Families and statistics of L-functions

by

Joshua Stucky

B. A., Union University, 2017

M. S., Kansas State University, 2019

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Mathematics
College of Arts and Sciences

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2022



Abstract

The first chapter of this dissertation provides a general introduction to the study of
families of L-functions along with the necessary tools for understanding their behavior. In
particular, we introduce the families studied in the second and third chapters of this disser-
tation and provide some prerequisite knowledge on these families.

The second chapter of this dissertation studies a family of L-functions attached to Hecke
Grossencharacters and extends a geometric result of Ricci concerning the equidistribution of
prime ideals of Z[i] in narrow sectors.

The third chapter of this dissertation studies a family of L-functions attached to au-
tomorphic forms on GGLy. Specifically, we investigate the sixth moment of the family of
L-functions associated to holomorphic modular forms on G Ly with respect to a congruence
subgroup I';(¢). We improve on previous work and obtain an unconditional upper bound of

the correct order of magnitude.
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Chapter 1
Introduction

1.1. Families of L-Functions

L-functions are among the central objects of study in modern analytic number theory, both
because of the arithmetic problems they encode as well as for their own sake as interesting
and mysterious mathematical objects. The prototypical example of an L-function is the

Riemann zeta function, defined for Re s > 1 by the Dirichlet series and Euler product

00 1 1 -1
= — = 11— —
=->w-T(-5) -
n=1 p
where the product is taken over all primes p. The function ((s) can be meromorphically
continued to all of C with a simple pole at s = 1 with residue 1. Moreover, the completed ¢
function, defined by

S

Als) =721 () ¢()

where I'(s) is the standard gamma function, satisfies the functional equation

A(s) = A(1 —s).



In general, L-functions may be regarded as generalizations of ¢ that possess many of the
same properties, such as a Dirichlet series and Euler product representation as well as a
functional equation.

Classically, the Riemann zeta function encodes the distribution of the prime numbers. If
we denote by m(z) the number of primes at most x, then the Prime Number Theorem states

that
T

m(w) ~ logz’

This is equivalent to the fact that ( has no zeros p with Re p = 1. Similarly, the existence of
primes in short intervals [z, z + 2], § < 1, is closely connected with the distribution of the
zeros of ¢ through zero-density estimates. Through various analytic techniques, these can

be connected with the moments of (,

T 2k
[zk(T)—/ ¢ (5 +it)|™ dt.
0

Moments of L-functions play a crucial role in many number theoretic arguments, and thanks
to the work of a number of authors, we have beautiful conjectures for the moments of many
families of L-functions. These moments are closely related to subconvexity estimates for (,
i.e. any estimate of the form

c (3 +it)| <t

for some § > 0 (the exponent %1 follows from the use of the Phragmen-Lindeloff convexity

principle and the functional equation for (). It is conjectured that
Lo (T) ~ CyT(log T)**
for all integers k > 1. Note that this estimate implies the estimate

¢ (L +it)| < tzte,



the implied constant depending only on k and .
The set
F={Cs+it):0<t<T}

is an example of a family of L-functions, and the moment I, can be regarded as the moment

at the central point s = % In general, moments of L-functions take the form

> LG
feF
where L(s, f) is the L-function associated to f and F is some family of L-functions. In the
case when the family F is continuous, the sum is an integral.
In Section 2, we discuss the family of L-functions we use in Chapter 2, giving some nota-
tion and definitions as well as briefly discussing the subconvexity estimate that is necessary
for our arguments. In Section 3, we provide some background on the family of L-functions

we study in Chapter 3.

1.2. Gaussian Primes and a Family of Grossencharacter

L-Functions

We define the usual Gaussian integers as the ring of integers of the number field Q(¢). That

is, the Gaussian integers are the elements of
Zli)={a+bi:a,beZ}.

We are interested in the distribution of prime ideals in this ring. Since Z[i] is a principal ideal
domain, the ideals are (a + bi), where a + bi is a Gaussian integer, and we may identify the
ideals in Z[i] with the points a+bi with, say, a > 0, b > 0. We say a Gaussian integer is prime
if it generates a prime ideal in Z[i], and we call these Gaussian primes. When necessary, we
may distinguish primes in Z by referring to them as rational primes. Classically, an ideal a

in Z[i] is prime if and only if one of the following hold:

3



1. Na = p for some rational prime p =2 or p =1 (mod 4),
2. a = (p) for p =3 (mod 4).

We define the norm of an ideal to the field norm Ng),q of any one of its generators:
Na = N@(@/Q(a + bl) = CL2 + b2.
We define the angular Grossencharacters

A (Cl) _ 64z'm arg(a+bi) '

Here again, a+0bi is any one of the generators of a, and one may check that A™ is independent
of the choice of generator.

With the above notations, we define the Grossencharacter L-functions

AT A (p)\
L(s,\™) = Z (N‘(lc)lz = H (1 - (N—SD , Re s> 1,
a P

where the sum is over nonzero ideals and the product is over prime ideals.
The characters A™ allow one to study the distribution of Gaussian primes in sectors, i.e.
domains of C of the form

{z€eC:|dargz—0| <4},

where the absolute value is to be regarded mod 27. The factor of 4 comes from the number
of units in Z[i]. As such, argz may be regarded as mod 7. Note that the harmonics A™
appear as the Fourier coefficients of any function which is periodic mod 7 (see Section 2.3
of Chapter 2).

Lastly, let us discuss the subconvexity estimate we need for our results in Chapter 2,
namely Lemma 2.7.1, due originally to Ricci [19]. His result states that if (4m? + %) > 4,
then

L(+it,A™) < (m? + 130 log®(m? + 12).



This estimate should be compared to the Weyl subconvexity estimate for ¢, which is
(3 +it) < /0t

In the case of ¢, the conductor of ¢ (5 + it) is of size |t|. Moreover,  is a degree 1 L-function,
whereas L(s,\™) is a degree 2 L-function, corresponding to the fact that Q(7) is a degree 2
extension of Q. Since L (% + 1t, )\m) depends on the two parameters ¢ and m, we see that
L (3 +it,A™) has conductor (|t| + |m|)* < ¢* + m?, and so we see that Ricci’s estimate is

the analogue of Weyl’s subconvexity estimate for L(s, \™).

1.3. The Family of GL; Automorphic L-Functions

In this section, we give some background on the family of L-functions studied in Chapter 3.

We begin with the sets

H={:=2+iyeC:y>0},

a b

T(1) = SLo(Z) = {(C .

) ca,b,c,d €7, ad—bc:l}.

The group I'(1) acts on H on the left via the linear fractional transformations

az+b a b
z=— = :
7 cz+d 7 c d
We are interested in functions f satisfying the following modularity condition:

flyz) = (2 +d)* f(2) (3.1)

for some integer k£ > 0 and~y belonging to certain subgroups of I'(1). If we define the weight-k

slash operator by
f(rz)

fe(z) = ezt dF



then the modularity condition (3.1) is equivalent to the invariance condition

1.3.1. Congruence Subgroups
To define these subgroups, we first define principal congruence group of level q by

t) = {re 58 i= | ) tmoaq)}.

A congruence subgroup of T'(1) is then any subgroup which contains I'(¢). Two important

examples are

fo) = {x € s2a@) 7= (7 7) mod )},

Ii(q) = {7 € SLy(Z): v = ((1) 15) (mod q)},

The parameter g above is called the level of the congruence subgroup. Note that congruence

subgroups above contain the element

T (1 1))
0 1
and thus if f satisfies the transformation law (3.1), then f(7Tz) = f(2 + 1) = f(2). Thus f

admits a Fourier series expansion of the form

fz) = Mz q", (3.2)

nel

where ¢ = €?™*. As a caution to the reader, the use of ¢ both as the level and as the variable

g = €?™* is unfortunate, but the usage is standard and there should be no ambiguity in



context. Moreover, we shall not use the latter notation very much in the remainder of this

dissertation.

1.3.2. Holomorphic Modular Forms

The functions we consider in Chapter 3 are examples of modular forms of weight k£ with
respect to I'1(g). We define holomorphic modular forms for generalizations of the spaces

Lo(q), into which I';(¢) can be decomposed as a direct sum.

Definition. Let k,q be a positive integers and let y be a Dirichlet character mod ¢q. A
function f : H — C is called a modular form of weight k, level ¢ and central character y if

f satisfies the following conditions:
1. f is holomorphic on Hi,
2. flk(z) = x(d) f(z) for all v € T'o(q),
3. f is holomorphic at every cusp a of T'y(gq).

To understand the last condition, we need to define the cusps of a congruence subgroup

. For a rational number m, the action of I' on P'(Q) = Q U {oo} is given by

am +b
_amro r.
Here y(00) = ¢ and y(m) = oo if em +d = 0. If ¢ = 0, then 7 fixes co. The cusps of a

congruence subgroup I' are then the I'-orbits of P}(Q). It is nontrivial to show that this set
is finite.

To define holomorphy at the cusps of I', we first define holomorphy at co. We say that f
is holomorphic at oo if A¢(n) = 0 for all n < 0. Alternatively, we may think of the function
q = q(z) = €™ as a function from the upper half plane H to the punctured unit disk
D*. Holomorphy at oo then means that the function F(q) = F(q(z)) = f(z) extends to a

function which is holomorphic at 0.



For a cusp «, let o, be the element of I' such that coo = «. As before, the function
floalk is periodic of period 1, and so can be defined as a function on a punctured unit disk,
say floa]k(z) = G(q). The modular form f is then holomorphic at the cusp « if G is extends
to a function which is holomorphic at 0.

The set of all modular forms of weight k, level ¢, and central character y form a complex
vector space which we denote by My (Io(q), x). An important subspace is the set of cusp
forms of weight k, denoted by Si.(To(q), x). This set is defined by altering the third condition
in the definition above: instead of requiring holomorphy at the cusps, we require the modular
forms in S to vanish at the cusps (defined similarly). It follows that A;(0) = 0 for all cusp

forms.

We note that if we take 7 = <_1 0 ), then (—=1)*f(2) = f[y]r(2) = x(=1)f(2), and

0 -1

so f is identically 0 unless x(—1) = (—1)*, which we will now always assume.

One important feature of the spaces defined above is that we have the decompositions

M) = P  MiTo(g),x),
x(q)
x(=D)=(-1)k

SiTi@) = @ Selole).x).

x(q)
x(=1)=(-1)*

Here M (I'1(q)) and Sk(I'1(q)) are defined analogously as the previous spaces, except that

the transformation condition 2. is just f[y]x(z) = f(z) for all v € I';(q).

1.3.3. Hecke Eigenforms

For a holomorphic modular form f € My(T'o(q), x), we have

F2) =3 M(n)n'7 e(nz).

n>0



The Hecke L-function associated to f is the Dirichlet series

Ar(n)
L(f,s) = nz;l e
Hecke showed that this L-function can be completed in an analogous way to the Riemann zeta
function, and the resulting completed L-function satisfies a functional equation. However,
we would also like our L-functions to have an Euler product representation. For these, we
need the Hecke operators.
Let k,q > 1 and x be a Dirichlet character with y(—1) = (—=1)*. The nth Hecke operator
is defined by

10 =1 S ¥ 1 ().

ad=n 0<b<d
These operators satisfy a number of important properties, which we summarize in the fol-

lowing lemma.
Lemma 1.3.1.

1. T, takes modular forms to modular forms and cusp forms to cusp forms:

T :Mi(To(q), x) = Mi(Tolg), X),

T :Sk(To(q), x) = Sk(Tolq), x)-

2. T, acts on Fourier coefficients via

150 =3 (X i (%) Jetm)

m>0 ™ d|(n,m)

3. The Hecke operators commute. More precisely

d|(n,m)

and so in particular T, T, = Ty, if (m,n) = 1.

9



4. There is an orthonormal basis of the space Sp(I'o(q),x) of cusp forms consisting of

eigenfunctions of all Hecke operators T, with (n,q) = 1.

For a proof of this lemma, see Chapter 6 of [12] (Note that a different normalization is

used in this reference, as the Fourier coefficients are defined by

F(z) = A(n)g",
neZ
instead of (3.2) ).
The last property is especially important, and the elements of this basis are called Hecke

eigenforms. For a Hecke eigenform, let A(n) be such that

Comparing the first Fourier coefficients on both sides, we find that

A(m)A;(1) = As(n).

Normalizing so that the first Fourier coefficient is 1 (so long as Af(1) # 0. This is ensured,

for instance, by assuming the level ¢ is prime), we find that

That is, with this normalization, the nth Fourier coefficient of a Hecke eigenform s the Hecke
eigenvalue of the nth Hecke operator. Moreover, the multiplicativity of the Hecke operators
immediately implies that the Fourier coefficients of a Hecke eigenform are multiplicative, and
so the associated L-function admits an Euler product. Specifically, if f is a Hecke eigenform

and the level ¢ is prime, then

AT (1- 20, 1))



Chapter 2

Gaussian Primes in Narrow Sectors

2.1. Introduction

A classical result of Huxley [9] states that for sufficiently large z and any 6 > 7/12, the
interval [z, + 2%] contains a rational prime. In this chapter, we investigate an analogous
problem about Gaussian primes. To be precise, let ¢ € R, 0 < <7/2,0< 6 <1, and x

large. We are interested in the cardinality of the set
{a+bi € Z[i] : (a+bi) is prime, p < arg(a+bi) < +6, v — 2’ <a®>+b* <z},

Here (a + bi) denotes the ideal generated by a + bi. As is common in such problems; it is
more convenient to count these ideals with a suitable weight. Denote by a the ideal in Z][i]

generated by a + bi and by Na = a? + b? its norm. If we define

log Na  if a = p™ with p prime and m > 1,
A(a) =

0 otherwise,

11



then our problem translates to obtaining an asymptotic estimate for

V(g )= Y. Aa).

z—y<Nalz
p<arg a<p+0

Ricci [19] has shown that for all £ > 0 and § > 27%/1°%¢ one has

20w
l/}(ﬂfa T v, 5) ~ -

™

We generalize this and prove the following

Theorem 2.1.1. For any ¢ > 0, ¢ € R, = sufficiently large, 0 > 7/10, and 62 > x7/10+¢
we have

2 0
Wz, 2%, p,0) ~ 2007
T

Geometrically, the parameters x, 6, ¢, § describe a sector centered at the origin. The inner
and outer radii of this sector are vz — z? and vz, and the sector is cut by rays emanating
from the origin with angles ¢ and ¢ + §. Ricci’s result gives the expected number of prime
ideals in a sector so long as the inner radius vz — # is essentially 0 and the angle § between
the rays is sufficiently wide. Theorem 2.1.1 claims the more general result that one obtains

the expected number of prime ideals so long as the area of the sector is sufficiently large.

