of D , then the function defined

by

Θ[z] := ρ2
Φ(z, z0), z ∈ Φ

is a stabilizing function; consequently Theorem 2.1 is valid for it. That is, for each

fixed u ∈ U , there exists an element zα ∈ Φ minimizing the functional

Mα[z, u] := ρ2
U(Az, u) + αΘ[z]

over z ∈ Φ ([13], p.68).

If the exact solution zE of (6a) belongs to the set Φ, then by Theorem 2.1,

the operator R1(u, α) which provides, for every α > 0 and u ∈ U , an element zα

minimizing the functional Mα[z, u] is a regularizing operator.

In [13] the following examples are offered:

Example 1. If D := C[a, b] with metric

ρD(z1, z2) := sup
x∈[a,b]

|z1(x) − z2(x)|,
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then we take Φ := C1[a, b] , the dense subspace of continuously differentiable real-

valued functions on the interval [a, b] with metric

ρΦ(z1, z2) := sup
x∈[a,b]

{|z1(x) − z2(x)| + |z′1(x) − z′2(x)|}.

By Arzela’s theorem, every ball {z ∈ Φ : ρΦ(z, z0) ≤ d} is ρD -compact in C[a, b] .

Example 2. D is still C[a, b] with the same metric as in Example 1. Φ is the

Sobolev space W p
2 . The metric ρΦ is defined by

ρΦ(z1, z2) := {
∫ b

a

p∑

r=0

qr(x)(
drz

dxr
)2dx}1/2, z := z1 − z2,

where q0, q1, ..., qp−1, qp are given positive continuous functions on [a, b] . These

functions are fixed for the sequel.

Here, for every p , the space W p
2 is a Hilbert space and any closed ball in it is

ρD -compact in C[a, b] . Consequently, if we seek regularized solutions of (6a) in

the space W p
2 , Theorem 2.1 and 2.2 are also valid for them. A stabilizing functional

is

Θ[z] :=

∫ b

a

p∑

r=0

qr(x)(
drz

dxr
)2dx. (∗∗)

and p is called the order of the stabilizer ([13], p.70).

2.7 Application of the regularization method to the approx-

imate solution of integral equations of the first kind

Suppose that we are required to find a regularized solution of a Fredholm integral

equation of the first kind

(Az)(x) :=

∫ b

a

K(x, s)z(s)ds = u(x)

where c ≤ x ≤ d , K(x, s) is continuous on [c, d] × [a, b] , z ∈ C[a, b] and u ∈
L2[c, d] =: U is given and a solution z in the space D := C[a, b] is sought.
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Let us use the first-order stabilizer (**). Thus, we seek a regularized solution

zα ∈ W 1
2 [−Ω,Ω]. It will minimize the functional

Mα[z, u] =

∫ d

c

{
∫ b

a

K(x, s)z(s)ds− u(x)}2dx+ α

∫ b

a

{q0(s)z2(s) + q1(s)(
dz

ds
)2}ds

over z ∈ W 1
2 . This minimizing z can be found by solving the Euler equation

corresponding to the functional Mα[z, u] ([13], p.74): For all v ∈ W 1
2

∫ b

a

(
−α{ d

ds
[q1(s)

dz

ds
] − q0(s)z(s)} +

∫ b

a

K̄(s, t)z(t)dt− b̄(s)

)
v(s)ds

+[αq1(s)z
′(s)v(s)]ba = 0,

which is a necessary condition for the minimizer. Here

K̄(s, t) :=

∫ d

c

K(ξ, s)K(ξ, t)dξ,

and

b̄(s) :=

∫ d

c

K(ξ, s)u(ξ)dξ.

In this paper, we assume the values of the desired solution z of (6a) at both ends

of the interval [a, b] are known. That is,

z(a) = z̄1, z(b) = z̄2

where z̄1 and z̄2 are known numbers. This restricts the generality of the solution

that we will ultimately find. In this case, since v + u is supposed to be a solution

candidate as well as u , we also require

v(a) = 0, v(b) = 0.

The preceding necessary condition now reads: for all such v ∈W 1
2

∫ b

a

(
−α{ d

ds
[q1(s)

dz

ds
] − q0(s)z(s)} +

∫ b

a

K̄(s, t)z(t)dt− b̄(s)

)
v(s)ds = 0. (†)

From (†) holding for all v follows an equation which any minimizer z must satisfy

([13], p. 75):
∫ b

a

K̄(s, t)z(t)dt−α{ d
ds

[q1(s)
dz

ds
]− q0(s)z(s)} = b̄(s), ∀s ∈ [a, b]. (‡)
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Remark. If the solution of (‡) is unique, and if a minimizer exists at all, then this

solution must be the minimizer. When the regularization method is used for the

extrapolation problem in chapter 3, we will prove the existence of the minimizer

and the uniqueness of the solution of (‡).

In such a case this equation can be replaced with its finite-difference approx-

imation on a given grid in order to find a numerical solution. Here we take a

uniform grid with step h := b−a
n

. The equation (‡) is replaced with a system of

finite-difference equations of the form

− α

h2
{q1,k−1zk−1+q1,kzk+1−(q1,k+q1,k−1)zk−h2q0,kzk}+

n∑

r=0

K̄k,rzrh = b̄k; 1 ≤ k < n.

Here

q1,k := q1(sk), q0,k := q0(sk), zk := z(sk), b̄k := b̄(sk),

sk := kh+ a,

and the K̄k,r := K̄(sk, sr) are the coefficients in the quadrature formula used to

replace the integral in the equation with a finite sum.

Since the solution of the system of equations must satisfy the boundary condi-

tion, then, in the system we set

z0 := z̄1, zn := z̄2.

We obtain an (n−1)×(n−1) system of equations, which is easy to solve numerically

when the regularization method is used for the equation (4), since it is a system

of linear equations and the coefficient matrix is positive-definite. The proof will be

given in chapter III.

2.8 Determination of the regularization parameter

The regularization parameter α can be determined from the discrepancy, that

is, from

ρU(Azα, uδ) = δ
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under certain restrictions. Let us abbreviate

m(α) := Mα[z, u],

φ(α) := ρ2
U(Azα, u),

ψ(α) := Θ[zα].

Lemma 1 ([13], p.88). The functions m and φ are nondecreasing; ψ is a

non-increasing function.

Lemma 2 ([13], p.89). Let {αn} denote a positive sequence that converges to a

positive number α0 . If the sequence {zαn
} of minimizers in Theorem 2.1 converges,

lim zαn
=: z̄,

then z̄ minimizes Mα0 [z, u] over z ∈ D1 , where D1 is the domain of the stabilizing

functional Θ.

Lemma 3 ([13], p.91). The function m is continuous and nondecreasing.

