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Abstract

We study the obstacle problem with an elliptic operator in nondivergence form with principal

coefficients in VMO. We develop all of the basic theory of existence, uniqueness, optimal

regularity, and nondegeneracy of the solutions. These results, in turn, allow us to begin

the study of the regularity of the free boundary, and we show existence of blowup limits, a

basic measure stability result, and a measure-theoretic version of the Caffarelli alternative

proven in Caffarelli’s 1977 paper “The regularity of free boundaries in higher dimensions.”3

Finally, we show that blowup limits are in general not unique at free boundary points.
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Chapter 1

Introduction

In this chapter we give the physical motivation for the obstacle problem, and then we

describe the obstacle problem for second order elliptic operators in nondivergence form.

1.1 Original Physical Motivation

What happens when we pull an elastic membrane down over an obstacle?

Obstacle

Membrane
Contact Set

To formulate what is happening mathematically:

Assume the membrane is given by the graph

u : B1 ⊂ IRn −→ IR, u ≡ 0 on ∂B1, and ϕ : B1 ⊂ IRn −→ IR, ϕ < 0 on ∂B1.
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We want to find a function u (the “membrane”) which minimizes the Area integral:

I1(u) :=

∫
B1

√
1 + |∇u|2 among u satisfying :

• u = 0 on ∂B1 (i.e. the membrane is “pinned down”) and

• u ≥ ϕ in B1 (i.e. the membrane is above the obstacle).

From the calculus of variations, it easily follows that functions which minimize I1 in a neigh-

borhood among functions with fixed boundary data satisfy the minimal surface equation.

Observe that for a small deflection of the membrane, |∇u|2 is the first important term in

the Taylor expansion of
√

1 + |∇u|2. (i.e.
√

1 + x ≈ 1 + 1
2
x, for x small.) Thus, we want to

find a function u which minimizes

I2(u) :=

∫
B1

|∇u|2 i.e. Energy - The Dirichlet Integral

among u satisfying:

• u = 0 on ∂B1 (i.e. the membrane is “pinned down”) and

• u ≥ ϕ in B1 (i.e. the membrane is above the obstacle).

It is easy to show that functions which locally minimize I2 satisfy Laplace’s equation. Lin-

earizing the Area integral is very standard in the study of the obstacle problem. Mainly

because it adds technical simplification- it changes the operator from nonlinear to linear-

without altering the real difficulties of the problem.

Therefore, the obstacle problem involves finding a function u which solves the problem:

Minimize

∫
B1

|∇u|2 dx among all functions u ∈ Kϕ,

where we define Kϕ to be the closed convex set:

Kϕ := {u ∈ W 1,2
0 (B1), u ≥ ϕ}
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For the definition of the Banach spaces W k,p and W k,p
0 see chapter 1.2.

If we define the “height function” w := u− ϕ, and we let f := −∆ϕ, then w satisfies:

∆w = χ{w>0}f .

Since the problem above is variational, there is no difficulty in establishing existence and

uniqueness of solutions. Regularity of the solution has been studied by many authors, and

in the case where ϕ is smooth, Frehse showed in 1972 that the solutions would belong to

C1,1. Finally in Caffarelli’s famous Acta paper in 1977, the regularity of the free boundary

was addressed in the case where f was Hölder continuous and positive.

Since the obstacle problem was formulated, but especially in the last 15 years, there has been

interest in extending some of these results to related problems. Ki-Ahm Lee studied the

case where the Laplacian is replaced with a fully nonlinear (but smooth) operator. Blank

studied the case where the function f was not assumed to be Hölder continuous. Many

people (Blanchet, Caffarelli, Dolbeault, Monneau, Petrosyan, Shahgholian, Weiss, ...) have

recently studied the case where the Laplacian is replaced with the Heat Operator.

Here we study the case where the Laplacian is replaced with a general second order elliptic

operator in nondivergence form.

1.2 Elliptic Operators in Nondivergence Form

We study strong solutions of the obstacle-type problem:

Lw := aijDijw = χ{w>0} in B1 , (1.1)

where we look for w ≥ 0. (We use Einstein summation notation throughout this disserta-

tion.) A strong solution to a second order partial differential equation is a twice weakly

differentiable function which satisfies the equation almost everywhere. (See chapter 9 of9.)
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We will assume that the matrix A = (aij) is symmetric and strictly and uniformly elliptic,

i.e.

A ≡ AT and 0 < λI ≤ A ≤ ΛI , (1.2)

or, in coordinates:

aij ≡ aji and 0 < λ|ξ|2 ≤ aijξiξj ≤ Λ|ξ|2 for all ξ ∈ IRn, ξ 6= 0 .

Our motivations for studying this type of problem are primarily theoretical, although as

observed in12 the mathematical modeling of numerous physical and engineering phenomena

can lead to elliptic problems with discontinuous coefficients. Although we do not want (or

even need) any further assumptions for many of our results about the regularity of solutions

to our obstacle problem, it turns out that the question of existence of solutions will require us

to assume some regularity of our aij. In fact, there is an important example due to C. Pucci

(found in14) which shows that the strict uniform ellipticity of the aij (i.e. Equation (1.2) )

is in general not even enough to guarantee the existence of a solution to the corresponding

partial differential equation. On the other hand, the space of vanishing mean oscillation

(VMO) turns out to be a suitable setting for existence results and a priori estimates as was

shown in papers by Chiarenza, Frasca, and Longo (see7 and8), and it will also turn out to

be an appropriate setting for getting some initial results about the regularity of the free

boundary. It is worth noting that there are results due to Meyers which require a little

bit less smoothness of the coefficients if one is content to work in Lp spaces with p close

to 2 (see13), but in this case, one cannot use the Sobolev embedding to get continuity of a

first derivative except in dimension two. In any case, we will assume that the aij belong to

VMO when proving existence, and again when we turn to study the regularity of the free

boundary.

After showing existence of nontrivial solutions when the aij belong to VMO, we turn to

some of the basic questions in the introductory theory of the obstacle problem. Namely, we

follow Caffarelli’s treatment (see6 and1), and show nondegeneracy and optimal regularity
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of the solutions. Once we have these tools, it becomes time to turn to a study of the free

boundary regularity. We begin with some useful approximation results and an important

measure stability theorem, and from there we establish a number of standard theorems

about free boundary regularity.

We will use the following basic notation throughout this dissertation:

χ
D

the chacteristic function of the set D

D the closure of the set D
∂D the boundary of the set D
x (x1, x2, . . . , xn)
x′ (x1, x2, . . . , xn−1, 0)
Br(x) the open ball with radius r centered at the point x
Br Br(0)

For Sobolev spaces and Hölder spaces, we will follow the conventions found within Gilbarg

and Trudinger’s book. In particular for 1 ≤ p ≤ ∞, W k,p(Ω) will denote the Banach

space of functions which are k times weakly differentiable, and whose derivatives of order

k and below belong to Lp(Ω), and for 0 < α ≤ 1, Ck,α(Ω) will denote the Banach space

of functions which are k times differentiable on Ω and whose kth derivatives are uniformly

α-Hölder continuous. (See9 for more details.)

When we are studying free boundary regularity, we will frequently assume

0 ∈ ∂{w > 0} . (1.3)

We will make use of the following terminology. We define:

Ω(w) := {w > 0},
Λ(w) := {w = 0}, and
FB(w) := ∂Ω(w) ∩ ∂Λ(w) .

(1.4)

We will omit the dependence on w when it is clear. Note also that “Λ” and “∆” each have

double duty and it is necessary to interpret them based on their context. We use “Λ” for

both the zero set and for one of the constants of ellipticity, and we use “∆” for the both the

Laplacian of a function and for the symmetric difference of two sets in IRn. (If A,B ⊂ IRn,

then A∆B := {A \B} ∪ {B \ A}.)
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We will also be using the BMO and the VMO spaces frequently, and we gather the

relevent definitions here. (See12.) For an integrable function f on a set S ⊂ IRn we will let

fS :=

∫
S

f .

1.2.1 Definition (BMO and BMO norm). If f ∈ L1
loc(IR

n), and

||f ||∗ := sup
B

1

|B|

∫
B

|f(x)− fB| dx (1.5)

is finite, then f is in the space of bounded mean oscillation, or “f ∈ BMO(IRn).” We will

take || · ||∗ as our BMO norm.

