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Abstract 

 The effect of tillage on crop yield, early growth, and soil nutrient stratification can be 

influenced by fertilizer placement. In addition, deeper root systems can enhance the crop ability 

to uptake water and nutrients. A thorough understanding of how these factors interact can result 

in increased grain yields and profitability for the producer. Three studies were completed to 

describe and evaluate different aspects of crop root system and response to fertilizer placement 

and tillage. The objective of the first study was to characterize the root system of two genotypes 

of corn (Zea mays) and soybean (Glycine max (L.) Merr.) using image analysis in the greenhouse 

and in the field, as well as evaluate dry weight accumulation and nutrient uptake patterns by 

shoot and root plant parts for both crops. Two different genotypes of each crop were sampled 

during the growing season to access root characteristics such as biomass, length, surface area, 

average diameter and volume. Significant differences were found in corn where the P1151 AM 

hybrid had greater root length, surface area and volume than the P1105 AM hybrid. In soybean, 

the differences were found in nutrient uptake with overall greater nutrient uptake values for the 

poor drainage variety (PD) compared to the good drainage variety (GD). The objective of the 

second study was to evaluate the effect of fertilizer placement and tillage system on corn with 

different genotypes. Three fertilizer treatments were combined with two different corn genotypes 

selected based on contrasting root systems and two different tillage systems. The three fertilizer 

placements were sub-surface band, broadcast, and control. The two hybrids of corn used were a 

P1151 AM hybrid  and P1105 AM hybrid. The two tillage systems were no-till (NT) and strip-

till (ST). Corn hybrids showed different response in root biomass but did not show a consistent 

response in other characteristics evaluated. Broadcast and sub-surface band increased nutrient 

uptake and grain yields over the control but were not significantly different from each other. 



  

Tillage showed no difference in corn response. The objective of the third study was to evaluate 

the effect of fertilizer placement and tillage system on contrasting soybean genotypes. Three 

fertilizer treatments were combined with two different genotypes selected based on contrasting 

root systems and two different tillage operations. The three fertilizer placements were sub-

surface band, broadcast, and control. The two varieties of soybean used were one recommended 

for poor drainage (PD) and one recommended for good drainage (GD). The two tillage 

operations were NT and ST. Soybean root biomass differences were observed by varieties. Sub-

surface band treatment favored early soybean growth, biomass and P uptake at the V3 growth 

stage, but it did not turn into yield increase. Soybean grain yields did not respond to fertilization 

in this study. Yield was affected significantly by variety selection and response varies by site-

year. 
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Chapter 1 - General Introduction and Thesis Organization 

 Research has shown that conservation tillage contribute to reduce soil erosion and 

nutrient loss by runoff (McIsaac et al., 1991). Conservation tillage can also contribute to increase 

grain yield in arid regions with enhanced water storage in the soil (Tyler and Overton, 1982; 

Webber III et al., 1987). However, some conditions associated with conservation tillage can limit 

nutrient availability, including low soil temperature in the spring that can reduce root growth 

(Havlin, 2014) and nutrient uptake (Mackay and Barber, 1985). In Kansas, both no-till (NT) and 

strip-till (ST) are increasing in popularity especially because of the potential for increased water 

storage capacity with these systems. No-till contributes to P and potassium (K) stratification due 

to limits in the vertical movement of these nutrients by minimal mixing of soil and accumulation 

of crop residue in the surface (Robbins, 1991) (Mallarino and Borges, 2006). Strip-till consists of 

disturbing only the portion of the soil that is to contain the seed row. Strip-till helps to increase 

soil temperature and promote root growth and therefore contact with the fertilizer in the soil. 

According to Al-Kaisi et al. (2002) ST increases soil temperature 1° C in the top 5 cm of soil 

when compared to NT resulting in faster soil drying in the spring.  

 The effects of tillage on crop yield, early growth, and nutrient stratification can be greatly 

influenced by fertilizer placement. A thorough understanding of how these factors interact with 

other factors such as plant root growth is necessary to help increased nutrient use efficiency in 

the field. Fertilizer placement can be particularly critical under reduced tillage operations with 

high amount of crop residue in the soil surface. Moreover, it can change the amount of soil in 

contact with roots improving the efficiency of plant nutrient uptake and, consequently, increasing 

crop yield. According to Mengel (1995), nutrient uptake can be limited by the rate at which 



2 

nutrients can be moved into the root. Results found by Barber (1974) concluded that increasing 

the root-fertilizer contact will increase the overall P supply to the plant.  

 Broadcast application is considered of lower cost and efficient when soil has moderate to 

high levels of P (Mahler, 1985). For a NT system a broadcast application is not incorporated, and 

therefore generates stratification due to limited movement of P and K in the soil profile. Plant 

residue decomposition releasing nutrients in the soil surface also contribute to increase 

stratification (Mackay et al., 1987). Band applications, such as deep band, are alternatives to 

broadcast applications. Deep band fertilizer is usually applied 10-15 centimeters below the 

surface where plant roots can potentially access the fertilizer (Troeh and Thompson, 2005). A 

banded fertilization will provide an area of high nutrient availability when the root system is 

small and the demand per unit of root length is high. On the other hand, broadcast application 

provides an opportunity for a large portion of the root system to come in contact with the nutrient 

as the root system expands and reaches the near-surface soil layers. Randall et al. (2001a) 

suggest that band applications create zones of high P concentration in the soil and potentially 

maintaining higher levels of P in solution, and therefore increasing plant P uptake. A review 

comparing deep band versus broadcast by Boomsma et al. (2007) reported a benefit from deep 

banding of P and K under dry soil conditions at the surface, low soil temperature, soil 

compaction, and when soil test P and K levels are low. However, results from studies by Bordoli 

and Mallarino (1998) showed no differences among broadcast, deep band, or planter-banded P 

placements across sites or soil conditions. According to Timmons et al. (1984), deep band 

application produced greater corn (Zea mays) yields in NT system than other placements under 

dry conditions and with low soil test P. On the other hand, Farber and Fixen (1986) suggested 

that deep band may not alleviate corn early nutrient deficiency in conservation tillage systems. 
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Furthermore, Mengel et al. (1988) found that various pre-plant placement methods, which 

included deep band, showed similar corn yield response under NT system. For soybean (Glycine 

max (L.) Merr. ), broadcast P application outperform band P placement under a conventional 

tillage (Ham et al., 1973). Another study conducted by Ham and Caldwell (Ham and Caldwell, 

1978) testing different P placements showed greater soybean seed yields with addition of P, but 

no difference between broadcast and band applications. Kimmel et al. (2001) concluded that total 

P losses were found to be greater when P was broadcasted. 

 Different crops can also show different response to P fertilization. According to deMooy 

et al. (1973), corn has been found to be significantly more responsive to P fertilization than 

soybean. Besides, crops with contrasting root systems may differ in the ability to extract water 

and nutrients. Results from previous studies showed significant differences in nutrient 

concentration and uptake among corn hybrids with different genetic backgrounds (Gordon et al., 

1998). However, studies evaluating soybean root and differences in P response are scarce. It is 

possible that different rooting systems can show a significant interaction with fertilizer 

application method. The following three chapters evaluate possible differences in root 

characteristics based on genotype of corn and soybean, and the response of those crops to 

different fertilizer placements associated with two conservation tillage systems.  

 Thesis Organization 

 This thesis is presented as a series of five chapters. The first chapter is a general overview 

of the thesis research. Chapters 2 through 4 are written in a manuscript format and intended to be 

published. The titles of chapter 2, 3 and 4 are: “Root characterization of two different corn and 

soybean genotypes”, “Fertilizer placement and tillage interaction in corn production using 

different genotypes” and “Soybean response to no-till and strip-till with surface and subsurface 
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fertilization using different varieties”. The final chapter (chapter 5) provides general conclusions 

for the thesis research. 
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Chapter 2 - Root Characterization and Nutrient Uptake of Two 

Corn and Soybean Genotypes  

 Abstract 

 Crops with a vigorous root system can potentially explore more soil volume and capture 

more available water and nutrients. The objective of this study was to evaluate the root system of 

two genotypes of corn (Zea mays) and soybean (Glycine max (L.) Merr.) using image analysis. 

The two commercial hybrids of corn were Pioneer P1151 AM (Pioneer Hi-Bred, Johnston, IA) 

described as a drought-prone environment suitable, and P1105 AM, a conventional hybrid. The 

two varieties of soybeans used were Pioneer P94Y40, described as highly suitable for poor 

drained soils and P44T63R recommended for soils with good drainage. The experimental design 

was a completely randomized design with three replications. The study was conducted in large 

columns using greenhouse growing media. A blend of macro and micronutrients was mixed with 

the growing media at the same rate for all columns and irrigation was provided daily. 

Temperature was set for day and night and photoperiod was constant. Plant shoots and roots 

samples were collected at the V6, V10 and VT growth stage for corn and V3 and R3 growth 

stage for soybean. Roots were scanned and processed with the WinRHIZO Pro image analysis 

system (Regent Instruments, Inc., Quebec City, QC, Canada) software for root length, surface 

area, diameter and root volume. Shoots and roots were dried and weighted for total dry weight 

biomass. Samples were ground and analyzed for total nutrient content (N, P, K, S, Mn and Zn). 

An additional trial was set in the field, in two locations, where the same hybrids were evaluated 

with no treatment effects. In the greenhouse study, the P1151 AM corn hybrid showed greater 

shoot biomass for all sampling times. Values for root length and volume showed at a significant 
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interaction between hybrid and growth stage, with greater values for the P1151 AM hybrid at VT 

growth stage. No statistical differences were found for the parameters evaluated in soybean. 

Nevertheless, nutrient uptake trends were observed with higher values for P94Y40 at R3 growth 

stage. In the field, the P1151 AM hybrid showed greater root length in Ottawa site. In soybean, 

the P44T63R variety showed increased root surface area and volume at Ottawa, but less root 

volume at Scandia compared to the P94Y40 variety. This study showed that root system in corn 

varies by genotype and these differences can vary throughout the different growth stages. This 

can have important implications for management at the field level, including interactions with 

soils, tillage and fertilizer placement. 

 Introduction 

 Approximately 80% of the world agriculture is rainfed, and based on projections for 

future precipitation there may be adverse impacts on crop production (Bates et al., 2008). 

Current breeding programs are taking in consideration the agriculture expansion over the globe, 

and that includes areas where rainfall and soil fertility are a limitation (Lynch, 2007). Invest in 

root growth can be a strategy for the plant to support such adverse conditions in the future. 

According to Duvick (2005), corn hybrids with greater root biomass are likely to be more 

tolerant to stresses such as drought. In addition, a greater root system can be beneficial to 

enhance nutrient uptake in environments with low soil test levels for several nutrients. 

Researchers develop soybean varieties with enhanced root traits for better adaptation to soils 

with low testing P levels (Yan et al., 2006).   

Nutrient acquisition is highly dependent of the root systems, more specifically to 

characteristics that can identify the root architecture of the plant (Gregory, 2011). Results from 
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previous studies showed significant differences in plant nutrient concentration and uptake among 

corn hybrids with different genetic backgrounds (Gordon et al., 1998). This suggests that 

possible differences in root systems among corn hybrids can contribute to differences in nutrient 

uptake from the soil and from fertilizer application. Root growth is particularly important for the 

uptake of immobile nutrients such as P and K (Lynch, 2007). Furthermore, previous studies 

showed a direct relation between root biomass and P and K uptake in wheat (Ehdaie et al., 2010).  

To increase nutrient uptake roots must reach the soil volume where the nutrient is located, and 

the nutrient must be able to move into the root (Ober and Parry, 2011).The ability to establish a 

deep root system early in the season can help plants to increase nutrient uptake. Previous studies 

evaluated drought tolerant corn hybrids for root morphology, and results showed greater values 

for both total root length and shoot dry mass ratio when compared to conventional hybrids 

(Magalhães et al., 2012). Also, drought tolerant hybrids showed greater values for specific root 

length. Studies evaluating genotypic variation in root systems of soybean are currently very 

limited. 

   Root analysis can be a time consuming activity, however root characteristics of length, 

surface area, diameter and branching patterns can rapidly be assessed with image analysis 

systems. According to Bouma et al. (2000) and Himmelbauer et al. (2004), root length and root-

diameter distribution measurements provided by the WinRHIZO software (Regent Instruments, 

Inc., Quebec City, QC, Canada) are accurate when the correct scanning protocol is followed. 

Therefore, computer-assisted root imaging is an opportunity to facilitate the analysis process and 

improve accuracy.  

 The objectives of this study were to (i) characterize the root system of two genotypes of 

corn and soybean using image analysis in the greenhouse and in the field, and (ii) evaluate dry 
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weight accumulation and nutrient uptake patterns by shoot and root plant parts under controlled 

greenhouse environment. 

 Materials and Methods 

 Greenhouse Study 

 The study was conducted from March - May 2015 under a controlled greenhouse 

environment. Large polyvinyl chloride (PVC) columns of growing media were used to grow the 

corn and soybean. Columns were 100 cm high and 20 cm in diameter to allow the entire root 

harvest with minimal damage. Two genotypes of corn and soybean were seeded the same day 

with three seeds per column and thinned to one seedling after germination. Each column 

received 18 kg of Turface Athletics
 TM

 as a growing media. A controlled release fertilizer (14-14-

14, N-P2O5-K2O; Osmocote Classic, Everris NA Inc., Dublin, OH, USA) and Micromax (Everris 

NA Inc., Dublin, OH, USA) (6% Ca, 3% Mg, 12% S, 0.1% B, 1% Cu, 17% Fe, 2.5% Mn, 0.05% 

Mo and 1% Zn) were thoroughly mixed in each column at the rates of 155 and 37.2 g, 

respectively. The two corn hybrids selected for the study were Pioneer P1151 AM AquaMax®, 

considered suitable to drought-prone environments, and Pioneer P1105 AM, a conventional 

hybrid. The two hybrids of corn selected for this study are 111 days to reach grain maturity. The 

two varieties of soybeans used for the study were Pioneer 94Y40, considered highly suitable in 

soil with poor drainage, and Pioneer P44T63R recommended for soils with good drainage 

conditions. The two varieties of soybean belong to the maturity group 44. The two genotypes of 

corn and soybean were selected based on possible differences in root characteristics. Drip 

irrigation provided 5 L of water per day for each column during the study; temperature was set to 

be 18.3° C at night and 26.7° C during the day; and with a photoperiod of 14 hours. 
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 Whole corn plants were sampled at the V6, V10, and VT growth stages (Abendroth et al., 

2011) and divided into shoot and roots. Soybean plants were sampled at the V3 and R3 growth 

stage (Pedersen, 2003) and divided into shoot and roots. Root samples were cleaned using tap 

water to separate the growing media and scanned using a root scanner (Epson Perfection; Epson, 

Long Beach, CA) V700 with 400 dpi resolution. Roots were sliced into 25 cm long portions and 

placed on a transparent acrylic tray with 20 cm wide and 30 cm length in a thin layer of water (6-

8 mm). Images were processed using the software WinRHIZO Pro image analysis system 

(Regent Instruments, Inc., Quebec City, QC, Canada) to estimate the total root length, surface 

area, average root diameter, and total root volume. The software works by coloring the imaged 

roots according to its draw and coding based on diameter. Based on the root diameter distribution 

and root length, the software calculates the volume and area (Regent Instruments, 1991). After 

imaging, roots and shoots collected were dried at 65°C for six days and weighted to get the total 

dry weight. The root/shoot ratio was calculated as the ratio of root dry weight to shoot dry 

weight. The roots and shoots were ground and analyzed for total nutrient content. Total N, P and 

K were analyzed by the sulfuric peroxide digest as described by Lindner and Harley (1942). 

Nitrogen digest was analyzed by an indophenol blue colorimetric procedure using the Rapid 

Flow Analyzer (Model RFA-300; Alpkem Corporation, Clackamas, Oregon, USA). Total P and 

K were determined using inductively coupled plasma (ICP) spectrometer (720-ES ICP; Varian 

Australia Pty Ltd, Mulgrave, Victoria, Australia). Analysis of SO4, Mn and Zn were done using 

perchloric digest with inductively coupled plasma (ICP) spectrometer (720-ES ICP; Varian 

Australia Pty Ltd, Mulgrave, Victoria, Australia) following the method of Gieseking et al (1935). 

 The experimental design was a completely randomized design with three replications. 

Analysis of variance was completed using the PROC GLIMMIX procedure in SAS 9.2 (SAS, 
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2011). Mean separation was completed using the LINES option in PROC GLIMMIX at a 

significant level of p ≤ 0.05. 

 Field Study 

 Two corn and soybean sites were established in 2015. One site was located in Ottawa, 

Kansas (38°32΄19˝N; 95°15΄11˝W) on a Woodsen silt loam soil (fine, smectitic, thermic 

Abruptic Argiaquolls) with poor drainage conditions. Another site was in Scandia, Kansas 

(39°46΄23˝N; 97°47΄19˝W) on a Crete silt loam soil (fine, smectitic, mesic Pachic Argiustolls) 

with good drainage conditions. Corn in Ottawa was planted on April 7th 2015 and soybean on 

June 10th 2015. The average precipitation for the corn growing season (from April to 

September) in Ottawa was 653 mm with an average temperature of 21.7°C. For the soybean 

growing season (from June to October), the average precipitation and temperature was 276 mm 

and 23.3°C, respectively. Corn in Scandia was planted on April 30
th

 2015 and soybean on June 

9
th

 2015. The average precipitation for the corn growing season (from April to October) at 

Scandia was 648 mm with an average temperature of 20.7°C. For the soybean growing season 

(from June to October), the average precipitation and temperature was 467 mm and 21.5°C, 

respectively. The corn and soybean genotypes used for the field study were the same as for the 

greenhouse study.  

 One composite soil sample of 20 cores was collected for each block. Extractable P was 

determined by the Mehlich-3 method (Frank, 1998) and extracts analyzed using inductively 

coupled plasma (ICP) spectrometer (720-ES ICP; Varian Australia Pty Ltd, Mulgrave, Victoria, 

Australia). Extractable K was determined by the ammonium acetate method (Warncke, 1998). 

Soil pH was measured using a 1:1 soil:water ratio (Watson, 1998), and soil organic matter (OM) 

was determined by Walkley–Black method (Combs, 1998). At the Ottawa site for corn soil test P 
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was 24 mg kg
-1

, soil test K 151 mg kg
-1

, pH of 6.7 and organic matter 36 g kg
-1

; for soybean soil 

test P was 21 mg kg
-1

, soil test K 124 mg kg
-1

, pH of 6.6 and organic matter 26 g kg
-1

. At Scandia 

site for corn soil test P was 11 mg kg
-1

, soil test K 450 mg kg
-1

, pH of 6.4 and organic matter 23 

g kg
-1

; for soybean soil test P was 11 mg kg
-1

, soil test K 481 mg kg
-1

, pH of 6.6 and organic 

matter 31 g kg
-1

 respectively for soybean.   

 Corn and soybean were grown under no-till conditions in the field, with no fertilizer 

applied. Root systems were evaluated as affected by genotype only. Ten corn root samples for 

each genotype were dug from the soil using a shovel at the V6, V10, and VT (Abendroth et al., 

2011). Soybean root samples were collected at the V3 and R3 growth stage (Pedersen, 2003). 