Theorem ([13], p.91). For any u ∈ U and every positive number

δ < ρU(Az0, u)

where

z0 ∈ {z : Θ[z] = Θ0 = inf
Y ∈D1

Θ[Y ]},

there exists an α(δ) such that

ρU(Azα(δ), u) = δ.
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Chapter 3

THE ILL-POSEDNESS OF
EXTRAPOLATION AND

REGULARIZED
EXTRAPOLATION

3.1 THE ILL-POSEDNESS OF THE PROBLEM

The problem of solving equation (4) on the pair of spaces (C0,Ω, L
2) is ill-posed

since it violates conditions (i) and (iii) in definition 2.1:

i) The existence condition is not satisfied since it is possible that f ∈ L2 but

f /∈ AC0,Ω . In fact, every f ∈ L2[−T, T ]\C[−T, T ] is not in the range of A . That

is, the A in (4) is not surjective.

ii) It is easy to see that the problem satisfies ii);

iii) The stability condition is not satisfied. That is, A−1 is not continuous.

This can be seen from the next example.

Example 3. For positive integers n define functions in C0,Ω by

Fn(ω) := sinnω, F (ω) := 0 if |ω| ≤ Ω := π.

Then (see [p.1050 of [15] for details)

||AFn − AF ||2L2[−T,T ] → 0 (n→ ∞).

But for all n

||Fn − F ||C0,Ω
= 1.
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3.2 REGULARIZATION FOR EXTRAPOLATION

For the integral equation of the first type (4), we employ the smoothing func-

tional

Mα[F, fδ] := ||AF−fδ||2L2+α||F ||2W 1
2

(7)

where α > 0, fδ ∈ L2[−T, T ] , F ∈W 1
2 := W 1

2 [−Ω, Ω], and

||F ||2W 1
2

:=

∫ Ω

−Ω

(|F (ω)|2 + |F ′(ω)|2)dω

is the square of the Sobolev norm ([20]).

The regularized extrapolation to be found is the inverse Fourier transform of a

minimizer Fα ∈ W 1
2 of the smoothing functional:

Mα[Fα, fδ] = inf
F∈W 1

2

Mα[F, fδ].

We will prove the existence and uniqueness of Fα in the Appendix and the following

result concerning the minimizer Fα :

In Theorem 3.2, we will prove Fα converges uniformly on [−Ω,Ω] to the true

frequency-domain signal f̂ as δ → 0 provided that α = α(δ) is a suitably defined

function of δ . Hence, the regularized extrapolation

fα(t) :=
1

2π

∫ Ω

−Ω

Fα(ω)e−iωtdω =: AFα(t) (7a)

will converge uniformly to the true extrapolation f(t) over t ∈ R , namely, to the

right-hand side of (2). Here is the reason: The functions fα do converge to a

function g which agrees with f in [−T, T ] . From the uniqueness of the (analytic!)

extrapolation (see page 3) it follows that g = f in R .
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Theorem 3.1. For α > 0, and f ∈ L2[−T, T ] , there exists a function Fα ∈ W 1
2

such that

i) Mα[Fα, f ] = infF∈W 1
2
Mα[F, f ] .

ii) F ′′
α exists and Fα satisfies the Euler equation ([19], pp.183-214): for all ω ∈

[−Ω,Ω]

1

2π2

∫ Ω

−Ω

sin(s− ω)T

s− ω
Fα(s)ds+ α[Fα(ω) − F ′′

α(ω)] =
1

2π

∫ T

−T

f(t)eiωtdt. (7b)

The proof is in the Appendix.

Suppose F ∈W 1
2 [−Ω,Ω] satisfies the integral equation

AF (t) :=
1

2π

∫ Ω

−Ω

F (ω)e−iωtdω = f(t) a. e. t ∈ [−T, T ] (4)′

Since F ∈ L2[−Ω,Ω] ⊂ L1(R) ∩  L2(R), the function F̃ lies in L1(R) ∩ C(R).

According to (4)′ it satisfies

F̃ (t) = f(t) a. e. t ∈ [−T, T ].

Therefore F̃ on the whole of R is our candidate to solve the original problem (p.3)

of recovering (extrapolating) f from knowledge only of f |[−T,T ] .

Let fE denote the function defined for all t ∈ R by the left side of (4)′ . Thus

fE ∈ L2(R) ∩ C(R) and fE interpolates f |[−T,T ] and f̂E = F on [−Ω,Ω], f̂E = 0

on R \ [−Ω,Ω].

Theorem 3.2. Let {fδ} ⊂ L2[−T, T ] be such that

||fδ − fE||2L2 =

∫ T

−T

|fδ(t) − fE(t)|2dt ≤ δ2.

If we choose α = α(δ) such that α(δ) → 0 and δ2/α(δ) is bounded as δ → 0, then

lim
δ→0

||Fα(δ) − f̂E||C0,Ω
= lim

δ→0
max

−Ω≤ω≤Ω
|Fα(δ)(ω) − f̂E(ω)| = 0

where Fα(δ) is the solution of the Euler equation (7b) in which f is fδ .
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The proof is in the Appendix.

From this theorem we can see that the solution of the Euler equation Fα(δ)

approaches the exact solution f̂E of (4) in C0,Ω as δ → 0. We can also give an

error bound for the regularized extrapolation. We will use the notation

d(δ) := ||Fα(δ) − f̂E||C0,Ω
,

which the next theorem concerns:

Theorem 3.3. Under the conditions of theorem 3.2, we have

d(δ)2 = O(α(δ)) +O(δ2).

The proof is in the Appendix.

From this theorem 3.3 we have the next corollaries for fα defined in (7a).

Corollary 1.

sup
−∞<t<+∞

|fα(δ)(t) − fE(t)|2 = O(δ2) +O(α(δ)).

Since Fα and f̂E are supported in [−Ω,Ω], using Parseval’s identity and (7a),

we have

Corollary 2.

∫ +∞

−∞
|fα(δ)(t) − fE(t)|2dt =

1

2π

∫ Ω

−Ω

|Fα(δ)(ω) − f̂E(ω)|2dω = O(δ2) +O(α(δ)).

From theorem 3.2 and theorem 3.3, we can conclude that the error of the regular-

ized solution depends on the regularization parameter α . Therefore it is important

to determine the parameter α . In general α should be small if δ is small. Here

we suggest an algorithm to choose the regularization parameter by solving ([13],

pp.87-93)

||AFα(δ) − fδ||2L2[−T,T ] = δ2

for α(δ). This equation can be solved for α by using Newton’s method. Other

methods to choose the regularization parameter are discussed in [16] and [17].

22



We can solve the Euler equation (7b) by the following finite-difference method:

1

2π2

n−1∑

j=−n+1

sin(sj − ωk)T

sj − ωk

F h
j + α[F h

k − F h
k+1 − 2F h

k + F h
k−1

h2
]

=
1

2π

∫ T

−T

f(t)eiωktdt, k = −n+ 1, ..., n− 1, (††)

in which h := Ω/n, sj = ωj := jh, j = −n+1, ..., n−1, and F h
j , j = −n+1, ..., n−1

are the unknowns. We set F h
−n := F h

n := 0 to ensure the Ω-band-limitedness.