1.2.2 Definition (VMO and VMO-modulus). Next, for f ∈ BMO, we define

ηf (r) := sup
ρ≤r, y∈IRn

1

|Bρ|

∫
Bρ(y)

|f(x)− f
Bρ(y)
| dx , (1.6)

and if ηf (r) → 0 as r → 0, then we say that f belongs to the space of vanishing mean

oscillation, or “f ∈ VMO.” ηf (r) is referred to as the VMO-modulus of the function f.

Since we will need it later, it seems worthwhile to collect some of Caffarelli’s results here

for the convenience of the reader. These results can be found in3 and6. We start with a

definition which will allow us to measure the “flatness” of a set.

1.2.3 Definition (Minimum Diameter). Given a set S ∈ IRn, we define the minimum

diameter of S (or m.d.(S) ) to be the infimum among the distances between pairs of parallel

hyperplanes enclosing S.

1.2.4 Theorem (Caffarelli’s Alternative). Assume γ is a positive number, w ≥ 0, and

∆w = γχ{w>0} in B1 and 0 ∈ FB(w) .

There exists a modulus of continuity σ(ρ) depending only on n such that either

a. 0 is a Singular Point of FB(w) in which case

m.d.(Λ ∩Bρ) ≤ ρ σ(ρ) , for all ρ ≤ 1 , or
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b. 0 is a Regular Point of FB(w) in which case

there exists a ρ0 such that m.d.(Λ∩Bρ0) ≥ ρ0 σ(ρ0), and for all ρ < ρ0, m.d.(Λ∩Bρ) ≥

Cρ σ(ρ0) .

Furthermore, in the case that 0 is regular, there exists a ρ1 such that for any x ∈ Bρ1∩∂Ω(w),

and any ρ < 2ρ1, we have

m.d.(Λ ∩Bρ(x)) ≥ Cρσ(2ρ1). (1.7)

So the set of regular points is an open subset of the free boundary, and at any singular point

the zero set must become “cusp-like.” Examples of solutions with singular points exist and

can be found in11, and in6 Caffarelli has shown that these singular points must lie in a C1

manifold.

1.2.5 Theorem (Behavior Near a Regular Point). Suppose that w satisfies the assumptions

of the Theorem (1.2.4) but with the domain B1 replaced with the domain BM , and suppose

0 is a regular point of FB(w).

Given ρ > 0 , there exists an ε = ε(ρ) and an M = M(ρ), such that if m.d.(Λ(w)∩B1) >

2nρ, then in an appropriate system of coordinates the following are satisfied for any x such

that |x′| < ρ/16 and −1 < xn < 1, and for any unit vector τ with τn > 0 and ||τ ′|| ≤ ρ/16 :

a. Dτw ≥ 0 .

b. All level surfaces {w = c}, c > 0, are Lipschitz graphs:

xn = f(x′, c) with ||f ||
Lip
≤ C(n)

ρ
.

c. Denw(x) ≥ C(ρ)d(x,Λ) .

d. For ||τ ′|| ≤ ρ/32, Dτw ≥ C(ρ)d(x,Λ) .

1.2.6 Theorem (C1,α Regularity of Regular Points). Suppose that w satisfies the assump-

tions of Theorem (1.2.5) but in B1 again, and suppose 0 is a regular point of FB(w). There
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exists a universal modulus of continuity σ(ρ) such that if for one value of ρ, say ρ0, we have

m.d.(Λ ∩Bρ0) > ρ0σ(ρ0),

then in a ρ2
0 neighborhood of the origin, the free boundary is a C1,α surface xn = f(x′) with

||f ||
C1,α ≤

C(n)

ρ0

. (1.8)

1.2.7 Remark. Note that by the last theorem, the C1,α norm of the free boundary will

decay in a universal way at any regular point under the standard quadratic rescaling if we

are allowed to rotate the coordinates.

Finally, there are two results due to Chiarenza, Frasca, and Longo which will be of

fundamental importance throughout this work, so we will state them here. These results

can be found in7 and8.

1.2.8 Theorem (Interior Regularity (Taken from Theorem 4.2 of7)). Let D ⊂ IRn be open,

let p ∈ (1,∞), assume aij ∈ VMO(D) and satisfies Equation (1.2), and let

Lu := aijDiju

for all x ∈ D. Assume finally that D′′ ⊂⊂ D′ ⊂⊂ D. Then there exists a constant C such

that

||u||W 2,p(D′′) ≤ C(||u||Lp(D′) + ||Lu||Lp(D′)) . (1.9)

The constant C depends on n, λ,Λ, p, dist(∂D′′, D′), and quantities which depend only on

the aij. (In particular, C depends on the VMO-modulus of the aij.)

1.2.9 Theorem (Boundary Regularity (Taken from Theorem 4.2 of8)). Let p ∈ (1,∞) and

assume that u ∈ W 2,p(B1) ∩W 1,p
0 (B1). Then there exists a constant C such that

||u||W 2,p(B1) ≤ C(||u||Lp(B1) + ||Lu||Lp(B1)) . (1.10)

The constant C depends on n, λ,Λ, p, and quantities which depend only on the aij.
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1.2.10 Remark (C1,1 domains are good enough). We wrote the last result with balls

because we will not apply it on any other type of set, but in8, they prove the result for

arbitrary bounded C1,1 domains. Of course for a C1,1 domain, the constant C will have

dependance on the regularity of the boundary.

1.2.11 Corollary (Boundary Regularity II). Let p ∈ (1,∞) and assume that u, ψ ∈

W 2,p(B1), and u− ψ ∈ W 1,p
0 (B1). Then there exists a constant C such that

||u||W 2,p(B1) ≤ C(||u||Lp(B1) + ||Lu||Lp(B1) + ||ψ||W 2,p(B1)) . (1.11)

The constant C depends on n, λ,Λ, p, and quantities which depend only on the aij.
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Chapter 2

Existence Theory when aij ∈ VMO

We assume

aij ∈ VMO. (2.1)

With this assumption coupled with our assumption given in Equation (1.2) we hope to

show the existence of a nonnegative solution to Equation (1.1) with nonnegative continuous

Dirichlet data, ψ, given on ∂B1. In order to ease our exposition later, we will assume that

we have extended ψ to be a nonnegative continuous function onto all of B2.

Next, let φ(x) denote a standard mollifier with support in B1, and set φε(x) := ε−nφ(x/ε).

In order to approximate the Heaviside function, we let Φε(t) be a function which satisfies

1. 0 ≤ Φε(t) ≤ 1, ∀t ∈ IR.
2. Φε(t) ≡ 0 if t ≤ 0.
3. Φε(t) ≡ 1 if t ≥ ε.
4. Φε(t) is monotone nondecreasing.
5. Φε ∈ C∞.

(2.2)

We define aijε := aij ∗φε, we define ψε := ψ ∗φε, and finally, we let wε denote the solution to

the problem
aijε (x)Diju(x) = Φε(u(x)) in B1

u(x) = ψε(x) on ∂B1 .
(2.3)

2.0.12 Lemma (Existence of a Solution to the Semilinear PDE). The boundary value

problem (2.3) has a nonnegative solution in C∞(B1).

Proof. We will show that the solution, wε, exists by a fairly standard method of continuity

argument below. Using the weak maximum principle it also follows that wε ≥ 0. By Schauder
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theory it follows that any C2,α solution is automatically C∞, so it will suffice to get a C2,α

solution.

We let S be the set of t ∈ [0, 1] such that the following problem is solvable in C2,α(B1) :

aijε (x)Diju(x) = tΦε(u(x)) in B1

u(x) = ψε(x) on ∂B1 .
(2.4)

Equation (2.4) is solvable for t = 0 by Schauder Theory. (See chapter 6 of9.) Thus, S is

nonempty.

Claim 1: S as a subset of [0, 1] is open.

Proof. We define Lt(u) as a map from the Banach space C2,α(B1) to the Banach space Y

which we define as the direct sum Cα(B1) ⊕ C2,α(∂B1) . (The new norm can be taken as

the square root of the sums of the squares of the individual norms.) Our precise definition

of Lt(u) is then

Lt(u) := ( aijε Diju− tΦε(u) , u ) .

Doing calculus in Banach space one can verify that, [DLt(u)]v is equal to

( aijε Dijv − tΦ′ε(u)v , v ) ,

and since Φε(t) is monotone nondecreasing and smooth we know that the first component

of this expression has the form:

aijε (x)Dijv(x)− tc(x)v(x) and c(x) ≥ 0 ∀x .

