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Abstract 

Wheat pre-harvest sprouting (PHS), germination of physiologically matured grains in a 

wheat spike before harvesting, can cause significant reduction in grain yield and end-use quality. 

Many quantitative trait loci (QTL) for PHS resistance have been reported in different sources. To 

determine the genetic architecture of PHS resistance and its relationship with grain color (GC) in 

US hard winter wheat, a genome-wide association study (GWAS) on both PHS resistance and 

GC was conducted using in a panel of 185 U.S. elite breeding lines and cultivars and 90K wheat 

SNP arrrays. PHS resistance was assessed by evaluating sprouting rates in wheat spikes 

harvested from both greenhouse and field experiments. Thirteen QTLs for PHS resistance were 

identified on 11 chromosomes in at least two experiments, and the effects of these QTLs varied 

among different environments. The common QTLs for PHS resistance and GC were identified 

on the long arms of the chromosome 3A and 3D, indicating pleiotropic effect of the two QTLs. 

Significant QTLs were also detected on chromosome arms 3AS and 4AL, which were not related 

to GC, suggesting that it is possible to improve PHS resistance in white wheat. 

To identify markers closely linked to the 4AL QTL, genotyping-by-sequencing (GBS) 

technology was used to analyze a population of recombinant inbred lines (RILs) developed from 

a cross between two parents, “Tutoumai A” and “Siyang 936”, contrasting in 4AL QTL. Several 

closely linked GBS SNP markers to the 4AL QTL were identified and some of them were 

coverted to KASP for marker-assisted breeding.  

To investigate effects of the two non-GC related QTLs on 3AS and 4AL, both QTLs 

were transferered from “Tutoumai A” and “AUS1408” into a susceptible US hard winter wheat 

breeding line, NW97S186, through marker-assisted backcrossing using the gene marker TaPHS1 

for 3AS QTL and a tightly linked KASP marker we developed for 4AL QTL. The 3AS QTL 



  

(TaPHS1) significantly interacted with environments and genetic backgrounds, whereas 4AL 

QTL (TaMKK3-A) interacted with environments only. The two QTLs showed additive effects on 

PHS resistance, indicating pyramiding these two QTLs can increase PHS resistance.  

To improve breeding selection efficiency, genomic prediction using genome-wide 

markers and marker-based prediction (MBP) using selected trait-linked markers were conducted 

in the association panel. Among the four genomic prediction methods evaluated, the ridge 

regression best linear unbiased prediction (rrBLUP) provides the best prediction among the 

tested methods (rrBLUP, BayesB, BayesC and BayesC0). However, MBP using 11 significant 

SNPs identified in the association study provides a better prediction than genomic prediction. 

Therefore, for traits that are controlled by a few major QTLs, MBP may be more effective than 

genomic selection.   
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Abstract 

Wheat pre-harvest sprouting (PHS), germination of physiologically matured grains in a 

wheat spike before harvesting, can cause significant reduction in grain yield and end-use quality. 

Many quantitative trait loci (QTL) for PHS resistance have been reported in different sources. To 

determine the genetic architecture of PHS resistance and its relationship with grain color (GC) in 

US hard winter wheat, a genome-wide association study (GWAS) on both PHS resistance and 

GC was conducted using in a panel of 185 U.S. elite breeding lines and cultivars and 90K wheat 

SNP arrrays. PHS resistance was assessed by evaluating sprouting rates in wheat spikes 

harvested from both greenhouse and field experiments. Thirteen QTLs for PHS resistance were 

identified on 11 chromosomes in at least two experiments, and the effects of these QTLs varied 

among different environments. The common QTLs for PHS resistance and GC were identified 

on the long arms of the chromosome 3A and 3D, indicating pleiotropic effect of the two QTLs. 

Significant QTLs were also detected on chromosome arms 3AS and 4AL, which were not related 

to GC, suggesting that it is possible to improve PHS resistance in white wheat. 

To identify markers closely linked to the 4AL QTL, genotyping-by-sequencing (GBS) 

technology was used to analyze a population of recombinant inbred lines (RILs) developed from 

a cross between two parents, “Tutoumai A” and “Siyang 936”, contrasting in 4AL QTL. Several 

closely linked GBS SNP markers to the 4AL QTL were identified and some of them were 

coverted to KASP for marker-assisted breeding.  

To investigate effects of the two non-GC related QTLs on 3AS and 4AL, both QTLs 

were transferered from “Tutoumai A” and “AUS1408” into a susceptible US hard winter wheat 

breeding line, NW97S186, through marker-assisted backcrossing using the gene marker TaPHS1 

for 3AS QTL and a tightly linked KASP marker we developed for 4AL QTL. The 3AS QTL 



  

(TaPHS1) significantly interacted with environments and genetic backgrounds, whereas 4AL 

QTL (TaMKK3-A) interacted with environments only. The two QTLs showed additive effects on 

PHS resistance, indicating pyramiding these two QTLs can increase PHS resistance.  

To improve breeding selection efficiency, genomic prediction using genome-wide 

markers and marker-based prediction (MBP) using selected trait-linked markers were conducted 

in the association panel. Among the four genomic prediction methods evaluated, the ridge 

regression best linear unbiased prediction (rrBLUP) provides the best prediction among the 

tested methods (rrBLUP, BayesB, BayesC and BayesC0). However, MBP using 11 significant 

SNPs identified in the association study provides a better prediction than genomic prediction. 

Therefore, for traits that are controlled by a few major QTLs, MBP may be more effective than 

genomic selection.
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Chapter 1 - Literature Review 

 Origin and agronomic importance of wheat  

Wheat (Triticum aestivum L.) is one of the ‘top three’ cereal crops, with the total 

production right after maize and rice (http://faostat.fao.org/). It is grown widely from 67˚ N in 

southern Russia to 45˚ S in southwestern Australia and Argentina, including elevated regions in 

the tropical and sub-tropical areas (Feldman 1995). Wheat accounts for more than 20% food 

calories of the world population by providing large amount of starch and considerable levels of 

protein (Nevo et al. 2013). The ‘gluten’ proteins in wheat endosperm provide unique properties 

of dough made from wheat flour, which cannot be replaced by other grain crops. Besides human 

consumption, wheat production also provides a large portion of animal feed production with 

some protein rich supplements, such as soybeans and oilseed residues (Shewry 2009). 

 Common wheat is an allohexaploid species with 2n = 6x = 42 chromosomes consisting of 

three genomes A, B and D, and the evolution process is shown in Fig 1.1. The A genome donor 

is Triticum urartu (AuAu genome) (Chapman et al. 1976), the B genome donor is possibly 

Aegilops speltoides (SS genome) (Feldman 1976), and the D genome donor is Aegilops tauschii 

(DD genome) (Kihara 1944). Common wheat is derived through the hybridization between a 

domesticated tetroploid, Triticum turgidum ssp. dicoccoides (AABB genome) and the diploid 

Aegilops tauschii (DD genome) about 7,000-12,000 years ago, and Triticum turgidum (AABB 

genome) is derived through the hybridization between Triticum urartu (AA genome) and the B 

genome donor about 580-820 thousand years ago (Petersen et al. 2006; Salse et al. 2008; 

Marcussen et al. 2014). Unlike the A genome and D genome donors, the origin of the B genome 

remains controversial because it is still debatable whether the B genome originated from a single 

Aegilops species or an introgression of several Aegilops species (Sales et al. 2008). The genome 

http://faostat.fao.org/
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of Aegilop speltoides was designated as the S genome (Cox 1998; Wang et al. 1996), which is 

present in the Sitopsis section of Aegilops and is shared by a group of species (Slageren 1994), 

among which Aegilops speltoides is the closest extant species to the B genome donor (Feldman 

2001).  

 The ancient cultivated diploid wheat, T. monococcum, also known as einkorn, was grown 

in the southern Levant of the Middle East and is still cultivated in limited areas there. However, 

the wild diploid wheat, T. aegilopoides and T. uratu can be widely found in the Middle East (Gill 

and Friebe 2002). The tetroploid wheat species, T. turgidum and T. timopheevii, have both 

cultivated and wild forms. The emmer wheat, also known as T. turgidum ssp. dicoccum, was an 

ancient cultivated wheat in southeastern Turkey (Gill and Friebe 2002; Heun et al. 1997). About 

9,000 years ago, durum wheat (AABB), was selected and domesticated from a free-threshing 

mutant of emmer wheat, and has become the most widely cultivated tetroploid wheat since 

(Landi 1995). In the United States, durum wheat is grown in limited areas of North Dakota and 

surrounding states, and its common food products include spaghetti and macaroni (Gibson and 

Benson 2002). Common wheat is the major type of commercial wheat nowadays. It originated in 

Iran 6,700 years ago (Marcussen et al. 2014), was introduced to the U.S. in 1602, and has 

become one of the major cereal crops produced in the country (Gibson and Benson 2002). 

 Wheat pre-harvest sprouting  

 Pre-harvest sprouting (PHS) of wheat (Triticum aestivum L.) refers to the germination of 

wheat grains in matured spikes before harvest due to continuous wet weather during harvest 

seasons. PHS happens mainly due to reduced seed dormancy during domestication (Harlan 

1992). Human selection artificially removed seeds that had prolonged dormancy to allow seeds 

to germinate uniformly after sowing (Lunn et al. 2002). Consequently, domesticated winter 
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wheats usually have the dormancy period of 0 to 12 weeks, which is shorter than their wild 

relatives (Mackey 1989). PHS is not only problematic in wheat production, but also impact other 

crops, such as rice and sorghum, by greatly reducing yield and grain quality (Dong et al. 2003; 

Steinbach et al. 1995). 

 Impact of PHS on wheat production 

 PHS can result in a significant reduction in wheat grain yield and grain end-use quality 

(Groos et al., 2002, Mares et al., 2005), which can cause economic losses for both grower and 

end user. Seed germination starts with water imbibition, which invokes the activation of alpha-

amylase and other enzymes in the aleurone layer and embryo. Increased activity of alpha-

amylase digests starch in the endosperm, thus reducing grain yield and nutritional quality (Imtiaz 

et al. 2008). Alpha-amylase activity can be evaluated by the Hagberg falling number test 

(Hagberg 1960).  Furthermore, flour made from sprouted wheat grain contains hydrolyzed 

carbohydrate that usually results in sticky crumb and collapsed loaves (Derera et al. 1980). In 

durum wheat, sprouting not only reduces yield and test weight, but also causes higher cooking 

loss, poor color, reduced firmness and low stickiness of spaghetti (Grant et al. 1993; Manthey 

2000). 

 PHS has been a major concern in wheat growing areas with maritime climate, such as 

northwest America, northwest Europe and north Japan (Lunn et al. 2002), or where high 

humidity occurs before harvesting, as in western Australia (Derera et al. 1980). PHS occurs 

about every four years in the western Australian wheat belt, because commercially grown high 

yielding varieties lack PHS resistance (Biddulph et al. 2005). In the U.S., PHS occurs frequently 

in the white wheat growing regions, such as northwestern states Washington, Oregon and Idaho 

and eastern states Michigan and New York (Briggle 1980). In the plain states where most U.S. 
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wheat is grown, North Dakota was attacked by PHS and lost about 12% of the hard red spring 

wheat and 19% of the durum in 1977 (Anonymous 1977), and north central Kansas and south 

central Nebraska experienced significant damage in hard red winter wheat when encountered 

continuous rainfall (Briggle 1980).  

 PHS and seed dormancy  

 PHS is mainly controlled by seed dormancy (SD), and it is also influenced by other 

factors, including red seed color (Gfeller and Svejda 1960; Groos et al. 2002), spike morphology 

(King and Richard 1984), physical barriers to water penetration (Gale 1989) and environmental 

factors such as temperature and moisture (Argel and Humphreys 1983; Ceccato et al. 2011). 

 It has long been considered that red-grained wheat tends to be more tolerant than white-

grained wheat. Besides grain color, wheat with awns can absorb up to 30% more water than its 

near-isogenic lines without awns, thus increase sprouting by 40% ((King and Richard 1984)). 

Similarly, the club wheat heads can increase ear water absorption by 25% (King and Richard 

1984). Also, PHS has been considered partially controlled by seed coat permeability to water. 

Recently, it has been shown that water imbibition rates are not significantly different between 

dormant and non-dormant genotypes until 18 h, and there is no evidence that water moves across 

the seed coat directly and into the endosperm (Judith et al. 2009). 

 Dormancy is usually defined as the failure of an intact viable seed to germinate under 

favorable conditions, including appropriate supply of oxygen, water and temperature (Gosling et 

al. 1983; King 1993; Bewley 1997). Abscisic acid (ABA) and gibberellic acid (GA) are 

important regulators of SD in species (Bewley 1997); besides, temperature and humidity during 

seed development also have effects on the length of SD (Argel et al. 1983, Ceccato et al. 2011). 

 ABA is important in regulating seed embryonic development, maturation and 
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germination (King 1982; Quatrano 1987). It performs as an inhibitor of embryonic germination 

in immature wheat grain (Quatrano et al. 1983), seeds of rape (Finkelstein et al. 1985) and 

soybean (Eisenberg et al. 1985). The levels of ABA in embryos and sensitivities of embryos to 

ABA can make differences in dormancy expression. ABA-deficient mutants of Arabidopsis, 

tomato and corn produce seeds that show reduced dormancy (Karssen et al. 1983; Quarrie 1987). 

It has also been found that ABA levels are similar in the whole seeds and the embryos of 

dormant grain and non-dormant grain (Walker-Simmons 1988). Therefore, it is likely that the 

embryo sensitivity to ABA is more important in dormancy regulation. ABA-insensitive mutants, 

such as maize vp1 and Arabidopsis abi1, abi2 and abi3, demonstrate reduced dormancy and 

viviparous germination (Koornneef et al. 1989; Koornneef et al. 1984; Le Page-Degivry et al. 

1990). Germination of isolated embryos from dormant grain can be blocked by low 

concentrations (0.05 to 0.5 μM) of ABA, whereas germination of non-dormant grains can only 

be inhibited by 100 to 1000-fold greater ABA concentration (Walker-Simmons 1987 & 1988). 

ABA regulates SD from two aspects: on one hand, many of the ABA-responsive proteins can 

protect cells survive through the environmental stress, such as heat and drought; on the other 

hand, ABA can suppress the biosynthesis of proteins required in germination (Ried and Walker-

Simmons 1990). As dormancy releases, ABA catabolism can be triggered, which results in a 

decrease in ABA content and an increase in its catabolic products (phaseic acid and 

dihydrophaseic acid) in the embryos (Jacobsen et al. 2002; Kushiro et al. 2004). 

 Unlike ABA, GA appears to promote the growth of the embryo during germination, 

rather than break the seed dormancy. Although some studies have shown that high GA 

concentrations (4-10 M) can overcome dormancy in some species (Bewley 1997), there is no 

solid evidence to show that GA is important for breaking dormancy. The activities of GA and 
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ABA may be linked, because GA only accumulates after ABA concentration reduces (Jacobsen 

et al. 2002; Ogawa et al. 2003). It is more likely that ABA might inhibit seed germination by 

repressing GA biosynthesis (Perez-Flores et al. 2003) and block GA signaling pathway in 

aleurone layer and embryos (Gomez-Cadenas et al. 2001; Gubler et al. 2002). It has also been 

shown that the GA-deficient mutants of Arabidopsis (ga1-3) and tomato (gib1) require 

exogenous GA to germinate (Groot and Karssen 1987; Koornneef and Van der Veen 1980), 

indicating that GA plays an essential role in germination process. 

 Temperature and humidity are two environmental factors that have a large effect on 

expression of SD. The effect of temperature on SD depends on the stage of grain development. 

In general, a high temperature during grain filling stage can induce short dormancy, while low 

temperature results in long dormancy (Lunn et al. 2002; Biddulph et al. 2005). However, high 

temperature (30 °C) results in high sprouting rates during germination compared to low 

temperature (10 °C) (Nyachiro et al. 2002), and seed dormancy can be released under 4 °C which 

corresponds to the decline in ABA content (Ali-Rachedi et al. 2004). Rainfall and high humidity 

during grain filling decrease the seed drying rate and dormancy, and drought stress and low 

humidity increase the grain drying rate and dormancy. It was shown that rainfall during the 20 

days before harvesting had large influence on wheat grain germination rates (Mares 1993).  

 PHS resistance evaluation 

Several methods have been developed to evaluate PHS resistance, including germination 

experiment with intact spikes or hand-threshed seeds, the Hagberg Falling Number method and 

the immunological test to measure alpha-amylase activity. Among these methods, intact spike 

sprouting test directly measures wheat PHS resistance, while the other three methods measure 

seed dormancy or alpha-amylase activity during seed germination. 
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 The most straightforward method for PHS resistance evaluation is the intact spike 

sprouting test. In this method, physiologically matured spikes, characterized by the loss of green 

color of wheat spikes (Trethowan 1995), are harvested, air-dried and immersed in water for 4-6 

h. Then the spikes are incubated in a moist chamber or on wet sand for 7 to 14 days. At the end 

of the experiment, PHS is scored as either sprouting rate or on a 1-9 scale with 1 for no visible 

sprouting and 9 for completely sprouted spikes (Baier 1987). The time periods to dry and 

incubate spikes may vary from study to study and heavily depend on types of experiments, 

materials used and grown environments of plants, but appropriate drying time and incubating 

time are usually determined to maximize the sprouting variance of extreme genotypes in the 

population under test.  

 Germination index (GI), another commonly used method for PHS resistance, measures 

seed dormancy, a major component of PHS resistance. To measure GI, spikes are harvested at 

physiological maturity, dried for a defined time period and then hand threshed. Fifty kernels 

from each accession are placed on a wet filter paper in a Petri dish. The Petri dish is incubated at 

room temperature for seven days, and germinated kernels are counted and removed daily. A 

weighted GI (modified after Walker-Simmons 1987) is calculated as 

𝐺𝐼 =  
7 × 𝑁1 + 6×𝑁2 + ⋯ + 1×𝑁7

𝑛 𝑑𝑎𝑦𝑠 𝑜𝑓 𝑡𝑒𝑠𝑡×𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑘𝑒𝑟𝑛𝑒𝑙𝑠
 

where N1, N2, … N7 are the numbers of kernels germinated on day 1, day 2, till day 7. 

 Alpha-amylase activity is an indicator of PHS damage, and it can be measured by falling 

number (Hagberg 1960). Flour made from sprouted grains contains more degraded starch that 

results in low viscosity of the flour slurry. Falling number measures the time in seconds required 

for a stirrer-viscometer to fall a given distance through a heated, well mixed flour/water 
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suspension. The low falling number indicates low viscosity of the flour slurry, thus severe 

damage from PHS. 

 QTLs and candidate genes for PHS resistance 

 PHS resistance is a complex trait controlled by several major QTLs and minor QTLs. 

PHS resistance QTLs have been reported on almost all wheat chromosomes, among which the 

QTLs on chromosome 3AS, 4AL and 2BL have been studied mostly (Mori et al. 2005, Liu et al. 

2008, Nakamura et al. 2011, Liu et al. 2013, Kato et al. 2001, Torada et al. 2005, Chen et al. 

2008, Cabral et al. 2014, Torada et al. 2016, Kulwal et al. 2004 & 2012, Zhang et al. 2014). The 

3AS QTL, designated as TaPHS1, has been cloned (Nakamura et al. 2011, Liu et al. 2013) which 

is a MOTHER OF FLOWERING TIME (TaMFT)-like gene, and positively regulates wheat PHS 

resistance. This gene explained 11.6% to 74.3% phenotypic variance in different mapping 

studies (Mori et al. 2005, Liu et al. 2008, Liu et al. 2010). Three single nucleotide 

polymorphisms (SNPs) in the gene have been associated with PHS resistance with one mutation 

in the promoter region (-222) (Nakamura et al. 2011), and two others in the gene-coding region 

(+646, +666) (Liu et al. 2013). The mutations in the coding region generate a mis-splicing site 

and a premature stop codon, resulting in a truncated nonfunctional transcript. Also the mis-

splicing mutations associated with PHS susceptibility, and were involved in wheat domestication  

(Liu et al. 2015). Phs1 that has been consistently mapped on chromosome 4AL is another major 

gene for both PHS resistance and seed dormancy, and explained 7.0% to 77.2% phenotypic 

variance (Kato et al. 2001, Mares et al. 2001, Mares et al. 2005, Torada et al. 2005, Chen et al. 

2008, Ogbnnaya et al. 2008, Singh et al. 2010, Liu et al. 2011, Cabral et al. 2014). Two 

candidate genes were proposed for Phs1, PM19-A1 and PM19-A2, by Barrero et al. (2015). 

However, the function of PM19-A1 cannot be validated in the transgenic studies, and PM19-A2 
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falls out of the 4A QTL region, which makes the results unconvincing. Another candidate gene, 

TaMKK3-A (a mitogen-activated protein kinase kinase 3 (MKK3) gene) was identified by 

Torada et al. (2016) using a map-based cloning. A single SNP in TaMKK3-A causes a 

nonsynonymous amino acid substitution in the kinase domain, and is proposed as the causal SNP 

for seed dormancy. Another major QTL for PHS resistance is on chromosome 2BL, which has 

been identified in both bi-parental mapping and association mapping studies (Kulwal et al. 2004 

& 2012, Liu et al. 2008, Munkvold et al. 2009, Singh et al. 2010, Rehman Arif et al. 2012). 

Zhang et al. (2013) found TaSdr-B1 gene, an ortholog of the rice seed dormancy gene OsSdr4, to 

be associated with PHS resistance and located the gene on the 2BL chromosome. 

 QTLs for PHS resistance have also been identified on the long arms of group 3 

chromosomes where GC QTLs are co-localized and chromosome 5A (Groos et al. 2002). In that 

study, ‘Renan’, a red PHS resistant line, was crossed with ‘Récital’, a white PHS susceptible line, 

and GC and PHS resistance were mapped simultaneously in the same population. The GC QTLs 

and PHS resistance QTLs on chromosome 3AL and 3DL were almost co-localized, whereas the 

QTLs for these two traits on 3BL were apart from each other for about 20 cM. Later, the 3BL 

and 3DL QTLs for PHS resistance were also identified by Kuwal et al. (2004), and the 3AL and 

3BL QTLs by Mohan et al. (2009) and Fofana et al. (2009). Other important QTLs have been 

mapped on chromosomes 1A (Mares et al. 2005, Kumar et al. 2009, Lohwasser et al. 2013), 2D 

(Mares et al. 2002, Kulwal et al. 2004, Tan et al. 2006, Munkvold et al. 2009), 4B (Zanetti et al. 

2000, Kato et al. 2001, Mori et al. 2005, Liu et al. 2011), 6B and 7D (Roy et al. 1999).  

 Wheat grain color and its impact on PHS resistance 

Wheat varieties can be classified as red wheat and white wheat. Red wheat contains more 

phenolic acid in wheat bran than white wheat (Kim et al. 2006), and the more phenolic acid 
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results in bitter taste in red wheat flour. The degree of wheat kernel color can be related to the 

amount of catechin and catechin tannin in the seed coat of immature grain kernel (Miyamoto & 

Everson 1958). Proanthocyanidin (PA), the phenolic oligomers or polymers, is also important 

components of grain color pigment precursors in the pericarp of immature seeds (McCallum and 

Walker 1990). Both catechin and PAs are colorless, and can be converted to colored 

phlobaphene and anthocyanidins, respectively, when kernels get mature.  

Wheat grain color (GC) has been associated with PHS, meaning that red-grained wheat is 

usually more resistant to PHS than white-grained wheat (Flintham 2000; Warner et al. 2000; 

Himi et al. 2002). Seed dormancy levels were increased in white wheat NS-67 after a single GC 

gene was added to the group 3 chromosomes (Flintham 2000). It has also been shown that the 

white-grained mutants of ‘Chinese Spring’ and ‘AUS1490’ had increased sprouting rates 

compared to the original lines, indicating that GC genes improved PHS resistance (Warner et al. 

