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Chapter 1
l. INTRODUCTION

The purpose of this set of experiments is to
introduce the student to the simulation of physical
systems. Being able to approximate real physical sys-
tems by models is an important basis of engineering
design since the exact mathematical model of the actual
device either doesn't exist or is usually too complicated
fo yield usable results with a reasonable amount of work.
For this reason, a major thrust of most design courses
is to acquaint the student with some useful models. Thié
also is the purpose of simulation, to create models of
physical systems that yield meaningful results with a
minimum of work and error. With this in mind, .a defin-
ition of simulation for the purposes of these experiments
is associated with the creation of a model of a physical
system for the purpose of analyzing the operation of
that system.

The tools that are used to approximate the real
physical systems are the standard mathematical tools of
the practicing engineer, those associated with algebraic

and differential equations. The analog computer can be



2
used to solve these equations while most of the mathematical
operations are done in the LaPlace transform domain. For
these reasons the student should have a good practical
-grasp of differential equations and their relationship to
LaPlace transform theory. The physical systems that are
simulated relate to simple linear and non-linear feedback
control systems. These are presented in most undergraduate
engineering curricula and are not so complex that the student
loses the intuitive feel for what is happening within the
system, Iﬁ must be remembered that these simple systems
in no way approach the limitations of the analog computer
‘or the LaPlace transform techniques. WNor are these the
only techniques available to simulate physical systems;
however, these tools are very useful in developing a first
approximation to a physical system.

These experiments are divided into four major areas.
The first of these is designed to familiarize the student
with the analog computer. The second section is to use the
analog computer to simulate simple position control systems
and to demonstrate the effect of changing both the model and-
the parameters of the model on the open and closed loop
response of the control systeme The second part also
includes a demonstration of the non-linear and delay
effects encountered in most practical control systems.
The third section treats the improvement of the system
using the classical techniques of the system specifica-

tion, gain, and lead and lag compensation along with the
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more modern cost function techniques using the state variable
formulation, the stability theories of Lyapunov, and basic
matrix theory. The last section consists of a short des-
cription of some special projects the student may use to
expand his knowledge of control theory or analog computer
simulation techniques.

The first block of three experiments is designed to
acquaint the student with the analogue computer. Experi-
ment I deals with programming the solution of differential
equations ip the classical and transfer function form., In
order to produce an accurate and usable solution to these
differential equations this section covers amplitude and
time scaling of these differential equations. Experiment II
covers this same material with regard to non-linear equations.
Experiment III deals with equations in state variable form.

The second block of experiments treats the simulation
of simple models of position control systems. Experiment IV
demonstrates the open and closed loop responseé of types
zero, one, and two control systems when excited by step,
ramp, and sine wave inputs. This experiment also demon-
strates the effect of changing the gain on the response of
the éystem. Experiment V deals with comparison of the model
with the actual system and with improving the model. Model
improvement may consist of adding circuits that approximate
non-linearities in the actual system or with slight changes
in coefficients in a linear model creating a more realistic

response to the input excitation. Experiment VI deals with
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the effect of time delay on the operation of simple control

systems, The system under consideration is a temperature
control system with proportional control and cooling.

The next section emphasizes improvement of control
system performance. Experiment VII deals with the subject
of compensation from both the classical (frequency domain)
point of view and the state variable point of view. The
first experiment is a non-lab experiment involving the
mathematical operations necessary to compensate the control
systeme. Experiment VIII compares the performance of control
systems compensated by classical and state variable techniques
to demonstrate the relative advantages and disadvantages of
each method and the performance of each with the specifi-
cations from'both.

The last block consists of a number of descriptions
of problems the student may attempt to increase his knowledge
of analog computer techniques and control systems. Included
in each experiment is a short description of the problem
and a few references the student may use to increase his
understanding of the problem. This is not intended to show
 the limitations of the analog computer but to demonstrate
some techniques that may be used in conjunction with the
analog computer to obtain solutions to problems in

engineering.



Chapter 2
2. INTRODUCTION TO THE ANALOG COMPUTER

2.1 EXPERIMENT I: LINEAR EQUATIONS

2¢1.1 Purpose

The purpose of this experiment is to acquaint the
student with the programming of the analog computer, Upon
performing this experiment the student should be able to
scale a differential equation and program the equation on

the analog computer,

201.2 Background Material

The operational amplifiers that are used in the analog
computer are capable of performing four linearoperations;
namely, inversion, multiplication of a variable by a constant,
addition, and integration. Additionally, the operational
amplifiers that form the heart of the analog computer are
not ideal so that they have a finite input impedance, gain,
bandwidth, and output voltage. Also a non-zero output
impedance, phase shift (except at DC), offset, and noise
voltage are characteristic of the amplifiers. These limita~
tions on the performance of the operational amplifiers
partially justify this experiment since they contribute

to the necessity for amplitude and time scaling.

5



2¢1.3 Magnitude Scaling

Magnitude scaling consists of adjusting the coefficients
of the differential equations in such a manner as to decrease
‘the effect of the non-ideal characteristics of the operational
amplifiers, This consists of increasing the relative ampli-
tude of those variableg that have a small maximum magnitude
and to decrease the relative amplitude of those variables
that have a large maximum magnitude. The maximum magnitudes
are quite often known or may be accurately estimated. These
may be measured in the case of an operating system, estimated
from the specifications of a system to be built, or estimated
from the differential equations,

If the maximum magnitudes of the variables are known
or have been estimated then the following procedure may be
used to scale the equations describing the system for pro-
gramming on the analog computer. |

(a) Solve the differential equations for the highest
order derivative. |

(b) Noting that each differential may be obtained by
integrating the next highest order derivative and that each
amplifier inverts its input to produce its output, write out
each of these equations,

(¢) Multiply and divide each variable by its maximum
magnitude, Do not forget to multiply and divide the initial
conditions.

(d) The divisor remains with the variable name and

is the scale factor relating the output of the amplifier



to the real variable represented by the output of that
amplifier,

(e) Solve each of the equations for the scaled
variable on the left,

(f) Separate the multipliers of each variable into
a pot setting whose value is between zero and one and a gain
thét is a power of the standard gains that are available on
the amplifiers. Pot settings in the range between 0,2 and
0.8 are the most desirable because of accuracy considerations.
Time scaling should be used where possible to obtain pot
settings in this range. Where time scaling cannot be per-
formed because of limitations of the devices used to record
the output or fixed relationships between real time and
machiﬁe time, multiply-divide circuits are available to bring
the pot settings into the desirable range.

(g) Program the resulting equations on the analog
computer using the pot settings and gains obtained during

the scaling operation, (1:95-108)

2,1.4 Example of Magnitude Scaling

The following worked example may aid in understanding

the scaling procedure. Given the equation
y+2y+y=4 y0)=yy=1 (0)=F4= 0 (2.1.1)
(a) Solve the Equation (2.1.1) for y

3:'. = _Zy- ..3.]_'. V + (2:12)

win
wl &



(b} Write the auxillary equations

t
y(£) - yltg) = J .

o

%
f V(t)at

gy

(c) Scale the variables by their respective
maximums.

ly lmax =-9

|§ lmax = 20

I ¥° lmax = 45

Equations 2.1.2, 2.1.3, and 2.1.4 then become

sl -3 ()[4 3 )] -]

D
Of<
—_——
1
0
kol%
19,
1]
;%*“‘ﬁ
ot
B
o
Nfdse
R
o,
ot

(2¢1.3)

(2614}

(2.105)

(2.1.6)

(2.147)

(2.1.8)

(2:1.9)

(2.1.10)
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(d) The expressions in square brackets are the out-

puts of the amplifiers with the possible exception of a
plus or minus sign.
{(e) Solving each of these equations for the depen-

dent variables on the left yields

["*LS} gl'h?zi' [%Eﬂ‘ %—gfg—[g]hé- (2.1.11)

%
_ 20 : (2.1.12)
5 [« - [4
Ty
%
v - & v’ 2.1.13)
[20 73 [ [ZY@] ar [_32’—8] B e 2
¥o

(f) Separating the multiplier of each variable in
brackets into a decimal between zero and one and a power of

a standard gain yields

[{—5]= -(0.2963)-1l %5} - (0-06667)-1[%J +

(0,02962) (1 (2e1e14)
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%
—— L ] : r.-
0
%
Y 1= (0.2250)°10 | [ Yo
[20 J, [175] N l:ﬁJ (2.1.16)
%o

Sinece the pot settings of the bracketed variable, y, and the
forcing function are outside the desirable range, 0.2 to 0.8,
either time scaling must be done or a multiply-divide circuit
must be used. As stated above, the primary reasoh this is
done is to increase accuracy. If the pot setting is below
0.2, the noise applied to the input of the following aﬁplifier
is increased relative to the desired signal and if the pot
setting is greater than 0.8 the loading error is increased
excessively due to the appearance of a virtual ground at

the input of an operational amplifier., If the equation
cammot be time scaled, one of the following circuits may be

used to obtain a pot setting in the desired range.