Now we can prove the coefficient matrix is positive-definite. The coefficient

matrix is

C := C1 + αI +
1

h2
H

where C1 :=
(

sin(sj−ωk)T

sj−ωk

)
, I the (2n− 1) by (2n− 1) identity matrix and

H := [−1, 2,−1] =




2 −1 0 ... 0

−1 2 −1 ... 0

......

0 ... 0 −1 2




in which all diagonal entries are 2, all super-diagonal entries are −1, all sub-

diagonal entries are −1 and all other entries are 0. Then for any real vector

z = (z−n+1, ..., zn−1)

zTC1z =
n−1∑

j=−n+1

n−1∑

k=−n+1

sin(sj − ωk)T

sj − ωk

zjzk

=
1

2

n−1∑

j=−n+1

n−1∑

k=−n+1

∫ T

−T

ei(sj−ωk)tzjzkdt =
1

2

n−1∑

j=−n+1

∣∣∣∣
∫ T

−T

e−iωjtzjdt

∣∣∣∣
2

≥ 0,

and

zTHz =
n−1∑

j=−n+1

(zj − zj−1)
2 + z2

−n+1 + z2
n−1 ≥ 0.

The amount of computation time needed to solve the system of equations (††) is

of the order O(n3) ([21]). Hence, it will be useful to find a more effective algorithm
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for extrapolation.

3.3 A FAST ALGORITHM FOR COMPUTING FOURIER

TRANSFORMS

To find a fast algorithm to solve the Euler equation for computing Fourier

transforms, we first write the Euler equation in the form

A∗AFα + α[Fα − F ′′
α ] = A∗f (7c)

where A∗ is the adjoint operator of A when A is the operator from L2[−Ω,Ω] into

L2[−T, T ] in (4) Since

A∗AFα =
1

2π2

∫ Ω

−Ω

sin(s− ω)T

s− ω
Fα(s)ds and A∗f =

1

2π

∫ T

−T

f(t)eiωtdt.

Now we can see the uniqueness of the solution of (7c) by

(A∗AF + α[F − F ′′], F ) = (AF,AF ) + α(F, F ) − α(F ′′, F )

= (AF,AF ) + α(F, F ) + α(F ′, F ′) > 0, for F 6= 0 in C0,Ω.

The operator in the right-hand side of equation (7c) is therefore positive, which

implies that the solution of Euler equation (7b) is unique. In the sequel A will in

fact be F−1 from L2[−Ω,Ω] into L2[−T, T ] . When T = ∞ , A = F−1 .

Lemma. If a linear transform S on a Hilbert space is surjective and isometric,

then S∗ = S−1 .

In previous sections T < +∞ ; now we consider the case T = +∞ . Then
√

2πA =
√

2πF−1 is surjective and isometric on L2(R). By the lemma:

(
√

2πA)∗ = (
√

2πF−1)−1.

We can calculate

A∗ = (F−1)∗ =
1

2π
F
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and

(A∗)−1 = 2πF−1 = 2πA.

Then for f ∈ L2(R) ∩ L1(R), the Euler equation (7c) can be transformed to the

following forms successively:

AFα + α(A∗)−1(Fα − F ′′
α) = f

AFα + 2παA(Fα − F ′′
α) = f

(1+2πα)Fα−2παF ′′
α = A−1f = F[f ]. (7d)

We use the finite-difference method to solve this differential equation:

(1+2πα)F h
α,j−2πα

F h
α,j+1 − 2F h

α,j + F h
α,j−1

h2
= ĝj :=

∫ ∞

−∞
f(t)eiωjtdt (8)

where h := Ω/n, ωj := jh (j = −n + 1, ..., n − 1). Here we write F h
α,j for the

solutions of the linear system (8), since they depend on α .

The coefficient matrix is a (2n − 1) by (2n − 1) symmetric matrix which is

tridiagonal with diagonal entries:

bj := b = 1 + 2πα + 4πα/h2, (j = −n+ 1, ..., n− 1),

sub-diagonal entries

aj := a = −2πα/h2, (j = −n+ 1, ..., n− 1),

and super-diagonal entries

cj := c = −2πα/h2, (j = −n+ 1, ..., n− 1).

Since α > 0, the matrix is strictly diagonally dominant. Hence, the system of

equations (8) can be solved with the Thomas algorithm ([21]):

1. u−n+1 := c/b, uj := c/(b− auj−1), j = −n+ 2, ..., n− 1.
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2. y−n+1 := ĝ−n+1/b, yj := (ĝj − ayj−1)/(b− auj−1), j = −n+ 2, ..., n− 1.

3. F h
α,n−1 := yn−1, F

h
α,j := yj − ujF

h
α,j+1, j = n− 2, ...,−n+ 1.

The time of computation needed to solve the system of equations (8) is of the

order O(n) ([21]). We construct a piecewise-linear approximation to Fα :

F h
α (ω) := F h

α,j +
F h

α,j+1 − F h
α,j

h
(ω − ωj), ω ∈ [ωj, ωj+1], j = −n, ..., n− 1.

Since there are errors in the discretizing process, we must also estimate the error

bound of this discretization.

By the Remark following the lemma in the appendix, if f(t), tf(t), t2f(t) ∈
L1(R), the regularized solution Fα ∈ C4[−Ω,Ω]. So by the Taylor formula

F ′′
α(ωj) =

Fα(ωj+1) − 2Fα(ωj) + Fα(ωj−1)

h2
+O(h2).

With the formula above we will obtain an error estimation for the finite-difference

method (8). First the solution of Euler equation (7d) satisfies, for j = −n +

1, ..., n− 1

(1+2πα)Fα(ωj)−2πα
Fα(ωj+1) − 2Fα(ωj) + Fα(ωj−1)

h2
= ĝj+O(h2). (9)

Then we have the next theorem.

Theorem 3.4. We use the abbreviation Fα,j to denote Fα(ωj) and suppose

F h
α := (F h

α,−n+1, F
h
α,−n+2, ..., F

h
α,n−1), Fα := (Fα,−n+1, Fα,−n+2, ..., Fα,n−1)

are the solutions of (8), (9) respectively. If f(t), tf(t), t2f(t) ∈ L1(R), then

n−1∑

j=−n+1

|F h
α,j − Fα,j|2 =

O(h3)

1 + 2πα + 2πα
h2 λmin

where λmin := 2 + 2 cos(π(2n − 1)/2n) is the minimal eigenvalue of the positive-

definite matrix H = [−1, 2,−1] ([22]).

26



The proof is in the Appendix.

