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Introduction

The purpose of this report 1s to demonstrate the practic-
ality of making a theoretical analysis before attempting to
numerically solve a partial differential equation (PDE). The
report is divided into two parts. In part I, a theoretical
analysis is made to find an appropriate finite difference
scheme, In part TII, éctual calculations are made to affirm
the results of the analysis, 7

We consider the PDE

Uptcu,=0
with initial conditions

u(x,0)=0 % 0,
and boundary conditions

u(0,t)= 40 t<o0
'L >0,

A finite difference scheme is developed which depends on a
parameter ~=Ax/(chit),
The exact solution to this problem is a positively trav-

eling wave with velocity c, as shown in the figure,
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Part I,
A, Discussion of the equation

We shall first find the general solution to the so-called

!

"color equation," uitcu,=0, where x and t are real variables,

and ¢ 1s a positive constant. To this end, we introduce the

one-to-one change of variables ’izx-ct, and - =x+ct, Then

ut=u€ Syt ?tzukf(—c)+uﬁf(c), and
Up=Ug bl =l U,

Hence the color equation becomes
-cu.- +cu, . +cu. +cuvz=0, or
F { 2

20u,}f|

=0, or u:f(ﬁi).
This 1ast'equation shows that the general solution must be of
the form u(x,t)=f(x-ct), where f 1s an arbitrary function which
has a first derivative.

The solution is easy to Interpret. It shows that u takes
on a constant value along each straight line of slope dt/dx=1/c

(see Fig., D. These lines are called the characteristic lines.




B. Finite difference schemes
1. An "unstable" finite difference scheme

Consider a rectangle 0<t<T, and 0~ x<1 in the x-t plane,
where T is a positive constant. We form a "grid" in the rec-
tangle by specifying positive finite differences A x and At.
For simplicity, we'll take Ax=1/J, where J is any given pos-
itive integer. To simplify the writing, we denote u(jd x,nAt)
by (u)} (or'u?), and similarly for u, and u..

In order to solve the color equation numerically, we use

the Taylor series to derive:

U-Il+:!. un
P
|
(ug)y = ——— + 0(&t), and
n n
o SH1TRg-1 .
(U’X)j = “Bhz + 0((Ax)7).

The latter is called a "center difference" scheme, We use a
"forward difference" scheme for ui since we want to go directly
from level n to level n+l., Then the approximation to ut+cux=0

gives rise to the finite difference equation

1+1 M n
Uj -0 uy-05a
- t+ ¢————— = 0, or
At 2 AX
t
gty ifi_ 02 JU |
J J7 2 Ax J+1 J-1

Observe that u 1s used for the exact solution, and U is used

cAt
for the finite difference solution. If we set >\::£l , we have,
X




’

(1) U51+1-U3.1-—_%\. f,\' - Uj- 1\

We now analyze equation (1). The simplest kind of analysis

is the von Neumann analysisl where we assume perlodicity in x

(by assuming k is real) and we assume

where tp=nslt, and x5=J.y x. Then (1) becomes

> ) !
e;!f thiptikx i et:l T, tikxy N

0 A

/' s or

L
:;tn+ TN tHikxg e\ tn+ikxj N (e::; tptikx gtk x
3t +ikx -ik A x 2

-e'

Hence,

gAt )\ik&x dkﬁx
e = '

(e -e ) = 1- ZisinkNx, so
2
| ALt U
e /l+k sin“k.ix . Thus,
i A 1kx s I aAtin
i i n J \\—
Uy} = ’ (e )'e 1 = le"

oL
= (1+ N sianAx)n/g.

Our next aim is to introduce the notion of stability.

To this end, for the PDE ut+cux=-0, let continuous boundary

Isaacson, E., and Keller, H., Analysis of Numerical

Methods, P. 523, John Wiley & Sons, Inc,, N, Y., 1966,



conditlons u(O,t)=g(t), for 0 t=T, and continuous initial
conditions u(x,0)=f(x), for 0=x=1, be given. (We require
g(0)=£(0).) Note that for the finite difference scheme, the
initial conditions are U?:f(j[sx), and the boundary conditions
are UB=g(n/\t).