A note on the literature. It should be noted that Maknys [18] has claimed a result similar
to Theorem 2.1.1, but with the exponent 11/16 in place of 7/10. However, Heath-Brown [§]
has found an error in Maknys’ proof of this result. He states that Maknys’ proof, when cor-
rected, yields the exponent (221 +/201)/320 = 0.7349.... However, the result is potentially
worse than 0.7349... because Maknys’s proof depends on a zero density estimate (Theorem
2 of [17]), the proof of which also contains an error. In particular, there is an incorrect
application of Theorem 1 of [16]. For a version of Theorem 1 of [16] which is applicable in

the proof of Maknys’ zero density result, see Theorem 6.2 and the end of Section 7 of [4].

12



Outline of the Proof To orient the reader, we provide an outline of the proof of Theorem
2.1.1. In Section 2.3, we begin by smoothing the angular and norm regions for ¢ (z, 2%, ¢, 6),
and then express these regions via a sum of Hecke characters \™ and an integral of (Na)™.
The main term in Theorem 2.1.1 then arises from the contribution of the principal character.
After applying an analogue of Heath-Brown’s identity in Z[i] (see Lemma 2.2.6 below), we

are left to bound a sum of O((log z)>/*2) expressions roughly of the form

Z Cm/ +Zt Z al(al)---agj(agj)#% dt

M<m<2M a=az---azy
Na;j=xNj;

for some parameters N;. Here the ¢, are Fourier coefficients and V' is a Mellin transform.

Using estimates for ¢,, and V, this reduces to showing that

21/2
> / Lyit)]dt < log )7

M<m<2M

where F' is the Dirichlet series appearing in the penultimate display.
In Section 2.4, we reduce this to bounding the number R of pairs m,t¢ for which a

particular factor f of F' attains a large value. Specifically, for such a pair m,t, we have

> c(a)A™(a)(Na) ™| > W

NaxN

for some divisor-bounded coefficients ¢(a) and W > 0. In Section 2.5, we use mean- and
large-value estimates to bound R. Specifically, we use a hybrid large sieve estimate due

to Coleman and an analogue of Huxley’s large value result, also due to Coleman. Writing

G =" |e(a)]?, these yield

R< NGW ™2+ (M*+T*)GW 2,

R< NGW ™+ (M* + T*)NG*W ™5,

13



respectively. We also use the “trivial” estimate

R < min(M, T)YNGW 2 + MTGW 2,

as well as a subconvexity result for the Hecke L-function, L(s, \"), due to Ricci. There are a
variety of ranges for N, M, T to consider when deciding which estimate to use. This requires
a case analysis which is done in Sections 2.6 — 2.8. Here we also indicate the “worst cases”
of N, M, T for which our estimates are sharp.

We note that with an optimal large sieve, one would have the estimate

R< NGW ™2+ MTGW 2. (1.1)

Although such a large sieve is not available in the literature, this would not improve our
results (it would, however, simplify the case analysis). This is because one of the worst
cases in our analysis remains a worst case when using this estimate. See Section 2.9 for this

discussion.

2.2. Notation and Preliminary Lemmas

We collect here some additional notation and lemmas we will need throughout the proof.
The symbols 0,0, <, >, < have their usual meanings. The letter £ denotes a sufficiently
small positive real number, while A, B, C' stand for an absolute positive constants, all of

which may be different at each occurrence. For example, we may write

2 logx < a°, (logz)?(log z)” < (log )"

Any statement in which e occurs holds for each positive ¢, and any implied constant in such
a statement is allowed to depend on €. The implied constants in any statement involving the
letters A, B, C' are also allowed to depend on these variables. We also define the generalized

j divisor function 7;(a) on ideals to be the number of ways to write a as the product of j

14



nonzero ideals.

Similar to A(a), we define

(—=1)" if a =p;---p, with p; distinct primes,
p(a) =
0 otherwise.

Let arg a be the argument of any one of the generators of a (which is unique mod 7/2). For

m € Z, we define the angular Hecke characters

which are primitive with conductor (1). Note that the character is well-defined since the
particular generator o chosen for the definition above is immaterial. From these we get the

Hecke L-functions, defined for Re s > 1 by

Lis ) =3 (A;S)‘)

a

Here the sum is over all nonzero ideals of Z[i]. These L-functions are absolutely convergent
for Re s > 1, and Hecke showed that, for m # 0, they have analytic continuation to all of C

and satisfy a functional equation. We also have

1 > N7 (a)(a) L(s,Am) > N"(a)A(a)

L(s, Am) (Na)s ' L(s, Am) (Na)s '

a

which are also absolutely convergent for Re s > 1. We summarize these facts in the following

Lemma 2.2.1. The function L(s, \™) satisfies the functional equation

L(s,\"™) = (s, A™)L(1 — s,\™), (2.1)

15



where
2371F<1 —§+2 |m])
C(s+2|m|)

Y(s, A™) =7

If m # 0, then L(s,\™) is entire, and otherwise it is meromorphic with a simple pole at

s = 1 with residue %. We also have

L(s,\™) = L(s, A™). (2.2)

These results are standard. See [13], for instance. We will need several results on the
behavior of these functions in the critical strip. These are given in the following pair of

lemmas.

Lemma 2.2.2. Let V = (4m? +t2)Y/2. Then there exist absolute constants C,5 > 0 such
that
L(o + it, ™) < VU= (1og V)23,

uniformly for 1 — 6 < o < 1. It follows that there exists an absolute constant C' > 0 such

that L(s, \™) has no zeros in the region
o>1—C(logV)~?3(oglog V)~'/3. (2.3)

Lemma 2.2.3. For o in the region (2.3), we have

L'(o+it, \™)

POT AT gV,
Lio +it,am) <187

L iV
Lo it ) &%

Lemma 2.2.2 follows from Theorems 1 and 2 of [3], and the proof of Lemma 2.2.3 follows
closely the proof of Theorem 3.11 of [21]. Next, we need an estimate for the number of lattice

points in a suitably regular sector.

Lemma 2.2.4. Let ¢ € R, x and y be sufficiently large with +*/*> <y < x, and 2~ Y? < § <

16



/2. If

N(w,y,0,0) = #{a+bi € Z[i] : ¢ < argla+bi) < p+0, v —y <a® +b* <},

then N (x,y,p,d) < 0y.

Lemma 2.2.5. Let 7j(a) be the j-divisor function for Z[i|. We have 7;(a) < (Na)®, and for

2

y > /% we also have

Z 7j(a) < y(logz) ™.

r—y<Nalz

For ¢ € R and x7Y/? < § < /2, we also have

Z 7;(a) < dyz°.

rz—y<Nalz
p<arg a<p+4

The implied constants above depend only on € and j.

The proof of Lemma 2.2.4 is straightforward, and Lemma 2.2.5 follows from Shiu’s work
[20]. Our analysis makes use of an analogue of Heath-Brown’s identity in Z[i] (see [7]). For

technical reasons, it is more convenient to have a smoothed version of this identity. As such,

let W be a smooth function supported on [%, 2] such that

dWE't)=1 and  W(t) <t

n>0
for all 0 <t < 1. Then we have the following

Lemma 2.2.6 (Heath-Brown’s Identity). Let X > 1 and J be a positive integer, and let W

17



be as above. Then for any a with Na < X7, we have

J
J i
M =X (T X togtonutar) - plo)
7=1 ap---azy=a
Na, Na; Najq Najy;
W W J w — )W /L
XXl () v (i X/
ni,...,n; >0
NJj41,-MJ+5 20
XW(Naji1) - W(Naj)W(Nayyjr) - W(Nagy).
Note that the terms on the last line simply force the ideals a;4, ... to have norm 1. The

point of the lemma is that for Na < X7 the function A(a) can be decomposed into a linear

combination of O((log X)?’) smooth sums of the form

S dog(an)u(asi) - plany) W (ZJVV_C‘) W (J]vva> |

a---agy=a

where N; = X7 /2" or X/2" for some integer n, depending as j < J.

2.3. Initial Decomposition

To estimate v (z, 2%; ¢, d), we begin by smoothing the angular region for a. For this, we need

Lemma 2.3.1. Let k € Z with k > 0 and let o, B, A, L be real numbers satisfying

Then there exists an L-periodic function P(x) with

P() = 78— a) + 3 cne™

m7#0

18



which satisfies
Pit)=1  iftela,p]

P(t)=0 ifte[B+AL+a—A]
P(t) € [0,1] for allt,

and where the coefficients c,, satisfy

1
3(5—04),

|Cm| < . . i (3.1)
] <A|m|) ym 7o

where the factor involving k is taken to equal 1 when k = 0.

This result is classical. See, for example, Lemma A of Chapter 1, Section 2 of [15]. The
special case L = 1 is proved there, but the lemma generalizes easily to arbitrary periods.

Let P be as in the lemma with L = 7, a = ¢, 8= ¢ + 9, and A = jz7°. Then

(a2’ = Y A(u)P(arga)+O( > A(a)>+0( > A(u)).

r—xf<Na<z z—z?<Na<z z—rf<Na<zx
p—A<arga<yp pti<arg a<e+di+A

To estimate the error terms we note that the hypotheses of Theorem 2.1.1 imply that z¢ >

2710t and § > x~3/19%¢ In particular, we have
and A > l2
Since A(a) <logx, we have by Lemma 2.2.4 that

Z Aa) < (log )N (z,2%, ¢ — A, p) < (logz)z’ A = o(627),

z—af<Na<x
p—A<arga<ep

19



and similarly for the other error term. We expand P(arga) using its Fourier series and write

Z A(a)P(arga) = Z A(a)Zcm/\m(a).

r—xf<Na<z r—xf<Na<z m

We have
Z Aa) =2 Z log p + O(x'?log ),
z—2f<Na<lz z—z? <p<z
p=1 (mod 4)

(see, for instance, display 7.4 in Chapter 2 of [19] for this computation). Since z? > 27/1%+¢,

the Siegel-Walfisz theorem in short intervals gives

2 Z logp = 2°(1 +o(1)),

z—af <p<z
p=1 (mod 4)

and since ¢y = 207!, we obtain

w(:c,xg,go,é):%Tx(l—l—o(l))—l— S A Y e (a),

z—x?<Na<z m#£0

Using (3.1), we truncate the Fourier series at M; to obtain

¢(x,x9,¢,5):%"39(1+o(1))+ PIERCEDY CMm(C‘)*O(xelOg“”(;akj\Z)k)

z—zf<Na<z 1<|m|<M;

for any k > 1. Choosing M; = §~'2°, a sufficiently large choice of k depending only on

makes the error term o(dz?), and so

2027

L+o)+ > e > Aa)r"(a).

1<|m|< My z—zf<Na<zx

(2%, 8) =

20



Next, we smooth the norm-region for a. Let V' be a smooth function satistying

V<t>:1 iftE[x—xe’x]’
Vi) =0 ift e R\ [z — a2 — 2% v + 277,

V(t) € [0,1] for all ¢.

Then V satisfies

LOHA=1)(1-0+¢)

1% fro-l d vV 3.2
(s) < x an (s) < DL (3.2)
for any real A > 1, where the implied constant depends only on A and . We obtain
2(51‘6 2(5I9
6 m
0)=——-oI(1 1 " A(@)V(Na)X =—/(1 1 S,
Y(z, 2% p,8) = ——(1+0(1)) + > cn )y A@)V(Na)A™(a) —(L+o(1)) +

1<|m|<M; a

say, where the error in replacing the sharp cutoff with the smoothing function V' has been
absorbed into the error term o(dz?).
We now employ Lemma 2.2.6 with X = (2z)'// for some integer J > 1 to be chosen.

Then S is a linear combination of O((log z)?/) sums of the form

S = Z Cm, Z al(al)"'CLQJ(ClQJ)Wl(NCll)"'WQJ(NOQJ))\m(Cl)v<NC1), (33)

1<|m|<M;  a=ar-agy
where )
log Na if j =1,
aj(@) =41 if2<j<.J,
p(a) itJ+1<5<2J,

\
W;(k) = W(k/N;), and N; = z/2" or X /2" for some integer n > 0 depending as j < J.

It is natural to consider the Dirichlet series associated to the sums S. For each j and m,
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put

and also let

where the coefficients satisfy

ja(a)] < 725(a)log .

Then Mellin inversion gives

1<|m|<M1

1
=5 / CmEFm(s) ds.
(1/2)

For Re (s) =

, we have

l\?IH

F(s) < logx Z 1/2 < g/t
Na<Qz

Also |¢,,| < §. Truncating the integral at height 77 and using (3.2) then gives

1 [Y2HT _pl/2HA-D(-0+e)
S=— V(s) Z cmEm(s) ds+ O ( 1/2+ 7T )

2mi ;
12—l 1<[m| <My

for any A > 1. Choosing T} = '+ and taking A sufficiently large in terms of ¢ makes the

error term negligible. We have |¢,,| < ¢ and [V (3 + it) | < 2972, s0

Y / —|—zt|dt<< Z / (L +at)] dt,

1<|m|<M1 1<m<M1

the last inequality following from (2.2). We divide the ranges of m and ¢ into dyadic intervals
[M,2M] and [T, 2T for M,T > 1 along with the additional interval [0, 1] for . Theorem

2.1.1 now follows from
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Lemma 2.3.2. We have

1.1/2
Z / +Zt |dt<< W,

M<m<2M

uniformly for 1 < M < My and 1 < T < T. The expression with an integral over [0, 1] also

satisfies this bound.