2000; Himi et al. 2002). Common QTLs for GC and PHS resistance have been identified on 

chromosome 2B, 3AL, 3BL, 3DL, 5A and 6B (Groos et al. 2002; Kumar et al. 2009). Although it 

is not clear how GC genes regulate grain germination at molecular levels, many studies have 

shown that GC genes can enhance PHS resistance either by accumulating catechin and PAs, the 

germination inhibitors (Miyamoto and Everson, 1958; Stoy and Sundin, 1976; McCallum and 

Walker 1990), or increasing the sensitivity of embryos to ABA (Himi et al. 2002). 

 GC evaluation 

Wheat GC is mostly evaluated by a chromameter or by visual scoring. A chromameter 

decomposes color in the L*a*b color space, where ‘L’ evaluates black (0) to white (100), ‘a’ 

evaluates green (negative) to red (positive) and ‘b’ evaluates blue (negative) to yellow (positive). 

Multiple measures are supposed to be done on a sample of 20 g grains to determine GC for 
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different genotypes (Groos et al. 2002). Another method to evaluate wheat GC is to soak wheat 

kernels in 1 M sodium hydroxide (NaOH) solution to increase the color contrast, and visually 

score the color intensity using a scale of 1 (white) to 5 (dark red) (Torada et al. 2002; Bassoi et 

al. 2005; Kumar et al. 2009). 

 QTLs and candidate genes for GC 

In early 1920s, Nilsson-Ehle (1914) found that GC was controlled by three genes, R-A1, 

R-B1 and R-D1, on chromosomes group 3 (Sears 1944; Allan and Vogel 1965; Metzger and 

Silbaugh 1970). Mapping studies using bi-parental mapping populations verified the location of 

the R genes (Groos et al. 2002; Fofana et al. 2009), and identified novel QTLs for GC on 

chromosomes 2B, 2D, 5A, 5D, 6B, 7B and 7D (Groos et al. 2002; Kumar et al. 2009), indicating 

that GC is a complex trait controlled by more than three genes. Recently, Himi et al. (2011) 

identified the Tamyb10 genes as the candidate genes for the GC trait. These genes are 

transcription factors of the flavonoid biosynthetic pathway and encode MYB domain proteins 

that are similar to the regulatory proteins for PAs synthesis in Arabidopsis. 

 Genetic markers used in plant mapping studies 

 Genetic markers are distinguishable characters in morphological traits or protein/DNA 

molecules that can be landmarks for agronomic traits or QTLs under selection in plant breeding.   

Genetic markers can be classified into classical markers and DNA markers (Xu 2010). Classical 

markers include morphological markers, cytological markers and protein markers (Jiang 2013). 

Morphological traits, such as seed color, plant height, leaf shape and flower color, can be used as 

indicators when they are linked to other agronomic traits of interest (Kadervel et al. 2015). 

Although morphological markers are still useful in modern plant breeding, they are limited in 

number and may have undesirable effects on plant development (Jiang 2013). Cytological 
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markers are the banding patterns of the chromosome, which can be used for chromosome 

identification, chromosome mutation detection (Santos et al. 2006) and physical mapping 

(Orellana et al. 1993). However, the application of cytological markers is limited in mapping and 

breeding due to the low resolution and technical demand. Protein markers were mainly used in 

the 1980s, and they are enzyme variants that are different in size and molecular weight and can 

be distinguished using electrophoresis. 

 DNA markers can be classified into low-throughput, medium-throughput, high-

throughput and ultra high-throughput according to the throughput that data are generated (Mir et 

al. 2013). Restriction fragment length polymorphism (RFLP) (Grodziker et al. 1975), referred to 

as ‘First generation molecular markers’ (Jones et al. 2009), initiated the era of DNA markers, 

despite the low-throughput nature of this technology. Medium-throughput DNA markers include 

random amplified polymorphic DNA (RAPD) (Williams et al. 1990), sequence-tagged site (STS) 

(Olsen et al. 1989), expressed sequence tags (EST) (Adams et al. 1991), simple sequence repeats 

(SSRs) (Akkaya et al. 1992) and amplified fragment length polymorphisms (AFLPs) (Vos et al. 

1995). Single nucleotide polymorphism (SNP) has become broadly used and can be easily 

genotyped with high-throughput technologies, due to its abundance and even distribution across 

the genome. As the next-generation sequencing (NGS) technology develops, the costs of 

sequencing have reduced from $60 to $1 per mega base (Thudi et al. 2012), which allows 

genomic/transcriptomic re-sequencing at affordable prices, and thus facilitates SNP discovery. 

Recently, SNP arrays, genotyping-by-sequencing (GBS) and kompetitive allele-specific PCR 

(KASP) are broadly used methods for SNP detection. 

 High-density SNP arrays have become an important tool in genetic studies and plant 

breeding (Xing 2014). Such arrays have been developed for major crops, such as the 44K rice 
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SNP array (Zhao et al. 2011), the 50K maize SNP array (Cook et al. 2012), and the 9K and 90K 

wheat SNP arrays (Cavanagh et al. 2013; Wang et al. 2014).  However, the lack of flexibility and 

relatively high cost of these SNP arrays limit their application in plant breeding (Lateef 2015). 

By taking the advantages of NGS, GBS has been developed as a robust and cost-efficient 

sequencing approach that can identify and genotype SNPs simultaneously (Mir 2013). GBS uses 

restriction enzymes to mask the repetitive regions and reduce the complexity of genomes, thus 

allows reaching important genomic regions that are unreachable to sequence capture approaches 

(van Oeveren et al. 2011) and increasing the chance of sampling markers from gene rich regions. 

GBS can provide adequate SNPs for high-resolution mapping, genomic selection, germplasm 

characterization and other breeding applications (Huang et al. 2010; Elshire et al. 2011; Poland et 

al. 2012). Barley, wheat and maize are early successful examples of applying GBS in plant 

genetic studies (Poland et al. 2012; Mascher et al. 2013; Romay et al. 2013). It has been shown 

to be an effective tool for genetic studies in rice (Bandillo et al. 2013), sorghum (Morris et al. 

2013) and soybean (Sonah et al. 2015). The major challenge for GBS is a high rate of missing 

data due to low sequencing depth, which can be partially solved by imputation and high coverage 

sequencing. KASP assay is a simple and flexible genotyping system, which is commonly used 

when a large number of samples need be genotyped with a small number of SNPs (Mir et al. 

2013). Chen et al. (2010) developed new SNP genotyping assays that combined competitive 

allele-specific PCR and Fluorescence Resonance Energy Transfer (FRET), and Kbioscience UK 

later developed this technology into KASP assays. Although KASP assays came to the market 

very recently, they have been applied successfully in plant genetic studies (Allen et al. 2011; 

Mammadov et al. 2012). 
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 Linkage mapping and Genome-Wide Association Study (GWAS)  

 With the rapid development of genetic markers, dissecting and mapping QTLs for 

complex traits receives great attentions in plant genetics study and plant breeding. Linkage 

mapping and Genome-wide Association Study (GWAS) are two prevailing methods in QTL 

mapping studies, and each of them has its own advantages. 

 Linkage mapping usually starts with a segregating mapping population. The population 

size of more than 150 lines is preferred (Collard et al. 2005) because a large population size can 

provide an observable number of recombinants and allow an accurate evaluation of the target 

trait (Doerge 2002). Recombinant inbred lines (RILs) and double haploid (DH) populations are 

most commonly used in linkage mapping because the genotypes can be maintained and 

evaluated in multiple years and locations, and F2 and backcross (BC) populations are also used 

(Würschum 2012). Several approaches have been used for linkage mapping, including single 

marker analysis (SMA), interval mapping (IM), composite interval mapping (CIM) and multiple 

interval mapping (MIM) (Tanksley 1993). SMA uses t-test, analysis of variance (ANOVA) or 

simple linear regression to screen markers that potentially related to the trait under investigation 

(Young 1996). However, SMA cannot provide recombination frequency between the marker and 

the QTL because the QTL effect and location are confounded, thus unable to be estimated 

separately. To address this problem, genetic maps are introduced where genetic markers are 

linearly ordered. With such information, the likelihood of a QTL is tested throughout a linkage 

map, and the logarithm of the odds (LOD) scores are used to estimate the location of a QTL 

(Soller et al. 1979; Lander and Botstein 1989). CIM is introduced to remove the variation caused 

by other, especially linked QTL by including additional markers outside a defined window as 

cofactors (Zeng 1993&1994). Therefore, CIM can reduce the chance of discovering ‘ghost 
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QTLs’. MIM, proposed by (Jansen 1993; Jansen and Stam 1994; Jansen 1995), focuses on 

detecting epistatic effects among QTLs. However, both CIM and MIM are restricted to one-

dimensional search along the genetic map, thus are challenged by the multiplicity of epistatic 

QTL effects (Doerge 2002). Permutation and bootstrap resampling are two methods to determine 

the threshold of a significant QTL, and an empirical threshold of LOD at 3.0 is often used in 

linkage mapping studies (Collard et al. 2005).  

 GWAS uses a diverse population that consists of accessions collected from different 

geographic origins or with complex relatedness to make associations between genetic loci and 

trait under investigation. Diverse populations, very different from populations used in linkage 

mapping, capture all the historical recombinations occurred in the sampled accessions (Myles et 

al. 2009). Therefore, high-density genetic markers are needed to cover the linkage disequilibrium 

(LD) structure across the genome (Lipka et al. 2015), in order to detect the genetic variants 

associated with phenotypic variance. Particularly, the nested association mapping (NAM) 

population, created by crossing diverse inbred lines to a common parent, combines both 

historical and recent recombination events. NAM populations have been proven to be successful 

in dissecting complex traits in maize and barley (McMullen et al. 2009; Yu et al. 2008; Poland et 

al. 2011; Maurer et al. 2015), due to the advantages of high genetic power, high allele richness, 

low sensitivity to genetic heterogeneity and high efficiency in using genome sequence (Yu et al. 

2008). 

 In a diverse population, population structure and relationships among individuals can be 

non-negligible sources of false positive associations. Therefore, covariates for population 

structure and kinship are introduced into the statistic model for GWAS (Zhu et al. 2008). 

STRUCTURE (Pritchard et al. 2000) and principal component analysis (PCA) (Price et al. 2006) 
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are the mostly used method to describe the population structure. Kinship matrix represents the 

relatedness among individuals by using identity-by-state to estimate identity-by-descent (Loiselle 

et al. 1995). However, if the trait under investigation is correlated with a population structure, 

introducing structure as covariates can cause the loss of statistical power (Lipka et al. 2015). To 

solve the structure issue, Yu et al. (2006) proposed a mixed linear model for GWAS; based on 

that, many approaches have been developed to increase computational efficiency, such as 

efficient mixed-model association (EMMA) (Kang et al. 2008), EMMA eXpedited (EMMAX) 

(Kang et al. 2010), the compressed mixed linear model (Zhang et al. 2010; Li et al. 2014) and 

population parameters previously determined (P3D) (Zhang et al. 2010). Currently, these 

approaches are available in the user-friendly software packages TASSEL (Trait Analysis by 

aSSociation, Evolution and Linkage, Bradbury et al. 2007) and Genome Association and 

Prediction Integrated Tool (GAPIT) (Lipka et al. 2012). Although statistic models and software 

packages have been well developed, there are still some concerns in GWAS. One of them is 

called ‘synthetic association’ (Dickson et al. 2010; Orozco et al. 2010), when several low-

frequency causal variants are in strong LD with a common variant. Under such circumstances, 

genetic variance cannot be properly estimated and it takes extra effort to identify the casual 

variants. Another concern is that SNPs cannot represent all possible genetic variations associated 

to a trait, therefore, it is important to include other sources of genetic variation in GWAS, such as 

epigenetic variation, transposons and copy number variation (Lipka et al. 2015). 

 Breeding strategies for PHS resistance 

 Although wheat PHS resistance is greatly influenced by morphological and 

environmental factors, breeding for genetically improved wheat with proper seed dormancy is 

the most effective method to protect wheat cultivars from PHS damages (Liu et al. 2008). Red-
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grained wheat usually shows more resistance to PHS than white-grained wheat (Seshu and 

Sorrells 1986), as the red color genes on the long arms of group 3 chromosomes can have 

pleiotropic effects on PHS resistance (Nelson et al. 1995; Groos et al. 2002). White-grained 

wheat is popular due to the users’ preference in Asian market (Amano and Torada 2002; Tan et 

al. 2006) and its economic benefits like high flour extraction rate (McCaig and Depauw 1992). 

However, white-grained wheat is usually vulnerable to PHS, thus breeding for PHS-resistant 

white wheat is extremely important in PHS-favorable environments, such as Australia and the 

USA (Morris and Paulsen 1989; Imtiaz et al. 2008). 

 Phenotypic selection and marker-assisted selection (MAS) are the most commonly used 

methods to breed for PHS-resistant lines. Artificial mist is widely used to create wetting 

treatment and induce germination on harvested wheat spikes (Hucl 1994; Groos et al. 2002; 

Imtiaz et al. 2008). Phenotypic selection is straightforward in PHS resistance improvement, but 

is time and labor consuming. Therefore, MAS has been applied in many breeding programs, as 

PHS resistance genes were cloned on chromosomes 3A (Nakamura et al. 2011; Liu et al. 2013) 

and 4A (Torada et al. 2016) and QTLs for PHS resistance identified across the genome. 

Molecular markers have been developed for the causal SNPs in both the promoter and coding 

region of the TaPHS1 gene (Liu et al. 2015), and the causal SNP for the TaMKK gene (Torada et 

al. 2016). These markers can be used either to identify germplasm carrying these two genes, or to 

select resistant lines in breeding materials. The TaPHS1 gene has been successfully integrated 

using MAS to increase PHS resistance in several studies (Kottearachchi et al. 2006; Gupta et al. 

2008). However, not all PHS resistance QTLs are suitable for breeding, because many of them 

show significant genetic-by-environment interactions and do not have consistent effects across 

different environments (MAS in wheat, http://maswheat.ucdavis.edu/protocols/PHS/).  

http://maswheat.ucdavis.edu/protocols/PHS/
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 AUS1408 is an important source for PHS resistance in white-grained wheat, and it has 

been widely used in breeding projects (Amano and Torada 2002; Hucl and Matus-Cádiz 2002). 

Besides AUS1408, Zenkoujikomugi, 8019R1 and RyuuMai7 are critical PHS-resistant 

germplasm adapted to various environments in Japan (Kottearachchi et al. 2006; Amano and 

Torada 2002). In U.S., Clark’s Cream and its derivative line Cayuga contain PHS resistance 

QTLs on chromosomes 1AS and 2B and show a level of tolerance similar to many red cultivars 

(MAS in wheat, http://maswheat.ucdavis.edu/protocols/PHS/). And in China, PHS resistance in 

most cultivars can be traced back to Wanxian White, Fulingxuxu White, Suiningtuotuo and 

Yongchuan White (Xiao et al. 2002). QTLs for PHS resistance have also been identified in 

Aegilops tauschii (Lan et al. 1997; Imtiaz et al. 2008) and Triticum spelta (Zanetti et al. 2000). 

However, due to some undesirable traits from the linkage drag, these QTLs have not been widely 

used in wheat breeding. 

 Breeding for PHS resistance for various environments is challenging in wheat breeding. 

In order to improve PHS resistance, more information on PHS resistance genetic architecture, 

PHS resistance pathways and gene regulations, genetic-by-environment interactions, and user-

friendly markers and efficient selection method is required.  

http://maswheat.ucdavis.edu/protocols/PHS/


 19 

Table 1.1 Summary of previously reported QTL for wheat preharvest sprouting (PHS) 

resistance and grain color (GC) traits 

Traita Chromosome Parental Lines  Population Typeb References 

GR 4A (TaMKK3-A) Leader/Haruyokoi BC3F2, BC4F2 Torada et al. (2016) 

GI 4A (PM19-A1&A2) - MAGIC population Barrero et al. (2015) 

GI 2B (TaSdr-B1) Yangmai/Zhongyou 9507 RIL Zhang et al. (2014) 

GR 4A 

RL4452/AC Domain DH Cabral et al. (2014) GI 3B, 4A, 7B 

FN 4A, 7D 

GI 3B (TaDFR-B) - AM panel Bi et al. (2014) 

GI 1D, 3A, 4A 

Opata 85/W7984 RIL 

Lohwasser et al. (2013) 

GR 1A, 4A 

GI 6D Chinese Spring/Synthetic 6x BC2F2 

GI 
1B, 1D, 2B, 3A, 3B, 4A, 4B, 

4D, 5B, 6B, 7A 

- AM panel 

GR 

1A, 1B, 1D, 2B, 3B, 4A, 5A, 

6A, 7B 

GR 3A (TaPHS1) 

Rio Blanco/NW97S186, Rio 

Blanco/NW97S078 
RIL Liu et al. (2013) 

GI 

1A, 1B, 2A, 2B, 2D, 3A, 3B, 

4A, 4B, 5B, 6B, 7A - AM panel Arif et al. (2012) 

GR 1A, 1B, 1D, 2B, 4A, 5B 

GR 2B, 3D, 7B - AM panel Jaiswal et al. (2012) 

GR 
1BS, 2BS, 2BL, 2DS, 4AL, 

6DL, 7BS, 7DS 

- AM panel Kulwal et al. (2012) 

GR 3A (TaMFT) Zen/Chinese Spring CS(Zen3A) Nakamura et al. (2011) 

GI 4A, 4B, 5B 

Tutoumai A/Siyang 936 RIL Liu et al. (2011) 

GR 4A, 4B, 5B 

GI, GR 3AL (Vp-1A) Wanxianbaimaizi/Jing411 RIL Chang et al. (2011) 

GR 1A, 2B, 3A, 4A,  5B, 6B, 7A W98616/Argent DH Singh et al. (2010) 

GI 3BL (Vp-1B) - AM panel Chang et al. (2010) 

GI 3BL (Vp-1B) Wanxianbaimaizi/Jing411 RIL Chang et al. (2010) 

GI 3BL (Vp-1B) - AM panel Xia et al. (2009) 

GI 3A, 3D, 4A, 4B, 7D AC Domain/RL4452 DH Rasul et al. (2009) 
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FN 4A, 4B 

GI 
1A, 1B, 2B, 2D, 3A, 3D, 4A, 

4D, 5B, 5D, 6D, 7D 

Cayuga/Caledomia DH Munkvold et al. (2009) 

GR 1A, 2A, 2B, 3B, 6A, 6B PH132/WL711 RIL Kumar et al. (2009) 

GR 1AS, 2AL, 2DL, 3AL, 3BL SPR8198/HD2329 RIL Mohan et al. (2009) 

GI 3BL, 3DL SUN325B/QT7475 DH Mares et al. (2009) 

GI 3B, 3D 

AC Domain/White-RL4137 DH Fofana et al. (2009) GR 3A, 3B, 3D, 5D 

FN 3B, 3D 

GI, GR 4AL Tutoumai A/ Siyang 936 RIL Chen et al. (2008) 

GI, GR 4AL Halberd/Cranbrook DH Zhang et al. (2008) 

GI 4AL OS21-5/Leader BC5F2 Torada et al. (2008) 

GI, GR 4A CN19055/Auunello RIL Ogbonnaya et al. (2008) 

GI, GR 3D, 4A Syn37/Janz BC1F7 Imtiaz et al. (2008) 

GI 3BL (Vp-1B) - AM panel Yang et al. (2007) 

GI, GR 3D, 4A - AM panel Ogbonnaya et al. (2007) 

GI 3AmL, 4AmL, 5AmL 
T. boeoticum L. Boiss(KT1-

1)/T. monococcum L. (KT3-5) 

RIL Nakamura et al. (2007) 

GI 2DS, 3AL, 4AL, 5BL AUS1408/Cascadeds DH Tan et al. (2006) 

GR 4AL Kitamoe/Munstertaler DH Torada et al. (2005) 

GR 3A, 4A, 4B Zen/Chinese Spring RIL Mori et al. (2005) 

GI 4AL 

AUS1408/Janz, 

AUS1408/Cascades, SW95-

50213/AUS1408, 

AUS1490/Janz, SW95-

50213/Cunningham 

DH Mares et al. (2005) 

GR 1AL, 1BL, 3DL, 4AL ITMIpop RIL Lohwasser et al. (2005) 

GR 3AL SPR8198/HD2329 RIL Kulwal et al. (2005) 

GR 1A Kyle/CI13102 RIL Knox et al. (2005) 

GR 2BL, 2DS, 3BL, 3DL W7984/Opata85 RIL Kulwal et al. (2004) 

GR 3AS, 3AL Zen/Chinese Spring RIL Osa et al. (2003) 

GI 2D, 3A, 3D, 4A, 5A AUS1408/Oxley F2 (disomic) Mares et al. (2002) 

GR 3A, 3B, 3D, 5A Renan/Recital RIL Groos et al. (2002) 

GI 2AL, 2DL, 4AL Halberd/Cranbrook DH Mares et al. (2001) 
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GR 4A, 4B, 4D AC Domain/Haruyutaka DH Kato et al. (2001) 

FN 

1A, 1BS, 1DS, 2A, 2B, 3A, 

3B, 4A, 4B, 4DL, 5A, 5B, 

6A, 6D, 7B 

Forno/Oberkulmer RIL Zanetti et al. (2000) 

AA 

1A, 1BS, 2A, 2B, 3A, 3B, 

3DL, 4A, 4B, 4DL, 5A, 5B, 

6D, 7B 

GR 3A, 3B Langdon/ DIC 

Langdon-DIC 

substituion lines 
Watanabe et al. (2000) 

GR 6B, 7D SPR8198/HD2329 RIL Roy et al. (1999) 

GR 1AS, 2S, 2L Clark's Cream/NY6432-18 RIL 

Anderson et al. (1993) 

GR 5DL, 6BL, 4AL, 3BL NY6432-18/NY6432-10 RIL 

GC 7B, 7D 

Purple Feed/Saratovskaya 29, 

Purple/Saratovskaya 29 
F2, F3, NIL Tereshchenko et al. (2012) 

GC 

3A, 3B, 3D (Tamyb10 

genes) 
Zenkoji Komuji/Tamaizumi DH Himi et al. (2011) 

GC 3A, 3B, 3D AC Domain/White-RL4137 DH Fofana et al. (2009) 

GC 2B, 2D, 3B, 5D, 6B PH132/WL711 RIL Kumar et al. (2009) 

GC 2A, 4B, 6B, 7B Kofa/W9262-260D3 DH Pozniak et al. (2007) 

GC 3A, 3B, 3D, 5A Renan/Recital RIL Groos et al. (2002) 

aGR refers to germination rate, GI refers to germination index, FN refers to falling number, AA refers to α-amylase 

activity, and GC refers to grain color 

bMAGIC population=multi-parent advanced generation inter-cross population, RIL=recombinant inbred lines, 

DH=double haploids, AM panel=association mapping panel, NIL=near isogenic lines 
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Figure 1.1 Hybridization events involved in the evolution of bread wheat 

 

 http://www.cerealsdb.uk.net/cerealgenomics/WheatBP/Documents/DOC_Evolution.php 
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Chapter 2 - Genotyping-by-Sequencing (GBS) Identified SNPs 

Tightly Linked to QTLs for Pre-harvest Sprouting Resistance 

Abstract 

Pre-harvest sprouting (PHS) is a major constraint to wheat production in many growing 

area worldwide. It reduces not only the end-use quality of wheat flour, but also grain yield. To 

identify markers tightly linked to the quantitative trait loci (QTLS) for PHS resistance and seed 

dormancy (SD), we evaluated 155 recombinant inbred lines (RILs) derived from the cross 

between a PHS-resistant parent TutoumaiA and a PHS-susceptible parent Siyang936 for single 

nucleotide polymorphisms (SNPs) using genotyping-by-sequencing (GBS), and for PHS 

resistance and SD using both field and greenhouse grown plants. Two SNPs, GBS109947 and 

GBS212432, were mapped to a major QTL region for PHS and SD on chromosome 4AL, and 

delimited the QTL to a 2.9 cM interval. Two and nine additional SNPs were mapped to minor 

QTL regions for SD on chromosome 5B and 5A, respectively. Selected SNPs in these QTL 

regions were converted into kompetitive allele specific PCR (KASP) assays that can be easily 

used for marker-assisted selection to improve PHS resistance.  
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Introduction 

Pre-harvest sprouting (PHS) in wheat (Triticum aestivum L.) can cause significant 

reduction in grain yield and grain end–use quality, thus a substantial reduction in grain price 

(Groos et al. 2002; Mares et al. 2005) due to germination of grain in a matured wheat spike 

before harvesting. It usually occurs when continuous wet weather is available before harvest. 