Next, for any n such that n&t< T, let U? be obtained by

some finite difference scheme, and define

L vl = mex v,
Y
| 0Ol = max if(x)] , and
Cae] |
Uil = max [ &(x)]. men

Definition: The finite difference scheme is stable if there

are constants K; and K, such that
Hutll =%y I WO + ko [[Ug]] for all nat<T,

The definition requires a continuous dependence upon the
initial and boundary conditions, i.e., a small change in them
means at most a small change In the computed solution.

The following claim will show that this scheme is unstable.
In particular, we can find some n which violates the conditions
of the definition.

Claim. Given any positive number N, any arbitrary upper
bound (A x)o, and any T >0, there 1s an ng such that ngAt£T

~ l s;':rfﬂt‘lno

= e N,

and EUQ[

J
Proof': y
- ne/2

(1) Find an n, such that (1+ 2/2) >N.

(2) Find a At such that ngAt<T,



(3) Choose any Ax< (A x)o, satisfylng Ax=cat/\ .
Then there iz a k such that \sink.ﬁx\g}z%. For this k
and ng, the claim holds since
@M’f ﬂ sin2kAX3(l+ 2/2)%, and by (2)

>N.

It should be remarked that although this analysis may not

seem rigorous, it is simple and practical.

2.. A finite difference scheme that is stable
We now turn our attention to a finite difference
scheme that 1s stable .:E‘or certain values of the ratio

A=cAt/Ax. Specifically,

UL, o410 cAt
+1 J+1tVi-1 a (
U? - = + ZAX US}+1-U5}_1) =0, or

+1 n
) U{]l = 3(Ug,1+03.1) - %(U§+1'Uj-1)°

This scheme is obtained from the previous one by replacing
n n n
Uj by an average, namely (UJ.+1+UJ._1)/2.

In order to epply the von Neumann analysis to (3),

we again assume

@tn 1kx j

tle

this into equation (3) gives

where t,=ndt, and X 5=J Ax. Substituting

=2 le +e -e

§At [ ik x -ik:’.\x) %Lik:&x
e
2

—ik.&x)

= coskAx - 1 XsinkAx. Thus,

L cAL
() e & =\/COSEKAX+ )\gsinzkfsx .



b1
We see that if A1, then et At|£) por a11 k, 1.e., all
modeg. Hence, there is no unlimited growth in any mode.
We call M(k):eﬁ&tx coskA x-1 )\ sink& x the amplification

factor because we can wrilte

U?=(M(k))neikxj. It's evident that no mode can grow
whenever A£l, for then \M(k)hél.

We are now in a position to formulate the algorithm
for numerical computations using equation (3). We consider
the following initial boundary value problem:

Ugtcuy=0, O0Zx<l, 0=t= T, u(x,0)=f(x) and

u(0,t)=g(t). (Note that f(x) and g(t) must be compatible
at x=t=0,) The x domain is divided into an integral number of

zones, dJ.

The Algorithm
1. Use the initlal condition to get Ug:fj: ey v nsds
where fj=f(jilx).
2. Useequation (3) fOl" J=l,2’¢.¢_’J"'l:
+1 ,,.n n A n
(3) Uy “=3(Ujq+U5_1) - S5(U51-U5 1)
3. Use the boundary condition at x=0 to get
n
Up=8, where g=g(ndt).
4, When we try to find U} ( or U? in general), (3)

will not work since u© is unknown; nevertheless, the

J+1
solution for this point is easy. One interpolates by
using lines of slope 1l/c.

A diagram will be helpful in developing the general

case (see Fig. 2)., The line of slope 1/c¢c is a characteristic,
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At
((mj+1-m) Ax
(‘”4-”\////////
(0,0) (J-{m -1,0) & (J-(m ,0) (3,0) x~
e MAX

—>|
Notes:
1. The slope 1/c=At/(mAx) gives m=cAt/Ax= X\,
the A used throughout,
2. The brackets [ ] denote the greatest integer part

of the gquantity in the brackets.

Figure 2.



and (as noted earlier) the solution to our PDE 1s a constant
along a characteristic. The linear Interpolation formula
is thus
ULaU (8 )= ( (] +1-m)U>_ -+ (- (] YU°
J J- (in] J-[m]-1 2
where m= X\ as noted in the figure.

The derivation shows that we must require m<J so that
[@]in-l. This will assure us that the line of interpolation
crosses the x-axis before it crosses the t-axis. But,
as we've seen, A<1 must be used if we're interested in
a stable scheme. Thus in general, we have

n+ l_ ' n n
(5) Uy =([A] +1- A)UJ,[K] +( A EXJ)UJ;l:k]_l'

It should be remarked that if X\=1, then equation

(3) becomes y iyt

J J-12
then At/Ax=1/c, i.e., the grid points are the slope of

which i1s the exact solution since

the characteristics away from each other.