Root samples were collected at 20 cm deep and 40 cm diameter around the stem giving the total 

root biomass per volume of soil. Soil was removed by hand in the field as much as possible with 

minimum root loss. Root samples were cleaned in water to separate from the remaining soil 

material. Root scanning process for the field samples were the same as those for the greenhouse 

samples.  

  

 Results and Discussion 

 Corn  

 Analysis of variance showed a significant genotype by growth stage interactions for some 

parameters, as well as significant main effect of genotype and growth stage (Table 2.1). Root 

length was found to be 13%, 33% and 30% greater for the P1151 AM hybrid at the V6, V10 and 

VT growth stages, respectively, (Table 2.2). Root volume showed greater values for P1151 AM 

hybrid only at the VT growth stage when compared to the P1105 AM hybrid, but no difference 
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in earlier growth stages between the two hybrids (Table 2.2). Root surface area showed a trend of 

greater values at all growth stages for the P1151 AM hybrid, but no significant differences were 

found for this parameter in the interaction genotype by growth stage. The P1151 AM hybrid 

probably enhances root growth especially towards the end of the vegetative stage when corn is 

most susceptible to stress (VT to R1 growth stages), when pollination occurs (Shaw, 1977). 

Bigger root systems might have the ability to access water  deep in the soils (Hammer et al., 

2009) as well as nutrients with an increased area of root soil contact (Ryser, 2006). 

 Root average diameter was greater at V6 growth stage and lower at the V10 (Table 2.2). 

Root length, surface area and root volume increased with the corn development during the 

growing season (Table 2.2). 

 Root length, surface area, and root volume were greater for the P1151 AM hybrid (Table 

2.2). However, there was no significant difference between hybrids for root average diameter 

(Table 2.2). 

 The interaction of genotype by growth stage showed no significant results for root and 

shoot biomass accumulation (Table 2.2). The P1151 AM hybrid showed greater dry weight 

biomass for shoot compared to the P1105 AM hybrid (Table 2.2). As the plant grows, shoot and 

root plant parts increase in total biomass (Table 2.2). Previous studies show that root dry weight 

increase until the VT growth stage and at a greater rate after the V8 growth stage (Yu et al., 

2015). 

 Corn root/shoot interaction of genotype by growth stage was significant only at V6 

growth stage (Table 2.2). At the V6 stage, the P1105 AM hybrid had a 47% greater root/shoot 

ratio, indicating greater values of root biomass and lower values of shoot dry weight. Corn 

root/shoot ratio decreased with plant growth indicating greater shoot growth rate than roots later 
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in the growing season (Table 2.2). The P1151 AM hybrid showed lower root/shoot ratio due to 

increased shoot growth compared to the P1105 AM hybrid (Table 2.2).  

 Nutrient uptake by shoots and roots did not show a significant interaction of genotype by 

growth stage (Figure 2.1). Total nutrient uptake was greater at the VT growth stage for shoot and 

root parts (Figure 2.1). The P1151 AM hybrid had overall greater N and Mn uptake in the shoot 

compared to the P1105 AM hybrid. This result may be explained by a greater root length, surface 

area, root volume and shoot growth by the P1151 AM hybrid. Furthermore, previous research 

evaluating different root systems suggests that N uptake is affected by plant root size and 

distribution in the soil (Lynch (2013); Peng et al. (2012)). Mengel (1995) suggests that a big root 

system can increase the total nutrient uptake in the root. Total nutrient uptake in the root biomass 

was not affected by hybrid selection (Table 2.1 and Fig. 2.1). This result suggests more efficient 

roots for P1151 AM. With greater shoot biomass and similar root biomass as the P1105 AM, the 

P1151 AM does a better job at maintaining a more extensive root system (length) while 

allocating more resources in the shoot.  

  Evaluation of these corn hybrids in the field showed 30% greater root length for the 

P1151 AM hybrid at the Ottawa site (Table 2.3). This agree with values found in the greenhouse 

(Table 2.2) and can imply advantages for the P1151 AM hybrid when exploring deeper soil 

layers and access to nutrients and water (Hammer et al., 2009). Root length and surface area are 

considered key parameters for nutrient and water uptake, and therefore is possible that at field 

conditions these hybrids can show different response to nutrients and water stress conditions 

(Himmelbauer et al., 2004). Root length, surface area, average diameter and volume increased 

from V6 growth stage until the VT growth stage (Table 2.3). No interaction of genotype by 

growth stage was found at the Ottawa site (Table 2.3). 
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 At the Scandia site the interaction genotype by growth stage no statistical differences 

(Table 2.3). Besides, no differences in corn root length were found at Scandia site. In addition, 

surface area, average diameter and root volume showed no significant differences among the 

hybrids at any site (Table 2.3). Results from the Scandia site are different from those found in the 

greenhouse, and is possible that a genotype by environment interaction can cause a different 

response at this site.      

 Soybean  

 Soybean root characteristics evaluated showed no differences between the varieties 

(Table 2.1). There were no significant interactions of genotype by growth stage regarding root 

length, surface area, diameter, volume, root dry weight, shoot dry weight and root/shoot ratio 

(Table 2.1). Root length, surface area, root volume, root and shoot dry weight increased 

throughout the growing season, while average root diameter was the same during the season 

(Table 2.4).   

 Although no statistical differences were found for the parameters among the varieties, 

there were trends in the results. The P94Y40 variety showed greater shoot dry weight than the 

P44T63R variety at the R3 growth stage (Tables 2.4). A genetic trait associated with P94Y40 

variety probably stimulates shoot dry weight accumulation. Greater shoot growth can imply in 

greater demand of nutrients by the plant which can affect the nutrient uptake rate of this variety.  

 The interaction of genotype by growth stage showed the P94Y40 variety having a trend 

of greater root/shoot ratio at V3 stage and lower at R3 growth stage. Since the root dry weight 

from both genotypes were similar at V3 and R3 growth stages, the differences in root/shoot ratio 

can be explained by the shoot dry weight. Both P94Y40 and P44T63R varieties had similar shoot 

dry weight at V3, but at R3 the shoot dry weight increase in P94Y40 variety was greater, 
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consequently lowering the root/shoot ratio. According to Shank (1943), the partitioning of dry 

matter among root and shoot is a characteristic determined by the plant genotype. The soybean 

varieties evaluated showed similar root/shoot ratio values with a decrease in root/shoot ratio 

values later in the season (Table 2.4).     

 Total nutrient uptake increased with growth stage, with greater values at the R3 stage for 

both shoot and root (Figure 2.2). No significant differences for nutrient uptake were found at any 

interaction or genotype (Figure 2.2). In the shoot, there was a trend for greater N, P, K, SO4, Mn 

and Zn uptake in the P94Y40 variety at the R3 stage (Figure 2.2). Previous studies show that root 

surface area is the most important characteristic affecting nutrient uptake rate in dicotyledonous 

species (Barber, 1995). It is possible that the average greater root surface area of the P94Y40 

variety in this study could contribute to the increase in nutrient uptake when compared to the 

P44T63R variety. Other characteristics such as greater root volume may also contribute to the 

greater nutrient uptake for the P94Y40 variety. These root parameters may be particularly 

important for immobile nutrients, which may require a good root distribution in the soil volume 

with greater nutrient content (Shen et al., 2011). 

Evaluation of these soybean varieties in the field showed 23% increase in root surface 

area for the P44T63R variety in Ottawa (Table 2.5). Average root volume was also found to be 

greater for the P44T63R variety in Ottawa. According to its suitability, the P94Y40 variety is 

expected to develop better under a poor drainage environment such as Ottawa.  Probably the 

P44T63R variety invests more in root development in detriment of shoots to increase the chances 

of survival in this environment. On the other hand, P94Y40 variety roots had approximately 0.5 

cm
3
 more volume than P44T63R variety in Scandia (Table 2.5). Root length, surface area and 

diameter were found to be greater for P94Y40 variety in Scandia, although not statistically 
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different from P44T63R variety (Table 2.5). Those root characteristics are used to calculate the 

total root volume and consequently impact in its final value. Both varieties increased their root 

surface area, diameter and root volume at this site. Lynch and Brown (Lynch and Brown, 2008) 

found that in limited conditions of P, root growth is stimulated to explore a given volume of soil 

more effectively. In Scandia, root length, surface area, diameter and volume were greater at R3 

than V3 (Table 2.5). Soybean varieties did not show any difference on root length (Table 2.5). 

No interaction effect of genotype by growth stage was found significant at any site.  

 Conclusions 

 The root system of the two corn hybrids evaluated in this study showed a different 

response at environments evaluated. The P1151 AM hybrid showed greater root length than the 

P1105 AM hybrid in Ottawa, a dryland environment. No significant differences were found for 

any parameter at Scandia.  

 In the greenhouse study, the P1151 AM hybrid showed greater shoot biomass than the 

P1105 AM hybrid. This combined with greater values of root length, surface area and root 

volume for the P1151 AM hybrid potentially contributed to the average greater amounts of N 

and Mn uptake in the shoots. Phosphorus, K, SO4 and Zn showed a trend of greater values for 

P1151 AM hybrid, but those results were not statistically different. Results from this study 

showed that corn root growth characteristics and growth pattern during the growing season can 

be significantly different for different genotypes. Future studies evaluating the response of these 

different genotypes to environmental stress such as drought and soil characteristics are needed to 

evaluate potential differences due to the interaction of environmental stress by genotype. 

Similarly, the interaction of nutrient source and placement by genotype can help to evaluate the 

need for adjustments in agronomic management for certain corn genotypes.    
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 The P44T63R soybean variety had greater root surface area and volume at the Ottawa 

site. Soybean roots did not show significant differences in root biomass, length, surface area, 

average diameter, volume or root/shoot ratio between varieties in the greenhouse study. 

Although not statistically significant, some root characteristics may have contributed for greater 

nutrient uptake values by the P94Y40 variety. The two soybean varieties evaluated in this study 

showed very limited differences in root characteristic in the greenhouse and in the field. This 

may suggest less variability in root characteristics by soybean genotypes, however additional 

studies should evaluate more soybean genotypes and possible interaction with soils and 

environment.   
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Table 2.1. Level of significance (p-values) for dry weight and nutrient uptake in the shoot and root of 

corn and soybean grown in the greenhouse. Root characteristics for corn and soybean are based on 

scanning readings. 

 
Corn  Soybean 

Parameters Genotype (G) Stage (S) G x S  Genotype (G) Stage (S) G x S 

 

- - - - - - - - - - - - - - - - - - - - - - - p > F - - - - - - - - - - - - - - - - - - - - - - -  

Shoot 

Dry weight 0.007* <0.001* 0.211  0.107 <0.001* 0.083 

N uptake 0.028* <0.001* 0.143  0.205 <0.001* 0.169 

P uptake 0.102 <0.001* 0.623  0.182 <0.001* 0.170 

K uptake 0.924 <0.001* 0.125  0.105 <0.001* 0.107 

SO4 uptake 0.385 <0.001* 0.183  0.127 <0.001* 0.113 

Mn uptake 0.014* <0.001* 0.186  0.171 <0.001* 0.135 

Zn uptake 0.053 <0.001* 0.506  0.061 <0.001* 0.051 

Root 

Dry weight 0.063 <0.001* 0.060  0.921 <0.001* 0.979 

N uptake 0.984 <0.001* 0.542  0.967 0.021* 0.938 

P uptake 0.651 <0.001* 0.341  0.764 <0.001* 0.978 

K uptake 0.403 <0.001* 0.571  0.444 0.055* 0.945 

SO4 uptake 0.979 <0.001* 0.640  0.702 <0.001* 0.973 

Mn uptake 0.238 <0.001* 0.068  0.653 <0.001* 0.688 

Zn uptake 0.695 <0.001* 0.147  0.856 0.002* 0.718 

Length <0.001* <0.001* <0.001*  0.974 <0.001* 0.865 

Surface area 0.008* <0.001* 0.075  0.884 <0.001* 0.623 

Average diameter 0.661 <0.001* 0.543  0.705 0.994 0.340 

Root volume 0.002* <0.001* 0.010*  0.814 <0.001* 0.514 

Root/shoot ratio 0.026* <0.001* 0.011*  0.866 0.002* 0.053 

* Statistically significant at 0.05 alpha level. 
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Table 2.2. Corn shoots and roots dry weight, length, surface area, average diameter and root volume 

according to scanned images in the greenhouse study. 

Genotype/ growth 

stage† 

Root Shoot 

Dry 

Weight 

Root/Shoot 

Ratio 
Dry 

Weight 
Length 

Surface 

Area 

Average 

Diameter 
Volume 

  

g plant
-1

 cm cm
2
 mm cm

3
 g shoot

-1
 

 
Genotype 

P1151 AM 

 

11 76,086 a 7786 a 0.34 66 a 61 a 0.24 b 

P1105 AM 
 

10 59,262 b 6079 b 0.34 51 b 54 b 0.29 a 

Growth stage 

V6† 

 

4 c
‡
 24,289 c 2746 c 0.38 a 26 c 9 c 0.44 a 

V10 

 

9 b 59,926 b 5469 b 0.29 c 40 b 49 b 0.18 b 

VT 
 

19 a 118,807 a 12583 a 0.35 b 110 a 116 a 0.17 b 

Genotype by Growth stage 

P1151 AM V6 3  25,735 e 2851  0.37 26 d 9 0.36 b 

P1105 AM V6 4  22,844 f 2642  0.39 25 d 8 0.53 a 

P1151 AM V10 9  68,399 c 6169  0.29 45 c 53 0.17 c 

P1105 AM V10 8  51,454 d 4768  0.29 36 cd 44 0.18 c 

P1151 AM VT 21  134,124 a 14338  0.35 127 a 122 0.17 c 

P1105 AM VT 18  103,489 b 10827  0.34 93 b 109 0.16 c 

† V6, V10, VT growth stage (Abendroth et al., 2011);  
‡
 Numbers followed by different letters within rows for each main effect and the interaction of genotype 

and growth stage represent statistically significant differences at the p ≤ 0.05. 
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Table 2.3. Corn root length, surface area, average diameter and root volume according to scanned images in the field. 

Genotype/ growth stages 

Ottawa   Scandia  

Length 
Surface 

Area 

Average 

Diameter 
Volume 

 
Length 

Surface 

Area 

Average 

Diameter 
Volume 

 cm cm
2
 mm cm

3
  cm cm

2
 mm cm

3
 

 Genotype 

P1151 AM 

 

7151 a‡ 1300 5.12 19.4  5339 1003 4.25 15.4  

P1105 AM 
 

5495 b 1097 4.47 17.9  5162 1082 4.72 18.4  

 Growth stage 

V6† 

 

2001 c 338 c 2.03 c 4.7 c  2047 b 385 c 2.13 c 6.0 c 

V10 

 

5188 b 1037 b 4.31 b 17.3 b  3025 b 632 b 3.59 b 10.8 b 

VT 
 

11781 a 2220 a 8.03 a 33.9 a  10680 a 2112 a 7.73 a 33.8 a 

 Genotype by Growth stage 

P1151 AM V6 2006 360 2.16 5.3  1989 353 1.82 5.3  

P1105 AM V6 1996 315 1.91 4.1  2106 416 2.45 6.8  

P1151 AM V10 5924 1129 4.73 18.2  3301 675 3.74 11.2  

P1105 AM V10 4452 946 3.9 16.5  2748 590 3.44 10.3  

P1151 AM VT 13524 2411 8.46 34.6  10728 1982 7.19 29.6  

P1105 AM VT 10038 2030 7.61 33.1  10632 2241 8.27 38.1  

 
- - - - - - - - - - - - - - - - - - - - - - - - - - level of significance (p > F) - - - - - - - - - - - - - - - - - - - - - - - -  

Genotype (G) 0.047* 0.157 0.251 0.501  0.837 0.559 0.275 0.090 

Growth stage (GS) <0.001* <0.001* <0.001* <0.001*  <0.001* <0.001* <0.001* <0.001* 

G x GS 0.214 0.614 0.880 0.997  0.948 0.578 0.408 0.087 

† V6, V10, VT growth stage (Abendroth et al., 2011);  
‡
 Numbers followed by different letters within rows for each main effect and the interaction of genotype and growth stage represent 

statistically significant differences at the p ≤ 0.05.
 

* Statistically significant at 0.05 alpha level. 
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Table 2.4. Soybean shoots and roots dry weight, length, surface area, average diameter and root 

volume according to scanned images in the greenhouse study. 

Genotype/ 

growth stages 

Root Shoot 

Dry 

Weight 

Root/Shoot 

Ratio 
Dry 

Weight 
Length 

Surface 

Area 

Average 

Diameter 
Volume 

  

g plant
-1

 cm cm
2
 mm cm

3
 

g 

shoot
-1

  

Genotype 

P94Y40 

 

1.2 8268 1045.28 0.39 10.62 5.2 0.34 

P44T63R 
 

1.2 8321 1015.99 0.40 10.06 3.9 0.35 

Growth stage 

V3† 

 

0.4 b‡ 2778 b 346.70 b 0.40 3.47 b 1.0 b 0.43 a 

R3 

 

2.0 a 13810 a 1714.57 a 0.40 17.21 a 8.3 a 0.26 b 

Genotype by Growth stage 

P94Y40 V3 0.4  2613 311.66 0.38 2.96 0.9  0.47  

P44T63R V3 0.4  2943 381.75 0.41 3.97 1.0  0.39  

P94Y40 R3 2.0  13922 1778.9 0.40 18.28 9.9  0.21  

P44T63R R3 2.0  13699 1650.24 0.39 16.14 6.8  0.31  

† V3, R3 growth stage (Pedersen, 2003); 
‡
 Numbers followed by different letters within rows for each main effect and the interaction of 

genotype and growth stage represent statistically significant differences at the p ≤ 0.05. 
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Table 2.5. Soybean root length, surface area, average diameter and root volume according to scanned images in the field. 

Genotype/ growth stages 

Ottawa   Scandia  

Length 
Surface 

Area 

Average 

Diameter 
Volume 

 
Length 

Surface 

Area 

Average 

Diameter 
Volume 

 cm cm
2
 mm cm

3
  cm cm

2
 mm cm

3
 

 Genotype 

P94Y40 

 

325 48 b‡ 0.47  0.56 b  415 83 0.72 1.32 a 

P44T63R 
 

374 59 a 0.5  0.73 a  363 61 0.59 0.84 b 

 Growth stage 

V3† 

 

315  49 0.47 0.61  213 b 36 b 0.54  0.49 b 

R3 

 

384  57 0.49 0.68  566 a 107 a 0.76  1.67 a 

 Genotype by Growth stage 

P94Y40 V3 281 42 0.5 0.49  217 40 0.6 0.59 

P44T63R V3 349 57 0.51 0.73  209 32 0.49 0.4 

P94Y40 R3 369 54 0.46 0.63  613 125 0.84 2.06 

P44T63R R3 398 61 0.48 0.74  518 90 0.69 1.28 

 
- - - - - - - - - - - - - - - - - - - - - - - - - - level of significance (p > F) - - - - - - - - - - - - - - - - - - - - - - - -  

Genotype (G) 0.161 0.046* 0.085 0.020*  0.507 0.105 0.314 0.046* 

Growth stage (GS) 0.056 0.122 0.226 0.321  0.001* <0.001* 0.085 <0.001* 

G x GS 0.561 0.428 0.390 0.352  0.573 0.288 0.864 0.207 

† V3, R3 growth stage (Pedersen, 2003); 
‡
 Numbers followed by different letters within rows for each main effect and the interaction of genotype and growth stage represent 

statistically significant differences at the p ≤ 0.05.
 