Growing PHS resistant cultivars is the most effective way to minimize the PHS damage, 

especially in wheat growing areas where wet weather occurs frequently during harvest seasons. 

Seed dormancy (SD) has been considered the major factor that determines PHS resistance 

in wheat and other cereal crops (Bewley and Black 1982; Anderson et al. 1993; Mares and Mrva 

2001; Ogbonnaya et al. 2008), although several other factors have also been considered to 

contribute to overall PHS resistance, including physical barriers to water penetration (Gale et al. 

1989), spike morphology (King and Richardd 1984), red seed color (Gfeller and Svejda 1960; 

Groos et al. 2002) and environment factors such as temperature and moisture (Argel et al. 1983; 

Ceccato et al. 2011). Both PHS and SD are complex traits controlled by several quantitative 

genetic loci (QTLs). For PHS resistance, one QTL on chromosome 3AS showed a major effect 

on PHS resistance (Osa et al. 2003; Mori et al. 2005; Liu et al. 2008), and the casual gene of this 

QTL for both SD and PHS resistance has been cloned (Nakamura et al. 2011; Liu et al. 2013). 

Another major QTL has been identified on chromosome 4AL in different genetic backgrounds 

(Kato et al. 2001; Mares and Mrva 2005; Torada et al. 2005; Chen et al. 2008; Ogbonnaya et al. 

2008). In addition, QTLs with minor effects have been reported on 2B (Kulwal et al. 2004; 

Munkvold et al. 2009), 3D (Imtiaz et al. 2008), 4B and 4D (Kato et al. 2001), 6B and 7D (Roy et 

al. 1999), and several other chromosomes (Anderson et al. 1993). For SD, major QTLs were 

reported on 3A (Osa et al. 2003; Mori et al. 2005) and 4A (Kato et al. 2001; Noda et al. 2002; 
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Mares and Mrva et al. 2005). However, how much SD contributes to PHS resistance still remains 

unknown. Therefore, simultaneously mapping QTLs for both PHS resistance and SD may reveal 

the genetic relationship between the two traits. 

High-density genetic maps are essential for QTL fine mapping and delimiting the casual 

genes to very narrow genetic intervals (Liu et al. 2014). More recently, next generation 

sequencing (NGS) technology has been used for QTL mapping in many crops (Wicker et al. 

2008; Kobayashi et al. 2014; Chen et al. 2014). Wheat is polyploid, thus has a large genome 

(~17 GB) and abundant repetitive DNA sequences, which complicates analysis of genetic 

variations and development of high-resolution genetic maps. Recently, a genotyping-by-

sequencing (GBS) protocol has been adapted in wheat by using restriction digestion to reduce the 

complexity of the genome (Poland et al. 2012). GBS takes the advantages of NGS, and keeps the 

sequencing costs down by multiplexing samples using barcodes. Although complete reference 

genome sequences can increase the efficiency of SNP identification in different species (Poland 

et al. 2012; Spindel et al. 2013) and it is not available in wheat. Fortunately, analytical pipeline 

is now available for species with incomplete or no reference genome sequences  (Mascher et al. 

2013). The objectives of this study were to (1) fine map QTLs for both PHS resistance and SD in 

a Chinese landrace using GBS-SNPs, (2) develop closely linked DNA markers to the QTLs for 

marker-assisted selection in wheat breeding programs, and (3) elucidate the genetic relationship 

between SD and PHS resistance. 

Materials and Methods 

Plant materials and experimental design 

A mapping population of 155 RILs derived from the cross TotoumaiA x Siyang936 was 

developed by single-seed decent. TotoumaiA is a white PHS-resistant Chinese landrace, while 
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Siyang936 is a white PHS-susceptible cultivar from China. Both parents and the RILs were 

evaluated for PHS resistance using plants collected from two field experiments (2005 and 2006) 

at Jiangsu Academy of Agriculture Sciences (JAAS), Nanjing, China, and from three greenhouse 

experiments (2005 to 2007) at Kansas State University (KSU), Manhattan, KS. Seed dormancy 

was evaluated using plants grown in the five experiments from 2004 to 2006 in both locations. 

Each experiment was arranged in a randomized complete block design with two replicates. Also, 

a natural population of 380 accessions from the USA and China was used to test allelic diversity 

of SNPs closely linked to the 4A QTL for PHS resistance and to evaluate the potential use of 

these SNPs in marker-assisted selection. 

Evaluation of SD and PHS 

In the greenhouse experiments, plants were grown at 22 ± 5 day/15 ± 2 night temperature 

with supplemental daylight of 12 h. Pre-harvest sprouting was evaluated in the laboratory using 

intact spikes. When wheat spikes reached physiological maturity, five spikes per RIL were 

harvested from each replicate and air-dried for 5 d in a greenhouse. Harvested spikes were stored 

at -20℃ to maintain dormancy. After all RILs were collected, spikes were air-dried again for 2 d 

and immersed in de-ionized water for 5 h. The wet spikes were incubated in a moist chamber set 

up in the laboratory at 22 ± 1℃ with 100% humidity maintained by running a humidifier for 30 

min twice a day. At 7th d of incubation, the numbers of germinated and non-germinated seeds in 

each spike were counted, and PHS resistance was measured as percentage of visible sprouted 

kernels (PVSK) in a spike. For SD test, 50 hand-threshed kernels from the remaining spikes in 

each RIL were evaluated for seed germination rate in the laboratory, and a weighted germination 

index (GI) was calculated to reflect SD as previously described (Chen et al. 2008). 

In the field experiments, each RIL and their parents were sowed in a two-row plot with 4-
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m-long at 0.25 m apart. At physiological maturity, when the spike and peduncle turned yellow, 

20 spikes per plot (10 spikes per row) were harvested. Harvested spikes were stored and 

evaluated for both PHS and SD as previously described for the greenhouse experiment, with the 

exception that 10 spikes per RIL were used for field experiments instead of five for greenhouse 

experiments. 

GBS library construction and SNP calling 

Genomic DNA of parents and their RILs was extracted using a modified cetyltrimethyl 

ammonium bromide (CTAB) method (Saghai-Maroof et al. 1984). DNA concentration was 

quantified using Quant-iT™ PicoGreen® dsDNA Assay (Lifetechnologies) and normalized to 

20ng per ul. The GBS library was constructed as previously described (Poland et al. 2012).  In 

brief, DNA samples were digested with HF- PstI and MspI (New England BioLabs Inc., Ipswich, 

MA) and then ligated to barcoded adaptors and a Y common adaptor using T4 ligase (New 

England BioLabs Inc.). Ligation products were pooled and cleaned up using QIAquick PCR 

Purification Kit (Qiagen). Primers complementary to both adaptors were used for PCR. The PCR 

product was then cleaned up again using QIAquick PCR Purification Kit, size-selected with a 

range of 250 - 300 bp in an E-gel system (Life Technologies Inc., NY 14072) and concentration 

estimated by the Qubit 2.0 fluorometer using Qubit dsDNA HS Assay Kit (Life Technologies 

Inc., NY 14072). The size-selected library was sequenced on an Ion Proton system (Life 

Technologies Inc., NY 14072). 

SNP calling used the pipeline developed by Saintenac et al. (2013). Reads generated by 

Ion Proton were trimmed by removing bases with phred33 quality score <15 from both sides. 

Reads were also removed if more than 20% of bases having quality score <15. Sequences from 

each parent were clustered, and the clusters that differed from each other by no more than three 

http://cshprotocols.cshlp.org/content/2009/3/pdb.prot5177.abstract
http://cshprotocols.cshlp.org/content/2009/3/pdb.prot5177.abstract
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mismatches were used as reference sequences. Reads were aligned to the reference using bowtie 

(Langmead et al. 2009) with parameter set at  -v 3 –k 1. Since RILs were used in library 

construction, SNPs with heterozygotes >10% of total RILs were discarded to reduce the false 

positive results. SNPs with missing data <50% were used for mapping. 

Genetic map construction and QTL analysis 

A linkage map was constructed using SNP data from GBS (GBS-SNP) and previously 

reported SSR data (Liu et al. 2011) using Regression function in JoinMap version 4.0 (Van 

Ooijen and Voorrips 2006). Recombination fractions were converted into centiMorgans (cM) 

using the Kosambi function (Kosambi 1944). Composite interval mapping (CIM) was performed 

for each experiment and lines means across environments using WinQTLCart 2.5 (Wang et al. 

2005). LOD threshold of 2.24 was determined from 1000 permutation tests (Doerge and 

Churchill 1996) to claim significant QTLs. 

Results 

GBS-SNP calling 

A combination of PstI and MspI restriction enzymes was used to reduce the wheat 

genome complexity. GBS generated a total of 87 million reads in one run of Ion Proton. After 

initial filtering, 82 million reads met the quality score. A total of 3180 GBS-SNPs were called at 

<20 % missing data, and 8623 GBS-SNPs were called at <50% missing data in the population. 

Map construction 

Totally, all GBS-SNPs with <50% missing data and 93 SSRs were used to construct the 

linkage map, and 2029 GBS-SNPs and 43 SSRs were mapped into 63 linkage groups. The 

linkage map covered a total length of 2646.82 cM in genetic distance with an average interval 

length of 1.28 cM. The number of markers per linkage group ranged from 5 to 175. 
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Seed dormancy and PHS resistance in parents and RIL 

The PVSK ranged from 6.8 to 48.4 % for Tutumai A and from 43.9 to 90.8 % for Siyang 

936, and the GI ranged from 18.2 to 62.3 % for Tutoumai A and from 61.2 to 92.7 % for Siyang 

936 in the five experiments conducted at JAAS and KSU. Tutoumai A had about 35 and 40 % 

lower PVSK and GI ratings than these for Siyang 936 in an average, although large variations in 

each trait were observed for each parents among experiments. Both traits showed continuous 

distributions in the RIL population, and transgressive segregation was observed for both traits, 

indicating that both parents might contribute favorable alleles. 

QTL mapping 

CIM detected four QTLs on different linkage groups. A major QTL was detected on 

chromosome 4A for both PHS resistance and SD with two SSRs and two SNPs mapped in the 

QTL region (Fig. 2.1A). One QTL each for PHS resistance were detected on chromosome 5B 

and 5A (Fig. 2.1B, 2.1C), and one QTL for both PHS resistance and SD was detected on 

chromosome 4B (Fig. 2.1D). Two GBS-SNPs were mapped to the 4A QTL region, two were 

mapped to the 5B QTL region, nine mapped to the 5A QTL region, and none were mapped to 4B 

QTL region. 

To verify the genotypic data generated by GBS and to eliminate missing data for markers 

in QTL regions, 26 KASP assays were designed from the corresponding GBS sequences 

harboring SNPs that were mapped within or around these QTL regions. Eleven KASP-SNP 

markers amplified well and showed polymorphism between parents and among the RILs, and 

seven of them were remapped to three of the QTL regions (Table 2.1). The other four SNPs 

shifted position and moved outside the QTL regions after all missing data at these loci were 

filled by KASP-SNP and errors were corrected. Comparison between GBS-SNP and KASP-SNP 
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data found that seven SNPs showed exactly identical genotypes in the RILs between GBS and 

KASP assays, and four KASP-SNPs did not match with GBS-SNPs because two GBS-SNPs had 

a SNP calling error in one RIL, one had errors in five RILs, and one had errors in 16 RILs. 

Therefore, the average error rate for the eleven SNPs caused by either sequencing or SNP calling 

was 1.35%. 

The QTL with the largest effect, Qphs.pseru-4A, was delimited to a 2.9 cM interval 

between GBS212432 and GBS109947 (Fig. 2.1A) and explained 8.3 to 17.2% phenotypic 

variances for PHS resistance and 9.4 to 26.5% for SD (Table 2.2). On one side of the QTL, both 

markers Xbarc170 and GBS109947 showed the largest effect on PHS resistance and SD among 

all markers tested in all the experiments (Table 2.3); on the other side of the QTL, however, 

GBS212432 had much greater effects than Xgwm397 on both traits measured (Table 2.3), thus 

GBS212432 was more closely linked marker to the QTL than Xgwm397, and GBS212432 and 

GBS109947 flanked the QTL. 

Qphs.pseru-5B was detected in two JAAS experiments and one KSU experiment that 

accounted for 5.5 -12.5% phenotypic variances on PHS. However, this QTL was not detected in 

any SD experiment (Fig. 2.1B; Table 2.2). Two SNPs mapped to this QTL region, and this QTL 

was linked closely to the SSR marker Xbarc275 in these experiments (Fig. 2.1B). 

Qphs.pseru-5A was another QTL identified for PHS resistance. It was detected in the two 

JAAS experiments and significant for the overall mean of germination rate, and explained 7.7% 

to 15.5% phenotypic variances (Fig. 2.1C; Table 2.2). Nine GBS-SNPs together with two SSRs 

were mapped to this QTL region, and the SSRs were the most closely linked markers to the QTL 

(Fig. 2.1C). 
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Qphs.pseru-4B was identified for both PHS resistance and SD in four experiments, and 

explained 6.3 to 8.7% phenotypic variances. However, GBS-SNPs were not mapped to the QTL 

region (Fig. 2.1D; Table 2.2).  

Allele diversity of SNPs in 4A QTL region 

The QTL on chromosome 4A was detected in three KSU experiments for PHS resistance 

and in all the experiments for SD. This QTL explained up to 22.3% of the phenotypic variance 

for PHS resistance and 28.7% of the phenotypic variance for longer SD over all the experiments 

(Table 2.2). It is more likely a stable QTL with a major effect on PHS resistance and SD. To 

evaluate the potential efficiency of marker-assisted selection using these markers, four markers 

tightly linked to the QTL were used to estimate the selection progress. Difference between mean 

sprouting rates of individuals carrying contrasting alleles of GBS109947 was similar to that of 

Xbarc170. On the other side of the QTL, GBS212432 showed a larger contrast in spouting rates 

between two alleles than that between two alleles of Xgwm397 (Table 2.4), indicating 

GBS212432 is the closer marker to the QTL than Xgwm397. 

The four markers, GBS109947, GBS212432, Xbarc170 and Xgwm397, were used to 

screen a natural population consisting of 205 U.S., 146 Chinese, 26 Japanese and 3 Korean 

wheat lines or cultivars. A total of 21 alleles of Xbarc170 were identified with a low 

polymorphism information content (PIC) value of 0.11, and 14 alleles of Xgwm397 were 

identified with a PIC value of 0.22. For GBS212432, 168 accessions had the same allele as 

Tutoumai A, 131 had the same allele as Siyang936, and 81 accessions showed neither parental 

genotypes. Surprisingly, at the locus of GBS109947, only 3 accessions carried the same allele as 

Siyang936, indicating Siyang936 had a rare allele at this locus (Table 2.5). 
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Discussion 

Evaluation of PHS and SD 

PHS is a complicated trait, and many factors may contribute to PHS resistance, including 

SD, seed color, and other morphological characteristics. In addition, environment factors, such as 

temperature and moisture during mature period, can also interfere the expression of PHS 

resistance. Therefore, repeated experiments are critical in providing increased accuracy in PHS 

resistance estimation. In this study, we conducted five experiments to estimate PHS resistance 

and SD. To exclude possible effects from morphological traits, spikes were harvested at 

physiological maturity, dried for a fixed period, and soaked in distilled water overnight. 

Therefore, environmental interference on phenotyping procedure was minimized. The sprouting 

index (SI) has been used as a standard method to measure the germination rate (Anderson et al. 

1993; Kulwal et al. 2004). Chen et al. (2008) and Imtiaz et al. (2008) used percentage of visually 

sprouted seeds (VSS) to measure germination rate, and proved that VSS gave a more accurate 

PHS rating than SI. The current study used this same measurement to measure overall PHS 

resistance. 

QTLs for PHS resistance and SD in wheat 

In this study, four QTLs were detected for PHS resistance and two of them were detected 

for long seed dormancy. Many QTLs for PHS resistance have been reported on different 

chromosomes in previous studies. Anderson et al. (1993) detected several genetic regions on 

chromosomes 1AS, 3BL, 4AL, 5DL and 6BL associated with PHS resistance, whereas Zanetti et 

al. (2000) reported QTLs on chromosome 3B, 5A, 6A and 7B. QTLs for PHS resistance were 

detected on chromosome 5A and group 3 where the kernel color genes were previously reported 

(Groos et al. 2002), and also on chromosome 6B and 7B (Roy et al. 1999). For SD, major QTLs 
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were mainly reported on 3A (Osa et al. 2003; Mori et al. 2005) and 4A (Kato et al. 2001; Noda 

et al. 2002; Mares and Mrva et al. 2005). In this study, PHS resistance and SD were evaluated in 

the same experiments. Therefore, we were able to estimate QTL effects on both PHS resistance 

and seed dormancy. 

The QTL on chromosome 4A was detected in three KSU greenhouse experiments for 

PHS resistance and all the experiments for SD, and explained up to 17.2% and 26.5% phenotypic 

variance for PHS resistance and SD, respectively. This indicated that Qphs.pseru-4A is a very 

stable QTL with a major effect on both PHS resistance and SD, and validated that SD was the 

most important factor for PHS resistance.  

Another QTL on chromosome 5B was detected only for PHS resistance, not for SD, 

suggesting this QTL may contribute to PHS resistance due to factors other than SD. QTL for 

PHS resistance on chromosome 5B have been reported in previous studies (Groos et al. 2002; 

Tan et al. 2006), but we were unable to determine whether they are the same QTL due to lacking 

of common markers among these QTLs. Similarly, the QTL detected on 5A was also only for 

PHS resistance. Groos et al. (2002) and Nakamura et al. (2007) reported a QTL on chromosome 

5AS for PHS resistance, but common markers were not found between those and our studies. 

One QTL was detected on chromosome 4B, and showed minor effects on PHS resistance and SD. 

QTL for PHS resistance and SD was also reported on chromosome 4B previously (Kato et al. 

2001; Mori et al. 2005; Mohan et al. 2009; Rasul et al. 2009), but common markers among these 

QTLs are lacking to determine if they are the same QTL. 

We were not able to detect the QTL for PHS resistance on chromosome 3A, TaPHS1, in 

this study. The functional SNP of TaPHS1 is not polymorphic between TutoumaiA and 

Siyang936. Two SSRs closely linked to the 3A QTL, Xbarc57 and Xbarc321, did not show 
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polymorphism in the population either. Xwmc11 was the closest polymorphic marker to this QTL 

in this study (data not shown), but it was at least 30 cM away from the QTL (Song et al, 2005, 

Liu et al, 2008). Therefore, it is more likely tha both parents carry the same allele at the 3A QTL. 

Efficiency of GBS and KASP 

The application of GBS facilitates generation of high-density genetic maps at a low cost 

(Poland et al. 2012). High-resolution maps have been created with GBS-SNPs in sorghum, 

wheat, rice and barley, and maps saturated with GBS-SNPs have proven to be very useful for 

fine mapping of QTLs for different traits and identification of candidate genes for gene cloning 

(Poland et al. 2012; Saintenac et al. 2013; Liu et al. 2014; Spindel et al. 2013). One disadvantage 

of GBS-SNPs for mapping is a large number of missing data for some markers due to limitation 

in sequencing depth; therefore, imputation method is recommended to predict genotypes with 

missing data (Poland et al. 2012; Spindel et al. 2013; Sonah et al. 2013). Another way to 

increase data quality is to use high quality SNPs with missing data <20% without imputation 

(Liu et al. 2014), but such implement would probably result in loss of some important SNPs that 

have more than 20% missing data.  In this study, we used a different strategy. At first, we used 

GBS-SNPs with <50% missing data to construct initial map to scan QTLs; and then convert 

GBS-SNPs from the QTL regions to KASP-SNPs to confirm GBS-SNPs in the QTL regions. 

Using this method, initially, more than 8,000 SNPs were scored from one Ion Proton run, 

together with SSR anchoring markers, a high-density genetic map was generated with 2029 

SNPs and 43 SSRs. Missing data and sequencing errors may cause an expansion of genetic 

distance between markers in the initial genetic map, but it includes many more SNPs than the 

map developed using SNPs with <20% missing data. We validated GBS-SNPs with KASP-SNP 

assays, which minimized negative effect of missing data and corrected the sequencing errors in 
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the QTL regions, thus improved accuracy of in the QTL regions. Among 26 KASP assays 

designed, 11 worked very well in the RILs. Among these working KASP-SNPs, seven agreed 

with GBS-SNP calls among RILs. However, four had SNP call errors with one having wrong 

SNP calls in 16 RILs. These errors could be due to error from either sequencing or SNP calling 

pipeline. Thus, reducing sequence error and improve SNP call quality will minimize genotyping 

error. Conversion of GBS-SNP to KASP-SNP improves QTL mapping quality. Other KASP 

assays did not amplify well mainly because of short sequence reads that result in difficulty in 

primer design that cannot generate optimal primers for SNP amplification. 

With new GBS-SNP map developed from the same population reported in the previous 

study (Liu et al. 2011), we not only identified the same QTL on chromosome 4A, 5B and 4B 

reported previously, but also a new QTL on 5A. The new QTL on 5A detected in this study, not 

in the previous study, is because the QTL was mapped in a large linkage group of GBS-SNPs 

and two SSRs; whereas in the previous study, the two SSRs did not form a linkage group thus 

were not used in QTL analysis. Therefore, GBS is an effective marker system for SNP discovery, 

and useful for new QTL identification and QTL fine mapping. 

