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Abstract

In the first half of the 20th century, the initial study of so-called the Sobolev type in-

equalities was motivated by the question- Can one control the size of a function by the size of

its gradient in the higher dimensional Euclidean space? Later in the second half, the Sobolev

type inequalities found applications in proving some embedding theorems associated with

the Sobolev space, and then to study the local behavior of solutions of certain elliptic partial

differential equations, such as to prove the Harnack inequalities and the Holder’s continuity.

The Poincaré type inequalities were also studied together due to the similar phenomena and

applications as of the Sobolev type inequalities.

At the earlier developmental stage, the Sobolev and Poincaré inequalities were estab-

lished associated to the metric balls, more precisely to the Euclidean balls. The richness of

applications of these inequalities in metric spaces motivated mathematicians to investigate

such inequalities in various complicated geometrical structures. One of such geometrical

structures is the space of homogeneous type, that is, the quasi-metric space equipped with

the doubling measure.

The Poincaré and Sobolev type inequalities in the quasi-metric spaces are studied deeply

throughout the first two decades of this 21st century. In 2008, G. Tian and X.J. Wang

investigated Sobolev inequalities in a space of homogeneous type so-called the Monge-Ampère

quasi-metric structure, for the first time, based on the geometry of the Monge-Ampère

sections studied by Caffarelli and Gutièrrez in 1990s. Later in 2014, D. Maldonado developed

Poincaré inequalities under the minimal assumptions in the Monge-Ampère quasi-metric

structure.

In this dissertation we first focus on improving the known Poincaré inequalities in the

Monge-Ampère quasi-metric structure by weakening the hypotheses, for instance with cheaper



assumptions on the Monge-Ampère measure, and then develop new such inequalities by im-

posing some stronger conditions on the Monge-Ampère measure. Finally, we present the

application of these Poincaré inequalities in establishing the corresponding Sobolev inequal-

ities. The proofs of both Poincaré and Sobolev inequalities developed earlier in the Monge-

Ampère quasi-metric structure involve the Green’s functions. We use a completely different

approach to establish such inequalities, which is proudly a novelty of our work. Towards the

end of this dissertation we study the geometry of the Monge-Ampère sections in the form of

the Whitney decomposition.
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The Poincaré type inequalities were also studied together due to the similar phenomena and

applications as of the Sobolev type inequalities.

At the earlier developmental stage, the Sobolev and Poincaré inequalities were estab-
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sections studied by Caffarelli and Gutièrrez in 1990s. Later in 2014, D. Maldonado developed
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Chapter 1

Introduction to Poincaré and Sobolev

inequalities

In this chapter we begin with the review of the classical Poincaré and Sobolev inequalities

over the Euclidean balls and then briefly present the intuition of such inequalities in a space

of homogeneous type. Let B := B(x, r) be a ball in Rn with center x ∈ Rn and radius r > 0.

Fix 1 ≤ p < n and define q := np
n−p (> p). Then there exist constants C1, C2 > 0, depending

only on n, r and p, such that

∀f ∈ C∞(B),

(ˆ
B

|f(x)− fB|q dx

) 1
q

≤ C1

(ˆ
B

|∇f(x)|p dx

) 1
p

(1.1)

and

∀f ∈ C∞c (B),

( ˆ
B

|f(x)|q dx

) 1
q

≤ C2

(ˆ
B

|∇f(x)|p dx

) 1
p

. (1.2)

Here above fB is the average integral of f over the ball B, that is, fB := 1
|B|

´
B
f(x) dx.

We denote the space of infinitely differentiable functions defined in B by C∞(B) and the

space of infinitely differentiable functions with compact support in B by C∞c (B). We use

the notation ∇f to represent the gradient of f in the classical sense. It is quite obvious to

observe that the inequalities (1.1) and (1.2) hold true for all s with 1 ≤ s ≤ q due to the
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Holder’s inequality. The inequality (1.1) is known as the classical Poincaré inequality and

the other inequality (1.2) as the classical Sobolev inequality. The proofs of these inequalities

with different approaches can be found in many articles and books (for instance, see Chapter

1 in [1]).

Notice that the Sobolev inequalities are studied for the compactly supported continu-

ously differentiable functions while the Poincaré inequalities don’t require the functions to

be compactly supported. These classical Poincaré and Sobolev inequalities involve the Eu-

clidean balls, which are easily manageable in the sense that the surface area and volume can

be computed precisely. On the other hand, the quasi-metric balls, in general, are not nice

from this viewpoint.

For an open convex set Ω ⊂ Rn and a strictly convex smooth function ϕ : Ω → R, we

define a space of homogeneous type so-called the Monge-Ampère quasi-metric structure, to

be the triple (Ω, δϕ, µ), whenever the measure µ is a doubling Borel measure on the Monge-

Ampère sections of ϕ, and the map δϕ is a quasi-distance. We will entirely stay inside the

Monge-Ampère quasi-metric structure throughout chapter 2 to 7.

There have been significant developments on the Poincaré and Sobolev inequalities in

the Monge-Ampère quasi-metric structure in recent years. The first authors to develop the

groundbreaking (q, 2)-Sobolev inequality associated to the Monge-Ampère structure were G.

Tian and X.J. Wang (see [2]). In 2013 [3], D. Maldonado proved Sobolev inequalities associated

to the Lebesgue measure and the Monge-Ampère measure analogous to the ones developed

by G. Tian and X.J. Wang by using strictly weaker hypotheses and by allowing the exponent

q to depend only on the dimension. A year later in 2014, D. Maldonado developed a (1, 2)-

Poincaré inequality associated to the Monge-Ampère measure in [4] and an application is

presented immediately in the same article to establish the following Harnack inequality for

positive solutions of the linearized Monge-Ampère equation at a strictly convex smooth

function ϕ.

Theorem 1.1 (Theorem 1.4 in [4]). Suppose Ω ⊂ Rn be open and bounded subset, and let

µϕ, the Monge-Ampère measure associated to a strictly convex smooth function ϕ, satisfies

2



DC-doubling condition (that is µϕ ∈ DC(Ω, δϕ)). Then there exist constants C ≥ 1 and

η ∈ (0, 1), depending only on the doubling constant and dimension n, such that for every

Monge-Ampère section Sϕ(x0, t) ⊂⊂ Ω, and every positive solution u of Lϕu = 0 in Ω, we

have

sup
Sϕ(x0,τ t)

u ≤ C inf
Sϕ(x0,τ t)

u, (1.3)

where Lϕ is the linearized Monge-Ampère operator at a strictly convex smooth function

ϕ defined as

Lϕu(x) := trace(Aϕ(x)D2 u(x)) x ∈ Ω, (1.4)

for twice differentiable function u, and here Aϕ(x) is the co-factor matrix of the Hessian

matrix D2ϕ(x), that is,

Aϕ(x) := detD2ϕ(x)D2ϕ(x)−1. (1.5)

The operator Lϕ is the linearization of the well known nonlinear Monge-Ampère operator

Mϕ(x) := detD2ϕ(x). (1.6)

The other notations used in Theorem 1.1 will be studied in detail in chapter 2.

A strictly convex smooth function ϕ, associated to its Monge-Ampère sections and mea-

sure, models the geometric and measure theoretical approach in the analysis of regularity

properties for the solutions to the linearized Monge-Ampère equation Lϕ(u) = 0, as well as

other singular/degenerate elliptic PDEs (see for instance [2;4–11]).

If a strictly convex function ϕ is three times differentiable at x ∈ Ω with D2ϕ(x) > 0, we

obtain

trace(Aϕ(x)D2v(x)) =
∑
i,j

aij(x)∂xi∂xjv(x) (1.7)

=
∑
i,j

∂xi (aij(x)∂xjv(x)) = div(Aϕ∇v)(x),

3



where Aϕ(x) = {aij(x)} is the co-factor matrix of D2ϕ(x). The second equality of (1.7) is

due to the fact that the columns of Aϕ are divergence free. That is,

∑
i

∂xi (aij(x)) = 0, ∀j.

Thus the linearized Monge-Ampère operator Lϕ is a singular/degenerate elliptic operator

that takes both the nondivergence and divergence forms. The divergence form of Lϕ has

naturally led to the study of various properties for the Monge-Ampère sections and measure

that guarantee the existence of Sobolev, Poincaré, or other first-order inequalities related

to Aϕ. In turn, such first-order inequalities have been crucial to the regularity theory for

solutions to the linearized Monge-Ampère equation in [4;11] as well as to its applications to

semi-geostrophic equations and optimal transport in [9;12] and capacitary estimates [13].

At this point knowing the history and rich applications of Poincaré and Sobolev inequali-

ties in the Monge-Ampère quasi-metric structure, it is very appropriate to have some natural

concerns, such as “Can we establish these inequalities by means of different approaches?”

or “Can we improve these inequalities ?” This dissertation has been devoted to gathering

answers in diverse circumstances to these questions. In the article [14], the authors estab-

lished a series of improved versions of (q, p)-Poincaré and Sobolev inequalities associated

to the Monge-Ampère measure and Lebesgue measure by increasing the exponent q on the

left, by decreasing the exponent p = 2 on the right, and by replacing some of the expensive

hypotheses by cheaper ones in the pre-existing corresponding inequalities. Also, a number

of new Poincaré and Sobolev inequalities are developed in the same article considering a

different set of hypotheses. Most importantly, the novelty in this work lies in the different

approaches used in the development of these inequalities – approaches distinct from the

techniques adopted in the early stages of their original developments.

In chapter 2, we study the Monge-Ampère cross sections of a given convex function

ϕ : Rn → R, the Monge-Ampère measure associate to ϕ, µϕ, the doubling conditions on the

Monge-Ampère cross sections and some geometric properties of the Monge-Ampère cross

sections. We also study the quasi-distance δϕ, associated to a convex function ϕ, as well as
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other crucial techniques that will be employed to establish our main results in the subsequent

chapters. The main results of this dissertation are dispersed throughout chapter 3 to 7,

and the main results presented in chapter 2 to 6 were originally published in Maldonado-

Ranabhat [14].

In chapter 3, we begin with the history of Poincaré inequality in the Monge-Ampère quasi-

metric structure, and then develop the necessary ingredients, such as the reverse doubling

property, the growth conditions and the self-improving properties for the Poincaré inequali-

ties, to improve the known Poincaré inequality. The main results appearing in this chapter

illustrate the improvements of previously known Poincaré inequality under the assumption

that the Monge-Ampère measure satisfies the DC-doubling condition in the Monge-Ampère

cross sections, and by weakening the assumption on the smoothness of the associated convex

function ϕ.

In chapter 4, we develop new Poincaré inequalities when the Monge-Ampeère measure

associated to the given convex function ϕ, µϕ, satisfies the so-called Muckenhoupt’s A∞-

weight condition. Both original Poincaré inequality and the ones improved in Chapter 3

carry the fixed exponent p = 2 on the right side of the inequalities. We observe that the

Muckenhoupt’s A∞-weight condition introduced in this chapter is strictly stronger than

the DC-doubling condition defined in Chapter 3. Under this new assumption, we sharpen

the Poincaré inequalities by increasing the exponent ‘q’ on the left-hand side as well as by

decreasing the size of the exponent p = 2 on the right-hand side.

In chapter 5, we present the Poincaré inequalities when the Monge-Ampeère measure

satisfies the so-called Muckenhoupt’s A1-weight condition or the reverse Holder’s RH∞-

condition. These conditions are even stronger than the A∞-weight condition and the DC-

doubling condition. The Muckenhoupt’s A1-weight condition corresponds to the Poincaré

inequalities associated to the Monge-Ampère measure while the reverse Holder’s RH∞-

condition corresponds to Lebesgue measure. With the aid of these stronger conditions,

we develop new Poincaré inequalities with the exponent ‘q’ enlarged up to 2n
n−2

on the left-

sides of the inequalities whenever the dimension n ≥ 2. In dimension 2, we will observe that

we can feed any exponent q > 1 on the left-hand sides of the Poincaré inequalities, under

5



the same set of of hypotheses, by allowing the constant to depend on ‘q’.

Chapter 6 is primarily focused to explore applications of the Poincaré inequalities de-

veloped in Chapters 3, 4 and 5 in establishing Sobolev inequalities in the Monge-Ampère

quasi-metric structure. The techniques employed to prove Sobolev inequalities in this chap-

ter will be different form the ones adopted by G. Tian and X.J. Wang in [2] and by D.

Maldonado in [4]. The Sobolev inequalities presented in this chapter will be either new or

the improvement of pre-existing Sobolev inequalities. All the Sobolev inequalities under the

assumption that the Monge-Ampère measure satisfies Muckenhoupt’s A∞-weight condition

or A1-weight condition or reverse Hölder RH∞-condition are new, and only few of them will

be presented for the purpose of illustration as well as to compare with existing literature.

Chapter 7 is the closing chapter of this dissertation. We begin this chapter with some re-

view of the Whitney type decomposition in different geometrical structures. Then we present

the Whitney decomposition of the Monge-Ampère sections. The main result presented in

this chapter is also new and will be a part of future publication.

6



Chapter 2

Geometric properties of the

Monge-Ampère cross sections

This chapter is devoted to setting some basic definitions and notations, and discuss pre-

liminary results that will help to understand the flow of the materials in this dissertation.

Section 2.1 provides brief reviews of convex functions and their properties. We introduce the

Monge-Ampère measure and Monge-Ampère sections associated to the given convex func-

tion in Section 2.2. Section 2.3 starts with the discussion about the doubling measures in

the Monge-Ampère sections. In Subsection 2.3.1 we illustrate the techniques of normalizing

convex sets. In Subsection 2.3.3, we introduce the engulfing property, observe the connection

of such property with the doubling measures in the Monge-Ampère sections. We conclude

this chapter with an observation that the doubling condition implies the reverse doubling

condition in Lemma 2.29 in Subsection 2.3.4.

2.1 Some properties of convex functions

Throughout this chapter, unless otherwise mentioned, we will assume that Ω ⊂ Rn is open

and convex.

7



Definition 2.1. A function ϕ : Ω→ R is convex if for all x, y ∈ Ω and α ∈ [0, 1], we have

ϕ(αx+ (1− α)y) ≤ αϕ(x) + (1− α)ϕ(y). (2.1)

In other words, a function ϕ is convex if the secant line joining two points (x, ϕ(x)) and

(y, ϕ(y)) lives above the graph of the function in between x and y.

One of the well known results about convex functions is that they are continuous. How-

ever, convex functions are not necessarily differentiable. For example, ϕ(x) := |x| in R is

convex, but not differentiable. As we will consider strictly convex functions in most of our

work in this dissertation, let us see the definition and some associated results about such

functions.

Definition 2.2. A function ϕ : Ω→ R is strictly convex if for all x and y with x 6= y in Ω

and α ∈ (0, 1), we have

ϕ(αx+ (1− α)y) < αϕ(x) + (1− α)ϕ(y). (2.2)

 

(")	%&'()&*+	),-./0	"-1	1(22/'/-&("3*/ 

())	4,&	5&'()&*+	),-./0	36&	1(22/'/-&("3*/  (1)	%&'()&*+	),-./0	36&	-,&	1(22/'/-&("3*/ 

(3)	4,&	5&'()&*+	),-./0	36&	1(22/'/-&("3*/ 

Figure 2.1: Graphs related to strictly convexity
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Note the strict inequality in the definition of strictly convex function. A strictly convex

function, in simpler words, means its graph doesn’t contain line segments, for instance see

Figure 2.1 above. Before looking at some examples, let us see two definitions associated to

square matrices. The properties and details on such matrices will appear later.

Definition 2.3. A square matrix A ∈ Rn×n is positive semidefinite if 〈Ax, x〉 ≥ 0 for all

x ∈ Rn, and positive definite if 〈Ax, x〉 > 0 for all nonzero x ∈ Rn. We simply write A ≥ 0

to denote a positive semidefinite matrix and A > 0 for positive definite.

All the affine transformations of the form

ϕ(x) := aTAx+ b, (a ∈ Rn, A ∈ Rn×n, b ∈ R)

are non strictly convex functions. The quadratic functions of the form

ϕ(x) := xTAx+ cTx+ d, (c ∈ Rn, A ∈ Rn×n, d ∈ R)

are convex if A ≥ 0, and strictly convex if A > 0.

Another important class of convex functions is

ϕp(x) :=
|x|p

p
, x ∈ Rn and 1 ≤ p <∞.

These functions are strictly convex whenever p > 1. The influence of such strictly convex

functions will be seen throughout this work. We will stress on other examples of convex

functions whenever appropriate.

Unlike in dimension one, the test of convexity in general could be complex in higher

dimension. The following straightforward theorem, stating the convexity implies the con-

vexity through all the lines in the domain is sometimes useful to test the convexity in higher

dimension.

Theorem 2.4. A function ϕ : Ω → R is convex if and only if for all fixed x, y ∈ Ω, the

function ψ(t) = ϕ(x+ ty) is convex on its domain {t : x+ ty ∈ Ω}.
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As mentioned earlier, the convexity doesn’t imply the differentiabilty in general. However,

if a convex function is differentiable, we have very nice properties that allow us to test the

convexity with the aid of derivatives. In fact, a function ϕ ∈ C2(Ω) is convex if and only if

D2ϕ(x) ≥ 0 for all x ∈ Ω. Here D2ϕ is just the classical derivative ϕ′′ in dimension n = 1,

and it’s the Hessian of ϕ defined as below for n ≥ 2.

Definition 2.5. Consider a function ϕ : Ω→ R such that the second order partial derivatives

exist. Then the Hessian of ϕ is defined by

D2ϕ(x) :=



∂2ϕ(x)

∂x2
1

∂2ϕ(x)

∂x1∂x2

· · · ∂2ϕ(x)

∂x1∂xn
∂2ϕ(x)

∂x2∂x1

∂2ϕ(x)

∂x2
2

· · · ∂2ϕ(x)

∂x2∂xn
...

...
. . .

...

∂2ϕ(x)

∂xn∂x1

∂2ϕ(x)

∂xn∂x1

· · · ∂2ϕ(x)

∂x2
n


, for all x ∈ Ω.

Whenever the second order partial derivatives are continuous, the Hessian matrix is

symmetric (that is, D2ϕ(x)T = D2ϕ(x)).

The convexity of a function can also be characterized by using the first derivatives as

well. To summarize this characterization by using first and second derivatives, we have the

following theorem.

Theorem 2.6. Consider that ϕ : Ω → R is twice differentiable. Then the following state-

ments are equivalent:

1. ϕ is convex.

2. ϕ(y) ≥ ϕ(x) +∇ϕ(x)T · (y − x) for all x, y ∈ Ω.

3. D2ϕ(x) ≥ 0 for all x ∈ Ω.

The proof of this theorem can be found in many books, for instance, see Chapter 3 in [15].

Observe that the strict inequalities in the second and third statements correspond to the

strictly convexity of ϕ in Theorem 2.6.
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If ϕ is a twice differentiable function, then the positive definiteness of the Hessian matrix

D2ϕ (that is, D2ϕ > 0) implies the strictly convexity of ϕ. To see this in dimension n = 1,

assume that ϕ′′ > 0 in Ω. Now by Taylor’s theorem and the mean value theorem,

ϕ(y) = ϕ(x) + ϕ′(x)(y − x) +
1

2
ϕ′′(ξ)(y − x)2, ∀x < ξ < y.

This implies ϕ(y) > ϕ(x) +ϕ′(x)(y− x) as ϕ′′ > 0 in Ω. Hence, ϕ is strictly convex. Now in

higher dimension n ≥ 2, we use the Theorem 2.4. For this, consider ψ(t) := ϕ(x + ty) such

that x+ ty ∈ Ω. Then

ψ′′(t) = yTD2ϕ(x+ ty)y = 〈D2ϕ(x+ ty)y, y〉.

Since D2ϕ > 0 in Ω, ψ is strictly convex. Hence ϕ is strictly convex.

The converse, however, is not true. That is, strictly convexity of a twice differetiable

function does not imply D2ϕ > 0. For example, we can see the function ϕ(x) := x4, x ∈ R.

Another ground-breaking result about convex functions is the following theorem by Alek-

sandrov.

Theorem 2.7 (see Page 242 in [16]). A convex function ϕ : Ω→ R is twice differentiable a.e.

in Ω.

We will discuss few other interesting properties associated to convex functions in Section

3.2 as they require to involve concepts on the convex conjugate.

2.2 The Monge-Ampère sections and the Monge-Ampère

measure

Unless otherwise mentioned, we assume that ϕ : Ω → R is a convex and continuously

differentiable function (that is, ϕ ∈ C1(Ω)) throughout this chapter hereafter.

11



2.2.1 The Monge-Ampère sections

Definition 2.8. The Monge-Ampère section of ϕ centered at x ∈ Ω with height t > 0 is

denoted by Sϕ(x, t) and is defined by

Sϕ(x, t) := {y ∈ Ω : ϕ(y) < ϕ(x) +∇ϕ(x) · (y − x) + t}. (2.3)

In other words, the Monge-Ampère section Sϕ(x, t) is the set of all points y ∈ Ω such that

ϕ(y) is dominated by the tangent plane at x shifted by t units up (see Figure 2.2 below).
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Figure 2.2: The Monge-Ampère sections of ϕ at x where l(y) = ϕ(x) +∇ϕ(x) · (y − x) is
the tangent line at (x, ϕ(x)).

With the definition of

δϕ(x, y) := ϕ(y)− ϕ(x)−∇ϕ(x) · (y − x), (2.4)

the Monge-Ampère sections defined in (2.3) can be written as

Sϕ(x, t) = {y ∈ Ω : δϕ(x, y) < t}. (2.5)
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The Monge-Ampère section is non empty as its center always lies in the set. One can also

observe that the Monge-Ampère sections are convex. In fact, if y, z ∈ Sϕ(x, t), then by

definition

ϕ(y) < ϕ(x) +∇ϕ(x) · (y − x) + t

and

ϕ(z) < ϕ(x) +∇ϕ(x) · (z − x) + t.

As ϕ is convex, ϕ(αy + (1− α)z) ≤ αϕ(y) + (1− α)ϕ(z). Now by substituting ϕ(y) and

ϕ(z) from the above inequalities gives

ϕ(αy + (1− α)z) < ϕ(x) +∇ϕ(x) · (αy + (1− α)z − x) + t.

So, the Monge-Ampère sections of a continuously differentiable convex function ϕ are non

empty open convex sets. Moreover, if the function ϕ is strictly convex, then its Monge-

Ampère sections will be bounded. Thus, We will consider functions to be continuously

differentiable and strictly convex in order to have the Monge-Ampère sections open, bounded

and convex. However, the assumption of differentiablity (and strictly convexity) is not

required for the sake of definition of the Monge-Ampère section. If we simply assume that

ϕ : Ω→ R is convex, then the Monge-Ampère sections are defined as below:

Definition 2.9. For given t > 0, and a supporting hyperplane l(y) = ϕ(x) + p · (y− x) of ϕ

at (x, ϕ(x)) (that is, ϕ(y) ≥ l(y), ∀y ∈ Ω), the Monge-Ampère section of ϕ centered at ∈ Ω

with the height t is defined by

Sϕ(x, p, t) := {y ∈ Ω : ϕ(y) < l(y) + t} = {y ∈ Ω : ϕ(y) < ϕ(x) + p · (y − x) + t}.

We may get more than one supporting hyperplane for ϕ at (x, ϕ(x)) if the function is not

differentiable at x. However, if the function is differentiable at x, the supporting hyperplane

of ϕ at (x, ϕ(x)) is unique and p = ∇ϕ(x). Consequently, the Monge-Ampère sections

defined in (2.9) coincide with the ones defined earlier in (2.3).
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We now see two examples of the Monge-Ampère sections, one for a non-differentiable

convex function and the other for a differentiable convex function.