2.4. Reduction to Large Values

In this section, we reduce the proof of Lemma 2.3.2 to the estimation of the number of large
values of a certain Dirichlet polynomials. We begin by letting A be a small parameter to
be chosen and write F,(s) = G(s)H,,(s), where H,,(s) is the product of those factors for
which the lengths N; satisfy N; < 2%//. Since

we have

H,, (1 +it)| < Z2Y%logz,
[Hn (5

where Z is the product of those N; with N; < 2%/7. Then

/ | Fon (3 +zt)ydt<<21/2loga:/ > |Gm (3 +it)|dt.  (41)
T M<m<2M

M<m<2M
We now bound the integral on the right (I, say) by a set of O(T') well-spaced points ¢,. We

have

I<> Y |G (+itn)],

n M<m<2M

where |t; — t,| > 1 for [ # n. For each triple j,m,n, let

| i (& +ita)]| = NJU™ 72 (log ),

J
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We need to show that o(j, m,n) cannot be too close to 1. We treat the case j > J, for which

= N M)A (@)W (a)
fim(s) = zﬂ: (Na)* '
The case 7 < J would be very similar. By Mellin inversion
fim (3 +it) = /L (L 4t + 5, A™) 7 NSW;(s)ds,
(o)
where ¢ = 1 + (logz)~!. We have trivially that

1
|L(1+ (logx)~t +it, A™)

| < (x(1+ (logz)™!) < log ,

(here again (x is the Dedekind zeta function for Z[i]). Truncating the integral at height x°

and using the rapid decay of W gives
ctix® _1
fim (5 +it) = / L(+it+s,A™) " N:W,(s)ds

c—ix€

with negligible error. We now use Lemmas 2.2.2 and 2.2.3 to move the line of integration to

the left of Re s = % Then in the region
1—77§Rew§%+c, Im w —t] < x,
where
n = C(logz) **(loglogz) /3,
we have

—x1
L(w, A™) < logw

Moving the line of integration to 1/2 — n, we thus have

}fj,m (% + zt)‘ < (log m)le/2—n’
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from which it follows that

U(j,m,ﬂ) S 1_77

for = sufficiently large. We now split the available range for o(j, m,n) into O(log x) ranges

Iy = (—o0,3) and

1 —-11
I, = {_+l—,——|—%)7 (1<I<1+L/2, L=|logzx]),
For each j,1, let

C(j,1) = {(m,tn) : max o(k,m,n) =o(j,m,n) and o(j,m,n) € Il} .

1<k<2J

Since there are O(log z) classes C'(j,1), there must exist some class C for which

I < (logz) Y  |Gn(3+it)].

(m,t)eC

For (m,t) € C, we have
|G (& +it)| = [ N0 2 < T NJF = VU2,

where Y is the product of the N; with N; > x2/7. To simplify notation, let

S+ Juls) = Gl N=N, R=#C (12)

g =

If | =0, then I < MTlogz, so (4.1) gives

/2

(log )4

oT
/ Z ‘Fm (% + zt)| dt < ZY2 M, Ty (log {E)2 & 5Tl T0AE «
T M<m<2M
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since we may assume A < % and 20 > 271 If [ > 1, we have

I < (YY) Rlogz,

and so
2T
/ > | Fn (3 +it)]dt < 2V P R(log x)”.
T pM<m<oM
Now since
712y 0-1/2 Z1/2($Z—1)a—1/2 <<$1/2(Zx—1)1—0 <<:L,1/2+(2A—1)(1—0)’
we find that

2T R
/ > B (3 +it)| dt < 2'?(logx)? (m) . (4.3)

T M<m<oM

It remains to estimate R. For each (¢,m) € C, we have
| fn (3 +4t)| > No7V2,
Since 0 < 1 — /2 we see that Lemma 2.3.2 follows from the bound
R < x17380=9)(Jog ) B (4.4)

for any fixed B > 0, since then the expression on the right of (4.3) is bounded by taking
o =1—mn/2, and the definition of n allows us to save arbitrary powers of logz. To deduce

the requisite bound for R, it is sufficient to show that
R < (MT)0=9)3(log z:)P (4.5)

uniformly in M, T, o, since MT < MT) = z'=0+e5—1 < o3/10-¢,
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2.5. Mean and Large Value Results

To estimate R (see (4.2)), we will need several mean-value results of the form

MHPS

Im|<M

2

dt <D Y e(a)l? (5.1)

NaxN

A" (a)(Na) ™"

NaxN

for some D = D(N, M, T), where c(a) are arbitrary complex coefficients defined on the ideals

of Z[i]. First, we have Coleman’s hybrid large sieve (Theorem 6.2 of [4]).

Lemma 2.5.1 (Coleman). The estimate (5.1) holds with
D=M?*+T*+N. (5.2)

Additionally, we also have the following trivial estimate.

Lemma 2.5.2. The estimate (5.1) holds with
D = MT + Nmin(M,T). (5.3)

Proof. For the case T'< M, see [19], Theorem C. For the other case, the mean-value theorem

for Dirichlet polynomials gives
T
/.

Summing over m gives the other estimate.

> c(a)A™(@)(Na) ™| dt = (T +O(N)) Y _ |e(a

NaxN NaxN

]

Note that in each of the estimates above, the integral over ¢ can be replaced by a sum
over well-spaced points at the cost of a logarithmic factor, which will not affect our results.

For the problem at hand, the natural quantity to work with is MT', rather than the

27



minimum or maximum of M and 7T'. To this end, let

_  |log(M/T)|
L=L(MT)= e 1T

so that
max(M? T?) = (MT)"™  and  min(M? T? = (MT)'"*.
We will regard £ as an arbitrary parameter assuming values in [0, 1]. The estimates (5.2)
and (5.3) become, respectively
(MT)* 4+ N  and  MT + N(MT)*=5)/2,
We will apply these estimates to suitable powers of the polynomial f,, (% + it). For any

integer g > 1, we have

|b(a)|”
Na ’

3 a(a)W (Na)A™(a) |*

20—1
RNg( : < Z (Nu)1/2+it

(m,t)eC

< D(N*, M,T) )
NaxN

a

say where |b(a)| < 7,(a)(logx)?. Using Lemma 2.2.5 and partial summation, we find that
the coefficient sum on the right is O((logz)?) for some B which depends on g. Since g is
bounded in terms of A, we find that B and the implied constant depend at most on our

choice of A. Thus
RN9D <« (MT + NY(MT)"9/2) (log z)?,

RN9Z7D < (MT)"" + N9) (log z)”.

We will also make use of the following large values result of Coleman (Theorem 7.3 of [4]

with # = 0) which is proved using Huxley’s subdivision method:

R < (NQQ(I—U) + (M2 + TQ)Ng(4—6U)) (log l’)B < (N2g(1—0’) + (MT)1+ENQ(4—60')) (log {E)B.
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For any integer g > 1, the estimates above give

R < ((MT)"EN91=29) 4 N20(1=0)) (Jog 1) 5, (5.4)
R < (MTN9=2) 4 (MT)1 22 N260=9)) (log 2)7, (5.5)
R < (MT)"EN9U=62) 4 N200=0)) (log 7). (5.6)

The last estimate is useful only when o > 3/4, and any time it is used, o will be assumed
to lie in this range. In each of the estimates above, the first summand decreases in ¢, and

the second increases. Writing N = (MT)?, one would like to choose

U4+ L 4L 14L
OB 287 28(20-1)

respectively, so as to equalize the two summands in each estimate.

Unfortunately, g must be chosen to be an integer, and this adds a fair amount of com-
plication to our analysis. The optimal choices for g in (5.4) — (5.6) are obtained by tak-
ing the floor of the values in (5.7), or 1 plus the floor. Thus, unconditionally, we have

R < (MT)™ir(ene6) ywhere

Oél([ﬂﬁa )_1+‘C+ﬁ\‘ ;L:J (1_20)7

as(L,B,0) =20 L% + 1J (1-o0),

az(L,B,0)=1+p L%J (1 —20), .
@4(/"17670):% 25 \‘Lﬁﬁ'}_lJ (1_0-)’
as(L,B,0) =1+ L+ 8 L%J (4 — 60),

as(L,B,0) = 28 Lﬁ:) 4 1J (1—0),

where aq, as, a5 apply only when the expression in the floor brackets is at least 1. We also

define Ay to be the minimum of these six estimates and A4; = min(ag;_1, aw;) for i = 1,2, 3.
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Our analysis now proceeds by fixing 8 and ¢ and understanding the behavior of Ay as £
ranges between 0 and 1. For this, we will need the following propositions which describe the
behavior of A; for : = 1,2,3. The proofs of these propositions are very similar, so we only

prove Proposition 2.5.3. For notational brevity, we also suppress the dependence of «; and

A; on § and o.

Proposition 2.5.3. Fiz § € (0,2) and o € (35,2). Forn € Z, define

LD = pn —1 and L = L0 1281 - o).

n

Then on [0,1] N [ﬁg’d),ﬁﬁlﬁ)>, we have

1+ L+ Bn(l—20) if £L<L,
Al(ﬁ) =

28(n+1)(1—0)  if £L> L5

In particular, A (L) is a continuous non-decreasing function of L on [0, 1].

Proposition 2.5.4. Fiz € (0,2) and 0 € (75,1). Forn € Z, define

LD =280 —1 and LE) = L£ZD 1481 — o).

Then on [0,1] N [L,(f’d), 522;‘?), we have

1+ Bn(1 —20) if L < ﬁg’e),
As(L) =

L 498+ 1)(1—0) if £L> L.

In particular, Ay(L) is a continuous non-increasing function of L on [0, 1].

Proposition 2.5.5. Fiz 3 € (0,2) and o € (3,1). Forn € Z, define

L3Y =92820 —1)n—1  and L3 =L£BD 1251 —0).

n n
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Then on [0,1] N [E%S’d),ﬁﬁl?’;ci)), we have

1+ L+ Bn(d—60) if £L< L9,
«43(5) =

2B(mn+1)(1—0)  if £L> L3,

In particular, As3(L) is a continuous non-decreasing function of L on [0, 1].

As a remark on notation, the superscripts d and e appearing above are no parameters,
but rather indicate that the variables using these superscripts are points of discontinuity or

equality, respectively.

Proof of Proposition 2.5.3. A short computation shows that the solutions to a;(£) = as(L)

are given by

£49 =mB—1+26(1=0),  for g —21—0)<m < —21—0)

IS

and that the points of discontinuity of A;(L) are given by

LI =npg -1, <n<

wl e
Wl

Since LY

mj)l — o = 0D LD — g and since o # 1, there is a unique point of

n+1
: : (Le) pLd) p(Ld) : : S P
intersection, say Ly, , between each pair £, L, of points of discontinuity, and it is

easy to check that m,, = n. Moreover, for a fixed value of L%J , i.e. on the interval between

two points of discontinuity, it is clear that «; increases in £, and «y is constant. Thus
A is non-decreasing on each interval [.c;l’d),ﬁf;?). Finally, we note that as <££}_"?> =
Q9 (ﬁﬁ}’d) — 5) = o (ﬁ&}"”) for all € > 0 sufficiently small. Thus A; is continuous, proving

the last statement of the proposition.

]

It is worth noting that the results of these propositions extend to some slightly wider

ranges of 8 and o. For clarity of exposition, we have included only the ranges we need for
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our analysis. From these propositions, we can also deduce the following upper bounds, which

have the benefit of being linear in L.

Corollary 2.5.6. For all L € [0,1], 5 € (0, %), and o € (1—70, 1), we have A; < B;, where

Bi(L,B,0) =2(1+ L+ B)(1—0) —458(1 - 0)?,
Bo(L,B8,0)=(5—0)(1+L—-28(1—-0))+28(1—0),

83(‘676’0) = (21

— 0

oc—1

) (1+L£—28(1 —0)) +28(1 — 7).

Proof. The functions B; are the linear interpolations of the points (ﬁ%’e) A (Eff{e))). n

2.6. Short Polynomials

We are now ready to apply the estimates in Section 2.5 to estimate the quantity R. We will
need a subconvexity estimate for Hecke L-functions (Lemma 2.7.1 below) to eliminate certain
ranges of £, 3,0. This will require the coefficients a(a) to be smooth, which is ensured by
N > X. As such, the present section is devoted to the case N < X, where we do not require

subconvexity. We divide into several cases.

Case 1.1: MT < X

Choose g so that
X2 < NI < X3,

Then (MT)'* < (MT)?* < X2, so by (5.4), we have
R < (X2+2(1720) + X6(1*0)) (lngﬂ)B < xﬁ(lfa')/J(logm)B'

This gives (4.4) so long as J > 6 and A is sufficiently small.
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Case 1.2: MT > X, 5>§

In this case, we have 8 < 1. If > 2, then (MT)™* < X?®. Similar to Case 1, we choose g
so that
X?< N9 < X*

and apply (5.4) to obtain
R < 28=9/ (log ).

We obtain (4.4) so long as J > 8 and A is sufficiently small.