Mapping resolution was significantly increased in the 4A and the 5B QTL regions by 

adding GBS-SNPs in these regions. In our previous study, QTL in 4A was mapped in a 9.1 cM 

genetic interval (Chen et al. 2008), using GBS-SNPs in this study, it was mapped to a 2.9 cM 

interval between two SNPs, GBS212432 and GBS109947. The 4A QTL showing major effect is 

a good candidate for map-based cloning of PHS resistance gene and the SNPs identified in this 

study laid a solid foundation for such work.  
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Application of SNPs in MAS 

Since PHS is easily affected by environmental factors and phenotyping of PHS is time-

consuming and labor intensive, marker-assisted selection provides a desirable approach to 

quickly deployment of PHS-resistant QTLs in breeding programs. GBS212432 and GBS109947 

are the closest markers associated with QTL on chromosome 4A in the population used in this 

study. However, marker analysis in a natural population indicated that the susceptible allele of 

GBS109947 is a rare allele, and it may provide false positive results when it is used as a 

diagnostic marker to screen a natural population. Since Xbarc170 showed similar effect as 

GBS109947, it still is valuable marker for MAS. GBS212432 showed good polymorphism in the 

natural population (Table 2.4), thus can be used together with Xbarc170 to increase selection 

accuracy. In addition, SNPs and SSRs in Qphs.pseru-5B, Qphs.pseru-5A and Qphs.pseru-4B 

regions can also be valuable in pyramiding PHS resistance QTLs to achieve an increased level of 

PHS resistance. 
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Table 2.1 List of KASPar primers developed from GBS sequences 

Primer namea Position Primer sequence (5'-3') 

GBS_212432_T Qphs.pseru-4A TTCACAGCGCCTCGGCCGCCC 

GBS_212432_S Qphs.pseru-4A TTCACAGCGCCTCGGCCGCCA 

GBS_212432_R Qphs.pseru-4A GTACCACTCTGGTGCACTCC 

GBS_109947_T Qphs.pseru-4A TTAGCCGTGTGACGCCGTGT 

GBS_109947_S Qphs.pseru-4A TTAGCCGTGTGACGCCGTGC 

GBS_109947_R Qphs.pseru-4A GCGTGAATTGCTGACCTCTC 

GBS_963571_T Qphs.pseru-4A CGATCATAGCAGTGGAACGC 

GBS_963571_S Qphs.pseru-4A CGATCATAGCAGTGGAACGT 

GBS_963571_R Qphs.pseru-4A CTCGCACAGTGAAGGTCATT 

GBS_T240557_T Qphs.pseru-5B CAGCTTCAGTGCCTTCCTCG 

GBS_T240557_S Qphs.pseru-5B CAGCTTCAGTGCCTTCCTCA 

GBS_T240557_R Qphs.pseru-5B GAGTGACGTCATCCACAAGG 

GBS_T66183_T Qphs.pseru-5B GGTGGAGGGATTTGGATGATC 

GBS_T66183_S Qphs.pseru-5B GGTGGAGGGATTTGGATGATA 

GBS_T66183_R Qphs.pseru-5B CGTCCTCTTGCTTGATGGTA 

GBS_T169803_T Qphs.pseru-5B GCAGTAATTTTAGTAGCATTC 

GBS_T169803_S Qphs.pseru-5B GCAGTAATTTTAGTAGCATTT 

GBS_T169803_R Qphs.pseru-5B TATTGCTTCATTAGAGGACA 

GBS_T162884_T Qphs.pseru-4B CAAATGTCGCATGTGGCTGC 

GBS_T162884_S Qphs.pseru-4B CAAATGTCGCATGTGGCTGA 

GBS_T162884_R Qphs.pseru-4B CGCGTATGAGCATGATACCT 

aT Forward primer with TutoumaiA allele, S Forward primer with Siyang936 allele, R Reverse 

primer 
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Table 2.2 Putative QTLs for preharvest sprouting resistance (PHS) and seed dormancy (SD) identified by composite interval mapping 

using spikes and seeds harvested from recombinant inbred lines grown in field trials of 2004, 2005 and 2006 (JAAS, Nanjing, China) 

and greenhouse trials of 2005, 2006 and 2007 (KSU, Manhattan, KS)  

QTL and its 

location 
Marker interval 

2004 JAAS 2005 JAAS 2006JAAS 2005 KSU 2006 KSU 2007 KSU 
Mean over all 

experiments 

LODa R2 (%) LOD R2 (%) LOD R2 (%) LOD R2 (%) LOD R2 (%) LOD R2 (%) LOD R2 (%) 

PHS                

Qphs.pseru-

4A 

GBS_212432/GBS_1099

47 
-b - 0.448 0.9 0.506 1.0 3.810* 10.2 6.768* 16.6 4.009* 8.3 9.490* 17.2 

Qphs.pseru-

5B 

Xbarc346-

2/TTM_62137_50 
- - 2.473* 5.5 5.237* 12.5 0.247 0.6 4.150* 9.8 0.881 1.7 6.849* 12.7 

Qphs.pseru-

4B 
Xbarc20/Xwmc238 - - 0.465 0.9 0.282 0.6 0.523 1.2 3.084* 7.0 3.138* 6.3 0.290 0.4 

Qphs.pseru-

5A 

TTM_199619_7/TTM_12

597_31 
  7.171* 15.5 4.149* 8.9 0.160 0.4 0.336 0.7 0.779 1.4 4.680* 7.7 

SD                

Qphs.pseru-

4A 

GBS_212432/GBS_1099

47 
9.933* 21.6 4.927* 11.5 3.731* 9.4 9.234* 20.3 4.820* 13.3 - - 

11.029

* 
26.5 

Qphs.pseru-

5B 

Xbarc346-

2/TTM_62137_50 
0.359 0.7 0.797 1.7 0.248 0.6 0.342 0.6 0.153 0.4 - - 0.810 1.6 

Qphs.pseru-

4B 
Xbarc20/Xwmc238 4.255* 8.4 1.499 3.3 0.523 1.2 4.281* 8.7 0.205 0.5 - - 0.487 0.9 

Qphs.pseru-

5A 

TTM_199619/TTM_1259

7_31 
0.256 0.7 0.718 1.7 0.159 0.1 0.190 0.4 0.201 0.5 - - 0.175 0.4 

aLOD refers to logarithm of odds 
bTrait was not evaluated in this location   

* Significant quantitative trait locus (QTL) with a LOD value greater than the threshold of 2.24 determined by 1000 times of 

permutations 
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Table 2.3 Closely linked or flanking markers, LOD values, and coefficients of determination (R2) of QTL for preharvest 

sprouting PHS) resistance and seed dormancy (SD) on chromosome 4AL estimated using the recombinant inbred lines (RILs) 

from TutoumaiA/Siyang 936 grown in JAAS Jiangsu Academy of Agricultural Sciences (JAAS), and Kansas State University 

(KSU), respectively. 

Close or flanking 

markers of 4A QTL 
position 

2004 JAAS 2005 JAAS 2006JAAS 2005 KSU 2006 KSU 2007 KSU 
Mean over 

experiments 

LOD a R2 (%) LOD R2 (%) LOD R2 (%) LOD R2 (%) LOD R2 (%) LOD R2 (%) LOD R2 (%) 

Preharvest sprouting                

Xgwm397 51.04 -b - 0.094 0.2 0.144 0.3 1.619 4.2 2.872 7.0 0.078 0.1 4.352 8.0 

GBS212432 60.52 - - 0.337 0.7 0.000 0.0 3.245 8.3 5.011 11.9 3.010 6.2 8.417 14.7 

GBS109947/GBS212432 62.53 - - 0.321 0.6 0.028 0.1 3.810 10.2 6.768 16.6 3.107 6.7 9.490 17.2 

GBS109947 63.43 - - 0.232 0.4 0.172 0.3 3.365 8.5 6.577 15.2 2.607 5.4 7.854 13.5 

Xbarc170 64.78 - - 0.448 0.9 0.109 0.2 3.726 9.4 5.535 13.0 2.019 4.2 7.984 13.7 

Seed dormancy                

Xgwm397 51.04 4.243 10.2 2.933 7.0 1.621 4.2 3.846 9.2 3.923 10.4 - - 7.324 18.8 

GBS212432 60.52 9.933 21.6 4.362 10.3 3.248 8.3 9.234 20.3 4.722 12.4 - - 11.393 27.3 

GBS109947/GBS212432 61.53 9.865 22.3 4.622 11.3 3.814 10.3 9.276 21.0 4.820 13.3 - - 12.426 31.1 

GBS109947 63.43 7.582 17.0 4.248 10.0 3.369 8.5 6.894 15.7 3.948 10.5 - - 10.475 25.4 

Xbarc170 64.78 7.604 17.1 4.927 11.5 3.730 9.4 6.928 15.8 3.934 10.4 - - 11.029 26.5 

a. LOD = logarithm of odds 
b. Trait was not evaluated at this location 
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Table 2.4 Difference (Dif) in ratings of preharvest sprouting (PHS) and seed dormancy (SD) as reflected by a percentage of 

germinated seeds between resistance (R) and susceptible (S) alleles of two SNPs and two SSRs for the PHS resistance QTL on 

chromosome 4A 

Locus genotype 

PHS SD 

2005 

JAAS 

2006 

JAAS 

2005 

KSU 

2006 

KSU 

2007 

KSU 

Mean over 

experiments 

2004 

JAAS 

2005 

JAAS 

2006 

JAAS 

2005 

KSU 

2006 

KSU 

Mean over 

experiments 

GBS109947 S 71.52 53.45 39.88 53.28 57.24 56.82 71.17 34.21 39.87 71.20 69.89 57.12 

GBS109947 R 65.26 51.86 22.51 33.99 38.31 45.56 54.05 18.54 22.50 54.59 59.86 41.64 

GBS109947 Dif 6.26 1.59 17.37 19.29 18.92 11.27 17.12 15.67 17.38 16.61 10.04 15.48 

Xbarc170 S 72.44 54.41 39.88 52.87 57.80 57.29 71.64 34.15 39.88 71.70 69.93 57.33 

Xbarc170 R 66.08 52.09 22.49 34.98 38.84 46.11 54.03 18.63 22.48 54.59 59.87 41.63 

Xbarc170 Dif 6.36 2.32 17.39 17.89 18.96 11.18 17.61 15.52 17.40 17.12 10.06 15.70 

GBS212432 S 72.50 54.98 38.51 52.55 58.03 57.13 71.55 33.73 38.50 71.61 70.10 56.96 

GBS212432 R 64.83 50.52 23.10 34.19 36.29 45.04 53.00 18.32 23.09 53.57 58.89 41.10 

GBS212432 Dif 7.67 4.46 15.40 18.36 21.74 12.09 18.55 15.42 15.41 18.04 11.21 15.86 

Xgwm397 S 72.30 53.56 38.93 52.71 57.07 56.78 70.86 33.81 38.92 70.85 70.18 56.92 

Xgwm397 R 66.23 51.89 25.19 36.73 40.97 47.02 57.00 20.00 25.18 56.89 60.13 43.72 

Xgwm397 Dif 6.06 1.68 13.74 15.98 16.10 9.75 13.86 13.81 13.75 13.95 10.06 13.20 
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Table 2.5 Number of alleles and polymorphism information content (PIC) of SSRs and the allele frequency distributions of 

SNPs in the 4A QTL region in a natural population 

Markers  No. of alleles in the population PIC 

Xgwm397 14 0.22 

Xbarc170 21 0.11 

  Same allele as Tutoumai A Same allele as Siyang 936 Undetermined 

  No. Freq. No. Freq. No. Freq. 

GBS212432 168 0.44 131 0.35 81 0.21 

GBS109947 356 0.94 3 0.01 21 0.05 
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Figure 2.1 Composite interval mapping (CIM) of QTLs for long seed dormancy (SD) and preharvest sprouting (PHS) 

resistance on chromosome 4A (A), 5B (B) 5A (C) and 4B (D) using SSR and SNP markers and phenotypic data from 10 

experiments. The line parallel to the X-axis is the threshold line for the significant LOD value of 2.24 (P < 0.05). Genetic 

distances are shown in centiMorgans (cM). 

A. 
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Chapter 3 - Genome-wide Association Analysis on Pre-harvest 

Sprouting Resistance and Grain Color in U.S. Winter Wheat 

 Abstract 

Pre-harvest sprouting (PHS) of wheat can cause substantial reduction in grain yield and 

end-use quality. Grain color (GC) together with other components affect PHS resistance. Several 

quantitative trait loci (QTLs) have been reported for PHS resistance, and two of them on 

chromosome 3AS (TaPHS1) and 4A have been cloned. To determine genetic architecture of PHS 

and GC and genetic relationships of the two traits, a genome-wide association study (GWAS) 

was conducted by evaluating a panel of 185 U.S. elite breeding lines and cultivars for sprouting 

rates of wheat spikes and GC in both greenhouse and field experiments. The panel was 

genotyped using the wheat 9K and 90K single nucleotide polymorphism (SNP) arrays. Four 

QTLs for GC on four chromosomes and 12 QTLs for PHS resistance on 10 chromosomes were 

identified in at least two experiments. QTLs for PHS resistance showed varied effects under 

different environments, and those on chromosomes 3AS, 3AL, 3B, 4AL and 7A were the more 

frequently identified QTLs. The common QTLs for GC and PHS resistance were identified on 

the long arms of the chromosome 3A and 3D. Wheat GC is regulated by the three known genes 

on group 3 chromosomes and additional genes from other chromosomes. These GC genes 

showed significant effects on PHS resistance in some environments. However, several other 

QTLs that did not affect grain color also played a significant role on PHS resistance. Therefore, 

it is possible to breed PHS-resistant white wheat by pyramiding these non-color related QTLs. 
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Introduction 

Pre-harvest sprouting (PHS) of wheat (Triticum aestivum L.) refers to the germination of 

wheat grains in matured spikes before harvest due to continuous wet weather during harvest 

seasons. PHS can result in a significant reduction in wheat grain yield and grain end-use quality, 

thus a reduction in grain sale price (Groos et al., 2002, Mares et al., 2005). Growing PHS-

resistant cultivars is the most effective way to minimize PHS damage. PHS resistance QTLs 

have been reported on almost all wheat chromosomes. One major QTL mapped on chromosome 

3AS, designated as TaPHS1, has been cloned (Nakamura et al., 2011; Liu et al., 2013). Another 

major QTL on chromosome 4AL has been fine mapped with single nucleotide polymorphisms 

(SNPs) (Cabral et al., 2014; Barrero et al., 2015; Lin et al., 2015). Recently, several candidate 

genes have been reported for the 4A QTL in different studies (Barrero et al., 2015; Torada et al., 

2016). In addition, several minor QTLs have also been reported on chromosomes 2B (Kulwal et 

al., 2004; Munkvold et al., 2009; Kulwal et al., 2012; Zhang et al., 2014), 3D (Imtiaz et al., 

2008), 4B, 4D (Kato et al., 2001) and many others (Anderson et al., 1993). 

Wheat grain color (GC) has long been associated with PHS, and red-grained wheats are 

usually more tolerant to PHS than the white-grained wheats (Flintham, 2000; Warner et al., 

2000; Himi et al., 2002). The pigments, catechin and proanthocyanidins (PAs) synthesized 

through the flavonoid synthesis pathway, result in red GC (Miyamoto and Everson, 1958; 

McCallum and Wlker, 1990). Early cytogenetic studies suggested that three genes, R-A1, R-B1 

and R-D1, on homoeologous group 3 chromosomes control GC (Sears, 1944; Allan and Vogel, 

1965; Metzger and Silbaugh, 1970), and show a pleiotropic effect on wheat PHS resistance by 

accumulating catechin, a precursor of the red pigment, that inhibits grain germination (Miyamoto 

and Everson, 1958; Stoy and Sundin, 1976). Flintham (2000) found that grain dormancy levels 
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were increased in white-grained wheat NS-67 after adding a single GC (R) gene to one of group 

3 chromosomes. Groos et al. (2002) identified common QTLs for GC and PHS resistance on 

chromosomes 3AL, 3BL, 3DL and 5A in a white × red wheat cross. The white-grained mutants 

of 'Chinese Spring' and 'AUS1490' showed increased sprouting, indicating that R genes enhanced 

PHS tolerance (Warner et al., 2000; Himi et al., 2002). Recently, Tamyb10 genes, the 

transcription factors of the flavonoid biosynthetic pathway, have been reported as candidate 

genes for the GC trait (Himi et al., 2011). However, how much these R genes contribute to PHS 

resistance remains unknown. Therefore, simultaneous genome-wide association studies (GWAS) 

on both traits may reveal the relationship between R genes and PHS resistance. 

Genome-wide association studies have been conducted in many plant species to discover 

and validate QTLs and genes for various traits. By taking advantages of historical recombination 

events and linkage disequilibrium (LD) between causal genetic variants and nearby SNPs, 

GWAS detects statistical associations between genetic variations and phenotypic variations 

throughout the genome (Flint-Garcia et al., 2003; Nordborg and Weigel, 2008; Myles et al., 

2009; Lipka et al., 2015). Therefore, GWAS can potentially increase mapping resolution by 

taking advantages of historical recombinations using highly diverse populations. To date, GWAS 

has not been reported for GC, and only several studies have been reported for wheat PHS 

resistance (Kulwal et al., 2012; Rehman Arif et al., 2012; Jaiswal et al., 2012; Albrecht et al., 

2015). In the current study, we analyzed a panel of elite breeding lines and cultivars from major 

U.S. winter wheat breeding programs using the wheat 9K and 90K arrays to (1) study the 

phenotypic variance of PHS resistance in U.S. winter wheat, (2) identify genome-wide QTLs for 

GC and PHS resistance, and (3) determine the genetic relationship between GC and PHS 

resistance. 
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Materials and Methods 

Plant materials 

A set of 185 winter wheat accessions (Zhang et al., 2010) was assembled to include 130 

hard winter wheat (HWW) and 55 soft winter wheat (SWW) accessions. A mapping population 

of 155 F6 recombinant inbred lines (RILs) derived from the cross of Tutoumai A x Siyang 936 

(Liu et al., 2008; Lin et al., 2015) was used to validate the SNPs that showed significant 

associations with the Qphs.hwwgr-4A.  

Pre-harvest sprouting evaluation 

In the greenhouse experiments, five plants per accession were grown in a 13 by 13 cm Dura-

pot (Hummert Int. Topeka, KS) under the growth condition listed in Table 3.7 after vernalization 

for seven weeks at 4°C in a cold chamber. The GWAS panel was evaluated for PHS in the 

greenhouse experiments of fall (August-December) 2011, spring (January-May) and fall 2012, 

and spring 2013. All experiments were conducted in a randomized complete block design with 

two replications of five plants. 

The GWAS panel was also planted for PHS resistance evaluation in the Kansas State 

University Rocky Ford Wheat Research Farm, Manhattan, KS and the Agricultural Research 

Center-Hays, Hays, KS, respectively, in the summers of 2013 and 2014. About 30 seeds per 

accession were planted in a 1.22-m-long single-row plot, and each experiment had two 

replications. 

When wheat plants reached physiological maturity, similar to Zadoks scale 91 (Zadoks et 

al., 1974), spikes that lost green color (Trethowan 1995) were harvested from both greenhouse 

and field experiments, and evaluated for PHS in the lab. Five spikes per accession that were 

harvested from each replicate were air-dried for 5 d in a greenhouse, and then stored at -20°C to 
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maintain dormancy for PHS evaluation. After all accessions had been collected, the greenhouse- 

harvested spikes were air-dried 9 d and field-harvested spikes for 5 d at room temperature. The 

additional drying days were determined based on preliminary test results of randomly selected 

samples from field and greenhouse experiments that maximize phenotypic differences among 

genotypes. After the dried spikes had been immersed in de-ionized water for 12 h, they were 

enclosed in a moist chamber at 22±1°C with an attached humidifier that ran twice daily at 2 h 

each time to maintain high moisture in the chamber. After 7 d of incubation, the germinated and 

non-germinated kernels were hand-threshed and counted separately to calculate the percentage of 

germinated kernels from all five spikes of each replication. 

Evaluation of grain color 

Grain color was evaluated for grains harvested from one field experiment (2009-2010 

Enid Oklahoma) and the fall 2011 greenhouse experiment at Manhattan KS. For each accession, 

ten seeds were soaked in 1 M sodium hydroxide (NaOH) for 1 h to increase the color contrast. 

Grain color intensity was determined visually using a scale of 1 to 4, where 1 represents white, 2 

light red, 3 red and 4 dark red. 

DNA isolation and genotyping 

Leaf tissue was collected at the two-leaf stage, and genomic DNA was isolated using a 

modified cetyltrimethyl ammonium bromide (CTAB) method (Zhang et al., 2010). A total of 446 

polymorphic SSR markers were selected to genotype the association panel based on PCR 

product quality, chromosome distribution in available genetic maps 

(http://wheat.pw.usda.gov/GG3/; verified 11 Aug. 2010), and previously reported associations 

with PHS resistance. One expressed sequence tag (EST), ZXQ118 (Zhang et al., 2008), three 

gene markers of PM19A1 and PM19A2 (Barrero et al., 2015) and one gene marker of TaMKK3-
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A were used to determine the association between PHS resistance and Qphs.hwwgr-4A. Five 

sequence-tagged sites (STS) from three Tamyb10 genes (Himi et al., 2011) were analyzed to 

determine QTLs for GC. Amplification, separation and scoring of polyerase chain reaction 

(PCR) products followed Zhang et al. (2010).  

The GWAS panel was also genotyped with the Wheat 9K and 90K SNP arrays (Cavanagh et 

al., 2013; Wang et al., 2014) at USDA-ARS Cereal Crops Research Unit (Fargo, ND). SNPs 

with less than 5% minor allele frequency (MAF) or with more than 15% missing data were 

removed. A total of 5,921 and 21,600 SNPs were scored from the 9K and 90K SNP arrays, 

respectively. Association analysis was initially conducted using the 9K genotypic data, and 28 

non-redundant SNPs with p < 0.001 were then selected and pooled together with the 90K data. 

Totally, 21,628 SNPs were used for the final analysis. Also, one SNP in the promoter region and 

two SNPs in the coding region of the TaPHS1 gene (Nakamura et al., 2011; Liu et al., 2013) 

were analyzed using three Kompetitive Allele Specific PCR (KASP) assays. Sequences that 

harbored significant SNPs and SSR markers were searched against the W7984 reference 

sequence to estimate their putative chromosome positions. 

Population structure and kinship 

Population structure was characterized by a set of 1500 SNPs that are evenly distributed 

on all the 21 wheat chromosomes using the admixture model in STRUCTURE 2.3.4 (Pritchard et 

al., 2000). K-values ran from 2 to 20 with 10 iterations set for each k-value. The burn-in time and 

replication number were set at 2×105 and 2×104, respectively. For each trait, Bayesian 

information criterion (BIC) (Schwarz, 1978) was applied to determine the optimum number of 

subpopulations. Marker-based kinship was estimated to approximate the probability of two 

individuals being identical by descent through adjusting the average probability of being 
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identical in state between random individuals (Yu et al., 2006). Kinship was calculated with the 

same set of 1,500 SNPs used for structure analysis using SPAGeDi package (Hardy & 

Vekemans, 2002). 

Statistical analysis and genome-wide association analysis 

Best linear unbiased predictions (BLUPs) were calculated for each accession evaluated in 

the greenhouse and field experiments using the 'lme4' package in R 3.2.2 (Bates et al., 2014) 

with year and location as random effects in the model. Genome-wide association analysis was 

conducted using two models: the generalized linear model (GLM) with the Q matrix as fixed 

effects, and the mixed linear model (MLM) with a Q matrix as fixed effects and a kinship matrix 

as random effects. These two models were applied to each experiment for GC and PHS 

resistance, and model fitness was determined based on the BIC values. Association analysis of 

SNP data was conducted using the genome association and prediction integrated tool (GAPIT) 

implemented in R (Lipka et al., 2012), and association analysis of SSR data was conducted using 

PROC MIXED procedure in SAS 9.3 (SAS Institute Inc., Cary, NC). A threshold of p < 0.001 

was set to claim significant associations between SSR markers and the traits (GC and PHS 

resistance), and p < 0.0001 was set to claim significant associations between SNPs and the traits. 

Linkage disequilibrium and haplotype analyses of the significant SNPs were performed with 

HAPLOVIEW v.4.2 

(http://www.broadinstitute.org/scientificcommunity/science/programs/medicalandpopulationgen

etics/haploview/haploview). Color intensity of the LD plot was determined by the magnitude of 

pairwise D’ value. 
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QTL analysis 

A linkage map covering the 4A QTL region was constructed for the RIL population of 

Tutoumai A x Siyang 936 using KASP markers converted from significant SNPs from the 

association study, and previously mapped SSR markers in Liu et al. (2011) and GBS-SNPs in 

Lin et al. (2015) by JoinMap version 4.0 (Van Ooijen and Voorrips 2006). Recombination 

fractions were converted into centiMorgans (cM) using the Kosambi function (Kosambi, 1944). 

Interval mapping (IM) using sprouting data from the 2005 and 2006 greenhouse experiments and 

their combined mean was performed using WinQTLCart 2.5 (Wang et al., 2005). LOD 

thresholds to claim significant QTLs for each dataset were determined from 1000 permutations 

(Doerge and Churchill, 1996). 