* Statistically significant at 0.05 alpha level. 
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Figure 2.1. Corn nutrient uptake by shoot and root at V6, V10 and VT growth stages (Abendroth 

et al., 2011) in the greenhouse study. Diferent letters indicate statistically significant differences 

at the p ≤ 0.05, uppercase letters for growth stages, and lower case letters hybrid comparisons.
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Figure 2.2. Soybean nutrient uptake by shoot and root at V3 and R3 growth stages (Pedersen, 

2003) in the greenhouse study. Diferent letters indicate statistically significant differences at the 

p ≤ 0.05, uppercase letters for growth stages, and lower case letters variety comparisons.
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Chapter 3 - Evaluation of Corn Response to Fertilizer Placement 

and Tillage Interaction Using Different Hybrids 

 Abstract 

 Fertilizer placement and tillage are management practices that can generate a significant 

impact on corn (Zea mays) yields. The objective of this study was to evaluate the effects of 

fertilizer placement and tillage system on different corn genotypes. The study was established at 

four at two sites in Kansas during 2014 and 2015 totaling four site-years in Kansas. The 

experimental design was a split-plot in a randomized complete block design with four 

replications. Three fertilizer treatments and two different tillage operations were combined with 

two corn genotypes selected based on contrasting root systems. The three fertilizer placements 

were sub-surface band, broadcast and control. The two corn hybrids were a drought-prone 

suitable hybrid and a conventional hybrid. The two tillage operations were no-till (NT) and strip-

till (ST). Fertilizer application rates were calculated based on nutrient sufficiency 

recommendation. Roots and above ground plant tissue samples were collected during the 

vegetative and reproductive growth stages to evaluate above ground biomass and nutrient uptake. 

Grain yield was recorded at harvest and analyzed for nutrient concentration. The P1151 AM 

hybrid showed greater root biomass, but differences among hybrids regarding aboveground dry 

weight, nutrient uptake and grain yields were inconsistent. Broadcast and sub-surface band 

increased nutrient uptake and grain yields but were not significantly different from each other. 

Interaction with tillage showed NT combinations with greater results for the parameters 

evaluated in this study. Future studies should be done to clarify if the fertilizer placement can 
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stimulate or inhibit the root growth and how it affects the dynamic of nutrients in the soil-plant 

interactions. 

Abbreviations: NT, no-till; ST, strip-till.  

 Introduction 

 United States produced more than 360 million metric tons of corn with an average yield 

of 10,734 kg ha
-1

 in the 2014 crop season, being the biggest corn producer in the world (USDA, 

2014). To support this productive system, conservation practices need to be considered. No-till 

(NT) is a conservation tillage recommended to reduce soil erosion (Unger and McCalla, 1980) 

and improve soil quality in a cost effective way. Due to reduced rainfall amount in Kansas 

during the months of corn pollination, NT can be a strategy used by farmers to conserve moisture 

in the soil for longer periods. Torbert et al. (2001) found greater corn grain yields under NT in a 

black clay soil when compared to chisel tillage system. 

 However, NT can potentially create a cool and wet condition in early spring affecting 

corn early growth (Vetsch and Randall, 2002), reducing nutrient uptake and decrease grain 

yields. Erbach et al. (1992) found a corn yield reduction under NT system in a wet to poorly 

drained soil when compared to conventional tillage. In addition, NT usually leads to P 

stratification. Phosphorus accumulate in the soil surface due to nutrient uptake by roots from 

deeper layers in the soil, nutrient accumulation from decomposing past crops leaving its residue 

in the soil surface (Karlen et al., 1991) and, in some cases, by surface fertilization such as 

broadcast. The accumulation of P in the soil surface may decrease P availability to plants 

because of the likelihood of dry conditions in this zone.   
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 Strip-till (ST) can be an alternative over NT since combines the benefits of soil and water 

conservation with the improved seedbed conditions provided by the conventional tillage 

(Farmaha et al., 2011). Strip-till only tills the future corn row, leaving the rest of the field 

undisturbed maintaining crop residues just less than NT system (Vyn and Raimbault, 1992). In 

poorly drained soils, ST was found to increase soil temperature (Bolton and Booster, 1981) and 

decrease the soil bulk density in the row when compared to NT (Overstreet and Hoyt, 2008). 

According to a study made by Vetsch et al. (2007), ST had increased corn yields compared to 

NT. Disadvantages of ST can be the P losses by soil erosion due to the disturbance generated by 

the tillage. Also, some studies report no difference for corn yield among tillage system. Licht and 

Al-Kaisi (2005) found no effect of tillage in N uptake, plant biomass or in corn grain yields in 

Iowa. 

 Tillage systems are highly related to fertilizer efficiency. The correct fertilizer placement 

can enhance nutrient uptake by plants and consequently increase grain yields. Deep band 

fertilization can minimize the retention of immobile nutrients by the soil increasing fertilizer use 

efficiency. Therefore, band fertilizer application concentrate fertilizer near the root zone 

increasing the uptake of immobile nutrients such P and K (Barber and Kovar, 1985). Tarkalson 

and Bjoneberg (2013) found greater corn yields under deep band treatments when compared to 

broadcast in a study conducted in the Pacific Northwest. Some studies report no difference 

among deep band and broadcast fertilization. Bordoli and Mallarino (1998) found that P 

fertilization increased corn yields in soils testing low for P, although no difference was found for 

placement. Later, in a study conducted in Illinois, Fernández and White (2012) found a 24% 

increase in P uptake under deep band application of a P and K mix when compared to broadcast, 

but the greater uptake did not turn to a corn grain yield difference. 
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 Because nitrogen (N) is present in most of the liquid fertilizer applied prior planting 

together with phosphorus, is hard to identify which nutrient is contributing more to the crop. 

Moreover, large yield response is not expected in different fertilizer placements for N since 

nitrate is a mobile nutrient in soils, unless dry conditions predominate (Jones and Jacobsen, 

2009). On the other hand, according to Roth et al. (2006), in soils testing high in P, the response 

to starter fertilization is explained by the N in the mixture. Phosphorus response in corn depends 

much on the soil test P levels. When the P levels in soils are medium or high the likelihood of 

response to P fertilization is low, as many studies indicate (Mallarino et al., 1991; Rehm, 1986).   

 Crops with contrasting root systems may differ in the ability to extract nutrients. Results 

from previous studies showed significant differences in nutrient concentration and uptake among 

corn hybrids with different genetic backgrounds (Gordon et al., 1998). It is possible that different 

rooting systems can show a significant interaction with fertilizer application method. Studies 

done by Ge et al. (2000) in common bean (Phaseolus vulgaris L.) was found that shallow roots 

were more efficient to recover P from the surface layer when compared to deeper root system 

due to less inter-root competition. 

 The objective of this study was to evaluate the effects of fertilizer placement and tillage 

system on corn aboveground dry weight, nutrient uptake, grain yield and grain nutrient 

concentration using two different hybrids. In addition, this study aims to find possible 

differences in root biomass among those hybrids in a field basis.  

 Materials and Methods 

 Four corn sites were established in 2014 and 2015. Locations 1 and 2 were in Ottawa, 

Kansas (38°32΄19˝N; 95°15΄11˝W) on a Woodsen silt loam soil (fine, smectitic, thermic 
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Abruptic Argiaquolls) with poor drainage conditions. Locations 3 and 4 were in Scandia, Kansas 

(39°46΄23˝N; 97°47΄19˝W) on a Crete silt loam soil (fine, smectitic, mesic Pachic Argiustolls) 

with good drainage conditions. Description of each location is presented in Table 3.1. Row 

spacing was 76 cm; plot size was 12.2 m in length and 3 m in width (36.6 m
2
) – in all sites.  

 Experimental design was a split-plot in a randomized complete block design, where 

tillage and hybrid were whole plots and fertilizer placement was split-plot, with four replications. 

Fertilizer treatments consisted of a control, sub-surface band only and broadcast only. These 

three fertilizer treatments were combined with two different hybrids selected based on 

contrasting root systems and two different tillage operations. The two hybrids of corn were 

selected based on possible differences in root characteristics, being Pioneer P1151 AM (Pioneer 

Hi-Bred, Johnston, IA), considered suitable to drought-prone environments, and Pioneer P1105 

AM (Pioneer Hi-Bred, Johnston, IA), a conventional hybrid . The two tillage operations were no-

till and strip-till. Sub-surface band fertilizer was applied 15 cm deep in the soil, 2-3 weeks before 

planting using the ST applicator Yetter (Yetter Mfg., Colchester, IL) pull caddy with Maverick 

Generation 2 openers and residue managers (model 2984) and a 5 cm mole knife, equipped with 

a Gandy Orbit Air model 623016 box and metering system (Gandy Co, Owatanna, MN). For NT, 

starter (5 cm deep and 5 cm to the side of the seed) was applied with the planter. Broadcast 

treatments were applied at planting. At Scandia was applied 184 kg ha
-1

 N as anhydrous 

ammonia (82-0-0, N-P2O5-K2O respectively). Sub-surface band treatment rate was 45 kg ha
-1

 N 

as UAN (28-0-0) and 45 kg ha
-1

 P2O5 as ammonium polyphosphate (10-34-0). Broadcast and 

starter treatment rates were the same as sub-surface band. Broadcast sources were Urea (45-0-0) 

and MAP (11-52-0). At Ottawa, the sub-surface band treatment rate was 134 kg ha
-1

 N as UAN 

(28-0-0) and 45 kg ha
-1

 P2O5 as ammonium polyphosphate (10-34-0). Treatment rates can be 
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considered commonly used by producers in a corn-soybean rotation based on nutrient sufficiency 

recommendations.  

 A composite soil sample of 20 cores was collected from each replication (block). 

Extractable P was determined by the Mehlich-3 method (Frank, 1998) and extracts analyzed 

using inductively coupled plasma (ICP) spectrometer (720-ES ICP; Varian Australia Pty Ltd, 

Mulgrave, Victoria, Australia). Extractable K was determined by the ammonium acetate method 

(Warncke, 1998). Soil pH was measured using a 1:1 soil:water ratio (Watson, 1998), and soil 

organic matter (OM) was determined by Walkley–Black method (Combs, 1998). 

 Plant tissue samples were taken during the vegetative and reproductive growth stages. 

Whole plant samples were taken in the growth stages V6, V10, and VT growth stages 

(Abendroth et al., 2011). This was accomplished by removing ten corn plants at random from 

non-harvest rows of each plot at V6 growth stage. For V10 and VT growth stages were collected 

six plants with the same criteria. Plants were weighted and dried in a forced air oven at 70 °C for 

a minimum of six days and weighted for biomass calculation. Once dry and weighted, plants 

were ground then analyzed for total Nitrogen (N) and Phosphorus (P). Total N and P were 

analyzed by sulfuric peroxide digest as described by Lindner and Harley (1942). Nitrogen digest 

was analyzed by an indophenol blue colorimetric procedure using the Rapid Flow Analyzer 

(Model RFA-300; Alpkem Corporation, Clackamas, Oregon, USA). Phosphorus was determined 

using inductively coupled plasma (ICP) spectrometer (720-ES ICP; Varian Australia Pty Ltd, 

Mulgrave, Victoria, Australia). Biomass weight and concentration in tissue were used to 

calculate N and P uptake. Root samples were collected from the control plots, with no treatment 

application, to evaluate possible differences in rooting system among genotypes. Ten root 

samples of each hybrid were dug from the soil using a shovel at V6, V10 and VT growth stages. 
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Root samples were collected at 20 cm deep and 40 cm diameter around the stem giving the total 

root biomass per volume of soil. Soil was removed by hand in the field as much as possible with 

minimum root loss. Later, roots collected were washed with water to remove remaining soil, 

dried at 65°C for six days and weighted to get the total dry weight. 

 The two central rows of each plot were machine harvested. Grain weight was recorded 

and adjusted for 150 g kg
-1

 moisture. Grain was dried at 60°C for a minimum of four days, 

ground to a powder and digested with a sulfuric acid and hydrogen peroxide digest (Thomas, 

1967). Samples were then analyzed as previously described for leaf samples. 

 Data was analyzed by site using PROC GLIMMIX in SAS 9.2 (SAS, 2011) assuming 

block as a random factor in the model. The starter treatment was analyzed as part of the sub-

surface band treatment. Separation of means at a significant level of p ≤ 0.10 was completed 

using the LINES option in PROC GLIMMIX. 

 Results and Discussion 

 Root System Analysis 

 Corn root system was evaluated for differences among corn genotypes under the no 

fertilized treatment. The interaction of hybrid by growth stage revealed differences between the 

hybrids for root biomass only at VT stage in 2014 (Table 3.2). The P1151 AM hybrid showed 

45% more root dry weight than the P1105 AM at VT growth stage at Ottawa and almost two 

times more than P1105 AM hybrid at Scandia (Table 3.2). Since corn is most susceptible to 

stress at VT-R1 growth stage, when pollination occurs (Shaw, 1977), the P1151 AM hybrid 

probably has a genetic factor that induced the root growth towards the end of the vegetative 

growth period to increase the root soil contact for water and nutrient uptake.  In addition, the soil 
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characteristics from each site likely contributed for different results. The biggest difference 

among the hybrids was found in Scandia, where the soil is more coarse texture compared to 

Ottawa site. This property of the soil could have facilitated the P1151 AM hybrid to express its 

greater root biomass since less mechanical impedance is found in those scenarios.  

 With genotype as a main factor, significant differences were found in 3 out of 4 site-years 

for total root biomass accumulation among hybrids with greater values to the P1151 AM hybrid 

(Table 3.2). The drought tolerance mechanism could be related to a genetic trait responsible for 

increased root biomass. Corn root dry weight increased with the corn development during the 

growing season (Table 2.2). 

 Dry Weight Accumulation 

  Tillage by fertilizer placement showed a significant interaction effect on dry weigh 

(DW) accumulation, with NT showing greater values for corn dry weight in Ottawa (Table 3.4). 

No-till by sub-surface band or broadcast showed the greater DW accumulation in Ottawa 2014, 

with significant increase at V10 and VT growth stages (Table 3.4). However, in Ottawa 2015 the 

differences where only at V6 growth stage with combinations of NT and broadcast showing 

greater biomass accumulation (Table 3.4). It is possible that NT contributes with moisture 

storage early in the season, enhancing fertilizer availability to corn. On the other hand, as the 

corn develops and rainfall amounts decrease, are created dry conditions especially near the soil 

surface. In this scenario, the sub-surface band placement showed advantages increasing nutrient 

availability to the crop stimulating the biomass accumulation at VT growth stage. This result 

agrees with Timmons (1984) and Robertson et al. (1958) who found that sub-surface band 

fertilization increased corn yields under dry conditions. No interaction effect of tillage by hybrid 
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(Table 3.5) and hybrid by fertilizer (Table 3.6) were observed regarding dry weight accumulation 

at Ottawa.  

 Fertilized treatments had greater aboveground biomass compared to the control treatment 

at Ottawa (Table 3.7). Results regarding differences between sub-surface band and broadcast 

were not consistent. In Ottawa 2014, sub-surface band treatment increased 7% shoot biomass 

over broadcast at V6 growth stage (Table 3.7). The dryer conditions in 2014 probably favored 

sub-surface band treatment in the early stage. Since the soil dries faster near the surface, sub-

surface band fertilization reached layers where moisture was present contributing to N and P 

availability near the root system. The opposite happened in the following year when broadcast 

fertilizer had greater corn shoot dry weight at V6 growth stage (Table 3.7). With wetter 

conditions in 2015, the broadcast fertilizer possibly solubilizes faster increasing N and P 

availability for corn growth.  

 Differences among corn hybrids were found in Ottawa 2014 where the P1151 AM hybrid 

developed more total dry weight than the P1105 AM (Table 3.7). Reduced rainfall amounts 

occurred in 2014, especially around June/July. Assuming the AQUAmax technology of the 

P1151 AM hybrid and, in addition, the greater root biomass in 2014, the P1151 AM hybrid had a 

favorable scenario to reach greater dry weight values. King and Ruiz Diaz (2012) found hybrid 

differences early growth biomass with advantages to a deep root hybrid. The wetter scenario in 

2015 probably allowed the P1105 AM hybrid to reach similar biomass accumulation to the 

P1151 AM hybrid. 

  Corn biomass accumulation was greater in NT treatments in Ottawa 2015 (Table 3.7). 

Similar result was found in Ottawa 2014 at VT stage only. No-till system probably held moisture 
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longer when compared to ST, enhancing corn growth especially towards the end of the 

vegetative stage when dryer conditions predominate in Kansas.  

  In Scandia, the interaction tillage by hybrid was significant (Table 3.8), but no statistical 

difference for the interaction tillage by fertilizer (Table 3.9). In strip-till, P1105 AM hybrid had 

18% more g plant
-1

 at V10 when compared to NT (Table 3.10). This result suggests that under 

ST, the P1105 AM hybrid probably had more access to nutrients due to faster mineralization 

generated by the tillage in the planting row. In a study conducted by (Balesdent et al., 1990) the 

soil organic matter decomposed faster under ST rather than NT in the top 30 cm of the soil. No 

significant differences were found in the interaction between hybrid and fertilizer for Scandia 

(Table 3.11). 

 In Scandia 2015, fertilized treatments showed greater aboveground biomass compared to 

the control treatment at all growth stages (Table 3.12). Broadcast had greater biomass 

accumulation than sub-surface band treatments at V6 and V10 growth stages in Scandia 2015 

(Table 3.12). The wetter conditions of 2015 most likely helped the broadcast fertilizer to become 

available to corn since early in the season. Those processes of nutrient availability could be 

enhanced by the nutrient leaching in the soil and greater diffusion rate under high moisture 

conditions. In Scandia 2014 and Scandia 2015 at VT growth stage, broadcast and sub-surface 

band had similar corn dry weight accumulation.  

 No significant differences were found between tillage systems in Scandia (Table 3.12). 

As a main factor, the P1151 AM hybrid had 17% greater dry weight compared to the P1105 AM 

hybrid at V6 growth stage. This is probably associated with a genetic factor where the potential 

shoot and root biomass are greater for the P1151 AM hybrid.  
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 Nutrient Uptake 

 Differences were found for nutrient uptake at corn development stages related to 

treatments in Ottawa (Tables 3.3). Tillage by fertilizer and tillage by hybrid were the most 

significant interactions for nutrient uptake in Ottawa (Table 3.3). Combinations of NT with 

fertilized treatments increased N and P uptake V6 and V10 growth stages (Table 3.4). The 

combination of NT by P1151 AM hybrid showed the highest N and P uptake at V10 in Ottawa 

2015 (Table 3.5). However, under ST the P1105 AM hybrid showed greater uptake values 

compared to P1151 AM hybrid at V10 in Ottawa 2015 (Table 3.5). According to Raper et al. 