Case 1.3: MT>X,5§§,JS%

Here it suffices to use the estimates By and By. A short computations shows that B;(£) <
2(1— o) so long as

c<(5-per-n)a-0-r

say. Since By decreases in £, it suffices to check that By(£*) < £(1 — o). Another compu-

tation shows that this inequality holds so long as

< 100 — 9
~ 1202 —240+9°

The expression on the right decreases in o, and substituting o = %, we see that By(L*) <

F(1—0)solongas <2

Case 1.4: MT > X, 3<%, 0>3

The proof of this case is very similar to Case 3, except that we use A3z in place of A;. Note
that Cases 3 and 4 do not use any information about the size of MT compared to X. As

such, Cases 3 and 4 actually cover the entire range £ € [0,1], 8 < 2/3, 0 € (35, 1).
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2.7. Long Polynomials: Subconvexity and Simplifications

We now suppose that N > X, in which case we may apply the following subconvexity

estimate for Hecke L-functions.

Lemma 2.7.1 (Ricci). If (4m? +t*) > 4, then
L (3 +it, ™) < (m® + t3)YSlog®(m? + 1%).

For a proof, see [19], Chapter 2, Theorem 4. Since N > X, the coefficients of f,,(1/2+it)

are smooth and we may write (in the case j > 1)

fu(+it) =5 / L(5+it+s,2") W(s)N'ds. (7.1)

2mi
(0)

We have m > 1 always, so Lemma 2.7.1 yields

o 2 4 42 21/61 3(1m2 1 42 2
fm(§+z‘t)<</ (m” + 4 +y) Ogngr +y)d
oo (1+1yl)

< (M? +THY10g3(M? + T?)

< (MT)+0/610g3(M? 4+ T?).

If j =1, we write
. Na\ N\"(a) Na Na\ \"(a)
1 —
o) =os VW () g+ 2 () 5 () e

The first sum is handled in the same way as before. If W(y) is replaced by W*(y) =

W (y)logy, then W* decays rapidly on vertical lines just as W, and so in this case we obtain

f (3 +it) < (MT)T5/1og®(M? + T?) log N.
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Since |fm (24 zt)| > (MT)P=12(log z)*, we deduce that

We can also make a few simplifying assumptions. We may assume

- 7
0' —
10’

for otherwise

R< MT < (MT)"00-9)/3,

In particular, we have 0 < £ if # > 2(1 + £). From the remarks in Case 4, we may also

assume 3 > % Thus we may limit our analysis to the situation in which

2 5) )
§<6<6(1+£)§§. (7.3)

2.8. Long Polynomials: Case Checking

Case 2.1: g <

[ [@3¢

y 0 < %
Fix 0 € (£,2] and 8 € (3,2]. We determine the largest value £* of £ for which A, is

sufficient. Since A; is continuous and non-decreasing, we can compute L£* as follows. We

have
10

26(n+1)(1-0) < (1 -0)

so long as n < % — 1. If g # g, then since L%J = 2 in the present case, it follows that L£*

lies in the interval [Eél’d), £§1’€)). The value £* is then given by the solution to

1+ L5 —28(20 — 1) = %(1 — o).
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If 5 =23, then A (L) =2(1—0)forall £ € [ﬁgl’e), /:S’d)}, so we may take £* = £ = 2,
Thus in this case also, L* is given by the solution to the equation above.

We have A (L) < 2(1—0) solong as £ < L*. Since Ay is continuous and non-increasing,
to estimate the remaining range of £, it suffices to check that Ay (£*) < 2(1—0). To evaluate

Ao (L"), we need to determine n* such that the interval [E(z’d), E;%’i%) contains L£*. A short

computation shows that in the present case, we have

|2 -0 o— =
n* = 36(1 )+ (2 1)J 1.

If £* < £%9 then

10

Ag(ﬁ*):1+5(1—20):1—ﬁ+25(1—0)§3(1—0),

where the last inequality follows from 1 — 5 < % < % < g(l — o). Otherwise if £* > £§2’6),

then again we have
1L 1 L3

AlL) = T 451 — ) < -0 +4ﬂ(1—a):1—5+25(1—0)§?(1—0).

. B) 3
Case 2.2: <2, 0>
Fix o € (2,1) and 8 € (2, 2]. The arguments for this case and the next are very similar to
Case 2.1, so we will be fairly brief. As in Case 2.1, we determine the largest value £* of L

for which A3 is sufficient. Arguing as in that case, we find that £* is given by the solution

to
10
L+ L7~ 26(60 —4) = (1~ 0).

We now check that Ay(L£*) < 22(1 — o). As before, we have L* € [ﬁ?’d), EéQ’d)). If £ <

[,52’6), then
(L) =1+ B(1—20) =1—B+28(1—0) < %(1—0)
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9

&, where the last inequality follows from 1 — < ¢ < 2(1 —o0). If 0 > 75

so long as 0 < o

then £* > 1, so Aj suffices for all £ € [0,1]. If £* > 552’6), then just as in Case 2.1 we have

As(L) < ?(1 o).

Case 2.3: 3 > %

Fix 0 € (3,1) and 8 € (3,2). By the subconvexity restriction (7.2), we may assume
L >3p(20 —1) — 1 = L*, say, and since A, is non-increasing in £, it suffices to check that
A5(L7) < 2(1 — o). The inequalities 5(()2’6) < L < ﬁ?"” are easy to verify (the interval

[ng’e), E?’d)] may intersect only part of [0, 1], but this is immaterial). It follows that

1— (3820 — 1) — 1)

A (L) = 5 +28(1—0)=1+4+33(3 —0) +26(1 —0)
:1—?+5B(1—0)§?(1—0) (1—?)+55(1—0—):1—§(1—0—).

2.9. Optimality of %

There are two sets of values of L, 3,0 which show that the constant 1—30 is optimal in our

analysis. These are

3
E_g>5

I

|
)
I
)
=)
Q.
o
I
\t—‘
Sy
I

| Ot

)
I

In the cases above where these values occur, one may check that the inequalities used are

10

5 cannot be improved. The optimal large sieve (1.1) would eliminate the need

sharp, and so

9

for the variable £, but the particular case = %, o = {5 remains a worst case when using

this estimate.
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Chapter 3

The Sixth Moment of Automorphic

L-Functions

3.1. Introduction

Moments of L-functions are among the central objects of study in modern analytic number
theory, and there is a vast literature on the subject. In this chapter, we shall be concerned
with a family of L-functions attached to automorphic forms on GGLs. Specifically, we consider
the sixth moment of L-functions associated to the family of holomorphic modular forms with
respect to the congruence subgroup I'1(q) (see [11] for definitions). Our work is motivated by
the work of Djankovié¢ [5] and Chandee and Li [2] on this family. For a detailed introduction
to this family of L-functions, see the introductions of the above two papers.

Let Sk(I'1(¢)) denote the space of holomorphic cusp forms on I'y(¢). We assume k > 3 is
an odd integer and ¢ is prime (these assumptions are made mostly to eliminate oldforms).

Then Sk(I'1(q)) is a Hilbert space with the Petersson’s inner product

(f. ) = / F(2)7() 2 de dy,
I'1(¢)\H
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and

SiT1(@) = P SkTo(9) 0)-

X (mod q)
Let #, be an orthogonal basis for S;(I'y(¢), x) consisting of Hecke cusp forms, normalized
so that the first Fourier coefficient is 1. For each f € H,, we let L(f,s) be the L-function

associated to f, defined for Re s > 1 as

wp =LA =TI (1- 22+ 32)

n>1 D

where {\f(n)} are the Hecke eigenvalues of f. In general, these satisfy the Hecke relation

Am)s(m) = D (s (53 (1.1)

d|(m,n)

We define the completed L-function as

A(f,%ﬂ):(fﬁ);r(s%)uﬁ%ﬂ), (1.2)

which satisfies the functional equation
A(f g +s) =N (F 3 9)

where |ns| = 1 when f is a newform. We define the harmonic average over H, by

ha :F(k‘—l) Oéf
I 1717

fEHx fEHX
We are interested in the sixth moment
2 h 1116
M(Q)Z@ Yoo > Lyl
x (mod q) feHy
x(=1)=(-1)*
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The conjectured asymptotic (see [2]) is

M(q) _ 2 > Zh]L(f,%){ﬁerlQ% (1—%)4(1+%+i> c,! (a(’g—‘q)g>

x (mod q) feHy
x(=1)=(-1)*

where 3, C L are certain explicit constants. Using the asymptotic large sieve for the Fourier

coeflicients of cusp forms developed by Iwaniec and Xiaoqing Li [14], Djankovi¢ [5] has shown
Mg <

for any € > 0, whereas Chandee and Xiannan Li [2] have obtained the following asymptotic

formula for the smoothed sixth moment:

2 > Z/ (f, 5 +it)|" dt

P9 o T
X(—1)=(~1)k
1 ! 4 1( gQ)g > k .\ |6
N42<53(1—5) (1+q+ >Cq o /_OO‘F(5+zt)| dt.

Note that that the integral in ¢ is quite short due to the presence of the gamma function.

Building on these results, we prove

Theorem 3.1.1. Let q be prime and k > 3. Then, as ¢ — 0o, we have

M(q) < (logq)’.

Our proof of Theorem 3.1.1 adheres closely to the work of Chandee and Li [2] and may
be seen as an application of their ideas that avoids many of the technical details of their
proof. Although we sacrifice an asymptotic, our result has the benefit of having no integral

in ¢ and being of the correct order of magnitude.
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3.1.1. Notation

We retain the notational conventions of Chapter 2, except for the use of the symbol A,
which we shall use either for Fourier coefficients or as a summation variable, and also put
e(r) = e*™@. We use a bold letter such as a to denote the pair of variables a;, as and write
f(a) to indicate that f is a function depending on these variables. However, we use n and
N to indicate the pairs (n,m) and (N, M), respectively. We write n < N to denote the
condition ¢ N < n < ¢ N for some suitable constants 0 < ¢; < ¢3. The use of the notation
Z in a sum such as E o indicates that the is sum over residue classes = which are coprime
to the modulus of the sum, in this case ¢. In such a sum, we denote by T the inverse of z

mod c. All other notation should be clear from context.

3.2. Outline of the Proof

To help orient the reader, we provide an outline for the proof. First, after applying the
approximate functional equation for L ( f, %)3, the main object we need to understand is

roughly of the form

2 n)Ag(m)As(n)
> {3 S a

We apply the functional equation for L ( 7, %)3 rather than for L ( f, %)6 to avoid unbalanced
sums in m and n (i.e. m,n =< ¢*? rather than the weaker condition mn < ¢*). We note that
the t integral used [2] is included for precisely the same reason. It is also worth noting that
the application of Cauchy’s inequality in (3.2) immediately precludes any hope of obtaining
an asymptotic formula by our method, as we completely ignore the arithmetic of the root
numbers 7. Applying Peterson’s formula to the average over f € H, leads to diagonal terms

m = n and off-diagonal terms. The diagonal terms are evaluated fairly easily in Section 3.4.
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The off-diagonal terms involve sums of the form

T3(m)73(n) 2 Z Z 4m\/mn
Z — Sx(m7 n; Cg)Jk—l - ]
m,n=q? mn ) X (mod q) ¢ “
7 x(=1)=(-1)*

where S, (m,n;cq) is the Kloosterman sum defined in (4.1) and Jy_; is the usual Bessel
function of order k — 1.

The most important range for ¢ is in the transition region for the Bessel function, i.e.
c = q%. To focus on this region, we truncate the sum in ¢ using the Weil estimate for
Kloosterman sums. The details of this truncation are given in Section 3.5. The conductor

3. To understand the correlations

of the Kloosterman sum is then essentially of size cq < ¢
between the Kloosterman sums and the Bessel functions, we apply harmonic analysis in the
form of the Voronoi formula of Ivié¢ [10]. Before doing so, we reduce the conductor in the

Kloosterman sums by taking advantage of the average over x. The conductor lowering trick

of [2] (see Lemma 3.6.1) produces new Kloosterman sums of the form

. <m;;n) Z*e (q(x — 1)qu(f— 1)n) ,

z(c)

where the conductor is now reduced to ¢ < q% and the exponential in front may be treated
as a smooth function with small derivatives. Applying the Voronoi formula then produces
a single main term and eight error terms. The details of these transformations are given
in Section 3.6. The main term is estimated in Section 3.7, and it is here that we require
a more delicate analysis of the Laurent series coefficients D_; of the third-order Estermann
zeta function Ej (s, %) (see (6.8), (7.1), and (7.2)). This is accomplished via Lemma 3.7.4,

in which we improve the trivial estimate D_;(n) < n~ ¢ to

72(n)(log n)*~"

D_,-(n) <
n

In order to apply this estimate without losing too much from the triangle inequality,
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we need to suitably transform the sum. This is accomplished by an application of Poisson
summation (in the form of Lemma 3.7.2), along with some identities involving integrals of
Bessel functions. The details of these transformations are given in Subsection 3.7.2.

It turns out that the Laurent coefficients D_; are not multiplicative for ¢ = 1,2. In order
to extract a residue of ((s) at s = 1 after the above transformations, we require a somewhat
delicate analysis of certain complex-valued arithmetic functions (see Proposition 3.7.5), in
contrast to the simple contour shifting argument used in [2]. We then estimate the remaining
sum by elementary means to obtain a final estimate of (logq)? for the main term. These
computations are given in Subsection 3.7.3.

Finally, the eight error terms (i.e. the dual sums arising from Voronoi summation) are
estimated in Section 3.8. The main aspect of the calculations in this section is that the dual
sums are short. This is precisely the reason for reducing the conductor in the Kloosterman
sums using Lemma 3.6.1. The details of these calculations are standard but technical and

follow closely the arguments of [2].