There are two more things that we can do that are
appropriate to our discussion of equation (3). One is to
apply anothef elementary analysis, and the other 1s to
discuss convergence to the true solution. We first present
the analysis., It will show that the computed solution
has no unlimited growth for A%1, and is in fact bounded
by the boundary and initial conditions.

We introduce Un=(Ug,Un, c m w U?) with a norm

0¢j%
u?*lz(g- A/2)05, 1+ (b We)ul_ ) or,

Tkl : !
Uy (3= M2) (UL 0 Me) (Ut o,

‘lUn%l= -jyglU?}' For A<1, we have by (3)



\U3+1141EUnﬁ s J=142, eees d=1., Furthermore,

Up ﬁ:§€n+1” and equation (5) gilves

‘ U§+lf3“Un{(. Thus
| U™ = max( leqlsll U2 1)

R

-
<=

f&-max(lgn+l[,fgn[, ...,lgﬂ,liUO\l).

Now assume (n+1)A t£ T, and let | gl = sup lg(t)l,
o 0= teT
and JIfll = sup [f(x)l. Then
| 0%x=1 |
f U Zmax( f) , el ),

as was to be shown. Thus, by a previous definition, the
scheme 1s stable.
Finally, it is important to discuss convergence.
In this discussion, we assume that as many partial derivatives
exlist as are necessary, and that they are bounded.
Denote by u(x,t) the actual solution to our problem,
and by U? the finite difference solution. Then for Jj=1,2,...,J-1

we have

+1
(6) U3 =3(U, +UT ) - 2(U§+1 ), and )
n+l n
(7) u l(uJ+1+uJ 1) - 2(u3+1— J_l)+:ﬁt’?j where th
is the truncatlon error, which will be determined, and
R =it B,

In order to determine'qu, in (7) we use

ntl n n n+ = o
uj =uj+(ut)313t+(utt)j (A t) , where n<n+< n+l,
and similar expressions for u?+l and u?_l. We also assume

that there are constants C;, C,, and C, such that lutt|€501,

3

[ <C3 on 0€x%1, 0<t=T, where T

Ju, | = Co, and | uyyy



10
is the maximum time we allow,.

Thus (7) eglves

B (ug)] 8 0k (ugy) ] (A8) =) +(ux)13Ax+(uxx)?+(_%_>£)

A (420%) - S0, e, )F
-ﬂ%mggﬂm u+@)fu(%gﬁ%rﬁﬂam)(AXﬁ)
+At’l'j, or

2 2
( t)J t+(utt)a (At) "2((uxx)J+( "2X) +(uxx)' (‘AX) )
- S A ()] A% () e (4) 3+ ()7 At ()] Ax)7)
Ez;xn Xxx/ j+ —-= 3 YUxxx (
+A'tTJ-.
The three first derivative terms in the last expression

drop out because u satisfies (ut)?w—-—c(ux)n by the assumption

J
that it satisfies the PDE ugtcu =0. Further, since A=cAt/Ax,
we have (/ x)2=c2(A t)2 . Using these facts, the above

becomes A
+ 2 n 5
(vee)3 (£48) -—é—((uXX)J;(uxx)g_)q(fet)e
2.
n 3 n 3 _ i
+g‘i}tc((uXXX)J-+(%§) +(uXXX)j—(£'6_}£) ) _ At’CJ.,

y 1, %,

and Cg respectively. Then, by the last equation, we find

Now recall that u Uyys and u are bounded by C

XK
that there exist constants K, and K, such that

}ftigjf;Kl££t+K2(£lx)2 for J=l, 25 wees d=1 and all n
such that nAt<T. Further, considering * to be fixed,
by the definition of A we have

MNAx=c At, or éixé(c&.t)/x. Thus

[’2"“}-: Ky A tHK e ("t)E. Finally, let (At)_ be so

small that At<= (A t) 1mplies

(! ) Koe (Lt)P"Kl/\ t. Then for any At <(/t),, we have

14 n |
’?:’J ?*’QKlL.\.t. We say J(_ J}:O( N E)a



11
We also need to recall u8+1=gn+l, and (by Fig. 2)

§+lnuJ x=u((J~ N\)Ax,nAt).