We can construct a function fh
α which is called a regularized restoration by:

fh
α(t) :=

1

2π

∫ Ω

−Ω

F h
α (ω)e−iωtdω =

1

2π

n−1∑

j=−n

∫ ωj+1

ωj

[
F h

α,j +
F h

α,j+1 − F h
α,j

h
(ω − ωj)

]
e−iωtdω

= − 1

2πit

n−1∑

j=−n

∫ ωj+1

ωj

[
F h

α,j +
F h

α,j+1 − F h
α,j

h
(ω − ωj)

]
de−iωt

= − 1

2πit

n−1∑

j=−n




[
(F h

α,j +
F h

α,j+1 − F h
α,j

h
(ω − ωj))e

−iωt

]ωj+1

ωj

−
∫ ωj+1

ωj

F h
α,j+1 − F h

α,j

h
e−iωtdω




= − 1

2πit

n−1∑

j=−n


(F h

α,j+1e
−iωj+1t − F h

α,je
−iωjt) +

[
F h

α,j+1 − F h
α,j

hti
e−iωt

]ωj+1

ωj




=
1

2πt2

n−1∑

j=−n

F h
α,j+1 − F h

α,j

h
(e−iωj+1t − e−iωjt), t ∈ R.

Remark. The apparent singularity at t = 0 in the last formula is only apparent,

since we have set F h
−n := F h

n := 0 to ensure the Ω-band-limitedness.

From theorem 3.4 we have the following corollaries.

Corollary 3.

max
−n+1≤j≤n−1

|F h
αj − (f̂E)j|2 = O(δ2) +O(α(δ2)) +

O(h3)

1 + 2πα + 2πα
h2 λmin

.

Corollary 4.

sup
−∞<t<+∞

|fh
α(t) − fE(t)|2 = O(δ2) +O(α(δ2)) +

O(h3)

1 + 2πα + 2πα
h2 λmin

.

Using Parseval’s identity, we have, since F h
α and f̂E are supported in [−Ω,Ω]

Corollary 5.

∫ +∞

−∞
|fh

α(t) − fE(t)|2dt =
1

2π

∫ Ω

−Ω

|F h
α (ω) − f̂E(ω)|2dω

= O(δ2) +O(α(δ2)) +
O(h3)

1 + 2πα + 2πα
h2 λmin

.
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3.4 A REGULARIZED FORMULA FOR SPECTRAL

ANALYSIS

By inverse Fourier transforming both sides of (7d), we obtain

Fα(ω) =

∫ ∞

−∞

f(t)

1 + 2πα + 2παt2
eiωtdt, ω ∈ [−Ω,Ω]. (10)

For this formula, the convergence property and the error estimation in section III

are also true. In general, to guarantee the convergence property of the regularized

solution it is necessary for the exact solution to belong to a subset of the metric

space D which is compact in the topology of D([13], [18]). In this paper, we

solved the integral equation (4)′ in the class W 1
2 , which resulted in f̂E being in

W 1
2 (since (4)′ and Fourier Inversion imply f̂ = F ), which means f̂E lies in a

compact subset of C0,Ω . Now in the next theorem we can prove the regularized

solutions Fα converge to the exact solution without the condition f̂E ∈W 1
2 .

Theorem 3.5. The regularized solution (10) satisfies

||Fα(δ) − f̂E||C0,Ω
= O(

δ

α1/4
) + ϕ(α)

where

ϕ(α) :=

∫ ∞

−∞

2πα + 2παt2

1 + 2πα + 2παt2
|fE(t)|dt.

and

ϕ(α) → 0 as α → 0.

The proof is in the appendix.

3.5 REGULARIZED ITERATIVE EXTRAPOLATION AL-

GORITHM

Based on the regularized spectral estimation formula (10), we present the next

regularized Iterative Extrapolation Algorithm:

f [0](t) :=
PTf(t)

1 + 2πα + 2παt2
.
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For l = 0, 1, 2, ... ,

f [l+1](t) :=
PTf(t)

1 + 2πα + 2παt2
+

(I − PT )F−1PΩFf [l](t)

1 + 2πα + 2παt2
,

where

PTf(t) :=





f(t), t ∈ [−T, T ]

0, t ∈ R \ [−T, T ]

and

PΩf̂(ω) :=





f̂(ω), ω ∈ [−Ω,Ω]

0, ω ∈ R \ [−Ω,Ω].

3.6 EXPERIMENTAL RESULTS

In this section, we give some examples to show that the regularized iterative

extrapolation algorithm is more effective in controlling the Gibbs phenomena and

noise than the Papoulis-Gerchberg algorithm.

Suppose

fE(t) :=
sin t

πt
, t ∈ R.

Then fE ∈ L2(R) and

f̂E(ω) =





1, ω ∈ [−1, 1]

0, ω ∈ R \ [−1, 1].

Example 1. Let [−T, T ] = [−π/5, π/5], The numerical results concerning f̂

gotten by the Papoulis-Gerchberg algorithm and the regularized iterative extrapo-

lation algorithm for the iterations 1,2,3,4 are in fig.1 and fig.2. And α = 0.0001 in

the regularized iterative extrapolation algorithm.

Example 2. Suppose fδn
(t) := fE(t) + ηδn

(t), t ∈ [−T, T ] = [−20, 20], where

ηδn
(t) := (t/T )n4

, t ∈ [−T, T ].

In this example, ηδn
is not the restriction to [−T, T ] of a band-limited function.

But ∫ T

−T

|ηδn
(t)|2dt ≤ δ2

n :=
2T

2n4 + 1
→ 0 (n→ ∞).
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We choose n = 10 and α = 1/n3 . The numerical results by the Papoulis-Gerchberg

algorithm for the iterations 1,2,3,4 are in fig.3, fig.4, fig.5, fig.6, fig.7. The numerical

results by the regularized iterative extrapolation algorithm for the iterations 1,2,3,4

are in fig.8, fig.9, fig.10, fig.11, fig.12.

Example 3. Suppose fδn
(t) := fE(t) + ηδn

(t), t ∈ [−T, T ] = [−80, 80], where

ηδn
(t) :=

1

2π
[
sin(n2 − t)π

n2 − t
+

sin(n2 + t)π

n2 + t
].

In this case

(A−1ηδn
)(ω) = cosn2ω

so the stability condition is not satisfied, as the example in section II shows. How-

ever ∫ T

−T

|ηδn
(t)|2dt ≤ δ2

n :=
2Tn4

π2(n4 − T 2)2
→ 0 (n→ ∞).

For n = 3, the numerical results of the Fourier transform and regularized Fourier

transform are in fig.13 and fig.14 (α = 0.1/n4 ).

3.7 CONCLUSION

Regularization is used to extrapolate band-limited signals in this paper. The

reason for using regularization is to get the Euler equation—–a differential-integral

equation first—–then a differential equation for the Fourier transform. A fast al-

gorithm to solve the differential equation is presented by using finite differences,

and a regularized Fourier transform formula is given by the differential equation.

