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Abstract 

Two different sugar yield definitions (cellulose-based and biomass-based) were used in 

reported studies investigating the relationship between biomass particle size and enzymatic 

hydrolysis sugar yield. It is noticed that these reported relationships are not consistent if 

sugar yield is defined differently. The literature does not contain any reports on the effects 

of sugar yield definition on the relationship between biomass particle size and enzymatic 
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hydrolysis sugar yield. This paper presents a consistency mapping to show under what 

conditions the relationships are consistent (or inconsistent) when these two definitions are 

used. The application of this mapping is illustrated via an experimental study with poplar 

wood biomass on the relationship between biomass particle size and enzymatic hydrolysis 

sugar yield using both sugar yield definitions. The application of this mapping is also 

illustrated via data reported in the literature. Not limited to particle size, this mapping is 

applicable to investigations of the relationships between a variety of parameters (biomass 

type, pretreatment condition, etc.) and enzymatic hydrolysis sugar yield. 

Keywords 

Biofuel; cellulosic biomass; enzymatic hydrolysis; particle size; sugar yield 

1. Introduction 

Biofuels have been recognized as promising alternatives to petroleum-based liquid 

transportation fuels [1-3]. Cellulosic biomass can be converted into biofuels through 

biochemical pathway. Before biochemical conversion, cellulosic biomass has to go through 

a size reduction step to make it easier to handle and to make the biofuel production process 

more efficient [4]. Cellulosic biomass biochemical conversion consists of two major 

processes. First, biomass particles produced by size reduction are depolymerized to 

fermentable sugars through pretreatment and enzymatic hydrolysis. Second, the 
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fermentable sugars are converted into biofuel (ethanol) through fermentation [5]. 

 

Cellulosic biomass ethanol yield is highly dependent on the cellulose conversion rate 

during enzymatic hydrolysis [6]. Extensive research has been conducted to enhance the 

digestibility of cellulosic biomass in order to increase the enzymatic hydrolysis sugar yield 

[7,8]. Cellulosic biomass consists of mainly three different polymers, namely cellulose, 

hemicelluloses, and lignin. Cellulose is trapped in the shield formed by lignin and 

hemicelluloses [7,9,10]. 

 

The size of particles produced after biomass size reduction (referred as particle size in 

the following content) is an important input parameter affecting enzymatic hydrolysis sugar 

yield [11,12]. The literature contains many studies investigating the relationship between 

particle size and sugar yield. However, the reported relationships are inconsistent. As 

shown in Table 1, many publications reported that smaller biomass particles had higher 

enzymatic hydrolysis sugar yield than larger biomass particles. However, there are also 

publications that did not support such a relationship. 

 

It was found that two different sugar yield definitions were used in the related 

publications. One definition is cellulose-based sugar yield, and calculated as the percentage 

of cellulose in biomass converted to fermentable sugar (glucose) by enzymatic hydrolysis. 
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The other definition is biomass-based sugar yield, and calculated as the ratio of the glucose 

produced by enzymatic hydrolysis to the initial dry weight of the biomass. In this paper, 

these two definitions are so called for the purpose of easy comparison and discussion. 

These concepts might be called differently elsewhere.  

 

It is interesting to note that, when cellulose-based sugar yield definition was used, all 

(except one) publications reported the relationship that smaller biomass particles had a 

higher sugar yield. In the three publications that did not support such a relationship [19-21], 

biomass-based sugar yield definition was used. Furthermore, the literature does not contain 

any reports on the effects of sugar yield definition on the relationship between biomass 

particle size and enzymatic hydrolysis sugar yield. 

 

This paper presents a consistency mapping to show under what conditions the 

relationships are consistent (or inconsistent) when these two definitions are used. The 

application of this mapping is then illustrated via an experimental study with poplar wood 

biomass the relationship between biomass particle size and enzymatic hydrolysis sugar 

yield using both sugar yield definitions. The application of this mapping is also illustrated 

via data reported in the literature. 
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2. Development of the consistency mapping 

2.1. Two sugar yield definitions 

2.1.1. Cellulose-based sugar yield 

Cellulose-based sugar yield was used to evaluate the efficiency of enzymatic 

hydrolysis. It is expressed in terms of the percentage of cellulose converted to fermentable 

sugar (glucose), and calculated by the following equation: 

             
%

Cm.