By Schauder theory again (see chapter 6 of9) the problem

aijε Dijv − tcv = f in B1

v = g on ∂B1 .
(2.5)

has a unique solution for any pair (f, g) ∈ Y which satisfies the usual a priori estimates.

In other words

[DLt(u)]−1 : Y → C2,α(B1) is a bounded 1-1 map.

11



Therefore, by the infinite dimensional implicit function theorem in Banach spaces, S is open.

Claim 2: S is closed.

Proof. This step is accomplished using a priori estimates. We know that 0 ≤ tΦε(u(x)) ≤ 1.

So we have ||aijε (x)Diju(x)||L∞(B1) ≤ 1, and so for any p we have (see Chapter 9 of9),

||u||W 2,p(B1) ≤ C
(
1 + ||ψε||C0(∂B1)

)
≤ C.

By the Sobolev embedding,

||u||
C1,α(B1)

≤ C||u||W 2,p(B1) ≤ C, and so ||tΦε(u)||
C1,α(B1)

≤ C.

Consequently, by Schauder theory again, u ∈ C3,α and ||u||
C3,α(B1)

≤ C. Now by Arzela-

Ascoli, if tk ⊂ S with tk → t∞ ∈ [0, 1], then the corresponding solutions utk must converge

uniformly together with their 1st and 2nd derivatives to a C3,α function. This function must

then solve the t∞ problem as the left hand sides and right hand sides of the equations in

(2.4) are converging uniformly. Thus, S is closed, and hence S must be the entire set, [0, 1].

2.0.13 Theorem (Existence of a Solution to the Free Boundary Problem). Assume Equa-

tion ( 1.2) holds, assume that aij ∈ VMO, and assume that ψ is nonnegative, continu-

ous, and belongs to W 2,p(B1) for all p ∈ (1,∞). Then there exists a nonnegative function

w ∈ W 2,p(B1) which solves Equation (1.1) and satisfies w − ψ ∈ W 2,p(B1) ∩W 1,p
0 (B1) for

all p ∈ (1,∞). In other words, w satisfies:

aij(x)Dijw(x) = χ{w>0}(x) in B1

w(x) = ψ(x) on ∂B1 .
(2.6)

Proof. We let wε denote the solution to the problem (2.3), and we view the aijε as elements

of VMO, and observe that the VMO-moduli ηaijε ’s (see Equation (1.6) ) are all dominated by

the VMO-modulus of the corresponding aij. (This fact is alluded to in Remark 2.2 of7.) In

fact, we can verify that all of the dependencies on the aij of the constant within Corollary
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(1.2.11) remain under control as we send ε to zero. At this point we can invoke this theorem

to get a uniform bound on the W 2,p(B1) norm of all of the wε’s. Standard functional analysis

allows us to choose a subsequence εn ↓ 0, an α < 1, and a w ∈ W 2,p(B1) ∩ C1,α(B1) such

that wεn converges to w strongly in C1,α(B1) and weakly in W 2,p(B1). It remains to show

that w satisfies Equation (2.6) .

The fact that w(x) = ψ(x) on ∂B1 follows immediately from the uniform convergence of

the wεn . Next we need to show that the PDE is satisfied almost everywhere. Everywhere that

w(x) > 0 it follows easily by the uniform convergence of the wεn that Φεn(wεn(x)) converges

to 1. To show that Φεn(wεn(x)) converges to 0 almost everywhere on the set Λ := {w = 0}

we assume the opposite in order to derive a contradiction. So, we can assume that there is

a new subsequence (still labeled with εn for convenience), such that

0 < γ ≤
∫

Λ

Φεn(wεn(x)) dx

for all n. Using this fact we have:

0 < γ

≤
∫

Λ

Φεn(wεn) dx

=

∫
Λ

aijεnDijwεn dx

=

∫
Λ

(aijεn − a
ij)Dijwεn dx+

∫
Λ

aij(Dijwεn −Dijw) dx+

∫
Λ

aijDijw dx

=: I + II + III.

Integral I converges to zero by using Hölder ’s inequality coupled with the strong conver-

gence of aijε to aij in all of the Lp spaces. Integral II converges to zero by using the weak

convergence in W 2,p of wεn to w. Finally, integral III is identically zero because the fact

that w ≡ 0 on Λ guarantees that D2w will be zero almost everywhere on Λ. Thus Φε(wε)

converges to χ{w>0} pointwise a.e., and as an immediate corollary to this statement, Φε(wε)

(and therefore also aijε Dijwε) converges weakly to χ{w>0} in Lp(B1) for any 1 < p <∞.
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Again, by Corollary (1.2.11), we know Dijwε is uniformly bounded in Lp, 1 < p <∞. In

particular,

||Dijwε||L3(B1) ≤ C .

Now let g be an arbitrary function in L3(B1), then:∫
B1

[
(aijε Dijwε)g − (aijDijw)g

]
dx

=

∫
B1

[
(aijε Dijwε)g − (aijDijwε)g

]
dx+

∫
B1

[
(aijDijwε)g − (aijDijw)g

]
dx

= I + II.

For any fixed i, j, we can apply the Hölder inequality to see that the function aijg is an

element of L3/2(B1), and then it follows that II → 0 from the fact that Dijwε convereges to

Dijw weakly in L3(B1). On the other hand

I ≤ ||Dijwε||L3(B1)||g||L3(B1)||aijε − aij||L3(B1) ≤ C||aijε − aij||L3(B1) → 0.

Hence, aijε Dijwε converges weakly to aijDijw in L3(B1). By uniqueness of weak limits, it

follows that aijDijw = χ{w>0} a.e.
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Chapter 3

Basic Results and Comparison
Theorems

In this chapter we will not need to make any assumptions about the regularity of the aij

besides the most basic ellipticity. In spite of our weak hypotheses, we will still be able to

show all of the basic regularity and nondegeneracy theorems that we would expect. The

fact that we do not need aij ∈ VMO for any result in this chapter will allow us to prove a

better measure stability theorem in the next chapter.

3.0.14 Theorem (Nondegeneracy). Let w solve (1.1) . If Br(x0) ⊂ B1 and x0 ∈ Ω, then

sup
x∈Br(x0)

w(x) ≥ Cr2 , (3.1)

with C = C(n,Λ).

Proof. By continuity we can assume that x0 ∈ Ω. Define Ωr := Br(x0) ∩ Ω, Γ1 :=

FB ∩Br(x0), and Γ2 := ∂Br(x0) ∩ Ω. Let γ := 1
2n
||aij||L∞(Ωr), and set

v(x) := w(x)− w(x0)− γ|x− x0|2 . (3.2)

15



Now for x ∈ Ωr we compute:

Lv = aijDijw − aijDij(γ|x− x0|2)

= 1− 2γaijδij

= 1− 2γ
∑

aii

≥ 1− 2nγ||aij||L∞(Ωr)

≥ 0 .

So now by observing that v(x0) = 0, by using the weak maximum principle of Aleksandrov

(see Theorem 9.1 of9), and by observing that v ≤ 0 on Γ1 we get

0 ≤ sup
Ωr

v

≤ sup
∂Ωr

v+

= sup
Γ2

v

= sup
Γ2

w − w(x0)− γr2

≤ sup
Br(x0)

w − w(x0)− γr2 .
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Now by rearranging terms and observing w(x0) ≥ 0 we are done.

3.0.15 Remark (Nontrivial Solutions). As a simple consequence of nondegeneracy, we can

take Dirichlet data on ∂B1 which is positive but small everywhere, to guarantee that we have

a solution to our problem which has a nontrivial zero set and a nontrivial free boundary.

(The origin must be in the zero set in this case.)

3.0.16 Theorem (Weak Comparison Principle). Let wk, k = 1, 2 solve (1.1) . If w1 ≤ w2

on ∂B1, then w1 ≤ w2 in B1.

Proof. Set v := w1 − w2, and suppose for the sake of obtaining a contradiction that

max
x∈B1

v(x) = v(x0) = m > 0 . (3.3)

Now we let

Sm := {x|v(x) = m} . (3.4)

Since v is a continuous function, there exists a number σ > 0, such that v ≥ m/2 on the

σ-neighborhood of Sm. We will denote this set by Smσ . Now if Smσ extends to the boundary

of the set B1, then we contradict the fact that v ≤ 0 on ∂B1, and thus,

Smσ ⊂⊂ B1, and v < m on ∂Smσ . (3.5)

Now on this set, since w2 ≥ 0, we must have that w1 ≥ m/2 > 0. Thus, we have

Lv = Lw1 − Lw2 = 1− Lw2 ≥ 0 in Smσ . (3.6)

By applying the ABP estimate (see9 Theorem 9.1) we can conclude that

m = max
x∈Smσ

v(x) ≤ max
x∈∂Smσ

v(x) , (3.7)

but this equation contradicts the fact that v < m on ∂Smσ .