A regularized iterative extrapolation algorithm is presented based on the regular-

ized Fourier transform formula. Moreover, the precondition f̂E ∈W 1
2 for using the

regularization method can be dispensed with, by theorem 3.5 in section 3.6.
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Chapter 4

THE APPLICATION OF
TWO-DIMENSIONAL

EXTRAPOLATION IN IMAGE
RESTORATION

In this chapter we extend the extrapolation model to the two-dimensional case

and then apply it in image processing.

4.1 The Model

Definition: For two positive Ω1, Ω2 ∈ R , a function f ∈ L1(R2) is said to be

band-limited if f̂(ω1, ω2) = 0 ∀(ω1, ω2) ∈ R2\[−Ω1,Ω1] × [−Ω2,Ω2] .

Here f̂ is the Fourier transform of f :

F(f)(ω1, ω2) = f̂(ω1, ω2)

:=

∫ +∞

−∞

∫ +∞

−∞
f(t1, t2)e

i(ω1t1+ω2t2)dt1dt2, (ω1, ω2) ∈ R2. (11)

We then have the inversion formula:

F −1(f̂)(t1, t2) = f(t1, t2)

=
1

(2π)2

∫ Ω1

−Ω1

∫ Ω2

−Ω2

f̂(ω1, ω2)e
−i(ω1t1+ω2t2)dω1dω2, a.e. (t1, t2) ∈ R2. (12)

This integral is meaningful for all (t1, t2) ∈ C2 and furnishes an analytic extension

of f to C2 .

We consider the so-called band-limited extrapolation problem:
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Assume that f : R2 → C is a band-limited function and T1, T2 are two positive

constants.

Given f(t1, t2) for (t1, t2) ∈ [−T1, T1] × [−T2, T2],

(13)

find f(t1, t2) for (t1, t2) ∈ R2\[−T1, T1] × [−T2, T2] .

We introduce the following regularized iterative extrapolation algorithm:

f [0](t1, t2) :=
PTf(t1, t2)

(1 + 2πα + 2παt21)(1 + 2πα + 2παt22)
.

For l = 0, 1, 2, ... ,

f [l+1](t1, t2) :=
PTf(t1, t2)

(1 + 2πα + 2παt21)(1 + 2πα + 2παt22)
+

(I − PT )F−1PΩFf [l](t1, t2)

(1 + 2πα + 2παt21)(1 + 2πα + 2παt22)
,

where

PTf(t1, t2) :=





f(t), (t1, t2) ∈ [−T1, T1] × [−T2, T2]

0, (t1, t2) ∈ R2\[−T1, T1] × [−T2, T2]

and

PΩf̂(ω1, ω2) :=





f̂(ω1, ω2), (ω1, ω2) ∈ [−Ω1,Ω1] × [−Ω2,Ω2]

0, (ω1, ω2) ∈ R2\[−Ω1,Ω1] × [−Ω2,Ω2].

Remark. In application to image restoration in R2\[−T1, T1]×[−T2, T2] , f(t1, t2)

will be the brightness of the image at the point (t1, t2).

4.2 Application of two-dimensional extrapolation in image

restoration

In this section we give an example of an application of two-dimensional extrap-

olation in image processing([28]). We compare the regularized extrapolation with

the Papoulis-Gerchberg (=PG) algorithm in this case.

We choose the image in figure 7. And we assume the image to be extrapolated

is figure 8. The known section is the square in which the cross is imbedded. We

can use extrapolation algorithms to compute the unknown part of the image that

is outside of the square.
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The result of five iterations of the PG algorithm is in figure 9. The result of five

iterations of the regularized algorithm with α = 0.00000001 is in figure 10.

We can see many stripes in the image by the extrapolation algorithms. This is

due to the Gibbs phenomena.

The image signal is not exactly band-limited, it is only approximately band-

limited. But in computation we just use the part of the frequency domain in a

finite interval. This gives rise to the Gibbs phenomena in the time domain.

This can be seen from the next demonstration. Let

f(t) :=





1, t ∈ [−π, π]

0, t ∈ R\[−π, π].

Then

fΩ(t) :=
1

2π

∫ Ω

−Ω

f̂(ω)e−iωtdω =
1

2π

∫ Ω

−Ω

∫ π

−π

eiωsdse−iωtdω

=
1

2π

∫ π

−π

∫ Ω

−Ω

eiω(s−t)dωds =
1

π

∫ π

−π

sin Ω(s− t)ds

s− t
.

Let Ω := N, t := π − kπ
N

, where k > 0 is a constant integer. Then

fN(π − kπ

N
) =

(−1)N−k

π

∫ π

−π

sinNsds

s− (π − kπ
N

)
.

Let u := Ns− (N − k)π . Then

fN(π − kπ

N
) =

1

π

∫ kπ

−2Nπ+π

sinu

u
du→ 1

π

∫ kπ

−∞

sin u

u
du,

as N → ∞ .

If we choose k = 1, 2, ... , the values are different.

4.3. Time-Frequency Regularized Extrapolation Algorithm

In this section we introduce a generalized extrapolation model.

Assume f ∈ L1 ∩ L2(R), and f̂ ∈ L1(R).

Then f(t) = 1
2π

∫ ∞
−∞ f̂(ω)e−iωtdω for a. e. t ∈ R , thanks to the Inversion Theo-

rem.
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Here f is not necessarily band-limited.

But ∀ǫ > 0, ∃Ω > 0, such that

f(t) =
1

2π

∫ Ω

−Ω

f̂(ω)e−iωtdω +
1

2π

∫

|ω|>Ω

f̂(ω)e−iωtdω, a. e. t ∈ R,

where

| 1

2π

∫

|ω|>Ω

f̂(ω)e−iωtdω| ≤ 1

2π

∫

|ω|>Ω

|f̂(ω)|dω < ǫ.

This uses the hypothesis that f̂ ∈ L1(R).

Therefore f can be approximated in the maximum norm to any desired accuracy

by a band-limited function with a sufficiently long band width 2Ω. However, Gibbs

phenomena may pollute the restored image even if we use the regularized algorithm

presented in Section II. To alleviate this drawback, we present a revised regularized

extrapolation. In the frequency domain we multiply the kernel by a factor similar

to that used in the time domain:

1

(1 + 2πβ + 2πβω2
1)(1 + 2πβ + 2πβω2

2)
,

where β > 0 is a regularization parameter like the earlier α .

First we define the weighted Fourier inverse formula

F−1
β (f̂)(t1, t2) :=

1

(2π)2

∫ Ω1

−Ω1

∫ Ω2

−Ω2

f̂(ω1, ω2)e
−i(ω1t1+ω2t2)dω1dω2

(1 + 2πβ + 2πβω2
1)(1 + 2πβ + 2πβω2

2)
, a.e. (t1, t2) ∈ R2.