(1994), ST reduces penetration resistance in the row when compared to between rows. Strip-till 

system probably reduced the resistance for root growth increasing soil-root contact, and then, 

nutrient uptake. Under ST, there may not be an advantage for the bigger root systems. In Ottawa 

2014, NT associated with fertilized treatments had increased N uptake compared to control 

regardless if it the fertilizer was broadcasted or banded (Table 3.4). In Ottawa 2015, an increased 

N uptake at V6 was found significant with NT by broadcast treatment reaching the greater value 

(Table 3.4). The mobility of nitrate in the soil associated with a greater rainfall amount registered 

at Ottawa 2015 could enhance the incorporation of this nutrient in the soil. Thus, the N from 

broadcast had more root contact compared to the sub-surface band application at V6 growth 

stage. Phosphorus uptake was increased by NT combinations with fertilized treatments as well. 

In Ottawa 2014, under NT by fertilized treatments P was increased in about 16% over the same 

treatments under ST at V10 and VT growth stages (Table 3.4). In Ottawa 2015, at V6 growth 

stage, broadcast increased in 46% the P uptake compared to ST by broadcast, while NT by sub-

surface band was not different from ST by sub-surface band (Table 3.4). At the same site and 

growth stage, corn P uptake was less in the ST by control treatments, reinforcing the greater P 
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uptake under NT combinations. Phosphorus uptake was probably enhanced at NT interactions 

due to the trend of water storage promoted by this conservation tillage practice, enhancing P 

diffusion in soil, especially in conditions such as Ottawa, a dryland site. 

 The tillage by hybrid interaction also revealed statistical differences for Ottawa. The 

combination of NT by P1151 AM hybrid increased in 36% the N uptake compared to the 

combination of ST by P1151 AM hybrid at V10 growth stage in Ottawa 2015 (Table 3.5). This 

advantage of NT system can also be attributed to the amount of rain and N mineralization rate. 

Since Ottawa 2015 registered greater rainfall, we can predict that the N losses due runoff under 

ST were greater than NT. In addition, the mineralization rate at NT is lower compared to ST 

(Balesdent et al., 1990). No-till probably induced a steady and constant N mineralization while 

ST accelerated this process increasing the probability of N losses by the rainfall. At the same 

growth stage, the P1151 AM hybrid grown in NT increased P uptake in 14% when compared to 

the P1105 AM hybrid in Ottawa 2015 (Table 3.5). The greater root biomass showed by the 

P1151 AM hybrid, as shown before, probably contributed to P accessibility as more soil volume 

was likely more explored by this hybrid. No differences among the hybrids were found under the 

ST combinations, which can be related to less mechanical impedance for the roots to grow. The 

interaction between hybrid and fertilizer showed significant differences in Ottawa. In Ottawa 

2014, P uptake was increased at V10 growth stage by the combination of P1151 AM and 

broadcast application when compared with P1105 AM, but with no significant differences from 

sub-surface combinations (Table 3.6). The root biomass accumulation showed by P1151 AM 

probably enhanced the root-soil contact, and consequently, P uptake. 

 Sub-surface band and broadcast increased N and P uptake in corn at most of the growth 

stages compared to the control in Ottawa (Table 3.7). In Ottawa 2014, sub-surface band 
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contributed for greater N and P uptake at V6 stage but was equal to broadcast as the corn 

developed to V10 and VT growth stages (Table 3.7). Sub-surface band application probably 

increased fertilizer access to the plant since the soil-fertilizer contact is reduced when compared 

to broadcast, resulting in less P fixation (Tisdale and Nelson, 1975). Phosphorus uptake was 

increased by band applications in corn production according to Schwab et al. (2006) in a study 

done in Southeast Kansas. Broadcast fertilization was essential towards the end of vegetative 

period since corn develops superficial root system (brace and adventitious systems) taking 

advantage of the nutrient availability in the soil surface (Barber, 1995). In Ottawa 2015, 

broadcast and sub-surface band fertilizer had similar N and P uptake at most growth stages 

(Table 3.7). However, sub-surface band fertilization increased N uptake at VT growth stage 

(Table 3.7). The increased rainfall amounts in 2015 (653 mm in 2015 against 438 mm in 2014) 

probably contributed for N runoff from the broadcast treatment. On the other hand, P uptake was 

increased at corn V6 by broadcast fertilization (Table 3.7).   

 No-till provided greater nutrient uptake than ST at V6 and V10 growth stages in Ottawa 

2015 (Table 3.7). Besides the advantages of NT related to moisture content in the soil explained 

before, the warmer temperatures registered earlier in this year probably helped the soil to reach 

temperatures demanded by the crop. A soil temperature requirement for corn emergence is 

around 12°C (Nielsen, 2010). Higher temperatures early in the season possibly contributed for 

soil organic nitrogen mineralization, providing readily available N for plant uptake (Dinnes et al., 

2002). Therefore, the advantage of ST related to warm up the soil earlier compared to NT did not 

apply for this growing season. There were no significant differences for tillage effect, as a main 

factor, in nutrient uptake in Ottawa 2014 (Table 3.7).  
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 Hybrids had different nutrient uptake patterns in Ottawa 2014 (Table 3.7). The P1151 

AM hybrid had greater N and P uptake than the P1105 AM hybrid at V6. According to Lynch 

(1995), P acquisition is highly influenced by root characteristics since it helps to explore more 

effectively a given soil volume. Although differences were found at V6 growth stage, based on 

the root dry weight data, it was expected that the P1151 AM hybrid would be able to access more 

soil and consequently increase nutrient uptake towards the end of the vegetative stage of corn. 

However, the results for N and P uptake at VT growth stage did not confirm this hypothesis. 

 In Scandia, there were fewer differences from the treatments on nutrient uptake (Table 

3.8) and no interaction were found for  tillage by fertilizer (Table 3.9), tillage by hybrid (Table 

3.10) or hybrid by fertilizer (Table 3.11). Results in Scandia 2014 revealed broadcast and sub-

surface band fertilizer with similar results for N and P uptake at all growth stages (Table 3.12). 

Phosphorus uptake was found to be similar among sub-surface band and control treatments at 

V10 and VT growth stages (Table 3.12). In Scandia 2015, broadcast treatment had similar results 

to sub-surface band at V6 and VT growth stages. However, at V10, N uptake increased 27% in 

broadcast compared to sub-surface band and 72% to control. Phosphorus uptake was increased 

by broadcast at V6 and V10 growth stages (Table 3.12). Those results from N and P uptake 

showed by corn can be attributed to the coarse texture of the soil in Scandia site. The coarse soil 

texture can imply in more suitability to nutrient incorporation of broadcast fertilizer by irrigation 

or rain. Thus, the sub-surface band fertilization could have been lost at somehow by nutrient 

leaching. Another reason is that with irrigation the plant tends to set up shallow root system 

getting advantage from the surface application of fertilizer. In a study conducted by Pandey et al. 

(1984), crops were found to stimulate deeper root growth in periods of drought and to keep 

shallower root systems where water was not a limiting factor.   
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 There were no differences for tillage effect in nutrient uptake in Scandia at any year 

(Table 3.12). In Scandia 2014, N uptake was greater at V6 growth stage for the P1151 AM 

hybrid, while P uptake was increased at V10 for the same hybrid (Table 3.12). The root dry 

weight data showed greater values for the P1151 AM hybrid as a main factor. This characteristic 

probably contributed for more N and P uptake. 

 Grain Yield 

 The interaction tillage by fertilizer placement was found to be significantly different for 

corn yields in Ottawa 2014 (Table 3.4).  No-till by sub-surface band increased corn yields 7% 

compared to ST (Table 3.4). No-till probably increased the soil moisture for longer, increasing 

the N and P availability from sub-surface band application. In addition, the corn-soybean rotation 

at this field likely contributed to enhanced soil fertility. The soybean straw possibly enriched N 

availability to corn throughout the growing season. Schoessow et al. (2010) showed that soybean 

residue can contribute with 27 to 60 kg ha
-1

 of N. There was no interaction between tillage and 

hybrid for corn grain yield (Table 3.5). The interaction hybrid by fertilizer was found to be 

significant with greater yields showed by the combinations under broadcast in Ottawa 2014 

(Table 3.6). In Ottawa 2015, combinations with broadcast and sub-surface band were not 

different among each other, but showed greater grain yields compared to control (Table 3.6).    

 Fertilizer placement influenced grain yield in Ottawa. Broadcast and sub-surface band 

treatments increased corn grain yield over the control (Tables 3.6). In 2014, broadcast had 500 

kg ha
-1 

of grain more than sub-surface band at Ottawa site (Table 3.7). Greater values showed by 

broadcast application can be explained by the sufficient P levels in the soil, where the broadcast 

treatment probably contributed for later N and P supply to the plant. In Ottawa 2015, broadcast 

and sub-surface band treatments had similar corn yields. On soils testing medium to high in P 
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levels, grain yield difference between band applications and broadcast tend to disappear (Randall 

et al., 2001b). This result agrees with Rehm (1986), who developed a 2 year study in Nebraska 

testing different fertilizer placements finding no differences among broadcast and sub-surface 

band in corn yields.  

 Tillage by fertilizer placement was found to be significantly different in Scandia 2015 

(Table 3.8). In Scandia 2015, ST by sub-surface band had greater grain yields than the 

combination of NT and sub-surface band (Table 3.9). In this scenario, according to well drained 

conditions presented in Scandia, ST operation probably contributed to a better plant emergence, 

and consequently, more uniform plant standing. There was no significant difference in grain 

yields regarding the interactions tillage by hybrid (Table 3.10) and hybrid by fertilizer (Table 

3.11) in Scandia. 

 Fertilizer placement, as a main factor, influenced grain yield in Scandia. Broadcast and 

sub-surface band treatments increased corn grain yield over the control at both years of study, 

but were not different from each other (Tables 3.10). According to soil test P in Scandia, it was 

expected corn yield response since the P levels were below the critical level for P response in 

Kansas, which is 20 mg kg
-1

 (Leikam, 2003). The supplemental irrigation provided at the 

Scandia site probably was a key factor that contributed to minimize the differences among 

broadcast and sub-surface band application. With more water available, enhances the P diffusion 

in the soil, as well as the nitrate movement in the soil solution. In addition, the fertilizer applied 

in the soil surface (broadcast) can be easily incorporated by the irrigation. 

 No significant differences were found for tillage and hybrid factors for grain yield at any 

site-year (Tables 3.3 and 3.7). Similar results were found by Licht and Al-Kaisi (2005) in Iowa 

where ST did not differ from NT and chisel plow treatments in corn grain yield. 
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 Grain Nutrient Concentration  

 Interactions of tillage by fertilizer were found to be significant for corn grain N 

concentration in Ottawa (Table 3.3). In Ottawa 2014, sub-surface band and broadcast treatment 

combined with NT or ST had greater N concentration in corn grain when compared to control 

(Table 3.4). No-till combination with fertilized treatments was found to have the greater grain N 

concentrations. Since the previous crop planted was soybeans, the N mineralization from 

soybean residues possibly contributed to the increased N under NT compared to ST. However, in 

Ottawa 2015, the control treatment responded similar to the fertilized treatments under NT, but 

was significantly lower compared to sub-surface band under ST (Figure 3.4). With wetter 

condition in 2015, N losses likely contributed for leveled results showed by fertilizer placements. 

No significant differences in grain P concentrations were found for tillage by fertilizer 

interaction (Table 3.4). There were no significant differences for grain nutrient concentration in 

the interaction of tillage by hybrid (Table 3.5). The interaction hybrid by fertilizer showed 

greater grain N concentration under broadcast and sub-surface band fertilization in Ottawa 2014 

(Table 3.6). In Ottawa 2015, combinations with P1151 AM were found to increase grain N 

concentration compared to P1105 AM (Table 3.6).  

 Grain N concentration was found to be greater in fertilized treatments in Ottawa 2014 

(Table 3.7). However, in Ottawa 2015, broadcast and control had similar results but lower than 

sub-surface band fertilization (Table 3.7). Grain P concentration decreased in fertilized 

treatments compared to control in Ottawa (Table 3.7). This lack of response can be explained by 

the soil test P levels which were above the critical level for Kansas (20 mg kg
-1

 soil) (Leikam, 

2003) supplying the required amounts for corn grain without fertilizer addition.  
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 Grain N concentration was found to be greater under NT than ST only in 2014 (Table 

3.7). The P1151 AM hybrid grain had greater P concentration in Ottawa 2014 and greater N 

concentration in Ottawa 2015 in comparison to the P1105 AM hybrid (Table 3.7). The 

interaction genotype by growth stage showed 27% more root biomass for the P1151 AM hybrid 

at VT growth stage, although those numbers were not statistically different. Even though, this 

result possibly implied advantages for the P1151 AM hybrid regarding N and P uptake.  

 At Scandia, most of the differences were observed according to fertilizer placement 

(Table 3.8). No significant differences were observed for the interactions tillage by fertilizer 

(Table 3.9), tillage by hybrid (Table 3.10) and hybrid by fertilizer (Table 3.11). Broadcast 

application increased P concentration in corn grain over the control in both years at Scandia 

(Table 3.12). Broadcast probably contributed to late P uptake by corn, taking advantage of the 

superficial root system formed late in the vegetative stage. Scandia soil test P levels are 11 and 

12 mg kg
-1 

where P fertilization response was expected to occur based on Kansas State 

University Fertilizer Recommendation (Leikam, 2003). On the other hand, N concentration was 

increased by sub-surface band application only in Scandia 2015 (Table 3.12).  

 At both years in Scandia, P1151 AM hybrid showed greater N concentration than the 

P1105 AM hybrid (Table 3.12). In Scandia 2015, P concentration in the P1151 AM hybrid was 

greater than the CT hybrid (Table 3.12). 

 Conclusions 

 The P1151 AM hybrid showed greater root biomass accumulation when compared to the 

P1105 AM hybrid. This result can contribute to greater nutrient uptake by one genotype over the 

other. 
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 Corn responded to fertilization increasing aboveground biomass and nutrient uptake. 

Sub-surface band and broadcast treatment were found to be different only in nutrient uptake, 

where sub-surface band contributed for greater uptake in early growth and broadcast contributing 

towards the VT growth stage. Grain yields were increased by fertilization. However, only one 

site registered differences favoring broadcast application. The low and medium levels of P in the 

soil favored the P fertilization but the placement was not found significant. Corn seed N and P 

concentration also increased with fertilization although some results show the control treatment 

with similar values. Since broadcast is a cheaper way to apply nutrients it can be chosen by the 

producer without yield loss. On the other hand, sub-surface band fertilization can reduce P 

stratification, reduce nutrient loss through runoff and consequently water contamination. A 

combination of both placement treatments could enhance nutrient uptake and aboveground 

biomass in the entire crop cycle building a strong plant structure to fill the grains and increase 

yields.  

 Nutrient uptake was enhanced in NT conditions in 2015. However, in 2014 the 

differences when compared to ST were not consistent. Thus, tillage as a single factor did not 

show many differences among NT and ST. Interactions including NT were found to be the most 

significant of the study due to water storage contribution enhancing nutrient availability 

especially of P. 

 Grain yield was not affected by hybrids as a main factor, but when in combination with 

broadcast or sub-surface band, where P1151 AM hybrid by broadcast or sub-surface band 

increased significantly corn production over the P1105 AM interaction with the same treatments. 

Future studies regarding contrasting root system genotypes associated with different fertilizer 



47 

placements to clarify possible root growth patterns as an influence of the fertilizer, and the 

response of them for nutrient uptake and grain yields. 
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Table 3.1. Average soil test values, total precipitation, average temperature and planting date by site. 

Location Year 

Soil test values 
Precipitation

‡
 

Average 

temperature
§
 

Planting 

date STP
†
 STK pH OM 

mg kg
-1

 
 

g kg
-1

 mm °C 
 

1 2014 25 158 6.4 37 438 22.0 22-Apr 

2 2015 24 151 6.7 36 653 21.7 7-Apr 

3 2014 12 489 6.5 27 559 20.1 6-May 

4 2015 11 450 6.4 23 648 20.7 30-Apr 
†
 STP, soil test for phosphorus (Mehlich-3 method); STK, soil test for potassium (Ammonium acetate 

method); pH (1:1 soil:water ratio); OM, organic matter (Walkley-Black method). 
‡
 Total precipitation during April to October 2014 and April to October 2015 growing season. Sites 3 

and 4 received supplemental irrigation. 
§
Average temperature during April to October 2014 and April to October 2015 growing season. 
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Table 3.2. Corn root dry weight by hybrid and growth stage in Ottawa and 

Scandia. Samples collected from the control treatment only. 

Hybrid/ growth stages 
Ottawa  Scandia 

2014 2015  2014 2015 

  - - - - - - - - - - - - - - - - g
 
- - - - - - - - - - - - - - - 

 Hybrid 

P1151 AM† 13.4 a
‡
 6.8 a  12.1 a 5.4 

P1105 AM 9.6 b 5.6 b  8.3 b 5.7 

 
Growth stage 

V6 1.0 c 1.2 c  2.6 c 1.3 c 

V10 8.2 b 6.3 b  8.5 b 4.0 b 

VT 25.2 a 11.1  a  19.6 a 11.3 a 

 
Hybrid by Growth stage 

P1151 AM V6 0.9 d 1.4  2.5 d 1.2 

P1105 AM V6 1.1 d 0.9  2.7 d 1.3 

P1151 AM V10 9.3 c 6.5  8.4 c 4.3 

P1105 AM V10 7.1 c 6.1  8.7 c 3.8 

P1151 AM VT 29.8 a 12.4  25.5 a 10.6 

P1105 AM  VT 20.6 b 9.8  13.7 b 12.1 

 
- - - - - level of significance (p > F) - - - - - - -  

Hybrid (H) 0.015* 0.078*  0.007* 0.487 

Growth stage (GS) <0.001* <0.001*  <0.001* <0.001* 

H x GS 0.035* 0.286  0.001* 0.270 

† V6, V10, VT growth stage (Abendroth et al., 2011).  
‡
 Numbers followed by different letters within rows for each main effect and 

the interaction of genotype and growth stage represent statistically significant 

differences at the p ≤ 0.10.
 

* Statistically significant at 0.1 alpha level. 
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Table 3.3. Level of significance for N and P uptake and biomass accumulation for corn at different growth stages, grain yield and grain nutrient concentration in 

Ottawa. 

 
V6 growth stage  V10 growth stage  VT growth stage  Grain 

Yield 

Grain Nutrient  

Parameters DW
†
 N P  DW N P  DW N P  N P 

 - - - - - - - - - - - - - - - - - - -  - - - - - - - - - - - - - - - -- - - - - - - - - - -  p > F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   

 2014 

Tillage (T) 0.224 0.660 0.999  0.552 0.519 0.251  0.071* 0.348 0.171  0.363 0.074* 0.505 

Hybrid (H) 0.004* 0.004* 0.003*  0.284 0.698 0.284  0.006* 0.580 0.338  0.736 0.635 0.007* 

T x H 0.210 0.350 0.338  0.217 0.240 0.174  0.299 0.944 0.861  0.374 0.235 0.261 

Fertilizer (F) <0.001* <0.001* <0.001*  0.002* <0.001* <0.001*  <0.001* <0.001* <0.001*  0.001* <0.001* 0.007* 

T x F 0.894 0.547 0.332  0.038* 0.055* 0.054*  0.002* 0.459 0.078*  0.057* 0.078* 0.265 

F x H 0.880 0.895 0.607  0.223 0.215 0.088*  0.805 0.595 0.935  0.011* 0.027* 0.220 

T x F x H 0.173 0.262 0.243  0.774 0.825 0.800  0.289 0.571 0.538  0.403 0.355 0.022* 

 2015 

Tillage (T) 0.004* 0.002* 0.006*  0.011* 0.088* 0.036*  0.048* 0.113 0.124  0.128 0.923 0.648 

Hybrid (H) 0.309 0.991 0.451  0.859 0.943 0.465  0.113 0.545 0.680  0.903 0.001* 0.194 

T x H 0.826 0.548 0.732  0.151 0.078* 0.064*  0.973 0.909 0.770  0.162 0.465 0.577 

Fertilizer (F) <0.001* <0.001* <0.001*  <0.001* <0.001* <0.001*  <0.001* <0.001* <0.001*  <0.001* 0.031* <0.001* 

T x F 0.005* 0.010* 0.024*  0.739 0.258 0.451  0.633 0.521 0.352  0.935 0.029* 0.901 

F x H 0.587 0.909 0.806  0.798 0.632 0.438  0.781 0.988 0.605  0.016* 0.033* 0.484 

T x F x H 0.061* 0.200 0.075  0.280 0.636 0.705  0.549 0.756 0.513  0.806 0.297 0.134 

† DW, dry weight; N, nitrogen; P, phosphorus; V6, V10, VT growth stage (Abendroth et al., 2011). 