_eout = =€in = €put
- . or
e. 1 L “out _
Ll ®out = ~%in/?
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= - 10
» | eout e, 1 €sut
__Sout or
e 1
in —
eout eln /11

Figure 2.1.1 Divide by two and divide by eleven circuitse.

Using the divide by eleven circuit for the bracketed variable
containing y and the forcing function causes the following

changes in Equation 2.1.1%4.

vl ] - 1 1
[ﬁg‘_\- (0.2963) 1[~2V—OJ (0.?331}) T [%J + (0.3258)ﬁ (2.1.17)

(g) Using the pot settings and gains found in step
six, a scaled computer diagram may be constructed. A note
of warning at this point, the signs of the outputs of the
amplifiers and the inputs to the following amplifiers must
be correct or compensation must be made in the circuit.
Beginning the programming with Equation (2.1.15) gives the

following scaled computer diagram.

Figure 2.,1.2. Scaled Computer Diagram Rapresenting
Equation (2.1.15),
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The scaled computer diagram representing Equation (2.1.16)

is illustrated in Figure 2.1.3.

(0.2250)

Figure 2.1.3. Scaled Computer Diagram‘Representing
Equation (2.1.16).

The scaled computer diagram for Equation (2.1.17) is shown

in Figure 2.1.4.

10—[%]

(0.7334)

g T e

(0.3258) _1r.
TI[IJ 10

1 [,i]

Figure 2.1.4. ?caled ?omputer Diagram Representing Equation
21,17
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Putting the scaled computer diagrams together, matching
signs, and reducing the number of amplifiers yields the

resulting scaled computer diagram, Figure 2.,1l.5.

- %6:\ (0,2222) 3 x]

_"'(:::> 10{ g

(0.7334 )C)

C (0.2250) ‘ <>(0.2963)
(0.1111)
) } (1]
G .10
j<i
(0.3258)

Figure 2.1.,5 Complete Scaled Computer Diagram
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2.105. Time Scaling

Time scaling adjusts the rate of solution of a system
of differential equations., At times this adjustment is
required in order to use a particular display device, to
obtain reasonable solution rates, to reduce the dependence
of the solution on high frequency components of the solution
that may be distorted by the frequency response of the
amplifiers, or to modify pot settings or required gains
that lie outside the range of reasonable values, Exam-
ination of the operations performed by the analog computsr
reveals that integration is the only operation that depends
directly upon time. Therefore, if we desire to time scale

a problem with a time scaiing factor, k, given by
k = ,C’/t (201018)

where 7T is the machine time and t is the problem time. Only
the gains and pot settings associated with the inputs to the
integrators need to be modified. Time scaling does not
effect either the initial conditions or the maximum magni-
tudes associated with the problem variables. The modifica-
tion, then, consists of multiplying the product of the gain
and pot setting for each input to the integrators by a factor
of 1/k and then developing a new pot setting and a new gain

using the method described in Section 2.1.3, step f.
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One note of caution, the same time scaling factor must
be used for all parts of the problem so that if forcing
funetions are generated externally or coupled systems of
equations are programmed, then these must all be time

scaled using the time scaling factor, k.

2.1.6. Example of Time Scaling

Given the scaled computer diagram, Figure 2.1.5, time
scale this problem with k¥ = 5, Figure 2.1.5 is repeated here

for convenience.

- | (0.2222)
% [2010 loﬂ: el
(0.2963)

(o.m@
:> (0,2250)

(0,1111)

_ [1:%] - 1]

(0.3258)
[-1]

Figure 2.1.6 Magnitude Scaled Computer Diagram
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As noted in Section 2.1.5, the time scaling operation
consists of multiplying the product of the input gains
and pot settings of each input to each integrator by a
factor of 1/k, where k is the ratio between machine
time and problem (or real) time,

In Figure 2,1.6, there are only two integrators,
one producing [y/9] and one producing [y/20] . The
inverter at the input to the integrator producing [ y/20 ]
is ignored for time scaling purposes so that a pot setting
of 0,2250 and a gain of 10 is associated with this inpute.
A pot setting of 0.2222 and a gain of 10 1is associated

with the input to the integrator producing [y/9] . The
products of these gains and pot settings are 2,250 and
2,222 respectively yielding 0.4500 and O0.4444 when

multiplied by 1/5 . Therefore, a gain of 1 and a pot

setting of 0.4500 1is used for the integrator producing

W [%%/go] and a gain of 1 and a pot setting of O.4444

is used for this integrator producing [y(7)/9] . Note
that these variables are in terms of computer time, T,

instead of problem time, t, and that time scaling did not
modify the unreasonable pot settings associated with the

input to the summer. The scaled computer diagram is shown

on the next page,
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du (0.4500)

-

(0. Llhly)

tho.wmmuv

O

10

(0.1111)

(0.7334)

[1]

Tl

P
N

Figure 2,1.7 Scaled Computer Dizgram with k = 5

(0.3258) O
|
[-1]

-t
3
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2.1.7 Simulation of Systems Represented by Transfer
Functions

A second way of representing the differential
equations describing the system is fhe transfer funetion,
Transfer functions describe the relationship between the

input to the system and the output from the system by

taking the LaPlace transformation of the system of equa-

tions that gescribe this relationship in the time domain.
Generally, the transformed equations are easier to solve
fhan the original time domain equations since theyloften
consist of sums of powers of the transformed variables.
For the purposes of this experiment all initial conditions

associated with the original time domain equations are
assumed to be zero and that the transformed equations may

be expressed as

D(s) Y(s) = N(s) X(s) (2.1.19)

s+b, (2.1.20)
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a s + 2 (2.1.21)

Y(s) is the LaPlace transform of the dependent
variables X(s) is the LaPlace transform of the indepen-
j's are real numbers.
Equation 2.1.,29 may be expressed in the standard

dent variable and the aj;'s and b

form associated with transfer functions, namely,

%%:'g' - %‘%‘ ‘ (2.1.22)

N(s) and D(s) can both be factored into products of gains
and first and second order polynomials with real coef-
ficients. This permits the ratio of N(s) and D(s) to be

. expressed in the form

N(S) _ G(S+Zl)(S+Zz) eoe
D(S) (3+Pl)(s+p2) see

2 2 =
(st+z,) (s%+e s+fy) (s“+eystfy)evs (s4eystf) (241.23)

(S+pk)(52+rls+tl)(52+r25+t2)--0(Sz+r s+tL)

L

(1:193) which may be written as products of terms with the

following general forms:

k%s+a§ {(2.1.24)
s+b
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gjsz+cs+d) (2:1:25)
s2+es+f

Factors represented by Equations 2,1.34 and 2,1.35 may be
generated on the analog computer and when connected in series
produce the desired transfer function. The circuits in
FPigures2.l.6 and 2.1,7 may be used to create blocks corres-
ponding to the factors found in the transfer function while
the transfer functions in terms of the pot settings are

given by the following equations for the output of each
amplifier. For first order transfer function blocks, the
equations which describe the outputs of the amplifiers in

terms of the input to the transfer function block are

S) = C(S+d - ab/C_l (2.1126)
x{s s+d-eb "
and
z(s) - a - ec (2.1e27)
x{s s+d-eb

and the equations for the second order transfer functions are

T e

o]
g & g g g &
s%4+ (bte-hr-fk )s+be-Frhq+dkr-dq-bfk-ehr

| xssg - g s2+(b+e-ak-ck)s+be+adk+cha~-dg-aeh-bek
X\{s
(2410 28)

- s(a-gr)+gfg+rck-afh-cqg-egr+se (2.1.29)

z\8
x(s) 3%+ (b+e-hr-fk)s+be-fhq+dkr-dq-bfk-ehr
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w%s; - s(gf-c)+ad+chr-be-afh-rdg
x(s

(2.1.30)
s+ (b+e-hr-fk )s+be+ fhg+dkr-dq-bfk-ehr

Note that the gain of each transfer function is a pot

setting and is never greater than 1.

