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Abstract

The first chapter of this dissertation provides a general introduction to the study of

families of L-functions along with the necessary tools for understanding their behavior. In

particular, we introduce the families studied in the second and third chapters of this disser-

tation and provide some prerequisite knowledge on these families.

The second chapter of this dissertation studies a family of L-functions attached to Hecke

Grossencharacters and extends a geometric result of Ricci concerning the equidistribution of

prime ideals of Z[i] in narrow sectors.

The third chapter of this dissertation studies a family of L-functions attached to au-

tomorphic forms on GL2. Specifically, we investigate the sixth moment of the family of

L-functions associated to holomorphic modular forms on GL2 with respect to a congruence

subgroup Γ1(q). We improve on previous work and obtain an unconditional upper bound of

the correct order of magnitude.
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Chapter 1

Introduction

1.1. Families of L-Functions

L-functions are among the central objects of study in modern analytic number theory, both

because of the arithmetic problems they encode as well as for their own sake as interesting

and mysterious mathematical objects. The prototypical example of an L-function is the

Riemann zeta function, defined for Re s > 1 by the Dirichlet series and Euler product

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1

,

where the product is taken over all primes p. The function ζ(s) can be meromorphically

continued to all of C with a simple pole at s = 1 with residue 1. Moreover, the completed ζ

function, defined by

Λ(s) = π−s/2Γ
(s

2

)
ζ(s),

where Γ(s) is the standard gamma function, satisfies the functional equation

Λ(s) = Λ(1− s).
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In general, L-functions may be regarded as generalizations of ζ that possess many of the

same properties, such as a Dirichlet series and Euler product representation as well as a

functional equation.

Classically, the Riemann zeta function encodes the distribution of the prime numbers. If

we denote by π(x) the number of primes at most x, then the Prime Number Theorem states

that

π(x) ∼ x

log x
.

This is equivalent to the fact that ζ has no zeros ρ with Re ρ = 1. Similarly, the existence of

primes in short intervals [x, x + xθ], θ < 1, is closely connected with the distribution of the

zeros of ζ through zero-density estimates. Through various analytic techniques, these can

be connected with the moments of ζ,

I2k(T ) =

∫ T

0

∣∣ζ (1
2

+ it
)∣∣2k dt.

Moments of L-functions play a crucial role in many number theoretic arguments, and thanks

to the work of a number of authors, we have beautiful conjectures for the moments of many

families of L-functions. These moments are closely related to subconvexity estimates for ζ,

i.e. any estimate of the form ∣∣ζ (1
2

+ it
)∣∣� t

1
4
−δ

for some δ > 0 (the exponent 1
4

follows from the use of the Phragmen-Lindelöff convexity

principle and the functional equation for ζ). It is conjectured that

I2k(T ) ∼ CkT (log T )k
2

for all integers k ≥ 1. Note that this estimate implies the estimate

∣∣ζ (1
2

+ it
)∣∣� t

1
2k

+ε,
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the implied constant depending only on k and ε.

The set

F = {ζ(s+ it) : 0 ≤ t ≤ T}

is an example of a family of L-functions, and the moment I2k can be regarded as the moment

at the central point s = 1
2
. In general, moments of L-functions take the form

∑
f∈F

L(1
2
, f)k,

where L(s, f) is the L-function associated to f and F is some family of L-functions. In the

case when the family F is continuous, the sum is an integral.

In Section 2, we discuss the family of L-functions we use in Chapter 2, giving some nota-

tion and definitions as well as briefly discussing the subconvexity estimate that is necessary

for our arguments. In Section 3, we provide some background on the family of L-functions

we study in Chapter 3.

1.2. Gaussian Primes and a Family of Grossencharacter

L-Functions

We define the usual Gaussian integers as the ring of integers of the number field Q(i). That

is, the Gaussian integers are the elements of

Z[i] = {a+ bi : a, b ∈ Z} .