* Statistically significant at 0.1 alpha level.  
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Table 3.4. Interaction effect for tillage and fertilizer placement on corn biomass accumulation and nutrient uptake at 

different growth stages, grain yield and grain nutrient concentration in Ottawa. 

 

No-till  Strip-till 

Broadcast 
Sub-surface 

band 
Control 

 
Broadcast 

Sub-surface 

band 
Control 

 2014 

DW 

(g plant
-1

) 

V6
†
 5.5 5.8 4.4  5.6 6.1 4.7 

V10 71 a
‡
 66 ab 45 d  61 abc 59 bc 56 c 

VT 159 b 171 a 129 c  151 b 136 c 132 c 

N  

(mg plant
-1

) 

V6 238 278 182  229 266 190 

V10 2205 a 2145 a 1138 b  1897 a 1874 a 1478 b 

VT 3071 3167 1915  2814 2882 1987 

P  

(mg plant
-1

) 

V6 29 30 23  27 30 25 

V10 281 a 270 ab 159 c  231 b 236 b 190 c 

VT 414 a 409 a 294 c  365 b 369 b 314 c 

Grain yield (Mg ha
-1

) 9.2 a 9.0 a 6.0 c  9.1 a 8.4 b 6.3 c 

Grain N concentration (g kg
-1

) 12.0 a 12.1 a 9.9 c  11.1 b 11.6 ab 10.0 c 

Grain P concentration (g kg
-1

) 2.5 2.5 2.5  2.4 2.5 2.6 

 2015 

DW 

(g plant
-1

) 

V6 16.1 a 13.2 b 10.5 c  11.1 c 11.6 bc 6.7 d 

V10 87 86 61  71 75 45 

VT 131 133 96  116 128 85 

N  

(mg plant
-1

) 

V6 473 a 391 b 251 d  304 c 345 bc 147 e 

V10 1648 1692 791  1252 1487 666 

VT 1466 1657 690  1144 1525 622 

P  

(mg plant
-1

) 

V6 57 a 46 b 38 c  39 c 41 bc 24 d 

V10 272 269 179  215 225 152 

VT 296 298 215  244 280 212 

Grain yield (Mg ha
-1

) 9.5 9.5 4.0  9.1 9.1 3.5 

Grain N concentration (g kg
-1

) 9.7 ab 9.4 ab 9.2 b  9.2 b 9.8 a 9.1 b 

Grain P concentration (g kg
-1

) 2.5 2.5 2.8  2.5 2.5 2.8 
†
 V6, V10, VT growth stage (Abendroth et al., 2011); DW, dry weight; N, nitrogen; P, phosphorus.  

‡
 Numbers followed by different letters between columns, within each main factor, represent statistically significant 

differences at p ≤ 0.10. 
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Table 3.5. Interaction effect for tillage and hybrid on corn biomass accumulation and nutrient uptake 

at different growth stages, grain yield and grain nutrient concentration in Ottawa. 

 

No-till  Strip-till 

P1151 AM P1105 AM  P1151 AM P1105 AM 

 2014 

DW 

(g plant
-1

) 

V6
†
 5.5 5.0  6.0 5.0 

V10 64.9 56.5  58.3 58.9 

VT 163.6 142.6  145.6 133.7 

N  

(mg plant
-1

) 

V6 246 219  250 207 

V10 1928 1730  1698 1802 

VT 2751 2685  2603 2519 

P  

(mg plant
-1

) 

V6 29 26  30 25 

V10 255 218  217 222 

VT 382 363  356 343 

Grain yield (Mg ha
-1

) 8.0 8.1  8.0 7.9 

Grain N concentration (g kg
-1

) 11.4 11.3  11.4 11.2 

Grain P concentration (g kg
-1

) 2.6 2.4  2.5 2.5 

 2015 

DW 

(g plant
-1

) 

V6 12.8 13.7  9.5 10.1 

V10 80.5 75.4  61.6 65.7 

VT 115.9 123.7  105.9 113.4 

N  

(mg plant
-1

) 

V6 366 377  271 260 

V10 1451 a
‡
 1303 ab  1066 b 1204 ab 

VT 1235 1307  1071 1121 

P  

(mg plant
-1

) 

V6 46 48  34 35 

V10 256 a 224 b  190 b 205 b 

VT 269 271  240 250 

Grain yield (Mg ha
-1

) 7.9 7.5  7.1 7.4 

Grain N concentration (g kg
-1

) 9.9 9.0  9.7 9.1 

Grain P concentration (g kg
-1

) 2.6 2.5  2.6 2.6 
†
 V6, V10, VT growth stage (Abendroth et al., 2011); DW, dry weight; N, nitrogen; P, phosphorus.  

‡
 Numbers followed by different letters between columns, within each main factor, represent 

statistically significant differences at p ≤ 0.10. 
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Table 3.6. Interaction effect for hybrid and fertilizer placement on corn biomass accumulation and nutrient uptake at 

different growth stages, grain yield and grain nutrient concentration in Ottawa. 

 

P1151AM  P1105AM 

Broadcast 
Sub-surface 

band 
Control 

 

Broadcast 

Sub-

surface 

band 

Control 

 2014 

DW 

(g plant
-1

) 

V6
†
 5.9 6.3 4.9  5.2 5.6 4.1 

V10 72 63 50  60 62 51 

VT 164 163 137  146 144 124 

N  

(mg plant
-1

) 

V6 250 289 206  218 256 166 

V10 2223 1961 1255  1879 2058 1361 

VT 2911 3150 1969  2974 2898 1933 

P  

(mg plant
-1

) 

V6 30 32 27  26 28 21 

V10 287 a
‡
 252 ab 170 c  226 b 255 ab 179 c 

VT 394 398 314  385 380 295 

Grain yield (Mg ha
-1

) 9.3 a 8.8 bc 5.8 e  9.0 ab 8.5 c 6.5 d 

Grain N concentration (g kg
-1

) 11.9 a 12.1 a 10.2 b  11.9 a 12.1a 9.7 c 

Grain P concentration (g kg
-1

) 2.5 2.5 2.7  2.4 2.5 2.5 

 2015 

DW 

(g plant
-1

) 

V6 12.9 12.1 8.5  14.2 12.7 8.8 

V10 78 82 53  80 79 53 

VT 122 126 85  125 135 95 

N  

(mg plant
-1

) 

V6 384 370 202  393 366 196 

V10 1477 1614 685  1424 1565 772 

VT 1273 1570 617  1335 1612 695 

P  

(mg plant
-1

) 

V6 46 43 31  49 44 32 

V10 256 248 164  231 246 167 

VT 275 277 211  265 301 216 

Grain yield (Mg ha
-1

) 9.5 a 9.5 a 3.4 c  9.1 a 9.1 a 4.1 b 

Grain N concentration (g kg
-1

) 9.7 ab 9.8 a 9.8 a  9.2 c 9.4 bc 8.5 d 

Grain P concentration (g kg
-1

) 2.6 2.5 2.8  2.4 2.5 2.7 
†
 V6, V10, VT growth stage (Abendroth et al., 2011); DW, dry weight; N, nitrogen; P, phosphorus. 

‡
 Numbers followed by different letters between columns, within each main factor, represent statistically significant 

differences at p ≤ 0.10. 
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Table 3.7. Corn biomass accumulation and nutrient uptake at different growth stages, grain yield and grain nutrient 

concentration as affected by tillage, hybrid and fertilizer placement in Ottawa. 

 

Tillage  Hybrid  Fertilizer Placement 

No-till Strip-till 

 
P1151 

AM 

P1105 

AM 

 

Broadcast 

Sub-

surface 

band 

Control 

 2014 

DW 

(g plant
-1

) 

V6
†
 5.2 5.5  5.8 a

‡
 5 b  5.6 b 6 a 4.5 c 

V10 61 59  62 58  66 a 62 a 51 b 

VT 153 a 140 b  155 a 138 b  153 a 154 a 130 b 

N  

(mg plant
-1

) 

V6 233 228  248 a 213 b  234 b 272 a 186 c 

V10 1829 1750  1813 1766  2051 a 2009 a 1308 b 

VT 2718 2561  2677 2602  2942 a 3024 a 1951 b 

P  

(mg plant
-1

) 

V6 28 28  30 a 25 b  28 b 30 a 24 c 

V10 237 219  236 220  256 a 253 a 175 b 

VT 373 349  369 353  390 a 389 a 304 b 

Grain yield (Mg ha
-1

) 8.1 7.9  8.0 8.1  9.2 a 8.7 b 6.2 c 

Grain N concentration (g kg
-1

) 11.3 a 10.9 b  11.1 11.2  11.6 a 11.8 a 10.0 b 

Grain P concentration (g kg
-1

) 2.5 2.5  2.6 a 2.5 b  2.4 b 2.5 a 2.6 a 

 2015 

DW 

(g plant
-1

) 

V6 13 a 10 b  11 12  14 a 12 b 9 c 

V10 78 a 64 b  71 71  79 a 80 a 53 b 

VT 120 a 110 b  111 119  124 a 131 a 90 b 

N  

(mg plant
-1

) 

V6 372 a 265 b  318 319  389 a 368 a 199 b 

V10 1377 a 1135 b  1259 1254  1450 a 1590 a 729 b 

VT 1271 1096  1153 1214  1304 b 1591 a 656 c 

P  

(mg plant
-1

) 

V6 47 a 35 b  40 42  48 a 43 b 31 c 

V10 240 a 197 b  223 215  244 a 247 a 165 b 

VT 270 245  255 261  270 a 289 a 214 b 

Grain yield (Mg ha
-1

) 7.7 7.2  7.5 7.4  9.3 a 9.3 a 3.8 b 

Grain N concentration (g kg
-1

) 9.4 9.4  9.8 a 9.0 b  9.4 ab 9.6 a 9.2 b 

Grain P concentration (g kg
-1

) 2.6 2.6  2.6 2.6  2.5 b 2.5 b 2.8 a 
†
 V6, V10, VT growth stage (Abendroth et al., 2011); DW, dry weight; N, nitrogen; P, phosphorus. 

‡
 Numbers followed by different letters between columns, within each main factor, represent statistically significant 

differences at p ≤ 0.10. 
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Table 3.8. Levels of significance for N and P uptake and biomass accumulation for corn at different growth stages, grain yield and grain nutrient concentration in 

Scandia. 

 
V6 growth stage 

 
V10 growth stage 

 
VT growth stage 

 
Grain 

Yield 

Grain Nutrient 

Concentration 

Parameters DW
†
 N P  DW N P  DW N P  N P 

  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  p > F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 2014 

Tillage (T) 0.350 0.482 0.238  0.351 0.325 0.240  0.169 0.815 0.638  0.649 0.630 0.943 

Hybrid (H) 0.013* 0.024* 0.111  0.171 0.158 0.082*  0.928 0.816 0.458  0.973 0.050* 0.902 

T x H 0.263 0.320 0.460  0.071* 0.126 0.221  0.465 0.341 0.251  0.471 0.889 0.719 

Fertilizer (F) 0.003* <0.001* <0.001*  0.186 0.440 0.128  0.041* 0.297 0.084*  0.047* 0.525 0.042* 

T x F 0.361 0.801 0.870  0.830 0.614 0.724  0.637 0.685 0.393  0.255 0.410 0.546 

F x H 0.331 0.510 0.428  0.379 0.571 0.748  0.412 0.780 0.756  0.569 0.830 0.694 

T x F x H 0.575 0.792 0.980  0.035* 0.035* 0.016*  0.415 0.619 0.771  0.145 0.531 0.375 

  2015 

Tillage (T) 0.162 0.715 0.749  0.591 0.931 0.824  0.56 0.342 0.736  0.351 0.671 0.226 

Hybrid (H) 0.815 0.664 0.285  0.521 0.464 0.868  0.207 0.516 0.747  0.836 0.009* 0.026 

T x H 0.287 0.413 0.128  0.401 0.522 0.438  0.561 0.390 0.480  0.232 0.366 0.989 

Fertilizer (F) <0.001* <0.001* <0.001*  <0.001* <0.001* <0.001*  0.103 0.293 0.334  <0.001* 0.013* <0.001* 

T x F 0.397 0.622 0.983  0.837 0.804 0.754  0.463 0.848 0.886  0.054* 0.758 0.128 

F x H 0.945 0.973 0.281  0.613 0.611 0.459  0.271 0.290 0.247  0.119 0.448 0.963 

T x F x H 0.066* 0.063* 0.029*  0.477 0.671 0.480  0.428 0.832 0.542  0.074* 0.014* 0.571 
† 
DW, dry weight; N, nitrogen; P, phosphorus; V6, V10, VT growth stage (Abendroth et al., 2011). 

* Statistically significant at 0.1 alpha level. 
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Table 3.9. Interaction effect for tillage and fertilizer placement on corn biomass accumulation and nutrient uptake at 

different growth stages, grain yield and grain nutrient concentration in Scandia. 

 

No-till  Strip-till 

Broadcast 
Sub-surface 

band 
Control 

 

Broadcast 

Sub-

surface 

band 

Control 

 2014 

DW 

(g plant
-1

) 

V6
†
 21.3 20.8 17.4  18.8 21.4 16.6 

V10 115.1 113.9 106.6  120.8 125.4 110.9 

VT 151.9 157.9 136.2  145.0 143.5 133.7 

N  

(mg plant
-1

) 

V6 712 729 544  657 725 528 

V10 3262 3284 3209  3633 3895 3323 

VT 3049 3314 2785  3258 3125 2933 

P  

(mg plant
-1

) 

V6 72 75 44  68 67 41 

V10 353 355 310  417 375 336 

VT 324 339 265  338 285 274 

Grain yield (Mg ha
-1

) 14.0 12.5 11.7  12.5 13.4 11.6 

Grain N concentration (g kg
-1

) 12.4 12.4 12.1  12.1 12.4 12.3 

Grain P concentration (g kg
-1

) 2.3 2.2 2.0  2.2 2.2 2.1 

 2015 

DW 

(g plant
-1

) 

V6 12.5 11.4 9.4  12.2 10.1 8.2 

V10 69.6 60.7 48.3  70.4 57.9 45.9 

VT 125.4 135.5 120.0  139.4 133.3 120.3 

N  

(mg plant
-1

) 

V6 311 291 241  313 289 219 

V10 1417 1073 849  1412 1154 796 

VT 1306 1466 1303  1491 1771 1407 

P  

(mg plant
-1

) 

V6 41 36 27  40 36 26 

V10 198 135 106  193 148 105 

VT 249 255 224  274 257 225 

Grain yield (Mg ha
-1

) 12.6 a
‡
 11.5 b 9.7 c  12.1 a 12.4 a 10.0 c 

Grain N concentration (g kg
-1

) 8.7 9.1 8.6  8.7 9.1 8.4 

Grain P concentration (g kg
-1

) 2.6 2.4 2.2  2.5 2.2 2.3 
†
 V6, V10, VT growth stage (Abendroth et al., 2011); DW, dry weight; N, nitrogen; P, phosphorus. 

 
‡
 Numbers followed by different letters between columns, within each main factor, represent statistically significant 

differences at p ≤ 0.10. 
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Table 3.10. Interaction effect for tillage and hybrid on corn biomass accumulation and nutrient uptake at 

different growth stages, grain yield and grain nutrient concentration in Scandia. 

 

No-till  Strip-till 

P1151 AM P1105 AM  P1151 AM P1105 AM 

 2014 

DW 

(g plant
-1

) 

V6
†
 20.8 18.8  21.0 16.9 

V10 121.4 a
‡ 
 102.3 b  117.4 ab 120.7 a 

VT 150.9 146.5  139.0 142.5   

N  

(mg plant
-1

) 

V6 693 630  704 570 

V10 3638 2866  3598 3635 

VT 3126 2972  2981 3230 

P  

(mg plant
-1

) 

V6 66 62  64 53 

V10 388 290  386 366 

VT 315 304  276 321 

Grain yield (Mg ha
-1

) 12.9 12.5  12.4 12.6 

Grain N concentration (g kg
-1

) 12.5 12.2  12.4 12.1 

Grain P concentration (g kg
-1

) 2.2 2.2  2.2 2.2 

 2015 

DW 

(g plant
-1

) 

V6 11.4 10.9  10.0 10.3 

V10 59.9 59.3  56.0 60.2 

VT 124.7 129.2  125.3 136.7 

N  

(mg plant
-1

) 

V6 283 279  266 281 

V10 1109 1117  1059 1183 

VT 1375 1342  1441 1672 

P  

(mg plant
-1

) 

V6 37 33  34 34 

V10 151 141  146 152 

VT 254 231  248 257 

Grain yield (Mg ha
-1

) 11.1 11.4  11.6 11.4 

Grain N concentration (g kg
-1

) 9.0 8.6  9.1 8.4 

Grain P concentration (g kg
-1

) 2.5 2.3  2.4 2.3 
†
 V6, V10, VT growth stage (Abendroth et al., 2011); DW, dry weight; N, nitrogen; P, phosphorus.  

‡
 Numbers followed by different letters between columns, within each main factor, represent statistically 

significant differences at p ≤ 0.10. 
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Table 3.11. Interaction effect for hybrid and fertilizer placement on corn biomass accumulation and nutrient uptake 

at different growth stages, grain yield and grain nutrient concentration in Scandia. 