—
L1
I>Z—@—1 =y
@

O,

X
-®

""“_jp -

- Figure 2.1.8 General First Order Transfer Function Circuit

(11210-211)
h &)
1
e ] -y

(k) %
—&)

Figure 2,1.9 General Second Order Transfer Function
Circuit (1:210-211)
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Transfer functions represent differential equationsamd
must be time and amplitude scaled. Differential equations
expressed as factored transfer functions have one advantage
'in,that each block may be scaled separately from a knowledge
of the input to the block and the output from the block,
This scaling may be done in exactly the same marner as that

2

for differential equations since s and 8% correspond to the

firgt and second derivatives respectively. For example

(s2 + 25 + 1)Y(s) = (3s + 8)X(s) (2+1+91)

corresponds to

sz+ 2dy + y = 3dx 4 2x (2.1.32)
a2 dt dt

2¢1¢8 Checking the Program

The checking of an analog computer program may be
divided into four parts; namely, checking the equations,
checking the computer diagram and wiring, static checking
of the voltages at the outputs of the amplifiers used in
the program, and a dynamic check of the amplifiers to ensure
that the proper values were used when magnitude scaling.

These checks are all relatively easy and for most problems
save time by revealing many errors.

The check of the scaled computer equations is similar
to the addition of a long column of figures in both directions.

It provides a different perspective on the problem which
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helps reduce repeated mistakes. The checking of the
equations entails working backwards through the time and
amplitude scaling procedure to produce the original
equations,

The diagram and wiring checks are performed after
the equation check. The diagram check, like the equation
check involves working backwards from the scaled computer
diagram to the scaled equations and generally indicates
any patching errors. The wiring check is a comparison of
the patching of each input and each output from each device
on the board with the scaled computer diagrame This check
reveals most wiring errors.

In contrast to the above tests, which can be per-
formed without the actual computer, the static and dynamic
tests require that the patching panel actually be mounted
on the computer and that the pots be set to their correct
values. The actual procedure varies with the computer type;
therefore, it is not covered here., The operating manual
for each computer hormally describes the procedure to use
for both of these tests. Static checks generally find patching
errors missed in the wiring check, incorrectly set pots, and
faulty components. The dynamic check, which is done after
completion of the static check, reviews the original values
used in scaling the equations. If these values are too large

or too small, then the variable in question must be rescaled.
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2.,1,9 Assienment

(a) Program the foilowing equation on the analog

computer and display the results on the X-Y plotter.

x' + 2% + 100x = sin(%) =x(0)=1, x(0)=0

(b) Given the following control system, plot the

system response to a unit step input on an X-Y plotter,

B — 2 %
s2+1,12s5+4

Pigure 2,1,10 Second Order Linear System

2.2, EXPERIMENT II: NON-LINEAR EQUATIONS

2e2el Purgose
The purpose of this experiment is to introduce the

student to the programming of non-linear differential

equations.

2.2.2 Background Material

A non-linear differential equation is one in which one
or more of the dependent variables or their derivatives
appear in a non-linear term in the equation. Examples of
non-linear terms are x°, sin(x), 1/x, and exp(x) where x is
the dependent variable. Non-linear equations generally have
no analytical solutions which emphasizes the importance of
" simulation of systems described by these equations on analog
or digital computers. Other reasons for their importance
are the frequency of their appearance in nature and the
properties of their response to input excitations. Some of

the interesting responses generated by devices described by
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non-linear differential equations are jump resonance,
limit cycles, the generation of sub harmonics, and output
limiting. Non-linear devices may be used to improve the
performance of control systems by increasing the speed of

response while decreasing overshoot.

2.2.3 Scaling of Non-linear Eguations

The major problems in the programming of a non-linear
equation is that of estimating the maximum amplitude of the
dependent variable, if this is known a priori, its derivatives
and the bandwidth required for sufficient accuracy of the
output. These values are required before the squations may
be scaled for programming on the analog computer. In cases
where the various maximum amplitudes and the bandwidth are
known, scaling proceeds in the same manner as the scaling of
linear equations. The non-linear characteristic or property
of the system must also be scaled or the problem has been
changed.

If amplitudes are not known, there are several methods
of estimating the maximum amplitudes of the variables.

- Perhaps the simplest of these may be called cut and try.
The steps involved in this method are as follows.

(a) A guess is made of the maximum magnitude of each
variable and the correct time scaling factor.

(b) The equations are scaled using this guess and

programmed on the analog computer,
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(c) The prezram is run on the analog computer.

- If no amplifiers saturate, step (d) is pursued. If one
or more amplifiers saturate then the maximum amplitude
assigned to the variable represented by the output of the
saturating amplifier is multiplied by a constant greater
than one and steps (a) and (b) are repeated.

(d) The program is executed on the analog computer
and each variable is plotted. The maximum value of each
variable is determined and the problem is once again scaled
using the maximum values from the graphs.

(e) If the solution speed is too fast or slow or the
pot settings and gains are too large or small then the
problem is time scaled to the correct value,

(f) A solution is then obtained.

(g) The speed of solution is reduced by a factor of
two or more and the problem is run again.

(h) fThe solutions obtained in steps (f) and (g) are
compared and if there is no difference in the solutions the
problem solution is considered complete. If a difference
is found then steps (g) and (h) are repeated.

This method is time consuming and tedious but it is
the only method that can be used when programming non-linear
systems about which little is known. Time spent iterating
to find the maximum magnitudes of the variables and the
correct time scaling factor can be reduced by any knowledge

of the system response.
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2.2.4 Non-linear Elements in the Analog Computer

The non=linear elements contained in the analog
computer are the diode and the servo-motor driven function
generator. The diode is a common electronic device that,
ideally, allows current in cnly one direction while blocking
current in the opposite direction. The servo-driven function
generator is a simple rotational control system utilizing a
servo-motor driving two or more pots coupled by a common
shaft. One of the pots is linear and is used to create a
voltage whiph is compared with the input voltage. Thus, the
error voltage generated is used to drive the servo-motor,

The second pot is tapered in such a way so as to generate

the desired output as a function of shaft position. Servo-
motor driven function generators have a very severe frequency
response restriction, the bandwidth generally being limited
to a few Hertz.

Since the only two non-linear elements in the analog
computer are the dicde and the servo-motor dri&en function
generator, all other non-linear functions are generated
using these two elements. Servo-driven function generators
accomplish this by changing the pots generating the {unctions.
The diode is used in combination with pots and amplifiers,
to produce the desired functions either directly or by using
the diode function generator and straight line approximations.

One of the most common functions commonly created

using the above non-linear elements is the multiplier. If
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the multiplier utilizes the servo-driven function generator
it is called a servo-multiplier while the multiplier using
the diode function generator is called the quarter-square
multipliers The servo-multiplier is generally mere accurate
while the quarter-square multiplier has a much higher fre-
quency response, the bandwidth generally being a few hundred
Hertz or more. Most modern general purpose analog computers
use the quarter-square multiplier because of its lower cost
and higher frequency response.

Two general rales about the use of multipliers should
be mentioneds The first is that no multiplier should be
directly driven from a pot because multipliers present a
low varying resistance to the source. The second rule is
that the outvut of a multiplier should never be loaded by
a pot since the output is correctly scaled if the inputs
are correctly scaled. If gain is required following a
multiplier then any pots required should be placed in the
output of the amplifier. In addition, the inputs to multi-
pliers should be scaled as near one as possible since the

multipiier is very inaccurate for small inputs. {1:104-105)

2.2.5 Assignment

{a) Program the following differential equation anrd

plot x versus x on the X-Y plotter for a = 0.1, 1, and 2.

e 2 [ ]
x + a(l - ’j‘— )X + x =0 x(0) = 0.1 %(0) =0 (2e2.1)
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2.3. EXPERIMENT III: STATE VARIABLE SYSTENMS

2+3.1 Purpose
The purpose of this experiment is to introduce the

student to the programming of differential equations

appearing in the state variable and transfer function form.