Vc

b

100
111

(%) yieldsugar  based-Cellulose 



             (1) 

where c is the concentration (g/L) of glucose in the hydrolysis slurry, V (L) is the total 

volume of the slurry, m (g) is the dry weight of the biomass loaded into the hydrolysis flask, 

and Cb (%) is the cellulose content in the biomass before hydrolysis. The factor 1.11 is the 

cellulose-to-glucose conversion factor, which reflects the weight gained in converting 

cellulose to glucose in hydrolysis. 

2.1.2. Biomass-based sugar yield 

Biomass-based sugar yield evaluates the glucose yield (g) per unit dry weight of 

biomass loaded into the hydrolysis process. It is calculated by the following equation: 

       
m

Vc
biomass)dry  glucose/g (g yieldsugar  based-Biomass          (2) 

where c is the concentration (g/L) of glucose in the hydrolysis slurry, V (L) is the total 

volume of the slurry, and m (g) is the dry weight of the biomass loaded into the hydrolysis 
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process. 

2.2. Derivation of the consistency mapping 

The formulae for sugar yield calculation using the abovementioned two definitions 

involve two variables. One is glucose concentration c (g/L) in two samples under 

comparison after hydrolysis (c1 and c2), and the other is cellulose content Cb (%) in the two 

samples before hydrolysis (Cb1 and Cb2). To simplify the derivation, the sample with a 

higher glucose concentration is subscripted as “1”.  

 

Whether the relationships between particle size and sugar yield using the two sugar 

yield definitions are consistent or not is determined by the relative values of x and y. Where, 

“x” is the difference in glucose concentration, and calculated as 

0%,100]/)[( 221  xcccx , and “y” is the difference in cellulose content, and calculated 

as 1%,100]/)[( 221  yCCCy bbb . The statement that the relationships using these 

two definitions are consistent is equivalent to the following inequality: 
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Inequality (6) is reduced to 
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Because x > 0, 1 + y > 0, and others are positive constants, the solution to the inequality is 

x > y. To summarize, if x > y, the relationships are consistent; on the other hand, if x ≤ y, the 

relationships are inconsistent. The above derivation is based on the scenario that x > 0. In 

the special scenario that x = 0, it is easy to find out that if y = 0, the relationships are 

consistent; if y ≠ 0, the relationships are inconsistent. 

 

A consistency mapping (x > 0), as shown in Fig. 1, is developed to show under what 

conditions the relationships between particle size and sugar yield using these two sugar 

yield definitions are consistent (or inconsistent). 

3. Experimental study to illustrate the application of the 

mapping 

3.1. Material and methods 

3.1.1. Material 

Poplar wood chips were purchased from Petco Animal Supplies, Inc. (Manhattan, KS, 

USA). The moisture content of the wood chips was 7.1%. The wood chips were placed in 

sealed Ziploc bags and stored at room temperature before size reduction by mills. Table 2 
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lists the chemical composition of the wood chips. 

3.1.2. Biomass size reduction 

Two types of mills were used for size reduction of poplar wood chips: a knife mill 

(Model SM 2000, Retsch, GmbH, Haan, Germany) and a hammer mill (Model No. 5, 

Meadows Mills, Inc., North Wilkesboro, NC, USA). Sieves of two sieve sizes (with 

openings of 1 and 4 mm on the sieves) were used in both mills to produce poplar biomass 

particles with two levels (− and +) of particle size. Wood chips remained in the milling 

chamber until they were small enough to pass through the openings on the sieve. After 

milling, particles were collected and kept in sealed Ziploc bags and stored in a refrigerator 

at 4°C until further processing. Table 3 lists the experimental conditions in biomass size 

reduction. 