Results 

Phenotypic variations in grain color and pre-harvest sprouting 

Twenty-nine accessions were scored as white wheats, and 156 accessions as red wheats. 

The GC scores were highly consistent between greenhouse and field grown seeds (Fig. 3.1) with 

a high correlation coefficient of 0.87 (P<0.0001), indicating a low genotype-by-environment 

interaction for GC. 

     Significant correlations for sprouting rates were observed among most of the eight 

experiments (Table 3.1). Cluster analysis showed high similarities in sprouting rates of 

accessions among all the field experiments, but significant differences between the field and the 

greenhouse experiments (Fig. 3.2a). The broad sense heritability across all eight experiments was 

high (0.83), with 0.62 in the greenhouse experiments and 0.92 in the field experiments. The 

population could be roughly divided into three subgroups (Fig. 3.2b), with average sprouting 

rates of 13.9% in Group 1, 35.5% in Group 2 and 60.3% in Group 3, and average GC scores of 
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3.0 in Group 1, 2.6 in Group 2 and 1.7 in Group 3, indicating red wheats were more likely to 

have low sprouting rates. Most of the soft winter wheats were clustered to Group 1, as well as 

some hard white winter (HWW) wheat accessions from the Regional Germplasm Observation 

Nursery (RGON). The rest accessions from the RGON were mostly clustered to Group 2, 

whereas accessions from the Southern Regional Performance Nursery (SRPN) and the Northern 

Regional Performance Nursery (NRPN) were mainly clustered to Group 2 and Group 3. 

Genome-wide association studies on grain color 

According to the BIC values, the mixed model with population structure (K=3) and kinship 

fit the best for the GC trait, thus was applied in the following analysis. GWAS detected four 

significant QTLs on chromosomes 1B, 3A, 3B and 3D, which were represented by the gene 

markers for Tamyb10 genes (5 STS markers) and closely linked SSRs (6) and SNPs (12) (Table 

3.2). Three major QTLs for GC in the distal region of the long arms of group 3 chromosomes are 

significant for the data from both greenhouse and field experiments (Table 3.2). Among them, 

the QTL on 3DL, as indicated by significant markers Tamyb10-D1 and 3 SNPs, showed the 

largest effect and explained up to 23.0% of the phenotypic variance for GC. The QTL on 

chromosome 3BL that was characterized by seven SNPs, two gene makers for Tamyb10-B1, and 

one SSR was significant in both greenhouse and field experiments, and explained up to 19.2% of 

the phenotypic variance. A QTL on 3AL showed a moderate effect on GC, and explained about 

11.1% phenotypic variance. QTL on chromosomes 1B was identified in both field and 

greenhouse experiments and explained up to 11.7% of the phenotypic variances. Also, three 

SSRs, Xwmc93, Xbarc145 and Xbarc148, were also significant for GC, but their positions cannot 

be determined because they were mapped to multiple chromosomes. 
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The association mapping population can be classified into eight genotypic groups based on 

the allele combinations of the gene markers of Tamyb10 genes on group 3 chromosomes. The 

average GC scores in each group tended to increase as the number of red color alleles increases. 

However, red wheat accessions T154, LA02-923, MO040192 and NC04-15533 do not contain 

the red alleles (abd) at any of the three loci, whereas white accessions KS05HW15-2 and 

OK06848W carry the red allele of Tamyb10-A1 (Abd), and white accessions KS05HW136-3 

and CO03W139 carry the red allele of Tamyb10-D1 (abD) (Fig. 3.3), suggesting that other genes 

besides Tamyb10 may also contribute to GC, or the markers for Tamyb10 genes may not be 

diagnostic in some genetic backgrounds.  

Genome-wide association studies on pre-harvest sprouting resistance 

Generalized linear model with Q matrix of k=3 was selected for GWAS on PHS resistance 

based on BIC values. Twelve QTLs on ten chromosomes were significant for PHS resistance in 

at least two experiments (Table 3.3). Among them, QTLs on chromosome 3AS, 3AL, 3B and 

4AL were the most frequently identified QTLs for PHS resistance. The 3AS QTL was detected 

in the fall 2011 greenhouse experiment and all the four field experiments, and explained 9.5% to 

15.8% of the phenotypic variances for PHS resistance. Significant markers included one SSR, 

Xbarc57, five SNPs from the SNP chips and one SNP developed from the TaPHS1 gene 

sequence (Table 3.3), thus this QTL corresponds to TaPHS1. The 3AL QTL was identified by 

SNPs, SSR and the Tamyb10-a1 gene marker in spring 2012 and all the field experiments, and 

explained 6.8% to 12.1% of the phenotypic variances. Thus this QTL corresponds to the 

Tamyb10-a1 gene for GC on 3AL. The QTL on chromosome 4AL showed a wide range of 

effects among the experiments, and explained 9.9% to 47.6% phenotypic variance among the 

two greenhouse experiments (fall and spring 2012) and one field experiment (Manhattan, 2014). 
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The most significant SNPs for Qphs.hwwgr-4A were Ex_c66324_1151, 

wsnp_Ex_c13031_20625900 and wsnp_Ex_rep_c66324_64493429. ZXQ118, an EST in the 4A 

QTL region (Zhang et al., 2008), and the gene markers for PM19A1 were also significant in the 

fall 2012 greenhouse experiment and the mean sprouting rates over all the greenhouse 

experiments, but explained much lower phenotypic variation than the previous three markers 

(Table 3.3). The QTL on chromosome 3B was significant in two greenhouse experiments (fall 

2011 and spring 2012) and all field experiments, and explained 7.0% to 12.3% of the phenotypic 

variances for PHS resistance. Two QTLs were identified on chromosome 3D with one at the 

distal end of the short arm (Qphs.hwwgr-3DS) and another at the distal end of the long arm 

(Qphs.hwwgr-3DL). Qphs.hwwgr-3DS was detected in the spring 2012 greenhouse, and two 

2014 field experiments, and Qphs.hwwgr-3DL was significant in both field experiments in 2013. 

QTL identified on chromosome 7A was significant in the fall 2011 greenhouse and 2013 

Manhattan field experiments and explained up to 13.5% of the phenotypic variance. 

Some QTLs were only significant in a single environment. For example, the two QTLs 

identified on chromosomes 2B, Qphs.hwwgr-2B.1 and Qphs.hwwgr-2B.2, were associated with 

PHS resistance each in one greenhouse experiment (spring 2013 and 2012, respectively), and the 

Qgc.hwwgr-6B.1 was identified only in one field experiment (Manhattan, 2013) (Table 3.4). 

Therefore, these QTLs may be more sensitive to environmental conditions. 

Relationships between grain color and pre-harvest sprouting resistance  

Analysis of variance (ANOVA) was conducted by taking GC as the explanatory variable 

and PHS resistance as the response variable, and it showed that GC had significant effects on 

PHS resistance in all the field experiments (P < 0.0001), but not in any of the greenhouse 

experiments (Table 3.5). White wheat had significantly higher sprouting rates than red wheats (P 
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< 0.0001) in the field experiments, but the difference was not significant between red-grained 

accessions with different color scores (data not shown). 

Common QTLs for GC and PHS resistance were identified on the long arms of 

chromosomes 3A and 3D (Table 3.6), but not on 3BL. The QTL on chromosome 3AL, identified 

by Tamyb10-A1, was significant for GC in both field and greenhouse experiments and for PHS 

resistance in all the field experiments. For the QTL on chromosome 3D as represented by 

Tamyb10-D1, one SNP was significant for GC in both experiments and also for PHS resistance 

in the 2013 field experiments at both Manhattan and Hays. Unlike the 3A and 3D QTLs, QTL on 

chromosome 3B, represented by the Tamyb10-B1 as well as seven linked SNPs and one SSR, 

was significant for only GC, not PHS resistance in any experiments. Therefore, Tamyb10-A1 and 

Tamyb10-D1, but not Tamyb10-B1, were very likely to have pleiotropic effects on PHS 

resistance under the field conditions. 

Validation of the significant SNPs for the 4A QTL in a bi-parental population 

Seventeen KASP assays were designed based on the sequences of the significant SNPs 

identified in the 4A QTL region for PHS resistance. Four of the KASP markers (Table 3.8) 

showed co-segregation among the F6 RILs of “Tutoumai A” × “Siyang 936”, and were mapped 

between the two previously reported flanking GBS SNPs (GBS212432, GBS109947) for the 

QTL (Lin et al., 2015) at 1.02 cM to GBS212432 and 2.10 cM to GBS109947 (Fig. 3.4). These 

four SNPs showed the highest LOD scores in all experiments, and explained up to 31.76% of the 

phenotypic variance in the population. 

Linkage disequilibrium 

Linkage disequilibrium (LD) parameter D’ was calculated to determine the linkage 

relationship between SNPs from different QTLs and link the markers with unknown positions to 
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known QTLs. LD was calculated for the 125 SNPs that were significantly linked to nine PHS 

resistance QTLs in at least two experiments. Strong LD was detected for SNPs within each PHS 

resistance QTL region, but not between different QTLs (Fig. 3.5b), indicating that those QTLs 

for PHS resistance were independent. Pair-wise D’ values were also estimated for the 17 SNPs 

that were tightly linked to the four GC QTLs. Similarly, strong LD was not detected among the 

SNPs linked to GC QTLs in group 3 chromosomes (Fig. 3.5a). Although SNPs in the 1B QTL 

showed high D’ values (around 0.83) with SNPs in the 3D QTL, r2 values that adjusts LD 

relationships by incorperating allele frequencies were low (around 0.08) between SNPs from the 

two QTLs. 

Genetic positions of most significant SNPs for GC on chromosome 3D and Tamyb10-D1 

could not be determined using the W7984 reference sequence, and SNPs significantly related to 

GC on chromosome 3D, D_GA8KES402JVT1Y_74 and BS00067163_51, were far apart from 

each other on the chromosome 3D. However, LD analysis suggested that these SNPs were tightly 

linked to Tamyb10-D1, and thus they linked to the same 3D QTL for GC (Fig. 3.5a). 

Discussion 

QTLs for grain color 

Wheat GC has been a classic example for dissection of a quantitative trait (Nilsson-Ehle, 

1909) and three genes on wheat chromosomes group 3 have long been proposed as the genes 

controlling wheat GC. Several previous studies have mapped the three genes as major QTLs as 

well as some minor QTLs on chromosomes 2B, 2D, 5A and 6B for GC (Groos et al., 2002; 

Kumar et al., 2009; Himi et al., 2011). Being the first association study for wheat GC, we not 

only validated the effects of these three GC genes, Tamyb10-A1, Tamyb10-B1 and Tamyb10-D1, 

on the long arms of chromosomes group 3, but also identified a new QTL on the chromosome 1B 
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for GC, suggesting that QTLs on other chromosomes than these well-known QTLs on 

chromosomes group 3 may also play a role in regulating GC in some wheat germplasm lines. 

Groos et al. (2002) mapped all group 3 QTLs in a bi-parental population, but they did not 

discuss their effects of each QTL. In this study, a diverse association panel makes it possible to 

compare the effects of all the three QTLs. Among the three genes on the chromosome group 3, 

Tamyb10-D1 had the largest effect on GC (R2=0.24) and Tamyb10-A1 the smallest (R2=0.11) in 

the association mapping panel whereas their minor allele frequencies (MAF) were similar (Table 

3.2), indicating that the large effect of Tamyb10-D1 was not due to a higher MAF than other two 

genes. On the other hand, one single gene changed GC from white to red, and adding one or two 

additional GC genes only slightly increased redness (Fig. 3.3). Besides, QTL on chromosome 1B 

also contribute to GC, which was not reported previously, thus it is likely a new QTL for GC. 

That the red allele of the 1B QTL presents in the four red wheat accessions that do not carry the 

red alleles (abd) at any of the three Tamyb10 genes supports this assumption. Therefore, when 

breeding for white wheat cultivars, breeders not only need to remove the three Tamyb10 genes, 

but also should watch for other genes that may contribute to GC. 

In this study, wheat GC was visually scored after increasing color intensities using sodium 

hydroxide solution. High repeatability in GC between the greenhouse and field experiments (Fig. 

3.1) indicates that the GC scoring method used in the experiments is highly repeatable. All of the 

four QTLs identified for GC were detected in both experiments, which provided genetic 

evidence that QTLs for GC are relatively stable across environments. 

QTLs for pre-harvest sprouting resistance 

QTLs for PHS resistance have been mapped on almost all wheat chromosomes in previous 

bi-parental mapping studies. Although association studies on PHS resistance have been 
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conducted using several types of markers (Kulwal et al., 2012; Rehman Arif et al., 2012), the 

current study is the first report to use high density SNPs for GWAS on PHS resistance. We 

identified 12 QTLs that were significant in at least two experiments. 

For the QTL on 3AS, the causal gene (TaPHS1) has been cloned (Nakamura et al., 2011; 

Liu et al., 2013). One of the reported functional SNPs in the coding region (Liu et al., 2013) was 

significant in one greenhouse (fall 2011), whereas the functional SNP in the promoter region 

(Nakamura et al., 2011) was not significant in any of the experiments (Table 3.3). However, the 

most significant markers linked to the 3AS PHS resistance QTL were not the functional SNPs, 

which was probably due to environmental effects on phenotyping (Nakamura et al., 2011). 

Among the gene markers for PM19A1 and PM19A2, only one of the candidate gene markers of 

PM19A1 was significantly associated with PHS resistance in the fall 2012 experiment, although 

the 4A QTL showed an extremely large effect on PHS in that experiment (Table 3.3). This was 

probably due to the fact that the gene expression was affected by environments or the gene 

markers are not diagnostic. However, the gene marker for TaMKK3-A was in strong LD with the 

most significant SNPs for the 4A QTL, indicating that the TaMKK3-A is more likely to be the 

candidate gene for the 4A QTL. 

The QTL identified at the distal end of chromosome 3DS was not reported previously. LD 

analysis indicated that Qgc.hwwgr-3DS is a different QTL from Qgc.hwwgr-3AS (Fig. 3.5b). For 

the QTL on chromosome 3B, the sequences of the linked SSR markers are not found in the 

W7984 reference sequence, thus we cannot determine whether or not the significant SSR 

markers and SNPs on 3B linked to the same QTL. Similarly, we cannot determine the QTL 

positions on chromosome 7A.  
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QTL identified on chromosome 1A could be the same QTL reported by Knox et al. (2005) 

in durum because Xwmc183 was located near the QTL region mapped in our study based on the 

W7984 reference sequence. The QTL on chromosome 2D is the same QTL as QPhs.ccsu-2D.4 

(Mohan et al., 2009) because of the common SSR Xgwm539. However, we cannot determine 

whether the QTLs that were identified on chromosomes 1D, 5A, 5B, 6A and 6B were the same 

QTLs reported in previous studies (Kumar et al., 2009; Groos et al., 2002; Arif et al., 2012; 

Kulwal et al., 2004; Roy et al., 1999) due to the lack of common markers. 

Variation of PHS resistance across environments 

PHS is a complicated trait affected by many factors, including seed dormancy (SD) (Bewley 

and Black, 1982; Anderson et al., 1993; Mares and Mrva, 2001; Ogbonnaya et al., 2008), GC 

(Gfeller and Svejda, 1960; Groos et al., 2002), spike morphology, as well as environmental 

factors such as temperature, moisture and photoperiod after flowering (Argel et al., 1983; 

Ceccato et al., 2011). In the current study, PHS resistance of the tested accessions and QTL 

effects varied across environments with more variation observed among the greenhouse 

experiments than that among the field experiments (Fig. 3.2a). A total of four greenhouse 

experiments were conducted in the fall greenhouse cycles of 2011 and 2012 with the harvest 

time in winter, and the spring cycles of 2012 and 2013 with the harvest time in summer. The two 

seasons were highly different in growing and post-harvesting temperatures, which has been 

shown to influence PHS resistance (Nakamura et al., 2011；Barrero et al., 2015). Meanwhile, in 

the field experiments at Manhattan and Hays, dry hot winds shortened maturity period, which 

greatly reduced environment effects on wheat PHS resistance. Therefore, PHS resistance was 

similar in the four field experiments. 
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Qphs.hwwgr-3AS and Qphs.hwwgr-4A were the major QTLs for PHS resistance, and most 

frequently identified in all experiments. However, Qphs.hwwgr-3AS was detected more 

frequently in the field experiments, while Qphs.hwwgr-4A was detected more frequently in the 

greenhouse conditions (Table 3.3), which might be due to high temperatures in field conditions 

during late grain maturation that suppressed the expression of Qphs.hwwgr-4A (Barrero et al., 

2015). 

According to the heat map derived from individual PHS ratings across all the experiments, 

the population can be roughly divided into three clusters (Fig. 3.2b). Most of the soft winter 

wheats had low germination rates, and were clustered to Group 1. Wheat cultivars from RGON 

were mostly clustered to Group 1 and Group 2, whereas accessions in SRPN and NRPN showed 

higher germination rates, and were mainly clustered to Group 2 and Group 3. These results 

indicated that the soft winter wheat accessions grown in the humid climate during harvest season 

had a higher selective pressure on PHS resistance than the hard winter wheat accessions from the 

Great Plains that are grown under relatively drier climate. 

Validation of the markers for the QTL on 4A 

In this study, a RIL population from “Tutoumai A” x “Siyang 936” was used to validate 

the position of significant SNPs for 4A PHS resistance QTL. Four polymorphic SNPs from 

GWAS were successfully mapped to the QTL region, and they are more closely linked to PHS 

resistance than previously reported flanking markers, GBS212432 and GBS109947, for this QTL 

(Lin et al., 2015). This result indicates that GWAS provides more power to increase marker 

density and mapping resolution, whereas bi-parental populations can further validate the 

positions of new markers. Barrero et al. (2015) proposed PM19A1 and PM19A2 as the candidate 

genes for the 4A QTL and identified causal deletions in PM19A1 and PM19A2. We analyzed the 
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markers developed based on the causal variation in Tutoumai A and Siyang 936, but did not find 

any polymorphism between the two parents. Therefore, a different gene or different causal SNP 

in the gene may control the PHS resistance of 4A QTL in this population, which was also 

supported by the results from the GWAS that the candidate gene markers contributed much 

lower phenotypic variation for PHS resistance than three other SNP markers (Ex_c66324_1151, 

wsnp_Ex_c13031_20625900, wsnp_Ex_rep_c66324_64493429) (Table 3.3). 

Effect of grain color QTLs on pre-harvest sprouting resistance 

GC has been considered as an important factor for PHS resistance, and previous studies 

showed that seed dormancy level of a white-grained wheat line was improved by the 

introgression of an R gene (Flinthman et al., 2000). In the current study, GC explained 26% to 

44% of the phenotypic variance for PHS resistance, and Tamyb10-A1 and Tamyb10-D1 showed 

significant effects on both GC and PHS resistance, which agree with a previous study (Groos et 

al., 2002). Tamyb10 genes encode R2R3-type MYB transcription factors, which regulate the 

accumulation of PA in the biosynthesis pathways (Himi et al., 2011). Therefore, it is possible 

that these transcription factors showed pleiotropic effects by regulating more than one 

metabolism pathway, and had effects on improving wheat PHS resistance. However, the GC 

gene on 3BL, Tamyb10-B1, did not show any effect on PHS resistance in this study (Table 3.2; 

Table 3.6). 

In this study, GC was significantly related to PHS resistance in field experiments, but had 

barely any effect in the greenhouse experiments (Table 3.5). Also, the Tamyb10-A1 gene affected 

PHS resistance in all of the four field experiments, and the Tamyb10-D1 gene only affected PHS 

resistance in the 2013 experiments. Such results suggested that environmental factors could be 

important triggers of pleiotropic effects of the GC genes on PHS resistance. That Tamyb10-B1 
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did not show any effect on PHS resistance might be due to the field environments of this study 

that could not trigger the expression of pleiotropic effect of the gene. 

Although some GC genes contributed to wheat PHS resistance, many QTLs for PHS 

resistance did not affect GC. Therefore, some red wheats can be highly susceptible to PHS, while 

some white wheats can be highly resistant (Torada et al., 2002; Bi et al., 2014). Breeding for 

PHS resistance, attention should be paid to these QTLs with a major effect on PHS in most 

environments without a pleiotropic effect on GC, such as these on 3AS and 4AL. Pyramiding 

several of these genes in one cultivar should be able to avoid PHS damage in U.S. HWW. 
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Table 3.1 Pairwise correlation coefficients among germination rates from all eight experiments and best linear unbiased 

predictions (BLUP) of the all greenhouse experiments and all field experiments. 

Corr Coeff 2011F 2012S 2012F 2013S 2013_MH 2013_Hays 2014_MH 2014_Hays GH_BLUP 

2012S 0.238***                 

2012F 0.468*** 0.313***               

2013S 0.167* 0.543*** 0.337***             

2013_MH 0.276*** 0.171* 0.212** 0.153*           

2013_Hays 0.407*** 0.227** 0.402*** 0.237*** 0.741***         

2014_MH 0.384*** 0.312*** 0.576*** 0.242*** 0.686*** 0.721***       

2014_Hays 0.358*** 0.228** 0.431*** 0.266*** 0.747*** 0.755*** 0.821***     

GH_BLUP 0.559*** 0.718*** 0.821*** 0.710*** 0.268*** 0.437*** 0.551*** 0.448***   

Field_BLUP 0.399*** 0.265*** 0.463*** 0.253*** 0.869*** 0.890*** 0.909*** 0.929*** 0.484*** 

*p < 0.05; **p < 0.01, ***p < 0.001 
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Table 3.2 Quantitative trait loci (QTL) identified for wheat grain color (GC) evaluated for the seeds harvested from the field 

experiment of Enid, OK, in,2010 (Enid2010) and from the greenhouse (GH) experiment conducted in Manhattan KS, 2011 

(GH2011). 

Chromosome 

 
Marker name 

Marker 

type 

Chromosome 

Position (cM)a 

Positive 

allele 

frequency 

Enid2010 GH2011 Mean 

p R2 (%)b p R2 (%) p R2 (%) 

1B Ra_c35710_395 90K 58.08 0.92  7.31E-06 9.9 2.19E-05 9.3 3.16E-06 10.8 

1B RAC875_c1188_531 90K 58.08 0.92  4.62E-06 10.4 8.06E-06 10.3 1.33E-06 11.7 

3A Xwmc559-1 SSR 107.20 0.94  1.25E-04 9.8 5.00E-04 10.6 1.57E-04 10.8 

3A Tamyb10-A1-66 STS 114.02 0.63  8.75E-06 7.5 1.86E-04 10.2 2.25E-05 9.4 

3A Tamyb10-A1-74 STS 114.02 0.61  3.12E-06 8.5 6.50E-05 11.1 7.32E-06 10.4 

3B BS00040742_51 90K 68.26 0.36  9.42E-06 9.7 - - 2.82E-05 8.6 

3B Tdurum_contig100004_204 90K - 0.38 4.81E-06 10.3 1.00E-05 10.1 7.54E-06 9.9 

3B BS00025679_51 90K 76.22 0.58  2.45E-05 8.7 1.88E-06 11.8 6.30E-06 10.1 

3B Kukri_c60633_121 90K 76.22 0.35  8.53E-06 9.8 2.35E-06 11.6 4.23E-06 10.5 

3B Kukri_c60633_257 90K 76.22 0.33  3.63E-05 8.3 5.35E-06 10.7 9.98E-06 9.6 

3B Excalibur_rep_c97324_623 90K 76.22 0.35  5.23E-06 10.3 1.64E-06 12.0 2.50E-06 11.0 

3B Tamyb10-B1-1 STS 77.36 0.26  2.26E-05 11.1 1.06E-05 11.0 7.46E-06 11.8 

3B Tamyb10-B1-2 STS 77.36 0.26  7.32E-07 11.1 8.21E-07 11.0 3.22E-07 11.8 

3B Xbarc84 SSR 80.77 0.31  1.89E-05 4.1 - - 1.16E-04 6.4 

3D GENE-1785_118 90K - 0.42  4.74E-06 10.4 2.42E-09 19.2 6.49E-08 14.8 

3D D_GA8KES402JVT1Y_74 90K 11.37 0.54  1.32E-07 14.0 3.31E-10 21.5 1.79E-09 18.7 

3D BS00067163_51 90K 92.34 0.52  5.36E-08 15.0 8.39E-11 23.2 7.49E-10 19.7 

3D BS00063075_51 90K - 0.72 8.85E-05 7.5 5.03E-06 10.8 9.74E-06 9.7 

3D Tamyb10-D1-93 STS - 0.56 4.31E-11 21.9 3.66E-13 17.5 6.51E-13 21.0 

3D Xbarc376 SSR - 0.94  - - 5.00E-04 24.6 7.00E-04 23.3 

1A/1D Xwmc93 SSR - 0.37  - - 6.10E-05 5.3 3.00E-04 7.2 

1A/2D/3B Xbarc145 SSR - 0.11  - - 6.62E-05 5.0 1.65E-04 6.7 

1A/1D/3A/5B Xbarc148 SSR - 0.70  2.50E-07 16.6 1.03E-06 18.7 2.27E-07 18.4 

a The marker positions in the chromosome based on W7984 reference map 

b Phenotypic variance explained by a significant marker significantly related to grain color  



 104 

Table 3.3 Quantitative trait loci (QTLs) of wheat pre-harvest sprouting resistance identified in at least two of the experiments 

using sprouting rates (%) evaluated in the fall 2011 (2011F), spring 2012 (2012S), fall 2012 (2012F) and spring 2013 (2013S) 

greenhouse experiments, the 2013 and 2014 Manhattan (2013MH and 2014MH) and 2013 and 2014 Hays (2013Hays and 

2014Hays) field experiments, and using the best linear unbiased predictions (BLUP) of each accession from all the greenhouse 

(GH_BLUP) and field (Field_BLUP) experiments  

Chromosome SNP Type Position  
Resistance 

allele freq. 