2+3¢2 Background Naterial

The general form of a state variable differential

equation is

F(x, u, t) . (5.51)

]
X

G(;! E.’ t) (2.302)

y
(2:161), where x is the vector of state variables, © is the
input vector, y is the output vector and T and g are vector
functions., In the case of linear systems described by state
variable equations, which is all that will be considered in
this series of experiments, they may be expressed in state

variable form as

A(t) X(t) + B(t) u(t) | (2¢3.3)

°
X

C(t) X(t) + D(t) T(t) (25 )

y
where X is the n dimensional state vector, u is the m di-
mentional input vector of inputs, and y is the p dimensional
output vector. f, ?, E, and D are nxn, nxm, pxn, and pxm

matrices respectively.
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Differential equations expressed in standard form
may be transformed to state variable form using the
following algorithm.

Given the standard differential equation form

-1

n n-1 dllu " tu

g——y‘ + a g’———x'!' see T a-ny = bo _E.E + bl g | + see U (2.305)
ath b ggn1 du |

where a;'s and b;'s may be functions of the independent

variable, t, the following procedure is established

]
o

(a) Define 1?0
Ay =0 =28,

B, =1, - a1 8, - a, 8,

- 818, - 381 - 234,

[N
W

i

o'
L)

™
=
n

- an’@O (26346)

(b) Set Xy =y - By
(¢) Then

Xy = X, +,ﬁlu



and

(a)

xn =-anx1‘an_1x‘?"' ev e —alxn+4lu

The state variable .equations become

1r -
0 l 0 0 ° N . 0 xl
6 0 1 0 .« .« 4 0 ||xs
0 0 0 1 ® . 9 0 xB
0 . . . ® . ° 1l xn"'l
""an -an-l ‘an-z L] . e . al -| | Xn J

3l

(243.7)

Bn-1
An

J

(2.3.8)
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Yy = [1. 0 0 . . » {H ’3( ] + ’5Ou (20309)

L =

or using the standard form, Equations 2.3.3 and 2.3.4, (4:676-77)

x=[x,] xso 1 0 « « o 0]
X2 0 0 1 L] [ ] [ 0
xn 0 ™ ° . 0 0 l
- g -a a " . . a

n n-1 n-2 1

i= [w] 3 =[g,] T=Loo...q ﬁ=f189] (243.10)
P2
B

2¢3.3 Example of Conversion to State yariable Form.
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Given the equation

Yy +3y + ty+y=sint + bcos t (2.3.11)

convert this equation to state variable form.

(a) Noting that d _(sin t) = cos t (2.3.12)
dt

bo = 0

b; =0 a, =3

b2 = 4 a2 = T

by =1 sy = 1 (243.13)

B, =0
B8q=0-3(0)=0
B o= U <« 3(0) - £(0) =4

By =1=3H) - t(0) - 1(0) = -11 (243.14)
(b) Set x;, =y +8Bu-=y (2.3.15)
(¢) Then
il = X, +.£Hu = X,

[}

X5 +16Eu = X3 + Ly
i} = -33x1 - a2x2-a1x3fﬁgu = —Xl-txz-jxj-llu (2'3'16)

(d) The equations in state variable form are then

—:'cl 0 1 0 [0 ]
x2 =10 0 1 + L [u:l
XB :-1 -t "3‘_ ._-1]J (2030 17)
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y=J1 0 ¢ [x;] + o0 (2.3.18)

2.3.4 Programming of Equations in State Variable Form

The programming of equations in state variable form
is relatively simple., If the maximum values of the variables
and the time scaling factor are known then scaling may be
done on the individual equations as was done in Experiment I.
Static checks may also be performed.,

Scaling of state variable equations is also straight
forward, Magnitude scaling is accomplished equation by
equation in the same manner as in Section 2.1,3. Time
scaling is a simple matrix operation combined with the
modification of the independent variable in the forecing
function. The equation is scaled like a first order
equation noting that a constant multiplied by a matrix
is equal to the constant multiplied by every element in
the matrix. The following example demonstrates amplitude

and time scaling.

2¢3.5 Example of State Variable Programming

Given the state variable system
X, = Xy = 7

Xp = Xq + 6

x3 = "xl - x2 - x3 - 10 (2.3019)
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with the initial conditions

xl(O) = 0
xz(o) = {
x3(0) = . (243.20)

and maximum values

| %7 [max = 1 Iillmax = 0,05
| X5 max = 5 [izfmax = 0,25
|x3]max = 11 |i3|max = ¥ (2¢3.21)

The amplitude scaled equations are

O.OSI:U;%'S- " 5[53' -30J

0.25 xz | = 111 x 7 + 6 [1]
=5 "

0.25 |

BB

If the desired output equation is

y = xl - 2x2 + X3 |y| max = 25 (2+3.23)

then the amplitude scaled output is

25| vy = 1| x “- 2o 11 x
3¢ —ll:l > E}.;E G [ﬁi (2.3.24)
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The equations to be programmed are

% (100) [2:1 + (0.6000) 100 [-1] (2.3.25)
0. 05 5
[::-':.2 T = (0.4400) 100 [ﬁ + (0.2400) 100 [ 1]
0723 1l (2.3.26)
[i% — [f_l_:[ - (0.5000) 10 [’_‘g] -
§ 1 5
' X
(0.1100) 100 [&% + 10 [;1] (2.3.27)
[%3 _ (0.0400) fl] - (0.4000) [?g]_* (0,4400) [31
7 : 11
(2.3.28)

Noting that gains and pot settings fall outside the
desirable range, the gains and pot settings equations are
time scaled with a constant, k, of 10, Noting that the first

order equations representing the state variable system are

x = Ax + B (243.29)
where

x = dx/dt = (dx/d7)(dY/dt) (2.3.30)
and that

3t = ke | (2.3.31)

Equations 2.3.29, 2.3.30 and 2.3.31 gives

xx = A% + Bu (2.3.32)
or

% A% + %‘Eﬁ . (2¢3.33)
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Using equation 3,3.32 with the scaled computer equations

gives the equations to be programmed:

:'cl = 10 [ﬁj + (0.6000) 10 [-1]
0.0 5

[ :l = (0.4400) 10 [_1_{ (0.2400) 10 [1]
25

X
]-——0.1000 1] ~ (0. 5000)[5]- (0.1100)10[%[ + 1[-1]

37

(2¢3434)

(0.2400)

\\~// (0.6000)

=]

S o ]>H -
1d (0.5%00)

7

(0,1100)

7\

]
(E-—B{OO) \J '

(0.1000)

Y
/

Figure 2.3.1 Scaled Computer Diagram for Example of State
Equations :
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2.3.6 Assignment

Given the equation, contribution of Bessel,
t2%" + tx + t%x = 0 x(0) = 1 X(0) =1 (243435)

reduce this equation to state variable form and program

this on the analog computer for 0 ¢t <5,
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3. SIMPLE CONTROL SYSTEMS

3.1 EXPERIMENT IV:s TYPE N SYSTEMS

301-1 Purgose

The purpose of this experiment is to acquaint the
student to the open and closed loop response of type zero,
one and two feedback systems to different inputs with

various loop gains.,

3.1.2 Backgroung
Type N systems may be defined as those with open

loop transfer functions of the general form

G( =
s} H(s) _ﬁ_(gl_ (3.1.1)
s B(s)

where N is the order of the pole at the origin or the
difference between the order oflthe zero and the order of
the pole at the origin, A(s) and B(s) are polynomials in s.
Poles at the origin tend to dominate stable system response,
lees slowing system response to input excitations and
reducing system bandwidth. Type N systems, however, are

the only systems with transfer functions in the form of
rational fractions that will produce zero steady state

error for inputs with the transform (1/s)" with N >n

39
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and finite steady-state error for N2n-1,
Simulation of type N systems is relatively straight
forward. Given a control system with the general form as

shown in Figure 3.1.1

R(s)

E(s a(s) C(s) >

H(s) q—

Figure 3.1.1 Single Loop Feedback Control System

the blocks are separated and programmed separately.

Factors of the form (1/s)® are programmed as ¢ integrators
connected in series with the initial condition terminal
grounded, The remainder of each block is programmed as in
section 2,1.,8., Gains greater than ten may be required in
addition to time scaling. These large gains may be required
in Type N systems to generate the required steady state

error,

3e¢le3 Assipnment

(a) For the following type zero system, plot the
response versus time for a unit step input and a unit

ramp input with K = 1, 2, 3.