3.3. Approximate Functional Equation

As is standard in such problems, we begin with an approximation functional equation for
L(f,1/2)3. The derivation of this is standard. For our purposes, it suffices to cite equation

(2.5) of [5], which is

L(f,1/2)° ZZZ pla agbz )ian) 73(n )U (&3b2n)

a>1 b>1 n>1 q

Y Y ne agbzxg(an) my(n) (a?’b;n) |

a>1 b>1 n>1

njw

where
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Here we have chosen the specific function ¢** to ensure that U (y) is real when y is real. This

is mainly for notational simplicity. The function U satisfies

Uly) < (1+y)~4,
(3.1)
Uly)=1+0@y") asy—0
for any A > 1. Applying Cauchy’s inequality, we have
2 p(a)s(b)ms(n)y (ab))\f(cm) ad?n )\ |
M(q) €« — Z Z > Ul — (3.2)
#(a) fery abn>1 a362 )2 a°
x(— 1) ( 1)k

Expanding the square and rearranging, we obtain

W<y 3 play)p a23b2 b);( (:%)m)(§2)T3(m)U (a‘;’bgn) U (a%bgm)

a1b1n>l q2 qz
. (% > abra) ) (X Ao A(em) ).

x(q fEH

)
x(=1)=(-1)*

Note that by (3.1), the terms with a3b2n, a3b2m > ¢2*< give a contribution of ¢~2022.

3.4. Orthogonality and the Diagonal Contribution

We now apply the orthogonality relations for x and s given by the following lemma.

Lemma 3.4.1. The orthogonality relation for Dirichlet characters is

(

1 if m=n(q), (mn,q) =1,
— x(m)x(n) = (—=1)* if m= —n(q), (mn,q) =1,

0 otherwise.

\
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Petersson’s formula gives

S AR () = G + 0 (),

FEH,

where

ot = 25174 3 (et (22 )

c=1

and S, 1is the Kloosterman sum defined by

Smsen) = Y- xlae (LT, (1)

a(cq) “

Here S denotes a sum over residues a with (a,cq) =1 and @ satisfies aa = 1(cq).

Lemma 3.4.1 gives

M(q) < D+ OD,

where OD is given by (5.1) and D = D, + D_ with

Z Z fi(ar)p(az)7s(b1)7s(n)7s (b2)73(m)U ajbin U azb3m

(a3b%n)z (adbm)? 3 3

ai,b1,n,a2,ba,m>1 ) ( ) q q
a1bi=a2b2(q)

ain=asm
(a1bragba,q)=1

and D_ is the same sum but multiplied by (—1)* with the condition a;b; = asbs (mod q)
replaced by a1y = —agby (mod ¢). The only relevant case is when a1b; = agby in Dy, since
in the other cases we have a;b; > q/4 or ashby > q/4, which means that a3b?n > ¢* or

azbsm > ¢*. Thus

D e (4), (2] o

ai,bi,n,a2,ba,m>1 ( ) q q
a1bi=asbs

ain=asm
(a1brazbz,q)=1
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Neglecting the error term, we open the factors of U and write

$2+$§) dSl d32

1 3
T (2mi)? //q3(51+52)@(1 + 514 52)7°(51)7%(52) €%
(2) (2)

S1 82‘

where
=y Mt S anban(m)
a1,b1,n>1 az,ba,m
(a1b1 q)=1 azba=a1b1
asm=ain
(a2b2,q)=1

We write Z(s) as the Euler product

where
p(p™) () (0" )13 (") (") T8 (P™) 9
Z Z ps(Bar+2b1+n) =1+ E -
a1,b1,n,a2,b2,m>0

a1+bi=az+ba

ai+n=az+m
for p # ¢ and

T n\2
h =S 12
>0 q q

Thus

P(s) = ¢"(s)H(s)

for some H(s) that is analytic for Re s > 1/2. After the change of variables u = s; + sq,
5 = So, We have
3(u?—2us) du @

u 9 3 3
O+ w)H(L+ )y (u— s)y(s)e e

The rapid decay of v(s) and e on vertical lines allows us to move the line of integration

in s to Re s = —1 and the integration in u to Re u = —% + €. In doing so, we pass a simple
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pole at s = 0 and poles of orders 9 and 10 at uw = 0. Thus
I):RR1+ﬂR2+WE1+TE%

where

Ry = Res [0 w B+ (e u].

_ 1 3 %u 9 3 3u2—2us 1 dS
R o [ e a0 0w - g e | 2
(-1)
1 zdu
Ey=— 9 1 342 AU
1= 5 / 2PN+ u)H(L+ u)y’ (u)e o
—*+€
2 d d
q2 <—9 1+u (]_ —|—u)'y (u _ S)ry (8)63(u —2us) Uu _5
uUu—s S

1) (~1+42)

Using Stirling’s formula and the rapid decay of e’ we see that
El,EQ < q_3/4+6-
A straightforward calculation shows that

R, < (logq)®.

In Ry, the leading order term of the residue (in terms of ¢) is of the form

C(log q)®

2

[ 7#er =95 = tos

(=1

We deduce that Ry < (log q)®, from which it follows that

D = (logq)®.
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We proceed now to our treatment of the off-diagonal terms, which constitutes the re-

mainder of the proof

3.5. Truncation of the The Off-Diagonal Terms

The off-diagonal contribution is

oD — Z Z p(ar)p(az)7s(by )T3(7’L)Tg(b2)T3(m)U (a%b%n) U (a%b%m)
3b2 )2 (adb3m)? g2 ¢

a1,b1,n>1
ag,bo,m>1
2 _ - _ aasm + aain
X (— X(Glbl)X(agbg)) (27‘(@ kz<cq) 1 Z X(CL)G (;) )
<,0(q) x( >1 o= cq
q) cz aa=1(cq)
x(=1)=(=1)k
Z 3o (a1)p(az)73(b1) 73 (n)73(ba) 73 (m ( ) (agb )
ai,b1,n>1 a?b )i(a%b%m)E
az, bg m>1
k aasm + aan 2
X 2mi” Z Z X (aa1by)x(aszbs) |.
c>1  aa=1(cq) ¢(q) @

1)k

—_
~—

x(—

As in [2], we introduce the operator Kg = i~*g + i*g for notational convenience. Let f be a

smooth function supported on [%, 3] such that

>1(5)

for all ¢ > 0. Inserting two of these dyadic partitions of unity into the sums over n,m and

using the orthogonality relations for y, we find that the off-diagonal contribution is

Sy e e S S S B

t\.’)\»—t

a1,b1,a2,b2>1 n,m>1
b 1 * aasm + aain (5'1)
x> =G(a,b,n,N,c)K —r
S igebn N 3 o )
c> a(cq

a=aibiazba(q)
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where

3b2 352 4
G(a,b,n,N,c)=U (al Bln) U (a2 §m) f (%) f (%) Jr_1 (C—gw/alna2m> .

qz q?

Here ZD ~ denotes a dyadic sum over N = 27.
We now truncate the sum in c. Letting C' = q_%\/alagNM, we write

where
_ 27 p(ar)p(asz)Ts b1)7'3(b2) D
Iy Sy S M) ) oy
a1,by,a2,b2>1 N,M
(a1a2b1b2,9)=1
with
1(a,b, N) Z Z m3(n ; F(a,b,n,N,c),
c>1 nm>1 )2
qle
7'3 7'3
(@b, N)= )" - Z F(a,b,n,N,c),
c>C nm>1
(c,9)=1
and

F(a,b,n,N,c)=G(a,bn Nk Y e(

a(cq)
aEalb1 a2 b2 (q)

aasm + aain
cq

The quantity .# is defined like %5, except with the condition ¢ < C' replaced by ¢ > C. We

now prove the following proposition.

Proposition 3.5.1. For C' = q_%\/alagNM, we have
0+ Ay < g

For the proof of this proposition and for our arguments in Section 3.8, we will need several
properties of the J-Bessel functions. These are summarized in the following lemma. These

results are standard and can all be found in [22].
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Lemma 3.5.2. We have

Jy1(273) = % (W(zms)e (x - % + §> + W (2rz)e <—x + % — é)) : (5.3)

where W (z) <, 277, Moreover,

0 2l+k+1

2 - 4
Jp—1(2mx) gz:; €'£+kz—1) (5.4)

and
Jpo1(z) < min(z~z, 257). (5.5)

Proof of Proposition 3.5.1. To treat J#], we begin by writing

(a,b,N) Z Z Z T3 T3 F(a,b,n, N, cq").

c>1 n,m>1
(c.9)=

For a fixed r, we use the Chinese Remainder Theorem and the Weil bound to see that the
modulus of the Kloosterman sum in F is
* aasm + aan * Tasm + rTain
S ety | |y (et
quJrl qr

a(eq™t1) z (mod ¢")
a=a1 b1 a2b2 (q)

Z* . (yagm —i—@&ln) ‘
c

y (mod c¢)

< (eq") 2t \/(ain, azm, ¢)(n, m, q").

From (5.5), we have

vV al(lgNM) 2

qu+1

4
Jp_1 (chH\/alnagm) < <
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and so

oo

1
yl(a, b,N) <<a1a2(NM)§Z 5,+2 e Z 7—5 Z 7'3 ’7'3 (aln,a2m70)<nam7qr)
r—1 42 e>1 nx
(c.a)=1 m=M
| 1
< ajag NM2Z 27‘62 o o >T3(m)
r=2 q c>1 ¢ n=N
mx=xM
ayas(NM)?
L e}

q475

Here we have bounded the geds by ¢ and ¢", respectively. Returning to (5.2), we conclude

that
D7'3 (by)73(b2)

m\»—A
+
m

y 2 NM)%

a1,b1,a2,b2>1 a161a2b2
1b%Nya§b§M<<q2+€
We now turn to #5. Again by the Chinese Remainder Theorem and the Weil bound, the

modulus of the Kloosterman sum in F is

Z* . aasm + aain -
cq N

a(cq)
a=ai b1 ag b2 (q)

* asm + yain
Z e <M> ‘ < crte (a1m, agm, c).

C
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Using (5.5) once more, we see that

y(a,b,N) < ¢ (NM)5

( cq n=N
< ¢F(NM)z~ D < V@42

mx=M

)Hzm S

dlc n=<N
mx=xM

(a1n,aam,c)=d

cq
L)y vy Y

dle n=<N mx=xM
dlain d|lagm

<ENM)ES e (m)k_l $ (d, a1)(d, az)

3
c>C ¢q dle d2
E(alagNM)2C%_k+e s(a’la2NM)%
k—1 5 ’
q g3

so long as k > 5. On the fifth line above we have used the estimate (d,a;) < v/da;. Once

again returning to (5.2), we conclude that

DT3 (b1)73(b2)

s M)% < g it
3 a1,by,a2,ba>1 a]-a’2 4b b2
1b§N,agb§M<<q2+5
O
3.6. Voronoi Summation
It remains to estimate
ay)p(ag)73(by)13(b D T3(n)T:
T Yy y e Bnte) 57 5 WL (aitin i)
a1,b1,a2,b2>1 ajbia3bs)? N.M n,m>1 (nm)2
(a1a2biba,g)=1 (61)

n m 1 47 * aasm 4+ aain
X f (N) f <M> Z EJk_l (C—q\/alna2m> K Z e (C—q> .
e<C a(cq)
aEa1b1a2b2(q)
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Before applying Voronoi summation, we reduce the conductor in the Kloosterman sum using

Lemma 5.3 of [2], which we cite in the following form.

Lemma 3.6.1. Let ¢,q,m,n be positive integers with (cmn,q) = 1, and let

Y (u,v) = Z . (au;—lav).

Then

o (B () (2)

z(c)

Applying Lemma 3.6.1 with m = ajas, n = asbsy, the expression in (6.1) is

M a1 CLQ 7'3 b1 7’3 bz 7'3 7'3
Ly sy s e lnt g - 0 altn i)
a1,b1,a2,b2>1 N,M nm>1
(a1a2b1b2 q)=1

</ (%) / (%) > %Jkl (gW) Ke ((a1b1)2a1”+ (a2b2)2a2m>
c<C

anlbl(lgbg
(ca)=1

y Z G(agboT — arby)ain . G(a1byx — asbe)asm
CLQbQC alblc

z(c)

T Y LY K st

ai, b1 az, b2>1 NM C<C {E
(a1a2b1b2,q)=1

where

S(c,z) =S(c,z;a,b,N)

CLQbQIL‘ — albl)aln Q(Cl,lbll’ — agbg)agm
N 27-3 ( CLQbQC ) Z T3(m>€ < Clelc

n>1 m>1

47
x Fi(n)Fy(m)Ji_1 (E\/alncmm) ,
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and

2 372
i (Y aiby arbiy

Fl(y)_y 2f(N>e(an2b2)U< q% )’
N a2b asb?

- () (22) 0 (25).

ﬁ _ 6((12172? — albl)al
m azbac
& _ q<a1b1$ — &ng)ag

72 abic

where (A1, 71) = (A2, 72) = 1, and define

We write

(6.2)

Ucy) = Fl(yl)F2(y2)

] a?b a2b adbh? a3b?
() (3« (S o () ().
(y1y2) an2 2 anl 1 q 2 qQ

Thus

- (3) s () -t ).

n>1 m>1

We now apply Theorem 2 of [10] with the same notations used there, except with A3 in

place of Ivic’s Bs, first to the sum over m, and then to the sum over n, to obtain

S(e,z) = Z Tile,x),

j=1

where

me) = et [ (31 ) B (05 o3

Ar ol
/ / (c;y1, y2) S 1< \/a1a2y1y2> yiys Ny dys |,

o4



_ T A1 s1-1 + A\ [ T3mys
T2(c, ) = n—SE{lgSlE:s (51, E) /0 Fi(p)y ZA ; Fy(y2)Us .

m>1

47
X Jp—1 (C—q\/a1a2y1y2> dy, dya,

(6.4)
i3 A o0 ™m
Ts(c,x) = Res E3 (817—1)/ W)y 1214 ( )/ F2(yz)v3( 3y2>
s s1= m/ Jo 1 0 T2
41
X Jr1 (C—q\/a1@291y2) dyy dys,
(6.5)
T4 and 75 are defined as 75 and 73, but one swaps all subscripts of 1 and 2,
A
ZZA+( 1) ( >/ / Fi(y1) Fa(y2)
7)1772 n>1 m>1 (6.6)

™n ™m A
X U3 ( 3y1) U3 ( 77 y2) Jk 1 (Cq\/a1y1a2y2> dyl dyg,

T+ is defined similar to T except we replace the leading coefficient by its negative, A1 with

A~ and Uz with V3,

s
ot =g S5 g (12 g (m22) [ [T Rt
771172 n>1 m>1
™n ™m 47
x Us ( 3y1> Vs ( P y2) i1 (a\/alyﬂlﬂh) dyy dys,

T 2

(6.7)

and Ty is defined as Tg, but one swaps all the subscripts of 1 and 2. Here and throughout,

FE5 denotes the third-order Estermann zeta function:

E <5, 5) -y M (6.8)

ns
N n=1

Theorem 3.1.1 now follows from the following two propositions which we prove in Sections

3.7 and 3.8, respectively.