We are interested in the distribution of prime ideals in this ring. Since Z[i] is a principal ideal

domain, the ideals are (a+ bi), where a+ bi is a Gaussian integer, and we may identify the

ideals in Z[i] with the points a+bi with, say, a > 0, b ≥ 0. We say a Gaussian integer is prime

if it generates a prime ideal in Z[i], and we call these Gaussian primes. When necessary, we

may distinguish primes in Z by referring to them as rational primes. Classically, an ideal a

in Z[i] is prime if and only if one of the following hold:
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1. Na = p for some rational prime p = 2 or p ≡ 1 (mod 4),

2. a = (p) for p ≡ 3 (mod 4).

We define the norm of an ideal to the field norm NQ(i)/Q of any one of its generators:

Na = NQ(i)/Q(a+ bi) = a2 + b2.

We define the angular Grossencharacters

λm(a) = e4im arg(a+bi).

Here again, a+bi is any one of the generators of a, and one may check that λm is independent

of the choice of generator.

With the above notations, we define the Grossencharacter L-functions

L(s, λm) =
∑
a

λm(a)

(Na)s
=
∏
p

(
1− λm(p)

(Np)s

)−1

, Re s > 1,

where the sum is over nonzero ideals and the product is over prime ideals.

The characters λm allow one to study the distribution of Gaussian primes in sectors, i.e.

domains of C of the form

{z ∈ C : |4 arg z − θ| < δ} ,

where the absolute value is to be regarded mod 2π. The factor of 4 comes from the number

of units in Z[i]. As such, arg z may be regarded as mod π
2
. Note that the harmonics λm

appear as the Fourier coefficients of any function which is periodic mod π
2

(see Section 2.3

of Chapter 2).

Lastly, let us discuss the subconvexity estimate we need for our results in Chapter 2,

namely Lemma 2.7.1, due originally to Ricci [19]. His result states that if (4m2 + t2) ≥ 4,

then

L
(

1
2

+ it, λm
)
� (m2 + t2)1/6 log3(m2 + t2).
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This estimate should be compared to the Weyl subconvexity estimate for ζ, which is

ζ
(

1
2

+ it
)
� t1/6+ε.

In the case of ζ, the conductor of ζ
(

1
2

+ it
)

is of size |t|. Moreover, ζ is a degree 1 L-function,

whereas L(s, λm) is a degree 2 L-function, corresponding to the fact that Q(i) is a degree 2

extension of Q. Since L
(

1
2

+ it, λm
)

depends on the two parameters t and m, we see that

L
(

1
2

+ it, λm
)

has conductor (|t| + |m|)2 � t2 + m2, and so we see that Ricci’s estimate is

the analogue of Weyl’s subconvexity estimate for L(s, λm).

1.3. The Family of GL2 Automorphic L-Functions

In this section, we give some background on the family of L-functions studied in Chapter 3.

We begin with the sets

H = {z = x+ iy ∈ C : y > 0} ,

Γ(1) = SL2(Z) =

{(
a b

c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
.

The group Γ(1) acts on H on the left via the linear fractional transformations

γz =
az + b

cz + d
, γ =

(
a b

c d

)
.

We are interested in functions f satisfying the following modularity condition:

f(γz) = (cz + d)kf(z) (3.1)

for some integer k ≥ 0 andγ belonging to certain subgroups of Γ(1). If we define the weight-k

slash operator by

f [γ]k(z) =
f(γz)

(cz + d)k
,
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then the modularity condition (3.1) is equivalent to the invariance condition

f [γ]k(z) = f(z).

1.3.1. Congruence Subgroups

To define these subgroups, we first define principal congruence group of level q by

Γ(q) =

{
γ ∈ SL2(Z) : γ ≡

(
1 0

0 1

)
(mod q)

}
.