)

R(s) K(s=-1 Clg
= C( )b
I | s
5+2 —

Figure 3.1.2 Type Zero System

(b) Open the loop between the feedback element ang
the summer and repeat‘the above experiment plotting the
output cof the feedback element for K=1l, 2, 35 and unit step
and unit ramp inputs. Ramp time need not exceed 10 seconds.

(c) For the following type one system plot the open
and closed loop responses to unit step and ramp input

excitations with K=1, 3, 5.

R(s) b g%z:%; C(s) >

1
(s+2) ‘!
Figure 3.1,3 Type One System.

(d) For the following %ype two system, plot the open
- and closed loop response to the unit step and unit ramp

inputs with K=1, 17, 18.

s(s+l)

ol e J!Q__.

Figure 3.l.4 Type Two Syztem

R(s) b} K(s+2) C(SLb
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3.2 EXPERIMENT V: REAL TIME SIMULATION
AND MODEL IMPROVEMENT

Je2.1 Purpose

The purpose of this experiment is to introduce the
student to real time simulation of phyéical systems, in-
cluding the comparison of the real system to the analog
computer model using different error measures and model

improvement,

3+.2.2 Background

At some point in the design of a system it may
prove desirable to compare the performance of the model
with the actual system. The comparison is generally per-
formed near the middle of the design sequence to check
the first approximation to the actual system and to aid in
the formation of a more accurate,‘possibly non-linear,
model. This comparison necessitates a time scaling factor
of one to allow the comparison to be made (the actual system
cannot be time scaled), the selection of a suitable input
to both the model and the system to produce meaningful
. outputs, and the selection of a measure or norm of the
difference between the model response and the system response.
The choice of input excitation and error measure to obtain
the best results is a complicated procedure, thus the
mechaniecs of the selection process is not presented here,
At this point an attempt may be made to improve the model

with respect to the actual system by using parameter search
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techniques. Once again, only the simplest search techniques
are included here. Quite often a non-linear model is
required to provide sufficient model accuracy. However,
parameter search techniques, while applicable, may be
much more difficult than the measurement of the non-linear-
ity and the generation of the non-linearity via the diode

function generator or other special circuits.,

3:2¢3 Real Time Simulation

Simulation of system response in real time means
that the eqﬁations describing system performance are not
time scaled prior to their programming on the analog
computer. Not being able to time scale the equations
quite often leads to unreasonable pot settings and ampli-
fier gains. The divider circuits described in Experiment I
may be used to aid in correcting unreascnable pot settings:;
however, nothing may be done in the case of unreasonable
gain values, A criterion for the choice of diéplay device
must be the system response time rather than choosing the
time scaling factor to match the desiréd display device, If
the speed of the actual system is such that the analog
computer bandwidth is exceeded then something different
must be done., Magnitude scaling is done in the same

manner as described in Experiment I.
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Je2.4 Choosing the Input Excitation and Error Measure

Ideally for a thorough evaluation of the system's
response the input excitation should include 211 possible
inputs to the system, Practically, this cannot be done
because of the finite nature of the error integrator so
that some representative subset of all of the possible
inputs must be chosen. In addition, the excitation should
be chosen so that excessively accurate timing of the input
excitation is not required in the case of multiple runs.
This severely limits the choice of input excitations.
Types of excitations normally chosen are the impulse, gtep,
ramp, sinusoid and the random or pseudo-random wave form.
The random waveform is not normally chosen for multiple
runs because of repeatability, a random waveform is not
normally repeatable so that the accumulated error from one
run to the next must be analyzed statistically. However,
the random waveform is the most general form of input
excitation and provides the most accurate results.

The second best input excitation in terms of
accuracy is the pseudo-random wave form and if the wave
form generator is properly designed, timing is handled in
the generator. The wave form commonly chosen is the step
due to the ease of its generation and timing iﬁ addition
to the information generated by its application to the

system and model,
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-——(——2-’:‘ ¥ Model c(t)

+
Source Ngrmigg Errcy
- Clrcult Measure
| (%) b System c(t)
Under
Test

Figure 3.2.1 General Error Measuring Circuit

The next part to be selected is error measure or
norme The norm of a continuous system has the general
form

o= —

T
uHN = [ lul N at | (34241)
0

- -

1/N

Normal values for N are 1, 2 and <o, however, any positive
real value may be chosen., The larger the value of N chosen
the greater the weight given to large errors until for
N = o0 , the measure operation yields the largest value.
The normal values of N are chesen partly because of the
ease with which they may be implemented on the analog
computer in addition to the well developed theory behind
them,

The circuit for comparing the model with the device

is shown in Figure 3.2.1. The error measuring circuits
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X

Figure 3.2.2 Circuit for Generating Norm with N=1

Squaring
Circuit

Figure 3.2.3 Circuit for Generating Norm with N=2

R
A
» -
v \/;:::>F~ "“Avf_‘ V//,/// P?Sgter

Figure 3.2.4% Circuit for Generating Norm with N =o
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for N equal to one, two, or infinity are shown in Figures
3¢2¢25 3¢2435 and 3.2.4., Of the normal values of N the
most common choice is N equal to two yielding what is
commonly thought of as the distance between two points,

This norm is perhaps the best for general use.

3¢2.5 Model Improvement

Since most physical systems are non-linear while
most models are linear, dramatic improvements in model
accuracy may be obtained by using non-linear circuits to
approximate the non-linearities in the system. Some of
the more important of these, especially those involved with
control systems,are covered in Section 3.2.6. Non-lineari-
ties are normally measured and analyzed graphically or
approximated from equations describing the input-output
relationship.

Linear models may also be improved by slight changes
in the model parameters causing the input-output relation-
ship of the model to more closely approach that of the
systems The technique is simple to explain though very
long and tedious in its execution. An outline of the
procedure follows,

(a) First a table is created showing different
values of each parameter to be tested. These values gen-
erally do not range more than a few percent on each side
of the original value. The best choice of values is

probably elements from the sequence 1, 2, 3, 5, 8, 13, eoe 3
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multiplied by some small constant with these values added
to and subtracted from the nominal value. The sequence of
integers is the Fibonacci sequence.

(b) The norm of the difference between the response
of the system and the response of the model is recorded for
all combinations of values,

(c) The combination yielding the smallest error
is chosen as the new model parameters. The model may be
further improved by repeating steps (a) through (c¢) with
a smaller constant chosen in step (a).

3.2.6 Common Types of Non-linearities Found in Control
Systems

The most common non-linearities found in systems

are dead band, limiting, backlash, and friction., These
non-linearities normally degrade system performancee.

Dead band, friction, and backlash often increase steady-
state error by reducing the ability of the system to
respond to small error signals. Limiting reduces the
ability of the system to respond to large error signals or
- control signals by constraining the speed of response or
the length of travel of the system.

Dead band is a region of the input-output response
of a component of a system where the output of the com-
ponent does not change for changes in the input. A component
with a dead band will have an input-output response like

that pictured in Figure 3.2.5.
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» Input

Figure 3.2.5 Input-Output Response of a Component with

Dead Band

Dead band most commonly occurs near the zero crossing

point of the input-output response but, as is evident from

Figure 3.2.5, need not be confined to
may be more than one dead band in the
ponent, These dead bands need not be
regpect to the axis.

Limiting resembles a dead band
values for all inputs that have large
input-output relationship of a device

shown in Figure 3.2.6.
OQutput

A

this region. There
response of a com-

symmetrical with

that occurs for all
magnitudes. The

with a 1limit is

P Input

Figure 3.2.6  Response of a Component with Limiting
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As with dead band, limiting need not be symmetrical with
respect to the axis.

Backlash in systems is generally caused by the

energy storage in the transmission system joining the source
and load. Examples of this are the energy stored in the
shafts in a gear train or the energy stored in a transmis-
sion line. When this energy is released, the output of
the system is pushed past the desired end peoint introducing
a small error. A component with backlash may introduce
a limit cycle in a system with high loop gain. The input-
output response curve for a component with backlash may

resemble that shown in Figure 3.2.7.
AOutput

/ / — P Input

Figure 3.2.7 Response of a Component with Hysteresis

Friction is a force inherent in the system that
opposes motion. It is generally velocity dependent but is
often approximated by a force that is not velocity
dependent but always opposes motion. Non-velocity
dependent friction is called Cculomb friction. The

magnitude of the Coulomb frictional force is determined
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using the coefficient of dynamic friction. The relation-
ship between the Coulomb frictional force and the velocity

is shown in Figure 3.2.8.