 

P1151AM  P1105AM 

Broadcast 
Sub-surface 

band 
Control 

 

Broadcast 

Sub-

surface 

band 

Control 

 2014 

DW 

(g plant
-1

) 

V6
†
 21.2 23.4 18.1  19.0 18.8 16.0 

V10 118 126 109  116 107 106 

VT 144 155 133  154 146 134 

N  

(mg plant
-1

) 

V6 720 802 577  645 650 501 

V10 3511 3768 3227  3246 3087 3105 

VT 3140 3265 2702  3066 3217 2973 

P  

(mg plant
-1

) 

V6 72 79 44  68 64 41 

V10 403 404 333  356 311 294 

VT 327 317 246  320 323 290 

Grain yield (Mg ha
-1

) 13.6 12.6 11.5  12.8 13.2 11.7 

Grain N concentration (g kg
-1

) 12.4 12.5 12.4  12.1 12.2 12.0 

Grain P concentration (g kg
-1

) 2.3 2.2 2.1  2.2 2.2 2.0 

 2015 

DW 

(g plant
-1

) 

V6 12.3 10.8 8.9  12.4 10.7 8.7 

V10 70 60 44  70 59 50 

VT 130 135 110  135 134 131 

N  

(mg plant
-1

) 

V6 308 288 228  316 292 231 

V10 1424 1095 732  1405 1131 913 

VT 1478 1593 1154  1320 1644 1557 

P  

(mg plant
-1

) 

V6 40 38 27  41 34 26 

V10 201 147 98  191 135 114 

VT 285 266 202  239 246 246 

Grain yield (Mg ha
-1

) 12.6 11.8 9.6  12.1 12.0 10.1 

Grain N concentration (g kg
-1

) 9.0 9.2 8.9  8.4 8.9 8.1 

Grain P concentration (g kg
-1

) 2.7 2.4 2.4  2.5 2.2 2.2 
†
 V6, V10, VT growth stage (Abendroth et al., 2011); DW, dry weight; N, nitrogen; P, phosphorus. 

‡
 Numbers followed by different letters between columns, within each main factor, represent statistically significant 

differences at p ≤ 0.10. 
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Table 3.12. Corn biomass accumulation and nutrient uptake at different growth stages, grain yield and grain nutrient 

concentration as affected by tillage, hybrid and fertilizer placement in Scandia. 

 

Tillage  Hybrid  Fertilizer Placement 

No-till Strip-till 
 P1151 

AM 

P1105 

AM 

 
Broadcast 

Sub-surface 

band 
Control 

 2014 

DW 

(g plant
-1

) 

V6
†
 20 19  21 a

‡
 18 b  20 a 21 a 17 b 

V10 112 119  119 112  118 ab 120 a 109 b 

VT 149 141  145 145  149 a 151 a 135 b 

N  

(mg plant
-1

) 

V6 661 637  698 a 600 b  685 a 727 a 536 b 

V10 3252 3617  3618 3251  3448 3590 3266 

VT 3049 3105  3054 3101  3154 3219 2859 

P  

(mg plant
-1

) 

V6 64 59  65 58  70 a 71 a 42 b 

V10 339 376  387 a 328 b  385 a 365 ab 323 b 

VT 309 299  295 313  331 a 312 ab 270 b 

Grain yield (Mg ha
-1

) 12.7 12.5  12.6 12.7  13.3 a 12.9 a 11.7 b 

Grain N concentration (g kg
-1

) 12.3 12.2  12.4 a 12.1 b  12.3 12.4 12.2 

Grain P concentration (g kg
-1

) 2.2 2.2  2.2 2.2  2.3 a 2.2 ab 2.1 b 

 2015 

DW 

(g plant
-1

) 

V6 11 10  11 11  12 a 11 b 9 c 

V10 60 58  58 60  70 a 59 b 47 c 

VT 127 131  125 133  132 a 134 a 120 b 

N  

(mg plant
-1

) 

V6 281 274  275 280  312 a  290 a 230 b 

V10 1113 1121  1084 1150  1415 a 1113 b 823 c 

VT 1358 1557  1408 1507  1399 1618 1355 

P  

(mg plant
-1

) 

V6 35 34  35 34  41 a 36 b 27 c 

V10 147 149  149 147  196 a 141 b 106 c 

VT 243 252  251 244  262 256 224 

Grain yield (Mg ha
-1

) 11.3 11.5  11.4 11.5  12.4 a 11.9 a 9.9 b 

Grain N concentration (g kg
-1

) 8.8 8.7  9.0 a 8.5 b  8.7 b 9.1 a 8.5 b 

Grain P concentration (g kg
-1

) 2.4 2.3  2.5 a 2.3 b  2.6 a 2.3 b 2.3 b 
†
 V6, V10, VT growth stage (Abendroth et al., 2011); DW, dry weight; N, nitrogen; P, phosphorus. 

‡
 Numbers followed by different letters between columns, within each main factor, represent statistically significant 

differences at p ≤ 0.10. 
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Chapter 4 -  Soybean Cultivar Response to No-till and Strip-till with 

Surface and Subsurface Fertilization 

 Abstract 

 Soybean (Glycine max (L.) Merr. ) response to fertilization can be variable according to 

the method of application method and tillage, and has not evaluated extensively. The objective of 

this study was to evaluate the effects of P fertilizer placement, tillage system on soybean 

production with different genotypes. The study was established at four site-years in Kansas. The 

experimental design was a split-plot in a randomized complete block design with four 

replications. Three P fertilizer treatments and two different tillage operations were combined 

with two soybean genotypes selected based on contrasting root systems. The three fertilizer 

placements were sub-surface band, broadcast, and control. The two soybean varieties were 

included, one intended for poor drainage (PD) and another for good drainage (GD). The two 

tillage operations were no-till (NT) and strip-till (ST). Treatments rates were calculated based on 

nutrient sufficiency recommendation. Roots and plant tissue samples were collected during the 

vegetative and reproductive growth stage to evaluate above ground biomass and nutrient uptake. 

Seed yield was recorded at harvest and analyzed for nutrient concentration. Root biomass 

accumulation among varieties was different and varies by site. Sub-surface band treatment 

favored early growth (V3 growth stage) biomass and P uptake but it did not turn into yield gains. 

Soybean seed yield did not respond to P fertilization in this study. Yield differences were 

affected by variety selection and vary by site.   

Abbreviations: PD, poor drainage variety; GD, good drainage variety; NT, no-till; ST, strip-till. 
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 Introduction 

 No-till (NT) maintains crop residue on the soil surface reducing temperature as well as 

increase in water storage in the soil. The yield response of soybean to P fertilization can be 

affected by water availability in the soil. The lack of moisture in the surface layers of soil may 

limit plant nutrient uptake (Kaspar et al., 1989). According to Marais and Wiersma (1975), the 

lack of water in the soil leads to reduced P uptake by roots due the decreasing rate of P diffusion 

in the soil. Soybeans are usually planted later in the spring, when soils are warmer and dryer, 

compared to conditions faced by corn in early spring. Thus, strip-till (ST) is not a common 

practice prior soybean. Strip-till can reduce the soil nutrient stratification in the surface layer by 

disturbing the first 15 cm of soil, and also allow the fertilizer band application. Past studies, 

though, found that reduced tillage do not prejudice soybean yield gain (Bharati et al., 1986). 

Erbach, D.C. (1982) conducted a study in Iowa testing different tillage systems and found no 

response of soybean to any tillage. 

 Response to P fertilization in soybeans is unlikely when the soil P levels are high and 

very high (deMooy et al., 1973; Mallarino and Borges, 2005). At a low soil P level, Cihacek et 

al. (1991) found little yield response to P fertilization and attributed less importance to the 

method of P application but rather to whether or not P was applied. Kalra and Soper (1968) 

suggested that soybeans might be less responsive to P compared to other crops due to its greater 

nutrient absorption efficiency. Even though, Bullen et al. (1983) reported that band application of 

P near soybean seeds yielded more than broadcast treatment. In Mississippi, Hairston et al. 

(1990) showed greater soybean seed yield at deep band of P and K treatment over broadcast in a 

low soil test P and K. In contrast, a study made by Lutz and Jones (1974) found broadcast P 

application with greater soybean yields when compared to deep band application. Iowa research 
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with NT soybean (Borges and Mallarino, 2000; Buah et al., 1999) showed that P fertilization 

often increased yield in low-testing soils but band or broadcast placement methods did not differ.  

 Nutrient acquisition is highly dependent of the root systems, more specifically to 

characteristics that can identify the root architecture of the plant (Gregory, 2011). Therefore, 

different rooting systems can show a significant interaction with fertilizer application method as 

well as with tillage.  

 The objective of this study was to evaluate the effects of fertilizer placement and tillage 

system on soybean aboveground dry matter, nutrient concentration in tissue, nutrient uptake, 

seed yield and seed nutrient concentration using two different varieties. In addition, this study 

aims to find possible differences in root characteristics among those varieties in the field.  

 Materials and Methods 

 Four soybean sites were established in 2014 and 2015. Sites 1 and 2 were in Ottawa, 

Kansas (38°32΄19˝N; 95°15΄11˝W) on a Woodsen silt loam soil (fine, smectitic, thermic 

Abruptic Argiaquolls) with poor drainage conditions. Sites 3 and 4 were in Scandia, Kansas 

(39°46΄23˝N; 97°47΄19˝W) on a Crete silt loam soil (fine, smectitic, mesic Pachic Argiustolls) 

with good drainage conditions. Description of each site is presented in Table 4.1. Row spacing 

was 76 cm; plot size was 12.2 m in length and 3 m in width (36.6 m
2
) – in all sites.  

 Experimental design was a split-plot in a randomized complete block design, where 

tillage and variety were whole plots and fertilizer placement was split-plot, with four 

replications. Fertilizer treatments consisted of a control, sub-surface band only and broadcast 

only. These three fertilizer treatments were combined with two different varieties selected based 

on contrasting root systems and two different tillage operations. Three genotypes of soybeans 
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were selected based on possible differences in environment response, being Pioneer 94Y40 

(Pioneer Hi-Bred, Johnston, IA) and Pioneer 93Y20 (Pioneer Hi-Bred, Johnston, IA) considered 

highly suitable in poor drained areas (PD) and Pioneer P44T63R (Pioneer Hi-Bred, Johnston, 

IA), which perform better in good drainage conditions (GD). The two tillage operations were no-

till (NT) and strip-till (ST). Sub-surface band fertilizer was applied 15 cm deep in the soil, 2-3 

weeks before planting using the ST applicator Yetter (Yetter Mfg., Colchester, IL) pull caddy 

with Maverick Generation 2 openers and residue managers (model 2984) and a 5 cm mole knife, 

equipped with a Gandy Orbit Air model 623016 box and metering system (Gandy Co, Owatanna, 

MN). For NT was applied starter (5 cm deep and 5 cm to the side of the seed) with the planter. 

Broadcast treatments were applied at planting. At Scandia and Ottawa, sub-surface band 

treatment rate was 23 kg ha
-1

 N as UAN (28-0-0, N-P2O5-K2O respectively) and 45 kg ha
-1

 P2O5 

as ammonium polyphosphate (10-34-0). Broadcast and starter treatment rates were the same as 

sub-surface band. Broadcast sources were Urea (45-0-0) and MAP (11-52-0). Treatments rates 

can be considered commonly used by producers in a corn-soybean rotation based on nutrient 

sufficiency recommendation.  

 A composite soil sample of 20 cores was collected from each replication (block). 

Extractable P was determined by the Mehlich-3 method (Frank, 1998) and extracts analyzed 

using inductively coupled plasma (ICP) spectrometer (720-ES ICP; Varian Australia Pty Ltd, 

Mulgrave, Victoria, Australia). Extractable K was determined by the ammonium acetate method 

(Warncke, 1998). Soil pH was measured using a 1:1 soil:water ratio (Watson, 1998), and soil 

organic matter (OM) was determined by Walkley–Black method (Combs, 1998). 

 Plant tissue samples were taken during the vegetative and reproductive growth stage. 

Whole plant samples were taken at V3-V5 growth stage (Pedersen, 2003). This was 
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accomplished by removing ten soybean plants at random from non-harvest rows of each plot. 

Thirty uppermost trifoliate (without the petiole) were collected from the middle two rows at the 

R3 growth stage (Pedersen, 2003). Plants were weighted and dried in a forced air oven at 70 °C 

for a minimum of 6 days and weighted for biomass calculation. Once dry and weighted, plants 

were ground then analyzed for total nitrogen (N) and P. Total N and P were analyzed by sulfuric 

peroxide digest as described by Lindner and Harley (1942). Nitrogen digest was analyzed by an 

indophenol blue colorimetric procedure using the Rapid Flow Analyzer (Model RFA-300; 

Alpkem Corporation, Clackamas, Oregon, USA). Phosphorus was determined using inductively 

coupled plasma (ICP) spectrometer (720-ES ICP; Varian Australia Pty Ltd, Mulgrave, Victoria, 

Australia). Biomass weight and concentration in tissue were used to calculate N and P uptake. 

Root samples were collected from the control plots, with no treatment application, to evaluate 

possible differences in rooting system among genotypes. Ten root samples of each variety were 

dug from the soil using a shovel at V3 and R3 growth stages. Root samples were collected at 20 

cm deep and 40 cm diameter around the stem giving the total root biomass per volume of soil. 

Soil was removed by hand in the field as much as possible with minimum root loss.  Later, roots 

collected were washed with water, dried at 65°C for six days and weighted to get the total dry 

weight. 

 The two central rows of each plot were machine harvested. Seed weight was recorded 

and adjusted for 130 g kg
-1

 moisture. Seed was dried at 60°C for a minimum of four days, 

ground to a powder and digested with a sulfuric acid and hydrogen peroxide digest (Thomas, 

1967). Samples were then analyzed as previously described for leaf samples. 

 Data was analyzed by site using PROC GLIMMIX in SAS 9.2 (SAS, 2011) assuming 

block as a random factor in the model. The starter treatment was analyzed as part of the sub-
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surface band treatment. Separation of means at a significant level of p ≤ 0.10 was completed 

using the LINES option in PROC GLIMMIX. 

 Results and Discussion  

 Root System Analysis 

 Root characteristics showed significant differences in soybean (Table 4.2). The 

interaction of variety by growth stage showed significant differences in Ottawa 2014 where PD 

variety showed greater root biomass at the R3 growth stage. This result suggests a possible 

advantage in nutrient and water uptake (Mengel, 1995) towards the end of the season (Mengel, 

1995). 

 Root dry weight accumulation in the soybean varieties showed different results by site. In 

2015, the PD variety was found to have 75% more root dry weight in Scandia, but had 23% less 

root biomass than GD variety in Ottawa for the same year (Table 4.2). The PD variety likely was 

stimulated by the lower soil P test from Scandia (11 mg kg
-1

), increasing root growth. Similar 

results in root growth stimulated by low P availability were found by Lynch and Brown (2008). 

On the other hand, in Ottawa, the GD variety probably induced root growth trying to adapt to a 

wet, poorly drained soil. On average, root dry weight increased 225% in Ottawa and 290% in 

Scandia from V3 to R3 growth stage for both years of study (Table 4.2).  

 Dry Weight Accumulation 

 Above ground dry weight accumulation responded to the tillage by fertilizer placement 

interaction in Ottawa 2014 (Table 4.3), but did not show a significant difference in Scandia 

(Table 4.4). Strip-till combined with sub-surface band increased soybean dry weight compared to 
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NT under sub-surface band fertilization (Table 4.5). In addition, the other combinations of ST 

had greater g plant
-1

 than NT with any fertilizer placement for Ottawa 2014. Strip-till probably 

contributed for the early growth of soybean by breaking any possible soil compaction and 

increased nitrogen mineralization, potentially beneficial at this early growth stage (Ritchie et al., 

1985). No significant differences were found for tillage by variety at any site-year (Table 4.6). 

 Differences in total biomass accumulation were mostly due to fertilizer placement 

treatments. In 2 out of 4 site-years (Ottawa 2014 and Scandia 2015), sub-surface band was found 

to have significantly increased dry weight when compared to broadcast and control at V3 growth 

stage (Table 4.7). The sub-surface band fertilization places the fertilizer in closer proximity to 

the soybean root, providing nutrients for soybean development. Previous studies also report 

advantages of banded applications for early growth in soybean (Mallarino and Haden, 2004). In 

Ottawa 2015, sub-surface band and broadcast showed similar dry weight accumulation at V3 

growth stage, and both were greater compared to control (Table 4.7). In Scandia 2014 no 

differences were found in soybean dry weight response to fertilizer placement treatments (Table 

4.7).  

 Strip-till was found to increase soybean dry weight at the V3 growth stage in Ottawa 

2014, but not at the other sites (Table 4.7). These results are similar to previous studies showing 

the lack of soybean response to tillage (Randall et al., 2001a).  

 Ottawa 2015 was the only site that showed statistical differences in dry weight for 

soybean varieties, where the PD variety showed 3.2 g plant
-1

 versus 3.0 g plant
-1 

from the GD 

variety at V3 growth stage (Table 4.7). This result can be due to the suitability of the PD variety 

to poorly drained soils which applied to conditions found in Ottawa.   
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 Nutrient Concentration in Tissue and Uptake 

 Nutrient uptake at V3 growth stage and nutrient concentration in tissue at R3 growth 

stage showed significant differences for the main factors evaluated in Ottawa (Table 4.3) and 

Scandia (Table 4.4). No interaction effect was found regarding tillage by fertilizer or tillage by 

variety at any site for nutrient uptake in soybean (Table 4.5 and 4.6). On the other hand, the 

interaction tillage by fertilizer was found to be significant for nutrient concentration at R3 in 

Ottawa 2015, where NT by sub-surface band accumulated more P in tissue compared to ST by 

sub-surface band (Table 4.5).   

 Regarding nutrient uptake at V3 growth stage, the fertilizer placement factor showed 

significant differences at Ottawa and at Scandia. Sub-surface band treatment had greater effects 

on uptake compared to broadcast at both sites (Table 4.7). This result can be explained by the 

proximity of the fertilizer band to the root system, and agrees with Borges and Mallarino (2000) 

where banded P applications increased P uptake compared to broadcast. Both fertilizer 

treatments increased P uptake compared to the control. Nitrogen and P tissue concentration at R3 

growth stage were found to be in the sufficiency range (42.5 to 55.0 g kg
-1

 for N; 2.5 to 5.0 g kg
-1

 

for P) (Mengel, 2015) in all site-years regardless of fertilizer placement used (Table 4.7). 

Nevertheless, two out of four site-years showed differences in nutrient concentration according 

to fertilizer placement. In Ottawa 2015 the control treatment showed greater N concentration in 

the tissue compared to broadcast, but similar to sub-surface band (Table 4.7). The reduced 

rainfall amount towards the reproductive stage of soybean probably contributed for the lack of 

response of fertilization in Ottawa, especially for P. According to Hanway and Weber (1971), 

75% of total P uptake by soybeans is done in the reproductive stages. In Scandia 2015 the 

broadcast treatment increased the P concentration in tissue when compared to sub-surface band 
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and control (Table 4.7). This result can be explained by the fact that Scandia site showed P levels 

in the soil below the critical level (Table 4.1) for response to fertilization in Kansas which is 20 

mg kg
-1

 (Leikam, 2003). 

 Strip-till treatment resulted in greater N and P uptake than NT only in Ottawa 2014 

(Table 4.7). This result can be attributed to soil mineralization due the tillage enhancing the 

organic matter mineralization and breaking a possible stratification layer in the surface 

increasing nutrient availability.  

 Varieties did not show significant differences at any site for nutrient uptake at V3 growth 

stage (Table 4.7). Increased root biomass at R3 stage of PD variety probably helped to reach 

greater N and P concentration in tissue over the GD variety at Ottawa 2014 and Scandia 2015 

(Table 4.7). Mengel (1995) explained that the ability of the plant to produce more roots increases 

nutrient uptake sites and consequently the nutrient absorption.   

 Seed Yield 

 Soybean seed yield showed few differences among the treatments in this study (Table 4.3 

and 4.4). No interaction effect of tillage by fertilizer (Table 4.5) or tillage by variety (Table 4.6) 

was found for soybean yield. 