A congruence subgroup of Γ(1) is then any subgroup which contains Γ(q). Two important

examples are

Γ0(q) =

{
γ ∈ SL2(Z) : γ ≡

(
∗ ∗
0 ∗

)
(mod q)

}
,

Γ1(q) =

{
γ ∈ SL2(Z) : γ ≡

(
1 ∗
0 1

)
(mod q)

}
,

The parameter q above is called the level of the congruence subgroup. Note that congruence

subgroups above contain the element

T =

(
1 1

0 1

)
,

and thus if f satisfies the transformation law (3.1), then f(Tz) = f(z + 1) = f(z). Thus f

admits a Fourier series expansion of the form

f(z) =
∑
n∈Z

λf (n)n
k−1
2 qn, (3.2)

where q = e2πiz. As a caution to the reader, the use of q both as the level and as the variable

q = e2πiz is unfortunate, but the usage is standard and there should be no ambiguity in
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context. Moreover, we shall not use the latter notation very much in the remainder of this

dissertation.

1.3.2. Holomorphic Modular Forms

The functions we consider in Chapter 3 are examples of modular forms of weight k with

respect to Γ1(q). We define holomorphic modular forms for generalizations of the spaces

Γ0(q), into which Γ1(q) can be decomposed as a direct sum.

Definition. Let k, q be a positive integers and let χ be a Dirichlet character mod q. A

function f : H → C is called a modular form of weight k, level q and central character χ if

f satisfies the following conditions:

1. f is holomorphic on H,

2. f [γ]k(z) = χ(d)f(z) for all γ ∈ Γ0(q),

3. f is holomorphic at every cusp α of Γ0(q).

To understand the last condition, we need to define the cusps of a congruence subgroup

Γ. For a rational number m, the action of Γ on P1(Q) = Q ∪ {∞} is given by

γ(m) =
am+ b

cm+ d
, γ ∈ Γ.

Here γ(∞) = a
c

and γ(m) = ∞ if cm + d = 0. If c = 0, then γ fixes ∞. The cusps of a

congruence subgroup Γ are then the Γ-orbits of P1(Q). It is nontrivial to show that this set

is finite.

To define holomorphy at the cusps of Γ, we first define holomorphy at∞. We say that f

is holomorphic at ∞ if λf (n) = 0 for all n < 0. Alternatively, we may think of the function

q = q(z) = e2πiz as a function from the upper half plane H to the punctured unit disk

D∗. Holomorphy at ∞ then means that the function F (q) = F (q(z)) = f(z) extends to a

function which is holomorphic at 0.
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For a cusp α, let σα be the element of Γ such that σ∞ = α. As before, the function

f [σα]k is periodic of period 1, and so can be defined as a function on a punctured unit disk,

say f [σα]k(z) = G(q). The modular form f is then holomorphic at the cusp α if G is extends

to a function which is holomorphic at 0.

The set of all modular forms of weight k, level q, and central character χ form a complex

vector space which we denote by Mk(Γ0(q), χ). An important subspace is the set of cusp

forms of weight k, denoted by Sk(Γ0(q), χ). This set is defined by altering the third condition

in the definition above: instead of requiring holomorphy at the cusps, we require the modular

forms in Sk to vanish at the cusps (defined similarly). It follows that λf (0) = 0 for all cusp

forms.

We note that if we take γ =

(
−1 0

0 −1

)
, then (−1)kf(z) = f [γ]k(z) = χ(−1)f(z), and

so f is identically 0 unless χ(−1) = (−1)k, which we will now always assume.

One important feature of the spaces defined above is that we have the decompositions

Mk(Γ1(q)) =
⊕
χ(q)

χ(−1)=(−1)k

Mk(Γ0(q), χ),

Sk(Γ1(q)) =
⊕
χ(q)

χ(−1)=(−1)k

Sk(Γ0(q), χ).

Here Mk(Γ1(q)) and Sk(Γ1(q)) are defined analogously as the previous spaces, except that

the transformation condition 2. is just f [γ]k(z) = f(z) for all γ ∈ Γ1(q).