% Force

Fe

P Velocity

Figure 3.2.8 Response of a Component with Coulomb Friction

Of these non-linearities, the two that are easiest
to measure and to simulate are dead band and limiting.
Dead space and limiting are also the most commonly pfo-
grammed of all non-linearities while friction and back-
lash are generally ignored. Circuits for generating these
and other non-linearities may be found on pages 372 to 379
of the Handbook of Analog Computation (1:372-379). Figures
3¢2.9 and 3.2.10 showing computer circuits for simulating
1imiting and dead space are shown below. ep 1is the

computer reference voltage corresponding to one machine

unit,
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3.2.7 Agssipnment

Input-output relationships for each element in a
system is provided the student by the lab instructor. The
student then constructs a linear and a non-linear model
of the system, scale and program these models, and compare

these to the original system.

3.3 EXPERIMENT VI: SYSTENMS WITH TRANSPORT DELAY

3¢3.1 Purpose

The purpose of this experiment is to demonstrate the

effect of transport delay on system performance,

3¢3.2 Background

Transportation delay is a common phenomenon in

control systems and may be defired by the equation
Y(t) = X(t - T) (3-301)

where T is the time delay. Time delay appears in linear
gystems in expressions containing factors of the form

e"TS, In root-locus plots, ths expression e~TS represents
- a pole at minus infinity and a zero at plus infinity (7> 0)

with the angle associated with this pole being given by
4fe'Ts = «WT radians (3.3.2)
(48347-349) where s = o+ jw (3¢3.3)

Equation 3.,3.2 indicates that the phase angle associated
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with a transportation delay is a function of the frequency.
For Nyquist plots, this expression indicates that there
will be an infinite number of encirclements of the origin
as  approaches infinity. For Bode plots, the angle
approaches minus infinity as > approaches infinity.

The major problem with transportation lag is in
the area of stability, particularly systems with high

loop gains, Consider the simple control system with

G(s)H(s) =giarTy ° (3.3.4)

As is well known, this system is stable for all positive
values of K., The addition of a time delay in the open

loop with T being one second gives

Ke™S

G(s)H(s) = ST ¥ ' (343.5)

From the equations used to generate the Nyquist plot, the
values of w for points at which the curve crosses the

negative real axis are given by

S T/2 - tan tw- w = (2n+1) (1) (34346)

n=0, il: _":2; see

The value of w for negative real axis crossings for

==-1 is given by

1

w + tan w + 37/2 =0 (3+3.7)

Equation(3.3.7) is immediately recognizable as an egquation
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which has more than one solution. One value of Lo for
which a solution exists is 0.86. The magnitude, as a
function of loop gain, K, of the transfer function for

Ul = 0,86 is given by

[ x

lo(5 0.86) n(3 0.86)| = [ -
or
IG(j 0.86)H(j 0.86) | =

VK / 1.13 (3¢3.9)

Equation (3.3.9) indicates that encirclement of the point,
(-1,0) occurs if the open loop gain exceeds 1.28. A
transport delay of one second is much larger than that
encountered in most control systems, the typical delay
being at most, a few milliseconds., Small transport delays
can often be approximated in the complex frequency ﬁomain

by using a truncated MacLaurin or Taylor series expansion.

3¢3.3 Temperature Control Systems

Temperature control systems are those that attempt
to maintain the temperature of a specified volume within a
certain range about a nominal value. The major difficulties
encountered in the analysis of temperature systems are the
gain or loss of heat to the surroundings through conduction,
convection, and radiation and the nature of heat transfer

within the volume being heated or cooled. Heat gain or
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loss to the surroundings generally means that some control
action must occur even though the input excitation to the
system has not changed. Multiple transport delays are
introduced by heat transportation occurring through com-
binations of conduction, convection, and radiation and by
different path lengths between the points of application
of heating or cooling and the temperature sensor. These
multiple délays are generally modeled for analysis purposes
by assuming that all heat is transported using the mechanism
that transports the most heat to the sensor and the path

over which most of the heat is transported,

3.3.4 Simulation of Time Delays

Transport delays on the analog computer use approxi-
mation to e~1%, These approximations are generally in the
form of rational fractions and are derived from the
Maclaurin series expansion in such a manner that reduces
the number of amplifiers and pots. These circuits may
still require amplitude scaling and all will require time
scalings The circuits recommended in the EAI Handbook
of Analog Computation (1:227-228) are perhaps the best
availaﬁle gince they do not require amplitude scaling
for inputs that are properly scaled. Time scaling is

s$till required and gains and pot settings must be

ad justed to give reasonable values if possible.
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303-5 Assignment

Determine the gain required for an external power
amplifier-driving the heating element of an oven holding
a crystal oscillator. The desired internal temperature
of the oven is 65°C + 1°C, The oven and the temperature
sensing elements within the oven have the following
parameters,

Oven: Dimensions 10cme x 10cme X 5 cm

Thickness of walls: 0,5cm

Thermal conductivity of walls: 0,01 watts/
‘ meter sec °C

Convection coefficient:

2

external walls ~ 100 watts/meter® sec °C

2

internal walls - 100 watts/meter® sec °C

Heating capacity of oven: 1 watt/ °C

Internal time delays: 4 seconds for convection
25 seconds for conduction
Internal heat transfer: 80% by convection
20% by conduction

Heating element: 2.5 ohm, 10 watt resistor
Heat dissipated by the contents of the oven: 0.1 watts

The internal temperature sensing network produces a
10mV/ °C error signal for each degree of difference between
the temperature of the sensor and the desired temperature,
65°C. Outputs of both polarities are available from the

temperature sensor.
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Assume no loss of heat from the outside surface of
the oven by radiation cr conduction and that the heat capa-
city of the contents of the oven may be neglected.
When the crystal oven has reached steady state,
apply a simulated change of ten degrees in the ambient
temperature and plot the resulting internal temperature

of the oven.
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4, OPTIMIZATION

L,1 EXPERIMENT VII: COMPENSATION

4,1.1. Purpose

The purpose of this experiment is to introduce
the student to the compensation of control systems using

classical and state variable techniques,

L‘f. 1.2, Bgckground Material_

The purpose of compensation of control systems is
to improve the system response. This improvement may be
required to stabilize the system or to meet design
specifications, There are two major techniques of com-
pensating a control system, the classical technique using
the LaPlace or Fourier transforms of the system time
response and the state variable technique using the time
response of the systems Both, if performed properly, will

fulfill the objective.

ho,1.3. Classical Technigues of Compensation

Classical compensation consists of adjusting the
position of the closed loop poles so that specifications
are met or the system is stabilized. The position of the

closed loop poles may be altered by changing the loop

59
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gain or by the addition of poles and zeroes to the open
loop transfer function,

The specifications that a control system must meet
are generally concerned with three things, namely speed of
response, relative stability, and system accuracy. Speci-
fications may be written in terms of the time domain
response or the frequency domain response of the system.
Specifications are sometimes given in terms of both the
tiﬁe domain response and the fregquency domain response,
Special care must be taken in this case because the re-
quired perforﬁance may be impossible to achieve,

For second order unity feedback systems, there are
expressions relating the frequency domain response character-
istics to the time domain response charazcteristics. This
fact along with the mathematical simplicity are the reasons
for the importance of the second order unity feedback
systems Since the degign of the system using classical
techniques occurs in the complex frequency domain, the
relationship of time domain and frequency domain character-
. istics derived using the equations describing a unity feedback
second order closed loop system are used to translate time
domain specifications to the frequency domain,

Common time domain specifications include the
following:

(a) Overshoot - the maximum difference between the

transient and steady-state response for a unit step input
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measured after the response passes through one for the
first time.

(b) Rise Time - the time required for the
response to a unit step input to rise from 10% of its
final value to 90% of its final value.

(¢) Settling Time - the time required for the re-
sponse to a unit step funetion to reach and remain within
a specified range around its final value,

(d) Time Constant - the time required for the
envelope of the transisnt response to a unit step input
to reach 63% of its final value.

(e) Delay Time -~ the time required for the response
to a unit step input to reach 50% of its final value.

(f) Peak Time -~ the time required for the response
to reach.the first peak of the overshoot.