Now we let w3 denote the solution to (1.1) with boundary data equal to w1 + ε. By

the first part of the proof, we can conclude that w2 ≤ w3 in B1. It remains to show that
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w3 ≤ w1 + ε. Suppose not. Then the function u := w3−w1− ε has a positive maximum, m,

at a point x1. Now after observing that w3(x) > 0 in a neighborhood of where u = m the

proof is identical to the proof of the first part.

3.0.17 Corollary (Uniqueness). Any solution to (1.1) with given values on ∂B1 is unique.

Proof. Let w1 and w2 be any two different solutions with fixed values on ∂B1. Then by

applying the weak comparison principle twice, we have w1 = w2.

3.0.18 Lemma (Bound on B1/2). If w ≥ 0 satisfies Equations (1.1) and (1.3) , then w(x) ≤

C(n, λ,Λ) in B1/2 .

Proof. Write w := w1 + w2, where

Lw1 = χ{w>0} in B1

w1 ≡ 0 on ∂B1 ,
(3.8)

and
Lw2 = 0 in B1

w2 = w on ∂B1 .
(3.9)

Then w1 ≤ 0 in B1 by the maximum principle. On the other hand, by the ABP estimate

(Theorem 9.19) we have, w1|B1
≥ −C. Also, by Corollary 9.259, along with the fact that

w1(0) + w2(0) = w(0) = 0 we have:

w2|B 1
2

≤ sup
B 1

2

w2 ≤ C inf
B 1

2

w2 ≤ Cw2(0) = −Cw1(0) ≤ C.

Hence w|
B 1

2

≤ C.

3.0.19 Theorem (Parabolic Bound). If w ≥ 0 satisfies (1.1) and (1.3), then

w(x) ≤ 4C(n, λ,Λ)|x|2 in B1/2,
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where the constant C(n, λ,Λ) is the exact same constant as the constant appearing in the

statement of the previous lemma.

Proof. Suppose not. Then, w(x̃) > 4C(n, λ,Λ)|x̃|2 for some x̃ ∈ B1/2, and since 0 ∈ FB,

we must have x̃ 6= 0. Now set λ := 2|x̃| so that if x := λ−1x̃, then we have x ∈ ∂B1/2. Define:

wλ(x) := λ−2w(λx) . (3.10)

Clearly wλ satisfies (1.1) and (1.3) in B1. So by the lemma above:

wλ(x) ≤ C(n, λ,Λ) in B1/2 . (3.11)

On the other hand,

λ2wλ(x) = w(λx) = w(x̃) > 4C(n, λ,Λ)|x̃|2 = C(n, λ,Λ)λ2,

and so

wλ(x) > C(n, λ,Λ) , (3.12)

which contradicts Equation (3.11) .
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Chapter 4

Approximation and Measure Stability

So far, except to prove our existence theorem, we have not made any assumptions about

our aij beyond ellipticity. In order to prove regularity theorems about the free boundary in

the next chapter, we will need to assume once again that the aij ∈ VMO. In this chapter,

on the other hand, we will not assume aij ∈ VMO, but many of our hypotheses anticipate

that assumption later. We start with a basic approximation result.

4.0.20 Lemma (First Approximation). Let w solve(1.1). Then there exist positive constants

γ ≤ 1 and C(q, n, λ,Λ) such that if(∫
B1

|aij(x)− δij|q dx
)1/q

≤ ε (4.1)

for some 0 < ε < 1 and q > n, then we may find a function h ∈ W 2,2(B3/4) with ∆h = 0 in

B3/4, and such that

||w − h||L∞(B1/2) ≤ C(εγ/4 + ||χ{w>0}||Ln(B3/4)) ≤ C(εγ/4 + 1) (4.2)

Proof. By the Hölder estimate for operators in general nondivergence form (see Corollary

9.24 in9)

||w||
Cγ(B3/4 )

≤ C. (4.3)

Let h solve
∆h = 0 in B3/4

h ≡ w on ∂B3/4 .
(4.4)
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Since h is harmonic and w ∈ Cγ(∂B3/4), by Lemma 1.35 of10 we have:

||h||
Cγ/2(B3/4 )

≤ C||w||Cγ(∂B3/4), (4.5)

where C = C(n, γ). Now, let ỹ ∈ ∂B( 3
4
−s) and let y be the closest point of ∂B3/4 to ỹ. Then,

since h|∂B3/4
= w,

|w(ỹ)− h(ỹ)| ≤ |w(ỹ)− w(y)|+ |h(y)− h(ỹ)| ≤ Csγ + Csγ/2 ≤ Csγ/2.

Thus,

||w − h||L∞(∂B(3/4−s)) ≤ Csγ/2 . (4.6)

Fix x̃ ∈ B(3/4−s) and define v(x) := h(x̃+sx)−h(x̃)

s(γ/2)
.

It follows from (4.3) and (4.5) that |v(x)| ≤ C, ∀|x| ≤ 1. Also, since v is harmonic, by

Proposition 1.13 of10:

|D2v(0)| ≤ C max|v| ≤ C in B(3/4−s) . (4.7)

Since D2v(x) = D2h(x̃+sx)

sγ/2−2 , we have:

|D2h(x̃)| = |D2v(0)|sγ/2−2 ≤ Csγ/2−2. (4.8)

Now since h is harmonic, for any x ∈ B3/4 :

L(w − h) = χ{w>0} + (δij − aij)Dijh. (4.9)

Thus, by using the ABP estimate (as in Lemma 1 of5), and then by using Equations (4.1),

(4.6), and (4.8) we get:

||w − h||L∞(B1/2) ≤ ||w − h||L∞(B3/4−s)

≤ ||w − h||L∞(∂B3/4−s)

+ C(||χ{w>0}||Ln(B3/4−s) + ||(δij − aij)Dijh||Ln(B3/4−s))

= C(sγ/2 + 1 + sγ/2−2ε)

= C(1 + εγ/4)
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for s := min{ε1/2, 1/4}.

4.0.21 Theorem (Basic Lp Estimate). Suppose w ≥ 0 solves (1.1) . Given n < p < ∞,

there exists θ = θ(p) such that if:

sup
B1

|aij − δij| ≤ θ, (4.10)

then

||D2w||Lp(B7/8) ≤ C
(
||w||L∞(∂B1) + 1

)
(4.11)

Proof. This theorem is a very slight adaptation of Theorem 1 in Section 4 of5. The only

real difference is the fact that Caffarelli lists continuity of the right hand side of his PDE in

his assumptions, whereas our right hand side is a characteristic function.

Let wk solve:
Lwk = fk in B1

wk ≡ w on ∂B1 ,
(4.12)

where fk = φ2−k∗χ{w>0} , where φε is a mollifier as in the second section, and where we extend

χ{w>0} to be zero outside of B1. Then 0 ≤ fk ≤ 1, fk ∈ C∞ and for p < ∞ we have fk
Lp→

χ{w>0} in B1. Set ujk := wj − wk. With this definition we have:

Lujk = fj − fk in B1

ujk ≡ 0 on ∂B1 ,
(4.13)

Since fj − fk is continuous, by Theorem 1 in Section 4 of5 we get

||D2ujk||Lp(B7/8) ≤ C
(
||ujk||L∞(B1) + ||fj − fk||Lp(B1)

)
, (4.14)

and then by the ABP estimate,

||ujk||L∞(B1) ≤
(

sup
∂B1

ujk + C||fj − fk||Ln(B1)

)
→ 0, as j, k →∞. (4.15)

Hence D2wj is a Cauchy sequence in Lp(B7/8) and so it converges in Lp to D2w. Caffarelli’s

theorem in the continuous case gives us

||D2wj||Lp(B7/8) ≤ C
(
||wj||L∞(∂B1) + ||fj||Lp(B1)

)
,
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and so by taking limits we can now say

||D2w||Lp(B7/8) ≤ C
(
||w||L∞(∂B1) + 1

)
. (4.16)

Now we need a technical compactness lemma which we will need to prove measure stability

in this chapter and which we will use again when we prove the existence of blow up limits

in the next chapter.