If we use (5), the linear interpolation formula, then
i n

2
since the correction to a linear interpolation involves
(A x)2 (and higher orders which we neglect),

Define the error to be erj":uz-l—Ug. Then equation (7)

minus equation (6) gives
8 n+1 1o L 1'1
Furthermore, at the boundaries we have

n+l n+1 n+l
(9) ¥ Yo -Ug gm,l-gn_l_l:O, and

X(eJﬂ_ “ )+£&t’t’? for J=1,2, «.s, J=1,

(10) en+l =( N)\"l F1m }\;eJ N +{ - L}J)eJ IN]- 1+K3( )‘2.
Let 'tJ_K3 C;‘ =K, & 2t . Define [P = g 5| and
i e i,-o m?x_ le Now require N4l (and fixed).
Then ’L‘n—o(/‘\ t), and from (8), we get
52 el +ALET L 4=, 2, Ll -1
From (9) and (10),
‘en+1;—0 and
eg 1, ue[l+(/\x) K3z lfen[f +At(cA xK3)/)\
= NeMl+ At TT L™ +A T . Thus
i ™ i e B+ Aty ™
< 1+ Aty T Y+ AT
2+ AT s +A TR
= (nkl)AtTE TT=0( At)
since g;‘;eoii=0, and U, defined by (= max T
(nt1)4t=T
=  max max "C 1, is of O(At) since all ’E’?

(n+1)AL=T  1%J=J



12
are of O(/At). Notice that n 1s restricted by (n+l)/tZT,

Hence as [\t goes to zero, we see llenn goes to zero.
This fact implies that the finite difference solution
converges to the true solution provided that the initial gng
boundary data are smooth,

Define oi=1/) . We have seen that the finite difference
scheme converges for all values of A41l, or «>1, with

A=1 giving the exact solution.
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Part ITI. Actual Calculations
Thie part is done in three sections: (1) statement of
the problem, (2) flow chart and explaination, and (3)

the program and results.

(1) Statement of the problem

In the previously considered equation, we may take
the constant ¢ to be one since it may be made thus by
using a suitable time (or distance) scale. Hence we inves-
tigate the PDE

ut+ux=0, with initial conditions

u(x,0)=0, x>0, and boundary conditions

u(0,t)=20 t<€0
cl t>o.

The 1deal solution 1s a positively traveling wave. It can
be noted that these boundary conditions are not as differen-
tiable as those needed in the convergence proof,

The calculations are done for a few values of = Ax/At.
For each ¢4, graphs of u(x,t) vs. x are plotted for t=1/3
and t=2/3.

(2) Flow chart

We now pass on to presenting a flow chart made to aid
in writing the Fortran program. The algorithm of part T
is used. The computations of u(x,t) are limited to O0< x<1

and 0£ t=T=2/3,



Flow Chart:

(étarﬁﬁj
d

an l

14

NDATA=C
DATAN=NDATA+1

(=1)

"

Compute next level

1_
n
*(Ug+1 j-1)

2
J=l, 2’ LRI . 1 J-l

| NDATA=NDATA+1

Use B, C.

Y

f”£4?M+J-XN@-};
(M- DNDu} 3] <

Urtw , W0
Jnl, 103, (This
allows for any

J£100.)

U VA
XI=1

XI3=XI/3
G=0

XT3=XE7/3
G=G+1

-

Next page

{
XI=XI+1 i

)




]

Flow chart (2nd page) |

/X
5
e \\\ yes
J DATAN
£1 , )’
. Read graph heading
no ! 1 DATAN=DATAN+1
i E (=2)
' L oy
A
Make graph of
U, *T) VB, %
/ . 588
Caye 00
no | - y h
| .- NDATA ™
I N\ Z3 e
n=n+1l : P

15
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Flow Chart (continued)

This flow program reads three sets of and J, and makes
graphs of u(x,T) vs. x for T =1/3 and 7=2/3 for each set,
i.e., two graphs (G=2) for each set of data.

The Variables

<
li

number of x grid zones

Ax/ At = /N
NDATA = number of data sets read in

L
I

G = number of graphs made per data set

N = time level

The Indicators

DATAN tells whether graph heading is to be read (é-l) or
not (>1).. |

XI(XI3) tells whether graphs are to be made or not.