Example 2.10. Consider a convex function ϕ(x) := |x|, x ∈ Rn whose graph is a cone.

We get infinitely many supporting hyperplanes at the origin. If a supporting hyperplane is

not parallel to any generator line of the cone, then the Monge-Ampère sections are ellipsoid.

The supporting hyperplanes at the points other than at the origin coincide with a generator

line of the cone, and hence the Monge-Ampère sections are the unbounded paraboloids in this

case.

Example 2.11. Consider a convex function ϕ2(x) := |x|2
2
, x ∈ Rn, whose graph is a

paraboloid. Then the Monge-Ampère sections of ϕ2 reduce to the classical Euclidean balls.

In fact,

Sϕ2(x, t) = {y : ϕ2(y) < ϕ2(x) +∇ϕ2(x) · (y − x) + t}

= {y :
|y|2

2
<
|x|2

2
+ x · (y − x) + t}

= {y :
|y|2

2
− |x|

2

2
− x · (y − x) < t}

= {y : |y|2 + |x|2 − 2x · y < 2t}

= {y : |x− y|2 < 2t}

= B(x,
√

2t).

2.2.2 The Monge-Ampère measure

Definition 2.12. The Monge-Ampère measure associated to a convex function ϕ ∈ C1(Ω)

is denoted by µϕ, and is defined by

µϕ(E) := |∇ϕ(E)| E ⊂ Ω, E Borel set, (2.6)

where |E| denotes the Lebesgue measure of E ⊂ Rn.
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The Monge-Ampère measure defined as above is a Borel measure measure which is also

locally finite. As in the definition for the Monge-Ampère sections, the differentiablity of ϕ

is not required in the definition of the Monge-Ampère measure. We refer the readers to see

chapter 3 in [7] as we are not going to consider such functions in this dissertation.

The Monge-Ampère measure for a twice continuously differentiable convex function can

be expressed in the integral form. In fact from Page 5 in [7], if ϕ ∈ C2(Ω) is a convex function,

then the Monge-Ampère measure associated to ϕ satisfies

µϕ(E) =

ˆ
E

detD2ϕ(x) dx, (2.7)

for every Borel sets E ⊂ Ω.

We have this integral representation for the Monge-Ampère measure even with the weaker

assumption on ϕ. Before we see this stronger result, let us recall the Sobolev space that will

be of our interest.

Definition 2.13. We say that a function f : Ω→ R is locally integrable with respect to the

Borel measure µ if ˆ
K

|f | dµ <∞,

for all compact subset K of Ω.

Definition 2.14. Let α = (α1, · · · , αn) ∈ Nn0 be a multi-index and |α| := α1 + · · ·αn. Then

we say that a locally integrable function g is the αth-weak derivative of f ∈ L1
loc(Ω, dµ) if

ˆ
Ω

f Dαϕdµ = (−1)|α|
ˆ

Ω

g ϕ dµ, (2.8)

for all ϕ ∈ C∞c (Ω, dµ), where Dαϕ := ∂xα11
∂xα22
· · · ∂xαnn ϕ. The weak derivative of f is denoted

by Dαf := g.

Definition 2.15. We say that a function f ∈ W k,p
loc (Ω, dµ) if for all multi-index α with

|α| ≤ k,

‖Dαf‖Lp(K,dµ) <∞, for all compact K ⊂ Ω. (2.9)
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That is, Dαf exists in the weak sense and Dαf ∈ Lploc(Ω, dµ).

The Sobolev norm of f ∈ W k,p(Ω, dµ) is usually defined by

‖f‖Wk,p(Ω, dµ) :=

( ∑
|α|≤k

‖Dαf‖p
LP (Ω,dµ)

)1/p

, 1 ≤ p <∞.

Most of our work in this dissertation will be focused with the Sobolev space W 2,n
loc (Ω, dx)

(that is, k = 2 and p = n).

Recently, D. Maldonado proved (see Theorem 1 in [17]) that the Monge-Ampère measure

can be expressed as in (2.7) by replacing the assumption ϕ ∈ C2(Ω) with ϕ ∈ W 2,n
loc (Ω, dx).

In fact, he proved that if ϕ ∈ W 2,n
loc (Ω, dx) is convex, then ϕ ∈ C1(Ω) and dµϕ(x) =

detD2ϕ(x) dx. This immediately implies that detD2ϕ ∈ L1
loc(Ω, dx) and the integral repre-

sentation (2.7).

2.3 Geometric properties

2.3.1 Doubling measures

We start this section with some basic definitions and notations.

Definition 2.16. If U is bounded and measurable set, then the center of mass of U is the

point x∗ defined by

x∗ :=
1

|U |

ˆ
U

x dx, (2.10)

where |E| denotes the Lebesgue measure.

We note that the center of mass of a convex set lives inside it while this may not be the

case for general bounded sets, such as annulli. The center of mass of some nice geometrical

shapes matches with their center, for example, Euclidean balls and ellipsoids.

Definition 2.17. For a given 0 < λ ≤ 1, the λ-contraction of the Monge-Ampère section
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Sϕ(x0, t) with respect to its center of mass is denoted by λ� Sϕ(x0, t) and is defined by

λ� Sϕ(x0, t) := {x∗ + λ(x− x∗) : x ∈ Sϕ(x0, t)}. (2.11)

We can see Figure 2.3 to visualize the concept of the contraction with respect to the

center of mass.

 

l !* 

l" 

l						$ 

	$ 

" 

. 

Figure 2.3: λ-contraction of the Monge-Ampère section S := Sϕ(x0, t) with respect to its
center of mass x∗.

For the case when λ > 1, the equation (2.11) is called the λ-dilation of Sϕ(x0, t) as we

enlarge the original set. The λ-contraction of Sϕ(x0, t) is convex, but it is not necessarily

the Monge-Ampère section.

For a given 0 < λ ≤ 1 and a section Sϕ(x0, t), we denote λSϕ(x0, t) to represent the

λ-contraction (or λ-dilation when λ > 1) with respect to the parameter t of the section

Sϕ(x0, t). That is,

λSϕ(x0, t) := Sϕ(x0, λt). (2.12)

We note that the contraction λSϕ(x0, t) defined in (2.12) has a different meaning than the

contraction λ� Sϕ(x0, t) defined in (2.11).
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Definition 2.18. A Borel measure µ on Ω is said to satisfy the DC-doubling condition,

and write µ ∈ DC(Ω, δϕ), if there exists a constant CD ≥ 1 such that for every section

S := Sϕ(x, t) ⊂⊂ Ω, we have

µ(S) ≤ CD µ
(

1
2
� S

)
. (2.13)

The abbreviation DC here is to mean the doubling with respect to center of mass. In

our work later, all the constant depending on the doubling constant from µϕ ∈ DC(Ω, δϕ)

and dimension n will be called geometric constants. We now see another definition of the

doubling measure associated to the parameter.

Definition 2.19. A Borel measure µ on Ω is said to satisfy the DP -doubling condition,

and write µ ∈ DP (Ω, δϕ), if there exists a constant CP ≥ 1 such that for every section

S := Sϕ(x, t) ⊂⊂ Ω, we have

µ(S) ≤ CPµ
(

1
2
S
)
. (2.14)

As an example of the Borel measure that satisfies the DP -doubling condition (2.14), we

look at the following lemma by Caffarelli and Gutiérrez stating that the Lebesgue measure

satisfies the DP -doubling condition on the Monge-Ampère sections.

Lemma 2.20 (Lemma 5.2 in [6]). Consider a strictly convex function ϕ ∈ C1(Ω). Then for

every Monge-Ampère sections Sϕ(x, t) ⊂⊂ Ω, we have

|Sϕ(x, t)| ≤ 2n |Sϕ(x, t/2)|. (2.15)

Note that the Lebesgue measure satisfies the DP -doubling condition with precise size of

constant C = 2n. However, this constant may not be the optimal one.

The DC-doubling condition (2.13) implies the DP -doubling condition (2.14) (see Corol-

lary 3.3.2 in [7]). The proof of this statement relies on the following geometric properties of

the Monge-Ampère sections.
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Lemma 2.21 (Lemma 3.3.1 in [7]). Let 0 < λ < 1. Then

λSϕ(x0, t) ⊂ Sϕ(x0,
(
1− (1− λ)n−3/2

)
t).

The converse direction, however, is not true in general. For example, the Monge-Ampère

measure associated to the strictly convex smooth function ϕ(x) := ex, x ∈ R satisfies the

DP -doubling condition (2.14) but not the DC-doubling condition (2.13) (see Remark 3.3.3

in [7]).

The connection between the measure theoretical phenomena and the geometrical struc-

ture of the Monge-Ampère sections is stressed in Subsection 2.3.3. For now, we see two

examples of Monge-Ampère measure that satisfy the DC-doubling condition (2.13).

Example 2.22. Let p(x) be the polynomial in Rn. Then the measure |p(x)| dx satisfies the

DC-doubling condition (2.13) on the Monge-Ampère sections of a strictly convex function ϕ

with the doubling constant C depending only on the degree of the polynomial. In particular,

the doubling constant doesn’t depend on the coefficients of the polynomial. This result is

proved in Remark 3.3.4 in [7].

Example 2.23. The Monge-Ampère measure, µϕp, associated to the strictly convex function

ϕp(x) :=
|x|p

p
, x ∈ Rn and 1 < p < ∞, satisfies the DC-doubling condition (2.13) on

the Monge-Ampère sections of ϕp. In fact, µϕp satisfies even stronger condition than the

DC-doubling condition with some restriction on p which we will see in Section 5.4.

As the affine transformations play vital role on the study of geometric properties of

Monge-Ampère sections, we now discuss the role of such transformations here.

For a real invertible matrix A, the map TA : Rn → Rn given by TA(x) = Ax+b, b ∈ Rn is

an invertible affine transformation. Suppose ϕ : Rn → R is a twice continuously differentiable

convex function and λ > 0. Now define

ψλ(y) := 1
λ
ϕ(TA

−1y). (2.16)
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Then ψλ is also a twice continuously differentiable convex function. In fact,

∇ψλ(y) = 1
λ
(A−1)T ∇ϕ(TA

−1y), (2.17)

and

D2ψλ(y) = 1
λ
(A−1)T ∇ϕ(TA

−1y)A−1. (2.18)

So for a Borel set E ⊂ Rn,

µψ(TAE) =

ˆ
TAE

detD2ψλ(y) dy

=

ˆ
E

1

λn
det(A−1)T detD2ϕ(x) det(A−1) | detA|dx

=
1

λn
| det(A−1)|µϕ.

Thus the relationship between the Monge-Ampère measure associated to ϕ and ψλ is

given by

µψ(TAE) =
1

λn
| det(A−1)|µϕ(E). (2.19)

Now we see observe the comparison between the ma sections associated to ϕ and φλ. The

Monge-Ampère section of ψλ centered at Tx0 and height t
λ

is given by

Sψλ(TAx0,
t
λ
) = {y ∈ Rn : ψλ(y) < ψλ(TAx0) +∇ψλ(TAx0) · (y − tx0) + t

λ
}

= {y ∈ Rn : 1
λ
ϕ(TA

−1y) < 1
λ
ϕ(x0) + 1

λ
∇ϕ(x0) · (TA−1y − x0) + t

λ
}

= {TAx ∈ Rn : ϕ(y) < ϕ(x) +∇ϕ(x) · (y − x) + t},with y = TAx

= TA Sϕ(x0, t).

Thus the Monge-Ampère sections of ϕ and ψλ are associated by the equation

TA (Sϕ(x0, t)) = Sψλ(TAx0,
t
λ
). (2.20)
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We now note that if the Monge-Ampère measure associated to ϕ, µϕ, satisfies the DC-

doubling condition (2.13), then so does the Monge-Ampère measure µψλ . To see this, assume

that µϕ satisfies the DC-doubling condition (2.13) on the Monge-Ampère sections of ϕ and

denote S := Sϕ(x0, t). Then

µψλ(1
2
� TAS) = |∇ψλ(1

2
� TAS)| = 1

λn
| detA−1|µϕ(1

2
� S)

≤ C 1
λn
| detA−1|µϕ(E) = Cµψλ(TAE).

Observe that µψλ satisfies the DC-doubling condition (2.13) with the same doubling constant

produced for µϕ. Similarly, if the Monge-Ampère measure µϕ satisfies the DP -doubling

condition (2.14), then so does the Monge-Ampère µψλ . For this, we need the following

immediate equation

TA(α(Sϕ(x0, t)) = αTA(Sϕ(x0, t)).

2.3.2 Normalization of convex sets

As normalization of convex sets is one of the crucial techniques in the study related to the

geometry of the Monge-Ampère sections, we focus this section to build some background to

deal with such techniques for later use. To do so, let us start with some quick reviews on

ellipsoids.

One of the familiar form of the ellipsoid centered at x̃ and radii a1, · · · , an is the set of

points x such that
(x1 − x̃1)2

a2
1

+ · · ·+ (xn − x̃n)2

a2
n

≤ 1. (2.21)
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Now consider a diagonal matrix with diagonal entries λi :=
1

a2
i

:

A =



λ1 0 · · · 0

0 λ2 · · · 0

...
...

. . .
...

0 0 · · · λn


.

Then the matrix A is symmetric positive definite, and the ellipsoid given by (2.21) can be

formulated as

E(A, x̃) = {x : (x− x̃)TA(x− x̃) ≤ 1}. (2.22)

The volume of the ellipsoid is given by

|E(A, x̃)| = ωn√
detA

= a1a2 · · · an ωn, (2.23)

where ωn represents the volume of the unit ball in Rn.

A central result employed to normalize convex sets is the following theorem by F. John

which guarantees the existence of an ellipsoid of minimum volume that inscribe bounded

convex sets (see Figure 2.4).

Theorem 2.24 (Theorem 1.8.2 in [7]). If U ⊂ Rn is a bounded convex set with nonempty

interior and E is the ellipsoid of minimum volume containing U centered at the center of

mass of U , then

αnE ⊂ U ⊂ E, (2.24)

where αn = n−3/2 and αE denotes the α-contraction of E with respect to its center of mass.

Definition 2.25. We say that a bounded convex set V is normalized if its center of mass is

0 and

B(0, αn) ⊂ V ⊂ B(0, 1), (2.25)

where B(x, r) denotes the Euclidean Ball with center x and radius r.
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Figure 2.4: Existence an of ellipsoid of minimum volume that inscribe bounded convex sets.

Due to Theorem 2.24, every open bounded convex set can be normalized. In fact, for

a given open bounded convex set Ω, there is an ellipsoid E of minimum volume such that

(2.24) holds true. To see this, let T̃ be an affine transformation that maps the ellipsoid E

to the unit Euclidean ball, that is, T̃E = B(0, 1). Then the center of mass of T̃ (Ω) is 0 and

B(0, αn) ⊂ T̃ (Ω) ⊂ B(0, 1), (2.26)

as shown in figure 2.5

Thus the set T̃ (Ω) is the normalization of Ω by the affine transformation T̃ . In particular,

since the Monge-Ampère sections Sϕ(x, t) are open convex and bounded (whenever ϕ is

strictly convex), we can normalize them. That is, there is an affine trnasformation T̃ such

that the center of mass of T̃ (Sϕ(x, t)) is 0, and

B(0, αn) ⊂ T̃ (Sϕ(x, t)) ⊂ B(0, 1). (2.27)

Now by defining ψ(y) := ϕ(T̃ )−1(y), we get T̃ Sϕ(x, t) = Sψ(T̃ x, t) from (2.20). Consequently
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Figure 2.5: Normalization of open bounded convex sets.

from (2.27), we have

B(0, αn) ⊂ Sψ(T̃ x, t) ⊂ B(0, 1).

This implies

αnωn ≤ |Sψ(T̃ x, t)| ≤ ωn.

These inequalities give the bound for the Lebesgue measure of the normalized Monge-Ampère

section of ϕ. The techniques depicted here in this section will be used to prove the main

results in the subsequent chapters.

2.3.3 The engulfing property

We recall that the Euclidean balls are the metric balls given by the metric induced by the

Euclidean norm. Then for any point x in an Euclidean ball B(x0, r), we have

B(x0, r) ⊂ B(x, 2r).
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This inclusion is an immediate consequence of the triangle inequality of the associated metric.

This property of Euclidean balls motivates us to study of similar phenomena associated to

the Monge-Ampère sections, so-called the engulfing property.

Definition 2.26. We say that the Monge-Ampère sections of a convex function ϕ ∈ C1(Ω)

have the engulfing property if there exists a geometric constant Θ > 1 such that whenever

x0 ∈ Ω and τ > 0 satisfy Sϕ(x0,Θ
2τ) ⊂⊂ Ω, then for every x ∈ Sϕ(x0, τ) following inclusion

holds true:

Sϕ(x0, τ) ⊂ Sϕ(x,Θτ). (2.28)

This definition is depicted in Figure 2.6 here below.
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Figure 2.6: The engulfing property of the Monge-Ampère sections.

We will next observe that the Monge-Ampère sections of ϕ have this engulfing property

whenever the map δϕ defined in (2.4) is a quasi-distance in the following sense.

Definition 2.27. A map δ : Ω× Ω → [0,∞) is a quasi-distance if there exists K ≥ 1 such

that

(i) δ(x, y) = 0 iff x = y;

(ii) δ(x, y) ≤ K δ(y, x), for all x, y ∈ Ω and
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(iii) δ(x, y) ≤ K [δ(x, z) + δ(z, y)] for all x, y, z ∈ Ω.

The space Ω associated with the quasi-distance δ, that is, (Ω, δ) is called the quasi-metric

structure. The second condition in Definition 2.27 is named as a quasi-symmetry and the

third one as a quasi-triangle inequality. We should pay attention on the quasi-symmetric

condition (ii) in the above definition as we can find some mathematicians defining quasi-

distance with symmetric condition instead of (ii) in our definition above. We also observe

that the case K = 1 reduces this definition to a distance.

Now we see that if the map δϕ defined in (2.4) is a quasi-distance, then the Monge-Ampère

sections of ϕ have the engulfing property.

For y ∈ Sϕ(x0, τ), we have δϕ(x0, y) < τ. Then by the quasi-triangle inequality and the

quasi-symmetry,

δϕ(x, y) ≤ K [δϕ(x, x0) + δϕ(x0, y)] < K [Kδϕ(x0, x) + τ ] < 2K2 τ.

This verifies the inclusion of the engulfing property (2.28) with Θ = 2K2.

One of the most celebrated result in the study related to the Monge-Ampère sections is

the following characterization of the DC-doubling condition by the engulfing property.

Theorem 2.28. For µϕ, the Monge-Ampère measure associated to a strictly convex function

ϕ ∈ C1(Ω), the following statements are equivalent:

(i) µϕ satisfies the DC-doubling condition 2.13.

(ii) The sections of ϕ have the engulfing property 2.28.

The direction (i) implies (ii) of Theorem 2.28 is proved by Gutiérrez (see Theorem 3.3.7

in [7]) and the result of other direction is proved by Forzani and Maldonado (see Theorem 8

in [18]). Note that the strictly convexity in the statement of this theorem can be relaxed by

assuming the sections of ϕ are bounded.

We have already seen that if the map δϕ defined in (2.4) is a quasi-distance, then the

Monge-Ampère sections of ϕ have the engulfing property. On the other hand, the map δϕ
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restricted to a suitable region is a quasi-distance under the assumption of the engulfing prop-

erty. In fact, the first condition of Definition 2.27 is immediate. Let us next briefly indicate

how the inclusion (2.28) amounts to a quasi-symmetry and a quasi-triangle inequality for δϕ

in a restricted region.

For this, suppose x, y ∈ Ω such that

Sϕ(x, δϕ(x, y)) ⊂⊂ Ω and Sϕ(y,Θδϕ(x, y)) ⊂⊂ Ω, (2.29)

and for ε > 0 sufficiently small we have y ∈ Sϕ(x, δϕ(x, y) + ε) ⊂⊂ Ω. Then the engulfing

property implies

Sϕ(x, δϕ(x, y) + ε) ⊂ Sϕ(y,Θ(δϕ(x, y) + ε)).

In particular, we have δϕ(y, x) < Θ(δϕ(x, y)+ε). Now by letting ε→ 0, we get the inequality

δϕ(y, x) ≤ Θδϕ(x, y), (2.30)

which represents the Θ-quasi symmetry of δϕ. On the other hand, given x, y, z ∈ Ω such

that

Sϕ(z, δ(z, y)), Sϕ(z, δ(y, z)), Sϕ(x,Θδϕ(z, x)) ⊂⊂ Ω, (2.31)

assume first that δϕ(z, x) ≤ δϕ(z, y) to write, for ε > 0 small enough,

x ∈ Sϕ(z, δϕ(z, x) + ε) ⊂ Sϕ(z, δϕ(z, y) + ε) ⊂⊂ Ω.

Now by applying the engulfing property to x and Sϕ(z, δϕ(z, y) + ε), we get

y ∈ Sϕ(z, δϕ(z, y) + ε) ⊂ Sϕ(x,Θ(δϕ(z, x) + ε)).

In particular, δϕ(x, y) < Θ(δϕ(z, x) + ε) and by letting ε→∞, we get

δϕ(x, y) ≤ Θδϕ(z, x). (2.32)
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Next, if δϕ(z, x) > δϕ(z, y), we reverse the roles of x and y in the argument above, which

requires the inclusions (2.31) with y replaced with x, to obtain

δϕ(y, x) ≤ Θδϕ(z, y). (2.33)

In addition, consider that

Sϕ(y, δϕ(y, x)) ⊂⊂ Ω and Sϕ(x,Θδϕ(y, x)) ⊂⊂ Ω. (2.34)

Then the inequalities (2.30) (with x and y interchanged) and (2.33) give

δϕ(x, y) ≤ Θ2δϕ(z, y). (2.35)

Since (2.32) or (2.35) will hold true, it follows that

δϕ(x, y) ≤ Θ(Θδϕ(z, y) + δϕ(z, x)) ≤ Θ2(δϕ(z, y) + δϕ(x, z)), (2.36)

which effectively represents a Θ2-quasi triangle inequality for δϕ by considering the restric-

tions from the inclusions in 2.29, 2.31, and 2.34.

Thus if the Monge-Ampère sections of ϕ have the engulfing property or equivalently

if the Monge-Ampère measure associated to ϕ, µϕ, satisfies DC-doubling condition (due

to Theorem 2.28), the map δϕ defined in (2.4) is a quasi-distance (possibly with certain

restrictions as mentioned above). Consequently, the space (Ω, δϕ) takes the form of quasi-

metric structure. In broader sense, the triple (Ω, δϕ, µϕ) is a space of of homogeneous type.

Here after, the notation µϕ ∈ DC(Ω, δϕ) is valid.

2.3.4 Doubling implies reverse doubling in (Ω, δϕ)

In this section we recall reverse-doubling properties of doubling measures in the Monge-

Ampère quasi-metric structure from [19]. From now on Θ > 1 will always indicate the geo-
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metric constant from the engulfing property (2.28).

Lemma 2.29 (see [19], Section 2). Fix ϕ ∈ C1(Ω) with µϕ ∈ DC(Ω, δϕ) and let µ be a Borel

measure on Ω which is DP -doubling with respect to the Monge-Ampère sections of ϕ. Then,

for every α ∈ (0, 1) there exists ξ ∈ (0, 1), depending only on α, the doubling constant of

µ, and geometric constants, such that for every section Sϕ(x0, t) with Sϕ(x0,Θ
2t) ⊂⊂ Ω we

have

µ(Sϕ(x0, αt)) ≤ ξµ(Sϕ(x0, t)). (2.37)

We note the constant ξ has to be smaller than 1. Otherwise the inequality (2.37) would

be trivial because Sϕ(x0, αt) ⊂ Sϕ(x0, t).