%)



Proposition 3.6.2. Let

)= S S e S 5 LS KT

a1,bi,a2,ba>1 N,M c<C z(c)
(a1a2b1b2 q)=1

Then
R(q) < (logq)”.

Proposition 3.6.3. For j =2,...,9, let

27T CL1 (IQ T3 b1 T3 bg D 1 *
ZZZZM a3b?a 362)) ( >Z B KT;(c, z).

a1,b1,a2,ba>1 N,M c<C z(c)
(a1a2b1b2,q)=1

Then
Ei(q) < g 7t
3.7. Proof of Proposition 3.6.2
Recall that

me) = et |2 (1) B (05

/ / U C Y1, y2 Jk 1 < \/a1a2y1’y2) yfl ! 82 1dy1 dy2]

To estimate the contribution from 77, we first compute the residues via the Laurent series

for E3. For j17j2 Z 0, let

47
/ / U(c;yr, y2) (log y1)7 (log y2)”* Tk (C—q

I1(C; jl;jz) \/G102y1y2> dy, dys

Jilga!
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so that

[e’s) 00 47'(' e
/ / U(C§ y1,y2)Jk_1 (E\/alazym) yfl 1y22 1dy1 dys
0 0
=3 Y Tilcidnda)(s1 — 1) (s2 — 1),

71=0 j2=0

For (A,n) = 1, we have (see (2.13) of [5])

where

D _o(y) = % i i 1(n]asas) (370 <%) - 310g77> ,
D_i(n) = ig i i 1(n|oror) (g(log ) = 9% (%) log 7

o (3)(2) ()

Here 1(njajag) is 1 if n divides ayap and 0 otherwise, and 7,7, are generalized Stieltjes

(7.2)

constants defined by

C(5,7) = =3 + D mlr)fs = 1) (7.3

where ((s,r) is the Hurwitz zeta function. Thus

Ti(z,c) = Z D_1,(m)D—1,(n2)Li(c; Jr, J2),

1<,12<3
0<j1,J2<2
Ji—li=—1
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and so

27r a1 a2)73(b1)73(b2
Ty Yy s ey

a1,b1,a2,b2>1 2
(a1a2b1b2,q)=1

o (7.4)
X/CZ Z Z i, (m)D l2(772)z Ty (c; jr, Jo)-
C<C a:(c) 1<11,012<3 N,M
0<j1,j2<2
]z_lz:_l

As discussed in Section 3.2, we would like to estimate the factors of D_;, using Lemma
3.7.4 below. However, we will lose too much in our upper bound if we ignore the oscilla-
tions present in the integrals Z;(c; 71, j2). To take advantage of these oscillations, we apply
several Fourier-analytic manipulations to suitably transform the sum over ¢ in (7.4). This
requires several technical lemmas which we collect in the following subsection. The manipu-
lations themselves are then performed in Subsection 3.7.2. Finally, we conclude the proof of
Proposition 3.6.2 in Subsection 3.7.3 by applying Lemma 3.7.4 and estimating the remaining

Dirichlet series via elementary means.

3.7.1. Preliminary Lemmas
The first three of these are Lemmas 7.1-7.3 of [2].
Lemma 3.7.1. Let (a,f) = 1. We have
* 1
l=c¢ 1—-,
> edI())

z(cl) ple
z=a(l) il

where the sum is over x coprime to cl.

Lemma 3.7.2. Let o, 3,y1,92 be nonnegative real numbers satisfying oy, fys < ¢ and
define

T(y1,ya, v, B Z% ( \/aﬁylyg) KCe (04;;1 %) .

Further, let L = ¢*® and w be a smooth function on Rsq with w(z) =1 if 0 < x <1 and
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w(z) =0 if x > 2. Then for any A > 0, we have

r=2% w (%) Jies (4m/agnt) s (4Bt
/=1
o / T (%) Jiea (s Jat) Jics (4m/Bual) e + O(~2),

Lemma 3.7.3. Let w and L be as in Lemma 3.7.2 and let u be a complex number with

|Re u| < @. Then

=y ~ 7y
S w (Z) Eiu —/O w <Z) E% 4t = C(1+u) +0(g™).

(=1

It can be seen from the proof of this last lemma that the error term is holomorphic in u,

and thus we can differentiate in « to see that

Suw(f) el [Tu (D) L w0

(=1

The last lemma we need is an improvement on the bound D_;(n) < n~ '™ used by

Djankovic.

Lemma 3.7.4. Fori=1,2,3, we have

Proof. Note that D_3(n) is multiplicative, so

D_s(n) = [[ D-s().

p"In
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At a prime power, we have

. 2,,222 P lanan) =30 3 Y1 faw)

7=0 oz1|| 1 as=1 7=0 a1=1 a2=1
p’||a1

o
IR IR PN | N T SR
o ;gp(p W= (1 i (1 p)) P (1 p(r+ 1)) ’

_7'2(77) r 7(n)
o =S gt ) <7

PN

and so

To estimate D_s and D_;, we need the following result of Berndt (see [1], Theorem 2) for

the generalized Stieltjes constants (7.3): for € (0,1] and n > 1, we have

(log x)”

T(2) <5

Combining this with our estimate for D_3, we see that

1 o~ <& 1(n]ajas 7(n)lo
Y (n| )+(n) 81

a1=1 az=1 dln a1= az=1
(c1,m =4
d K1
= — — 1(d|a — << 7(n) logn,
> Eﬁ o Eﬁ jaz) =) E U
In a1=1 az=1 dln o= 1
(a1,d)=1 (01,d)=
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which gives the claimed estimate for D_5. Finally, for D_;, our arguments above give

2

n n
nlogn /N n
D_y( ] ]
aZ Z (nlaras) (( ogn)® + o e a8 <a1>)

< 7(n)(logn)? +zn:zn: (77|041042)‘

n e5e%!

ar1=1as=1

Following our treatment of D_5, we have

U 1(njaras) ! ! 1(n|aras) d <& 1 & 1(d|as)
c;la;l R %7: ;1 a;l amay cz|n5 ;1 a_lc;1 a2
(a1,m=17 (a1,d)=1
:_Z Z "E/d:_ M,
dln o =1

(a17 ) 1

which gives the claimed estimate for D_j.

3.7.2. Fourier-Analytic Manipulations

Returning to (7.4), we first transform the sums over N, M, ¢, xz. This will allow us to deter-

mine the main term (in terms of logq) of the double residue R(q), which we then estimate

by purely arithmetic means in Subsection 3.7.3.

By the decay of the Bessel function, we may extend the sum over ¢ < C' to all ¢ > 1 in

a similar way as our truncation in Section 3.5. Note that after extending the sum, the only

parts of R(q) that depend on N, M are the factors of f. Because of the absolute convergence

of the integrals 7 (c; j1, j2), we may execute the dyadic sums over N, M to see that

(lo 31 (lo
Z Zi(¢; 41, j2) / / gy1) Ing) U1( 3bzy1,a21)3y2)
N,M 913/2

e alblyl+a%b2y2
cqasgby cqaiby

47
) Jk—1 (a\/a1d2y1y2> dyr dys.
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Thus R(q) is

ZZZZWM il Tgbs;) i(bo) Z Io(ly, 12, J1, Jo)

ai,b1,a2,b0>1 1<14,15<3 (76)
(a1a2b1b2 q) 1 0<,]1 ]2<2
a?b?<q?/2te Jimli==1

where

(log y1 )’ (lo
Ty(l, 12, 1, J2) / / BY1) 1gy2) Uy (a3biys, asbiya) (1, la; yr, y2)dyr dys,

ylyz
and
1 NI a’b a2b
Clli, l2;y1,y2) = ’CZE‘]’“ 1 ( il 2) € <Cl 11;1 2 2?) Z Dy, (12)
=1 qaz202  cqay01 7(0)
= ’CZ Z l2(772)
e>1 z(c)

say, where 7y, 7, are as in (6.2). We write
(albl, ang) = /\7 a161 = ul)\, CL2b2 = UQ)\, (Ulf—UQ, C) = (UQI—Ul, C) = (5, (77)

where (up,us) = 1, and so

o uge/d _ uic/d
h= (a1,uqc/d)’ 2 (ag,u1c/d) (78)

We now focus on estimating the integrals Z, in (7.6). To do so, we first transform the cums

C. We proceed by fixing the value of § in the sum over z and writing

f(C) * UQC/5 ulc/5

Clh,lasy1,y2) =K Y Dl( )DQ(

(h, 23 91, 2) ;; c %C:) ! (a1, uzc/0) : (az, u1c/d)
(uzx u1,c)=9

1 U1C ) *
5 1.
621 0 1 ( (a1, uzc) ) " ((a27ulc) gc:é)

(25 0=1

(7.9)
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Mobius inversion in the sum over x gives

* *

Soo=Yum Y L
x(cd) blc z(cb)
(%;—ul,c):l ugr=u1(bd)

Note that since (z,bd) = (u1,uz) = 1, the congruence usx = u;(bd) has a solution in x if and

only if (ujug,bd) = 1. Applying Lemma 3.7.1, the last line of (7.9) can be written

pb) ( uzch ) ( urch ) F(cbo) ( 1)

¢ Doy (e ) Doy (s K FLbd) (LY.

; ; b "\ (a1, upch) > \ (ag, uicd) ; ) 1;! P
(uru2,b)=1 (it 6)=1 E

Several more applications of Md6bius inversion give

F(cbd) 1y p(h) o 1 1lg) 1 F (cbhgyd)
> S (i) - SIS () S

p

5>1 p|(c,béh) hluiug v|e < le 5>1
(uru2,0)=1 K plovh
and thus
w(h) (b) usch uich
C(ly, ls; = — — Dy, |——— D, | ————
(b b2, 1) Z h Z b Z h (a1, uqch) & (ag, uich)
hluius b>1 c>1
(uruz,b)=1
1 1 h
N Ly ) (1 B _) £y F(cbhgyd)
TS 9 p 0
Ve gl ple 6>1
ptbyh
We now apply Lemma 3.7.2 with
o — a%bl . a%bg
 agbacbhgydq’ ~ aybicbhgyoq
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Note that ay;, Sy < qgﬁ by the decay of U. Thus with negligible error, we have

K Z F(cbhgyo)

5>1
14 e 14 CLleylg angyQK
=2 - |- —)at) g | dAmy | | T |y
W(;w (L> /o v (L) ) L asbacbhgyq S a1b1cbhgyq

For brevity, we set

a%bl . a%bg

agbacbhgyq’ A= abicbhgyq

Returning to the definition of Z,, the above analysis and change of variables y; — y? give

Lt =@ ¥ M0 S Msmep, (D p, (d)

Mo = = (aq, usch as, uych)
(u1ugz,b)=1
R (2 (2) - e () )
X — —= 1—- wl|—|— w| —)dl
SISO (L) (S (D) [ (s
Ve gl ple >1
ptoyh
> j ajbiy
X/ (log 1)U 3 Ji—1 (Alyl\/z> dy:
0 qz2
e j azb3ys
X/ (logyo)2U 3 Ji—1 (Az?h\/z) dys.
0 q2

(7.10)
Let Z3(¢, Ay, As) denote the product of integrals on the last line. Here and throughout this
section, we let () denote a positive constant, not necessarily the same at each occurrence,
depending at most on 71, j2. Opening the factor of U, the integral in y; is
3

2 oo o d
@ /7(31)3(;3(31) (_q3 2) / (logyl)]lyl QSleq (Alyl\/z) dy1—817 (7-11)

2mi
(a1)

where a; > 0, and a similar expression holds for the integral in y,. The inner integrals are
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Hankel transforms which can be evaluated explicitly using equation 6.561.14 of [6], which is

D3+ 3v+1ip)
Lz +3v—35m)

1

(wRev—1<Rep<s3,

a > 0).