L (2) THE FIMLL FORTRAN PROGRAM. THe JOB {ACCOUNT NUMBER) CASD ULCUPIZS THIS L1
L /AT AREG
Il EXTC FNPTGLLG, PARM=PL OT
JIFOXTOSYSIN DD &
DIMEHSIGN X(2US) 4BUFIBOCN) o Y1305) 3 TITLE (50)
DOUBLE PRICIZSION UCL03),UMPL(:03)
CLLL PLOTS(BUF 6200
CALL PLOT{O.Oydaby=3)

€ STNAE SPACE FOR GRIOPOINT VALUES NDF 1) AND Xe JCAPKLCO,
C JCaP=HUFBER OF GRID ZONES FORK X
C NDATA =NHUMBFR OF [CATL PALIRS KHZIFD 1M
__NDATA=( . I
DAY alN=NNAT 442
100 NDATZ=RDATA+L
) CREAD (B, 101)ALFAJCHP - o B B N
101 FORMETIFIO.44514)
XJ=JCaAP
CDX=i./xd e e S
DT={(DX/LLFA)
XL=1./4LFA
_C CALCULAT® X AND T INCREMENTS om0 LLsMir (=xXCdo
C INITIALIZATION. NMUTE THAT SUBSCRIPTS #UST START AT 0ONE,.
N=Q
DO JI=1,103 . _ - . SR
uiJJdy=o,

1 UNPL(JJI=0.
C PPESCRIRE IMITIAL COMDITIONL, IF THZY ARE NON 2FRG.
XI=%s
X13=X1/3
C G=4UMBSP 0OF GRAPH .
JCAPMiI=JCAP=1
JCAPPLI=JCAP+T
I XL=¥XE
C IXL= THY GREATEST INTEGIR IN LLAMDA. ¢
F=I)\'L+:--YL '
FF=XL-IXL
11 D0 2 J=14JCAFNM]
2 UNPLOJ+1) =, 35 ((UCJ+2)+U0 D)) =XEx( Ul J+Z7)=000)))
UNP1(1)=%.
UNPL (JCAPPL) =F*U (JCAPPL=TXL ) +FF2UJCAP-TXL)
DO 2 JJ=1,JCAPPL
UIJJI=UNPLI(J])
TF(E=0T=XI3  )445,5
4 N=N+)
60 70 12
TAU=N2[T
XT=¥I+1.
X13=XI/2
GzG"'I,o
C M7ZKE GRIPH,
DN 81 JJ=1,J4CsPPL
X(JJY=(J3-1}aDX
51 CONTIRUE
- LR 52 J=1,10%
52 YlJ)=L(J)
T=TALD )
[F(UATANSL)IC 990491
g0 CONTIAUT
DAT/AN=DATAN ¢1

L} ‘

\n



C & CELPD SUCH A4S READ(EZYI02)TITLY ASSUMES THAT THE FULL DIMENSION DF TiTL

C IS 70 Bf READ IN.

 RZAD S an2)CTITLI(I) 9 F=145) e —
REAL (54102 0(TITLE(L )y I=9,30)
READ (5,102)(TITLE(T) yT1=1Tyc4)
READ (S5, 102)(TITLE{I),1=25432)

102 FORNAT[%AQ}
READ (5,106) (TITLE(L)y1=33,441)
104 FORMAT{944)
91 CONTINMUF
NPTEC=JdCAPP]
C NPTS IS THE NUMBER OF DATA POINTS.
E CALL SCALEZIX 5 .040iPTS,1)
CALL SCALE(Y 1H.GMNPTS,1)
L THE AXIS TITLES CAY PUSSIELY BY FEAD 1% THE WAY THE TITLT 15 HAMDLED,
CALL AXIS(0e040.0428HUISTAMCE {ARBITRARY UNITSY y =26, 5. 0,0.0,
1X(NPTS+#1} 4 X(NPTS+2))
CALL AXIS(0e@30.0,16HDISPLACEMENT (U),164600590.0,Y11IPTS4+1),
1 Y(NPTS+2))
CALL LINE(X, Y yNPTSy1lyivh)
CALL SYMBOL{C.446a190,14,TITLE(]),7.0,30)

CALL HUMBETR (999404999, 0y (0 dy Telalsd)
CALL SYMBNLI(D o495 4990 Gy TITLF(D),0,0,28)
CALL SYMBOL( 044454730416, TITLE(17)40.N,30)