Using Lemma 2.29, it was proved in [19] Section 2, that if µϕ ∈ DC(Ω, δϕ) there exist

geometric constants CD > 0 and ε ∈ (0, 1) such that

µϕ(Sϕ(x0, t))

µϕ(Sϕ(x0, t′))
≤ CD

(
t

t′

)n−ε
(2.38)

for every section Sϕ(x0, t) with Sϕ(x0, t) ⊂⊂ Ω and every t′ ∈ (0, t). Also, Lemma 2.29 will

be useful in the proof of Theorem 3.19 and in the proof that every (q, p)-Poincaré inequality

implies a corresponding Sobolev inequality in Chapter 6.
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Chapter 3

Poincaré inequalities when

µϕ ∈ DC(Ω, δϕ)

Our objective in this chapter is to prove the (q, 2)-Poincaré inequalities presented in Theorem

3.4 and Theorem 3.5. In Section 3.1, we review the history of Poincaré inequalities in the

Monge-Ampère quasi-metric structure and then state our main results. Section 3.2 presents

the overview of the convex conjugate. Section 3.3 is devoted to state and prove self-improving

properties for the Poincaré inequalities in the Monge-Ampère quasi-metric structure. In

Section 3.4, we prove (1, 2)-Poincare inequality in Theorem 3.23 with respect to the Monge-

Ampère measure by weakening the hypotheses of the first (1, 2)-Poincare inequality developed

in 2014. Finally, Section 3.5 provides the proof of the main results stated in Section 3.1.

3.1 Introduction and main results

The Poincaré and Sobolev inequalities in the Monge-Ampère quasi-metric structure will

involve the Monge-Ampère gradient associated to the given convex function on the right

sides of the inequalities. The Monge-Ampère gradient associated to a convex function ϕ,

denoted by ∇ϕ, for a function u differentiable at a point x ∈ Ω with D2ϕ(x) > 0 is defined
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as

∇ϕu(x) := D2ϕ(x)−
1
2 ∇u(x). (3.1)

In general, the Monge-Ampère gradient is different from the classical gradient of a function.

However, observe that the Monge-Ampère gradient associated to ϕ2(x) :=
|x|2

2
coincides

with the classical gradient.

The first Poincaré inequality with respect to the Lebesgue measure in the Monge-Ampère

quasi-metric structure was established by D. Maldonado in 2014, which reads as

Theorem 3.1 (Theorem 1.3 in [4]). Given an open convex set U ⊂ Rn and ϕ ∈ C2(U) with

D2ϕ > 0 in U and µϕ ∈ DC(U, δϕ) there exists a geometric constant C∗1 > 0 such that

for every section S := Sϕ(x0, t) with Sϕ(x0, t) ⊂⊂ U and every h ∈ C1(S) the following

(1, 2)-Poincaré holds true in the Monge-Ampère quasi-metric structure with respect to the

Lebesgue measure  
S

|h(x)− hS| dx ≤ C∗1 t
1
2

( 
S

|∇ϕh(x)|2 dx
) 1

2

, (3.2)

where hS :=
ffl
S
h(x) dx.

With a combination of (1, 2)-Poincaré inequality with respect to Lebesgue measure in

Theorem 3.1 and the change of variables from [3] Section 4 yields the following weak (1,2)-

Poincaré inequality with respect to the Monge-Ampère measure, which has been essential to

the Harnack inequalities in [11].

Theorem 3.2. Fix n ≥ 2 and ϕ ∈ C2(Ω) with D2ϕ > 0 in Ω and µϕ ∈ DC(Ω, δϕ).

Then, there exist constants C1, C2 > 1, depending only on the doubling constant from the

condition µϕ ∈ DC(Ω, δϕ) and dimension n, such that for every section S := Sϕ(x0, t) with

Sϕ(x0, C1t) ⊂⊂ Ω and every u ∈ C1(Sϕ(x0, C1t)) the following Poincaré inequality holds true

 
S

|u(x)− uµϕS |dµϕ(x) ≤ Ct
1
2

( 
Sϕ(x0,C1t)

|∇ϕu(x)|2dµϕ(x)

) 1
2

, (3.3)

where u
µϕ
S :=

ffl
S
udµϕ.
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Note the difference between (1, 2)-Poincaré inequality and weak (1, 2)-Poincaré inequality

is that the first notion involves the same set for the integration on both sides while the second

one involves bigger set on the right side of the inequality.

Definition 3.3. Consider a set U ⊂ Rn. Then a function f : U → R is called a Lipschitz

continuous, and denoted by f ∈ Lip(U), if there exists a constant C > 0 such that for all

x, y ∈ U

|f(x)− f(y)| ≤ C |x− y|.

We remark that the Lipschitz continuity can be generalized for functions mapping be-

tween metric spaces. But we will use the Lipschitz continuity defined on the Euclidean

setting in our context. It is quite easy to observe that a continuously differentiable function

defined on a closed interval [a, b] ⊂ R is Lipschitz continuous, but the reverse may not be

true necessarily. For instance, the function f(x) := |x|, x ∈ R is Lipschitz continuous on

[−a, a] with a > 0 but not differentiable on that interval. Another important property of

Lipschitz continuous functions is that they are differentiable a.e. and the derivatives are

bounded a.e.

We are now in the position to list the following two theorems, one with respect to the

Lebesgue measure and the other with respect to the Monge-Ampère measure, as our main

results in this chapter.

Theorem 3.4. Fix n ≥ 2 and let ϕ ∈ W 2,n
loc (Ω, dx) be a strictly convex function with D2ϕ > 0

a.e. in Ω and µϕ ∈ DC(Ω, δϕ). Then, there exist geometric constants K1, K2 > 1 and ε1 > 0

such that for every section S := Sϕ(x0, t) with Sϕ(x0, K1t) ⊂⊂ Ω and every u ∈ Lip(K1S)

we have ( 
S

|u(x)− uµϕS |
q1dµϕ(x)

) 1
q1

≤ K2 t
1
2

( 
K1S

|∇ϕu(x)|2dµϕ(x)

) 1
2

, (3.4)

where q1 := 2n
n−1

+ ε1 and u
µϕ
S :=

ffl
S
u(x)dµϕ(x).

As before we remark that the strict convexity of ϕ is not required in Theorem 3.4.

However, we keep in mind the underlying hypothesis that all the Monge-Ampère sections

involved are bounded.
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The Poincaré inequality in Theorem 3.4 is an improvement of Theorem 3.2 from couple

of viewpoints. The first thing to observe is that the hypotheses on Theorem 3.2 require ϕ ∈

C2(Ω) with D2ϕ > 0 in Ω which are replaced with the weaker hypotheses ϕ ∈ W 2,n
loc (Ω, dx)

and D2ϕ > 0 a.e. in Ω in Theorem 3.4. Second, Theorem 3.2 is a (1, 2)-Poincaré inequality

which is improved to (q1, 2)-Poincaré inequality with q1 > 2 in Theorem 3.4. We keep in

mind that the average integral
(ffl

S
| · |p

) 1
p is increasing on p for p ≥ 1. Finally, Theorem 3.4

establishes the weak (q1, 2)-Poincaré inequality for the Lipschitz continuous functions while

Theorem 3.2 is established for the continuously differentiable functions.

The second main result is the following weak (q1, 2)-Poincaré inequality associated to

the Lebesgue measure with the same size of parameter q1 as in Theorem 3.4 and with an

additional assumption that ‖(D2ϕ)−1‖ ∈ Lnloc(Ω, dµϕ). Here onward, ‖ · ‖ deontes the L2-

norm.

Theorem 3.5. Fix n ≥ 2 and let ϕ ∈ W 2,n
loc (Ω, dx) be a strictly convex function such that

D2ϕ > 0 a.e. in Ω, ‖(D2ϕ)−1‖ ∈ Lnloc(Ω, dµϕ), and µϕ ∈ DC(Ω, δϕ). Then, there exist

geometric constants K3, K4 > 1 and ε1 > 0 such that for every section S := Sϕ(x0, t) with

Sϕ(x0, K3t) ⊂⊂ Ω and every h ∈ Lip(K3S) we have

( 
S

|h(x)− hS|q1 dx
) 1

q1

≤ K4 t
1
2

( 
K3S

|∇ϕh(x)|2 dx
) 1

2

, (3.5)

where q1 := 2n
n−1

+ ε1 and hS :=
ffl
S
h(x) dx.

We remark that the hypothesis ‖(D2ϕ)−1‖ ∈ Lnloc(Ω, dµϕ) will only be used to prove local

Ln-integrability of D2ψ, where ψ is the convex conjugate of ϕ (see Section 3.2), but it will

play no role in the behavior of the constants.

3.2 The convex conjugate

In this section, we discuss about the convex conjugate of functions and the relevant properties

that play roles in the subsequent sections and chapters.
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Definition 3.6. The convex conjugate of a function u : Ω→ R is the function u∗ : Rn → R

defined by

u∗(y) = sup
x∈Ω

[x · y − u(x)].

We observe that the convex conjugate u∗ is a convex function no matter whether u is

convex or not. In fact, for t ∈ [0, 1],

u∗(ty + (1− t)z) = sup
x∈Ω

[x · (ty + (1− t)z)− u(x)]

= sup
x∈Ω

[t(x · y − u(x)) + (1− t)(x · z − u(x))]

≤ t sup
x∈Ω

[x · y − u(x)] + (1− t) sup
x∈Ω

[x · z − u(x)]

= tu∗(y) + (1− t)u∗(z).

Let us see an example to get the better picture of the convex conjugate.

Example 3.7. Consider ϕ(x) =
|x|p

p
, 1 < p < ∞ from R → R. Then its convex conjugate

is ϕ∗(y) =
|y|q

q
where

1

p
+

1

q
= 1.

To see this, let’s recall the definition

ϕ∗(y) = sup
x∈R

[
x y − |x|

p

p

]
, and let h(x) = x y − |x|

p

p
.

For the case x ≥ 0, we have h′(x) = y−xp−1. This implies that x = y
1
p−1 is the critical point.

Since h′′(x) = −(p− 1)xp−2 < 0, the critical point maximizes the function h. And hence,

h
(
y

1
p−1

)
= y

1
p−1 y − y

p
p−1 =

yq

q
.

Hence ϕ∗(y) =
yq

q
. We proceed in the similar way for the case x < 0.

Consider a strictly convex ϕ ∈ C1(Ω). Then the gradient ∇ϕ is one-to-one. Now let
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ψ ∈ C1(∇ϕ(Ω)) denote its convex conjugate. Then we have

ψ(∇ϕ(x)) = 〈∇ϕ(x), x〉 − ϕ(x) ∀x ∈ Ω,

It is proved in [20] Section 26 that if ϕ is a strictly convex differentiable function, then its

convex conjugate ψ is also strictly convex differentiable function such that ∇ψ = (∇ϕ)−1.

That is,

∇ϕ(∇ψ(y)) = y ∀y ∈ ∇ϕ(Ω), (3.6)

∇ψ(∇ϕ(x)) = x ∀x ∈ Ω. (3.7)

An another useful result associated to the convex conjugate, due to Forzani and Maldon-

ado in 2004, is that if µϕ ∈ DC(Ω, δϕ), then µψ ∈ DC(∇ϕ(Ω), δψ) with a constant depending

only on the constant from µϕ ∈ DC(Ω, δϕ). More precisely,

Theorem 3.8 (Theorem 12 in [21]). Consider a strictly convex function ϕ ∈ C1(Ω) such that

µϕ ∈ DC(Ω, δϕ), and let ψ be the convex conjugate of ϕ. Then µψ ∈ DC(∇ϕ(Ω), δψ) and

there is a geometric constant K∗ > 0 such that the section of ϕ and ψ have the following

relation:

Sϕ(z, τ/K∗) ⊂ ∇ψ(Sψ(∇ϕ(z), τ)) ⊂ Sϕ(z,K∗τ), (3.8)

for every section Sϕ(z, τ) with Sϕ(z,K∗τ) ⊂⊂ Ω.

We now add some details on the properties of convex functions that require to involve the

convex conjugate. Recall from Section 2.1 that the strictly convexity of a smooth function

doesn’t guarantee the positive definiteness of its Hessian matrix everywhere. However, we

have the following result that loses the positive definiteness on a set of measure zero.

Proposition 3.9. If ϕ ∈ C2(Ω) is strictly convex, then D2ϕ > 0 a.e.in Ω.

In order to sketch the proof of this proposition, we need the following theorem by Sard.

Theorem 3.10 (Theorem 1.1.15 in [7]). Let Ω ⊂ Rn be an open set and g : Ω → Rn is C1

function in Ω. If S0 = {x ∈ Ω : detDg(x) = 0}, then |g(S0)| = 0.
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Proof of Proposition 3.9: By the way of contradiction, we assume that D2ϕ ≯ 0 a.e. in

Ω. Then there is a set E ⊂ Ω with positive measure such that D2ϕ(x) = 0, ∀x ∈ E. Define

g := ∇ϕ. Note that S0 = {x ∈ Ω : detDg(x) = 0} ⊇ E. When Sard’s Theorem is applied on

g = ∇ϕ, we get

0 = |g(S0)| ≥ |g(E)|.

That is, |∇ϕ(E)| = 0. Now let ψ be the convex conjugate of ϕ. Then ψ is C2 and strictly con-

vex as so is ϕ. Also, ∇ϕ is one-to-one as ϕ is strictly convex. So, we have E = ∇ψ(∇ϕ(E)).

Now since ∇ψ is also one-to-one (being the inverse of ∇ϕ), it maps a set of measure zero to

a set of measure zero. This implies that |E| = 0, a contradiction.

We next remark that if the hypothesis ϕ ∈ C2(Ω) of Proposition 3.9 is replaced by the

weaker assumption ϕ ∈ W 2,n
loc (Ω, dx), then the Proposition 3.9 fails due to the following

theorem.

Theorem 3.11 (Corollary 1 in [22]). If 1 ≤ p < n, then there exists a strictly convex W 2,p-

solution to the degenerate Monge-Ampère equation

detD2ϕ = 0 a.e.

on the n-dimensional unit cube.

This is the reason why we assume D2ϕ > 0 a.e. in Ω on the hypotheses of our statements

along with the strictly convexity of ϕ ∈ W 2,n
loc (Ω, dx).

3.3 Self-improving properties for the Poincaré inequal-

ities in the Monge-Ampère quasi-metric structure

Our objective in this section is to establish some results related to the self-improving prop-

erties. We will observe that Lemma 3.14 illustrates the improvement of weak Lp-norm to

strong Lp-norm under suitable assumption on the associated Borel measure. Theorem 3.19
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improves (1, p)-Poincaré inequality to (q, p)-Poincaré inequality with q > 1 when facilitated

with an appropriate growth condition. This theorem will function as the heart of many

results in this dissertation. Let us begin now with some definitions.

Definition 3.12. Consider two Borel measures µ and ν on Ω. Then we say that µ is

absolutely continuous with respect to ν, and write µ � ν, if for every Borel set E ⊂ Ω, we

have

ν(E) = 0⇒ µ(E) = 0.

In our context, we are only interested with those Borel measures that are absolutely

continuous with respect to the Lebesgue measure. A trivial example of such Borel measure

is the Lebesgue measure itself. Another Borel measure that is absolutely continuous with

respect to the Lebesgue measure is the Monge-Ampère measure. Indeed, let µϕ be the

Monge-Ampère measure of a convex function ϕ ∈ W 2,n
loc (Ω, dx). Then from Subsection 2.2.2,

µϕ(E) =

ˆ
E

detD2ϕ(x) dx,

for every Borel sets E ⊂ Ω. Consequently, |E| = 0 implies µϕ(E) = 0.

Definition 3.13. Let (X,Σ, µ) be a measurable space. Then a function f : X → C is said

to be in the weak Lp space, and write f ∈ Lp,w(X,µ), if there exists a constant K > 0 such

that for all τ > 0,

τ µ{x ∈ X : |f(x)| > τ}
1
p ≤ K. (3.9)

The weak Lp-norm of f is denoted by ‖f‖Lp,w and is defined by

‖f‖Lp,w := sup
τ>0

τ µ{x ∈ X : |f(x)| > τ}
1
p ,

which is same as the smallest possible constant K in the inequality (3.9). We note that the

weak Lp-norm of a function f is smaller than the strong Lp-norm, that is, ‖f‖Lp,w ≤ ‖f‖Lp .
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Indeed,

‖f‖pLp =

ˆ
{x∈X:|f(x)|≤τ}

|f |p dµ+

ˆ
{x∈X:|f(x)|>τ}

|f |p dµ

≥
ˆ
{x∈X:|f(x)|≤τ}

τ p dµ+

ˆ
{x∈X:|f(x)|>τ}

|f |p dµ

≥ τ p µ{x ∈ X : |f(x)| > τ}.

By taking the supremum on the right side, we get the desired inequality.

We recall that for a real valued function u : X → R, the positive and negative parts

of u are defined by u+ := max {u, 0} and u− := max {−u, 0} respectively. Notice that

u+ ≥, u− ≥ 0, u = u+ − u−, and |u| = u+ + u−.

Another useful result that we will employ in the proof of Lemma 3.14 is the Cavalieri

principle stating that if u : X → [0,∞) is a µ-measurable function and 0 < q <∞, then

ˆ
X

uq dµ = q

ˆ ∞
0

λq−1 µ({x ∈ X : u(x) > λ}) dλ. (3.10)

The proof of Cavalieri principle is quite straightforward. In fact, we can write u(x)q =

q
´ u(x)

0
λq−1 dλ. This implies

ˆ
X

u(x)q = q

ˆ
X

(ˆ u(x)

0

λq−1 dλ

)
dx

= q

ˆ
X

(ˆ ∞
0

λq−1 χ{x:0<λ<u(x)} dλ

)
dx

= q

ˆ ∞
0

λq−1

(ˆ
X

χ{x:0<λ<u(x)} dµ

)
dλ

= q

ˆ ∞
0

λq−1 µ({x ∈ X : u(x) > λ}) dλ.

We are now ready to state and prove the following lemma.

Lemma 3.14. Let ϕ ∈ C1(Ω) be a convex function with D2ϕ > 0 a.e. in Ω and let µ be a

Borel measure on Ω absolutely continuous with respect to the Lebesgue measure. Let S, S0 be
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sections of ϕ with S ⊂ S0 ⊂⊂ Ω and fix 0 < p ≤ q < ∞ with q > 1. If, for some constant

C0 > 0, the inequality

τ qµ({x ∈ S : |u(x)− uµS| ≥ τ}) ≤ C0µ(S)

( 
S0

|∇ϕu|p dµ
) q

p

(3.11)

holds true for every τ > 0 and u ∈ Lip(S0), then

( 
S

|u− uµS|
q dµ

)1/q

≤ C1

( 
S0

|∇ϕu|p dµ
) 1

p

∀u ∈ Lip(S0), (3.12)

where C1 := 16
(

1 +
(

q
q−1

)q) 1
q

C
1
q

0 .

Notice that by taking the qth-root and then supremum in the inequality (3.11) simplifies

the quantity on the left to be the weak Lq-norm of |u− uµS| which is eventually improved to

the strong Lq-norm in the inequality (3.12).

Proof. Given u ∈ Lip(S0), without loss of generality we may assume uµS = 0. Otherwise we

can work with v := u − uµS. As |u| = u+ + u−, we will estimate the integrals
ffl
S
up+dµ andffl

S
up−dµ.

Let k0 ∈ Z such that

2k0−1 ≤
 
S

u+ dµ < 2k0 (3.13)

and for k > k0 set

uk :=


0, u ≤ 2k,

2k, u ≥ 2k+1,

u− 2k, 2k < u < 2k+1.

(3.14)

Since u is differentiable a.e., ∇uk = ∇uχ{2k<u<2k+1} (Lebesgue) a.e. in S0 (see, for in-

stance [23] Theorem 7.8) and consequently ∇ϕuk = ∇ϕuχ{2k<u<2k+1} (Lebesgue) a.e. in S0.

In particular, uk ∈ Lip(S0) and, in view of (3.13),

(uk)
µ
S :=

 
S

uk dµ ≤
 
S

u+ dµ < 2k0 ≤ 2k−1 ∀k > k0. (3.15)
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From the definition of uk and the estimate (3.15) we get

{x ∈ S : u(x) ≥ 2k+1} ⊂ {x ∈ S : uk(x) = 2k}

= {x ∈ S : |uk(x)− (uk)
µ
S| = |2

k − (uk)
µ
S| ≥ 2k−1}.

This implies

(2k−1)q µ({x ∈ S : u(x) ≥ 2k+1}) ≤ (2k−1)q µ({x ∈ S : |uk(x)− (uk)
µ
S ≥ 2k−1})

≤ C0µ(S)

( 
S0

|∇ϕu|p dµ
) q

p

,

where the second inequality is due to (3.11) applied to uk and τ = 2k−1. Define

I + II :=

ˆ
{x∈S:u(x)≥2k0+2}

uq+ dµ+

ˆ
{x∈S:u(x)<2k0+2}

uq+ dµ =

 
S

up+dµ.

Then,

I :=

ˆ
{x∈S:u(x)≥2k0+2}

uq+ dµ =
∞∑

k=k0+1

ˆ
{x∈S:2k+1≤u(x)<2k+2}

uq+ dµ

≤
∞∑

k=k0+1

2(k+2)qµ({x ∈ S : 2k+1 ≤ u(x) < 2k+2})

≤ 23q

∞∑
k=k0+1

2(k−1)qµ({x ∈ S : |uk(x)− (uk)
µ
S| ≥ 2k−1})

≤ 23qC0µ(S)
∞∑

k=k0+1

( 
S0

|∇ϕuk|p dµ
) q

p

≤ 23qC0µ(S)

(
∞∑

k=k0+1

 
S0

|∇ϕuk|p dµ

) q
p

= 23qC0µ(S)

(
∞∑

k=k0+1

1

(µ(S0)

ˆ
S0∩{x∈S:2k+1≤u(x)<2k+2}

|∇ϕu|p dµ

) q
p

≤ 23qC0µ(S)

( 
S0

|∇ϕu|p dµ
) q

p

,
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where the second last equality uses the facts that ∇ϕuk = ∇ϕuχ{2k<u<2k+1} (Lebesgue) a.e.

in S0 for every k > k0 and that q ≥ p. On the other hand, given ζ > 0, due to Cavalieri

principle, we get

 
S

u+ dµ ≤
 
S

|u| dµ =
1

(µ(S))

ˆ
S

|u− uS| dµ

=
1

(µ(S))

ˆ ζ

0

µ({x ∈ S : |u(x)− uµS| ≥ τ}) dτ +
1

µ(S)

ˆ ∞
ζ

µ({x ∈ S : |u(x)− uµS| ≥ τ}) dτ

≤ ζ +
1

µ(S)

ˆ ∞
ζ

µ({x ∈ S : |u(x)− uµS| ≥ τ}) dτ.

Then the inequality (3.11) applied to u gives

 
S

u+ dµ ≤ ζ + C0

( 
S0

|∇ϕu|p dµ
) q

p
ˆ ∞
ζ

dτ

τ q

= ζ

(
1 + C0

( 
S0

|∇ϕu|p dµ
) q

p

ζ−q

)
.