1.3.3. Hecke Eigenforms

For a holomorphic modular form f ∈Mk(Γ0(q), χ), we have

f(z) =
∑
n≥0

λf (n)n
k−1
2 e(nz).
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The Hecke L-function associated to f is the Dirichlet series

L(f, s) =
∑
n≥1

λf (n)

ns
.

Hecke showed that this L-function can be completed in an analogous way to the Riemann zeta

function, and the resulting completed L-function satisfies a functional equation. However,

we would also like our L-functions to have an Euler product representation. For these, we

need the Hecke operators.

Let k, q ≥ 1 and χ be a Dirichlet character with χ(−1) = (−1)k. The nth Hecke operator

is defined by

Tnf(z) =
1

n

∑
ad=n

χ(a)
∑

0≤b<d

f

(
az + b

d

)
.

These operators satisfy a number of important properties, which we summarize in the fol-

lowing lemma.

Lemma 1.3.1.

1. Tn takes modular forms to modular forms and cusp forms to cusp forms:

Tn :Mk(Γ0(q), χ)→Mk(Γ0(q), χ),

Tn :Sk(Γ0(q), χ)→ Sk(Γ0(q), χ).

2. Tn acts on Fourier coefficients via

Tnf(z) =
∑
m≥0

( ∑
d|(n,m)

χ(d)λf

(nm
d2

))
e(mz).

3. The Hecke operators commute. More precisely

TmTn = TnTm =
∑
d|(n,m)

χ(d)Tmn
d2
,

and so in particular TmTn = Tmn if (m,n) = 1.

9



4. There is an orthonormal basis of the space Sk(Γ0(q), χ) of cusp forms consisting of

eigenfunctions of all Hecke operators Tn with (n, q) = 1.

For a proof of this lemma, see Chapter 6 of [12] (Note that a different normalization is

used in this reference, as the Fourier coefficients are defined by

f(z) =
∑
n∈Z

λf (n)qn,

instead of (3.2) ).

The last property is especially important, and the elements of this basis are called Hecke

eigenforms. For a Hecke eigenform, let λ(n) be such that

Tnf(z) = λ(n)f(z).

Comparing the first Fourier coefficients on both sides, we find that

λ(n)λf (1) = λf (n).

Normalizing so that the first Fourier coefficient is 1 (so long as λf (1) 6= 0. This is ensured,

for instance, by assuming the level q is prime), we find that

λf (n) = λ(n).

That is, with this normalization, the nth Fourier coefficient of a Hecke eigenform is the Hecke

eigenvalue of the nth Hecke operator. Moreover, the multiplicativity of the Hecke operators

immediately implies that the Fourier coefficients of a Hecke eigenform are multiplicative, and

so the associated L-function admits an Euler product. Specifically, if f is a Hecke eigenform

and the level q is prime, then

L(f, s) =
∑
n≥1

λf (n)

ns
=
∏
p

(
1− λf (p)

ps
+
χ(p)

p2s

)
.
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Chapter 2

Gaussian Primes in Narrow Sectors

2.1. Introduction

A classical result of Huxley [9] states that for sufficiently large x and any θ > 7/12, the

interval [x, x + xθ] contains a rational prime. In this chapter, we investigate an analogous

problem about Gaussian primes. To be precise, let ϕ ∈ R, 0 < δ ≤ π/2, 0 < θ ≤ 1, and x

large. We are interested in the cardinality of the set

{
a+ bi ∈ Z[i] : (a+ bi) is prime, ϕ < arg(a+ bi) ≤ ϕ+ δ, x− xθ < a2 + b2 ≤ x

}
.

Here (a + bi) denotes the ideal generated by a + bi. As is common in such problems, it is

more convenient to count these ideals with a suitable weight. Denote by a the ideal in Z[i]

generated by a+ bi and by Na = a2 + b2 its norm. If we define

Λ(a) =


logNa if a = pm with p prime and m ≥ 1,

0 otherwise,

11



then our problem translates to obtaining an asymptotic estimate for

ψ(x, y;ϕ, δ) =
∑

x−y<Na≤x
ϕ<arg a≤ϕ+δ

Λ(a).