4.0.22 Lemma (Basic Compactness Lemma). Fix γ > 0, 1 < p < ∞ and let σ(r) be a

modulus of continuity. Assume that we are given the following:

1. 0 < λI ≤ aij,k(x) ≤ ΛI, for a.e. x.

2. wk ≥ 0 with Lkwk := aij,kDijwk = χ{wk>0} in B1.

3. 0 ∈ FBk, so wk(0) = |∇wk(0)| = 0.

4. ||wk||W 2,p(B1) ≤ γ.

5. Aij is a symmetric, constant matrix with 0 < λI ≤ Aij ≤ ΛI, and such that ||aij,k −

Aij||L1(B1) < σ(1/k).

Then for any α < 1 and any p <∞ there exists a function w∞ ∈ W 2,p(B1) ∩ C1,α(B1) and

a subsequence of the wk (which we will still refer to as wk for ease of notation) such that

A. wk → w∞ strongly in C1,α(B1),

B. wk ⇀ w∞ weakly in W 2,p(B1), and

C. AijDijw∞ = χ{w∞>0} and 0 ∈ FB∞ := ∂{w∞ = 0} ∩B1 .

Proof. By using the fourth assumption, we immediately have both A and B from elementary

functional analysis and the Sobolev Embedding Theorem. We also note that our assumptions

of uniform ellipticity actually force a uniform L∞ bound on all of the aij,k and the Aij.
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That bound, together with the fact that aij,k
L1

→ Aij, allow us to interpolate to any strong

convergence in Lq. In other words, by using the fact that

||u||Lq ≤ ||u||(1/q)L1 · ||u||(1−(1/q))
L∞

(see for example Equation (7.9) in9), we can assert that for q < ∞ we have aij,k
Lq→ Aij.

From this equation it follows that for any ϕ ∈ L∞ we have

aij,kϕ
Lq→ Aijϕ . (4.17)

4.0.23 Remark (A Possible Improvement). It seems to be worth observing that if we were

to assume that the aij,k ∈ VMO and we removed the assumption of uniform ellipticity, then

we could still use the theorem of John and Nirenberg to get strong convergence in Lq. On

the other hand, too many of the other proofs rely on the uniform ellipticity of the elliptic

operators for us to tackle this issue in this work.

Returning to the proof and letting S be an arbitrary subset of B1 we have∫
S

aij,kDijwk =

∫
S

(aij,kDijwk − AijDijwk + AijDijwk)

=

∫
S

(aij,k − Aij)Dijwk +

∫
S

(AijDijwk − AijDijw∞ + AijDijw∞)

=

∫
S

(aij,k − Aij)Dijwk +

∫
S

Aij(Dijwk −Dijw∞) +

∫
S

AijDijw∞

= I + II +

∫
S

AijDijw∞.

The integral I now goes to zero by combining Equation (4.17) with the fourth assumption

and then using Hölder ’s inequality. The integral II goes to zero by using B. Thus we can

conclude ∫
S

aij,kDijwk →
∫
S

AijDijw∞ (4.18)

for arbitrary S ⊂ B1, and in particular, the convergence is also pointwise a.e.

Now we claim: χ{wk>0} → χ{w∞>0} a.e in B1. Since we already know that aij,kDijwk →

AijDijw∞ a.e. and since aij,kDijwk = χ{wk>0} a.e., if we show our claim, then it will imme-
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diately imply that

AijDijw∞ = χ{w∞>0} a.e. (4.19)

Since we obviously have ||χ{wk>0}||Lp(B1) ≤ C for all p ∈ (1,∞], elementary functional

analysis implies the existence of a function g ∈ L∞(B1) with 0 ≤ g ≤ 1 such that

χ{wk>0} ⇀ g in Lp, 1 < p <∞ . (4.20)

Now, wherever we had w∞ > 0, it is immediate that χ{wk>0} converges pointwise (and

therefore weakly) to 1 by the uniform convergence of wk to w∞. In particular, g ≡ 1 on

{w∞ > 0}.

Next we show that g ≡ 0 in {w∞ = 0}◦. So, we suppose that Br(x0) ⊂ {w∞ = 0}, and we

claim that wk ≡ 0 in Br/2(x0) for k sufficiently large. Suppose not. Then applying Theorem

(3.0.14) (the nondegeneracy result) to the offending wk’s, we have a sequence {xk} ⊂Br(x0)

such that wk(xk) ≥ C(r/2)2. On the other hand, w∞(xk) ≡ 0 (since Br(x0) ⊂ {w∞ = 0})

and this fact contradicts the uniform convergence of wk to w∞.

At this point we have g(x) ≡ 1 for x ∈ {w∞ > 0}, and g(x) ≡ 0 for x ∈ {w∞ = 0}◦

and so g agrees with χ{w∞>0} on this set. By the arguments above, the convergence to g

is actually pointwise on this set. Now we finish this proof by showing that the set P :=

{x : |χ{w∞>0} − g| 6= 0} has measure zero, and it follows from the preceding arguments that

∂{w∞ = 0} ⊂ P .

We will show that P has measure zero by showing that it has no Lebesgue points. To

this end, let x0 ∈ P and let r be positive, but small enough so that Br(x0) ⊂ B1. Define

W∞(x) := r−2w∞(x0 + rx) and define Wj(x) := r−2wj(x0 + rx), and observe that all of the

convergence we had for wj to w∞ carries over to convergence for Wj to W∞, except that

now everything is happening on B1.

From our change of coordinates, it follows that 0 ∈ ∂{W∞ = 0} and since W∞ ≥ 0, there

exists a sequence {xk} → 0 such that W∞(xk) > 0 for all k. Now fix k so that xk ∈ B1/8,
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and then take J sufficiently large to ensure that if i, j ≥ J then the following hold:

||Wj −W∞||L∞(B1) ≤
W∞(xk)

2
, and ||Wi −Wj||L∞(B1) ≤

C̃

10
(4.21)

where C̃ is a constant which will be determined from the nondegeneracy theorem, and

which will be named momentarily. The existence of such a J follows from the fact that Wj

converges to W∞ in C1,α(B1).

We use the first estimate in Equation (4.21) to guarantee that WJ(xk) > 0. We apply

Theorem (3.0.14) to WJ at xk to guarantee the existence of a point x̃ ∈ B1/2 such that

WJ(x̃) ≥ C(3/8)2 . (4.22)

Putting this equation together with the second convergence statement in Equation (4.21)

and letting C̃ be defined by the constant on the right hand side of Equation (4.22) we see

that for i ≥ J we have:

Wi(x̃) ≥ 9C̃

10
. (4.23)

Since all of the Wi’s satisfy a uniform C1,α estimate, there exists an r̃ > 0 such that Wi(y) ≥

C̃/2 for all y ∈ Br̃(x̃) once i ≥ J. From this fact we conclude that Br̃(x̃) ⊂ {W∞ > 0}.

Scaling back to the original functions, we conclude that within Br(x0) is a ball, B, with

radius equal to rr̃ such that B ⊂ {w∞ > 0} ⊂ Pc . Since this type of statement will be true

for any r sufficiently small, we are guaranteed that x0 is not a Lebesgue point of P . Since

x0 was arbitrary, we can conclude that P has measure zero.

Finally we observe that the nondegeneracy theorem implies immediately that 0 remains

in the free boundary in the limit.

4.0.24 Theorem (Basic Measure Stability Result). Suppose w ∈ W 2,p(B1) satisfies (1.1)

and (1.3) , assume ε > 0, p, q > n, and ||aij − δij||Lq(B1) < ε, and let u denote the solution

to
∆u = χ{u>0} in B1

u ≡ w on ∂B1 .
(4.24)
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Then there is a modulus of continuity σ whose definition depends only on λ,Λ, p, q, n, and

||w||W 2,p(B1) such that

|{Λ(u) ∆ Λ(w)} ∩B1| ≤ σ(ε). (4.25)

(Here we use “∆” first to denote the Laplacian and next to denote the symmetric difference

between two sets: A∆B = {A \B} ∪ {B \ A}.)

Proof. Let γ := ||w||W 2,p(B1), and suppose the theorem is false. Then there exist wk, uk and aij,k

such that:

1. Lkwk = aij,kDijwk = χ{wk>0} in B1.

2. 0 ∈ FB, wk(0) = |∇wk(0)| = 0.