Let us define ζ := C
1/q
0

(ffl
S0
|∇ϕu|p dµ

) 1
p
. We will see in Remark 3.15 that ζ defined here

is finite under the assumption of integrability of certain function. So for this ζ, the above

inequality simplifies to

 
S

u+ dµ ≤
qC

1/q
0

q − 1

( 
S0

|∇ϕu|p dµ
) 1

p

. (3.16)

We note that (3.16) holds true also in the case ζ = 0. In fact, when ζ = 0, the quantity on

the right side of (3.12) is zero immediately. Now to see the quantity on the left is also zero,

observe that |∇ϕu|p = 0 a.e. in S0. This implies D2ϕ(x)−1/2∇u(x) = 0 a.e. in S0. Since

D2ϕ > 0 a.e. in S0, we must have ∇u(x) = 0 a.e. in S0, and hence u − uS = 0 a.e. in S.
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Now, the definition of k0 ∈ Z from (3.13) and (3.16) imply

II :=

ˆ
{x∈S:u(x)<2k0+2}

uq+ dµ < 2(k0+2)qµ(S) ≤ 23qµ(S)

( 
S

u+ dµ

)q
≤ 23qC0

(
q

q − 1

)q
µ(S)

( 
S0

|∇ϕu|p dµ
) q

p

.

Finally, ˆ
S

uq+dµ = I + II ≤ Cq
1µ(S)

( 
S0

|∇ϕu|p dµ
) q

p

,

where Cq
1 := 23qC0

(
1 +

(
q
q−1

)q)
.

With similar reasoning, we get

ˆ
S

uq−dµ ≤ Cq
1µ(S)

( 
S0

|∇ϕu|p dµ
) q

p

,

Now combing these positive and negative parts

( 
S

|u|q dµ
) 1

q

=

( 
S

[u+ + uq] dµ

) 1
q

≤
(ˆ

S

uq+ dµ

) 1
q

+

(ˆ
S

uq− dµ

) 1
q

(due to Minkowski inequality)

≤ 16

(
1 +

(
q

q − 1

)q) 1
q

C
1
q

0

( 
S0

|∇ϕu|p dµ
) 1

p

.

Remark 3.15. When 0 < p ≤ 2 (which is the case we will be using), the condition

‖(D2ϕ)−1‖ ∈ L1
loc(Ω, dµ) guarantees that ζ := C

1/q
0

(ffl
S0
|∇ϕu|p dµ

) 1
p

in the proof of Lemma

3.14 is finite. Indeed,

( 
S0

|∇ϕu|p dµ
) 1

p

≤
( 

S0

|∇ϕu|2 dµ
) 1

2

=

( 
S0

〈(D2ϕ)−1∇u,∇u〉 dµ
) 1

2

≤ ess sup
S0

|∇u|
( 

S0

||(D2ϕ)−1|| dµ
) 1

2

<∞.
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Before presenting the main theorem of this section, let us briefly discuss about the

Lebesgue point and the maximal operator associated to the Monge-Ampère sections. Recall

that we assume Ω ⊂ Rn is open and convex, and ϕ ∈ C1(Ω) is strictly convex.

Definition 3.16. Let u : Ω → R be a locally integrable function. Then a point x ∈ Ω is

called the Lebesgue point of u if for sections Sϕ(x, t) ⊂ Ω,

lim
t→0

1

µ(Sϕ(x, t))

ˆ
Sϕ(x,t)

|u− u(x)| dµ = 0. (3.17)

The equation (3.17) implies that

u(x) = lim
t→0

1

µ(Sϕ(x, t))

ˆ
Sϕ(x,t)

u dµ.

We note that if u is continuous at x ∈ Ω, then x is a Lebesgue point of u.

Consider two measurable spaces (x,Σ, µ) and (x,Σ′, ν), and let T be an operator that

maps Lp(X) to a space of measurable functions defined on Y. Then for 1 ≤ q < ∞, we say

that T is of weak type (p, q) if there exists a constant C > 0 such that for all α > 0 and

every u ∈ LP (X), we have

ν({y ∈ Y : |Tu(y)| > α}) ≤
(
c ‖u‖Lp
α

)q
. (3.18)

For the case q =∞, we say that T is of weak type (p,∞) if for every u ∈ LP (X),

‖T u‖L∞ ≤ C ‖u‖Lp .

And, we say that T is of strong type (p, q) if there exists a constant C > 0 such that for

every u ∈ LP (X), we have

‖T u‖Lq ≤ C ‖u‖Lp . (3.19)

We can easily verify that T is of strong type (p, q) implies T is of weak type (p, q). And due

to Marcinkiewicz interpolation theorem (for instance, see Page 158 in [24]), if an operator T
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is of weak (1, 1) type and strong (∞,∞) type, then T is of strong (p, p) type for every p with

1 < p ≤ ∞.

Definition 3.17. Suppose U ⊂ Ω and let u ∈ L1(U) with respect to a Borel measure µ.

Then the noncentered maximal function restricted to U is defined by

MU u(x) := sup
t>0

1

µ(Sϕ(x0, t))

ˆ
Sϕ(x0,t)

|u| dµ. (3.20)

where the supremum is taken over all sections Sϕ(x0, t) ⊂ U containing x.

For the centered version of maximal function, we simply take supremum over all the

sections Sϕ(x, t) ⊂ U . That is, replacing Sϕ(x0, t) by Sϕ(x, t) in (3.20) gives the definition

for the centered version. Whenever the associated Borel measure µ is doubling with respect

to the Monge-Ampère sections of ϕ (that is, either µ ∈ DC(Ω, δϕ) or µ ∈ DP (Ω, δϕ)), then

the centered and uncentered maximal functions are comparable.

Remark 3.18. The maximal function MU defined by (3.20) is finite a.e. in U , weak (1, 1)

type (see [5] Section 5 or [25] Section 3.2), strong (∞,∞) type, and consequently strong (p, p)

type for p with 1 < p ≤ ∞ due to Marcinkiewicz interpolation theorem.

We are now ready to state and prove the following main theorem.

Theorem 3.19. Fix ϕ ∈ C1(Ω) with D2ϕ > 0 a.e. in Ω and µϕ ∈ DC(Ω, δϕ) and let µ

be a Borel doubling measure on Ω absolutely continuous with respect to Lebesgue measure

satisfying the following conditions:

(a) for some CP > 0, λ ≥ 1, and p > 0, the Poincaré inequality

 
S

|u− uµS| dµ ≤ CP t
1
2

( 
λS

|∇ϕu|p dµ
) 1

p

, (3.21)

with uµS :=
ffl
S
u dµ, holds true for every section S := Sϕ(x0, t) with λS ⊂⊂ Ω and every

u ∈ Lip(λS);
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(b) for some CD > 0 and s > p/2 it satisfies the growth condition

µ(Sϕ(z, r)) ≤ CD

( r
r′

)s
µ(Sϕ(z, r′)), (3.22)

for all 0 < r′ ≤ r and all sections Sϕ(z, r) with Sϕ(z, r) ⊂⊂ Ω.

Then, ( 
S

|u− uµS|
2sp
2s−p dµ

) 2s−p
2sp

≤ CP,st
1
2

( 
λΘ2S

|∇ϕu|p dµ
) 1

p

, (3.23)

for every section S := Sϕ(x0, t) with λΘ2S ⊂⊂ Ω and every u ∈ Lip(λΘ2S), where CP,s > 0

depends only on s, λ,Θ, CP , and CD.

Proof. Fix S := Sϕ(x0, t) such that Sϕ(x0, λΘ2t) ⊂⊂ Ω, x ∈ S, and u ∈ Lip(λΘ2S). For

j ∈ N set tj := 2−jt and Sj := Sϕ(x, tj), for j = 0 set S0 := Sϕ(x0,Θ
2t) and t0 := Θ2t. Notice

that these choices imply Sj+1 ⊂ Sj for every j ∈ N0 and, for λ ≥ 1, λSj+1 ⊂ λSj for every

j ∈ N0. To check this last inclusion when j = 0, we use that x ∈ S = Sϕ(x0, t) ⊂ Sϕ(x0, λt)

and the second inclusion from (2.28) with “τ = λt” to obtain λS1 ⊂ λS0.

Due to the engulfing property (2.28), we get

x ∈ Sϕ(x0, t) ⊂⊂ Sϕ(x0,Θ
2t) ⊂ Sϕ(x0, λΘ2t) ⊂⊂ Ω.

We can use (3.22) with S = Sϕ(x0, t) and Sj = Sϕ(x, tj) to obtain

tj ≤ C
1/s
D Θt

(
µ(Sϕ(x, tj))

µ(Sϕ(x0, t))

)1/s

∀j ∈ N, (3.24)

with µ(S0) = µ(Sϕ(x0,Θ
2t)) ≤ CDΘ2sµ(Sϕ(x0, t)) from (3.22). Hence,

tj ≤ C
2/s
D Θ3t

(
µ(Sj)

µ(S0)

)1/s

∀j ∈ N. (3.25)

Notice that (3.25) is obviously true for j = 0 because CD > 1 and Θ > 1. In addition,

µ(Sj) ≤ CDµ(Sj+1) for every j ∈ N and, when j = 0, the doubling condition (3.22) and the
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fact that Sϕ(x0, t) ⊂ Sϕ(x,Θt) give

µ(S0) ≤ CDΘ2sµ(Sϕ(x0, t)) ≤ CDΘ2sµ(Sϕ(x,Θt))

≤ 2sC2
DΘ3sµ(Sϕ(x, t/2)) = 2sC2

DΘ3sµ(S1). (3.26)

Consequently, by using the fact that any x ∈ λΘ2S is a Lebesgue point of u, the estimates

above for µ(Sj)/µ(Sj+1) with j ∈ N0, the Poincaré inequality (3.21), and (3.25),

|u(x)− uµS0
| = | lim

j→∞
uµSj − u

µ
S0
| = lim

j→∞
|uµSj − u

µ
S0
|

≤
∞∑
j=0

|uµSj − u
µ
Sj+1
| ≤

∞∑
j=0

 
Sj+1

|u− uµSj | dµ

≤ 2sC2
DΘ3s

∞∑
j=0

 
Sj

|u− uµSj | dµ

≤ 2sC2
DΘ3sCP

∞∑
j=0

t
1
2
j

( 
λSj

|∇ϕu|p dµ

) 1
p

≤ C3t
1
2

µ(S0)
1
2s

∞∑
j=0

µ(Sj)
1
2s

( 
λSj

|∇ϕu|p dµ

) 1
p

,

with C3 := 2sC
3/2
D Θ3s+3/2CP . On the other hand, recalling that t0 := Θ2t,

|uµS − u
µ
S0
| ≤

 
S

|u− uµS0
| dµ ≤ CDΘ2s

 
S0

|u− uµS0
| dµ

≤ CDΘ2sCP t
1
2

( 
λS0

|∇ϕu|p dµ
) 1

p

.

Therefore, for every x ∈ S we have

|u(x)− uµS| ≤
2C3t

1
2

µ(S0)
1
2s

∞∑
j=0

µ(Sj)
1
2s

( 
λSj

|∇ϕu|p dµ

) 1
p

(3.27)

Next, introduce

M(x) := sup
S′

 
S′
|∇ϕu|p dµ > 0
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where the supremum is taken over all the sections S ′ ⊂ λΘ2S0 with x ∈ S ′. From Remark

3.18, it follows that M(x) is finite for a.e. x ∈ S and then 1
M(x)

´
λS0
|∇ϕu|p dµ > 0 a.e. x ∈ S.

Now, from Lemma 2.29, we obtain µ(λSj)→ 0 as j →∞, and consequently, for a.e. x ∈ S,

there is a smallest j ∈ N0 such that the inequality

µ(λSj) ≤
1

M(x)

ˆ
λS0

|∇ϕu|p dµ (3.28)

holds true. Let j0 ∈ N0 denote such integer (which depends on x). Notice that if j0 = 0 then

equality occurs in (3.28) because

1

µ(λSj)

ˆ
λS0

|∇ϕu|p dµ ≤M(x).

In particular, we have

µ(λSj0) ≤
1

M(x)

ˆ
λS0

|∇ϕu|p dµ < µ(λSj0−1) ≤ CDλ
sµ(Sj0−1),

with µ(Sj0−1) ≤ CDµ(Sj0) if j0 > 1 and, if j0 = 1, we use (3.26) to obtain µ(Sj0−1) = µ(S0) ≤

C2
DΘ3sµ(S1). Hence,

µ(λSj0) ≤
1

M(x)

ˆ
λS0

|∇ϕu|p dµ ≤ C3
D(λΘ3)sµ(Sj0). (3.29)

Let us now split the sum from (3.27) into

∞∑
j=0

µ(Sj)
1
2s

( 
λSj

|∇ϕu|p dµ

) 1
p

=

j0−1∑
j=0

· · ·+
∞∑
j=j0

· · · =: Σ′ + Σ′′.

Let us first consider Σ′. Notice that we can assume j0 ∈ N (that is, j0 ≥ 1, because Σ′ = 0

if j0 = 0). Now, for j0 > 1, Lemma 2.29 with α = 1/2 implies

µ(Sj0) ≤ ξj0−jµ(Sj) ∀j < j0, (3.30)
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where ξ ∈ (0, 1) depends only on CD and Θ. Now, if j0 = 1 and j = 0, from the inclusion

S1 = Sϕ(x, t/2) ⊂ Sϕ(x0,Θ
2t) = S0, we get

µ(S1) ≤ µ(S0) =
1

ξ
ξj0−jµ(S0). (3.31)

Hence, for each j0 ∈ N, we have that µ(Sj0) ≤ 1
ξ
ξj0−jµ(Sj) for every j < j0, which, in turn,

implies (recall that 2s > p)

Σ′ :=

j0−1∑
j=0

µ(Sj)
1
2s

µ(λSj)
1
p

(ˆ
λSj

|∇ϕu|p dµ

) 1
p

≤
j0−1∑
j=0

µ(Sj)
1
2s
− 1
p

(ˆ
λSj

|∇ϕu|p dµ

) 1
p

≤ ξ
1
2s
− 1
pµ(Sj0)

1
2s
− 1
p

j0−1∑
j=0

ξ( 1
2s
− 1
p

)(j−j0)

(ˆ
λSj

|∇ϕu|p dµ

) 1
p

≤ C4µ(Sj0)
1
2s
− 1
p

(ˆ
λS0

|∇ϕu|p dµ
) 1

p

≤ C5M(x)
1
p
− 1

2s

(ˆ
λS0

|∇ϕu|p dµ
) 1

2s

,

where C4 := ξ
1
2s
− 1
p

∞∑
k=1

ξ( 1
p
− 1

2s
)k and C5 := C4[C3

D(λΘ3)s]
1
p
− 1

2s and we used the second inequal-

ity from (3.29).

We now turn to Σ′′. We first use Lemma 2.29 again with α = 1/2 to write

µ(Sj) ≤ ξj−j0µ(Sj0) ∀j ≥ j0,

at least if j0 ∈ N. If j0 = 0 the inclusion S1 ⊂ S0 and Lemma 2.29 give µ(Sj) ≤ ξj−1µ(S1) ≤
1
ξ
ξj−j0µ(S0) = 1

ξ
ξj−j0µ(Sj0). Hence,

µ(Sj) ≤
1

ξ
ξj−j0µ(Sj0) ∀j ≥ j0 ≥ 0. (3.32)
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Consequently, from (3.32) and (3.29),

Σ′′ :=
∞∑
j=j0

µ(Sj)
1
2s

( 
λSj

|∇ϕu|p dµ

) 1
p

≤ ξ−
1
2sµ(Sj0)

1
2sM(x)

1
p

∞∑
j=j0

ξ
j−j0
2s

≤ C6M(x)
1
p
− 1

2s

(ˆ
λS0

|∇ϕu|p dµ
) 1

2s

,

with C6 := ξ−
1
2s

∞∑
k=0

ξ
k
2s . Going back to (3.27), we now have

|u(x)− uµS| ≤
2C3(C5 + C6)t

1
2

µ(S0)
1
2s

M(x)
1
p
− 1

2s

(ˆ
λS0

|∇ϕu|p dµ
) 1

2s

≤ C7t
1
2M(x)

2s−p
2sp

( 
λS0

|∇ϕu|p dµ
) 1

2s

, (3.33)

with C7 := 2λ
1
2C

1
2s
D C3(C5 + C6). Setting qs := 2sp

2s−p > p and given τ > 0, the inequality

|u(x) − uµS| ≥ τ , the weak (1,1)-type of M with a constant C1,1 > 0 depending only on CD

and Θ (see Remark 3.18), and (3.33) then yield

µ({x ∈ S : |u(x)− uµS| ≥ τ})

≤ µ

({
x ∈ S : M(x) ≥ C−qs7 τ qst−qs/2

( 
λS0

|∇ϕu|p dµ
)− qs

2s

})

≤ C1,1C
qs
7 τ
−qstqs/2

( 
λS0

|∇ϕu|p dµ
) qs

2s
ˆ
S

|∇ϕu|p dµ

≤ C0τ
−qsµ(S)

( 
λS0

|∇ϕu|p dµ
) qs

2s
+1

= C0τ
−qsµ(S)

( 
λΘ2S

|∇ϕu|p dµ
) qs

p

,

with C0 := C1,1C
qs
7 CDλ

stqs/2. Hence, Lemma 3.14 applied with q = qs and S0 = λΘ2S imply

(3.23).
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3.4 (1,2)-Poincaré inequality with a weaker hypothesis

Recall that Theorem 3.2 establishes (1, 2)-Poincaré inequality under the assumption ϕ ∈

C2(U) with D2ϕ > 0 everywhere in U . In this section we present (1, 2)-Poincaré inequality

with weaker hypotheses, that is, by replacing the hypotheses of Theorem 3.2 with ϕ ∈

W 2,n
loc (Ω, dx) and D2ϕ > 0 a.e., and the assumption on the doubling condition is carried as

it is.

Let us first list some of the results that we will use to prove Theorem 3.23. The theorem

below is useful to verify µϕ ∈ DC(Ω, δϕ) implies the Monge-Ampère measure associated to

the convolution function ϕε satisfies the same doubling condition (that is, µϕε ∈ DC(Ω, δϕ))

in the proof of Theorem 3.23.

Theorem 3.20 (Theorem 4 in [21]). Let ϕ ∈ C1(Ω) be a strictly convex function. Then the

following statements are equivalent.

(i) The sections of ϕ have the engulfing property (2.28).

(ii) There exists a constant K1 > 1 such that if y ∈ Sϕ(x, t) with Sϕ(x,K1 t) ⊂⊂ Ω, then

x ∈ Sϕ(y,K1 t).

(iii) There exists a constant K2 > 1 such that

K2 + 1

K2

[ϕ(y)− ϕ(x)−∇ϕ(x) · (y − x)]

≤ (∇ϕ(x)−∇ϕ(x)) · (y − x)

≤ (K2 + 1)[ϕ(y)− ϕ(x)−∇ϕ(x) · (y − x)].

We recall that whenever a matrix A is symmetric positive definite, its eigenvalues are

positive and the largest eigenvalue gives its operator norm, that is ‖A‖2 = λmax. Moreover,

a positive definite matrix is equivalent to a diagonal matrix. In particular, if D2ϕ(x) >

0 and λ1(x), · · · , λn(x) are its eigenvalues, then there exists an invertible matrix X such
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that D2ϕ(x) = X−1DX with D = diag(λ1(x), · · · , λn(x)). Consequently, det D2ϕ(x) =

λ1(x)λ2(x) · · ·λn(x), and ∆ϕ = trace(D2ϕ(x)) = λ1(x) + λ2(x) + · · ·+ λn(x).

For the convenience of readers, let us also list the Fatou’s lemma and the Lebesgue’s

dominated convergence theorem before heading to the proof of Theorem 3.23.

Lemma 3.21 (Fatou’s lemma, see [26]). Let (X,Σ, µ) be a measurable space. If fn : X →

[0,∞] are measurable for all n ∈ N, then

ˆ
X

lim inf
limn→∞

fn dµ ≤ lim inf
limn→∞

ˆ
X

fn dµ.

Theorem 3.22 (Lebesgue’s dominated convergence theorem, see [26]). Let {fn} be a sequence

of measurable functions on a measurable space (X,Σ, µ) such that lim
n→∞

fn(x) = f(x) for a.e.

x ∈ E. If there exists g ∈ L1(X) such that |fn(x) ≤ g(x)| a.e. for all n ∈ N, then f is

integrable,

lim
n→∞

ˆ
E

|fn − f | dµ = 0, and lim
n→∞

ˆ
E

fn dµ =

ˆ
E

f dµ.

Theorem 3.23. Fix an open convex set Ω ⊂ Rn with n ≥ 2 and ϕ ∈ W 2,n
loc (Ω) such that

D2ϕ > 0 a.e. in Ω and µϕ ∈ DC(Ω, δϕ). Then, there exist geometric constants C∗3 > 0

and K∗ ≥ 1 such that for every section S := Sϕ(x0, t) with Sϕ(x0, 2K
∗t) ⊂⊂ Ω and every

h ∈ C1(Sϕ(x0, 2K
∗t)) the following Poincaré inequality holds true with respect to the Monge-

Ampère measure µϕ

 
S

|h(x)− hµϕS |dµϕ(x) ≤ C∗3 t
1
2

( 
Sϕ(x0,2K∗t)

|∇ϕh(x)|2dµϕ(x)

) 1
2

. (3.34)

Proof. Let ϕ ∈ W 2,n
loc (Ω, dx) with D2ϕ > 0 a.e. in Ω and µϕ ∈ DC(Ω, δϕ). Given a section

S := Sϕ(x0, t) ⊂⊂ Ω let ΩS ⊂ Rn be an open convex set such that S ⊂⊂ ΩS ⊂⊂ Ω set

ε0 := dist(ΩS, ∂Ω) and for 0 < ε < ε0 and x ∈ ΩS define

ϕε(x) := ϕ ∗ ηε(x) =

ˆ
Rn
ϕ(x− y)ηε(y) dy (3.35)
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where η ∈ C∞c (Rn), η ≥ 0, supp(η) ⊂ B(0, 1) and ‖η‖L1(Rn) = 1 with ηε(y) := ε−nη(ε−1y).

Then, for each ε > 0, we have that ϕε ∈ C∞(ΩS) with D2ϕε > 0 in ΩS. Indeed, since

D2ϕε(x) =
´
Rn D

2ϕ(x− y)ηε(y) dy, if we had 〈D2ϕε(y0)v, v〉 = 0 for some point y0 ∈ Ω and

non-zero vector v ∈ Rn \ {0}, then it would follow that 〈D2ϕ(y0 − y)v, v〉 = 0 for almost

every |y| < ε, contradicting D2ϕ > 0 a.e. in Ω. Also, ϕε and ∇ϕε converge to ϕ and ∇ϕ,

respectively, uniformly over compact subsets of ΩS. Moreover, from the characterization of

µϕ ∈ DC(Ω, δϕ) in terms of the engulfing property in Theorem 3.20 we have that µϕε ∈

DC(Ω, δϕ) for every ε ∈ (0, ε0) with constants depending only on the constant from µϕ ∈

DC(Ω, δϕ) (and, in particular, independent of ε). In fact,

〈∇ϕε(x)−∇ϕε(y), x− y〉 =
〈 ˆ

Rn
∇ϕ(x− z) ηε(z) dz −

ˆ
Rn
∇ϕ(y − z) ηε(z) dz, x− y

〉
=

ˆ
Rn
〈∇ϕ(x− z)−∇ϕ(y − z), x− y〉 ηε(z) dz

≈
ˆ
Rn

[ϕ(y − z)− ϕ(x− z)−∇ϕ(x− z) · (y − x)] ηε(z) dz.

=

ˆ
Rn
ϕ(y − z) ηε(z) dz −

ˆ
Rn
ϕ(x− z) ηε(z) dz −

ˆ
Rn
∇ϕ(x− z) · (y − x)ηε(z) dz.

= ϕε(y)− ϕε(x)−∇ϕε(x) · (y − x).