/ o J,(ax)dx = 2#a "t
0

Differentiating this with respect to p, we obtain

D3+ 3v+1p)
(3 +3v—1p)

/ a*(log x)? J,(ax)dx = (—1)72a 1 P;i(loga, i, v), (7.12)
0

for j > 0, where P;(w, i1, v) is a monic polynomial of degree j in w with coefficients involving

polygamma functions and the parameters u,v. For instance,

IVE+iv—1u) 1G4+ 3v+ip)
Pi(w) =w—log2 — ——2—2 22 2 22
In the present case, specifying v = k — 1 and p = —2s;, the coefficients will be holomorphic

and of rapid decay on vertical lines so long as a; > —k/2 + ¢, say. Applying (7.12), we see
that (7.11) is

m / 7(81)3G3(51) <%> " ﬂ ij (10g (Al\/z> ’31>

2mi asbacbhgryq ['(5 +s1)
(a1)

Here we have suppressed the dependence of P; on k. A similar expression holds for the

integral in y,, and thus Z3(¢, Ay, As) is

e e I B R e v
(a1) (a2)

X (M)sﬁ” Pj, <10g <A1\/Z> ,51> Pj, <log (Agﬂ) ,32> @@

ai1byasbycbhgy

Let Pj,(n,s;) denote the coefficient of w™ in P;,(w, s;). We view the product of P;, and Pj,
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as a polynomial P in log /¢ of degree j; + ja, where the coefficient of (log /)™ is given by
Plusis) =5 3 Z Z ( ) ( ) 1 (01, 51) Py (1o, 52) (log Ar)™ 4 (log Ag)™2 42,
n=k1+ko n1=k1 no=kso
Applying (7.5), we see that
J1+J2

1 > 1
S (1) Rt [ () Rt = 5 om0 000 )

>1 n=0

Let P*(log A1, log As, s1, $2) denote the sum on the right. Then

(5 (8) [+ () n

>1
cbhgq 5 5, T(E—s)T(% - s5)
=@ Vaias <2m> / / 51)°GY(s1)7(52)°G (SQ)I‘(Q + s1) F(% + s9)

(a1) (a2)

s1+s2
47 q2 d32 dSl
_ 1 1 —_— .
X (alblangCbhg’y) (OgAh OgAQ;SDSQ) Sy S

say. Note that in P*, the coefficient of (log.4;)" (log A2)” is ((1 — s — s2). We deal only
with the contribution of this term, as it will be clear from our analysis that the other terms

of P* can be treated similarly. Returning to (7.10), we see that the representative term of

IQ(Z17 l27j17j2) is

O T T w0 e () 0 ()

hlujus b>1 c>1
)= (7.13)
X Z Zu(g) H (1 — 5) (log A1)’ (log A2)”2 Y (cbhgy),
Ve g5 ple
plovh
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where

1

s1+s2
4dmteqz dss dsy
1 1 — g1 — §o)—2 2
(27”) //g 51,82 <a1b1a2b2w> C( 51 52) Sy 51

say, and we have taken the lines of integration to 1. Here G is holomorphic and decays

rapidly on vertical lines so long as Re s1,Re 51 < g Changing variables, we obtain

42qz ’ du ds
Yiw) = (QM) //g <a1b1a262w> (1= Z)z — s s (7.14)

We deal first with the case cbhgy > q. For w > ¢, we take the line of integration in z to

Reu = %. Applying the functional equation for ¢ and Stirling’s formula, we see that in this
case

Y(w) < ¢t

(alblagbgw)% '

Recalling the definition of A;, Ay and noting the ranges of summations for the variables in

the expression Z,, we have
log Ay, log Ay < log(beg) < (cbg)®.

Using the trivial bound D_;(n) < 1, we find that

Uach uych 1 L
ZCD—zl ((al,Qch)) D_y, ( () lulcb ) ZZM H (1 - I_?> Y(j1, J2, cbhgy)

c>q Ve gl Mzzlch
Y
9+5b5 be
1
€ T Y e
(alblagbgbh)5 c>q (alblagbgbh)5
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Using (7.6) and (7.10), we see that the contribution to R(g) from those terms with ¢ > ¢ is

O(q~1¢) (the error term can be improved here, but this suffices for our purposes).

3.7.3. The Remaining Dirichlet Series

Let #H(c) denote the product of ¢ and the factors of D_;,. We consider the sum over c,

S 1o Y u) [T (1 - }3) (log A1) (log Ax) V(chhan).

c<q Ve gl pflgh
Y

Since b and h are squarefree, we may rewrite this as

Y HOw D ]I (1 - }3) > 1(g)(log A1) (log Az)? Y (Acabhgr),

dlbh  Acg>1 ~v|Acq plAeq gl Acgq
(A,bh)=1 piybh v
pleg <= pld

and the variable ¢ has been modified in the definitions of A;, As. For fixed d | bh and v | Aey,

we write v = 717y, where 71 | A and 72 | ¢q so that

1 1\ ! 1\ ! 1\
11 (1 N _) - w(AACd) 11 (1 N _) N SO(AACd) 1 (1 N _> 1 (1 N _) N zli@;'
ﬂﬁf}i p Cd pl(Aca,vbh) p Cd plm p pleg p AN
$

The sum over v becomes

80()\)\) Z 902;1) Z w(g) Z Z 11(g2) (log Ay ) (log A2)2 YV (Acabhgi g27172),
‘ A

7lA Y2lcq 92|%

where again, the variables in the definitions of A;, A, have been appropriately modified.

Moving the sums over 71, v inside the integral, we are led to consider the functions

@) = Gi(n. 1) = 20 S T o) 3~ 1lg)llos o)™,

pel2l ) e g
J1 o ’ o (715)
@(n) = Go(n, zj1,ja) = 3 (10i3) 3 u(g)(;zg i

vIn 9l
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where now the ji, jo are arbitrary nonnegative integers.

Proposition 3.7.5. For all integers n > 2, 71,72 > 0, and z with Re z > 0, we have
(), o(n) < (log ).

Proof. Let v(n) be either 1 or @ and consider the function

1
€ (n,z,s)=v(n) Z EIEE Zn Nég>

yln

We will show that

o 9o -
< J1+J2
{823'1 e € (n, z, s)] (logn)

S=u

for all n > 2 and z with Re 2z > 0. We have

oS (o) (5 )

I () P (521)

pTlIn

= G2, 5).

p"l|n

say, since v(p") = v(p) for all p and r > 1. For s = z, we have

¢n22) = [T (o) + 271,

pZ
p"lIn

and specifying v(p) = 1 and v(p) = 1 — %, it follows that |€'(n, 2z, z)| < 1. This gives the case
J1 =72 =0.

Tw(n)

To produce the logarithmic factors, we differentiate in z and s. Writing n = pi* - - Peoin) -

we have

. . wn) 45
oI j oJi
@cﬁ(n, Z, S) = Z (jh o 7jw(n)) 11 @%p(Z, 8)7

Jl++]w(n):-7
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)) denotes the multinomial coefficient. A similar expression holds for the jth

partial derivative with respect to z. For j > 1, we have

o ., ((logp)! L (p~*—p°
— (_1\J 1 -
gs orl#9) = (=1) ( P’ o))
5 (i 1\ /1 2 (r = 1)
— (_ 7 o - - ..
555 6o(=5) = (~logp) (p—m + (1 ps) (pz Tt e ))

Since v(p) < 1, we have

and thus

Cp(2,5)

¥i .
' 0 < r(logp)’

dsi

for Re z, Re s > 0. Likewise, if we set s = z, then

[aa—;%p(z,s)} = (—logp)’ (L + 2 w) ’

prz p22 prz

and thus

< (logp)!(1+(2/ =1) + -+ (1! = (r = 1)?)) = (rlogp)’

so long as Re z > 0. Since we have already shown that |%,(z,s)| < 1, we deduce that

. w(n)
< ¥ ( J )Hmaogpi)ﬁsaogn)%
J1s 5 Jw(n)

IR ] =j =1

S=z

and the same estimate holds for the jth partial with respect to u evaluated when s = u. It

remains to deal with the case when both 7, j5 are nonzero. In this case, we have

o oIz —(= 1ng)j1+j2 1 271 (r — 1)j1
i pain tr(#:8) = - pee L S
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and as before, we find that

] ; w(n) A 1.
E J1 J2 g% Q'
22 g
(kl) ey kw(n)) (ll, ey lw(n)) iy azki 8812' p<2> S)

kit +ky,m)y=1
it A+l m)y=72

. . w(n)
N J2 kil
1 Rl
Z (kla : ) (lb s ) H (TZ ngl)

.k
k1+"'+kw(n)=]'1 » Pw(n) ool
i+l my=72 (ks

aﬁ
‘ [&zjl € (n, z, s)}

S=Z

IN

< (log n)j1+j2.

O

Returning to our analysis, we now study the sum over ¢ < ¢ with the additional assump-
tion that cbhgy < ¢, so log Ay,log A; < logq. We decompose the sum over ¢ as in the
beginning of this subsection, move the sums over g, inside the integral, take the line of in-

tegration in ) to Re z = and apply Proposition 3.7.5. The factor (log.4; )’ (log A5)”2 in

logq g ’
(7.13) produces products of logarithms of various combinations of the summation variables,
but no matter how they are arranged, their boundedness by log ¢ combined with Proposi-
tion 3.7.5 shows that we obtain a power of (logq)/**72 that may be factored through the
entire sum after applying the triangle inequality. From (7.6) and (7.13), we deduce that the

representative term of R(q) is bounded by

SIS SN RN S g

a1,b1,a2,b2>1 1<1,12<3
(a1a2b1b2,q)=1 0<)1,j2<2
a?b?<<q3/2+€ Ji—li=—1

x> e|D

b>1 c<q

Usch uich
— = | D =l \ T TN )
(aq, ugch) (a9, uich)
where the extra log g comes from the factor of ¢ in ) and we have ignored the contribution
from ¢ > ¢. Each variable in the summation is bounded a power of ¢, and thus so are the
arguments of D_;.. We note at this point that if one considers a term other than the leading

term in P*, one obtains a higher power of log ¢ from the zeta factor (which will have been

differentiated some additional number of times), but the total powers of logarithms of the
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other variables are smaller, and so we still obtain the same estimate as above. Thus after

applying Lemma 3.7.4, we obtain

)< loga Yo 3030 37 )

a1,by,a2,ba>1
(a1a2b1b27Q):1

a§b?<<q3/2+a
1 (a1, ugch)(ag, uich) Usch urch
. ; b? ; c T (a1, ugch) g (ag,uich) )

Using the bounds

r(a) < H(@n0), 5 (5) <n@itdla ) <d, (ab) < (a,b)a0),

and neglecting several summation conditions, we find that

a1b1a252 alb1,a2b2)2(a1,Uz)(amul)
)< (logg) 33 YL

ay,b1,a2,b2>1

» (Z (a1&27:2) 2(5)2> (Z (&170)(%0)72(0)2)_

b>1 c<q

The sum over b is

2. %1 ) <> R ZTQ(b) L ma(a1az) < (ar1az)°,

dlaiaz " 321 dlajaz b>1

so we are left to consider

albldgbg &1[)1,&2()2 2 a1, U2 ) A2, U ai, C)lag, C)T2(C 2
R I ASCOMCRBCHN) JURICRL

a1,by,a2,b5>1 c<q
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Let 6 = (a1, as) and write a; = dAq, ag = 6y with (A, A2) = 1. Then the sum over c is

(5)\1, (5)\2, 7'2 C )\1)\2,C T2l C 2
>3 <Yt 3 CredHo

s c<q dls c<q/d

(c,6)=d (c,5)=1

< ZT dz >\1)\2, c)T(c Z d Z Z 7'2(29)
d|é c<q dlé glA1 A2 c<q

< Zr(d)2d Z 72(g)? Z ﬂ
d|§ glA1 2 c<q ¢

The inner sum over ¢ on the right is bounded by (log ¢)*, the sum over g by (aja»)¢, and the

sum over d by (ayaz2)®(ay, az). Thus

R(q) < (logq) ZZZZ (a1b1a2b2) albl7a262>2<a17u2>(a27ul)(a/1,a2>‘

a1,b1,a2,b2>1 <G1&2)3(b1b2)2

Let & denote the sum on the right. To see that & converges, we take ¢ < i and express ¥
as an Euler product 7 =[], %, with

QP e Z Z Z Zpy(al’bl’@’b2),

ai,b1,a2,b2>0
and
y(ay, by, ag,by) = e(ay + by + ag + by) + 2min(ay + by, ag + by) + min(ay, ug) + min(az, uy)

—+ min(al, (12) — 3(&1 -+ CLQ) — 2(b1 -+ 192)

Here we have written u; = a; + b; — min(al + by, as + by). It suffices to show that for a;,b;

not all 0, we have y(aq, by, as,by) < —2, say. We have trivially that

y(ai, by, as, by) < (a4 by + az + bo) + (a1 + by + az + by) + a1 + ay
+ %(al + CLQ) — 3(@1 + CLQ) — 2(b1 + b2)

= —1(a1 +ag) — 3(by +by).
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Thus we may assume that a; +as < 5 and by + by < 1. This leaves only a few cases to check,
and one may verify by direct computation that we indeed have y(aq, by, as,by) < —% unless

all the a;, b; are 0. Therefore the sum converges, and we have

R(q) < (logq)®.

3.8. Proof of Proposition 3.6.3

The analysis of the other 8 terms coming from Voronoi summation adheres closely to the
analysis in Section 8 of [2]. Recall that by the decay of U, we may assume a3b?N; < ¢3/%*¢.
For j =2,....,8, let

c<C

i(a,b,N) ZZTC;E

Changing variables in the sum over ¢ as in (7.7) — (7.9), we have

(a,b,N) Z Z Z T;(co, x),

6<C c<C/5 x(
(uoz—u1 c6) )

where uy, uy are as in (7.7).

3.8.1. The Sums 7s,...,7;

Since each of these sums has the same form and behavior, we treat only 75. The residue in

the definition of 75 gives

*

Z T;(co, x)

z(cd)

(ugz—u1 05) )

A
TN A ( ) | Fi) (Do) + Doatm) gy + §D-a(m)l0g 1))
772 m>1 0
o ™m 4 *
X / Fy(y2)Us ( n3y2) Jr—1 (@Vaﬂﬁ/l?b) dys dyy Z 1
0 2
z(cd)
(ugz—u1,c0)=9
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where as before,

) 372
P I CA T i pog
Fi(y)=vy f<N>e(05qa252>U( q: )7
) 372
(L azbay a3b3y
F(y) =y f<M>6<c5qa1b1>U< q: )

By Lemma 3.7.4, we have D_;(n;) < ¢°n; !, and from (8.9) of [10], we have

3
2

el

A
AF (m, 5) < (mm)*n2msi. (8.1)
We analyze the term coming from D_;, as the analysis of the other two terms is nearly

identitcal. Thus

BabN) <¢ Y S — S miim),

§<C e<C/s NN m>1

where

> > ™m 4
0 0

Ub;

_ / F(ya) Ty (m, 1) dys,
0

say, and we have bounded the sum over x trivially by ¢d. To estimate Es, we write
EQ(G’J b; N) = Hl + H27
where H, is the contribution to E, from m < ¢°n3 /M, and Hy is the rest.