Next we define the Time-Frequency regularized iterative extrapolation algo-

rithm:

f [0](t1, t2) :=
PTf(t1, t2)

(1 + 2πα + 2παt21)(1 + 2πα + 2παt22)
.

For l = 0, 1, 2, ... ,

f [l+1](t1, t2) :=
PTf(t1, t2)

(1 + 2πα + 2παt21)(1 + 2πα + 2παt22)
+

(I − PT )F−1
β PΩFf [l](t1, t2)

(1 + 2πα + 2παt21)(1 + 2πα + 2παt22)
,

Since a similar multiplicative factor is involved in both Time and Frequency

domain, we call this the Time-Frequency Regularized Extrapolation algorithm.

This algorithm is based on the next theorem.
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Theorem 4.1. Assume fE ∈ L1 ∩ L2 , f̂E ∈ L1 ,

||f̂δ − f̂E||L2 ≤ δ,

f
Ω,β(t) :=

1

2π

∫ Ω

−Ω

f̂δ(ω)e−iωtdω

1 + 2πβ + 2πβω2
,

where β(δ) → 0, δ

β
1
4 (δ)

→ 0, as δ → 0.

Then for each ǫ > 0, there exists Ω(ǫ) > 0 and δ(ǫ) > 0 such that

||fΩ(ǫ),β − fE||C(−∞, ∞) < ǫ

whenever

0 < δ < δ(ǫ).

The proof can be seen in the appendix.

4.4 EXPERIMENTAL RESULTS

In this section we use the Time-Frequency Regularized Extrapolation algo-

rithm. The result of j iterations of the algorithm with α = 0.00000001 and

β = 0.00004/2j , j = 1, 2, 3, 4, 5 is in figures 11-15.

4.5. CONCLUSION

A two-dimensional band-limited extrapolation model is introduced in this chap-

ter. In considering its application in image-processing we presented a generalized

extrapolation model in which the signal is not necessarily band-limited. A time-

frequency regularized extrapolation algorithm is presented to control the Gibbs

phenomena.
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APPENDIX

Proof of Theorem 3.1: Since every Mα[F, f ] ≥ 0, there exists

Mα := inf
F∈W 1

2

Mα[F, f ].

Here the spaces in section 2.4 are U := L2[−T, T ] , D := C0,Ω , D1 := W 1
2 [−Ω,Ω],

Mα is defined in (7), and f is a fixed function in U .

Let Fm denote a minimizing sequence for Mα , specifically, one such that

Mα ≤Mα[Fm, f ] ≤Mα +
1

m
.

The inequality

(a+ b)2 ≤ 2(a2 + b2)

implies that

||AFm − f

2
+
AFm+p − f

2
||2 ≤ (||AFm − f

2
|| + ||AFm+p − f

2
||)2

≤ 2(||AFm − f

2
||2 + ||AFm+p − f

2
||2).

where A is defined in (7a).

Consequently we have, by the parallelogram law in Hilbert space and the definition

of Mα in equation (7) in section 3.2

α||Fm − Fm+p

2
||2W 1

2
= −α||Fm + Fm+p

2
||2W 1

2
+
α

2
||Fm||2W 1

2
+
α

2
||Fm+p||2W 1

2

= −Mα[
Fm + Fm+p

2
, f ] +

1

2
Mα[Fm, f ] +

1

2
Mα[Fm+p, f ]

+||AFm + Fm+p

2
− f ||2L2 − 1

2
||AFm − f ||2L2 − 1

2
||AFm+p − f ||2L2

≤ −Mα +
1

2
(Mα +

1

m
) +

1

2
(Mα +

1

m
) =

1

m
→ 0 as m→ ∞.

It follows from the completeness of the space W 1
2 that the sequence {Fm} converges

in it. Let us define

Fα := lim
m→∞

Fm.
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Since A is continuous in L2 -norm, Mα is also (see eq (7)), and therefore

lim
m→∞

Mα[Fm, f ] = Mα[Fα, f ].

Consequently we have

Mα[Fα, f ] = Mα.

The uniqueness of the element Fα follows from the fact that Mα[F, f ] is a

nonnegative quadratic functional, and it cannot attain its least value at two distinct

elements. By a variational principle ([19], pp.183-214),

dMα[F + ǫη]

dǫ
|ǫ=0 = 0, ∀η ∈ W 1

2 [−Ω,Ω].

Then upon expanding Mα[F + ǫη] using definition (7) and linearity, we find for the

real part of this derivative

ℜ{
∫ Ω

−Ω

[
1

2π2

∫ Ω

−Ω

sin(s− ω)T

s− ω
Fα(s)ds− 1

2π

∫ T

−T

f(t)eiωtdt

]
η(ω)dω

+α

∫ Ω

−Ω

Fα(ω)η(ω)dω + α

∫ Ω

−Ω

F ′
α(ω)η′(ω)dω} = 0. (20)

If we choose η to be a real-valued function, this becomes
∫ Ω

−Ω

[
1

2π2

∫ Ω

−Ω

sin(s− ω)T

s− ω
ℜFα(s)ds− 1

2π
ℜ

∫ T

−T

f(t)eiωtdt

]
η(ω)dω

+α

∫ Ω

−Ω

ℜFα(ω)η(ω)dω + α

∫ Ω

−Ω

ℜF ′
α(ω)η′(ω)dω = 0.

So

α

∫ Ω

−Ω

ℜF ′
α(ω)η′(ω)dω

= −
∫ Ω

−Ω

[
1

2π2

∫ Ω

−Ω

sin(s− ω)T

s− ω
ℜFα(s)ds− 1

2π
ℜ

∫ T

−T

f(t)eiωtdt+ αℜFα(ω)

]
η(ω)dω

Hence ℜF ′′
α exists in the weak sense. For the same reason ℑF ′′

α exists in the weak

sense. (We will prove that the derivative exists pointwise in the remark following

this proof.) Therefore F ′′
α exists in the weak sense and from (20) we can see that

ℜ{
∫ Ω

−Ω

[
1

2π2

∫ Ω

−Ω

sin(s− ω)T

s− ω
Fα(s)ds− 1

2π

∫ T

−T

f(t)eiωtdt

]
η(ω)dω+
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+α

∫ Ω

−Ω

Fα(ω)η(ω)dω − α

∫ Ω

−Ω

F ′′
α(ω)η(ω)dω} = 0.

The preceding equation must hold for all η ∈ W 1
2 [−Ω,Ω]. Since W 1

2 [−Ω,Ω] is

dense in L2[−Ω,Ω], it also holds for all η ∈ L2[−Ω,Ω]. Let us take for η the

function whose complex conjugate is

η(ω) :=
1

2π2

∫ Ω

−Ω

sin(s− ω)T

s− ω
Fα(s)ds− 1

2π

∫ T

−T

f(t)eiωtdt+ αFα(ω) − αF ′′
α(ω).