  No significant differences were found for fertilizer placement at any site-year (Table 

4.7).  Those results agree with past studies where band applications of P were similar to 

broadcast for soybeans (Borges and Mallarino, 2000; Buah et al., 1999). This study reinforces 

previous research reporting a likely lower critical level for soil test P for soybean compared to 

other crops (Arns and Ruiz Diaz, 2012). It is important to mention, though, that when P is not 

applied, the soil P levels will drop and yield reduction happen due to insufficient P (Randall et 

al., 1997).  
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 Supporting the soil characteristics of Scandia, results regarding tillage showed greater 

yields under NT system only in 2014 (Table 4.7). The water retention under NT system probably 

contributed for late growth stages, especially during seed filling when rainfall decreases 

considerably in Kansas. Although NT showed response in one site year, the tillage factor 

influence in soybean yields was not consistent. This result agrees with Elmore (1987) and 

Randall et al. (2001a) who conducted studies finding no significant response of soybean yields to 

different tillage systems. 

 Poor drainage variety yielded 27% more than GD variety in Ottawa 2014 (Table 4.7). A 

different result was found in Scandia where the GD variety had greater seed yield in both years 

(Table 4.7). These results can be explained by the suitability of each variety associated with soil 

characteristics of each site of study where Scandia is a silt-loam soil with a good drainage system 

and Ottawa is a silt loam soil with bad drainage conditions.  

 Seed Nutrient Concentration  

 The interaction NT by sub-surface band increased seed P concentration when compared 

to ST by sub-surface band in Scandia 2015 (Table 4.5). No significant differences were found in 

the interaction tillage by variety regarding seed nutrient concentration (Table 4.6). 

 Soybean seed nutrient concentration showed differences in 3 out of 4 site-years for 

fertilizer placement (Table 4.7). In Ottawa 2015, fertilizer placement influenced soybean seed P 

concentration. Broadcast was found to contribute for greater seed P concentration over sub-

surface band and control treatments (Table 4.7). This result agrees with Farmaha et al. (2012) 

who found responses to P fertilization not only in tissue but also in seed concentration. Similar 

result was found in Scandia 2014. Assuming that 2015 registered greater amounts of 

precipitation than 2014 (Scandia had supplemental irrigation), broadcast probably help the 
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soybean in late uptake since roots closer to soil surface could benefit from this sort of 

application. Scandia 2015 registered significantly greater seed P concentration under broadcast 

or sub-surface band treatments over the control, but no significant differences were found among 

fertilized treatments (Table 4.7). 

 Tillage, as a main factor, did not have any influence in the soybean seed N and P 

concentration. Varieties of soybean showed differences in seed nutrient concentration. In Ottawa 

2015 and Scandia 2015 PD variety showed greater N seed concentration than the GD variety 

(Table 4.7). In Ottawa 2015 GD variety showed greater P seed concentration compared to PD 

variety (Table 4.7). This result can be explained by the greater root dry weight found for GD 

variety at Ottawa 2015. Since P is an immobile nutrient, the increased root biomass probably 

induced the greater absorption of P by GD variety. 

 Conclusions 

 Differences in soybean root dry weight among genotypes were not consistent. The 

interaction of variety by growth stage showed greater root biomass for PD variety at R3 growth 

stage compared to GD variety only in one site. Root biomass accumulation among varieties was 

different and varies by site. 

 Sub-surface band treatment increased soybean above ground biomass accumulation at 

early growth stage in 2 out of 4 sites. It also contributed for greater P uptake by soybean 

compared to broadcast and control at V3-V5 growth stage. However, trifoliate concentrations 

revealed that at reproductive stage soybean N and P uptake were similar among fertilizer 

treatments.  
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 Although sub-surface band treatment increased most of the characteristics evaluated in 

this study, soybean seed yields were not significantly affected by fertilization at any site. Thus, 

the soil testing levels probably were sufficient to meet N and P requirements for soybeans. Even 

with this lack of fertilization response, if the producer chooses for not fertilize before soybean 

production, in a long term management, the fertility levels tend to decrease due crop removal. 

 Soybean yields were influenced by varieties according to the site where they were 

established. Poor drainage variety performed better at Ottawa while GD variety was found to 

have better results at Scandia site.  

 Tillage did not show a consistent response in soybean at any site. Thus, this result is 

important for farmers considering switching to conservation tillage. In case choosing NT, money 

and time can be saved since no operational tillage is necessary. Besides, a reduced tillage system 

improves soil quality and conservation. 
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Table 4.1. Average soil test values, total precipitation, average temperature and planting date by 

site. 

Site Year 

Soil test values 
Precipitation

‡
 

Average 

temperature
§
 

Planting 

date STP† STK pH OM 

mg kg
-1

 
 

g kg
-1

 mm °C 
 

1 2014 23 150 6.5 28 481 21.7 16-May 

2 2015 21 124 6.6 26 276 23.3 10-Jun 

3 2014 13 504 6.6 32 538 21.2 21-May 

4 2015 11 481 6.6 31 467 21.5 9-Jun 
†
 STP, soil test for phosphorus (Mehlich-3 method); STK, soil test for potassium (Ammonium acetate 

method); pH (1:1 soil:water ratio); OM, organic matter (Walkley-Black method). 
‡
 Total precipitation during May to October in 2014 and May to October in 2015 growing season. 

Sites 3 and 4 received supplemental irrigation. 
§
Average temperature during May to October in 2014 and May to October in 2015 growing season. 
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Table 4.2. Soybean root dry weight by variety and growth stage in 

Ottawa and Scandia. Samples collected from the control treatment 

only. 

Variety/ growth 

stages 

Ottawa  Scandia 

2014 2015  2014 2015 

  - - - - - - - - - - - - - - - - g
 
- - - - - - - - - - - - - - -  

 Variety 

PD† 0.8 0.23 b
‡
  0.72 0.70 a 

GD 0.51 0.30 a  0.67 0.40 b 

 
Growth stage 

V3 0.24 b 0.17 b  0.48 b 0.16 b 

R3 1.07 a 0.35 a  0.92 a 0.94 a 

 
Variety by Growth stage 

PD V3 0.15 c 0.13  0.39 0.2 

GD V3 0.32 bc 0.22  0.56 0.12 

PD R3 1.45 a 0.33  1.05 1.21 

GD R3 0.69 b 0.37  0.78 0.68 

 
- - - - - - level of significance (p > F) - - - - - - -  

Variety (V) 0.131 0.067*  0.738 0.094* 

Growth stage (GS) 0.001* 0.001*  0.008* 0.001* 

V x GS 0.025* 0.483  0.143 0.197 

† PD, poor drainage variety; GD, good drainage variety; V3, R3 

growth stage (Pedersen, 2003).  
‡
 Numbers followed by different letters within rows for each main 

effect and the interaction of genotype and growth stage represent 

statistically significant differences at the p ≤ 0.10.
 

* Statistically significant at 0.1 alpha level. 



80 

Table 4.3. Levels of significance for biomass accumulation, N and P uptake at V3 growth stage; and N and P 

concentration at R3 growth stage and in the seed, as well as yield for soybean in Ottawa. 

 
V3 growth stage  R3 growth stage  Seed Yield Seed Nutrient  

Parameters DW
†
 N uptake P uptake  N P   N P 

 
- - - - - - - - - - - - - - - - - - - - - - - - -  -  p > F - - - - - - - - - - - - - - - - - - - - - - - - - -  

 2014 

Tillage (T) *0.008 0.070 *0.011  0.293 0.822  0.203 0.732 0.907 

Variety (V) 0.795 0.953 0.739  *0.002 *0.059  *<0.001 0.230 0.784 

T x V 0.481 0.374 0.944  0.629 0.117  0.404 0.282 0.687 

Fertilizer (F) *0.007 *<0.001 *<0.001  0.759 0.538  0.415 0.151 0.142 

T x F *0.084 0.337 0.690  0.506 0.544  0.902 0.514 0.205 

F x V 0.118 0.174 *0.024  0.529 0.969  0.225 0.777 0.346 

T x F x V 0.297 0.857 0.628  0.540 0.642  0.287 0.924 0.192 

  2015 

Tillage (T) 0.433 0.388 0.934  0.779 0.548  0.869 0.338 0.789 

Variety (V) *0.078 0.181 0.214  0.974 0.771  0.877 *0.091 *<0.001 

T x V 0.455 0.181 0.219  0.351 0.336  0.554 0.807 0.658 

Fertilizer (F) *0.053 *0.056 *0.002  *0.098 0.967  0.886 0.603 *0.004 

T x F 0.499 0.562 0.866  0.149 *0.030  0.515 0.570 0.155 

F x V *0.081 *0.033 *0.055  0.714 0.750  0.456 0.363 0.328 

T x F x V 0.196 0.230 0.215  0.710 0.847  0.106 0.139 0.347 
† 

V3, R3 growth stage (Pedersen, 2003); DW, dry weight; N, nitrogen; P, phosphorus;   

* Statistically significant at 0.1 alpha level. 
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Table 4.4. Levels of significance for biomass accumulation, N and P uptake at V3; N and P concentration at R3 growth stage, 

seed yield and seed nutrient concentration for soybean in Scandia. 

 
V3 growth stage  R3 growth stage   Seed Nutrient  

Parameters DW
†
 N uptake P uptake  N P  Seed Yield N P 

 
- - - - - - - - - - - - - - - - - - - - - - - - - -  p > F - - - - - - - - - - - - - - - - - - - - - - - - -  

 2014 

Tillage (T) 0.464 0.516 0.960  0.506 0.342  *0.069 0.547 0.833 

Variety (V) 0.249 0.280 *0.060  0.495 0.943  *0.003 0.213 0.328 

T x V 0.423 0.364 0.351  0.152 0.313  0.429 0.566 0.195 

Fertilizer (F) 0.239 *0.083 *0.041  *0.086 *<0.001  0.265 0.476 *<0.001 

T x F 0.897 0.765 0.957  0.970 0.517  0.681 0.463 0.451 

F x V 0.245 0.195 0.160  0.644 0.961  0.306 0.399 *0.015 

T x F x V 0.677 0.540 0.494  0.458 0.141  0.502 0.221 0.284 

  2015 

Tillage (T) 0.327 0.209 0.322  0.451 0.201  0.512 0.864 0.581 

Variety (V) 0.854 0.600 0.555  *0.038 0.635  *0.040 *0.017 0.719 

T x V 0.554 0.561 0.468  0.734 0.529  0.660 0.939 0.947 

Fertilizer (F) *0.005 *<0.001 *<0.001  0.546 *<0.001  0.218 0.392 *<0.001 

T x F 0.534 0.588 0.383  0.233 0.189  0.259 0.243 *0.019 

F x V 0.659 0.512 0.720  0.539 0.672  0.509 0.277 0.812 

T x F x V 0.742 0.791 0.748  0.830 0.928  0.554 0.945 0.688 
† 

V3, R3 growth stage (Pedersen, 2003); DW, dry weight; N, nitrogen; P, phosphorus;   

* Statistically significant at 0.1 alpha level. 
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Table 4.5. Interaction effect for tillage and fertilizer placement on soybean biomass accumulation, nutrient uptake 

and nutrient concentration in tissue at different growth stages, seed yield and seed nutrient concentration. 

 

No-till  Strip-till 

Broadcast 
Sub-surface 

band 
Control 

 
Broadcast 

Sub-surface 

band 
Control 

 Ottawa 2014 

DW (g plant
-1

) V3
†
 1.06 d

‡
 1.11 cd 1.06 d  1.28 b 1.50 a 1.22 bc 

N (mg plant
-1

) V3 30 32 27  35 39 29 

N (g kg
-1

) R3 48 48 47  48 48 49 

P (mg plant
-1

) V3 2.8 3.6 2.4  3.4 4.0 2.9 

P (g kg
-1

) R3 2.9 3.0 2.9  3.0 3.0 3.0 

Seed yield (Mg ha
-1

) 1.5 1.6 1.5  1.6 1.7 1.6 

Seed N concentration (g kg
-1

) 59.2 60.2 58.1  58.8 60.2 59.4 

Seed P concentration (g kg
-1

) 5.7 5.7 5.7  5.7 5.8 5.6 

 Ottawa 2015 

DW (g plant
-1

) V3 3.2 3.3 2.9  3.2 3.1 2.9 

N (mg plant
-1

) V3 89 86 72  82 79 75 

N (g kg
-1

) R3 56 57 59  57 58 58 

P (mg plant
-1

) V3 8.5 9.1 7.5  8.5 8.9 7.7 

P (g kg
-1

) R3 4.2 bc 4.4 a 4.3 abc  4.4 ab 4.2 c 4.3 abc 

Seed yield (Mg ha
-1

) 3.7 3.6 3.7  3.6 3.6 3.6 

Seed N concentration (g kg
-1

) 59.1 59.4 60.0  59.3 58.7 59.4 

Seed P concentration (g kg
-1

) 5.1 5.0 5.1  5.2 5.1 5.0 

 
Scandia 2014 

DW (g plant
-1

) V3 2.7 2.9 2.7  2.8 3.2 2.8 

N (mg plant
-1

) V3 132 143 128  134 157 130 

N (g kg
-1

) R3 58 57 55  57 56 54 

P (mg plant
-1

) V3 9.9 10.8 9.0  9.7 11.1 9.0 

P (g kg
-1

) R3 3.8 3.5 3.3  3.6 3.4 3.0 

Seed yield (Mg ha
-1

) 4.2 4.1 4.1  4.0 3.9 3.8 

Seed N concentration (g kg
-1

) 58.5 57.8 58.2  58.2 58.3 55.6 

Seed P concentration (g kg
-1

) 4.8 4.4 4.1  4.7 4.4 4.2 

 
Scandia 2015 

DW (g plant
-1

) V3 1.4 1.4 1.2  1.1 1.3 1.1 

N (mg plant
-1

) V3 61 70 50  52 60 47 

N (g kg
-1

) R3 51 52 52  53 53 56 

P (mg plant
-1

) V3 5.7 6.0 4.4  4.5 5.6 4.0 

P (g kg
-1

) R3 4.2 4.2 3.7  4.2 4.0 3.8 

Seed yield (Mg ha
-1

) 4.9 4.7 4.5  4.5 4.8 4.5 

Seed N concentration (g kg
-1

) 55.1 54.9 54.0  55.0 54.4 54.9 

Seed P concentration (g kg
-1

) 4.9 a 5.0 a 4.2 c  4.9 a 4.6 b 4.3 c 
†
 V3, R3 growth stage (Pedersen, 2003); DW, dry weight; N, nitrogen; P, phosphorus; 

‡
 Numbers followed by different letters between columns, within each main factor, represent statistically significant 

differences at p ≤ 0.10. 
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Table 4.6. Interaction effect for tillage and variety on soybean biomass accumulation, nutrient uptake and 

nutrient concentration in tissue at different growth stages, seed yield and seed nutrient concentration. 

 

No-till  Strip-till 

Poor Drainage 

Variety 

Good Drainage 

Variety 

 Poor Drainage 

Variety 

Good Drainage 

Variety 

 Ottawa 2014 

DW (g plant
-1

) V3
†
 1.1 1.1  1.4 1.3 

N (mg plant
-1

) V3 29 30  35 33 

N (g kg
-1

) R3 49 46  50 47 

P (mg plant
-1

) V3 3.0 2.9  3.5 3.4 

P (g kg
-1

) R3 3.0 2.9  3.0 2.9 

Seed yield (Mg ha
-1

) 1.8 1.3  1.9 1.4 

Seed N concentration (g kg
-1

) 60 58.4  59.5 59.4 

Seed P concentration (g kg
-1

) 5.7 5.7  5.7 5.7 

 Ottawa 2015 

DW (g plant
-1

) V3 3.2 3.1  3.2 2.9 

N (mg plant
-1

) V3 82 82  85 73 

N (g kg
-1

) R3 58 57  58 58 

P (mg plant
-1

) V3 8.4 8.4  8.8 8.0 

P (g kg
-1

) R3 4.3 4.3  4.2 4.3 

Seed yield (Mg ha
-1

) 3.7 3.6  3.6 3.6 

Seed N concentration (g kg
-1

) 60.1 58.9  59.5 58.7 

Seed P concentration (g kg
-1

) 4.9 5.2  4.9 5.2 

 
Scandia 2014 

DW (g plant
-1

) V3 2.6 3.0  2.9 3.0 

N (mg plant
-1

) V3 126 143  139 141 

N (g kg
-1

) R3 58 55  55 56 

P (mg plant
-1

) V3 8.9 10.9  9.6 10.3 

P (g kg
-1

) R3 3.5 3.6  3.4 3.3 

Seed yield (Mg ha
-1

) 4.0 4.3  3.8 3.4 

Seed N concentration (g kg
-1

) 59.2 57.1  57.8 57.0 

Seed P concentration (g kg
-1

) 4.4 4.5  4.5 4.3 

 
Scandia 2015 

DW (g plant
-1

) V3 1.3 1.5  1.2 1.1 

N (mg plant
-1

) V3 57 64  53 52 

N (g kg
-1

) R3 53 51  54 52 

P (mg plant
-1

) V3 5.1 6.2  4.9 4.6 

P (g kg
-1

) R3 4.0 4.1  4.0 3.9 

Seed yield (Mg ha
-1

) 4.5 4.9  4.5 4.7 

Seed N concentration (g kg
-1

) 55.5 53.8  55.7 54.0 

Seed P concentration (g kg
-1

) 4.7 4.7  4.6 4.6 
†
 V3, R3 growth stage (Pedersen, 2003); DW, dry weight; N, nitrogen; P, phosphorus. 

‡
 Numbers followed by different letters between columns, within each main factor, represent statistically 

significant differences at p ≤ 0.10. 
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Table 4.7. Soybean biomass accumulation, nutrient uptake and nutrient concentration in tissue at different growth stages, seed 

yield and seed nutrient concentration as affected by the main effects of tillage, variety and fertilizer placement. 