Next, for each 0 < ε < ε0 let ψε : ∇ϕε(Ω)→ R denote the convex conjugate to ϕε, which

is smooth, strictly convex, and satisfies

∇ϕε(∇ψε(y)) = y ∀y ∈ ∇ϕε(Ω), (3.36)

∇ψε(∇ϕε(x)) = x ∀x ∈ Ω. (3.37)

Moreover, by Theorem 3.8 we have µψε ∈ DC(δψε ,∇ϕε(Ω)) with a constant depending only

on the constant from µϕ ∈ DC(Ω, δϕ). In addition, there exists a constant K∗ > 1, also

depending only on the constant from µϕ ∈ DC(Ω, δϕ), such that

Sϕε(z, τ/K
∗) ⊂ ∇ψε(Sψε(∇ϕε(z), τ)) ⊂ Sϕε(z,K

∗τ), (3.38)
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for every section Sϕε(z, τ) with Sϕε(z,K
∗τ) ⊂⊂ Ω. At this point, given a section Sϕε(x0, t)

with Sϕε(x0, 2K
∗t) ⊂⊂ Ω, the second inclusion in (3.38) and (3.36) give

S∗ε := Sψε(∇ϕε(x0), t) ⊂ ∇ϕε(Sϕε(x0, K
∗t)) ⊂⊂ ∇ϕε(Ω). (3.39)

Notice that from the fact that ϕε and ∇ϕε converge to ϕ and ∇ϕ, respectively, uniformly

over compact subsets of Ω we can assume that ε > 0 is small enough so that

∇ϕε(Sϕε(x0, K
∗t)) ⊂ ∇ϕ(Sϕ(x0, 2K

∗t)) ⊂⊂ ∇ϕ(ΩS). (3.40)

The next step is to apply (3.2) with ψε in the section S∗ε . Given a function h ∈ C1(Sϕ(x0, 2K
∗t))

define u ∈ C1(∇ϕ(Sϕ(x0, 2K
∗t))) as u(y) := h(∇ψε(y)). In particular, the inclusions (3.39)

and (3.40) imply u ∈ C1(S∗ε ), so that the Poincaré inequality (3.2) applied with ψε in the

section S∗ε to u reads as

 
S∗ε

|u(y)− uS∗ε | dy ≤ C∗2 t
1
2

( 
S∗ε

|∇ψεu(y)|2 dy
) 1

2

. (3.41)

By setting y := ∇ϕε(x) for x ∈ Sϕ(x0, 2K
∗t)), and recalling (3.37), we get

∇h(x) = D2ϕε(x)∇u(∇ϕε(x)) = D2ψε(y)−1∇u(y)

and then

|∇ψεu(y)|2 = 〈D2ψε(y)−1∇u(y),∇u(y)〉 (3.42)

= 〈∇h(x), D2ϕε(x)−1∇h(x)〉 = |∇ϕεh(x)|2.
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Hence, by changing variables y = ∇ϕε(x) in (3.41) we get

1

|S∗ε |

ˆ
∇ψε(S∗ε )

|h(x)− hSε| detD2ϕε(x) dx

≤ C∗2 t
1
2

|S∗ε |
1
2

(ˆ
∇ψε(S∗ε )

|∇ϕεh(x)|2 detD2ϕε(x) dx

) 1
2

(3.43)

where

hSε :=
1

|S∗ε |

ˆ
∇ψε(S∗ε )

h(x) detD2ϕε(x) dx.

Notice that from the inclusions (3.38), (3.39), and (3.40) (with sufficiently small ε) it follows

that

Sϕ(x0, t) ⊂ ∇ψε(S∗ε ) ⊂ Sϕ(x0, 2K
∗t), (3.44)

so that the integral on the left-hand side of (3.43) can be replaced with the integral over

Sϕ(x0, t) and the one on its right-hand side by the integral over Sϕ(x0, 2K
∗t). That is,

1

|S∗ε |

ˆ
Sϕ(x0,t)

|h(x)− hSε | detD2ϕε(x) dx

≤ C∗2 t
1
2

|S∗ε |
1
2

(ˆ
Sϕ(x0,2K∗t)

|∇ϕεh(x)|2 detD2ϕε(x) dx

) 1
2

(3.45)

In addition, the inclusions (3.44), along with the fact that ∇ϕε and ∇ψε are the inverse

of each other, imply

µϕε(Sϕ(x0, t)) = |∇ϕε(Sϕ(x0, t))| ≤ |S∗ε | (3.46)

≤ |∇ϕε(Sϕ(x0, 2K
∗t))| = µϕε(Sϕ(x0, 2K

∗t)).

Moreover, since µϕε is doubling, we get

|S∗ε | ≤ µϕε(Sϕ(x0, 2K
∗t)) ≤ K̃µϕε(Sϕ(x0, t)) ≤ K̃|S∗ε |. (3.47)
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Thus the inequality (3.45) reduces to

1

K̃ µϕε(Sϕ(x0, t))

ˆ
Sϕ(x0,t)

|h(x)− hSε| detD2ϕε(x) dx

≤ C∗2 K̃
1
2 t

1
2

µϕε(Sϕ(x0, 2K∗t))
1
2

(ˆ
Sϕ(x0,2K∗t)

|∇ϕεh(x)|2 detD2ϕε(x) dx

) 1
2

(3.48)

We are now in position to start taking limits as ε → 0. From the definition of ϕε

in (3.35) we get that D2ϕε(x) (or a subsequence) converges to D2ϕ(x) for a.e. x ∈ Ω. In

particular, detD2ϕε(x) converges to detD2ϕ(x) for a.e. x ∈ Ω. Let us first show that µϕε(F )

converges to µϕ(F ) for every Borel set F ⊂ Sϕ(x0, 2K
∗t). Indeed, since Sϕ(x0, 2K

∗t) ⊂⊂ Ω

let S ′ denote a compact set such that Sϕ(x0, 2K
∗t) ⊂⊂ S ′ ⊂⊂ Ω and introduce H(x) :=

∆ϕ(x)χS′(x). Let us also assume that ε < ε1 := dist(Sϕ(x0, 2K
∗t), ∂S ′) so that, for x ∈

Sϕ(x0, 2K
∗t), we get (∆ϕ ∗ ηε)(x) = (H ∗ ηε)(x). Then, for every x ∈ Sϕ(x0, 2K

∗t), the

arithmetic-geometric inequality implies

0 < detD2ϕε(x) ≤ ∆ϕε(x)n = (∆ϕ ∗ ηε)(x)n = (H ∗ ηε)(x)n ≤M(H)(x)n,

whereM denotes the Hardy-Littlewood maximal function whose (n, n)-strong type (here is

when we use n ≥ 2) gives

ˆ
Sϕ(x0,2K∗t)

detD2ϕε(x) dx ≤
ˆ
Sϕ(x0,2K∗t)

M(H)(x)n dx ≤ ‖M(H)‖nLn(Rn, dx)

≤ Cn ‖H‖nLn(Rn, dx) = Cn

ˆ
S′

∆ϕ(x)n dx <∞,

where the hypothesis ϕ ∈ W 2,n
loc (Ω) guarantees the finiteness of the last integral. Notice from

the explanation before Fatou’s Lemma that for a convex function φ we always have 1
n
∆φ ≤

‖D2φ‖ ≤ ∆φ almost everywhere.) Therefore, by using Lebesgue’s dominated convergence
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theorem,

lim
ε→0

µϕε(F ) = lim
ε→0

ˆ
F

detD2ϕε(x) dx =

ˆ
F

lim
ε→0

detD2ϕε(x) dx

=

ˆ
F

detD2ϕ(x) dx = µϕ(F ),

for all F ⊂ Sϕ(x0, 2K
∗t). That is, µϕε(F ) converges to µϕ(F ) for every Borel set F ⊂

Sϕ(x0, 2K
∗t) as claimed. Next, we will use Lebesgue’s dominated convergence theorem on

the integral ˆ
Sϕ(x0,2K∗t)

|∇ϕεh(x)|2 detD2ϕε(x) dx.

Given x ∈ Sϕ(x0, 2K
∗t) let 0 < λ1,ε(x) ≤ · · · ≤ λn,ε(x) denote the eigenvalues of D2ϕε(x)

and using that |∇ϕεh(x)|2 = 〈D2ϕε(x)−1∇h(x),∇h(x)〉 we get

|∇ϕεh(x)|2 detD2ϕε(x) ≤
(

sup
Sϕ(x0,2K∗t)

|∇h|
)2

‖D2ϕε(x)−1‖ detD2ϕε(x)

with

‖D2ϕε(x)−1‖ detD2ϕε(x) =
1

λ1,ε(x)

n∏
j=1

λj,ε(x) ≤
( n∑
j=2

λj,ε(x)
)n−1

<
( n∑
j=1

λj,ε(x)
)n−1

= ∆ϕε(x)n−1 = ∆ϕ ∗ ηε(x)n−1 ≤M(H)(x)n−1.

Now for the case n > 2 we obtain that M(H)n−1 ∈ L1(Sϕ(x0, 2K
∗t), dx) by reasoning as

above (that is, using the fact that the maximal function M is strong (p, p)-type for p > 1).

In fact, for the case n > 2, we can use Hoilder’s inequality to get the above result only with

the assumption ϕ ∈ W 2,n−1
loc (Ω).

In the case n = 2 we just use that

‖H ∗ ηε‖L1(R2, dx) ≤ ‖H‖L1(R2, dx) ‖ηε‖L1(R2, dx) = ‖H‖L1(R2, dx) <∞.

Finally, by taking limits as ε → 0 in (3.48) and by recalling the inequalities (3.46) and the
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doubling property of µϕ, we obtain the Poincaré inequality (3.34). We keep in mind that we

just use Fatou’s lemma on its left-hand side as we don’t whether the limit exist. But we have

already seen that the limit of the integrand already exist on the right-side. This completes

the proof.

3.5 Proof of the main results

In this section we present the proof of the main results Theorem 3.4 and Theorem 3.5 stated

on Section 3.1.

3.5.1 Proof of Theorem 3.4

The idea is to use Theorem 3.19 to improve the Poincaré inequality (3.34) from Theorem

3.23. Let us first observe that the condition ϕ ∈ W 2,n
loc (Ω, dx) with D2ϕ > 0 a.e. in Ω implies

that ‖(D2ϕ)−1‖ ∈ L1
loc(Ω, dµϕ). In fact, even ϕ ∈ W 2,n−1

loc (Ω, dx) with D2ϕ > 0 a.e. in Ω

will do so. Let us see briefly how this statement is true. since D2ϕ(x) > 0 for a.e. x ∈ Ω,

let 0 < λ1(x) ≤ · · · ≤ λn(x) <∞ denote the eigenvalues of D2ϕ(x). Then,

‖D2ϕ(x)−1‖ detD2ϕ(x) =
1

λ1(x)

n∏
j=1

λj(x) ≤

(
1

n− 1

n∑
j=2

λj(x)

)n−1

≤ ∆ϕ(x)n−1 ∈ L1
loc(Ω, dx).

Since µϕDC(Ω, δϕ), we have the growth condition 2.38. That is,

µϕ(Sϕ(x0, t))

µϕ(Sϕ(x0, t′))
≤ CD

(
t

t′

)n−ε
.

Therefore, by using Theorem 3.19 with p = 2 and s = n − ε the Poincaré inequality (3.34)

self-improves to (3.4) since from our choices of p and s we get

2sp

2s− p
=

4(n− ε)
2(n− ε)− 2

=
2(n− ε)

(n− ε)− 1
=

2n

n− 1
+ ε1,
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where ε1 := 2(n−ε)
(n−ε)−1

− 2n
n−1

> 0 is a geometric constant. Also, notice that the requirement of

s > p/2 in Theorem 3.19 is met since s > p/2 iff n− ε > 1 iff n ≥ 2.

3.5.2 Proof of Theorem 3.5

The idea of the proof is to apply Theorem 3.4 to ψ, the convex conjugate of ϕ, and then do

a change of variables. In order to see that ψ ∈ W 2,n
loc (∇ϕ(Ω), dy), we first notice from (3.7)

that ∇ψ(∇ϕ(x)) = x, ∀x ∈ Ω. This implies that D2ϕ(x)D2ψ(∇ϕ(x)) = I. Since D2ϕ > 0

a.e. in Ω, we get D2ψ(∇ϕ(x)) = D2ϕ(x)−1 > 0 for a.e. x ∈ Ω. Therefore, given a compact

set F ⊂ Ω and changing variables y := ∇ϕ(x),

ˆ
∇ϕ(F )

‖D2ψ(y)‖n dy =

ˆ
F

‖D2ϕ(x)−1‖n detD2ϕ(x) dx <∞,

where the finiteness of the last integral above follows from the hypothesis ‖(D2ϕ)−1‖ ∈

Lnloc(Ω, dµϕ). Notice that y = ∇ϕ(x) is a valid change of variables because ∇ϕ is one-to-one

and ϕ ∈ W 2,n
loc (Ω) (see [17] Section 3).

Now, given a section S := Sϕ(x0, t) with Sϕ(x0, K1K
∗t) ⊂⊂ Ω and h ∈ C1(Sϕ(x0, K1K

∗t))

(where K1 > 1 is the geometric constant from the Poincaré inequality (3.4) in Theorem

3.4 and K∗ > 1 is the geometric constant from 3.8), by applying (3.4) to the section

S∗ := Sψ(∇ϕ(x0), t) and the function u(y) := h(∇ψ(y)) we get

( 
S∗
|u(y)− uµψS∗ |

q dµψ(y)

) 1
q

≤ K2 t
1
2

( 
K1S∗
|∇ψu(y)|2 dµψ(y)

) 1
2

, (3.49)

where q = 2n
n−1

+ε1 and u
µψ
S∗ :=

ffl
S∗
u(y) dµψ(y). Now, by changing variables y = ∇ϕ(x), using

the second inclusion in (3.8), reasoning as in (3.42), and noticing that detD2ψ(y) detD2ϕ(x) =

1 for a.e. x ∈ Ω, the integral on the right-hand side of (3.49) can be controlled by

ˆ
K1S∗
|∇ψu(y)|2 dµψ(y) ≤

ˆ
Sϕ(x0,K1K∗t)

|∇ϕh(x)|2 dx, (3.50)

while, due to the first inclusion in (3.8), the integral on the left-hand side of (3.49) can be
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bound from below by the integral over ∇ϕ(Sϕ(x0, t/K
∗)).

On the other hand, the inclusions in (3.8) and the doubling property of the Lebesgue

measure give

µψ(S∗) = |∇ψ(S∗)| ∼ |Sϕ(x0, t)|, (3.51)

where the implicit constants are geometric constants. Thus, the Poincaré inequality (3.5)

follows, with K3 := K1(K∗)2 > 1, from (3.49), (3.50), and (3.51). This completes the

proof.
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Chapter 4

Poincaré inequalities when

µϕ ∈ A∞(Ω, δϕ)

This chapter is devoted to establish new Poincaré inequalities under the assumption that the

Monge-Ampère measure satisfies so-called the Muckenhoupt’s A∞-weight condition. Section

4.1 provides the definition of Muckenhoupt’s A∞-weight condition and its comparison with

the DC-doubling condition introduced in Chapter 3, and then state the main results of

this chapter in Theorem 4.3 and Theorem 4.4. Section establishes the (1, 2 − ε)-Poincaré

inequality with respect to Lebesgue measure in Theorem 4.8. We conclude this chapter with

the proofs of the main results in Section 4.3.

4.1 Introduction and main results

Let us consider that ϕ ∈ C1(Ω) be a strictly convex function defined on an open convex

subset Ω ⊂ Rn throughout this chapter.

For a given weight function w, that is, w ≥ 0 and w ∈ L1
loc(Ω), we define its associated

Borel measure as

µw(E) = w(E) :=

ˆ
E

w(x) dx, (4.1)

where E ⊂ Ω is a Borel set.
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Definition 4.1. We say that a weight w satisfies Muckenhoupt’s A∞-weight condition, and

write w ∈ A∞(Ω, δϕ) or µw ∈ A∞(Ω, δϕ), if there exist constants C1, C2 > 1 and θ > 0 such

that
w(E)

w(S)
≤ C1

(
|E|
|S|

)θ
, (4.2)

for every section S := Sϕ(x, t) with Sϕ(x0, C2t) ⊂⊂ Ω and every measurable subset

E ⊂ S. The definition for the Muckenhoupt’s weight class for general p ∈ [1,∞] with some

details will be presented in Section 5.1.

Recall from Subsection 2.2.2 that if ϕ ∈ W 2,n
loc (Ω, dx) is convex, then the Monge-Ampère

measure associated to ϕ satisfies µϕ = detD2ϕ and condition (2.7):

µϕ(E) =

ˆ
E

detD2ϕ(x) dx,

for every Borel set E ⊂ Ω. In this case, we will use the notations µϕ ∈ DC(Ω, δϕ) and

detD2ϕ ∈ DC(Ω, δϕ) interchangeably. In the similar manner, µϕ ∈ A∞(Ω, δϕ) and detD2ϕ ∈

A∞(Ω, δϕ) will have the same meaning. When detD2ϕ ∈ A∞(Ω, δϕ), all the constants

depending only on the constants C1, C2 and θ from (4.2) and dimension n will be called

structural constants.

Caffarelli and Gutiérrez defined a condition so-called µ∞-condition in their article in 1997

( [6], Section 1). Let us recall this condition and compare with the Muckenhoupt’s A∞-weight

condition that we have defined here above.

Definition 4.2. Le ϕ be a convex function such that µϕ = detD2ϕ. Then µϕ is said to

satisfy µ∞-condition if for given δ1, 0 < δ1 < 1, there exists δ2, 0 < δ2 < 1 and C > 0 such

that
|E|
|S|

< δ2 ⇒
µϕ(E)

µϕ(S)
< δ1, (4.3)

for every section S := Sϕ(x, t) with Sϕ(x0, Ct) ⊂⊂ Ω and every measurable subset E ⊂ S.

We note that µϕ ∈ A∞(Ω, δϕ) if and only if µϕ ∈ µ∞. To look at the direction (4.2)

implies (4.3), suppose 0 < δ1 < 1, and define δ2 :=
(
δ1
C1

) 1
θ
. Clearly, 0 < δ2 < 1 as C1 > 1
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and δ1 < 1. Then for every measurable subset E ⊂ S, we have

|E|
|S|

< δ2 ⇒
µϕ(E)

µϕ(S)
< C1

((
δ1

C1

) 1
θ

)θ

= δ1.

The other direction (4.3) implies (4.2) is proved in [6] Theroem 6.

With some basic manipulation we can obtain the converse of (4.3), which will be con-

sidered to prove that µϕ ∈ A∞(Ω, δϕ) implies µψ, the Monge-Ampère measure associ-

ated to the convex conjugate of ϕ, satisfies the Muckenhoupt’s A∞-condition (that is,

µψ ∈ A∞(∇ϕ(Ω), δψ)) in Section 4.3. In fact, let δ1, δ2 ∈ (0, 1) such that (4.2) holds. For any

given F ⊂ S, set E = S − F . Then µϕ(E)

µϕ(S)
> δ1 ⇒ |E|

|S| > δ2. Now by substituting E = S − F,
µϕ(S−F )

µϕ(S)
> δ1 ⇒ |S−F |

|S| > δ2. Due to the definition of measure, µϕ(S)−µϕ(F )

µϕ(S)
> δ1 ⇒ |S|−|F |

|S| > δ2.

This implies 1 − δ1 >
µϕ(F )

µϕ(S)
⇒ 1 − δ2 >

|F |
|S| . Thus, there exist α1, α2 ∈ (0, 1) such that for

every F ⊂ S, we have
µϕ(F )

µϕ(S)
< α2 ⇒

|F |
|S|

< α1. (4.4)

We next make an important observation from page 426 in [6] that µϕ ∈ A∞(Ω, δϕ) implies

µϕ ∈ DC(Ω, δϕ). In fact, for given δ1 ∈ (0, 1), we can pick α ∈ (0, 1) such that |S−α�S||S| =

1 − αn < δ2. Indeed, for a given δ2 ∈ (0, 1) we can choose such α. Then from (4.3) with

E = S − α� S, we have µϕ(S−α�S)

µϕ(S)
< δ1. This implies

µϕ(S) = µϕ(S − α� S) + µϕ(α� S) < δ1µϕ(S) + µϕ(α� S).

⇒ (1− δ1)µϕ(S) < µϕ(α� S).

⇒ µϕ(S) <
1

1− δ1

µϕ(α� S).

This establishes the inclusion A∞(Ω, δϕ) ⊆ DC(Ω, δϕ). In fact, the inclusion is strict and

we refer the readers to see Section 3 in [27] in order mark this gap. Now if the assumption

detD2ϕ ∈ DC(Ω, δϕ) used in Chapter 3 is replaced with the strictly stronger condition

detD2ϕ ∈ A∞(Ω, δϕ), then the exponent on the right-hand sides of the Poincaré inequalities

(3.4) and (3.5) can be improved from 2 to 2− ε for some structural 0 < ε < 1. More precisely,
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we have the following two theorems as our main results in this chapter.

Theorem 4.3. Fix n ≥ 2 and let ϕ ∈ W 2,n
loc (Ω, dx) be a strictly convex function with D2ϕ > 0

a.e. in Ω and detD2ϕ ∈ A∞(Ω, δϕ). Then, there exist structural constants K5, K6 > 0

and ε0 > 0 such that for every section S := Sϕ(x0, t) with Sϕ(x0, K5t) ⊂⊂ Ω and every

u ∈ Lip(K5S) we have

( 
S

|u(x)− uµϕS |
q0dµϕ(x)

) 1
q0

≤ K6 t
1
2

( 
K5S

|∇ϕu(x)|2−ε0dµϕ(x) dx

) 1
2−ε0

, (4.5)

with q0 := 2(n−ε0)(2−ε0)
2(n−ε0)−(2−ε0)

> 2.

Theorem 4.4. Fix n ≥ 2 and let ϕ ∈ W 2,n
loc (Ω, dx) be a strictly convex function such that

D2ϕ > 0 a.e. in Ω, ‖(D2ϕ)−1‖ ∈ Lnloc(Ω, dµϕ) and detD2ϕ ∈ A∞(Ω, δϕ). Then, there exist

structural constants K7, K8 ≥ 1 and 0 < ε0 < 1 such that for every section S := Sϕ(x0, t)

with Sϕ(x0, K7t) ⊂⊂ Ω, and every u ∈ Lip(K7S) we have

( 
S

|u(x)− uS|q0 dx
) 1

q0

≤ K8 t
1
2

( 
K7S

|∇ϕu(x)|2−ε0 dx
) 1

2−ε0
, (4.6)

with q0 := 2(n−ε0)(2−ε0)
2(n−ε0)−(2−ε0)

> 2.

Observe that (4.5) is the (q, 2−ε) Poincaré inequality with respect to the Monge-Ampère

measure while (4.6) is the (q, 2 − ε) Poincaré inequality with respect to Lebesgue measure

with the additional assumption of integrability ‖(D2ϕ)−1‖ ∈ Lnloc(Ω, dµϕ) on its hypothesis.

The exponent on the left hand sides on both of these inequalities are same, but different

from the ones in the Poincaré inequalities (3.4) and (3.5).

4.2 (1, 2− ε) Poincaré inequality

We recall that Theorem 3.1 provides the (1, 2)-Poincaré inquality with respect to Lebesgue

measure under the assumption that µϕ ∈ DC(Ω, δϕ). In this section, we put our efforts to

reduce the size of exponent 2 on the right-side to 2 − ε for some ε ∈ (0, 1), by considering
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strictly stronger hypothesis µϕ ∈ A∞(Ω, δϕ), which is presented in Theorem 4.8. In order to

do so, let us begin by stating some of the ingredients to be used in this theorem.

Lemma 4.5 (Lemma 3.2.1 in [7]). Let Ω ⊂ Rn be a bounded convex open set and ϕ ∈ C1(Ω)

be a convex function such that ϕ ≤ 0 on ∂Ω. Then for every x ∈ Ω,

|∇ϕ(x)| ≤ −ϕ(x)

dist(x, ∂Ω)
.