The quantity which tie the two sets of specifications
together is the damping ratio. The equations relating the
time domain response of the system to this quantity may be
derived from the equation describing a second order system,

Given the following closed loop transfer function

(4.1.1)

R(s)  s%4200, 8+ 0 °

(4:435) the response for a unit step input is given by
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BTN {
(cos w. .t +
d / 1 - Ea

(4:435) wherew ; = w_J1 - 22 = damped natural
d n
frequency. (bele3)

c(t) =1 -c¢e sin Wdt)(Ll-gl.E}

The maximum value of the overshoot, Mp’ may be found from
the expression

- ir

M= %.‘
p 1 - 82

¢ C (Bell)

(4:435), The system time constant, T , is given by

(441.5)

(3:183). If the system is required to settle to within p
percent of the final value then the maximum settling time,
Tgs is given by |

- e
TS = -ﬁloge ( 100% ) (4.1.6)

The rise time, T,, is given by

o 1 -1
Tr Wd e (T o) (be1.7)

(4:235), The peak time, Tp, is given by
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= 4,1.8
Tp U(;L (4:235) (41.8)

Equations 4.1.3 through 4,1.8 may be solved to determine
an expression for & in terms of w  that will be required
to meet system specifications. The required system phase

margin, gﬁm. may be found using the expression

.

@, = tan~1 (4¢1.9)

//1+4?f" -2f%?

Common frequency domain specifications include:

Gain Margin - the reciprocal of the open loop gain
at the frequency where the phase difference between the
input excitation and output response of the system differs
by 180°, (Given in magnitude or db).

Phase Margin - 180° plus the phase difference between
the input excitation and output response at the frequency
where the open loop gain is equal to one.

Bandwidth - the band of frequencies over which the
system remains usable (within 3db of midband gain).

Roll=off = the rate at which the gain of the system
decreases with increasing frequency usually expressed in
decibels per decade of frequency change at one or more

frequencies of interest.
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Resonance Peak ~ the maximum value of the magnitude
of the closed loop response.

Resonant Frequency - the frequency at which the
resonance peak occurs. (3:180-182),

One performance specification that may be considered
to be either a time domain specification or a frequency
domain specification is steady state error. This specifi-
cation along with the waveform that is used to determine
its value gives the ninimum open loop gain of the system,
The steady state error coefficient may be determined using

the expression

0ss = lim | T (4.1,10)
(42284) where R(s) is the LaPlace transform of the input
excitation and 1+G(s)H(s) isthe denominator of theclosed loop transfer
function. The type of system required may be determined

from the waveform for which the steady state error is

defined. Common waveforms are the unit step, unit ramp,

and unit parabola. The minimum system types required to |

yield a finite steady state error are respectively, Type 0,

Type 1, and Type 2 (see Experiment IV),

4.1.4, Example of Classical Compensation

Given the unity feedback control system in Figure

bhelol



R(s)  +

1
g(s~1)(s+l)

Figure 4.1.1 Unity Feedback Control System
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compensate the system so that the maximum overshoot is 0.4

and the system is stable.

The initial root locus plot is shown in Figure 4.1.2.'

4>

x

Figure 4,1.2 Root Locus Plot of Control System in

Figure 4,1.1

P

The damping ratio is given by equation 4.1.11

log M
L —_ — = 0.280
\/1?' +(1logeliy)

The required phase margin is then

[rrmr - 212

Knowing the value of the damping ratio, £

= 39,5°

(4ele11)

(4.1.12)

also allows

for the calculation of lines of constant damping which may
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be drawn on the root locus diagram. The angle, ¥ , that
these lines of constant damping make with the imaginary

axis is given by
¥ = sin~l ¢ (4.1.13)

Lines of constant damping lie strictly in the left half
plane. Lines of constant damping have the property that if
the poles of a second order system lie anywhere on these
lines that the damping ratio, [ , is equal to the sine of
the constant damping angle, V¥ . PFor £ = 0,28 <the constant

damping angle is given by
¥ = sin~! § = 16.5° (Balolk)

Cancelling the pole at s = -1 and replacing it with a pole
at s = -10 gives the root locus plot of Figure 4.,1.3

/&ﬂijj//

mJ?\\\

Figure 4.1.3 Root Locus Plot with the Pole at s = -1
Cancelled,
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Addition of a zero at s = -2 and a pole at s = <20 modifies
the root locus in the following manner. The addition of
the zero at s = =2 will tend to draw the locus of the poles
at s = 0 and s = 1 back into the left half plane yielding

the root locus plot shown in Figure 4.1.4.
joh/s

~1_7
¥
vl

N

Figure 4,1.4 Root Locus Plot of Compensated System

The control system including both compensators has the block
diagram indicated in Figure 4.1.,5 and the closed loop

equation given by 4.1.15.

s+1 D g+2 1
5+20 s{s=1)(s+1)

Figure 4.1.,5 Block Diagram Including Compensators

R(s) s™+2053+Kk795%+ (K-200)s+2K
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The Routh table of the characteristic equation of the closed
loop transfer function given in equation 4.l1.5 is shown in

Figure 4,1,.6.

s 1 170 2K
g2 29 K-200 0
g2 5130-K 2K

29

2
s 47U 8K-K%-1026000 O
5130-K

so 2K

Figure 4.,1.6 Routh Table for the Characteristic Equation
of Feedback System in Figure 4.1.5

Examination of the Routh table reveals that the
minimum value of the loop gain, K, required to assure that
the system is absolutely stable is 227 while the maximum
value of the gain is 4521,

The gain must be chosen so that the dominate closed
loop poles fall on the lines of constant damping. Generally,
the gain is chosen to obtain the smallest value of gain that
will yield the desired final result. In this case, the gain
required may be determined from the root locus plot. The

general shape of the root locus plot of the root locus is
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ghown in Figure 4.1.,7. A more exact plot of the locus for
gains between 200 and 5000 is shown in Figure 4.1.7 from
which the range of gains that may be used to cause the
dominate poles to fall to the left of the line of constant
damping may be determined. Since it is generally desirable
to choose the minimum gain required to meet system speci-
fications, a gain of 500 is chosen. A Nyquist plot of the
system frequency response, shown in Figure 4.1.8, however,
reveals, that since the phase margin of this system is only
1.8° which is outside specifications, that the location of
the zero and pole is incorrect. A better choice of com-
pensator for the system shown is one with the zero located
at s = -0.5 and the pole located at s = -30. The open loop
gain required to meet system specifications is then 1140.
The root locus plot of the system with the new compensator
is shown in Figure 4,1.9 while the Nyquist plot of the
system is shown in Figure 4.1.10. The phase margin of the
system with the new compensator is 40,1° which meets system

specifications,

4,1.5. Compensation Using State Variable Techniques

Compenéation, using state variable techniques, is
more flexible than compensation using classical techniques
because state wvariable techniques may be used on systems
that are non-linear, time varying or that have more than one

input or output. State variable techniques may also be
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Figure 4.1.7 Root Locus Plot of System with Compensator
Zero at S= -2 and Pole at S = =20

4 Imag G(j9)H(jv)
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__Re G(j<)H(j)
*1 +2 +3

Figure 4,1.8 Nyquist Plot of System with Compensator
Zero at S = -2 and Pole at S = =20
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Root Locus Plot of the System with the New

Compensator
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Figure 4,1.,10 Nygquist Plot of
' Compensator

the System with the New
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used to obtain the compensation that will produce the
best possible response subject to a given performance
index. 1In general, determining the compensation that will
‘produce the best system is very difficult, but in certain
special classes of problems, the compensator required to
yield the best or optimal system may be found rather
easily.