3. 0 < λI ≤ aij,k ≤ ΛI.

4. ||aij,k − δij||Lq(B1) <
1
2k
.

5. ∆uk = χ{uk>0} in B1 and uk ≡ wk on ∂B1.

6. ||wk||W 2,p(B1) ≤ γ.

But,

|Λ(uk)∆Λ(wk) ∩B1| ≥ γ > 0 for some fixed γ > 0. (4.26)

We invoke the last lemma to guarantee the existence of a function w∞ which satisfies:

∆w∞ = χ{w∞>0} a.e. (4.27)

and has 0 ∈ FB∞.
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Now we will use Equation (4.26) to get to a contradiction. We have

0 < γ

≤ |Λ(uk)∆Λ(wk) ∩B1|

= ||χ{uk>0} − χ{wk>0}||L1(B1)

≤ ||χ{uk>0} − χ{w∞>0}||L1(B1) + ||χ{w∞>0} − χ{wk>0}||L1(B1)

=: I + II .

Now the argument above combined with Lebesgue’s Dominated Convergence Theorem shows

immediately that II → 0.

In order to show I → 0, we first note that w∞ and uk satisfy the same obstacle problem

within B1, and on ∂B1 we know that uk equals wk which in turn converges in C1,α to

w∞. Now by a well-known comparison principle for the obstacle problem (see for example,

Theorem 2.7(a) of1) we know that

||uk − w∞||L∞(B1) ≤ ||uk − w∞||L∞(∂B1) . (4.28)

At this point we can quote Corollary 4 of4 to finally conclude that I → 0 and thereby obtain

our contradiction.

4.0.25 Corollary (Uniform Stability). Suppose w ∈ W 2,p(B1) satisfies (1.1) and (1.3) ,

assume ε > 0, p, q > n, and ||aij − δij||Lq(B1) < ε, and let u denote the solution to

∆u = χ{u>0} in B1

u ≡ w on ∂B1 .
(4.29)

Then there is a modulus of continuity σ whose definition depends only on λ,Λ, p, q, n, and

||w||W 2,p(B1) such that

||u− w||L∞(B1) ≤ σ(ε). (4.30)

Proof. By Calderon-Zygmund theory, if the Laplacian of u− w is small in Lr, then u− w

will be small in W 2,r. (See Corollary 9.10 in9.) If r > n/2, then smallness in W 2,r guarantees
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smallness in L∞ by applying the Sobolev Embedding Theorem.

∆(u− w) = χ{u>0} − (δij − aij + aij)Dijw

= (χ{u>0} − χ{w>0}) + (aij − δij)Dijw

=: I + II.

The fact that I is small in any Lr follows from the fact that it is bounded between −1 and

1 (to get control of its L∞ norm), and is as small as we like in L1 by Theorem (4.0.24) . In

order to guarantee that II is small in Lr for some r > n/2, we first observe that Dijw is

bounded in Lp for some p > n, and ||aij− δij||Lq(B1) is as small as we like by our hypotheses.

Now we simply apply Hölder ’s inequality.
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Chapter 5

Regularity of the Free Boundary

We turn now to a study of the free boundary in the case where the aij ∈ VMO. We will

show the existence of blowup limits and it will follow from this result together with the

measure stability result from the previous chapter, that a form of the Caffarelli Alternative

will hold in a suitable measure theoretic sense.

5.0.26 Theorem (Existence of Blowup Limits). Assume w satisfies (1.1) and (1.3), assume

aij satisfies (1.2) and belongs to VMO, and define the rescaling

wε(x) := ε−2w(εx).

Then for any sequence {εk} ↓ 0, there exists a subsequence (which we will still call {εk} to

simplify notation) and a symmetric matrix A = (Aij) with

0 < λI ≤ A ≤ ΛI

such that for all 1 ≤ i, j ≤ n we have∫
Bεk

aij(x) dx→ Aij , (5.1)

and on any compact set, wεk(x) converges strongly in C1,α and weakly in W 2,p to a function

w∞ ∈ W 2,p
loc (IRn), which satisfies:

AijDijw∞ = χ{w∞>0} on IRn, (5.2)

and has 0 in its free boundary.
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5.0.27 Remark (Nonuniqueness of Blowup Limits). Notice that the theorem does not claim

that the blowup limit is unique. In fact, it is relatively easy to produce nonuniqueness, and

we will give such an example in the next chapter.

Proof. Because the matrix aij(x) satisfies 0 < λI ≤ aij(x) ≤ ΛI for all x, it is clear that if

we define the matrix

Aijr :=

∫
Br

aij(x) dx, (5.3)

then this matrix must also satisfy the same inequality. Of course, since all of the entries are

bounded, we can take a subsequence of the radii εk such that each scalar Aijεk converges to

a real number Aij. With this subsequence, we already know that we satisfy Equation (5.1),

but because aij(x) ∈ VMO, we also know:∫
Bεk

∣∣aij(x)− Aijεk
∣∣ dx ≤ η(εk)→ 0 ,

where η is just taken to be the maximum of all of the VMO-moduli for each of the aij’s,

and by the triangle inequality this leads to∫
Bεk

∣∣aij(x)− Aij
∣∣ dx→ 0 . (5.4)

Now we observe that if aij,k(x) := aij(εkx) then the rescaled function wk := wεk satisfies

the equation:

aij,k(x)Dijwk(x) = χ{wk>0}(x) , (5.5)

and ∫
B1

∣∣aij,k(x)− Aij
∣∣ dx ≤ η(εk)→ 0 . (5.6)

By combining Theorem (3.0.19) with Corollary (1.2.11) we get the existence of a constant

γ < ∞ so that ||wk||W 2,p(B1) ≤ γ for all k. At this point we satisfy all of the hypotheses of

Lemma (4.0.22), and applying that lemma gives us exactly what we need.
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5.0.28 Theorem (Caffarelli’s Alternative in Measure (Weak Form)). Under the assump-

tions of the previous theorem, the limit

lim
r↓0

|Λ(w) ∩Br|
|Br|

(5.7)

exists and must be equal to either 0 or 1/2.

Proof. We will suppose that

lim sup
r↓0

|Λ(w) ∩Br|
|Br|

> 0 (5.8)

and show that in this case the limit exists and is equal to 1/2. It follows immediately from

this assumption that there exists a sequence {εk} ↓ 0 such that (for some δ > 0) we have

|Λ(wεk) ∩B1|
|B1|

> δ (5.9)

for all k. (Here again we use the quadratic rescaling: ws(x) := s−2w(sx), and we will

even shorten “wεk” to “wk” henceforth.) We can now apply the last theorem to extract

a subsequence (still called “εk”), and to guarantee the existence of a symmetric positive

definite matrix Aij with all of its eigenvalues in [λ,Λ], and a w∞ ∈ W 2,p
loc (IRn), such that if

aij,k(x) := aij(εkx), then ∫
B1

∣∣aij,k(x)− Aij
∣∣ dx→ 0 . (5.10)

and

AijDijw∞ = χ{w∞>0} on IRn, (5.11)

and 0 is in FB(w∞).

Now we make an orthogonal change of coordinates on IRn to diagonalize the matrix Aij,

and then we dilate the individual coordinates by strictly positive amounts depending only

on λ and Λ so that in the new coordinate system we have Aij = δij. Now of course, there

are new functions, and the constants may change by positive factors that we can control,

but all of the equations above remain qualitatively unchanged, and we will abuse notation

(in a manner similar to the fact that we have not bothered to rename the subsequences), by
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continuing to refer to our new functions in the new coordinate system as wk and w∞, and

by continuing to refer to the “new” aij,k as aij,k, etc.