More generally, if E ⊂ Ω, then

∇ϕ(E) ⊂ B

(
0,

maxE(−ϕ)

dist(E, ∂Ω)

)
.

This lemma above helps us to estimate the size of the gradient of given convex function.

We next state a lemma that describe the behaviour of the norm of the Hessian matrix D2ϕ

whenever µϕ ∈ A∞(Ω, δϕ).

Lemma 4.6 (Lemma 3.1 in [4]). Let ϕ ∈ C1(Ω) be a strictly convex function such that µϕ ∈

A∞(Ω, δϕ). Then ‖D2φ(x)‖ ∈ A∞(Ω, δϕ) with constants depending only on the A∞(Ω, δϕ)-

constants for µϕ and dimension n. That is, there exist constants C0 > 1 and ε0 > 0,

depending only on the µϕ ∈ A∞(Ω, δϕ)-constants for µϕ and dimension n, such that

( 
S

‖D2ϕ(x)‖1+ε0(x) dx

) 1
1+ε0

≤ C0

 
S

‖D2ϕ(x)‖ dx, (4.7)

for every section S := Sϕ(x, t) ⊂⊂ Ω.

Let us state one more result which helps us to compare the product of the Monge-Ampère

measure and Lebesgue measure of the Monge-Ampère sections with their heights.

Lemma 4.7 (Corollary 4 in [18]). Let ϕ ∈ C1(Ω) be a strictly convex function such that

µϕ ∈ DC(Ω, δϕ). Then there exists constants C1, C2 > 0, depending only on the doubling
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constant and dimension, such that for every section S := Sϕ(x, t) ⊂⊂ Ω, it holds that

C1 t
n ≤ µϕ(S) |S| ≤ C2 t

n.

Theorem 4.8. Fix an open convex set U ⊂ Rn and ϕ ∈ C2(U) with D2ϕ > 0 in U and

µϕ ∈ A∞(U, δϕ). Then, there exist constants N1, ε > 0, depending only on the constants

from µϕ ∈ A∞(U, δϕ) and dimension n, such that for every section S := Sϕ(x0, t) with

Sϕ(x0, t) ⊂⊂ U and every h ∈ C1(S) the following (1, 2 − ε)-Poincaré holds true in the

Monge-Ampère quasi-metric structure with respect to the Lebesgue measure

 
S

|h(x)− hS| dx ≤ N1 t
1
2

( 
S

|∇ϕh(x)|2−ε dx
) 1

2−ε

, (4.8)

where hS :=
ffl
S
h(x) dx.

Proof. The proof of Theorem 4.8 goes along the lines of the proof of [4] Theorem 1.3. We

will follow the notation in [6] Section 1 regarding the normalization technique of a given

section S := Sϕ(x0, t). Thus, let T : Rn → Rn be an affine transformation such that

B(0, n−3/2) ⊂ T (S) ⊂ B(0, 1). In particular, αn ≤ |S|| detT | ≤ βn for some positive

dimensional constants αn, βn. Always as in [6] Section 1, let λ > 0 and ϕ∗ be defined by

λn :=
µϕ(S)

| detT |
and ϕ∗(y) :=

1

λ
ϕ(T−1y)− l̄(y)− t

λ
,

where l̄ is a linear function.

For ψλ(y) := 1
λ
ϕ(T−1y) and l̄(y) := ψλ(y) +∇ψλ(Tx0) · (y − Tx0), we get

T (S) = T (Sϕ(x0, t)) = Sψλ

(
Tx0,

t

λ

)
= {y : ϕ∗(y) < 0} and ϕ∗ = 0 on ∂(T (S)).

We note that

D2ϕ∗(y) =
1

λ
(T−1)tD2ϕ(T−1y)T−1 = D2ψλ(y). (4.9)
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This implies

detD2ϕ∗(y) =
1

λn
1

| detT |2
detD2ϕ(T−1y), as det(λA) = λn det(A).

Denote µ̄ := µ∗ϕ. Then by simple change of variable and using the definition of λ, we obtain

µ̄(T (S)) =

ˆ
T (S)

detD2ϕ∗(y) dy = 1.

From Lemma 4.7 we have

C3t ≤ λ ≤ C4t, (4.10)

where C3, C4 > 0 depend on the doubling constant from µϕ ∈ DC(U, δϕ) and the dimension

n. Now from the first few lines of the proof of Theorem 2 in [6] or Lemma 4.5 or Lemma 3.2

in [28], there exists a constant C5 > 0, also depending only on the doubling constants from

µϕ ∈ DC(U, δϕ) and dimension n, such that

 
T (S)

∆ϕ∗(y) dy ≤ C5. (4.11)

Next note that µϕ ∈ A∞(U, δϕ) implies µϕ∗ ∈ A∞(T (U), δϕ∗) with the same set of constants.

In fact, suppose µϕ satisfies (4.2), Then

µϕ∗(T (E))

µϕ∗(T (S))
=

1
λn |detT |µϕ(E)

1
λn | detT |µϕ(S)

≤ C1

(
|E|
|S|

)θ
= C1

(
| detT | |E|
| detT | |S|

)θ
= C1

(
|T (E)|
|T (S)|

)θ
.

Now, by Lemma 4.6 when applied to ϕ∗ (recall that ‖D2ϕ∗‖ ≤ ∆ϕ∗ as ϕ is convex), there

exist constants C6 > 1 and 0 < ε0 < 1, depending only on the constants from µϕ ∈ A∞(U, δϕ)

and dimension n, such that

( 
T (S)

∆ϕ∗(y)1+ε0 dy

) 1
1+ε0

≤ C6

 
T (S)

∆ϕ∗(y) dy. (4.12)
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Then, given h ∈ C1(S) let ū ∈ C1(T (S)) be defined as ū(y) = h(T−1y). Thus, the usual

(1, 1)-Poincaré inequality applied to ū on the convex set T (S) (recall that B(0, n−3/2) ⊂

T (S) ⊂ B(0, 1)) yields

 
T (S)

|ū(y)− ūT (S)| dy ≤ Cn

 
T (S)

|∇ū(y)| dy, (4.13)

where Cn > 0 is a dimensional constant, and by changing variables y = Tx in (4.13) we

obtain  
S

|h(x)− hS| dx ≤ Cn

 
S

|(T−1)t∇h(x)| dx. (4.14)

Next, notice that from the identity (4.9) and the fact that ‖D2ϕ‖ ≤ ∆ϕ we get

‖(T−1)tD2ϕ(x)T−1‖ ≤ λ∆ϕ∗(Tx),

which followed by the simple matrix identity

‖(T−1)tD2ϕ(x)
1
2‖2 = ‖(T−1)tD2ϕ(x)T−1‖,

gives ‖(T−1)tD2ϕ(x)
1
2‖2 ≤ λ∆ϕ∗(Tx). Consequently,

(  
S

‖(T−1)tD2ϕ(x)
1
2‖2(1+ε0) dx

) 1
1+ε0

≤ λ

(  
T (S)

∆ϕ∗(y)1+ε0 dy

) 1
1+ε0

≤ C5C6λ,

where the last inequality follows from (4.12) and (4.11). Finally, by setting p := 2(1 + ε0)
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and recalling that ∇ϕh = D2ϕ−
1
2∇h,

 
S

|(T−1)t∇h(x)| dx =

 
S

|(T−1)tD2ϕ(x)
1
2D2φ(x)−

1
2∇h(x)| dx

≤
 
S

‖(T−1)tD2ϕ(x)
1
2‖|D2ϕ(x)−

1
2∇h(x)| dx

≤
( 

S

‖(T−1)tD2ϕ(x)
1
2‖p dx

) 1
p
( 

S

|∇ϕh(x)|p′ dx
) 1

p′

≤ (C5C6λ)
1
2

( 
S

|∇ϕh(x)|p′ dx
) 1

p′

≤ (C4C5C6t)
1
2

( 
S

|∇ϕh(x)|p′ dx
) 1

p′

,

where p′ = 2−ε with ε := 2ε0/(1+2ε0) ∈ (0, 1), which combined with (4.14) proves (4.8).

4.3 Proof of the main results

Before proceeding to the proofs of the main results, let us first outline the proof of the fact, to

be used in the proof of Theorem 4.3, that µϕ ∈ A∞(Ω, δϕ) implies that µψ ∈ A∞(∇ϕ(Ω), δψ),

where ψ is the convex conjugate of ϕ. That is, the A∞-property is preserved, quantitatively,

under conjugation. Fix ϕ ∈ C1(Ω) such that µϕ ∈ A∞(Ω, δϕ). In particular, µϕ ∈ DC(Ω, δϕ)

and the sections of ϕ have the engulfing property. Now, since a section Sϕ(x, t) coincides

with the set {y ∈ Ω : δϕ(x, y) < t}, the quasi-symmetry and quasi-triangle inequality

for δϕ, allows to think of the interior sections (meaning sections with Sϕ(x, t) ⊂⊂ Ω) as

balls in a space of homogeneous type. Consequently, the usual characterizations of the

Muckenhoupt’s class A∞ hold true, see for instance see Section 4.1 above and Section 5 in [6].

Thus, the fact that µψ ∈ A∞(∇ϕ(Ω), δψ) will be a consequence, for instance, of the existence

of structural constants α0, β0 ∈ (0, 1) and M0 ≥ 1 such that for every section Sψ(y, t) with

Sψ(y,M0t) ⊂⊂ ∇ϕ(Ω) and every measurable set F ⊂ Sψ(y, t) the implication

µψ(F ) ≤ α0µψ(Sψ(y, t)) =⇒ |F | ≤ β0|Sψ(y, t)| (4.15)

holds true. To see this, let us assume that µϕ satisfies (4.2) with constants C1, C2 ≥ 1 and

θ ∈ (0, 1) and fix a section Sψ := Sψ(y, t) and a measurable set F ⊂ Sψ. From the second
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inclusion in (3.8), setting x := ψ(y) we get

∇ψ(F ) ⊂ ∇ψ(Sψ) ⊂ Sϕ(x,K∗t). (4.16)

Now, setting E := ∇ψ(F ), the fact that ∇ϕ and ∇ψ are inverses to each other gives

µϕ(E) = |∇ϕ(E)| = |F |

and the first inclusion in (3.8) and the doubling property (2.38) for µϕ imply

µϕ(Sϕ(x,K∗t)) ≤ CD(K∗)2(n−ε)µϕ(Sϕ(x, t/K∗))

≤ CD(K∗)2(n−ε)µϕ(∇ψ(Sψ)) = CD(K∗)2(n−ε)|Sψ|.

On the other hand, |E| = |∇ψ(F )| = µψ(F ) and, from (4.16), µψ(Sψ) = |∇ψ(Sψ)| ≤

|Sϕ(x,K∗t)|. Hence, by using (4.2) with E := ∇ψ(F ) and Sϕ(x,K∗t) (and this requires

Sϕ(x,K∗C2t) ⊂⊂ Ω) it follows that

|F |
CD(K∗)2(n−ε)|Sψ|

≤ µϕ(E)

µϕ(Sϕ(x,K∗t))

≤ C1

(
|E|

|Sϕ(x,K∗t)|

)θ
≤ C1

(
µψ(F )

µψ(Sψ)

)θ
.

Consequently, by taking α0 ∈ (0, 1) so that β0 := CD(K∗)2(n−ε)C1α
θ
0 ∈ (0, 1), the implication

(4.15) holds true with structural constants α0, β0 ∈ (0, 1).

Now we are ready to compile the techniques presented in this chapter (as well as in

previous chapters) to complete the proofs of Theorem 4.3 and Theorem 4.4.

Fortunately, the proof of Theorem 4.3 follows along the lines of the proof of Theorem 3.4.

First, Theorem 4.8 (used in lieu of Theorem 3.1) implies a version of Theorem 3.23 where

the exponent 2 on the right-hand side of (3.34) can be replaced by 2− ε. Note that we just

outlined the proof of the fact that the A∞ property is qualitatively preserved under convex

conjugation. It is also quantitatively preserved by the approximations ϕε due to the fact
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that ϕε and ∇ϕε converge uniformly on compact sets. Set ε0 := min{ε, ε} with ε > 0 the

geometric constant from (2.38). Then, just as in Section 3.5.1, Theorem 3.19 applied with

µ as the Monge-Ampère measure, p = 2− ε0, and s = n− ε0, yields with

q0 :=
2(n− ε0)(2− ε0)

2(n− ε0)− (2− ε0)
,

and (4.5) follows.

The proof of Theorem 4.4 goes just like the one of Theorem 3.5, but now instead of

using Theorem 3.4 we use Theorem 4.3 with ψ, the convex conjugate of ϕ, and then change

variables y = ∇ϕ(x).
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Chapter 5

Poincaré inequalities when

µϕ ∈ A1(Ω, δϕ) or µϕ ∈ RH∞(Ω, δϕ)

Our objective in this chapter is to present more new Poincaré inequalities by considering

even more stronger assumptions on their hypotheses. Section 5.1 first introduces the Mucken-

houpt’s A1(Ω, δϕ)-condition and reverse Hölder’s RH∞(Ω, δϕ)-condition and then illustrates

the comparison with the weight conditions introduced in Chapter 3 and Chapter 4. We

state and prove the sharp Poincaré inequalities associated to the Monge-Ampère measure

when µϕ ∈ A1(Ω, δϕ) in Section 5.2 and associated to Lebesgue measure in Section 5.3. We

conclude this chapter by recording a list of convex functions whose determinants of Hessian

matrices satisfy the weight-conditions A1(Ω, δϕ) or RH∞(Ω, δϕ) in Section 5.4.

5.1 Introduction to Muckenhoupt’s A1(Ω, δϕ)-condition

and reverse Hölder’s RH∞(Ω, δϕ)-condition

As always, assume that Ω ⊂ Rn is open and convex and ϕ ∈ C1(Ω) is a strictly convex

function. Let us first introduce the definition of Muckenhoupt’s weight class and reverse

Hölder’s inequality which will be the central assumptions in this chapter.

Definition 5.1. Let 1 ≤ p < ∞. A weight function w defined in Ω is said to satisfy
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Muckenhoupt’s weight class Ap, and write w ∈ Ap(Ω, δϕ), if there exists Θ1, H1 ≥ 1 such

that for every section Sϕ(x0, t) with Sϕ(x0,Θ1 t) ⊂⊂ Ω,

( 
Sϕ(x0,t)

w(x) dx

)( 
Sϕ(x0,t)

w(x)−1/(p−1) dx

)p−1

≤ H1, when 1 < p <∞, (5.1)

and  
Sϕ(x0,t)

w(x) dx ≤ H1 ess inf
Sϕ(x0,t)

w(x) when p = 1. (5.2)

Definition 5.2. Let 1 < r ≤ ∞. A weight function w defined in Ω is said to satisfy reverse

Hölder’s class, and write w ∈ RHr(Ω, δϕ), if there exists Θ∞, H∞ ≥ 1 such that for every

section Sϕ(x0, t) with Sϕ(x0,Θ∞ t) ⊂⊂ Ω,

( 
Sϕ(x0,t)

w(x)r dx

) 1
r

≤ H∞

 
Sϕ(x0,t)

w(x) dx, when 1 < r <∞, (5.3)

and

ess sup
Sϕ(x0,t)

w(x) ≤ H∞

 
Sϕ(x0,t)

w(x) dx, when r =∞. (5.4)

The reason to use constants with suffix 1 in the definition of Muckenhoupt’s weight class

Ap and ∞ in the definition of reverse Hölder’s class RHr is that our main results in this

chapter will be based only on Muckenhoupt’s weight class Ap with p = 1 or the reverse

Hölder’s class RHr with r =∞.

Let us record the facts that if detD2ϕ ∈ A1(Ω, δϕ) or detD2ϕ ∈ RH∞(Ω, δϕ), then

detD2ϕ ∈ A∞(Ω, δϕ), quantitatively (see Section 5 in [6]). In fact, to prove the fact detD2ϕ ∈

RH∞(Ω, δϕ) implies detD2ϕ ∈ A∞(Ω, δϕ), we can assume that detD2ϕ ∈ RH∞(Ω, δϕ) and

verify (4.3). By definition,

detD2ϕ(x) ≤ H∞

 
S

w(x) dx = H∞
µϕ(S)

|S|
a.e. in S := Sϕ(x0, t).
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Integrating over E ⊂ S gives

ˆ
E

detD2ϕ(x) dx ≤ H∞
µϕ(S)

|S|
|E|.

⇒ µϕ(E)

µϕ(S)
≤ H∞

|E|
|S|

.

The choice of δ2 = δ1
H∞

verifies (4.3) as required.

 

 !"¥(W, #j) $1(W, #j) 

$¥(W, #j) 
%&(W, #j) 

Figure 5.1: Comparison of weight conditions.

As illustrated in Figure 5.1 above, the hierarchy of the classes for the weight functions

on which we rely in this dissertation can be expressed with the following inclusions.

A1(Ω, δϕ) ∪RH∞(Ω, δϕ) ( A∞(Ω, δϕ) ( DC(Ω, δϕ). (5.5)

Notice that the strictness in the second inclusion of (5.5) is discussed in Section 4.1. The

strictness on the first inclusion will be immediate from the examples of weights satisfying

A1(Ω, δϕ)-condition and RH∞(Ω, δϕ)-condition in Section 5.4. Let us see a lemma from [29]

that sums up more general properties of Muckenhoupt’s weight classes and the reverse Hölder

classes.

Lemma 5.3. The following properties hold true:
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(i) w ∈ Ap, 1 < p <∞ if and only if w1−p′ ∈ Ap′ where 1
p

+ 1
p′

= 1.

(ii) A1 ⊂ Ap ⊂ Aq for 1 ≤ p ≤ q ≤ ∞.

(iii) RH∞ ⊂ RHs ⊂ RHr for 1 < r ≤ s ≤ ∞.

(iv) A∞ =
⋃

1≤p<∞
Ap =

⋃
1<r≤∞

RHr.

As before, we remark that if detD2ϕ ∈ A1(Ω, δϕ) or detD2ϕ ∈ RH∞(Ω, δϕ), the constants

depending only the corresponding pairs (Θ1, H1) or (Θ∞, H∞) and dimension n will also be

called structural constants.

5.2 Poincaré inequalities when µϕ ∈ A1(Ω, δϕ)

In this section, we state two theorems under the assumption that µϕ ∈ A1(Ω, δϕ), and the

proofs will be given in Subsection 5.2.1.

Theorem 5.4. Fix n ≥ 3 and let ϕ ∈ W 2,n
loc (Ω, dx) be a strictly convex function with

detD2ϕ ∈ A1(Ω, δϕ) and detD2ϕ > 0 a.e. in Ω. Then, there exist structural constants

K9, K10 ≥ 1 such that for every section S := Sϕ(x0, t) with Sϕ(x0, K9t) ⊂⊂ Ω and every

u ∈ Lip(K9S) we have

( 
S

|u(x)− uµϕS |
2n
n−2dµϕ(x)

)n−2
2n

≤ K10 t
1
2

( 
K9S

|∇ϕu(x)|2dµϕ(x)

) 1
2

. (5.6)

In addition, there exists a structural constant ε0 > 0 such that for every 0 < ε ≤ ε0 there is

a constant Kε > 0, depending only on ε and structural constants, such that

( 
S

|u(x)− uµϕS |
qεdµϕ(x)

) 1
qε

≤ Kε t
1
2

( 
K9S

|∇ϕu(x)|2−εdµϕ(x)

) 1
2−ε

, (5.7)

with qε := n(2−ε)
n−(2−ε) > 2.

Under the assumption that µϕ ∈ A1(Ω, δϕ) and n ≥ 3, the exponent q in the Poincaré

inequality (5.6) is 2n
n−2

which is larger than the exponents on the left-hand sides in the
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Poincaré inequalities presented in previous chapters under the assumptions µϕ ∈ A∞(Ω, δϕ)

or µϕ ∈ DC(Ω, δϕ). In dimension 2, we can have a larger exponent on the left hand size,

depending on some structural constant ε0 > 0, but in this case the constant appearing in

the corresponding Poincaré inequality will depend on ε0 as well. More precisely,

Theorem 5.5. Assume n = 2 and let ϕ ∈ W 2,2
loc (Ω) be a strictly convex function with

detD2ϕ ∈ A1(Ω, δϕ). Then, there exist structural constants K9 ≥ 1 and 0 < ε0 < 1, such

that for every section S := Sϕ(x0, t) with Sϕ(x0, K9t) ⊂⊂ Ω, every u ∈ Lip(K9S), and every

0 < ε ≤ ε0 we have

( 
S

|u(x)− uµϕS |
qεdµϕ(x)

) 1
qε

≤ Kε t
1
2

( 
K9S

|∇ϕu(x)|2−εdµϕ(x)

) 1
2−ε

, (5.8)

with qε := 2(2− ε)/ε and Kε > 0 depends only on ε and structural constants.

5.2.1 Proofs of Theorems 5.4 and 5.5

Since ϕ ∈ W 2,n
loc (Ω, dx) is a strictly convex function with detD2ϕ ∈ A1(Ω, δϕ), from [19]

Section 4 we have that there exists a structural constant M1 > 0 such that the Monge-

Ampère measure satisfies the growth condition

µϕ(Sϕ(x0, t))

µϕ(Sϕ(x0, t′))
≤M1

(
t

t′

)n
2

, (5.9)

for every section Sϕ(x0, t) with Sϕ(x0,Θ1t) ⊂ Ω and every 0 < t′ < t. Therefore, Theorem

3.19 applied with µ = µϕ, p = 2 (the right-hand side exponent from the Poincaré inequality

from Theorem 3.23), and s = n/2 (the growth exponent from (5.9)), yields

q =
2sp

2s− p
=

2n

n− 2
,

which is finite in the case n ≥ 3, and (5.6) follows.

On the other hand, let ε0 > 0 be the structural constant from Theorem 4.3 so that for

75



every 0 < ε ≤ ε0, the inequality (4.5) implies (since q > 2)

 
S

|u(x)− uµϕS |dµϕ(x) ≤ K6 t
1
2

( 
K5S

|∇ϕu(x)|2−εdµϕ(x) dx

) 1
2−ε

. (5.10)

Now we use Theorem 3.19 applied with µ = µϕ, p = 2 − ε (the right-hand side exponent

from (5.10)), and s = n/2 (the growth exponent from (5.9)) to obtain the inequality (5.7)

with

q =
2sp

2s− p
=

n(2− ε)
n− (2− ε)

. (5.11)

Notice that in the case n = 2, the expression for q in (5.11) reduces to q = 2(2 − ε)/ε and

(5.8) follows.

5.3 Poincaré inequalities when µϕ ∈ RH∞(Ω, δϕ)

In this section, we state two theorems under the assumption that µϕ ∈ RH∞(Ω, δϕ), and

their proofs will be given in Subsection 5.3.1.

Theorem 5.6. Fix n ≥ 3 and let ϕ ∈ W 2,n
loc (Ω, dx) be a strictly convex function with

detD2ϕ ∈ RH∞(Ω, δϕ) and ‖(D2ϕ)−1‖ ∈ L1
loc(Ω, dx). Then, there exist structural con-

stants K11, K12 ≥ 1 such that for every section S := Sϕ(x0, t) with Sϕ(x0, K11t) ⊂⊂ Ω and

every u ∈ Lip(K11S) we have

( 
S

|u(x)− uS|
2n
n−2 dx

)n−2
2n

≤ K12 t
1
2

( 
K11S

|∇ϕu(x)|2 dx
) 1

2

. (5.12)

In addition, there exists a structural constant ε0 > 0 such that for every 0 < ε ≤ ε0 there is

a constant Kε > 0, depending only on ε and structural constants, such that

( 
S

|u(x)− uS|qε dx
) 1

qε

≤ Kε t
1
2

( 
K9S

|∇ϕu(x)|2−ε dx
) 1

2−ε

, (5.13)

with qε := n(2−ε)
n−(2−ε) > 2.
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We note that the Poincaré inequalities under the assumption µϕ ∈ A1(Ω, δϕ) in Theorem

5.7 and Theorem 5.8 differ from the theorems in this section just by the measure associated

to integrate the quantities. This difference is occurred from the growth conditions as we

obtain a growth condition with respect to the Monge-Ampère measure when µϕ ∈ A1(Ω, δϕ)

and with respect to Lebesgue measure when µϕ ∈ RH∞(Ω, δϕ). As in Section 5.2, we have

the following theorem in dimension 2.