3.1.3. Biomass extraction 

The purpose of biomass extraction is to remove extractives from wood particles 

produced by mills because these extractives could potentially interfere with subsequent 

analysis. The two-step extraction process was conducted by following National Renewable 

Energy Laboratory procedure (NREL/TP-510-42619) [22]. In the first step, distilled water 

was used (for 24 h) to remove water-soluble extractives. In the second step, ethyl alcohol 

(190 proof) was used (for 24 h) to remove alcohol-soluble extractives. After biomass 

extraction, wood particles were dried in an oven at 40°C for 24 h and stored in individual 
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self-seal sample bags.  

3.1.4. Biomass pretreatment 

Dilute sulfuric acid pretreatment was employed in this study. Ten grams of 

extractive-free biomass particles and 200 mL of 2% (w/v) sulfuric acid were loaded in the 

600-mL vessel of a Parr pressure reactor (Model 4760A, Parr Instrument Co., Moline, IL, 

USA), and treated at 140°C for 30 min.  

 

The pretreated biomass particles were washed with hot distilled water using a 

centrifugal (Model Marathon 2100, Thermo International Equipment Co., Needham, MA, 

USA) to remove dissolved sugars, acid residues, and inhibitors (substances that would 

decrease enzymes’ ability to depolymerize cellulose to glucose [23]) formed during 

pretreatment. The rotation speed of the centrifugal was 4,000 rpm. Each biomass sample 

was washed three times, and each time lasted for 15 min. The solid biomass after 

centrifugal was carefully collected. For each test condition, a small portion of the collected 

solid biomass was used for chemical composition analysis, and the rest was used for 

subsequent enzymatic hydrolysis. 

3.1.5. Enzymatic hydrolysis 

Enzymatic hydrolysis was carried out in eight 125-mL flasks in a water bath shaker 

(Model C76, New Brunswick Scientific, Edison, NJ, USA) with agitation speed of 110 rpm 
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at 50°C for 48 h. There were two flasks containing biomass particles collected under each 

of the four size reduction conditions. Each flask contained 50 mL of hydrolysis slurry. The 

slurry consisted of 5% (w/v) biomass on dry weight base, sodium acetate buffer (50 mM, 

pH = 4.8), and 0.02% (w/v) sodium azide to prevent microbial growth during hydrolysis. 

Accellerase 1500TM enzyme complex (Danisco USA, Inc., Rochester, NY, USA) was used. 

The enzyme loaded was 1 mL for each gram of dry biomass. 

 

After hydrolysis for 48 h, 0.1 mL of the hydrolysis slurry was withdrawn from each 

flask, and mixed with 0.9 mL of double distilled water in a 1.5-mL micro-centrifuge tube. 

The caped tubes were placed into boiling water for 15 min to deactivate the enzyme. 

Afterwards, the tubes were centrifuged at 10,000 rpm for 15 min to separate supernatant 

liquid from solid biomass residues using a micro-centrifuge (Model RS-102, Revolutionary 

Science, Shafer, MN, USA). Supernatant liquid from each tube was filtered through a 

0.2-μm hydrophilic PTFE syringe filter (EMD Millipore, Billerica, MA, USA). Filtered 

supernatant liquid was kept in 1.5-mL autosampler vials at 4°C in a refrigerator before 

sugar concentration measurement. 

3.2. Measurement procedures 

3.2.1. Moisture content and dry weight 

Biomass moisture content was measured by following National Renewable Energy 
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Laboratory procedure (NREL/TP-510-42621) [24]. About 2.5 g of biomass was placed in 

an aluminum weighing dish and dried in an oven at 105°C for 24 h. The loss in weight of 

the biomass after oven drying was recorded. Moisture content was calculated as follows:  

     100%
drying before biomass ofWeight 

in weight Loss
 (%) )(content  Moisture MC         (6) 

Knowing the moisture content, dry weight could be calculated as follows: 

         moisture with biomass ofweight MC)(1 (g) Dry weight             (7) 

Biomass weight reported in this study is dry weight. 

3.2.2. Chemical composition 

The chemical composition of biomass (wood chips before size reduction or biomass 

particles collected after pretreatment) was measured by following the National Renewable 

Energy Laboratory procedure (NREL/TP-510-42618) [25]. Two duplications for each test 

condition were employed. Structural carbohydrates in biomass were reported as the 

percentages of cellulose and hemicellulose. Lignin, the major non-carbohydrate component, 

was reported as the percentage of the sum of acid-insoluble and acid-soluble lignin. The 

percentage of ash content was also reported. 