2011F 2012S 2012F 2013S 2013MH 2013Hays 2014MH 2014Hays GH_BLUP Field_BLUP 

p-value  R2 p-value  R2 p-value  R2 p-value  R2 p-value  R2 p-value  R2 p-value  R2 p-value  R2 p-value  R2 p-value  R2 

1A BS00011787_51 90K 34.28 0.49 - - - - - - - - 3.30E-05 0.092 - - - - - - - - - - 

1A Kukri_c22508_119 90K - 0.51 - - - - - - - - 5.43E-05 0.086 - - - - - - - - - - 

1A Kukri_c60564_136 90K 50.20 0.93 6.54E-05 0.091 - - - - - - - - - - - - - - - - - - 

1A IACX742 90K 51.33 0.93 7.44E-05 0.089 - - - - - - - - - - - - - - - - - - 

1A BS00094925_51 90K 55.73 0.93 7.44E-05 0.089 - - - - - - - - - - - - - - - - - - 

1D Ex_c6765_2118 90K 48.90 0.83 - - - - - - 5.74E-04 0.067 - - - - - - - - - - - - 

1D wsnp_Ku_c19622_29138795 90K - 0.67 - - - - - - 3.38E-04 0.073 - - - - - - - - - - - - 

1D GWM337 SSR - 0.18 - - 4.98E-04 0.178 - - 1.30E-04 0.133 - - - - - - - - 4.70E-04 0.135 - - 

2D BobWhite_c1477_315 90K - 0.33 - - - - - - 9.48E-04 0.062 - - - - - - - - - - - - 

2D GWM539 SSR - 0.11 - - - - - - - - 5.00E-04 0.117 - - - - 6.00E-04 0.151 - - 3.38E-04 0.167 

3A wsnp_Ex_rep_c67702_66370241 9K 9.12 0.78 4.42E-05 0.095 - - - - - - - - - - - - - - - - - - 

3A wsnp_Ra_c2339_4506620 9K 9.12 0.38 - - - - - - - - 5.28E-05 0.087 - - - - - - - - 5.66E-05 0.085 

3A BS00094057_51 90K 9.12 0.76 9.06E-05 0.087 - - - - - - - - - - - - - - - - - - 

3A wsnp_Ex_c10014_16477392 90K 9.12 0.65 - - - - - - - - 6.91E-05 0.084 - - - - - - - - 7.22E-05 0.083 

3A RAC875_c76948_970 90K - 0.74 8.80E-05 0.088 - - - - - - - - - - - - - - - - - - 

3A TaPHS1.1 STS - 0.78 5.55E-05 0.093 - - - - - - - - - - - - - - - - - - 

3A BARC57.1 SSR - 0.79 - - - - - - - - 5.13E-06 0.140 8.52E-06 0.135 3.38E-05 0.158 3.00E-04 0.118 - - 5.90E-06 0.154 

3A BARC57.2 SSR - 0.79 - - - - - - - - 6.74E-06 0.140 6.56E-06 0.142 9.46E-05 0.153 2.00E-04 0.137 - - 3.78E-06 0.159 

3AL wsnp_Ex_c24085_33332723 90K 121.90 0.89 - - 9.46E-04 0.062 - - - - - - - - - - - - - - - - 

3AL wsnp_BM137927A_Ta_2_1 90K 121.90 0.89 - - 7.41E-04 0.064 - - - - - - - - - - - - - - - - 

3AL GENE.1464_73 90K 164.20 0.88 - - 7.41E-04 0.064 - - - - - - - - - - - - - - - - 

3AL wsnp_Ku_c5359_9531713 9K L201.88 0.89 - - 2.50E-04 0.076 - - - - - - - - - - - - - - - - 

3AL Tamyb10-A1-66 STS 114.02 0.61 - - - - - - - - 4.67E-07 0.121 1.82E-05 0.092 3.00E-04 0.068 2.83E-05 0.086 - - 2.01E-06 0.109 

3AL Tamyb10-A1-74 STS 114.02 0.59 - - - - - - - - 8.07E-07 0.116 3.47E-05 0.086 - - 1.16E-04 0.073 - - 1.12E-05 0.094 

3AL WMC559 SSR 107.20 0.89 - - - - - - - - - - 9.00E-04 0.104 - - - - - - - - 

3B wsnp_BE446087B_Ta_2_1 9K 46.66 0.91 - - - - - - - - - - 3.22E-05 0.093 - - - - - - - - 

3B RAC875_c15722_1081 90K 50.26 0.90 - - - - - - - - - - 6.75E-05 0.085 - - - - - - - - 

3BL BARC77 SSR - 0.94 - - 5.33E-04 0.123 - - - - 4.00E-04 0.076 - - - - 2.00E-04 0.095 - - 4.82E-04 0.081 

3BL GWM108 SSR - 0.81 - - - - - - - - 9.00E-04 0.070 - - 2.00E-04 0.075 - - - - 5.68E-04 0.073 

3BL GWM181 SSR - 0.92 3.00E-04 0.122 - - - - - - - - - - - - - - - - - - 

3BL GWM247 SSR - 0.92 9.00E-04 0.098 - - - - - - - - - - - - - - - - - - 

3D IAAV1578 90K 0.00 0.44 - - 9.77E-04 0.061 - - - - - - - - 2.63E-05 0.098 - - - - - - 

3D BS00021687_51 90K 0.00 0.44 - - - - - - - - - - - - 3.70E-05 0.095 - - - - - - 

3D BS00080151_51 90K 0.00 0.44 - - - - - - - - - - - - 3.70E-05 0.095 - - - - - - 
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Chromosome SNP Type Position  
Resistance 

allele freq. 

2011F 2012S 2012F 2013S 2013MH 2013Hays 2014MH 2014Hays GH_BLUP Field_BLUP 

p-value  R2 p-value  R2 p-value  R2 p-value  R2 p-value  R2 p-value  R2 p-value  R2 p-value  R2 p-value  R2 p-value  R2 

3D BS00085464_51 90K 0.00 0.46 - - - - - - - - - - - - 9.86E-06 0.109 9.58E-05 0.073 - - - - 

3D BS00108577_51 90K 0.00 0.47 - - - - - - - - - - - - 1.87E-05 0.102 - - - - - - 

3D Excalibur_c20559_98 90K 0.00 0.47 - - - - - - - - - - - - 1.87E-05 0.102 - - - - - - 

3D IAAV2980 90K 0.00 0.47 - - - - - - - - - - - - 1.10E-05 0.108 - - - - - - 

3D D_contig59199_227 90K 0.00 0.47 - - - - - - - - - - - - 1.16E-05 0.107 - - - - - - 

3D BS00022669_51 90K - 0.45 - - - - - - - - - - - - 4.43E-05 0.093 - - - - - - 

3D BS00076298_51 90K - 0.48 - - - - - - - - - - - - 4.94E-05 0.091 - - - - - - 

3D BobWhite_c621_1218 90K - 0.31 - - - - - - - - - - - - 5.28E-05 0.091 - - - - - - 

3D BS00067117_51 90K - 0.47 - - - - - - - - - - - - 8.26E-06 0.111 8.56E-05 0.074 - - - - 

3D CAP8_c5043_351 90K - 0.47 - - - - - - - - - - - - 1.87E-05 0.102 - - - - - - 

3D Excalibur_c9485_351 90K - 0.47 - - - - - - - - - - - - 1.87E-05 0.102 - - - - - - 

3D Kukri_c50527_241 90K - 0.35 - - 8.46E-04 0.063 - - - - - - - - 2.97E-05 0.097 - - - - - - 

3D tplb0062k24_584 90K - 0.45 - - - - - - - - - - - - 6.08E-05 0.089 - - - - - - 

3D BobWhite_c3111_636 90K - 0.32 - - - - - - - - - - - - 1.15E-05 0.108 8.88E-05 0.074 - - 7.09E-05 0.083 

3DL BS00067163_51 90K 92.34 0.52 - - - - - - - - 7.79E-05 0.083 - - - - - - - - - - 

3DL GENE-1785_118 90K - 0.42 - - - - - - - - 8.22E-05 0.082 - - - - - - - - - - 

3D Tamyb10-D1-93 STS - 0.56 - - - - - - - - 6.00E-04 0.057 3.00E-04 0.067 - - - - - - - - 

4A BS00037019_51 90K 76.40 0.19 - - - - 2.22E-09 0.217 - - - - - - - - - - 1.67E-06 0.133 - - 

4A Ex_c66324_1151 90K 76.97 0.42 - - - - 3.67E-17 0.476 - - - - - - 2.37E-05 0.099 - - 1.34E-12 0.315 - - 

4A wsnp_Ex_c13031_20625900 90K 76.97 0.42 - - - - 1.79E-16 0.451 - - - - - - 2.93E-05 0.097 - - 2.54E-12 0.306 - - 

4A wsnp_Ex_rep_c66324_64493429 90K 76.97 0.43 - - - - 1.51E-16 0.453 - - - - - - 2.60E-05 0.098 - - 2.99E-12 0.304 - - 

4A BS00072025_51 90K 76.97 0.32 - - - - 1.20E-09 0.225 - - - - - - - - - - 1.18E-06 0.137 - - 

4A IAAV615 90K 76.97 0.19 - - - - 1.74E-09 0.220 - - - - - - - - - - 1.40E-06 0.135 - - 

4A IACX2890 90K 76.97 0.22 - - - - 3.84E-05 0.097 - - - - - - - - - - - - - - 

4A RAC875_c21369_425 90K 78.11 0.61 - - - - 7.53E-05 0.090 - - - - - - - - - - - - - - 

4A wsnp_Ku_c4342_7887834 90K 78.11 0.61 - - - - 7.53E-05 0.090 - - - - - - - - - - - - - - 

4A BS00023151_51 90K 78.11 0.18 - - - - 4.40E-07 0.150 - - - - - - - - - - 2.31E-05 0.103 - - 

4A wsnp_Ex_c19207_28125389 9K 82.65 0.11 - - - - 2.53E-05 0.102 - - - - - - - - - - - - - - 

4A Excalibur_c30378_673 90K 90.65 0.47 - - - - 5.28E-06 0.120 - - - - - - - - - - - - - - 

4A RAC875_c11524_553 90K 90.65 0.62 - - - - 2.65E-06 0.129 - - - - - - - - - - - - - - 

4A wsnp_Ex_c11619_18714738 90K 90.65 0.59 - - - - 6.61E-06 0.118 - - - - - - - - - - - - - - 

4A PM19A1K1 STS - 0.68 - - - - 3.22E-05 0.099 - - - - - - - - - - 2.99E-05 0.100 - - 

4A wsnp_Ex_rep_c104448_89161562 9K - 0.19 - - - - 1.21E-08 0.195 - - - - - - - - - - 1.79E-05 0.106 - - 

4A wsnp_Ex_c612_1213451 9K - 0.45 - - - - 2.61E-06 0.129 - - - - - - - - - - 4.12E-05 0.096 - - 

4A wsnp_JD_c38619_27992279 90K - 0.45 - - - - 4.46E-06 0.122 - - - - - - - - - - 4.43E-05 0.095 - - 

4A ZXQ118 STS - 0.17 - - - - 3.39E-05 0.144 - - - - - - - - - - 2.78E-05 0.109 - - 

4A BARC236 SSR 92.92 0.23 - - - - 7.41E-05 0.141 - - - - 

4A WMC757 SSR - 0.11 - - 9.84E-04 0.119 - - - - - - 

5A Excalibur_c34426_723 90K 35.36 0.84 - - - - - - 4.20E-04 0.070 - - - - - - - - - - - - 

5A BobWhite_c4004_61 90K 35.36 0.83 - - - - - - 2.62E-04 0.076 - - - - - - - - - - - - 

5A BS00021873_51 90K 35.36 0.84 - - - - - - 3.26E-04 0.073 - - - - - - - - - - - - 
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Chromosome SNP Type Position  
Resistance 

allele freq. 

2011F 2012S 2012F 2013S 2013MH 2013Hays 2014MH 2014Hays GH_BLUP Field_BLUP 

p-value  R2 p-value  R2 p-value  R2 p-value  R2 p-value  R2 p-value  R2 p-value  R2 p-value  R2 p-value  R2 p-value  R2 

5A Excalibur_c54774_408 90K 47.99 0.77 - - 5.60E-04 0.067 - - - - - - - - - - - - - - - - 

5A Excalibur_c24051_1028 90K - 0.66 - - 7.88E-04 0.063 - - - - - - - - - - - - - - - - 

6B.2 wsnp_Ex_c19525_28494827 90K 94.46 0.91 - - - - - - - - 1.21E-05 0.102 8.19E-06 0.108 - - - - - - 2.81E-05 0.093 

6B.2 Excalibur_c15109_942 90K 95.60 0.64 - - - - - - 4.29E-04 0.070 - - - - - - - - - - - - 

6B.2 RAC875_c7332_955 90K - 0.91 - - - - - - - - - - 4.51E-06 0.115 - - - - - - 5.90E-05 0.085 

6B GWM88 SSR - 0.91 - - 9.55E-04 0.089 - - - - - - - - - - - - - - - - 

7A Excalibur_c53632_204 90K 68.49 0.88 4.04E-05 0.096 - - - - - - - - - - - - - - - - - - 

7A wsnp_Ex_c8614_14453388 9K 69.63 0.95 4.59E-06 0.121 - - - - - - - - - - - - - - - - - - 

7A wsnp_Ex_c26509_35755018 9K 69.63 0.95 1.41E-06 0.135 - - - - - - - - - - - - - - - - - - 

7A wsnp_Ex_c38981_46383475 9K 69.63 0.95 1.41E-06 0.135 - - - - - - - - - - - - - - - - - - 

7A wsnp_Ex_rep_c68405_67220388 9K - 0.95 2.50E-05 0.102 - - - - - - - - - - - - - - - - - - 

7A WMC603-1 SSR - 0.92 1.00E-04 0.254 - - - - - - - - - - - - - - - - - - 

7A GWM130 SSR - 0.94 - - - - - - - - 5.00E-04 0.106 - - - - - - - - - - 

1A/1D/3A/5B BARC148 SSR - 0.83 - - - - - - - - 1.38E-08 0.228 3.38E-05 0.119 - - 2.22E-05 0.145 - - 3.43E-06 0.147 

5ABD BARC232-1 SSR - 0.92 - - - - - - - - 6.00E-04 0.103 - - 4.40E-05 0.126 3.97E-05 0.136 - - 3.80E-04 0.109 

a The positions of markers on W7984 reference sequence 

b Phenotypic variance explained by a significant marker significantly related to pre-harvest sprouting resistance 
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Table 3.4 Quantitative trait loci (QTL) for pre-harvest sprouting resistance identified in only one of the experiments 

conducted in the spring 2012 (2012S) and spring 2013 (2013S) greenhouse experiments and the 2013 Manhattan field 

experiment (2013MH) 

Chromosome Marker name 
Marker 

type 

Chromosome 

position (cM)a  

Positive allele 

frequency 
p R2 (%)b Experiment 

2B.1 Excalibur_c1787_1199 90K 7.97 0.81 2.97E-04 7.4 2013S 

2B.1 BS00044806_51 90K 10.24 0.72 4.98E-04 6.9 2013S 

2B.1 Tdurum_contig51145_476 90K 10.24 0.76 3.65E-04 7.2 2013S 

2B.1 BS00022203_51 90K - 0.17 7.08E-04 6.5 2013S 

2B.1 Excalibur_c3524_318 90K - 0.81 7.05E-04 6.5 2013S 

2B.1 Kukri_c16758_443 90K 10.24 0.73 1.31E-04 8.3 2013S 

2B.1 wsnp_JD_c3288_4296662 9K 10.24 0.77 7.57E-04 6.4 2013S 

2B.1 BS00065556_51 90K - 0.77 2.56E-04 7.6 2013S 

2B.2 wsnp_Ex_c13865_21720466 9K 83.07 0.42 6.42E-04 6.6 2012S 

2B.2 wsnp_RFL_Contig3273_3319580 90K 83.07 0.41 7.30E-04 6.4 2012S 

2B.2 RAC875_c26697_589 90K 83.07 0.35 4.27E-04 7.0 2012S 

2B.2 Tdurum_contig28795_322 90K - 0.41 7.63E-04 6.4 2012S 

6B.1 RAC875_c23251_624 90K 43.28 0.89 2.59E-05 9.4 2013MH 

6B.1 BS00066799_51 90K 43.28 0.92 7.13E-05 8.3 2013MH 

6B.1 CAP8_c1361_367 90K 43.28 0.89 2.59E-05 9.4 2013MH 

a The positions of markers on W7984 reference sequence 

b Phenotypic variance explained by a marker that was significantly associated with pre-harvest sprouting resistance 
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Table 3.5 Effect of grain color (GC) that was evaluated in the field at Enid, OK in 2010 (2010Enid) and the greenhouse at 

Manhattan KS 2011 (2011F_GH) on pre-harvest sprouting (PHS) resistance evaluated in four greenhouse experiments 

(GH_experiments) conducted in Manhattan, KS, and four field experiments conducted in Manhattan (MH) and Hays, KS in 

2013 and 2014, respectively. 

Experiments  
2010Enid (GC) 2011F_GH (GC) 

p R2 (%)a p R2 (%)a 

GH_experiments (PHS)  NS  - NS  - 

2013MH (PHS)  <2e-16  43.7  <2e-16 44.5  

2013Hays (PHS)  <2e-16 42.9   <2e-16  43.6  

2014MH (PHS)  1.27E-10 26.3  3.13E-11 27.5  

2014Hays (PHS)  1.13E-15 35.6  3.41E-15 34.8  

Field_BLUP b(PHS) <2e-16 43.9  <2e-16 44.1  

a Phenotypic variance explained by grain color in each PHS experiment, which is derived from the analysis of variance (ANOVA) 

where grain color (GC) was used as the explanatory variable and pre-harvest sprouting (PHS) resistance as the response variable. 

b Field_BLUP=Best Linear Unbiased Predictions calculated from all four field experiment. 
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Table 3.6 Common Quantitative trait loci (QTL) identified for grain color evaluated in 2010 field (2010Enid) and 2011 

greenhouse (GH) experiments and pre-harvest sprouting resistance evaluated in Manhattan (MH) and Hays in 2013 and 2014 

experiments, respectively  

   
Grain color PHS resistance 

Chromosome Marker name 
 Chromosome 

position (cM)a 

2010Enid 2011GH Mean 2013MH 2013Hays 2014MH 2014Hays Field_BLUP 

p  R2 (%)b p  R2 (%)b p  R2 (%)b p  R2 (%)c p  R2 (%)c p  
R2 

(%)c 
p R2 (%)c p R2 (%)c 

3AL Xwmc559-1 107.20 1.25E-04 9.8  
5.00E-

04 
10.6  

1.57E-

04 
10.8  - - 

9.00E-

04 
10.4  - - - - - - 

3AL Tamyb10-A1-66 114.02 8.75E-06 7.5  
1.86E-

04 
10.2  

2.25E-

05 
9.4  

4.67E-

07 
12.1  

1.82E-

05 
9.2  

3.00E-

04 
6.8  

2.83E-

05 
8.6  

2.01E-

06 
10.9  

3AL Tamyb10-A1-74 114.02 3.12E-06 8.5  
6.50E-

05 
11.1  

7.32E-

06 
10.4  

8.07E-

07 
11.6  

3.47E-

05 
8.6  - - 

1.16E-

04 
7.3  

1.12E-

05 
9.4  

3DL 
BS00067163_5

1 
92.34 5.36E-08 15.0  

8.39E-

11 
23.2  

7.49E-

10 
19.7  

7.79E-

05 
8.3  - - - - - - - - 

3DL 
Tamyb10-D1-

93 
- 4.31E-11 21.9  

3.66E-

13 
17.5  

6.51E-

13 
21.0  

6.00E-

04 
5.7  

3.00E-

04 
6.7  - - - - - - 

1A/1D/3A/5B Xbarc148 - 2.50E-07 16.6  
1.03E-

06 
18.7  

2.27E-

07 
18.4  

1.38E-

08 
22.8  

3.38E-

05 
11.9  - - 

2.22E-

05 
14.5  

3.43E-

06 
14.7  

a The marker positions in a chromosome based on W7984 reference map 

b Phenotypic variance explained by a marker that is significantly associated with grain color  

c Phenotypic variance explained by a marker that is significantly associated with pre-harvest sprouting resistance 
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Table 3.7 Environmental statistics of greenhouse and fields in Manhattan and Hays 

 
Day Temp.a 

Night Temp. 