Theorem 5.7. Assume n = 2 and let ϕ ∈ W 2,2
loc (Ω) be a strictly convex function with

detD2ϕ ∈ RH∞(Ω, δϕ) and ‖(D2ϕ)−1‖ ∈ L1
loc(Ω, dx). Then, there exist structural constants

K11 ≥ 1 and 0 < ε0 < 1, such that for every section S := Sϕ(x0, t) with Sϕ(x0, K11t) ⊂⊂ Ω,

every u ∈ Lip(K11S), and every 0 < ε ≤ ε0 we have

( 
S

|u(x)− uS|qε dx
) 1

qε

≤ Kε t
1
2

( 
K11S

|∇ϕu(x)|2−ε dx
) 1

2−ε

, (5.14)

with qε := 2(2− ε)/ε and Kε > 0 depends only on ε and structural constants.

5.3.1 Proofs of Theorems 5.6 and 5.7

Since ϕ ∈ W 2,n
loc (Ω, dx) is a strictly convex function with detD2ϕ ∈ RH∞(Ω, δϕ), from [19]

Section 3 we now have that there exists a structural constant M∞ > 0 such that the Lebesgue

measure satisfies the growth condition

|Sϕ(x0, t)|
|Sϕ(x0, t′)|

≤M∞

(
t

t′

)n
2

, (5.15)

for every section Sϕ(x0, t) with Sϕ(x0,Θ∞t) ⊂ Ω and every 0 < t′ < t.

Hence, the proofs of Theorems 5.6 and 5.7 follow as the ones of Theorems 5.4 and

5.5. Indeed, the same reasoning from Section 5.2.1 but now using Theorem 3.5 instead of

Theorem 3.23, and Theorem 4.4 instead of Theorem 4.3, as well as using Theorem 3.19 with

the Lebesgue measure instead of µϕ (but always with s = n/2 as in (5.15)) yields (5.12),

(5.13), and (5.14).
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5.4 Examples of weight functions satisfying A1(Ω, δϕ) or

RH∞(Ω, δϕ) conditions

This section is intended to record ample examples of convex functions ϕ with detD2ϕ ∈

A1(Ω, δϕ) or detD2ϕ ∈ RH∞(Ω, δϕ), which we borrow from [19]. Let us begin with a conven-

tion of a notation associated to a convex function for which the Monge-Ampère measure and

Lebesgue measure are comparable.

Definition 5.8. We say that detD2ϕ ∼ 1 in Ω if there exists constants 0 < Λ1 ≤ Λ2 such

that

Λ1 ≤ detD2ϕ(x) ≤ Λ2, ∀x ∈ Ω. (5.16)

A trivial but very important convex function that satisfies (5.16) is the quadratic function

ϕ2(x) := 1
2
|x|2, x ∈ Rn. In fact, this quadratic convex function plays a crucial role to bridge

in between the study related to the Monge-Ampère structure and the Euclidean setting. G.

Tina and X.J. Wang illustrated the following two non-trivial examples of strictly convex

non-smooth functions that satisfy (5.16) in [2] Section 1.

Example 5.9. The strictly convex function defined by

ϕ(x) :=
x2

1

log | log |x|2|
+ x2

2 log | log |x|2|, x ∈ B(0, r) ⊂ R2, (5.17)

satisfies (5.16).

Example 5.10. The strictly convex function defined by

ϕ(x) :=

 x4
1 +

3x22
2x21

if |x2| < |x1|3,
1
2
x2

1 x
2/3
2 + 2x

4/3
2 if |x2| ≥ |x1|3,

(5.18)

satisfies (5.16).

We now list the examples of weights satisfying A1(Ω, δϕ)-condition taken from [19].

78



(i) The case detD2ϕ ∼ 1 in Ω in the sense of (5.16). Here Θ1 = 1 and H1 = Λ2/Λ1. Thus,

for instance, the function ϕ2(x) := 1
2
|x|2 and the ones defined on (5.17) and (5.18) all

satisfy the A1(Ω, δϕ)-condition.

(ii) The case detD2ϕ ∼ |q|−a in Ω with q = q(x) polynomial and 0 < a < 1/deg(q). Here

Θ1 = 1 and the constant H1 ≥ 1 depends only on a, dimension n, and deg(q), the

degree of q but not on the coefficients of the polynomial q.

(iii) The case ϕp(x) := 1
p
|x|p, x ∈ Rn and 2− 1/n < p ≤ 2. Here Θ1 = 1 and the constant

H1 ≥ 1 depends only on p and n. The author in [19] used above example (ii) with the

fact that

detD2ϕp(x) = (p− 1) |x|n(p−2), ∀x ∈ Rn \ {0}

in order to verify A1(Ω, δϕ)-condition in this case.

(iv) The case ϕP (x) :=
n∑
j=1

1
pj(pj−1)

|xj|pj with x = (x1, . . . , xn) ∈ Rn and P := (p1, . . . , pn) ∈

(1, 2]n. Here Θ1 = 1 and H1 ≥ 1 depends only on p1, . . . , pn, and n.

Next we list the examples of weight functions that satisfy RH∞(Ω, δϕ)-condition taken

from [19].

(a) The case detD2ϕ ∼ 1 in Ω. As before, here Θ∞ = 1 and H∞ = Λ2/Λ1.

(b) The case detD2ϕ ∼ |q|a with q = q(x) polynomial and a > 0. Here Θ∞ = 1 and

H∞ ≥ 1 depends only on a, n, and the degree of q (and not on its coefficients).

(c) The case when ϕ is a convex polynomial in Rn. Here Θ∞ = 1 and H∞ ≥ 1 depends

only on n and the degree of ϕ (and not on its coefficients.)

(d) The case ϕp(x) := 1
p
|x|p with 2 ≤ p <∞. Here Θ∞ = 1 and H∞ ≥ 1 depends only on

p and n.

(e) The case ϕP (x) :=
n∑
j=1

1
pj(pj−1)

|xj|pj with x = (x1, . . . , xn) ∈ Rn and P := (p1, . . . , pn) ∈

[2,∞)n. Here Θ∞ = 1 and H1 ≥ 1 depends only on p1, . . . , pn, and n.
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From the list of these examples, we observe that some weight functions satisfy both

A1(Ω, δϕ) and RH∞(Ω, δϕ)-conditions (that is, A1(Ω, δϕ) ∩ RH∞(Ω, δϕ) 6= ∅). Also, we can

conclude that the inclusions A1(Ω, δϕ) ⊂ A∞(Ω, δϕ) and RH∞(Ω, δϕ) ⊂ A∞(Ω, δϕ) are strict.
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Chapter 6

Sobolev inequalities in the

Monge-Ampère quasi-metric structure

This chapter is devoted to present Sobolev inequalities in the Monge-Ampère quasi-metric

structure corresponding to the Poincaré inequalities studied in previous chapters. We start

with a brief of history of Sobolev inequalities in the Monge-Ampère quasi-metric structure in

Section 6.1. Then, Section 6.2 provides discussion on how to obtain Sobolev inequalities from

Poincaré inequalities and records some new and improved Sobolev inequalities. In Section

6.3, we discuss the applications of both Poincare and Sobolev inequalities and also provide

the comparison and connection of new such inequalities with the existing literature.

6.1 History of Sobolev inequalities in the Monge-Ampère

setting

As indicated in Chapter 1, the first order inequalities such as Sobolev and Poincaré inequali-

ties are widely applicable to investigate the local behaviour of solutions to the elliptic partial

differential equations, such as to study the local estimates Harnack inequality and Hölder’s

continuity. In contrast, G. Tian and X.J Wang were able to develop the following Sobolev

inequality in the Monge-Ampère quasi-metric structure, relying on the Hanrnak inequality
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for the solution of certain elliptic partial differential equation.

Theorem 6.1 (Theorem 3.1 in [2]). Fix n > 2 and ϕ ∈ C2(Ω) with D2ϕ > 0 in Ω such that

(a) µϕ ∈ A∞(Ω, δϕ) and

(b) there exist θ ≥ 0, σ > 0, C1, C2 > 0 such that

C1|S|1+θ ≤ µϕ(S) ≤ C2|S|
1

n−1
+σ (6.1)

for every section S := Sϕ(x, t) ⊂⊂ Ω.

Then the following Sobolev inequality holds true for every u ∈ C∞c (Ω)

(ˆ
Ω

|u(x)|pdµϕ(x)

) 1
p

≤ C

(ˆ
Ω

|∇ϕu(x)|2dµϕ(x)

) 1
2

(6.2)

where dµϕ(x) = detD2ϕ(x) dx, p := 2n(1+θ)
(n−1)(1+θ)−1

> 2, and the constant C > 0 depends on

the constants from the A∞(Ω, δϕ)-condition and (6.1) as well as on the diameter of Ω.

Theorem 6.1 is the first Sobolev inequality developed in the Monge-Ampère quasi-metric

structure. Notice that one of the hypotheses is the Monge-Ampère measure µϕ should satisfy

Muckenhoupt’s A∞-weight condition. In particular, if we replace the A∞-condition with the

strictly stronger condition detD2ϕ ∼ 1, in the sense of (5.16), it follows from Example 3 in [2]

that the Sobolev inequality (6.2) holds true with p = 2n/(n − 2). Consequently, whenever

n > 2, we recover the classical Sobolev inequality in the Euclidean setting from the choice

ϕ(x) = 1
2
|x|2.

The proof of Theorem 6.1 basically relies on the Harnack inequality by Cafarelli and

Gutiérrez [6] and a crucial lemma by G. Tian and X.J. Wang [2], which read as

Theorem 6.2 (Harnack inequality). Let ϕ be a strictly convex smooth function in Rn such

that µϕ ∈ A∞(Ω, δϕ). Then there exist constants β > 1 > τ > 0, depending only on the

A∞(Ω, δϕ)-constants and dimension n, such that if u is any nonnegative solution of Lϕu = 0
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in Sϕ(x, t), we have

sup
Sϕ(x,τt)

u ≤ β inf
Sϕ(x,τt)

u.

Lemma 6.3 (Crucial lemma). Suppose there is an integrable, almost everywhere positive

function µ such that for any t > 0,

µ({x ∈ Ω : G(x, y) > t}) ≤ K t−p/2,

where p > 2 and K > 0 are constants. Suppose also that µ satisfies the doubling condition,

namely there exists a constant b > 0 such that

µ(B(x, 2r)) ≤ b µ(B(x, 2r))

for every ball B(x, r) ⊂⊂ Ω. Then for smooth function u ∈ C∞c (Ω), we have the inequality

(ˆ
Ω

|u|p dµ
) 1

p

≤ C

(ˆ
Ω

∑
aijuxiuxj dx

) 1
2

,

where the constant C depends only on n, p, b, and K.

Here aboveG(x, y) is the Green’s function of the linear elliptic operator L =
∑
∂xi(aij(x)∂xj)

in a bounded domain Ω, namely G(·, y) is a positive solution of

−L[G(·, y)] = δy in Ω,

G(·, y) = 0 on ∂Ω,

where δy is a Dirac measure at y ∈ Ω. This crucial lemma, in other words, estimates a rate

of decay for the distribution function of the Green’s function associated to the linearized

Monge-Ampère operator (1.4) in Ω.

Few years later, D. Maldonado established an improved version of Theorem 6.1, namely,

Theorem 6.4 (Theorem 1 in [3]). Fix n > 1 and let ϕ ∈ C2(Ω) with D2ϕ > 0 in Ω and µϕ ∈
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DC(Ω, δϕ). Then the following Sobolev inequality holds true for every section S := Sϕ(x0, t)

with S ⊂⊂ Ω and every u ∈ C1
c (S)

( 
S

|u(x)|
2n
n−1dµϕ(x)

)n−1
2n

≤ Ct
1
2

( 
S

|∇ϕu(x)|2dµϕ(x)

) 1
2

, (6.3)

where the constant C > 0 depends only on the doubling constant from the condition µϕ ∈

DC(Ω, δϕ) and dimension n.

We observe that Theorem 6.4 is established by completely dropping the condition (6.1)

and by replacing the another assumption µϕ ∈ A∞(Ω, δϕ) with µϕ ∈ DC(Ω, δϕ) from the

hypotheses of Theorem 6.1. Moreover, the exponent q in the Sobolev inequality (6.3) depends

only on the dimension while such parameter rely on couple of other constants in the Sobolev

inequality (6.2). Most importantly, the constant C on (6.3) depends only on theDC-doubling

constant and dimension n, but such constant in (6.2) relies on several constants including

the set Ω itself.

The Sobolev inequality (6.3) has played a key role in the implementation of Moser’s

iterations in [11] towards Harnack’s inequality for nonnegative solutions of certain singu-

lar/degenerate elliptic PDEs.

Most recently, when proving Hölder regularity of solutions to the 2D dual semigeostrophic

equation by means of the linearized Monge-Ampère equation under the assumption detD2ϕ ∼

1 in the sense of (5.16) (which, in particular, renders dµϕ ∼ dx), N. Q. Le proved

Theorem 6.5 (Proposition 2.6 in [9]). Fix n = 2 and ϕ ∈ C2(Ω) with detD2ϕ ∼ 1 in the

sense of (5.16). Then, given q ∈ (0,∞) there exists a constant C > 0, depending only on q

and Λ1,Λ2 from (5.16), such that the following Sobolev inequality holds true for every section

S := Sϕ(x0, t) with S ⊂⊂ Ω and every u ∈ C1
c (S)

( 
S

|u(x)|q dx
) 1

q

≤ Ct
1
2

( 
S

|∇ϕu(x)|2 dx
) 1

2

. (6.4)

The proofs of both Theorems 6.4 and 6.5 rely variations of the aforementioned crucial
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lemma 6.3.

6.2 Improved and new Sobolev inequalities

In this section we point out that from each one of the Poincaré inequalities presented in

previous chapters a corresponding Sobolev inequality can be obtained. This is possible due

to a well-known fact that weak (q, p)-Poincaré inequalities with respect to a reverse-doubling

measure imply (q, p)-Sobolev ones (see for instance Theorem 5.51 in [25]). For the sake of

completeness, we briefly sketch the proof in our context. Given a section S := Sϕ(x, t) ⊂⊂ Ω,

u ∈ Lipc(S), that is, u ∈ Lip(S) with compact support within S, and q ≥ 1, we have

|uµ2S| ≤
 

2S

|u|χS dµ ≤
( 

2S

|u|q dµ
) 1

q
(
µ(S)

µ(2S)

)1−1/q

≤
( 

2S

|u|q dµ
) 1

q

ξ1−1/q,

where ξ ∈ (0, 1) is the constant from the reverse-doubling property in Lemma 2.29 corre-

sponding to α = 1/2. On the other hand, since

( 
2S

|u|q dµ
) 1

q

≤
( 

2S

|u− uµ2S|
q dµ

) 1
q

+ |uµ2S|,

it then follows that

( 
2S

|u|q dµ
) 1

q

≤ 1

1− ξ1−1/q

( 
2S

|u− uµ2S|
q dµ

) 1
q

,

which combined with an arbitrary weak (q, p)-Poincaré inequality

( 
2S

|u− uµ2S|
q dµ

) 1
q

≤ CP t
1
2

( 
2λS

|∇ϕu|p dµ
) 1

p

,
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for some λ ≥ 1, and recalling that u is supported in S, yields the Sobolev inequality

( 
S

|u|q dµ
) 1

q

≤ CP t
1
2

1− ξ1−1/q

( 
S

|∇ϕu|p dµ
) 1

p

. (6.5)

As an illustration and for future reference, we state the Sobolev inequalities that follow from

the Poincaré inequalities in Theorems 5.4 and 5.5.

Theorem 6.6. Fix n ≥ 3 and let ϕ ∈ W 2,n
loc (Ω, dx) be a strictly convex function with

detD2ϕ ∈ A1(Ω, δϕ). Then, there exist structural constants K9, K10 ≥ 1 such that for

every section S := Sϕ(x0, t) with Sϕ(x0, K9t) ⊂⊂ Ω and every u ∈ Lipc(S) we have

( 
S

|u(x)|
2n
n−2dµϕ(x)

)n−2
2n

≤ K10 t
1
2

( 
S

|∇ϕu(x)|2dµϕ(x)

) 1
2

. (6.6)

In addition, there exists a structural constant ε0 > 0 such that for every 0 < ε ≤ ε0 there is

a constant Kε > 0, depending only on ε and structural constants, such that

( 
S

|u(x)|qεdµϕ(x)

) 1
qε

≤ Kε t
1
2

( 
S

|∇ϕu(x)|2−εdµϕ(x)

) 1
2−ε

, (6.7)

with qε := n(2−ε)
n−(2−ε) > 2.

Theorem 6.7. Assume n = 2 and let ϕ ∈ W 2,2
loc (Ω) be a strictly convex function with

detD2ϕ ∈ A1(Ω, δϕ). Then, there exist structural constants K9 ≥ 1 and 0 < ε0 < 1, such

that for every section S := Sϕ(x0, t) with Sϕ(x0, K9t) ⊂⊂ Ω, every u ∈ Lipc(S), and every

0 < ε ≤ ε0 we have

( 
S

|u(x)|qεdµϕ(x)

) 1
qε

≤ Kε t
1
2

( 
S

|∇ϕu(x)|2−εdµϕ(x)

) 1
2−ε

, (6.8)

with qε := 2(2− ε)/ε and Kε > 0 depends only on ε and structural constants.

Remark 6.8. Notice that Theorem 6.7 extends Proposition 2.6 in [9], that is, Theorem 6.5

from Section 6.1, by weakening the assumption detD2ϕ ∼ 1, in the sense of (5.16), to

detD2ϕ ∈ A1(Ω, δϕ).
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Remark 6.9. Poincaré and Sobolev inequalities such as the ones in Theorems 5.4, 5.5,

and Theorems 6.6, 6.7, respectively, play a central role in the implementation of Moser’s

iterations for solutions to the linearized Monge-Ampère equation, as described in [11] Section

2.4.

6.3 Examples and applications

We conclude this chapter by discussing the further applications and connections of Theorems

presented in previous chapters as our main results as well as their corresponding Sobolev

inequalities with related inequalities in the existing literature. We also visualize such inequal-

ities associated to certain convex functions from the list of examples illustrated in Section

5.4.

As mentioned in Remark 6.9, the Poincaré inequalities presented as our main results in

Chapter 3, Chapter 4 and Chapter 5 will find applications in the implementation of Moser’s

iterations for certain degenerate/singular PDEs. Also, the comments below Theorem 3.4 and

Remark 6.8 point out how they improve upon a few previously known results. In addition,

in view of the examples in Section 5.4, all our main results presented in previous chapters

give rise to a large variety of new or improved Poincaré and Sobolev inequalities some of

which complement or extend inequalities from the existing literature. As an illustration, in

this section we take a look at just a couple of such inequalities. We start by mentioning the

following Sobolev inequality by Tian and Wang in [2] when ϕ is a strictly convex polynomial

in Rn.

Theorem 6.10 (Theorem 1.1 in [2]). Let ϕ be a strictly convex polynomial in Rn, n ≥ 3.

Then, for any bounded domain Ω ⊂ BR(0) and any function u ∈ C∞0 (Ω),

(ˆ
Ω

|u(x)|pdµϕ(x)

) 1
p

≤ C

(ˆ
Ω

|∇ϕu(x)|2dµϕ(x)

) 1
2

, (6.9)

where p > 2 depends on n and ϕ and C also depends on R.
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By using Theorem 5.6 and Example (c 5.4) of weights satisfying RH∞(Ω, δϕ)-condition

in Section 5.4 provide a Poincaré inequality with respect to the Lebesgue measure which,

in turn, yields a related Sobolev inequality (as described in Section 6.2) that complements

Theorem 6.10 where the Monge-Ampère measure is replaced with Lebesgue measure and

with a finer tuning on the constants. More precisely,

Theorem 6.11. Fix n ≥ 3 and let ϕ be a strictly convex polynomial with ‖(D2ϕ)−1‖ ∈

L1
loc(Rn, dx). Then, there exist constants K11, K12 ≥ 1, depending only on the degree of ϕ

and dimension n, such that for every section S := Sϕ(x0, t) we have

( 
S

|u(x)− uS|
2n
n−2 dx

)n−2
2n

≤ K12 t
1
2

( 
K11S

|∇ϕu(x)|2 dx
) 1

2

for every u ∈ Lip(K11S), as well as

( 
S

|u(x)|
2n
n−2 dx

)n−2
2n

≤ K12 t
1
2

( 
S

|∇ϕu(x)|2 dx
) 1

2

for every u ∈ Lipc(S).

We next see Poincaré and Sobolev inequalities associated to convex function ϕP defined

in Section 5.4 example (iv 5.4). For this let us first recall the following Sobolev inequality

proved by Cabré and Ros-Oton.

Theorem 6.12 (Theorem 1.3(a) in [30]). Suppose A = (a1, . . . , an) ∈ Rn, with aj ≥ 0 for

every j = 1, . . . , n and let 1 ≤ p < D := n + a1 + · · · + an. Then there exists Cp > 0 such

that for every u ∈ C1
c (Rn)

(ˆ
Rn∗
|u(x)|p∗xA dx

) 1
p∗
≤ Cp

(ˆ
Rn∗
|∇u(x)|pxA dx

) 1
p

, (6.10)

where p∗ := pD
D−p , xA :=

n∏
j=1

|xj|aj , and

Rn∗ := {(x1, . . . , xn) : with xj > 0 whenever aj > 0}.
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Now, by means of the Poincaré inequalities from Section 5.2 and Example (iv 5.4) we

will next obtain Poincaré and Sobolev inequalities related to the weight xA as in (6.10) but

now in the case −1/n < aj ≤ 0 for every j = 1, . . . , n. Indeed, for −1/n < aj ≤ 0 set

pj := 2 + aj ∈ (1, 2] and

ϕP (x) :=
n∑
j=1

1
pj(pj−1)

|xj|pj , x = (x1, . . . , xn) ∈ Rn, (6.11)

as in Example (iv 5.4). Then

D2ϕP (x) =



|x1|a1 0 · · · 0

0 |x2|a2 · · · 0

...
...

. . . 0

0 0 0 |xn|an


,

so that detD2ϕP (x) =
n∏
j=1

|xj|aj = xA. Notice that the condition −1/n < aj ≤ 0 for every

j = 1, . . . , n guarantees that ϕP ∈ W 2,n
loc (Rn, dx). Also, for a.e. x = (x1, . . . , xn) ∈ Rn and

u ∈ C1(Rn),

∇ϕPu(x) = D2ϕP (x)−
1
2∇u(x)

= (|x1|−
a1
2 u1(x), · · · , |xn|−

an
2 un(x))

and consequently

|∇ϕPu(x)| =

(
n∑
j=1

|xj|−aj |uj(x)|2
) 1

2

.