3.2.3. Sugar concentration 

Sugar concentration was measured using high performance liquid chromatography 

(HPLC). The HPLC (Shimadzu, Kyoto, Japan) system was equipped with an 

RPM-monosaccharide column (300 × 7.8 mm; Phenomenex, Torrence, CA, USA) and a 
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refractive index detector (RID-10A, Shimadzu, Kyoto, Japan). The mobile phase was 0.6 

mL/min of degassed double-distilled water, and the column oven temperature was 80°C. 

3.3 Experimental results 

3.3.1. Cellulose-based sugar yield 

In order to calculate cellulose-based sugar yield, the content of cellulose in biomass 

samples before hydrolysis were acquired through chemical composition analysis and are 

listed in Table 4 together with other chemical components. It can be seen that cellulose 

contents for the two particle size levels are approximately the same. 

 

The relationship between particle size and cellulose-based sugar yield is shown in Fig. 

2. Smaller biomass particles had a higher sugar yield than larger particles, for both knife 

milling and hammer milling methods. This can be interpreted as that cellulose in smaller 

biomass particles were more efficiently hydrolyzed into glucose by enzymes in hydrolysis. 

 

Mooney et al. [13] hydrolyzed Douglas fir woody biomass of two particle size levels. 

Their results showed that cellulose-based sugar yield of smaller particles was 24% higher 

than that of larger particles after 72-h hydrolysis (Fig. 3). The same trend was also reported 

by Zhu et al. [17] using a shorter hydrolysis time (12 h) to convert spruce woody biomass 

of four particle size levels (Fig. 4). This trend was also reported for herbaceous biomass. As 
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an example, Zeng et al. [15] milled corn stover and separated milled particles into two 

particle size levels. They found that when using cellulose-based sugar yield definition, 

smaller particles produced higher yield (Fig. 5). 

3.3.2. Biomass-based sugar yield  

Figure 6 shows the relationship between particle size and biomass-based sugar yield. 

For both knife milling and hammer milling methods, smaller biomass particles have a 

higher sugar yield than larger biomass particles. Dasari and Benson [16] reported a similar 

trend for red-oak (Fig. 7). Smaller particles had a higher sugar yield than larger particles. 

 

Not all related publications support this relationship. Zhang et al. [21] found that larger 

wheat straw particles milled using a 2-mm sieve had higher cellulose-based sugar yield 

than smaller particles milled using a 1-mm sieve (Fig. 8). It is noted that, in this work, 

before pretreatment, a pelleting process was employed to agglomerate milled biomass 

particles into pellets. Kaar and Holtzapple [20] found that cellulose-based sugar yield of 

smaller corn stover particles was lower than that of larger particles (Fig. 9). Chang et al. [19] 

found that, though switchgrass particles with particle size of 0.40-0.84 mm had 18% higher 

cellulose-based sugar yield than particles with particle size of 0.84-2 mm, reducing particle 

size below 0.4 mm did not increase sugar yield (Fig. 10). 
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4. Application of the consistency mapping 

4.1. Illustration using data from the experimental study 

In the present experimental study, the required values to apply the consistency mapping 

are calculated as x = 6.84% and y = 0.24% for the small and large particles produced by 

knife milling; x = 12.37% and y = 1.40% for the small and large particles produced by 

hammer milling (values were calculated using the means of the two duplicated tests). Since 

x > y, the relationships between particle size and sugar yield using the two sugar yield 

definitions are consistent. 