 

Tillage  Variety  Fertilizer Placement 

No-till Strip-till  PD GD  Broadcast Sub-surface band Control 

 Ottawa 2014 

DW (g plant
-1

) V3
†
 1.1 b

‡
 1.3 a  1.2 1.2  1.2 b 1.3 a 1.1 b 

N (mg plant
-1

) V3 30 b 34 a  32 32  33 b 36 a 28 c 

N (g kg
-1

) R3 47.8 48.4  49.7 a 46.6 b  47.9 48.4 48.0 

P (mg plant
-1

) V3 2.9 b 3.5 a  3.2 3.2  3.1 b 3.8 a 2.7 c 

P (g kg
-1

) R3 2.9 3.0  3.0 a 2.9 b  2.9 3.0 2.9 

Seed yield (Mg ha
-1

) 1.6 1.7  1.9 a 1.3 b  1.6 1.7 1.6 

Seed N concentration (g kg
-1

) 59.2 59.5  59.7 58.9  59.0 60.2 58.7 

Seed P concentration (g kg
-1

) 5.7 5.7  5.7 5.7  5.7 5.7 5.6 

 Ottawa 2015 

DW (g plant
-1

) V3 3.1 3.1  3.2 a 3.0 b  3.2 a 3.2 a 2.9 b 

N (mg plant
-1

) V3 82.4 78.7  83.6 77.5  85.8 a 82.1 a 73.6 b 

N (g kg
-1

) R3 57.5 57.8  57.7 57.7  56.9 b 57.5 ab 58.6 a 

P (mg plant
-1

) V3 8.4 8.4  8.6 8.2  8.6 a 9.0 a 7.6 b 

P (g kg
-1

) R3 4.3 4.3  4.3 4.3  4.3 4.3 4.3 

Seed yield (Mg ha
-1

) 3.6 3.6  3.6 3.6  3.6 3.6 3.6 

Seed N concentration (g kg
-1

) 59.6 59.1  59.8 a 58.9 b  59.2 59.2 59.7 

Seed P concentration (g kg
-1

) 5.0 5.1  4.9 b 5.2 a  5.1 a 5.0 b 5.0 b 

 
Scandia 2014 

DW (g plant
-1

) V3 2.8 3.0  2.8 3.0  2.8 3.1 2.8 

N (mg plant
-1

) V3 135 140  133 142  133 b 150 a 129 b 

N (g kg
-1

) R3 56.8 55.8  56.7 55.8  57.7 a 56.7 ab 54.4 b 

P (mg plant
-1

) V3 9.9 9.9  9.2 b 10.6 a  9.8 ab 11.0 a 9.0 b 

P (g kg
-1

) R3 3.5 3.3  3.4 3.4  3.7 a 3.5 b 3.1 c 

Seed yield (Mg ha
-1

) 4.2 a 3.9 b  3.9 b 4.2 a  4.1 4.0 4.0 

Seed N concentration (g kg
-1

) 58.6 57.4  58.5 57.0  58.3 58.1 56.9 

Seed P concentration (g kg
-1

) 4.4 4.4  4.5 4.4  4.8 a 4.4 b 4.1 c 

 
Scandia 2015 

DW (g plant
-1

) V3 1.3 1.2  1.2 1.3  1.2 b 1.4 a 1.1 c 

N (mg plant
-1

) V3 61 53  55 58  56 b 65 a 49 c 

N (g kg
-1

) R3 51.8 52.6  53.1 a 51.3 b  52.3 52.5 51.8 

P (mg plant
-1

) V3 5.4 4.7  4.9 5.2  5.1 b 5.8 a 4.2 c 

P (g kg
-1

) R3 4.0 4.0  4.0 4.0  4.2 a 4.1 b 3.7 c 

Seed yield (Mg ha
-1

) 4.7 4.6  4.5 b 4.8 a  4.7 4.7 4.5 

Seed N concentration (g kg
-1

) 54.7 54.8  55.6 a 53.9 b  55.1 54.6 54.5 

Seed P concentration (g kg
-1

) 4.7 4.6  4.7 4.6  4.9 a 4.8 a 4.3 b 
†
 V3, R3 growth stage (Pedersen, 2003); DW, dry weight; N, nitrogen; P, phosphorus; PD, poor drainage variety; GD, good 

drainage variety. 
‡
 Numbers followed by different letters between columns, within each main factor, represent statistically significant 

differences at p ≤ 0.10. 
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Chapter 5 - General Conclusions 

The adoption of either sub-surface band or broadcast fertilization may change the 

distribution of nutrients in the soil. While sub-surface band create bands of greater nutrient 

concentration, broadcast induce to stratification or, in other words, accumulation of certain 

nutrient in the soil surface. Both methods showed to increase yields in corn, but not in soybeans. 

It is important to notice that even with low or no response showed by soybean, the farmer has to 

consider building the soil fertility or at least supplying what is being removed from the system 

with the grain harvester. In this study, Scandia site was diagnosed with low soil test P levels 

(below critical level for Kansas) under irrigation and Ottawa site with medium soil test P levels 

(above critical level for Kansas) under rainfed conditions. This condition is very important since 

the P diffusion depends not only of moisture but the P concentration in the soil solution. Soybean 

yields did not respond to fertilization even in Scandia where the soil test levels for P were under 

the critical level for Kansas. The fact that Scandia has supplemental irrigation probably 

contributed for P diffusion in soil, minimizing the lower P levels in soil. 

Tillage as a single factor has not shown consistent results. The exception was in Ottawa 

2015 where most of the variables tested (biomass, nutrient uptake and grain nutrient 

concentration) showed greater values under NT. However, most of the significant interactions of 

this study were with fertilizer placement by tillage, and again, NT has shown greater response 

when compared to ST. It is important to remember that the NT in this study was not a long term 

system. Nevertheless, NT system applied here was considerable with more residues from past 

crops when compared to ST, besides the fact of no soil disturbance. Future increments in this 

research topic would include a long term NT area to access a more representative data regarding 

tillage.  
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Based on the greenhouse study and field measurements done with roots, we conclude that 

in corn, the two hybrids tested are different in characteristics evaluated such as dry weight, root 

length and surface area. It will be very useful to test those hybrids under the fertilizer placements 

to see possible response based on the genotype potential under certain situation specifically for 

those sites. Soybean varieties showed a more site specific response depending mainly on the soil 

texture. Since the uptake is related to a soil-root mechanism, the correct genotype choice made 

by the producer is an important management practice to reach greater yields. 
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Appendix A - Across Location Analysis for Chapters 3 and 4
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Appendix A.1. Levels of significance for N and P uptake and biomass accumulation for corn at different growth stages, grain yield and grain nutrient concentration 

across locations.  

 
V6 growth stage 

 
V10 growth stage 

 
VT growth stage 

 
Grain 

Yield 

Grain Nutrient 

Concentration 

Parameters DW
†
 N P  DW N P  DW N P  N P 

  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  p > F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Tillage (T) <0.001* 0.009* 0.001*  0.140 0.842 0.641  0.010* 0.956 0.267  0.437 0.641 0.593 

Hybrid (H) 0.013* 0.002* 0.025*  0.173 0.232 0.012*  0.983 0.646 0.938  0.912 <0.001* 0.003* 

T x H 0.431 0.329 0.680  0.005* 0.011* 0.012*  0.319 0.225 0.109  0.627 0.930 0.759 

Fertilizer (F) <0.001* <0.001* <0.001*  <0.001* <0.001* <0.001*  <0.001* <0.001* <0.001*  <0.001* <0.001* 0.110 

T x F 0.153 0.314 0.703  0.643 0.578 0.405  0.110 0.727 0.339  0.238 0.282 0.280 

F x H 0.564 0.642 0.396  0.306 0.338 0.272  0.288 0.368 0.231  0.085* 0.068* 0.603 

T x F x H 0.310 0.542 0.597  0.350 0.197 0.227  0.780 0.917 0.722  0.232 0.149 0.092* 
† 
DW, dry weight; N, nitrogen; P, phosphorus; V6, V10, VT growth stage (Abendroth et al., 2011). 

* Statistically significant at 0.1 alpha level. 
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Appendix A.2. Interaction effect for tillage and fertilizer placement on corn biomass accumulation and nutrient 

uptake at different growth stages, grain yield and grain nutrient concentration across locations. 

 

No-till  Strip-till 

Broadcast 
Sub-surface 

band 
Control 

 

Broadcast 

Sub-

surface 

band 

Control 

DW 

(g plant
-1

) 

V6
†
 13.8 12.8 10.4  11.9 12.3 9.0 

V10 85 82 65  81 77 64 

VT 142 149 119  138 135 118 

N  

(mg plant
-1

) 

V6 149 139 108  126   137 95 

V10 2098 2048 1447  2049 2022 1566 

VT 2198 2401 1663  2176 2336 1737 

P  

(mg plant
-1

) 

V6 34 30 24  29 28 21 

V10 273 257 184  264   242 196 

VT 317 325 249  305 302 256 

Grain yield (Mg ha
-1

) 11.3 10.6 7.9  10.7 10.8 7.8 

Grain N concentration (g kg
-1

) 10.7 10.7 9.9  10.5 10.8 9.9 

Grain P concentration (g kg
-1

) 2.5 2.4 2.4  2.4 2.3 2.4 
†
 V6, V10, VT growth stage (Abendroth et al., 2011); DW, dry weight; N, nitrogen; P, phosphorus. 

 
‡
 Numbers followed by different letters between columns, within each main factor, represent statistically significant 

differences at p ≤ 0.10. 
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Appendix A.3. Interaction effect for tillage and hybrid on corn biomass accumulation and nutrient uptake at 

different growth stages, grain yield and grain nutrient concentration across locations. 

 

No-till  Strip-till 

P1151 AM P1105 AM  P1151 AM P1105 AM 

DW 

(g plant
-1

) 

V6
†
 12.6 12.1  12.0 10.6 

V10 81 a
‡
 73 b  73 b 76 b 

VT 138 136  129 131 

N  

(mg plant
-1

) 

V6 138 126  128 110 

V10 1998 a 1731 c  1831 bc 1927 ab 

VT 2115 2060  2022 2144 

P  

(mg plant
-1

) 

V6 30 28  28 24 

V10 260 a 217 b  234 b 234 b 

VT 304 290  281 294 

Grain yield (Mg ha
-1

) 9.9 9.9  9.7 9.8 

Grain N concentration (g kg
-1

) 10.7 10.2  10.6 10.2 

Grain P concentration (g kg
-1

) 2.5 2.4  2.5 2.4 
†
 V6, V10, VT growth stage (Abendroth et al., 2011); DW, dry weight; N, nitrogen; P, phosphorus.  

‡
 Numbers followed by different letters between columns, within each main factor, represent statistically 

significant differences at p ≤ 0.10. 
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Appendix A.4. Interaction effect for hybrid and fertilizer placement on corn biomass accumulation and nutrient 

uptake at different growth stages, grain yield and grain nutrient concentration across locations. 

 

P1151AM  P1105AM 

Broadcast 
Sub-surface 

band 
Control 

 

Broadcast 

Sub-

surface 

band 

Control 

DW 

(g plant
-1

) 

V6
†
 13.1 13.2 10.1  12.7 12.0 9.4 

V10 85 83 64  81 77 65 

VT 140 145 116  140 140 121 

N  

(mg plant
-1

) 

V6 143 147 109  132 128 94 

V10 2159 2110 1475  1988 1960 1538 

VT 2200 2394 1611  2174 2343 1789 

P  

(mg plant
-1

) 

V6 32 31 24  30 28 21 

V10 287 263 191  251 237 188 

VT 320 315 243  302 313 262 

Grain yield (Mg ha
-1

) 11.3 a
‡
 10.6 b 7.6 c  10.7 ab 10.7 ab 8.1 c 

Grain N concentration (g kg
-1

) 10.8 ab 10.9 a 10.3 d  10.4 cd 10.6 bc 9.6 e 

Grain P concentration (g kg
-1

) 2.5 2.4 2.5  2.4 2.3 2.4 
†
 V6, V10, VT growth stage (Abendroth et al., 2011); DW, dry weight; N, nitrogen; P, phosphorus. 

‡
 Numbers followed by different letters between columns, within each main factor, represent statistically significant 

differences at p ≤ 0.10. 
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Appendix A.5. Corn biomass accumulation and nutrient uptake at different growth stages, grain yield and grain nutrient concentration as 

affected by tillage, hybrid and fertilizer placement across locations. 

 

Tillage  Hybrid  Fertilizer Placement 

No-till Strip-till  P1151 AM P1105 AM  Broadcast Sub-surface band Control 

DW 

(g plant
-1

) 

V6
†
 12.4 a

‡
 11.1 b  12.1 a 11.3 b  12.9 a 12.6 a 9.7 b 

V10 77 74  77 74  83 a 80 a 65 b 

VT 137 a 130 b  134 134  140 a 142 a 119 b 

N  

(mg plant
-1

) 

V6 387 a 351 b  385 a 352 b  404 a 414 a 288 b 

V10 1865 1879  1914 1829  2074 a 2035 a 1506 b 

VT 2087 2083  2068 2102  2187 b 2369 a 1700 c 

P  

(mg plant
-1

) 

V6 43 a 39 b  43 a 40 b  47 a 45 a 31 b 

V10 238 234  247 a 225 b  269 a 250 b 190 c 

VT 297 288  293 292  311 a 314 a 253 b 

Grain yield (Mg ha
-1

) 158.02 155.70  156.70 157.03  175.25 a 170.41 a 124.93 b 

Grain N concentration (g kg
-1

) 10.5 10.4  10.7 a 10.2 b  10.6 b 10.8 a 9.9 c 

Grain P concentration (g kg
-1

) 2.4 2.4  2.5 a 2.4 b  2.44 a 2.37 b 2.42 ab 
†
 V6, V10, VT growth stage (Abendroth et al., 2011); DW, dry weight; N, nitrogen; P, phosphorus. 

‡
 Numbers followed by different letters between columns, within each main factor, represent statistically significant differences at p ≤ 0.10. 



93 

Appendix A.6. Levels of significance for biomass accumulation, N and P uptake at V3; N and P concentration at R3 growth 

stage, seed yield and seed nutrient concentration for soybean across locations. 

 
V3 growth stage  R3 growth stage   Seed Nutrient  

Parameters DW
†
 N uptake P uptake  N P  Seed Yield N P 

 
- - - - - - - - - - - - - - - - - - - - - - - - - -  p > F - - - - - - - - - - - - - - - - - - - - - - - - -  

Tillage (T) 0.535 0.691 0.831  0.695 0.032*  0.143 0.605 0.807 

Variety (V) 0.925 0.530 0.118  0.001* 0.540  0.414 0.002* 0.360 

T x V 0.107 0.196 0.044*  0.143 0.958  0.514 0.159 0.686 

Fertilizer (F) 0.001* <0.001* <0.001*  0.416 <0.001*  0.312 0.344 <0.001* 

T x F 0.927 0.853 0.884  0.584 0.458  0.578 0.951 0.709 

F x V 0.883 0.492 0.489  0.879 0.825  0.552 0.152 0.100 

T x F x V 0.510 0.515 0.427  0.929 0.452  0.688 0.594 0.540 
† 

V3, R3 growth stage (Pedersen, 2003); DW, dry weight; N, nitrogen; P, phosphorus;   

* Statistically significant at 0.1 alpha level. 
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Appendix A.7. Interaction effect for tillage and fertilizer placement on soybean biomass accumulation, nutrient 

uptake and nutrient concentration in tissue at different growth stages, seed yield and seed nutrient concentration 

across locations. 

 

No-till  Strip-till 

Broadcast 
Sub-surface 

band 
Control 

 
Broadcast 

Sub-surface 

band 
Control 

DW (g plant
-1

) V3
†
 2.1 2.2 2.0  2.1 2.2 2.0 

N (mg plant
-1

) V3 121 128 114  122 130 117 

N (g kg
-1

) R3 5.3 5.4 5.3  5.4 5.4 5.3 

P (mg plant
-1

) V3 10.5 10.8 9.2  10.6 11.0 9.5 

P (g kg
-1

) R3 0.4 0.4 0.4  0.4 0.4 0.4 

Seed yield (Mg ha
-1

) 3.6 3.5 3.5  3.4 3.5 3.4 

Seed N concentration (g kg
-1

) 57.9 58 57.5  57.8 57.8 57.3 

Seed P concentration (g kg
-1

) 5.1 5.0 4.8  5.1 5.0 4.8 
†
 V3, R3 growth stage (Pedersen, 2003); DW, dry weight; N, nitrogen; P, phosphorus; 

‡
 Numbers followed by different letters between columns, within each main factor, represent statistically significant 

differences at p ≤ 0.10. 
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Appendix A.8. Interaction effect for tillage and variety on soybean biomass accumulation, nutrient uptake and 

nutrient concentration in tissue at different growth stages, seed yield and seed nutrient concentration across 

locations. 

 

No-till  Strip-till 

Poor Drainage 

Variety 

Good Drainage 

Variety 

 Poor Drainage 

Variety 

Good Drainage 

Variety 

DW (g plant
-1

) V3
†
 2.0 2.1  2.2 2.1 

N (mg plant
-1

) V3 120 122  127 119 

N (g kg
-1

) R3 5.4 5.2  5.4 5.3 

P (mg plant
-1

) V3 9.9 b
‡
 10.4 ab  10.6 a 10.2 ab 

P (g kg
-1

) R3 0.4 0.4  0.4 0.4 

Seed yield (Mg ha
-1

) 3.5 3.5  3.4 3.4 

Seed N concentration (g kg
-1

) 58.6 56.9  58 57.2 

Seed P concentration (g kg
-1

) 4.9 5.0  4.9 5.0 
†
 V3, R3 growth stage (Pedersen, 2003); DW, dry weight; N, nitrogen; P, phosphorus. 

‡
 Numbers followed by different letters between columns, within each main factor, represent statistically 

significant differences at p ≤ 0.10. 



96 

Appendix A.9. Interaction effect for variety and fertilizer placement on soybean biomass accumulation, nutrient 

uptake and nutrient concentration in tissue at different growth stages, seed yield and seed nutrient concentration 

across locations. 

 

Poor Drainage Variety  Good Drainage Variety 

Broadcast 
Sub-surface 

band 
Control 

 
Broadcast 

Sub-surface 

band 
Control 

DW (g plant
-1

) V3
†
 2.1 2.2 2.0  2.1 2.2 2.0 

N (mg plant
-1

) V3 125 130 116  118 128 115 

N (g kg
-1

) R3 5.5 5.4 5.4  5.3 5.3 5.3 

P (mg plant
-1

) V3 9.4 10.6 10.6  10.5 11.1 9.3 

P (g kg
-1

) R3 0.4 0.4 0.4  0.4 0.4 0.4 

Seed yield (Mg ha
-1

) 3.5 3.5 3.4  3.5 3.5 3.4 

Seed N concentration (g kg
-1

) 58.8 58.6 57.6  57.0 57.2 57.2 

Seed P concentration (g kg
-1

) 5.1 4.9 4.8  5.1 5.1 4.8 
†
 V3, R3 growth stage (Pedersen, 2003); DW, dry weight; N, nitrogen; P, phosphorus; 

‡
 Numbers followed by different letters between columns, within each main factor, represent statistically significant 

differences at p ≤ 0.10. 
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Appendix A.10. Soybean biomass accumulation, nutrient uptake and nutrient concentration in tissue at different growth stages, seed 

yield and seed nutrient concentration as affected by the main effects of tillage, variety and fertilizer placement across locations. 

 

Tillage  Variety  Fertilizer Placement 

No-till Strip-till  PD GD  Broadcast Sub-surface band Control 

DW (g plant
-1

) V3
†
 2.1 2.1  2.1 2.1  2.1 b 2.2 a 1.9 b 

N (mg plant
-1

) V3 77 76  76 77  77 b 82 a 70 c 

N (g kg
-1

) R3 5.34 5.36  5.43 a 5.28 b  5.37 5.37 5.31 

P (mg plant
-1

) V3 6.65 6.61  6.49 6.77  6.63 b 7.36 a 5.89 c 

P (g kg
-1

) R3 0.37 a 0.36 b  0.37 0.37  0.38 a 0.37 b 0.35 c 

Seed yield (Mg ha
-1

) 3.5 3.4  3.5 3.5  3.5 3.5 3.4 

Seed N concentration (g kg
-1

) 57.8 57.6  58.3 a 57.1 b  57.8 57.9 57.4  

Seed P concentration (g kg
-1

) 0.5 0.5  0.49 0.5  0.51  a 0.5  b 0.48 c  
†
 V3, R3 growth stage (Pedersen, 2003); DW, dry weight; N, nitrogen; P, phosphorus; PD, poor drainage variety; GD, good 

drainage variety. 
‡
 Numbers followed by different letters between columns, within each main factor, represent statistically significant differences at p 

≤ 0.10. 

 