Moreover, by [27] Lemma 6 the Monge-Ampère sections of ϕP are related to the ones of

ϕpj(x) := 1
pj
|x|pj , x ∈ R, by means of the inclusions

SϕP (y, t) ⊂ Sϕp1 (y1, t)× · · · × Sϕpn (yn, t) ⊂ SϕP (y, n t),
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for every y = (y1, . . . , yn) ∈ Rn, yj ∈ R, j = 1, . . . , n, and t > 0.

Finally, by using Theorem 5.4 with the convex function ϕP , we obtain the following

Poincaré and Sobolev inequalities.

Theorem 6.13. Fix n ≥ 3 and let ϕP be the strictly convex function defined in (6.11). Then,

there exist constants K9, K10 ≥ 1, depending only on a1, . . . , an ∈ (−1/n, 0] and dimension

n, such that for every section S := SϕP (x0, t) we have

( 
S

|u(x)− uµϕPS |
2n
n−2 dµϕP (x)

)n−2
2n

≤ K10 t
1
2

( 
K9S

|∇ϕPu(x)|2 dµϕP (x)

) 1
2

for every u ∈ Lip(K9S), as well as

( 
S

|u(x)|
2n
n−2 dµϕP (x)

)n−2
2n

≤ K10 t
1
2

( 
S

|∇ϕPu(x)|2 dµϕP (x)

) 1
2

for every u ∈ Lipc(S), where dµϕP (x) = xA dx.

 

!!  

! 

∇! 

#!  

µ! 
$!  

Figure 6.1: Notions related to the given convex function in the Monge-Ampère quasi-metric
structure.

Throughout the discussion from Chapter 1 to Chapter 6, the readers shall observe that
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for each continuously differentiable strictly convex function ϕ defined in an open convex set

Ω satisfying so-called the DC-doubling condition, we have a family of notions related to

ϕ as shown in Figure 6.1. That is, we have the Monge-Ampère sections associated to ϕ

which can be viewed as quasi-metric balls, a measure µϕ, a quasi-distance δϕ which in turn

produces a space of homogeneous type: (Ω, δϕ, µϕ), a linearized Monge-Ampère operator Lϕ,

and the Monge-Ampère gradient ∇ϕ. We then can study Poincaré and Sobolev inequalities

associated to these notions in the Monge-Ampère quasi-metric structure. Thus for each

“nice” convex function, we obtain a pair of Poincaré and Sobolev inequalities associated to

it. In general, when a family of convex functions satisfying certain conditions is given, we

can produce a zoo of Poincaré and Sobolev inequalities associated to the given collection of

convex functions, which can be celebrated as a beauty of the study in the Monge-Ampère

quasi-metric structure. In addition, the study associated to some particular choices of convex

functions in the Monge-Ampère setting reduces to the study in the celebrated geometrical

structure known as the Euclidean space, and consequently the first order inequalities and

their applications generated in the Monge-Ampère quasi-metric structure translate to the

ones in the Euclidean settings.
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Chapter 7

The Whitney decomposition of the

Monge-Ampère sections

7.1 Introduction and main result

A class of essential components in the study related to Analysis, Differentiation and Ge-

ometry consists of covering lemmas. The Whitney type covering lemma, named after the

American mathematician Hassler Whitney, is one of such covering lemmas. The covering

lemma, originally introduced by Whitney in 1934, provides the partition of an open set with

non empty boundary into a disjoint sequence of half-open cubes such that the diameters of

the cubes are comparable to the distance from the corresponding cubes to the boundary of

the given set, namely,

Theorem 7.1 (Theorem 2.1 in [31]). Let G be any open subset of Rn with non empty boundary

∂G. Then there is a countable collection of disjoint half-open cubes {Qj}j≥1 such that

G =
⋃
j≥1

Qj and 1 ≤ dist(Qj, ∂G)

diam(Qj)
< 3.

When the requirement of disjointness is relaxed in Theorem 7.1, then a collection of open

cubes {Qj} can be found such that G =
⋃
j≥1

Qj with dist(Qj, ∂G) = 3 diam(Qj) and for each
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x ∈ Rn,
∞∑
j=1

χQj(x) ≤ αn,

αn being a constant that depends only on dimension n.

The Whitney type decompositions, later in the second half of 20th century, were inves-

tigated widely in order to obtain similar partitions involving geometric shapes other than

cubes, for instance metric balls, generally by imposing some extra conditions. We now state

a Whitey decomposition in a doubling metric space from [31] as below.

Theorem 7.2 (Theorem 2.3 in [31]). Consider (X, δ) be a metric space and let µ be a doubling

measure defined on X (that is, there exists C > 0 such that for every metric balls B(x, r) ⊂

X, µ(B(x, 2r)) ≤ Cµ(B(x, r))). Then for every open set G ⊂ X with non empty boundary,

there exists a countable collection of balls {B(xj, rj)}j≥1 and K > 0, depending only on C,

such that

(a) G =
⋃
j≥1

B(xj, rj);

(b) rj ≤ dist(B(xj, rj), ∂G) ≤ 4rj, for all j ∈ N and

(c)
∑
j≥1

χB(xj ,rj)(x) ≤ KχG(x), for all x ∈ X.

The Whitney decomposition in the doubling quasi-metric space, such as Theorem 7.2 as

well as the ones involving the cubes, find applications in establishing the well-known lemma

of Calderón and Zygmund. The readers can find more examples and applications of the

Whitney type decomposition mentioned here above in the lecture notes by Coifman and

Weiss in [32].

Whenever a Whitney type decomposition is intended for a set in the Euclidean space

involving Euclidean balls or cubes, it is doable as we discussed above. In fact, these are

the nice scenarios for such decomposition as cubes and Euclidean balls are the geometric

shapes that behave very well. On the other hand, the scenario will be slightly complicated

for general metric spaces. However, the good news with metric spaces is that the metric balls

have nice properties due to the symmetric condition and triangle inequality of the associated
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metric. But some complexity arise in order to find Whitney type decompositions whenever

the given space is a doubling quasi-metric space with the quasi-distance that satisfy quasi-

symmetric condition and quasi-triangle inequality as in the Definition 2.27. In other words,

the extra factor K > 1 in the quasi-triangle inequality and quasi-symmetric condition create

many troubles in the construction of partitions of given sets.

Our objective in this chapter is to provide the Whitney decomposition for the Monge-

Ampère sections in the Monge-Ampère quasi-metric structure. We keep in mind that the

Monge-Ampère quasi-metric structure is associated with the quasi-distance in the sense of

Definition 2.27. Let us state the main result of this chapter here below.

Theorem 7.3. Let ϕ ∈ C1(Ω) be a strictly convex function and the sections of ϕ have the

engulfing property with the engulfing constant Θ ≥ 1. Also, let S0 := Sϕ(x0, t0) be a Monge-

Ampère section of ϕ with Sϕ(x0,Θ
2t0) ⊂⊂ Ω and fix ε such that 0 < ε <

1

10Θ6
. Then there

exists a countable collection of Monge-Ampère sections {Sj := Sϕ(xj, tj)}j≥1 in S0 and a

constant C > 0, depending only on Θ and dimension n, such that

(i) Sj are mutually disjoint for j ≥ 1;

(ii)
⋃
j≥1

Θ2Sj = S0, where Θ2 Sj = Sϕ(xj,Θ
2tj), j ≥ 1;

(iii) tj = ε δϕ(Sj, ∂S0) for j ≥ 1;

(iv)
∑
j≥1

χΘ2Sj(x) ≤ C χS0(x), ∀x ∈ Ω;

(v) If Θ2Si ∩Θ2Sj 6= ∅, then
1

2Θ2
<
ti
tj
< 2Θ2.

The proof of Theorem 7.3 is inspired from [33]. We know that every quasi-distance is

comparable to a power of a distance. That is, if (X, δ) is a quasi-metric space (with quasi-

triangle constant K, say), then there exists a distance d and constants C, α > 0 (depending

on K) such that

1

C
d(x, y)α < δ(x, y) < C d(x, y)α, for every x, y ∈ X.
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This is known as the metrization of quasi-metric spaces (a proof is due to Macias and

Segovia [34]). Also, the readers can see [35] and [36] for other details and different approaches

related to the the metrization techniques of quasi-metric spaces. Therefore, the Whitney

decomposition for quasi-distances follows from the decomposition for distances by just re-

scaling the balls to quasi-balls. Despite the metrization result above, we give a proof of

Theorem 7.3 that is more direct.

Let us discuss about some ingredients that we will require to prove Theorem 7.3. Recall

from Lemma 2.20 that the Lebesgue measure is doubling in the Monge-Ampère sections.

That is, |Sϕ(x, t)| ≤ 2n |Sϕ(x, t/2)|, for every Monge-Ampère sections Sϕ(x, t) ⊂⊂ Ω. With

this, a simple manipulation provides that for every λ ≥ 1, we have

|Sϕ(x, λ t)| ≤ (2λ)n |Sϕ(x, t)|, (7.1)

for every Monge-Ampère sections Sϕ(x, λ t) ⊂⊂ Ω. In fact, for a given λ ≥ 1, there exists

k ∈ N such that 2k−1 ≤ λ ≤ 2k. Then

|Sϕ(x, λ t)| ≤ |Sϕ(x, 2k t)| ≤ 2n|Sϕ(x, 2k−1 t)|

≤ (2n)2|Sϕ(x, 2k−2 t)|
...

≤ (2n)k|Sϕ(x, t)| ≤ (2λ)n|Sϕ(x, t)|.

Next we just state a lemma in the spirit of Subsection 2.3.3.

Lemma 7.4. Assume that the Monge-Ampère sections of ϕ have the engulfing property in

Ω with the engulfing constant Θ > 1. (That is, there exists a geometric constant Θ > 1 such

that whenever x0 ∈ Ω and τ > 0 satisfy Sϕ(x0,Θ
2τ) ⊂⊂ Ω, then for every x ∈ Sϕ(x0, τ) we

have Sϕ(x0, τ) ⊂ Sϕ(x,Θτ).) Then δϕ defined in (2.4) satisfies

(a) δϕ(x, y) ≤ Θ δϕ(y, x), ∀x, y ∈ Sϕ(x0, τ);

(b) δϕ(x, y) ≤ Θ [δϕ(z, x) + δϕ(z, y)], ∀x, y, z ∈ Sϕ(x0, τ) and
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(c) δϕ(x, y)) ≤ Θ [Θ δϕ(x, z) + δϕ(z, y)] ≤ Θ2 [δϕ(x, z) + δϕ(z, y)], ∀x, y, z ∈ Sϕ(x0, τ).

The size of the constants in the inequalities in part (b) and (c) in Lemma 7.4 are based

on the the direction of the distance measured. In particular, we observe that the distance

δϕ(x, y) is bounded by the quantity smaller than the one used for the quasi-triangle inequality

in Subsection 2.3.3, which is same as the right-side of (c) in Lemma 7.4. We will consider the

smallest possible quantities to bound certain distances in order to achieve smallest constant

in the proof of Theorem 7.3.

Let us also see a definition that plays a role in the proof of Theorem 7.3.

Definition 7.5 (Geodesic property). Let (Ω, δ) be a quasi-metric structure. Then a δ−ball

B0 ⊂ Ω (or equivalently the quasi-distance δ) is said to possess the geodesic property if

for every δ−ball B contained in B0 with center xB, we have for each x ∈ B there is a

continuous one-to-one curve γ = γxBx(t), 0 ≤ t ≤ 1, in B with γ(0) = xB, γ(1) = x and

δ(xB, z) = δ(xB, y) + δ(y, z), ∀ y, z ∈ γ with y = γ(s), z = γ(t) where 0 ≤ s ≤ t ≤ 1.

We can easily observe that the Euclidean balls in Rn possess the geodesic property. We

know that metric balls (or metric spaces) behave very well compared to the quasi-metric

balls. However, in general, metric balls may not possess the geodesic property. For example,

the δ−balls in the discrete metric space (Z, δ) where

δ(x, y) =

 1 if x 6= y

0 if x = y.

Another example of quasi-metric balls that have the geodesic property consists of the

Monge-Ampère sections due to the following theorem by D. Maldonado.

Theorem 7.6 (Theorem 16 in [10]). Let Ω ⊂ Rn be an open convex set and ϕ ∈ C1(Ω) be a

strictly convex function. Then the Monge-Ampère quasi-distance δϕ defined in 2.4 possesses

the following geodesic property:

Given x, z ∈ Ω with Sϕ(x, δϕ(x, z)) ⊂⊂ Ω and 0 < r < δϕ(x, z), there exists y ∈

Sϕ(x, δϕ(x, z)) such that δϕ(x, y) = r and δϕ(x, z) = δϕ(x, y) + δϕ(y, z).
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7.2 Proof of Theorem 7.3

Let us fix S0 := Sϕ(x0, t0) such that Sϕ(x0,Θ
2 t0) ⊂⊂ Ω and ε with 0 < ε <

1

10θ6
. We first

prove (i) and (iii). For this we begin by claiming that given x ∈ S0, there is a Monge-Ampère

section Sϕ(x, t) such that

t = ε δϕ(Sϕ(x, t), ∂S0). (7.2)

To see this, define

f(t) := δϕ(Sϕ(x, t), ∂S0), 0 ≤ t ≤ δϕ(x, ∂S0).

Clearly, f(0) = δϕ(x, ∂S0) and f(δϕ(x, ∂S0)) = 0. Since δϕ is continuous, so is f . This

implies

g(t) := ε δϕ(Sϕ(x, t), ∂S0), 0 ≤ t ≤ δϕ(x, ∂S0)

is also continuous on [0, δϕ(x, ∂S0)], which maps onto [0, εδϕ(x, ∂S0)] ⊂ [0, δϕ(x, ∂S0)]. Then

by the fixed point theorem, there exists t′ ∈ [0, δϕ(x, ∂S0)] such that g(t′) = t′, and hence

the claim (7.2) follows.

Now define t1 := sup{t > 0 : ∃x ∈ S0 satisfying t = ε δϕ(Sϕ(x, t), ∂S0)}. Then we can

pick zk ∈ S0 and uk > 0 such that uk = εδϕ(Sϕ(zk, uk), ∂S0) and uk is an increasing sequence

converging to t1. Since S̄0 is compact, zk has a convergent subsequence, say zk → x1 ∈ S0.

We next claim that

t1 = ε δϕ(Sϕ(x1, t1), ∂S0). (7.3)

In order to prove this claim, let’s pick z̃k ∈ ∂Sϕ(zk, uk) such that

uk = ε δϕ(Sϕ(zk, uk), ∂S0) = ε δϕ(z̃k, ∂S0).

By the same reason as above, we may assume that z̃k has a convergent subsequence, say

z̃k → z0 ∈ S0. Since z̃k ∈ ∂Sϕ(zk, uk), uk → t1 and δϕ is continuous, we get

δϕ(x1, z0) = lim
k→∞

δϕ(zk, z̃k) = lim
k→∞

uk = t1.
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That is, z0 ∈ ∂Sϕ(x1, t1) and

t1 = lim
k→∞

uk = ε lim
k→∞

δϕ(z̃k, ∂S0) = εδϕ(z0, ∂S0) ≥ ε δϕ(Sϕ(x1, t1), ∂S0).

For the other inequality, we pick y ∈ ∂Sϕ(x1, t1) such that

δϕ(Sϕ(x1, t1), ∂S0) = δϕ(y, ∂S0).

Now, if we can pick yk ∈ S(zk, uk) such that yk → y, then

t1 = lim
k→∞

uk = ε lim
k→∞

δϕ(Sϕ(zk, uk), ∂S0) ≤ ε lim
k→∞

δϕ(yk, ∂S0) = εδϕ(y0, ∂S0).

In order to pick such yk, for a given k, assume that y /∈ Sϕ(zk, uk) (otherwise we can choose

yk = y). Then by the geodesic property, we can pick yk on the line segment joining zk and y

such that δϕ(zk, yk) = uk (that is, yk ∈ ∂Sϕ(zk, uk)) and δϕ(zk, y) = δϕ(zk, yk) + δϕ(yk, y). So,

lim
k→∞

δϕ(yk, y) = lim
k→∞

[δϕ(zk, y)− uk] = δϕ(x1, y)− t1 = 0.

This proves our claim (7.3) and hence name the Monge-Ampère section S1 := Sϕ(x1, t1).

Clearly S1 is the largest Monge-Ampère section in S0 satisfying (iii). Next define

t2 := sup{t > 0 : ∃x ∈ S0 \ S1 with t = ε δϕ(S(x, t), ∂S0) and Sϕ(x, t) ∩ S1 = ∅}.

Then by proceeding similarly as above, we get another Monge-Ampère section S2 = Sϕ(x2, t2)

which is the second largest Monge-Ampère section in S0 satisfying (iii) and disjoint to S1.

Continuing this process proves (i) and (iii).

Now we proceed to prove (ii). The inclusion ⊆ is obvious. Indeed, for all j,

Θ2tj = Θ2ε δϕ(Sj, ∂S0) ≤ Θ2ε δϕ(xj, ∂S0) ≤ δϕ(xj, ∂S0).

98



So, Sϕ(xj,Θ
2tj) ⊂ S0 for all j. This implies

⋃
j≥1

Θ2Sj ⊂ S0.

For the other inclusion ⊇, let’s pick x ∈ S0 and show that x ∈ Θ2Sj for some j.

We know that for x ∈ S0, there exists a Monge-Ampère section Sϕ(x, t) such that t =

ε δϕ(Sϕ(x, t), ∂S0). Clearly, t ≤ t1. If Sϕ(x, t) ∩ S1 6= ∅, then by the engulfing property

Sϕ(x, t) ⊂ θ2S1. If Sϕ(x, t) ∩ S1 = ∅, we still have t ≤ t2 and continue the process. We now

claim that this process will terminate. That is, there exists j0 such that Sϕ(x, t) ∩ Sj0 6= ∅.

If possible, let’s assume that there is no such j. This would mean that t ≤ tj for infinitely

many j = 1, 2, · · · By the engulfing property, xj ∈ Sϕ(x0, t0) implies Sϕ(x0, t0) ⊂ Sϕ(xj,Θt0).

So,

|Sϕ(x0, t0)| ≤ |Sϕ(xj,Θt0)| =
∣∣∣Sϕ(xj, Θt0

tj
tj

)∣∣∣
≤
∣∣∣Sϕ(xj, Θt0

t
tj

)∣∣∣ since t ≤ tj,∀j

≤
(

2Θt0
t

)n
|Sϕ(xj, tj)| due to (7.1).

Consequently, |S0| ≥
∑
j≥1

|Sj| ≥
(

t

2Θt0

)n
|S0|

∑
j≥1

1 =∞, a contradiction. This completes the

proof of (ii).

Next, we proceed to prove (iv). We already know Θ2Sj ⊂ S0, for all j. Let y ∈ ∂(Θ2Sj)

and z ∈ ∂S0. Then by Lemma 7.4, δϕ(xj, z) ≤ Θ[Θδϕ(xj, y) + δϕ(y, z)] ≤ Θ[Θ3tj + δϕ(y, z)].

This implies

δϕ(y, z) ≥ 1

Θ
δϕ(xj, z)−Θ3tj ≥

1

Θ
δϕ(Sj, ∂S0)−Θ3tj ≥

1−Θ4ε

Θε
tj.

That is,

tj ≤
Θε

1−Θ4ε
δϕ(Θ2Sj, ∂S0), ∀j. (7.4)

Let x ∈ S0 and denote α := δϕ(x, ∂S0). If x ∈ Θ2Sj, then δϕ(Θ2Sj, ∂S0) ≤ α and hence
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due to (7.4), tj ≤
Θ ε

1−Θ4ε
α. Since

1

1−Θ4ε
<

10

9
from the assumption, we have

tj ≤
10

9
Θεα.

Let’s set ε1 :=
10

9
Θ4ε <

1

9
. Then for those Θ2 Sj containing x, we have

Θ3tj < ε1α. (7.5)

By the engulfing property and using the inequality (7.5), x ∈ Θ2Sj implies Θ2Sj ⊂ Sϕ(x,Θ3tj) ⊂

Sϕ(x, ε1α). That is, all the Θ2Sj containing x lie in Sϕ(x, ε1α). Since α = δϕ(x, ∂S0), there

exist z̄ ∈ ∂S0 such that α = δϕ(x, z̄). For any y ∈ Sϕ(x, ε1α), we have δϕ(x, y) < ε1α. So,

δϕ(y, ∂S0) ≤ δϕ(y, z̄) ≤ Θ[δϕ(x, y) + δϕ(x, z̄)] < Θ(1 + ε1)α.

Since 1 + ε1 <
10

9
,

δϕ(y, ∂S0) <
10

9
Θα, whenever x ∈ Θ2Sj. (7.6)

Inequality (7.6) gives the upper bound for δϕ(y, ∂S0). We now estimate lower bound for this

quantity. For any z ∈ ∂S0,

α = δϕ(x, z̄) ≤ δϕ(x, z) ≤ Θ[Θδϕ(x, y) + δϕ(y, z)].

This implies

δϕ(y, z) ≥ 1−Θ2ε1

Θ
α.

Since 1−Θ2ε1 >
8

9
,

δϕ(y, ∂S0) >
8

9Θ
α, whenever x ∈ Θ2Sj. (7.7)

So, combining inequalities from (7.6) and (7.7), we see that the distance from any y ∈
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Sϕ(x, ε1α) to ∂S0 is in between
8

9Θ
α and

10

9
Θα. Since Θ2Sj ⊂ Sϕ(x, ε1α), in particular,

8

9Θ
α < δϕ(Sj, ∂S0) <

10

9
Θα.

That is,
8

9Θ
α <

tj
ε
<

10

9
Θα, whenever x ∈ Θ2Sj. (7.8)

We know that Θ2Sj ⊂ Sϕ(x, ε1α) whenever x ∈ Θ2Sj. In particular, xj ∈ Sϕ(x, ε1α). Then

by the engulfing property Sϕ(x, ε1α) ⊂ S(xj,Θε1α). So,

|Sϕ(x, ε1α)| ≤ |Sϕ(xj,Θε1α)| =
∣∣∣Sϕ(xj, Θε1α

tj
tj

)∣∣∣.
From inequalities (7.5) and (7.8), we obtain

Θε1α

tj
≤ 5

4
Θ6. Now by using inequality (7.1),

|Sϕ(x, ε1α)| ≤
∣∣∣Sϕ(xj, 5Θ6

4
tj

)∣∣∣ ≤ (5Θ6

2

)n
|Sϕ(xj, tj)|.

That is,

x ∈ Θ2Sj ⇒ |Sϕ(x, ε1α)| ≤ C |Sj|, (7.9)

where C :=

(
5Θ6

2

)n
, depending only on n and Θ. Clearly, there are finitely many of Sj

satisfying the inequality (7.9). Otherwise, |Sϕ(x, ε1α)| = 0 because |Sϕ(xj, tj)| → 0 as

j →∞, which is impossible.

If N is the number of the Monge-Ampère sections Sj such that x ∈ Θ2Sj, then N ≤ C.

In fact, if Sj0 is the Monge-Ampère section of smallest Lebesgue measure among all the Sj

for which x ∈ Θ2Sj, then from (7.9)

C |Sj0| ≥ |Sϕ(x, ε1α)| ≥
∑

j:x∈Θ2Sj

|Sj| ≥ N |Sj0|.
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Since N is also the number of the Monge-Ampère sections Θ2Sj containing x,

N =
∑
j≥1

χΘ2Sj(x) ≤ C.

This proves (iv). Finally to prove (v), let x ∈ Θ2Si ∩Θ2Sj. Then from inequality (7.8),

8

9Θ
α <

ti
ε
<

10

9
Θα and

8

9Θ
α <

tj
ε
<

10

9
Θα.

So, we have
ti
tj
≤ 10

8
Θ2 < 2Θ2 and

8

10Θ2
<
ti
tj

Hence,
1

2Θ2
<
ti
tj
< 2Θ2.

This completes the proof.
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