4.2. Illustration using data from study reported in the literature 

Applications of the consistency mapping can also be illustrated using the data 

published in the literature. A study conducted by Ballesteros et al. [26] was employed as an 

example. The authors studied the sugar yield of softwood biomass of two levels of particle 

size. The reported sugar yield was cellulose-based. From the data listed in Table 5, the 

values needed to apply the consistency mapping are calculated as x = 6.16% and y = 

12.79%. Since x < y, the relationships between particle size and sugar yield using two sugar 

yield definitions are inconsistent. 
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5. Conclusions 

This paper develops a consistency mapping for the effects on enzymatic hydrolysis 

sugar yield using two sugar yield definitions. The application of this mapping is illustrated 

via an experimental study with poplar wood biomass on the relationship between biomass 

particle size and enzymatic hydrolysis sugar yield. Under the experimental conditions in 

this study, smaller particles had a higher sugar yield. This relationship remained consistent 

using both sugar yield definitions. This mapping is not limited to investigations on the 

relationship between particle size and sugar yield. It is applicable to studying relationships 

between a variety of parameters (such as biomass type, pretreatment condition, etc.) and 

sugar yield. 
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Figure caption 

Fig. 1 Consistency mapping 

Fig. 2 Relationship between particle size and cellulose-based sugar yield in this study 

Fig. 3 Relationship between particle size and cellulose-based sugar yield reported by 
Mooney et al. [13] 

Fig. 4 Relationship between particle size and cellulose-based sugar yield reported by Zhu et 
al. [17] 

Fig. 5 Relationship between particle size and cellulose-based sugar yield reported by Zeng 
et al. [15] 

Fig. 6 Relationship between particle size and biomass-based sugar yield in this study 

Fig. 7 Relationship between particle size and biomass-based sugar yield reported by Dasari 
and Benson [16] 

Fig. 8 Relationship between particle size and biomass-based sugar yield reported by Zhang 
et al. [21] 

Fig. 9 Relationship between particle size and biomass-based sugar yield reported by Kaar 
and Holtzapple [20] 

Fig. 10 Relationship between particle size and biomass-based sugar yield reported by Chang 
et al. [19] 
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Fig. 2  
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Fig. 5 
 

 

Fig. 6 
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Fig. 7 
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Fig. 9 
 

 

Fig. 10 
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Tables 

Table 1 Reported relationship between particle size and sugar yield 

Biomass 
material 

Smaller particles 
produced higher 

sugar yield 

Sugar yield 
definition 

Reference 

Douglas fir Yes Cellulose based [13] 
Douglas fir Yes Cellulose based [14] 
Corn stover Yes Cellulose based [15] 

Red oak Yes Biomass based [16] 
Spruce wood Yes Cellulose based [17] 

Lodgepole pine Yes Cellulose based [18] 
Switchgrass No Biomass based [19] 
Corn stover No Biomass based [20] 
Wheat straw No Biomass based [21] 
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Table 2 Chemical composition of poplar wood chips 
Component Percentage on dry weight basis 
Cellulose 41.1 ± 0.4 

Hemicellulose 22.9 ± 0.3 
Lignin 24.0 ± 0.7 

Ash 2.9 ± 0.1 

  



28 
 

Table 3 Particle size levels and size reduction conditions 
Condition No. Particle size level Mill type Sieve size (mm) 

1 − Knife 1 
2 + Knife 4 
3 − Hammer 1 
4 + Hammer 4 
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Table 4 Chemical composition (percentage on dry weight basis) for biomass particles 
before hydrolysis 

Condition 
No. 

Particle 
size level 

Mill 
type 

Cellulose Hemicellulose Lignin Ash 

1 − Knife 62.9 ± 1.1 4.2 ± 0.1 30.7 ± 0.2 1.6 ± 0.1 
2 + Knife 62.8 ± 0.1 4.5 ± 0.1 31.0 ± 0.2 1.6 ± 0.2 
3 − Hammer 64.1 ± 0.1 4.6 ± 0.1 29.3 ± 0.1 1.6 ± 0.1 
4 + Hammer 63.2 ± 0.7 4.4 ± 0.1 31.9 ± 0.7 1.3 ± 0.1 
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Table 5 Data reported by Ballesteros et al. [26] 
 Small particle size Large particle size 

Particle size level (mm) 2-5 5-8 
Cellulose-based sugar yield (%) 36 34 

Biomass-based sugar yield (g glucose/g dry 
biomass)a 

0.14 0.15 

Sugar concentration (g/L)a 2.76 2.93 
Cellulose content (%) 34.4 38.8 

aData obtained through calculation based on data provided by Ballesteros et al. [26] 
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