Day length 

(h) 

GH(May-

June) 25±5 20±2 12 

GH(Dec-

Jan) 22±3 17±2 12 

 Max Temp.b Min Temp. Precip. (cm) 

2013MH 36.1 7.8 12.3 

2014MH 33.9 9.4 27.6 

2013Hays 41.1 5.3 6.6 

2014Hays 40.0 5.9 19.4 

a Greenhouse Day/Night temperature (°C) is expressed as Mean ± Standard Deviation 

b Field temperature range (°C) and precipitation are calculated from May 1st to June 15th in 2013 and 2014. Data is from 

"www.usclimatedata.com" 
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Table 3.8 Kompetitive Allele Specific PCR assays developed from significant SNPs for the 4A pre-harvest sprouting resistance 

quantitative trait locus 

KASP  Primer Sequence (5' to 3') 90K SNP Seqence 

KASP3743 Forward[T]* 
GAAGGTGACCAAGTTCATGCTTCAGT

TTGGCCAACCATGT[T] 

wsnp_Ex_rep_c6632

4_64493429 

TTAGAGAAGTCATGTTGCCAAGTACAACAGGTATTGTACCGACAAGGTCGTTATCA

TTGAGGAATAGGAAGCTGAGTTGAGTCAGTTTGGCCAACCATGT[T/C]GGAACAAC

ACCTTCAAATGAGTTCTCGCCAAGGGAAAGAGTTTGGAGGTATGGACAAGATGCA

AAGCCCAATGGAATCTGACCTGTGAAACTATTACCTT 

 Forward[S] 
GAAGGTCGGAGTCAACGGATTTCAG

TTTGGCCAACCATGT[C] 
  

 Reverse TCTTGTCCATACCTCCAAAC   

KASP8081 Forward[T] 
GAAGGTGACCAAGTTCATGCTGGTC

CATCGTACTCGCAAAA[T] 
BS00037019_51 

AATCAGAACCCATCGCCCAATGTCCAGAACGGTCCATCGTACTCGCAAAA[T/C]CAT

AACCCTTCTCCTGTTGCCCAGAACAGTCCATTGTTTTTGCAACACCA 

 Forward[S] 
GAAGGTCGGAGTCAACGGATTGGTC

CATCGTACTCGCAAAA[C] 
  

 Reverse AATGGACTGTTCTGGGCAAC   

KASP34562 Forward[T] 
GAAGGTGACCAAGTTCATGCTTGGA

GTCTGAAAGCATTCG[A] 
IAAV615 

ATGCACTCTGTTTGACTGCTTCTGTCCCTTACTTTGAGGATTCAGAATTAAGCTCTG

TTTTTGCCTCCGTCTGCCAGAACTTGGAGTCTGAAAGCATTCG[A/G]CTCTATTAAAT

TCAGGGTATTTTTATTGTCTGAATATTTGATTTGTGTTTTCCTATGATGCATGGAAAT

TTGTAATCTCTGTCGGATTAAGGATTATTTA 

 Forward[S] 
GAAGGTCGGAGTCAACGGATTTGGA

GTCTGAAAGCATTCG[G] 
  

 Reverse TCCATGCATCATAGGAAAACA   

KASP34586 Forward[T] 
GAAGGTGACCAAGTTCATGCTAAGG

GGAGGTGATCGTGGA[T] 
IACX2890 

AGTGGCACCCGCATCGTTGATCGCGCACAATGCCGGAGTCGAAGGGGAGGTGATC

GTGGA[T/G]AAAATCAAGGACAGCGAGTGGGAATTCGGCTACAACGCGATGACCGA

CAAGCACGAGAA 

 Forward[S] 
GAAGGTCGGAGTCAACGGATTAAGG

GGAGGTGATCGTGGA[G] 
  

 Reverse TTGTAGCCGAATTCCCACTC   

*[T] is the SNP allele detected in Tutoumai A, [S] is the SNP allele detected in Siyang 936 
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Figure 3.1 Frequency distribution of grain color (GC) scores evaluated using a 1 to 4 scale (white, light red, red and dark red) 

in the association mapping population. The seeds were harvested from the Manhattan 2011 greenhouse (2011MH) experiment 

and the Enid 2010 field (2010 ENID) experiment. 
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Figure 3.2 Heatmaps showing (a) the relationships of pre-harvest sprouting data among four greenhouse (GH) experiments 

conducted at Manhattan, KS in fall 2011(11F_GH), fall 2012(12F_GH), spring 2012(12S_GH), spring 2013(13S_GH) and four 

field experiments conducted at Manhattan in 2013 (13MH_FD) and 2014 (14MH_FD), and Hays in 2013 (14Hays_FD) and 

2014 (14Hays_FD), and (b) the relationships and grouping of wheat accessions that were determined using the mean pre-

harvest sprouting data collected from all four greenhouse and four field experiments. Similarity levels increase from light 

yellow (the lowest similarity) to dark red (the highest similarity). 
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Figure 3.3 Distribution of grain color (GC) scores in the association mapping population predicted by Tamyb10 gene markers. 

Six allele combinations of three GC genes on chromosomes A, B and D separated 185 accessions into eight genotypes. Lower 

case represents a white grain allele and upper case represents a red grain allele in each locus. The three letters in each 

genotype represent three gene loci in the chromosomes A, B and D, respectively, e.g. Abc indicates red allele on 3A and white 

alleles on 3B and 3D. GC scores used a 1-4 scale with 1 for white grain and 4 for red grain.  
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Figure 3.4 Interval mapping (IM) of a quantitative trait locus (QTL) for pre-harvest sprouting (PHS) resistance on 

chromosome 4A using SSRs, GBS-SNPs and SNPs identified from genome-wide association study (GWAS). The line parallel 

to the X-axis is the threshold line for the significant LOD value of 2.42 (P < 0.05). Genetic distances are in centiMorgans (cM).  
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Figure 3.5 LD plots of SNP markers that showed significantly association with GC (a) and pre-harvest sprouting (PHS) 

resistance (b). The chromosome numbers are labeled above the chromosome maps (the long white bar) and marker names are 

labeled between the LD plot and chromosome maps.   
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Chapter 4 - Effects of TaPHS1 and TaMKK3-A Genes on Wheat PHS 

Resistance 

Abstract 

TaPHS1 on wheat chromosome 3AS and TaMKK3-A on chromosome 4AL are two 

cloned genes that show a major effect on pre-harvest sprouting (PHS) resistance, and are 

independent from grain color (GC). In this study, we used marker-assisted backcrossing (MAB) 

to introgress TaPHS1 and TaMKK3-A from two PHS resistant sources, “Tutoumai A” and 

AUS1408, to a susceptible wheat line, NW97S186, to investigate individual effects of the two 

genes and their combined effects in different environments. TaPHS1 showed a significant main 

effect and interactions with environments and genetic backgrounds (GBG), whereas the 

TaMKK3-A gene had a significant main effect and only interacted with environments. The two 

genes showed additive effects on PHS resistance and the combined effects of TaPHS1 and 

TaMKK3-A was larger in the greenhouse than that in the field, indicating pyramiding these two 

QTLs can increase PHS resistance, and such effect is more obvious when wheat plants are grown 

in a mild environment such as in the greenhouse than in a dry and hot environment during 

maturation. 
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Introduction 

PHS resistance is a complex trait controlled by several major QTLs and many minor 

QTLs. PHS resistance QTLs have been reported on almost all wheat chromosomes, among 

which causal genes for the non-GC related QTLs on chromosome 3AS and 4AL have been 

cloned and designated as TaPHS1 and TaMKK3-A, respectively (Nakamura et al. 2011, Liu et al. 

2013, Torada et al. 2016). TaPHS1, annotated as a MOTHER OF FLOWERING TIME 

(TaMFT)-like gene, positively regulates wheat PHS resistance. Three single nucleotide 

polymorphisms (SNPs) have been identified to associate with PHS resistance. One SNP in the 

promoter region (-222) increases seed dormancy at low temperatures during seed development 

(Nakamura et al. 2011), and two other SNPs in the gene-coding region (+646, +666) decrease 

seed dormancy by generating a mis-splicing site and a premature stop codon, respectively, to 

form a truncated nonfunctional transcript and thus increase PHS susceptiblity (Liu et al. 2013). 

These mis-splicing TaPHS1 mutation were involved in wheat domestication (Liu et al. 2015). 

Another major gene, Phs1, for both PHS resistance and seed dormancy was mapped on 

chromosome arm 4AL in both white and red wheat (Kato et al. 2001, Mares et al. 2001, Mares et 

al. 2005, Torada et al. 2005, Chen et al. 2008, Ogbnnaya et al. 2008, Singh et al. 2010, Liu et al. 

2011, Cabral et al. 2014). TaMKK3-A, a mitogen-activated protein kinase kinase 3 (MKK3) was 

cloned by map-based cloning as the candidate gene of Phs1 (Torada et al. 2016). A single SNP 

that causes a nonsynonymous amino acid substitution in the kinase domain was reported to be 

the functional SNP in the gene (Torada et al. 2016). 

MFT has been considered a negative regulator of ABA sensitivity for seed germination in 

Arabidopsis (Xi et al. 2010), and TaPHS1 is proposed as a messenger that coordinates 

performance between tissues in seed germination (Nakamura et al. 2011). Similarly, protein 
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kinases play critical roles in signal transduction pathways, and MKK genes are important in 

protein phosphorylation in ABA signaling (Torada et al. 2016). However, how TaPHS1 and 

TaMKK3-A interact with each other to regulate seed dormancy and PHS resistance is still 

unknown. The current study was to investigate the individual and combined genetic effects of the 

two genes in different environments by transferring both TaPHS1 or/and TaMKK3-A into a 

susceptible wheat line using marker-assisted backcross (MAB). 

Materials and methods 

Plant materials and PHS evaluation 

“Tutoumai A” is a highly PHS resistant Chinese landrace (Chen et al. 2008), and 

AUS1408 is a spring wheat line from the Transvaal region of South Africa. They are both white-

grained wheat, and have been used as resistant parents in the 4AL QTL mapping studies (Chen et 

al. 2008, Zhang et al. 2008). Although they were not reported to carry the 3A QTL, both 

accessions carry the TaPHS1 resistance allele when they were assayed with the TaPHS1 function 

marker. Therefore, “Tutoumai A” and AUS1408 were used as the donors for both TaPHS1 and 

TaMKK3-A. NW97S186, a PHS susceptible hard white winter wheat cultivar developed by 

USDA-ARS at the University of Nebraska-Lincoln, was used as the common recurrent parent. 

The backcross procedure is described in Fig. 4.1. In brief, “Tutoumai A” and AUS1408 were 

crossed to NW97S186, respectively, to obtain “Tutoumai A”/NW97S186 F1 and 

AUS1408/NW97S186 F1. Their F1 plants were backcrossed to NW97S186 twice to develop 

BC2F1 plants. The BC1F1 plants and BC2F1 plants were genotyped with the two gene markers in 

the TaPHS1 coding region and one SNP tightly linked to TaMKK3-A to select the heterozygous 

plants for both genes to be used for further backcrossing or generation advancement. At least 10 

heterozygous plants with both genes were identified among the BC2F1’s in each cross. The 
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selected BC2F1 plants were selfed and the double homozygous BC2F2 were selected with the 

same markers (Fig. 4.1). The selected double homozygous BC2F2 and later generations were 

used to evaluate germination rate in the greenhouse experiments conducted at Manhattan in fall 

of 2015 and spring of 2016, as well as in the field of Manhattan and Hays in 2016 as described in 

Chapter 3. The physiologically matured spikes were dried for 10 d before germination in all the 

four experiments. 

Statistical analysis 

Four-way analysis of variance (ANOVA) was conducted using PROC GLM procedure in 

SAS 9.3 (SAS institute Inc., Cary, NC) with environment, genetic background and genotypes as 

fixed effects. Environments referred to the four experiments and genetic backgrounds referred to 

the two donors, “Tutoumai A” and AUS1408. Only homozygous genotypes of the TaPHS1 and 

TaMKK3-A genes were studied, with lower case letters for susceptible genotypes and upper case 

letters for resistant genotypes. Least-squared means were compared under the protection of 

overall F-test at a significant level of 0.05.  

Results 

Selection of backcrossing progenies 

Among the 42 double homozygotes selected from BC2F2 lines of the cross of 

NW97S186/”Tutoumai A” (N/T), seven were the AABB genotype, where ‘A’ represented the 

resistance allele of TaPHS1 and ‘B’ represented the resistance allele of TaMKK3-A, 11 lines 

were AAbb genotype, 15 lines were aaBB genotype and nine lines were aabb genotype. Among 

the selected 44 BC2F2 progenies of the NW97S186/AUS1408 (N/A) cross, 18 lines were AABB 

genotype, nine lines were AAbb genotype, 11 lines were aaBB genotype and six lines were aabb 

genotype.  
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In each backcross population, the parents showed germination rates that were close to the 

extreme germination rates in the selected progenies (Table 4.1), indicating no obvious 

transgressive segregation and that “Tutoumai A” or AUS1408 carry the resistance alleles for 

both QTLs. In each experiment, the mean germination rates were similar between the two 

backcrossing populations. The spring greenhouse experiment showed the highest mean 

germination rates of 68.7% and 58.1% in the N/T and N/A populations, respectively, while the 

Manhattan field experiment showed the lowest mean germination rates of 34.2% and 34.8% in 

the N/T and N/A populations, respectively (Table 4.1). Generally, larger variances in 

germination rates were observed in the greenhouse experiments than in the field experiments, 

indicating that the growing environments greatly influence the expression of PHS resistance 

genes in wheat (Table 4.1). 

Effects of TaPHS1 and TaMKK3-A genes on PHS resistance in the greenhouse and 

field experiments 

Overall ANOVA revealed that environments, genetic backgrounds (GBG), and genotypes 

(TaPHS1 and TaMKK3-A) could explain 56.4% of the phenotypic variance for PHS 

resistance. Significant main effects were identified for environment and genotypes, and 

interactions were significant for environment by TaPHS1, environment by TaMKK3-A, and 

environment by GBG by TaPHS1 (Table 4.3). Therefore, the main effect of TaPHS1 needs to be 

investigated in each donor background under different environments, whereas the effect of 

TaMKK3-A could be estimated in the four environments without considering the donor 

background effect. 

Effects of TaPHS1 from “Tutoumai A” were significant on PHS resistance in the spring 

and fall greenhouse experiments with 29.4% and 22.5% reduction in germination rates, 
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respectively (Fig. 4.2). However, the effects of TaPHS1 from AUS1408 were significant in the 

spring greenhouse experiment, and both Manhattan and Hays field experiments with 26.5%, 

14.1% and 18.7% reduction in germination rates, respectively (Fig. 4.2). TaMKK3-A showed 

significant effects on PHS resistance in the spring and fall greenhouse experiments, and the 

Manhattan field experiments with 18.8%, 22.8% and 9.6% reduction in germination rates, 

respectively (Fig. 4.3). 

Combined genetic effects of TaPHS1 and TaMKK3-A 

The combined effects of TaPHS1 and TaMKK3-A varied with different genetic 

backgrounds across environments. In the N/T population, the combined effect was significant in 

the greenhouse experiments, but not in the field experiments. In the greenhouse experiments, 

adding either of the resistance genes (AA or BB) significantly reduced germination rates, and a 

more reduction in germination rate was observed  when a wheat line carried both resistance 

genes compared to a line with a single gene (Table 4.4). In the N/A population, introgression of a 

single resistance gene did not increase PHS resistance significantly, whereas adding both genes 

significantly reduced germination rate (Table 4.4). The effect of combining TaPHS1 with 

TaMKK3-A on PHS resistance was larger in the greenhouse experiments than in the field 

experiments, suggesting that the greenhouse conditions were more favorable to the expression of 

both genes in this study. 

Discussion 

PHS resistance is a complex trait that is not only controlled by seed dormancy (SD) 

(Bewley and Black 1982, Anderson et al. 1993), but also affected by GC (Gfeller and Svejda 

1960, Groos et al. 2002), spike morphology, as well as environmental factors such as 

temperature, moisture and photoperiod after flowering (Argel et al. 1983, Ceccato et al. 2011). 
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In this study, we demonstrated that both cloned genes, TaPHS1 and TaMKK3-A, for PHS 

resistance showed significant interactions with the environments (Table 4.3). On average, larger 

individual and combined effects of the two genes were detected in the greenhouse experiments 

than in the field experiments. This observation was possibly due to the fact that the plants had 

extended maturation period under greenhouse conditions that favors the gene expression. In 

addition, TaMKK3-A showed a larger effect in the fall greenhouse experiment than in other 

experiments (Fig. 4.3), suggesting that low temperature might up-regulate the expression of 4A 

QTL (Barrero et al., 2015). However, TaPHS1 was more effective on reducing germination rate 

for plants grown in the spring greenhouse where temperature fore wheat seed development was 

higher than the fall greenhouse (Fig. 4.2), which was contradictory to the previous result that low 

temperature increased TaPHS1 expression level in developing seeds (Nakamura et al. 2011). 

Other environmental factors such as humidity, photoperiod or light quality might also 

contributed to such discrepancy, because the TaPHS1 gene might show a similar response to 

those environmental factors as FT-like and TFL1-like genes did in other species (Rohde and 

Bhalerao 2007, Shalit et al. 2009, Nakamura et al. 2011). TaPHS1 and TaMKK3-A demonstrated 

various effects on germination rates (Fig. 4.2 & 4.3) in the two field experiments where they had 

similar temperature but different precipitations, indicating that humidity might also play an 

important role in affecting those gene expressions. 

Significant environment by GBG by TaPHS1 was observed in this study. In the fall 

greenhouse experiment, TaPHS1 from “Tutoumai A” significantly reduced reduced germination 

rates, whereas TaPHS1 from AUS1408 did not (Fig. 4.2). However, the result was opposite in 

the two field experiments (Fig. 4.2). Considering we did not conduct background marker-assisted 
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selection, it is likely that TaPHS1 interacted with other QTLs in both “Tutoumai A” and 

AUS1408 backgrounds. 

TaPHS1 and TaMKK3-A are the two major genes cloned for PHS resistance. In the 

current study, one of the two genes may not provide adequate protection from PHS resistance in 

some experiments, but pyramiding both genes can significantly reduce germination rates in most 

experiments (Table 4.4). Significant genetic-by-environment interactions of the two genes 

indicate that TaPHS1 and TaMKK3-A can be more effective in wheat planting areas with mild 

climate during maturation. Gene markers for TaPHS1 and SNPs closely link to TaMKK3-A have 

been shown to be useful in MAB, thus they can be applied in breeding for selecting the two 

genes to improve PHS resistance. However, in this study, the selected backcrossing progenies 

with both the resistance genes still showed higher average germination rates than their resistant 

donors in most experiments (Table 4.1 & 4.4), suggesting that other minor genes may be present 

in both donor parents and identifying and pyramiding these minor resistance QTLs with TaPHS1 

and TaMKK3-A can enhance levels of wheat PHS resistance. 
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Table 4.1 Summary of germination rates of NW97S186, “Tutoumai A”, AUS1408 and their 

selected backcross progenies in the 2015 fall & 2016 spring greenhouse experiments 

(GH_Fall and GH_Spring) and in the 2016 Manhattan & Hays field experiments 

Population Statistics/Parents GH_Fall GH_Spring Field_MH Field_Hays 

Selected 

BC2Fn
* of 

N/T cross 

Mean 0.44 0.69 0.34 0.51 

Variance 0.05 0.05 0.03 0.02 

Range 0.07-0.92 0.24-0.99 0.08-0.82 0.23-0.81 

NW97S186 0.82 0.98 0.67 0.91 

Tutoumai A 0.03 0.15 0.21 0.10 

Selected 

BC2Fn of 

N/A cross 

Mean 0.43 0.58 0.35 0.50 

Variance 0.04 0.04 0.02 0.03 

Range 0.08-0.80 0.29-0.96 0.05-0.69 0.10-0.77 

NW97S186 0.74 0.86 0.67 0.66 

AUS1408 0.10 0.17 0.00 0.07 

*Selected double homozygous BC2F2 were used to evaluate germination rate in the 2015 fall 

greenhouse experiment (GH_Fall), BC2F3 in the 2016 spring greenhouse experiment 

(GH_Spring), and BC2F4 in the 2016 Manhattan (MH) & Hays field experiments. 
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Table 4.2 Environmental statistics of greenhouse and field experiments conducted in 

Manhattan and Hays, KS 

Experiment Day Temp.* Night Temp. Day length (h) 

GH (May-June) 25±5 20±2 12 

GH (Dec.-Jan.) 22±3 17±2 12 

 Max. Temp.† Min. Temp. Precip. (cm) 

2016MH 35.0 5.6 15.8 

2016Hays 35.0 3.2 7.9 

* Greenhouse day/night temperature (°C) is expressed as mean ± standard deviation 

† Field temperature range (°C) and precipitation are calculated from May 1st to June 15th in 

2016. Max. Temp.=maximum temperature, Min. Temp.=minimum temperature, 

Precip.=precipitation. Data is from www.usclimatedata.com. 

  

http://www.usclimatedata.com/
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Table 4.3 Overall analysis of variance (ANOVA) of germination rates of the selected 

backcross progenies of NW97S186/“Tutoumai A” and NW97S186/AUS1408 in the 2015 fall 

& 2016 spring greenhouse experiments and in the 2016 Manhattan & Hays field 

experiments 

Source* DF 
Type III 

SS 

Mean 

Square 
F Value Pr > F 

Env 3 0.972 0.972 52.72 <.0001† 

GeneticBG 1 0.021 0.021 0.94 0.3324 

Env*GeneticBG 3 0.017 0.017 0.94 0.4224 

TaPHS1 1 1.839 1.839 84.01 <.0001* 

Env* TaPHS1 3 0.238 0.238 6.40 0.0003* 

GeneticBG* TaPHS1 1 0.006 0.006 0.27 0.6039 

Env*GeneticBG* TaPHS1 3 0.252 0.252 4.99 0.0021* 

TaMKK3-A 1 1.591 1.591 72.66 <.0001* 

Env* TaMKK3-A 3 0.315 0.315 5.19 0.0016 

GeneticBG* TaMKK3-A 1 0.072 0.072 3.31 0.0699 

Env*GeneticBG* TaMKK3-A 3 0.000 0.000 0.02 0.9953 

TaPHS1* TaMKK3-A 1 0.079 0.079 3.63 0.0578 

Env* TaPHS1* TaMKK3-A 3 0.002 0.002 0.56 0.644 

GeneticBG* TaPHS1* 

TaMKK3-A 
1 0.011 0.011 0.51 0.476 

Error 312 6.83 0.02 - - 

*Env=environment, GeneticBG=genetic background 

†Significant effects at the level of 0.05 
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Table 4.4 Combined genetic effects of TaPHS1 and TaMKK3-A genes from “Tutoumai A” 

and AUS1408 in both greenhouse and field experiments in Manhattan (MH) and Hays 

Population Genotype GH_Spring GH_Fall Field_MH Field_Hays 

Selected 

BC2Fn
* of 

N/T cross 

AABB 0.399a† 0.192a 0.253a 0.421a 

AAbb 0.642b 0.450b 0.363a 0.589a 

aaBB 0.722b 0.408b 0.306a 0.494a 

aabb 0.907c 0.684c 0.446a 0.511a 

Selected 

BC2Fn of 

N/A cross 

AABB 0.435a 0.288a 0.243a 0.404a 

Aabb 0.571ab 0.591b 0.367ab 0.472ab 

aaBB 0.674b 0.460b 0.444b 0.623b 

aabb 0.861b 0.538b 0.454b 0.626b 

*Selected double homozygous BC2F2 were used to evaluate germination rate in the 2015 fall 

greenhouse experiment (GH_Fall), BC2F3 in the 2016 spring greenhouse experiment 

(GH_Spring), and BC2F4 in the 2016 Manhattan (MH) & Hays field experiments 

†Comparisons were made between genotypes within each genetic background and each 

experiment, and different letters indicate statistical difference at the significant level of 0.05 
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Figure 4.1 A workflow diagram of the backcrossing project to transfer QTLs on 3AS and 

4AL from “Tutoumai A” and AUS1408 to NW97S186 
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Figure 4.2 Effects of TaPHS1 gene from AUS1408 and “Tutoumai A” backgrounds on 

germination rates evaluated in the 2015 fall & 2016 spring greenhouse experiments 

(GH_Fall and GH_Spring) and in the 2016 Manhattan & Hays field experiments 
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Figure 4.3 Effects of TaMKK3-A gene on germination rates evaluated in the 2015 fall & 

2016 spring greenhouse experiments (GH_Fall and GH_Spring) and in the 2016 

Manhattan & Hays field experiments 
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Chapter 5 - Genomic Prediction and Marker-Based Prediction on 

Wheat Pre-harvest Sprouting Resistance  

Abstract 

Wheat pre-harvest sprouting (PHS) can cause significant reduction in wheat end-use 

quality, and thus in grain sale price. Evaluation of a large number of wheat lines for PHS 

resistance in wheat breeding is a laborious and effort consuming tesk, and genetic markers can 

predict the PHS resistance by taking advantages of linkage disequilibrium. In this study, a panel 

of 185 U.S. cultivars and elite lines was used to compare prediction accuracy between genomic 

prediction and marker-based prediction (MBP). This panel was genotyped using the 9K iSelect 

SNP assays and evaluated for PHS resistance in Manhattan and Hays in both 2013 and 2014, 

respectively. Genome-wide association study (GWAS) identified 11 SNPs in three QTLs on 

chromosomes 3A, 4A and 2B with the best linear unbiased prediction (BLUP) of each accession. 