Now we let uk denote the solution to

∆uk = χ{uk>0} in B1

uk ≡ wk on ∂B1 .
(5.12)

Using Equations (5.9) and (5.10) and applying our measure stability result to uk and wk we

can make |Λ(uk)∆Λ(wk)| as small as we like for k sufficiently large. In particular, we now

have:
|Λ(uk) ∩B1|
|B1|

>
δ

2
. (5.13)

Since wk converges uniformly to w∞ on every compact set, it follows that uk converges

uniformly to w∞ on ∂B1, and now we start arguing exactly as in the last paragraph of the

proof of our measure stability theorem. In particular, Equation (4.28) holds, and Corollary

4 of4 then gives us
|Λ(w∞) ∩B1|

|B1|
>
δ

2
. (5.14)

Of course now we can invoke the C1,α regularity at regular points (see Theorem (1.2.6)) to

guarantee that w∞ is C1,α at the origin, and this in turn implies that

lim
r↓0

|Λ(w∞) ∩Br|
|Br|

=
1

2
. (5.15)

Now it remains to do two things. First we need to pass this result from w∞ back to our

subsequence of radii for w, but second we will then need to show that we get the same limit

along any sequence of radii converging to zero. The first step is a consequence of combining

our measure stability theorem with Corollary 4 of4 again. Indeed, for any r > 0,

lim
k→∞

(
| Λ(wk) ∩Br |
| Br |

− | Λ(w∞) ∩Br |
| Br |

)
= 0 . (5.16)

On the other hand, by our rescaling, this equation becomes

lim
k→∞

(
| Λ(w) ∩B(rεk) |
| B(rεk) |

− | Λ(w∞) ∩Br |
| Br |

)
= 0 , (5.17)
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which we can combine with Equation (5.15) to ensure that

lim
k→∞

| Λ(w) ∩B(rεk) |
| B(rεk) |

=
1

2
. (5.18)

Finally, we wish to be able to replace “rεk” with “r” in Equation (5.18). Suppose that

we have a different sequence of radii converging to zero (which we can call s`) such that

lim
`→∞

| Λ(w) ∩Bs` |
| Bs` |

6= 1

2
. (5.19)

At this point we are led to a contradiction in one of two ways. If the limit above does

not equal zero (including the case where it simply does not exist), then we can simply use

Theorem (5.0.26) combined with Theorem (4.0.24) to get convergence to a global solution

with properties which contradict the Caffarelli Alternative (Theorem (1.2.4)). On the other

hand, if the limit does equal zero, then we use the continuity of the function:

g(r) :=
| Λ(w) ∩Br |
| Br |

to get an interlacing sequence of radii which we can call s̃` and which converge to zero such

that g(s`) ≡ 1/4, and then we proceed as in the first case.

5.0.29 Definition (Regular and Singular Free Boundary Points). A free boundary point

where Λ has density equal to 0 is referred to as singular in measure, and a free boundary

point where the density of Λ is 1/2 is referred to as regular in measure. For the rest of

this work, we will refer to these free boundary points as simply “singular” or “regular.”

Note that this definition should be compared with Caffarelli’s definition which is given in

Theorem (1.2.4).

The theorem above gives us the alternative, but we do not have any kind of uniformity

to our convergence. Caffarelli stated his original theorem in a much more quantitative (and

therefore useful) way, and so now we will state and prove a similar stronger version. We

will need the stronger version in order to show openness and stability under perturbation

of the regular points of the free boundary.
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5.0.30 Theorem (Caffarelli’s Alternative in Measure (Strong Form)). Under the assump-

tions of the previous theorem, for any ε ∈ (0, 1/8), there exists an r0 ∈ (0, 1), and a τ ∈ (0, 1)

such that

if there exists a t ≤ r0 such that

|Λ(w) ∩Bt|
|Bt|

≥ ε , (5.20)

then for all r ≤ τt we have

|Λ(w) ∩Br|
|Br|

≥ 1

2
− ε , (5.21)

and in particular, 0 is a regular point according to our definition. The r0 and the τ depend

on ε and on the aij, but they do not depend on the function w.

Proof. We start by assuming that we have a t such that Equation (5.20) holds, and by

rescaling if necessary, we can assume that t = r0. Next, by arguing exactly as in the last

theorem, by assuming that r0 is sufficiently small, and by defining s0 :=
√
r0, we can assume

without loss of generality that ∫
Bs0

∣∣aij(x)− δij
∣∣ dx (5.22)

is as small as we like. Now we will follow the argument given for Theorem 4.5 in1 very

closely.

Applying our measure stability theorem on the ball Bs0 we have the existence of a

function u which satisfies:

∆u = χ{u>0} in B(3s0)/4

u ≡ w on ∂B(3s0)/4 ,
(5.23)

and so that

|{Λ(u)∆Λ(w)} ∩Br0 | (5.24)

is small enough to guarantee that

|Λ(u) ∩Br0 |
|Br0|

≥ ε

2
, (5.25)
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and therefore

m.d.(Λ(u) ∩Br0) ≥ C(n)r0ε . (5.26)

Now if r0 is sufficiently small, then by the C1,α regularity theorem (Theorem (1.2.6)) we

conclude that ∂Λ(u) is C1,α in an r2
0 neighborhood of the origin. Furthermore, if we rotate

coordinates so that FB(u) = {(x′, xn) | xn = f(x′)}, then we have the following bound (in

Br20
):

||f ||
C1,α ≤

C(n)

r0

. (5.27)

On the other hand, because of this bound, there exists a γ < 1 such that if ρ0 := γr0 < r0,

then
|Λ(u) ∩Bρ0|
|Bρ0|

>
1− ε

2
. (5.28)

Now by once again requiring r0 to be sufficiently small, we get

|Λ(w) ∩Bρ0|
|Bρ0|

>
1

2
− ε . (5.29)

(So you may note that here our requirement on the size of r0 will be much smaller than it

was before; we need it small both because of the hypotheses within Caffarelli’s regularity

theorems and because of the need to shrink the Lp norm of |aij − δij| in order to use our

measure stability theorem.)

Now since 1
2
− ε is strictly greater than ε, we can rescale Bρ0 to a ball with a radius close

to r0, and then repeat. Since we have a little margin for error in our rescaling, after we

repeat this process enough times we will have a small enough radius (which we call τr0), to

ensure that for all r ≤ τr0 we have

|Λ(w) ∩Br|
|Br|

>
1

2
− ε .

5.0.31 Corollary (The Set of Regular Points Is Open). If we take w as above, then the set

of points of FB(w) which are regular in measure is an open subset of FB(w).
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The proof of this corollary is identical to the proof of Corollary 4.8 in1 except that in place

of using Theorem 4.5 of1 we use Theorem (5.0.30).

5.0.32 Corollary (Persistent Regularity). Let Aij be a constant symmetric matrix with

eigenvalues in [λ,Λ]. Let w satisfy w ≥ 0,

AijDijw = χ{w>0} ,

and assume that FB(w) ∩B3/4 is C1,α. If aij(x) ∈ VMO ∩ L∞(B1), and

||aij − Aij||Lq(B1)

is sufficiently small, then the solution, wa, to the obstacle problem:

wa ≥ 0 , aij(x)Dijwa(x) = χ{wa>0}(x), wa = w on ∂B1

has a regular free boundary in B1/2. (In other words the density of Λ(wa) is equal to 1/2 at

every x ∈ FB(wa) ∩B1/2.)

Proof. We start by observing that by Theorem (1.2.5) there will be a neighborhood of

FB(w) ∩B5/8 where w(x) will satisfy:

γ−1 · dist(x,Λ(w))2 ≤ w(x) ≤ γ · dist(x,Λ(w))2 , (5.30)

for a constant γ > 0. By the same theorem, the size of this neighborhood will be bounded

from below by a constant, β, which depends only on the C1,α norm of FB(w)∩B3/4. In other

words, Equation (5.30) will hold for all x ∈ Λ(w)β∩B5/8. On the other hand, in Λ(w)cβ ∩ B5/8

the function w will attain a positive minimum. By applying Corollary (4.0.25) to guarantee

that

||w − wa||L∞(B1)

is as small as we like, we can ensure that wa > 0 in Λ(w)cβ ∩ B5/8, and so FB(wa) ⊂ Λ(w)β.

By using Theorem (3.0.14) applied to wa, we can even guarantee that

FB(wa) ∩B5/8 ⊂ FB(w)β . (5.31)
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Now fix 0 < ε̃ << ε ≤ 1/100. We choose β̃ < β based on the C1,α norm of FB(w) to

ensure that for any x0 ∈ FB(w) ∩B5/8 and any r ∈ (0, β̃] we have the inequality:∣∣∣∣ |Br(x0) ∩ Λ(w)|
|Br(x0)|

− 1

2

∣∣∣∣ < ε . (5.32)

Arguing exactly as above and shrinking ||aij−Aij||Lq(B1) if necessary, we can now guarantee

that

FB(wa) ∩B5/8 ⊂ FB(w)(ε̃β̃) . (5.33)

Now pick an y0 ∈ FB(wa) ∩B1/2. Using Equations (5.33) and (5.32) we estimate:

|Λ(wa) ∩Bβ̃(y0)|
|Bβ̃(y0)|

≥
|Λ(w) ∩Bβ̃(y0)|
|Bβ̃(y0)|

− C(n)ε̃β̃n

≥ 1

2
− ε− C(n)ε̃β̃n

≥ 1/4 ,

as long as we choose our constants sufficiently small. Now by shrinking the value of β̃ (if

necessary) to be less than the r0 given in Theorem (5.0.30) we can be sure that y0 is a

regular point of FB(wa).
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Chapter 6

An Important Counter-Example

Now we will give an example of a solution to an obstacle problem of the type we have been

studying above which has more than one blowup limit at the origin. The first step will be

to construct a convenient discontinuous function in VMO ∩ L∞(B1).