The special case that will be considered here is
optimization of a linear, finite order, time invarient system
with a quadratic performance index. The equations describing
this system are

% = AX + BU
(4#41.16)

n
all

y = Cx + Du
where X is an nxl matrix, ¥y is an mxl matrix, u is a pxl

ped - =
matrix, A is an nxn matrix, B is an nxp matrix, and C is an

mxn matrix and D is an mxp matrix. The quadratic performance

index, J, has the form

OO o0

n n P
J = [ lel > qijxixj dt + fi{l JE]_ rijuiuj (4,1.17)
0 0

where a4 and rij are the costs associated with the state

and control respectively. An alternate expression for J is
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[E- o7 + a-ﬁﬁ] dt (4,1,18)

where x' is the transpose of the matrix x, 5 is an nxn

matrix and R is an rxr matrix. E and ﬁ are defined to be

63 Eiﬂ (“.1.19)
R = Eij:‘ (4e1.20)

With the system as described in Equation 4.1.16 and
the matrices defined in Equations 4.1.,17, 4.,1.19, and 4,1.20,
it can be shown that the control law with the value of J as

defined in Equation 4.,1.17 or 4,1.18 has the form
T(t) = -Kx(t)  (41778) (4e1.21)

where K is an rxn matrix of constant gains., If E is positive
definite or positive semi-definite and R is positive definite
then the system may be optimized using the procedure to be
described,

Using Sylvester's criterion, a matrix is positive
definite if the determinates of all principle minors are
greater than zero. If the matrix is singular.and the
determinates of the principle minors are non-negative, than
the matrix is positive semi-definite. The matrix is

negative definite or negative semi-definite if the
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multiplication of all elements of the matrix by a negative
one results in a positive definite or positive semi-defi-
nite matrix respectively. The following examples may aid
in the understanding of positive definiteness and positive

semi-definiteness. Example of a positive definite matrix is

(4 1 -2 ]
-1 3 -1
-2 -1 5

Determinate of first principle minor is
|4|= I | (4.1.22)

Determinate of second principle minor is

11 (4.1.23)

TR, .
=1 % = 35 (Lelo2h)
-2 -1 5

An example of a positive semi-definite matrix is
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Determinate of first principle minor

4] =4 (4e1e25)

= 0 (1".1!26)

b o0 =2
=2 0 5

If Q and R are positive semi-definite or positive
definite and positive definite respectively, then the

substitution of the optimal control law yields the state

equation,

£=(h-5K X (4+1.28)
(4:782), Defining

$5=4 (e1.29)

(4:784), and using a result developed by Kalman shows that
(A - B X) is stable if the rank of

L‘E’- | 55 | ()25

. l(i-)“‘lﬁ;] (441.30)

(4:784) is equal to n, the order of the state equation.
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Solving the reduced Riccati matrix equation (4:783)

-1

evil|

B

oli

o4

#5 = 0 (%01431)

il
L
il
es]]]
<] |

X

for the nxn matrix, P allows the calculation of the

gain matrix, ﬁ, of the optimal system using the equation

ol

wil

= .-_R'--l

=il

(4e1.32)

(4:783). The value of the cost function J, associated with

this system is then
J =%"(0) P x(0) (4¢1.33)

(4:780).

If (A - B K) is stable as determined by equations

4.1.29 and 4.1.30 then the value of K as determined in
equation 4.,1.32 will always yield the best system. If,
however, (f - B X) is unstable, then the gain matrix, s
will yield the optimal system only if the matrix, %,

calculated in equation 4.1.31 becomes positive semi-definite

(4e784),

b,1.6. Example of State Variable Compensation

Given the control system

als

L.

@ |+

0=

Figure 4,1.11 Block Diagram of State Variable System
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and the cost functionals
[
- 2 2
J = I[;l + uxz + 9] dt (Be1,34)
0

determine the gain matrix, K.
The value of the matrix 3 and ﬁ‘determined from the

cost functional are

(4.1.35)

oli
n

[1] (4.1.36)

=l
[}

The value of § determined from Equation 4.,1.29 is

10
= [ ] (re1.37)
0 2

Since S is non-singular, S°' has rank 2 so that (i - B K)

wuil

is stable., The state equations may be determined from the

block diagram of the system and are

x 0 1 x 1
= o4 [u] (.1.38)
X2 l 0 x2 0

Substituting the values of 2 and B from Equation 4.1.38
R from Equation 4.1.36 and 3 from Equation 4.1.35 into

Equation 4.1.31 gives



78

O 1] Py Pyaf | Pu1 Prz g 4
1 0 1] Py Ppp Por Pop | L}
1] [1 {2 o 1 N
in Pya (2 1[2) o] Pra Prg J = 4
Po1 Pp ¢ Ppy Pppl |0 ¥
(4e1.39)
Multiplying the matrices in equation 4,1.39 gives
p,, D P, D p? Py, D 1 0
21 P22 |, | P12 P |Pn1 11P12| % .0
By Pig Pop Pp1| |P12P12  P21Pqs o &
(be1.40)

The four equations that must be solved to determine the

elements of P are

2
Pyy ¥ Py - Py +1=0
Ppp * P33 = P3Py = 0

Pyy ¥ Ppy = Py3Pay = 0

11

Pyp ¥ Dyy = DyyPyy + 4 =0 (Lololtl)
These equations when solved give

Py =V 3 + 25 = 2.78

Pyp = Ppy = 1 +/5 =3.36
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which yields

2.78  3.36
3.36 8.52

(heleh3)

ol
]

P is positive definite since the determinates of

both principle minors are positive.

|2.78]| = 2,78 (Bololily)
2.78  3.36

= 12.4 (bcltl”S)
3,36 8452

The value of the gain matrix, E, is

k=[1 [x p] 2.78 3.36} = [2.78 3.36]]

3.36  8.52
(helolt6)

The cost associated with moving from the point, x,(0)=0,

x,(0) = 1 is given by

J=%(0)P %(0) = [0 1] [2.78 3.36] [OJ = 8.52

3.36 8.52 L
(alelt7)

b,1.7. Assignment

Obtain a block diagram of a control system from
your lab instructor and design a compensator using

classical techniques and state variable techniques.
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4,2 EXPERINMENT VIII: COMPARISON
OF COMPENSATED SYSTEMS

“02010 Purgose
The purpose of this experiment is to compare the
performance of a control system compensated using classical

techniques and state variable techniques.,

4.2-2. Assignment

Program both systems compensated in Experiment VII
and compare their responses to a unit step input. Change
the position cof one of the dominate poles in the system
compensated using classical techniques by 10% and change one
of the feedback gains by 10% for the system compensated
using state variable techniques and again compare the

responses of both systems to a unit step input,
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5 ADDITIONAL PROJECTS
501 PARTIAL DIFFERENTIAL EQUATIONS

5¢lels Statement of the Problem

Many physical phenomena are not adequately described
by ordinary differential equations. When a control system
is desired that includes a device described by partial
differential equations, the system designer has a choice
of an ordinary differential that may not give the required
accuracy but that is easy to use or a partial differ-
ential equation that has the accuracy but is much more
difficult to work with from a mathematical point of view.

Techniques exist which allow a partial differential
equation to be reduced to a system of coupled ordinary
differential equations. The results obtained are only
approximate; however, the order of the approximation may
. be increased until sufficient accuracy is obtained. The
approximations obtained may be programmed on the analog

computer,

f.1e2s References

FAI Handbook of Analog Computation, pages 279-287.

81
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5.2 DESCRIBING FUNCTION ANALYSIS

5¢2+1e Statement of the Problem

Analysis of a single stationary non-linearity in a
control may not be carried out using the classical techniques
of control system design. The describing function is a
technique that may be used to linearize the amplitude-
frequency response of the non-linearity so that an idea of
its effect on the contrecl system may be found,

The describing function is basically the magnitude
and phase shift of the first term of the Fourier series of
the non-linearity. For some kinds of non-linearities, the
magnitude and phase angle associated with the describing
function are also functions of the input amplitude as well
as the frequency so that a large number of parametric plots
are generated,

The effect of the describing function on the control
system is generally analyzed using the Nyquist plot. On the
Nyquist plot, the amplitude and phase shift of the output
of the non-linear device are plotted parametrically as
functions of the input amplitude and frequency. The linear
portion of the control system is plotted separately and all
intersections of the non-~linear and linear portions of the

plot are examined for the presence of limit eycles.

S5¢2.2. References

Modern Control Engineering, pages 531-561.
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ABSTRACT

INTRODUCTION TO THE SIMULATION OF CONTROL SYSTEMS
USING THE ANALOG COMPUTER

A series of experiments have been written on the
simulation of control systems using the analog computer.
These experiments are concerned with an introduction to
the use of the analog computer to check the performance
of control systems with respect to design specifications
in the time and frequency domain. The experiments are
designed to follow or be concurrent with an introductory
course in control systems. The student is assumed to
have a good background in LaPlace Transform Theory, matrix
algebra, and be able to use simple graphs associated with

the design of control systems.