Four methods (ridge regression BLUP, BayesC0, BayesB and BayesC) were compared for 

genomic prediction accuracy, and rrBLUP provided better prediction accuracy than the three 

Bayesian methods on average. However, MBP using significant SNPs identified in the 

association study provided better prediction than the genomic prediction, therefore, can be more 

effective method to predict quantitative traits that are mainly controlled by a few major 

quantitative trait loci (QTLs). 
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Introduction 

Molecular markers have been used in breeding for quantitative traits since the 1980s, and 

markers linked to quantitative trait loci (QTLs) can be used to predict performance of traits of 

interest in plant breeding (Bernardo 2008). Besides marker-assisted selection, markers linked to 

QTLs can also be applied to predict performance of the target traits by estimating their effects 

using a multiple-regression model (Edwards and Johnson 1994, Koebner 2003). However, 

marker-based prediction (MBP) can only be used when closely linked markers to these QTLs are 

available. Unfortunately, markers for most QTLs with minor effects remain to be identified, and 

thus prediction accuracy of MBP is low when a trait is controlled by many minor QTLs 

(Bernardo 2001). 

Development of next generation sequencing (NGS) rapidly reduces the cost per sample 

for high-throughput SNP genotyping, genomic prediction can be implemented to accelerate 

breeding process when phenotyping is difficult or time consuming (Poland et al. 2012a). 

Genomic prediction, also referred as genomic selection, is to estimate all marker effects across 

the genome simultaneously in a training population without testing their significance, and to 

calculate the genomic estimated breeding values (GEBVs) in a testing population based on their 

molecular marker data (Meuwissen et al. 2001). The genomic prediction model, therefore, is able 

to include small effect QTL that are usually hard to be identified through QTL mapping 

(Meuwissen et al. 2001). Ridge regression and Bayesian approaches have been proposed to 

model the additive genetic effects and predict GEBVs by Meuwissen et al. (2001). Ridge 

regression assumes equal variance of all markers and penalizes the size of the regression 

coefficients, which results in an equal shrinkage of marker effect (Whittaker et al. 2000). BayesB 
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assumes non-zero loci-specific variances for each marker, BayesC assumes loci-specific 

variances that can be zero with probability π for each marker, and BayesC0 assumes equal 

genetic variance at each locus (https://github.com/reworkhow/JWAS.jl). Cross-validation has 

been widely applied to estimate genomic prediction accuracy. Among the frequently used cross-

validation schemes, k-fold cross-validation provides “stable” estimates of model predictability, 

repeated random sub-sampling cross-validation can better assess the sample size effect, and 

leave-one-out cross-validation can be used to identify “outlier” observations in the training 

population (Yu et al. 2015). Recently, genomic prediction has been evaluated for various traits in 

several crops (Heffner et al. 2009 & 2011, Poland et al. 2012b, Würschum et al. 2013, Rutkoski 

et al. 2014, Arruda et al. 2015, Spindel et al. 2015), but not for wheat pre-harvest sprouting 

(PHS) resistance yet. 

PHS resistance is a complex trait controlled by several major QTLs and many minor 

QTLs. PHS resistance QTLs have been reported on almost all wheat chromosomes, among 

which the QTLs on chromosome 3AS, 4AL and 2BL have been reported as main effect QTLs in 

many studies (Mori et al. 2005, Liu et al. 2008, Nakamura et al. 2011, Liu et al. 2013, Kato et al. 

2001, Torada et al. 2005, Chen et al. 2008, Cabral et al. 2014, Torada et al. 2016, Kulwal et al. 

2004 & 2012, Zhang et al. 2014). PHS can occur unexpectedly in most wheat planting areas in 

the U.S., which significantly reduces grain end-use quality and grain sales price. Therefore, 

breeding for PHS resistance is critical to reduce economic losses due to PHS. However, 

evaluation of a large number of wheat lines for PHS resistance is time and effort consuming, and 

genetic markers can predict phenotypic performance by taking advantages of linkage 

disequilibrium. In this study, both MBP and genomic prediction were applied in a wheat 

diversity panel to (1) compare genomic prediction accuracy among different prediction methodes 

https://github.com/reworkhow/JWAS.jl
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and (2) compare prediction accuracy between MBP and genomic prediction to identify an 

efficient selection method. 

Materials and methods 

Plant materials and pre-harvest sprouting evaluation 

A diversity panel of 185 U.S. wheat elite lines and cultivars (See Chapter 3 for detail) 

was used in this study. PHS resistance was evaluated in four field experiments. The experiments 

were conducted in both Manhattan and Hays, KS in 2013 and 2014, and designated as Hays13, 

Manhattan13, Hays14, and Manhattan14, respectively.  Experimental design for sprouting 

experiments was described in Chapter 3. 

SNP genotyping 

The wheat diversity panel was genotyped with the Wheat 9K SNP Arrays (Cavanagh et 

al. 2013) at USDA-ARS Cereal Crops Research Unit (Fargo, ND). SNPs with less than 5% 

minor allele frequency (MAF) or with more than 15% missing data were removed. A total of 

5,921 from the 9K SNP array were used for genomic prediction. 

Genome-wide association analysis 

Best linear unbiased predictions (BLUPs) were calculated for each accession evaluated in 

the field experiments using the 'lme4' package in R 3.2.2 (Bates et al., 2014) with year and 

location as random effects in the model. Genome-wide association analysis (GWAS) was 

described in Chapter 3. 

Genomic prediction and marker-based prediction 

Ridge regression and three Bayes methods were applied in genomic prediction for PHS 

resistance. Ridge regression best linear unbiased predictor (rrBLUP) was implemented using r 

package rrBLUP (Endelman 2011). BayesB, BayesC and BayesC0 were applied using Julia 
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package JWAS (https://github.com/reworkhow/JWAS.jl). Markers that were identified to be 

significantly related to PHS resistance in GWAS were applied in marker-based prediction (MBP) 

using multiple-linear regression. 

Leave-one-out cross-validation was performed to assess prediction accuracy, which was 

measured as the Pearson correlation between the observed germination rates and the predicted 

germination rates. Cross-validation within a single experiment was conducted using models from 

all the four genomic prediction methods to compare prediction accuracy among predictive 

methods. Cross-validation across experiments was conducted using models from rrBLUP and 

MBP. 

Results 

Phenotypic data 

The distributions of germination rates in the four field experiments followed the similar 

trend, with 43% to 69% of the accessions showing a germination rate less than 20% (Fig. 5.1). 

The broad sense heritability was high (0.92) across environments, indicating high repeatability of 

the experiments. The means and standard deviations of germination rates in each experiment are 

shown in Table 5.1. The mean germination rates varied among the four experiments. Generally, 

2014 experiments had higher mean germination rates than that of 2013’s. 

Prediction model accuracies 

Four methods (rrBLUP, BayesB, BayesC and BayesC0) were applied to genomic 

prediction on PHS resistance, and leave-one-out cross-validations were conducted for each 

experiment using each method. The rrBLUP method provided the best predictions in most 

experiments, as well as using the BLUPs of germination rates (Table 5.2). BayesB and BayesC 

https://github.com/reworkhow/JWAS.jl
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showed very similar prediction accuracies, and performed better than BayesC0 in all the 

experiments (Table 5.2). 

Prediction models constructed from each experiment using rrBLUP were validated in the 

remaining three experiments, and the prediction accuracies ranged from 0.200 to 0.439 (Table 

5.3). The prediction model built from Manhattan13 experiment provided best predictions in all 

the experiments than the models from the rest of other experiments, whereas the model from 

Hays13 showed the lowest prediction accuracies in most cases (Table 5.3). In addition, all of 

Manhattan13, Manhattan14 and Hays14 experiments had poor predictions for the Hays13 

experiment compared with their predictions on the rest experiments (Table 5.3). 

Marker-based prediction accuracies  

GWAS conducted with the BLUPs of germination rates from the four experiments 

identified 11 SNPs related to PHS resistance at a significant level of 10-4 (Table 5.4). These 

SNPs were in three QTL regions on chromosomes 3A, 4A and 2B, and they explained 31% of 

the totally phenotypic variance. Marker-based prediction (MBP) was conducted with these 11 

SNPs using the least-squared regression, and models constructed from each experiment were 

used to predict germination rates in the rest of the experiments. The prediction accuracies ranged 

from 0.340 to 0.517 (Table 5.5). The model from Manhattan14 experiment made the best 

prediction on average, whereas the model from Manhattan13 experiment was the worst (Table 

5.5). The mean prediction accuracy of MBP was 0.43, which was much higher than that of 

genomic prediction (0.27) (Fig. 5.2). 

Discussion 

PHS resistance is a complex trait that can be greatly influenced by environmental factors, 

such as temperature, moisture and photoperiod after flowering (Argel et al. 1983, Ceccato et al. 
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2011), and thus demonstrates significant genetic-by-environment interactions (Nakamura et al. 

2011, Barrero et al. 2015, Lin et al. 2016). In the current study, different temperature ranges and 

precipitations in 2013 and 2014 (Table 5.1) could be the major sources of phenotypic differences 

between years, whereas variation in precipitation in Manhattan and Hays (Table 5.1) could be the 

main cause of phenotypic differences between locations. In the wheat diversity panel used, 157 

are red winter wheat accessions, and most of them tended to have low germination rates in all the 

four experiments (Fig. 5.1), suggesting grain color showed significant effect on PHS resistance 

in the diversity panel. 

Among the four methods of genomic prediction, rrBLUP showed the best prediction 

accuracy and was the most computationally efficient method (Table 5.2). BayesB and BayesC 

provided more accurate prediction on PHS resistance than BayesC0 (Table 5.2). This might be 

due to the fact that BayesB and BayesC allow unequal variance for each marker in the 

assumptions that is more reasonable than the assumption of BayesC0. In the Hays13 experiment, 

genetic variance likely explained only a small portion of the phenotypic variance, thus the model 

constructed from Hays13 experiment might not be able to provide accurate estimation of 

breeding values. Therefore, not only the model from the Hays13 experiment cannot accurately 

predict other experiments, but also it was poorly predicted by the models developed from the rest 

of other experiments (Table 5.3). For the traits that show large genetic-by-environment 

interactions, BLUPs can reduce environmental variances to increase genomic prediction 

accuracy. 

The absolute value of regression coefficients (|β|) of all SNPs identified in GWAS were 

greater or equal to 0.002 in the genomic prediction model (Table 5.4), meaning that they were 

among the most important markers in the model given the fact that only 96 out of 5,921 SNPs 
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had |β| greater than 0.002. Such result agrees with the statement that markers showing large 

effects in the genomic prediction model may be linked to major QTLs (Bernardo and Yu 2007). 

However, among the 9 SNPs that had |β| greater than 0.003, four of them hardly showed any 

effect in GWAS (data not shown), indicating that although genomic prediction model is able to 

captures genetic variance, it is not effective for QTL identification. 

In the current study, MBP using 11 SNPs that were significantly related to PHS 

resistance in GWAS provided more accurate predictions (0.340 to 0.517) than genomic 

prediction (0.200 to 0.439). The descrepancy in prediction accuracy could be due to the fact that 

PHS resistance is mainly controlled by several major QTLs, and GWAS was able to identify 

most of these QTLs; therefore, SNPs significantly related to the trait captured genetic variance 

very well in this study. However, genetic effects of trait-related SNPs might be underestimated 

using rrBLUP, and thus prediction accuracy in genomic prediction was reduced. 

Genomic prediction is described as a black-box procedure (Haley et al. 2006), which does not 

require dissection of molecular mechanisms underlying the regulation of quantitative traits 

(Bernardo and Yu 2007). Prediction accuracy is determined by the size of training population, 

heritability, the number of QTL and the genetic architecture of the trait and the number of 

markers available (Daetwyler et al. 2008, Daetwyler et al. 2010, Combs and Bernardo 2013). In 

this study, although the heritability was high (0.92), genomic prediction accuracies were lower 

than expected (0.200 to 0.439), which could result from a small sample size (185) and limited 

number of markers (5,921) besides the influence from genetic architecture of PHS resistance. It 

has also been shown that population structure has great influence on prediction accuracy 

(Windhausen et al. 2012). Making predictions in the diversity panel with relatively loose genetic 

relationship could be another reason of low prediction accuracy. However, we can expect 
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improved accuracy when prediction is conducted in a breeding population derived from lines in 

the training population. Although QTLs have been identified on almost all the wheat 

chromosomes, several major PHS resistance QTLs take account of most of the genetic variance 

in germination rate. Therefore, it is very promising to use MBP in wheat breeding to improve 

PHS resistance. 
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Table 5.1 Means and standard errors of germination rates and environmental statistics of 

the four field experiments conducted at Manhattan (MH) and Hays in 2013 and 2014, 

respectively 

Statistics MH_13 Hays_13 MH_14 Hays_14 

Mean 0.181 0.224 0.359 0.279 

SE 0.221 0.250 0.296 0.275 

Max. Temp.a 36.1 33.9 41.1 40.0 

Min. Temp.a 7.8 9.4 5.3 5.9 

Precip. (cm)a 12.3 27.6 6.6 19.4 

a Max./Min. Temp.=field maximum and minimum temperatures (°C) and precipitation in cm 

from May 1st to June 15th in 2013 (MH_13 and Hays_13) and 2014 (MH_14 and Hays_14) field 

experiments. Data is adapted from "www.usclimatedata.com"  
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Table 5.2 Genomic prediction accuracy estimated by leave-one-out cross-validation in each 

of the four field experiments conducted at Manhattan and Hays in 2013 and 2014, 

respectively, using ridge-regression best linear unbiased prediction (rrBLUP) and three 

Bayesian methods 

Method MH_13 Hays_13 MH_14 Hays_14 BLUP 
Mean 

accuracy 

rrBLUP 0.439 0.262 0.246 0.305 0.337 0.318 

Bayes C0 0.298 0.139 0.178 0.242 0.235 0.218 

Bayes B 0.341 0.155 0.376 0.299 0.28 0.29 

Bayes C 0.334 0.149 0.365 0.293 0.286 0.285 
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Table 5.3 Genomic prediction accuracy estimated by leave-one-out cross-validation in 

different experiments conducted at Manhattan (MH) and Hays in 2013 and 2014, 

respectively, using ridge-regression best linear unbiased prediction (rrBLUP) method 

   MH_13_Train  Hays_13_Train  MH_14_Train  Hays_14_Train  BLUP_Train  

MH_13_Validation 0.439 0.27 0.347 0.358 0.386 

Hays_13__Validation 0.264 0.262 0.203 0.200 0.251 

MH_14__Validation 0.323 0.208 0.246 0.252 0.281 

Hays_14__Validation 0.363 0.218 0.274 0.305 0.315 

BLUP_Validation - - - - 0.337 
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Table 5.4 Significant SNPs identified in GWAS using best linear unbiased predictions 

(BLUPs) for each accession from the four field experiments conducted at Manhattan and 

Hays in 2013 and 2014, respectively, and their coefficients estimated in genomic prediction 

using ridge-regression best linear unbiased prediction (rrBLUP) method 

SNP Chr.a 
Position 

(cM)  
p-value MAFb R2c βd 

wsnp_Ra_c2339_4506620 3A 6.19 2.72E-05 0.497  0.080  0.0031  

wsnp_Ex_c10014_16477392 3A 4.08 7.57E-05 0.284  0.071  -0.0024  

wsnp_Ex_c9485_15724984 3A 4.08 2.80E-04 0.197  0.059  0.0020  

TaPHS1.2 3A 5.82 2.98E-04 0.243  0.059  -0.0030  

TaPHS1.hap 3A 5.8 2.98E-04 0.243  0.059  0.0030  

wsnp_Ex_rep_c67702_66370241 3A 4.08 3.29E-04 0.216  0.058  0.0024  

wsnp_Ex_rep_c67635_66291944 3A 6.46 6.12E-04 0.451  0.052  -0.0026  

wsnp_Ex_c10014_16476905 3A 4.08 8.48E-04 0.341  0.050  -0.0026  

wsnp_Ex_c13031_20625900 4A 129.34 6.57E-04 0.430  0.052  0.0039  

wsnp_Ex_rep_c66324_64493429 4A 129.34 7.82E-04 0.435  0.050  0.0038  

wsnp_CAP8_c4576_2228073 2B 36.88 8.05E-04 0.495  0.050  -0.0022  

a Chr.=chromosome 

bMinor allele frequency 

cPhenotypic variance explained by SNPs significantly related to pre-harvest sprouting resistance in the genome-wide 

association study 

d Coefficients estimated for these SNPs in genomic prediction using ridge regression method 
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Table 5.5 Marker-based prediction accuracy estimated by leave-one-out cross-validation in 

different experiments conducted at Manhattan (MH) and Hays in 2013 and 2014, 

respectively, using ridge-regression best linear unbiased prediction (rrBLUP) method 

 
MH_13_Train Hays_13_Train MH_14_Train Hays_14_Train BLUP_Train 

MH_13_Validation 0.421 0.372 0.378 0.386 0.401 

Hays_13_Validation 0.340 0.374 0.369 0.366 0.377 

MH_14_Validation 0.424 0.454 0.517 0.494 0.495 

Hays_14_Validation 0.410 0.426 0.466 0.466 0.461 

BLUP_Validation - - - - 0.483 

 

  



 154 

Figure 5.1 Distributions of germination rates in (a) 2013 Manhattan, (b) 2013 Hays, (c) 

2014 Manhattan, and (d) 2014 Hays field experiments 
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Figure 5.2 Box-plot to compare prediction accuracies estimated by genomic prediction 

(GP) and marker-based prediction (MBP) 
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Appendix A – A list for wheat grain color, Tamyb10 alleles and 

germination rates of the association panel evaluated in the 

greenhouse and field experiments 

No
. 

Accession 

Grain Color Tamyb10 Genotype Germination Rate 

2011F

_GH 
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Hays 
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0.0
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0.0

00 
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0.124 0.109 0.524 0.202 
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OK04505 4 2.5 R r R 

0.0

14 

0.0

98 

0.6

27 

0.0

75 
0.022 0.148 0.260 0.085 

A0

03 

KS05HW1

36-3 
1 1 r r R 

0.0

70 

0.1

59 

0.5

59 

0.4

62 
0.173 0.486 0.928 0.967 

A0
04 

T158 3 2 r R R 
0.0
28 

0.0
13 

0.0
13 

0.0
04 

0.342 0.064 0.525 0.559 

A0

05 

KS980554

-12-~9 
3 3 R r r 

0.6

82 

0.7

27 

0.9

00 

0.5

28 
0.416 0.776 0.252 0.059 

A0

06 

KS980512

-2-2 
1 1 r r r 

0.0

47 

0.3

25 

0.4

31 

0.2

90 
0.277 0.541 0.993 0.959 

A0

07 

TX04M41

0211 
2 3 R R r 

0.1

58 

0.4

21 

0.7

60 

0.5

09 
0.054 0.066 0.038 0.005 

A0

08 

N98L2004

0-44 
3 3 R R R 

0.0

04 

0.5

26 

0.1

95 

0.8

49 
0.718 0.562 0.153 0.075 

A0

09 
NI04420 3 3 R r R 

0.1

79 

0.3

93 

0.9

04 

0.3

62 
0.894 0.884 0.150 0.116 
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10 
Duster 4 4 R R R 

0.0

29 
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30 
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25 
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14 
0.140 0.048 0.458 0.614 
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11 

OK02522

W 
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10 

0.1

96 

0.9

68 
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22 
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0.079 0.330 0.156 0.231 
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96 
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14 
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0.9
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0.3
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76 
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50 
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20 
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16 
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0.1

01 
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98 
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17 
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19 

SD06165 2 2 R r r 
0.0
09 

0.0
26 

0.0
27 

0.2
68 

0.007 0.012 0.061 0.350 
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21 
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0.0
10 

0.0
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0.0

00 
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33 
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50 
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23 
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0.0
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21 
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25 
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0.0
17 

0.9
62 

0.0
44 

0.5
22 
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26 
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0.0

07 
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94 

0.0

14 
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49 
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A0

27 

TX02A02
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3 3 R R R 

0.0

15 

0.4

79 

0.0

00 

0.1

67 
0.000 0.007 0.650 0.479 

A0
28 
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0.0
10 

0.0
10 

0.1
04 

0.4
76 

0.266 0.582 0.210 0.166 

A0

29 
SD06173 3 3 R R R 

0.0

09 

0.0

35 

0.4

53 
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40 
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A0
30 
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07 

3 3 r R r 
0.0
03 

0.0
27 

0.0
12 

0.1
29 
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31 
NE05548 3 2 R R R 
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32 
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0.0
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60 
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32 
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33 
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31 
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51 
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38 
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23 
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34 
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0.2
06 

0.6
56 

0.6
88 
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35 
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88 
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36 
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0.0

00 
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05 
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00 
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37 
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3 3 R r R 
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08 

0.4

31 

0.9

81 
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38 
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0.1
20 

0.2
10 

0.1
12 

0.3
71 

0.135 0.140 0.920 0.828 
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39 
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23 
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68 

0.9

60 
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40 
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04 
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41 
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0.0

16 

0.0

59 

0.2

66 
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42 
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0.0

15 

0.2

19 
. 

0.7

00 
0.028 0.063 0.672 0.351 

A0

43 
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W 
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20 

0.1

22 

0.9

00 
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13 
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44 
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0.0

00 
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61 

0.0

81 

0.4

21 
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A0

45 
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0.0

18 

0.6

25 
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00 
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43 
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A0

46 

HV9W02-
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0.0

03 

0.0

33 

0.1

84 

0.0
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47 
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28 
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17 
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48 
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48 
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0.577 0.787 0.905 0.872 

A0

49 
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14 
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38 

0.7

54 

0.5
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0.064 0.040 0.038 0.000 

A0

50 
Wesley 3 3 -9 r R 

0.0

54 

0.6

14 

0.0

41 

0.4

83 
0.191 0.007 0.012 0.077 

A0

51 
NE02533 2 2 R r r 

0.0

16 

0.1

41 

0.1

19 

0.1

24 
0.088 0.051 0.024 0.000 

A0

52 
NE05569 2 2 R r r 

0.0

19 

0.0

09 

0.3

72 

0.3

50 
0.000 0.014 0.296 0.126 

A0
53 

Overley 2 2 R r r 
0.0
08 

0.1
09 

0.7
64 

0.4
12 

0.058 0.140 0.128 0.004 

A0

54 

OK05903

C 
1 1 r r r 

0.0

43 

0.1

03 

0.0

05 

0.4

14 
0.055 0.133 0.895 0.663 

A0
55 

Century 3 3 R r R 
0.0
26 

0.1
11 

0.4
76 

0.2
14 

0.061 0.188 0.444 0.158 

A0

56 

KS05HW1

5-2 
1 1 R r r 

0.0

00 

0.1

12 

0.1

29 

0.1

01 
0.934 0.709 0.265 0.477 

A0
57 

T151 3 3 r r R 
0.0
07 

0.2
90 

0.5
21 

0.6
03 

0.000 0.000 0.805 0.573 

A0

58 
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0.0

04 

0.0

00 

0.0

04 

0.0

17 
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A0
59 
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9 
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0.0
00 

0.0
71 

0.0
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09 
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60 
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19 
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41 
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00 
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46 
0.049 0.019 0.989 0.921 
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0.0

19 

0.1

44 
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52 
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0.0
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0.0
03 

0.2
43 
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63 
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22 
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26 
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27 
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64 
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A0

85 
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0.0
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