C'\LL NUM‘EBL;Z(QGQ (.;1939 09..).41: LI""—\}L.(J,J)
CALL SYMOBNLID ab 35 4B 014, TITL {2514 0.0431)
XJPT=JCAPP}

AL MUMBER (9594 Gy 99T Uy e b9 AP 30,001
CALL SYMEOL{ D 4495.390.04,TITLE{Z22),0.0936)
XM=N

T UCALL NUMBIR (959,054,999, 0, Nl dg XNy Ny = 1)
CALL PLOT G40 4tig=3)
NG=06
TOUIFR(NG=2)Y 6477
6 N=N+1
GO 70 11
T CONTIhUE
HPITrfé 7”1)1(
701 FORNMAT (* HDAT A=
CIF{NDATA=-R)Y L0046, 6
8 CONTIHNUF
CaLt PLDI( 9.0:0.0,999)
S eTor R S R L 8 S
EMD
F/GDLPLOTTAPE DD UNIT= TIP;Q )I(P f:KﬁFp)vVlL PFIVHTF
TI7GCLSYSIN BD x 77 T
1.0 30
CISPLACEMEINT V3s X AT TIME=
"PLOT FOR DU/DX+DU/NT=0 WITH:
DIFFIRENCE RATIN ALPHA=DX/DT=
NUMBER DF DISTANCLL SRIDPOINTS=
NQs OF TTUFEATIONS (TIME LEVEL HOL)=

TheG
tylby '  GRAPHS MEDF= 1,F3,1)

045 E
1.5 0
“45TUP ' 7 i )

.
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(U]
0

60

Q.

40

DISPLACEMENT

e

19

Exact solution

CIS

PLOT F0R Gu/CX+0U/0T=0 WITH:
CIFFERENCE RATIC RLPHR=DX/B7= 1.,CCC
NUMBER (0f OCISTANCE GRIOPOINTS= 31
NO. OF ITERATIONS (TIME LEVEL HNO.J =

0. 0 U, uG SRRETY (+, A0 i ol

DISTANCE (BREITRAORY UNITS

PLACEMENT Vo, X AT TiME= (0.3333

10



Exact solution

DISPLACEMENT

20

ru DISPLACEMENT VS. X BT "TIME= (.BB67
g PLOT FOGR BU/0X+RU/DT=0 WITH:
DIFFERENCE RATIO ALPHA=OX/0OT= KEUOO
NUMBER OF DISTANCE GRIODPOINTS 31
5 NO. OF ITERATIONS (TIME LEVE N@.]=
= A
*ATHHG‘-X—HQ(—X—X—X—*%X—X—X—*-H—X—T
g
=
g
=
e
“h. 00 0.0 0. 40 060 o s 00
UDISTANCE (ARBITRARY UNITS)

¢

0



2l

Instability

: DISPLECEMENT V5. X AT TIME= 0.333"7
by PLOT FOR DU/DX+0DU/DT=0 WITH:
DIFFERENCE RATIO ALPHA=DX/DT= 0.500
NUMEER (OF DISTANCE GRIOPOINTS= 31
" NO. Of ITERATIONS (TIME LEVEL NO.) =
[ st}
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Numerical dispersion
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Conclusion

The graphs clearly show instabllity, i.e., the computed
solutlon increasing without bound, numerical dispersion (due
to the built-in interpolation in the finite difference scheme),
and the exact solution, a step pulse. It was found that the
numerical dispersion, or averaging, was not changed when the
program was converted to double precision arithmetiec,

Thus we have seen how an a priori analysis 1s necessary
if one is to find a finite difference scheme that converges
(as At and Ax tend to zero) to the desired solution of a
PDE. The techniques and implementation of a stability analysis
are not always this simple for other equations, and this report

is meant only to give some insight into the problem.
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Abstract:

In this report, we consider the partial differential
equation:

ut+cu, =0, where ¢ is a real constant, with initial
conditions

u(x,0)=0 x> 0, and boundary conditions

u(0,t)= 50 1< 0
1 +>0,

Two finite difference schemes are developsd, one
unstable and one stable (it converges to the true solution)
for certain values of the parameter -« =Ax/(cAt).

Finally, for the second scheme, numerical computations
are made which demonstrate instability in a finite difference
scheme, numerical dispersion, and the exact solution to the

problem posed.