Note that this function does indeed lie in L2[−Ω,Ω]. The preceding equation for

this η reads

∫ Ω

−Ω

∣∣∣∣
1

2π2

∫ Ω

−Ω

sin(s− ω)T

s− ω
Fα(s)ds− 1

2π

∫ T

−T

f(t)eiωtdt+ αFα(ω) − αF ′′
α(ω)

∣∣∣∣
2

dω = 0.

We thus see that Fα must satisfy the Euler equation (7b) for a.e. ω .

Remark. Here the derivatives are weak derivatives. So the Euler equation (7b)

is true almost everywhere in [−Ω,Ω]. We choose the solution to be the representa-

tive such that the Euler equation is satisfied pointwise in [−Ω,Ω]. To see that this

is possible we need next theorem

Theorem. If u ∈ L1[−Ω,Ω] is weakly differentiable on [−Ω,Ω] and the weak

derivative Du is continuous then there exists v∗ ∈ C1[−Ω,Ω] such that u = v∗

a.e..

Proof. Define

w(x) := ke
− 1

1−x2 · 1[−1,1](x), x ∈ R,

where k is a constant such that
∫
R
w(x)dx = 1.

Let wh(x) := 1
h
w(x

h
) and uh := u ∗ wh , x ∈ R , h > 0.

Then D(uh) = (Du)h . In general Du , D(uh), (Du)h are only distributions but

under the present hypthesis they are continuous functions and can consequently be

evaluated at points. Hence for any x, y ∈ R

|D(uh)(x) −D(uh)(y)| = |(Du)h(x) − (Du)h(y)|.

=

∣∣∣∣
∫

R

wh(z)[(Du)(x+ z) − (Du)(y + z)]dz

∣∣∣∣ .
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So the family {D(uh) : h > 0} is equicontinuous, since Du is continuous.

On the other hand, D(uh) is also uniformly bounded.

By the Ascoli-Arzela Theorem D(uh) → v ∈ C[−Ω,Ω] as h→ 0.

This implies uh → v∗ ∈ C1[−Ω,Ω] as h → 0, where v∗ is an anti-derivative of

v .

However uh → u ∈ L1[−Ω,Ω] as h→ 0.

Therefore u = v∗ ∈ C1[−Ω,Ω], a. e. in [−Ω,Ω].

Note. Based on the theorem above, since F ′′
α is continuous, there exists F ∗

α ∈
C2[−Ω,Ω] such that F ∗

α = Fα a.e. in [−Ω,Ω]. Then for F ∗
α the Euler equation

(7b) is pointwise true. In the sequel we just take Fα to be F ∗
α .

Proof of Theorem 3.2: Since Fα is the minimizer in Theorem 3.1 and f̂E ∈
W 1

2 (see p.23)

α(δ)||Fα(δ)||2W 1
2
≤Mα[Fα(δ), fδ] ≤Mα[f̂E, fδ]

= ||Af̂E − fδ||2L2 + α(δ)||f̂E||2W 1
2
≤ δ2 + α(δ)||f̂E||2W 1

2

where A = F−1 from C0,Ω into L2[−T, T ] according to (4)′ . Hence dividing by

α(δ),

||Fα(δ)||2W 1
2
≤ δ2/α(δ) + ||f̂E||2W 1

2
≤ C <∞,

where C is a constant independent of δ . The Sobolev imbedding theorem implies

that every sequence of the elements of the set {Fα(δ)} has a subsequence {Fα(δn)}
that converges to some element F0 ∈ C0,Ω in the max norm([20]).

We now show F0 = f̂E , thus proving that every convergent subsequence of

{Fα(δ)} converges to f̂E .

∫ T

−T

|(AF0)(t) − fE(t)|2dt ≤ 3

∫ T

−T

|(AF0)(t) − (AFα(δn))(t)|2dt

+3

∫ T

−T

|(AFα(δn))(t) − fδn
(t)|2dt+ 3

∫ T

−T

|fδn
(t) − fE(t)|2dt.

39



By the hypothesis of Theorem 3.2.

∫ T

−T

|fδn
(t) − fE(t)|2dt→ 0.

Since A is continuous from C0,Ω into L2[−T, T ]

∫ T

−T

|(AF0)(t) − (AFα(δn))(t)|2dt→ 0.

Also

∫ T

−T

|(AFα(δn))(t) − fδn
(t)|2dt ≤Mα[Fα(δn), fδn

] ≤ δ2
n + α(δn)||f̂E||2W 1

2
.

Therefore ∫ T

−T

|(AF0)(t) − fE(t)|2dt = 0,

whence

AF0 = fE.

The invertibility of A implies that

F0 = f̂E.

Proof of Theorem 3.3: Since f̂E ∈ W 1
2 and ||Fα(δ)||2W 1

2

≤ C , by the Sobolev

embedding theorem, Fα(δ) and f̂E belong to the same compact subset

W 1
2,M := {F ∈ C0,Ω :

∫ Ω

−Ω

(|F (ω)|2 + |F ′(ω)|2)dω ≤M}

of the space C0,Ω , where M is a finite constant. It follows from the continuity of

A−1 (= F) from AW 1
2,M into C0,Ω ([13],p.29) that

d2(δ) := ||Fα(δ) − f̂E||2C0,Ω
≤ ||A−1||2AW 1

2,M
||AFα(δ) − fE||2L2

where

||AFα(δ) − fE||2L2 ≤ 2||AFα(δ) − fδ||2L2 + 2||fδ − fE||2L2

≤ 2Mα[Fα, fδ] + 2δ2 ≤ 2Mα[f̂E, fδ] + 2δ2 ≤ 2(δ2 + α(δ)||f̂E||2W 1
2
) + 2δ2.
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Hence

d2(δ) = O(δ2) +O(α(δ)).

In order to prove Theorem 3.4, we need a lemma.

Lemma. If f ∈ L1(R), the regularized solution Fα of (7d) lies in the set

C2[−Ω,Ω] := {F ∈ C0,Ω : F ′′ is continuous} .

Proof: Since every function in W 1
2 [−Ω,Ω] has an a.e. representative in C[−Ω,Ω]

we may suppose, as in the preceding Note, that Fα is continuous. Fα is a solution

of (7d) and F[f ] is continuous since f ∈ L1(R). All other terms in (7d) except

for F ′′
α lie in the set C[−Ω,Ω]. Therefore F ′′

α is continuous, so Fα lies in the set

C2[−Ω,Ω].

Remark. If f(t), tf(t), t2f(t) ∈ L1(R), then F(f) ∈ C2(R), and this implies

that the regularized solution Fα of (7d) lies in the set C4[−Ω,Ω] := {F ∈ C0,Ω : F (4)

is continuous} . This can be seen if we calculate derivatives twice in (7d):

(1 + 2πα)F ′′
α − 2παF (4)

α = [F(f)]′′ ∈ C(R).