The Contribution of H;

For brevity, put C; = ¢ 'v/ajaaNM. Using (3.17) of [10], which is

Us(z) < af, (8.2)

5



and (5.5), we have

and so

6<C c<C/s
2 k—1 -1
5N2 a1y 5 01 Cl
< 3 c4 min 5 , 5
Mg 5<C c<C/s
9
Nzajul o
<L g —5—1LCy
Miu,

Here we have used the estimates
12 < upc, m > —.

Summing the above estimate over a, b, N gives the desired result. All of the estimates that

follow will be sufficient when summed over these variables, so we omit this sort of remark in

what follows.
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The Contribution of H,

To handle Hs, we use the following identity for Us, given by (3.12) of [10]. For some suitable

constants c;, d;, we have

Uy(riz) = i mi (cse (30%) +dye (~30) ) +0 (x(;) | (8.3)

A7
X Jp-1 (@\/Glazylyz) dys + O (¢7*%%),
for K sufficiently large in terms of . This also gives the trivial bound

I(m) < BNEM < ¢ (NM)
m3

o=

. (8.5)

Let Cy = 87r(q5)_1\/a1a2NM. We divide into two cases depending as ¢ < Cs and ¢ > Cs.

Case 1: ¢ > (5. Using (5.4), we can write I} as

I )_i m 'y U
1(m, —j:1 Msms ) = 0+ k—1)!

> 3msys
X/ E(ylay%g) (Cj€< Y
0

72

N g0
N——
_|_
S
Q)
|
S
= | G-
<
N ol

2
azbaya
d
>) © (c5qa1b1) Y2,

where

=i (3) 1 (2) (pvmomms) o (2
Y1, Y2,£) = Yo M Vi 04 a1a2Y1Y2 q% .

7



We now analyze the integrals

/]:j(ylay2a€)6(wi(m792))dy27
0

where
3ms 1 a2by
=+—y; +B B=—_2=—.
w(m, ) n Yy + DY2, Sqarhy

We have
1
m3
Y3 12

=
)

If m > 64(Bns)>M? or m < Z(Bnp)*M?, we have w)(m,ys) > 2% > L. Thus the
Yo 12

contribution of these terms is negligible by integrating by parts many times. Thus we need

o

only consider those m for which m = (Bny)>M?. But since

qe
(BT]Q)3M2 < ﬁ,

3

there are no terms of this form unless M > ( 2‘1; = and 0 < ¢°. Using the trivial bound
a502)2

(8.5) we see that the contribution to Hs of these terms is bounded by

1 5 1 1 _1
ENIME YN - N ET < ¢ NEMsafbiaib, P Y Y cE

§<&qe ¢>Co 7717722 m<q® 0 qe ¢>Co

N|=

< NI Mbaibi ib‘l*( d )
2 6q a —_—
1 1722 N Mayas

< GFHabiN b, M
g2 "aib; 2 '

1
2 3 12

< ¢rebiNiy, <(a2b3)2 )
qE

1
< q%—~_(_:(CL16112)i (ai’be) 4

< (araz)igite.
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Here we have used the estimate

1 1

1 usc {uic\ ? b?
mns > = (_1 ) =c? T :
12(@151,(12172)

as by 3 -5 1 _11
— 4 Tapa
>c =c2a, b1 a, by .

1
2 12(@151@52)%

Case 2: ¢ < (5. We return to (8.4), but instead use (5.3) in place of (5.4) to write I; as

K i oo 1 13 13
Mo M3 3M3sys 3Imsys
Ii(m,y :E ( ) / Ey(y (—) cje +die | —
1 1) = M3ims 0 2(42) Y2 ! 2 ! 2

cd 2 4 2 k1
X (—2 —amz,myz) <2Re W (T\/a1a2y1y2) e (@thaﬂ/lw 1 + g)) dys

+ 0] (q—2022) ]

VI

Note that this gives the trivial bound

M2 coq P 1
I(m) < 2 NiM—t. 8.6
(m) m3< _) (.6)

Define

-1 s (M 5 47 a3b?
( ) / (2> Wi <_\/a1a2y1y2) U< 2 §y2> )
C(S(] qz

Hj(:glayQ) =" ?Jz Ya M

where W is either W or W. For some absolute constants b;, we find that I; is (up to a

negligible error term) a sum of expressions of the form

Vcoq K ( ) /
I 5 - H ) 9 d )
1(m, y1) <(a1a2>i ; Mmﬁ (y1, y2)e(w(y, y2)) dys
where
3m 1 (alCLle)% CL%Z)Q
:I:— +2A B A= —" = —
(JJ(yla Z/z) s y2 y2 + Y2, C(Sq 9 c§qa161
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Differentiating with respect to y, gives
1
/ ms -3 —3
w'(y1,y2) = * " Yo * £ Ay, * + By
2

We divide into several cases
3 3
Case 1.1: af blN% > 4a3 bgM%. Then it is easily checked that

_1 A
< | LAy, * + Byp| < 2.
Y3

N
S| 2

If m > 64(Ane)> M3 or m < & (An)> M=, then |w'(y1,y0)| > mg > L since n > an
yz 2

Thus we may integrate by parts many times to see that the contribution of these terms is
L (A M= <m < 64(An,)> M3, note that

negligible. For the terms with
(a33N)2 (a3M)z g

1

(Anp)’ M= < 353
By (8.6), the contribution

Moreover, the left side is only > 1 if M > ¢2 /a3 and § < ¢

from these terms is bounded by

NM)1 c3
WAL Sty 23 e

Ms (a1a2 6<q®  ¢<Cs 771772 m<qe

1
pte_» 77

where we have used the trivial bound 7; > =.
_1 5
< =4y, + B| < 4B.

3 3
Case 1.2: a3by M=z > 4af biNz2. Then as before, one checks that 1B <
By the same arguments as in the previous case, the range of m that should be considered is

80



1
of size (Bny)>M, and the contribution to Hs of this range is bounded by agq%“E

3 3 3 _1
Case 1.5: iaf byMz < ai N2 < da3 b,Mz. In this case Ay, * < B, and so the range of
m that should be considered is of size (Any)>M 2 by the same arguments above, and the

1
contribution from this range is also bounded by a22q%+€

3.8.2. The Sums T, ..., Ty

Each of the four sums T7g,..., Ty has essentially the same form and behavior, so we deal
only with 7. The treatment these sums is very similar to that of 75, ..., 75, so we shall be

somewhat brief. Recall that

0o =355 L S S Sar (v 45 (m )
5<C c<c/5 i n>1m>1 2
(ugz— ulc6)

™n m 4
/ / Fi(y1) Fa(y2)Us ( s yl) Us ( 3y2> Jr—1 (@\/alylaz.%) dyy dya,

Ub;
where
. UsC . uic
m (a1, usc)’ 2 (ag,uic)’

As before, we use (8.1) and estimate the sum over x trivially by ¢d to see that

s(a,b, N) <<ZZ Zan yite|I(n,m)],

§<C ¢<C/é (m2)> n>1m>1

where

[ mn ™>m 4t
I(n,m) = /0 /0 Fi(y1) Fa(y2)Us ( 3y1) Us ( 3y2> Jr—1 (@\/aﬂ/lazyz) dyy dys.

m Ub;

Recall that it suffices to show that Fg < (alag)%q%“. Following our previous analysis, we

write

4
Es = Eei,
=1
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where FEg; is the contribution to Eg from case 7 below.

niq n34° .
(1) n < S and m < =7
niq n34° .
(2) n> S and m < =5

n3q° n34° .
(3) n < S and m > =5

niq° n3q°
(4) n> S and m > =

By symmetry, the treatment of cases (2) and (3) is the same, so we treat only the second

case.

The Contribution of Ej;

For this case, we use the estimate

along with (5.5) to see that

N

I(n,m) < ¢¢(NM)? min ((—W) , (—”“GZNM>“> ,
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and so

Eﬁ,l(a’abaN)<<qE(NM)%Z 3
3<C e<C/s (mn2)>

1

x D D, ()i
3,€ 34
n< AL m< 127

() (420

Q@gﬁé§:<ﬁﬁﬁﬁﬂ>?

< 5
! (NM)~i oq

0<C

< qf%ﬁ(alag)% (bﬂ)g)g(NM)g

(a3b2N)3 (a3b2 M)

=

< q*%“(m@)

N[

< (araz)2qste.

The Contribution of Ej,

We write
3mys

I(n,m) :/ Fz(y2)U3( 2 )Il(na?/Z)dyl dya.
0 2

The integration in y» can be bounded trivially and the sum over m can be treated as in the
previous subsection. The integral I1(n,ys) can be handled in the same way as cases 1 and 2

1
in the Section 3.8.1, and we obtain Ego < afq%JrE.

The Contribution of £ 4

As in Section 3.8.1, we let Cy = 87(qd)'v/ajaa N M and divide into two cases depending as

c < (Cqyand ¢ > (.

Case 1: ¢ > (5. We again use (5.4) and (8.3) and consider integrals of the form

1 1
0o poo 2p, 2p, 3 13 3 13
/ / H(y1, y2)e D Soabr SO T dy, dys,
o Jo coqasby  cdgaiby ™ M2
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& H(y1,y2)
Oy oyk

[M,2M]. Thus the range of integration is O(NM).

where H(yi,y0) < NTM~* H(y1,y52) < 1, and is supported on [N,2N] x

By the same arguments as in Case 1 of Section 3.8.1, it suffices to consider the case when

c1(Bim)3N? < n < ca(Bim1)3N? and ¢ (Bane)>? M? < m < co(Ban)3>M?, where ¢y, cy are

some constants,
2 2
and By = ——.
coqaiby

L= c0qasby
The terms outside these ranges give negligible contribution from integration by parts many

times. As before, we have

(a261)3N2 qs (a2b2)3M2 qz-:
(Bim)’N?* < }”T <55 (Bamp)*M? <« %”T <5
There are no terms of this form unless
3 3
N> L M>» L 0L g
(atby)2 (a3ba)?

The contribution to Eg4 of the terms with ¢ > Cf is bounded by

M Z ((abUQC)((ZQ,ulC))%.

c3

3
(U1UQ) 2 0K qf c>Co
To estimate the sum over ¢, let
g1 = (a1, u2), ar = Aig1, U2 = 7191,
g2 = (CL27U1), az = A\ag2, U1 = 7292,

and

d= ()\17 >\2)7 A1 = Ofld, >\2 - Oégd,
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where (A,71) = (A2,72) = (a1, @3) = 1. Then the sum over c is

(9192) Z (()\1’ )()\276))5 9192 Z Z ald C an C))é

3
¢>Co £)d C>C2
(e,d)=¢
3
CY16Y27 )2 3 3 1
(9192)2 > Z =) ) > kD
Ld o~ C2 ld klaiasz c>%
(cy%)zl (c.9)=1
(a1a2,c)=k
3
3 _3 1 (192)2 1
=) ) D kY SIS 0 ke
fd klayas o> C2 2 Yd  Koras
Lk
(e,h)=1
(FEo=1

3
< §2q%T (9192)° P(aran)? < §2 2+E(a1,u2)(a2,u1)(a1,a2)
I arasN M (@02) ¢ N M (aya,)?

Thus the total contribution is bounded by

oy (a1, u2)(ag, ur)(as, a) < §+s(@1,u2)(a2,ul)(al>a2) (a%b%aébé)

(uru) (a102) (N M)z (uru2) (a105)*
1, (a1,a9) 3.8 3.3\ 1y 1
< g2 m ((Zlb CLQb > =(q>2 (al,ag)(albl,a2b2)(blbg)4
1U20102

< q%“(al, as)(ayby, asbs).

Summing this over ay, as, by, by produces several factors of logq, and thus the contribution

from these terms is sufficiently small.

Case 2: ¢ < (5. We proceed as in the last case, except that we use (5.3) in place of (5.4).

The integrals we consider have the form

//G(ylay2)6(90(m7n791792>>dy1 dya,
0 0

where

1 1
atbiyy | abwn | 3nsyl | 3miyl | 2/0Gyim

@(m’”’yl’”):caqagm cdqayby m 2 coq
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%G((yl,yg) < N7M7* G(y1,y2) < 1. As before, the range of integration is
1 2

O(NM). Then
8go(m,an,y1,y2) _ B+ CLé :tA_ll’
9 yim  yf
1
3 A
E)go(m,an,ybyQ) _ B+ ’n;s ﬂ:—f,
Y2 yine  y3

where B;, By are as above and A; = —W';;?yz and Ay = _wa;;zzm. We now follow closely the

analysis for Case 2 of Section 3.8.1, dividing into several subcases.

A4+ B & + B,
2 2

Yi Y3 L

By similar arguments to Case 2 of Section 3.8.1, we consider the ranges n < (A;7;)*N2 and

= 41 and
Y1

3 3
Case 2.1: a3 sz% > 4a; blN%. For this case, we have = B,.

m < (Bany)>M? and note that

3 e 271 \3 172 e
1 a 1 a b M
(A1)’ N2 <« (:;;) Nz K %; (Bamp)*M? < <%> < %,

(NI

3
and thus there are no terms of this form unless N > %4, M > 1 and 0 < ¢°. The

3 3
9 (a3b2)2

11
contribution from these terms to Eg4 is O(aZaq2").
3 3 11
Case 2.2: a?byNz > 4a2byN2. The calculation as in Case 2.1 gives and error of O(a?al g2 7).

3 1 3 1 3 1 .
Case 2.3: iafblNﬁ < ajbyM?z2 < 4a;fbyN2. For this case, we have A = B, and 4 = B,.
2 2
Yi 2

Y
By similar arguments to Cases 1.2 and 1.3, we need only consider the ranges n < (A1) N 2

11
and m = (Ay7;)3N2. The contribution from these terms is also O <a12 afq%“).
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