We define the function fk(x) by letting fk(x) := γk(|x|) where γk(r) is defined by

γk(r) :=


2 for r ≥ e−e

2k+1

5 + cos(π log | log r|)
2

for r < e−e
2k+1

.

(6.1)

Now we observe the following properties:

1.

2 ≤ fk ≤ 3 in B1,

2.

for any q <∞, lim
k→∞
||fk − 2||Lq(B1) = 0 , and

3.

lim
r↓0

rγ′k(r) = 0 .

It now follows from a Theorem of Bramanti (using the first and third propery above) that

fk(x) ∈ VMO(B1). Since we were not able to find this result published elsewhere we will

include the proof in an appendix. (This proof is due to Bramanti and is found in his
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PhD dissertation: Commutators of singular integrals and parabolic equations with VMO

coefficients. Ph.D. Thesis, University of Milano, Italy, 1993.2)

Now we define aij,k(x) := fk(x)δij, and pβ(x) := 1
4
((xn − β)+)2. Observe that pβ solves

the obstacle problem:

2∆w = χ{w>0} ,

and FB(pβ) = {xn = β} . Now for −1/10 ≤ β ≤ 1/10 and k ∈ IN, we let wβ,k denote the

solution to the obstacle problem:

w ≥ 0, aij,k(x)Dijw = χ{w>0} in B1, w(x) = pβ(x) on ∂B1 .

Now we observe that

2∆(pβ − wβ,k) = χ{pβ>0} − (2δij − aij,k)Dijwβ,k − χ{wβ,k>0} ,

and so

||2∆(pβ − wβ,k)||Lp(B1) ≤ ||χ{pβ>0} − χ{wβ,k>0}||Lp(B1)

+ ||(2δij − aij,k)Dijwβ,k||Lp(B1)

= ||χ{pβ>0} − χ{wβ,k>0}||Lp(B1)

+ ||(2δij − aij,k)Dijwβ,k||Lp(B
e−e2k+1 )

The first Lp norm can be made as small as we like by letting k be very large and then by using

measure stability, and the second Lp norm can be made as small as we like by letting k be

very large and by observing that ||wβ,k||Lq(B1/2) ≤ C. Since (pβ−wβ,k) ∈ W 2,p(B1)∩W 1,p
0 (B1)

we can use Lemma 9.17 of9 to guarantee that ||pβ − wβ,k||W 2,p(B1) is as small as we like for

any p <∞ and therefore by the Sobolev embedding

||pβ − wβ,k||L∞(B1) is as small as we like. (6.2)

(We have not hesitated to increase k.)

Now by using Theorem ( 5.0.32) along with the nondegeneracy enjoyed by the wβ,k

functions and with (6.2) , we can assert that for all β ∈ [−1/10, 1/10], as long as k is
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sufficiently large, every x ∈ FB(wβ,k) ∩ B1/2 is a regular free boundary point (in the sense

of definition (5.0.29)) and

x ∈ {β − 1/100 < xn < β + 1/100}.

Now we claim that there exists a β0 such that 0 ∈ FB(wβ0,k), and since our function fk(x)

oscillates between 2 and 3 infinitely many times as we zoom in toward the origin, we can

apply Theorem (5.0.26) to guarantee the existence of different blowup limits. To establish

the claim, we observe that if it is false, then there is a ball B2−m which never intersects the

free boundary for any β, and this situation would contradict measure stability.
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Appendix A

Radial VMO

A.0.33 Theorem (Radial VMO). Let f : (0, R] → R, f ∈ C1(0, R], and assume the

following:

1. f ∈ L2 (0, R)

2. xf (x)2 → 0 for x→ 0+

3. xf ′ (x)→ 0 for x→ 0+

4. 1
r

∫ r
0
x [f (r)− f (x)] f ′ (x) dx→ 0 for r → 0+.

(Note that if f is bounded, then it’s enough to assume 3).

Let u : BR (0) ⊂ Rn → R

u (x) = f (|x|) .

Then u ∈ VMO (BR (0)).

Before we prove the theorem, let us see the following lemma. We will consider the case

n = 1. The general case can be handled similarly by radial change of variables. Hence u is

an even function on [−r, r].

A.0.34 Lemma. If f, u are as in the above theorem, then

ψ (r) ≡ 1

2r

∫ r

−r

∣∣u (x)− u(−r,r)
∣∣2 dx→ 0 as r → 0.
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Proof. By integration by parts

f(0,r) :=
1

r

∫ r

0

f (x) dx

=
1

r
[xf (x)]r0 −

1

r

∫ r

0

xf ′ (x) dx

→ f (r)

Then

1

2r

∫ r

−r
|u(x)− u(−r,r)|2dx =

1

r

∫ r

0

|f(x)− f(0,r)|2dx

≤ 2

r

∫ r

0

|f(x)− f(r)|2dx+ o(1) for r → 0

≤ 2

r
[x[f(x)− f(r)]2]r0 −

4

r

∫ r

0

x[f(x)− f(r)]2f ′(x)dx+ o(1)→ 0.

To prove the theorem, it suffices to show that

η∗2,u (r) = sup
x∈BR(0),0<σ<r

1

|Bσ (x) ∩BR (0)|

∫
Bσ(x)∩BR(0)

∣∣u (x)− uBσ(x)∩BR(0)

∣∣2 dx→ 0 for r → 0.

Proof. (for n = 1, R = 1) We will write (a, b)∗ := (a, b) ∩ (−1, 1). To bound η∗2,u (r) (for

n = 1, R = 1), let

ψ (x0, ε) =
1

|(x0 − ε, x0 + ε)∗|

∫
(x0−ε,x0+ε)∗

∣∣u (x)− u(x0−ε,x0+ε)∗
∣∣2 dx.

Assume x0 ≥ 0 (for symmetry) and recall that∫ b

a

∣∣u (x)− u(a,b)

∣∣2 dx = min
λ∈R

∫ b

a

|u (x)− λ|2 dx.

Let us distinguish the cases:

1. 0 ≤ x0 < 2ε. We can take ε < 1
3
. Then (x0 − ε, x0 + ε) ⊂ (−3ε, 3ε) ⊂ (−1, 1) and

ψ (x0, ε) ≤
1

2ε

∫ x0+ε

x0−ε

∣∣u (x)− u(−3ε,3ε)

∣∣2 dx ≤ 3
1

6ε

∫ 3ε

−3ε

∣∣u (x)− u(−3ε,3ε)

∣∣2 dx ≤ 3ψ (3ε)→ 0

as ε→ 0, by the above Lemma.
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2. 2ε ≤ x0 < 1. Then (x0 − ε, x0 + ε)∗ ⊂ [ε, 1] and

ψ (x0, ε) ≤ ω2
ε (2ε)

where

ωε (h) = sup
|x−y|<h; x,y∈[ε,1]

|f (x)− f (y)| .

Since f ∈ C1 [ε, 1] ,

ωε (h) ≤ h · max
x∈[ε,1]

|f ′ (x)| .

Now, if f ′ is bounded on (0, 1] we have ωε (2ε) ≤ cε, otherewise:

ωε (2ε) ≤ 2ε |f ′ (ξε)| for some ξε ∈ [ε, 1] , and

ωε (2ε) ≤ 2ξε |f ′ (ξε)|

with ξε → 0 as ε → 0, since f ′ is unbounded near the origin; then (3) implies

2ξε |f ′ (ξε)| → 0. In any case, ωε (2ε)→ 0 for ε→ 0.

We conclude that

sup
x0∈[0,1]

ψ (x0, ε)→ 0 for ε→ 0,

and u ∈ VMO (B1 (0)) .
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