Proof of Theorem 3.4:

Since f(t), tf(t), t2f(t) ∈ L1(R), the discussion preceding equation (9) shows

its validity.

From (8) and (9), we have

[(1 + 2πα)I +
2πα

h2
H](F h

α − Fα) = Q(h2)

where H is defined on p.25, Q(h2) := (O−n+1(h
2), ..., On−1(h

2)) in which Oj(h
2) is

a function that converges to 0 like h2 for j = −n+ 1, ..., n− 1.

Since H is positive-definite, H = SDS∗ where S is a unitary matrix and S∗

is it conjugate transpose such that S∗S = I , D = [λ−n+1, λ−n+2, ..., λn−1] (λj >

0, j = −n+ 1,−n+ 2, ..., n− 1).
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Hence

F h
α − Fα = S[(1 + 2πα)I +

2πα

h2
D]−1S∗Q(h2).

Therefore
n−1∑

j=−n+1

|F h
αj − Fαj|2

= Q(h2)∗S[(1 + 2πα)I +
2πα

h2
D]−1S∗S[(1 + 2πα)I +

2πα

h2
D]−1S∗Q(h2)

= Q(h2)∗S[(1 + 2πα)I +
2πα

h2
D]−2S∗Q(h2)

= V ∗[(1 + 2πα)I +
2πα

h2
D]−2V (V = S∗Q(h2))

=
n−1∑

j=−n+1

|Vj|2
(1 + 2πα + 2πα

h2 λj)2
(V = (V−n+1, V−n+2, ..., Vn−1)

∗)

≤ 1

(1 + 2πα + 2πα
h2 minλj)2

n−1∑

j=−n+1

|Vj|2

=
1

(1 + 2πα + 2πα
h2 minλj)2

n−1∑

j=−n+1

Oj(h
4)

in which minλj = 2 + 2 cos(π(2n− 1)/2n))([22]).

Proof of Theorem 3.5:

Fα(δ)(ω) − f̂E(ω) =

∫ ∞

−∞

fδ(t) − fE(t)

1 + 2πα + 2παt2
eiωtdt−

∫ ∞

−∞

2πα + 2παt2

1 + 2πα + 2παt2
fE(t)eiωtdt

=: I1 + I2.

|I1| ≤ (

∫ ∞

−∞
|fδ(t) − fE(t)|2dt)1/2[

∫ ∞

−∞

dt

(1 + 2πα + 2παt2)2
]1/2

≤ δ

2πα
[

∫ ∞

−∞

dt

(a2 + t2)2
]1/2 =

δ

2πα
(
π

2a3
)1/2 (a2 =

1 + 2πα

2πα
)

=
δ

α1/4

(2π)1/4

2(1 + 2πα)3/4
= O(

δ

α1/4
).

Next

|I2| ≤ α

∫

|t|≤T

(2π + 2πt2)|fE(t)|dt+

∫

|t|≥T

|fE(t)|dt.
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Now, given ∀ǫ > 0 ∃T = T (ǫ) such that
∫
|t|≥T

|fE(t)|dt < ǫ/2 and ∃α(ǫ) such that

α

∫

|t|≤T

(2π + 2πt2)|fE(t)|dt < ǫ/2 whenever 0 < α < α(ǫ).

Therefore

|I2| < ǫ whenever 0 < α < α(ǫ).

Proof of Theorem 4.1: For for every t ∈ R

fΩ,β(δ)(t) − fE(t) =

∫ Ω

−Ω

f̂δ(ω)

1 + 2πβ + 2πβω2
e−iωtdω −

∫ ∞

−∞
f̂E(ω)e−iωtdω

=

∫ Ω

−Ω

f̂δ(ω) − f̂E(ω)

1 + 2πβ + 2πβω2
e−iωtdω −

∫ Ω

−Ω

2πβ + 2πβω2

1 + 2πβ + 2πβω2
f̂E(ω)e−iωtdω

+

∫

|ω|>Ω

f̂E(ω)e−iωtdω =: I1 + I2 + I3.

|I1| ≤ (

∫ Ω

−Ω

|f̂δ(ω) − f̂E(ω)|2dω)1/2[

∫ Ω

−Ω

dω

(1 + 2πβ + 2πβω2)2
]1/2

≤ δ

2πβ
[

∫ ∞

−∞

dω

(a2 + ω2)2
]1/2 =

δ

2πβ
(
π

2a3
)1/2 (a2 :=

1 + 2πβ

2πβ
)

=
δ

β1/4

(2π)1/4

2(1 + 2πβ)3/4
= O(

δ

β1/4
).

Next

|I2| ≤ β

∫

|ω|≤Ω

(2π + 2πω2)|f̂E(ω)|dω.

Now, given ǫ > 0, ∃Ω(ǫ) such that

|I3| < ǫ/3, when Ω = Ω(ǫ)

and ∃δ(ǫ) such that

|I1| < ǫ/3, |I2| < ǫ/3 whenever 0 < δ < δ(ǫ).

Therefore for each t ∈ R

|fΩ(ǫ),β(δ)(t) − fE(t)| < ǫ whenever 0 < δ < δ(ǫ).
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Figure 1: The numerical results of f̂ by the Papoulis-Gerchberg algorithm and

regularized iterative extrapolation for the iterations 1,2,3,4.
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Figure 2: The numerical results of f̂ by the Papoulis-Gerchberg algorithm for the

iterations 1,2,3,4. (solid–exact solution, dashed–approximate solution)
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Figure 3: The extrapolation by the Papoulis-Gerchberg algorithm for the iteration

1,2,3,4. (solid–exact solution, dashed–approximate solution)
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Figure 4: The numerical results of f̂ by regularized iterative extrapolation for the

iterations 1,2,3,4. (solid–exact solution, dashed–approximate solution)
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Figure 5: The extrapolation by regularized iterative extrapolation for the iteration

1,2,3,4. (solid–exact solution, dashed–approximate solution)
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Figure 6: The numerical results of f̂ by Fourier transform and the regularized

spectral formula.(solid–exact solution, dashed–approximate solution)
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Figure 7: The original image

Figure 8: The image to be extrapolated
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Figure 9: The extrapolation by 5 iterations of the Papoulis-Gerchberg algorithm

Figure 10: The extrapolation by 5 iterations of the regularized algorithm
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Figure 11: The extrapolation by 1 iteration of the T-F regularized algorithm

Figure 12: The extrapolation by 2 iterations of the T-F regularized algorithm
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Figure 13: The extrapolation by 3 iterations of the T-F regularized algorithm

Figure 14: The extrapolation by 4 iterations of the T-F regularized algorithm
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Figure 15: The extrapolation by 5 iterations of the T-F regularized algorithm
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