Ricci [19] has shown that for all ε > 0 and δ ≥ x−3/10+ε, one has

ψ(x, x;ϕ, δ) ∼ 2δx

π
.

We generalize this and prove the following

Theorem 2.1.1. For any ε > 0, ϕ ∈ R, x sufficiently large, θ > 7/10, and δxθ ≥ x7/10+ε,

we have

ψ(x, xθ, ϕ, δ) ∼ 2δxθ

π
.

Geometrically, the parameters x, θ, ϕ, δ describe a sector centered at the origin. The inner

and outer radii of this sector are
√
x− xθ and

√
x, and the sector is cut by rays emanating

from the origin with angles ϕ and ϕ + δ. Ricci’s result gives the expected number of prime

ideals in a sector so long as the inner radius
√
x− xθ is essentially 0 and the angle δ between

the rays is sufficiently wide. Theorem 2.1.1 claims the more general result that one obtains

the expected number of prime ideals so long as the area of the sector is sufficiently large.

A note on the literature. It should be noted that Maknys [18] has claimed a result similar

to Theorem 2.1.1, but with the exponent 11/16 in place of 7/10. However, Heath-Brown [8]

has found an error in Maknys’ proof of this result. He states that Maknys’ proof, when cor-

rected, yields the exponent (221 +
√

201)/320 = 0.7349.... However, the result is potentially

worse than 0.7349... because Maknys’s proof depends on a zero density estimate (Theorem

2 of [17]), the proof of which also contains an error. In particular, there is an incorrect

application of Theorem 1 of [16]. For a version of Theorem 1 of [16] which is applicable in

the proof of Maknys’ zero density result, see Theorem 6.2 and the end of Section 7 of [4].

12



Outline of the Proof To orient the reader, we provide an outline of the proof of Theorem

2.1.1. In Section 2.3, we begin by smoothing the angular and norm regions for ψ(x, xθ, ϕ, δ),

and then express these regions via a sum of Hecke characters λm and an integral of (Na)it.

The main term in Theorem 2.1.1 then arises from the contribution of the principal character.

After applying an analogue of Heath-Brown’s identity in Z[i] (see Lemma 2.2.6 below), we

are left to bound a sum of O((log x)2J+2) expressions roughly of the form

∑
M≤m≤2M

cm

∫ 2T

T

Ṽ
(

1
2

+ it
) ∑
a=a1···a2J
Naj�Nj

a1(a1) · · · a2J(a2J)
λm(a)

(Na)1/2+it
dt

for some parameters Ni. Here the cm are Fourier coefficients and Ṽ is a Mellin transform.

Using estimates for cm and Ṽ , this reduces to showing that

∑
M≤m≤2M

∫ 2T

T

∣∣F (1
2

+ it
)∣∣ dt� x1/2

(log x)A
,

where F is the Dirichlet series appearing in the penultimate display.

In Section 2.4, we reduce this to bounding the number R of pairs m, t for which a

particular factor f of F attains a large value. Specifically, for such a pair m, t, we have

∣∣∣∣ ∑
Na�N

c(a)λm(a)(Na)−it
∣∣∣∣� W

for some divisor-bounded coefficients c(a) and W > 0. In Section 2.5, we use mean- and

large-value estimates to bound R. Specifically, we use a hybrid large sieve estimate due

to Coleman and an analogue of Huxley’s large value result, also due to Coleman. Writing

G =
∑
|c(a)|2, these yield

R� NGW−2 + (M2 + T 2)GW−2,

R� NGW−2 + (M2 + T 2)NG3W−6,
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respectively. We also use the “trivial” estimate

R� min(M,T )NGW−2 +MTGW−2,

as well as a subconvexity result for the Hecke L-function, L(s, λm), due to Ricci. There are a

variety of ranges for N,M, T to consider when deciding which estimate to use. This requires

a case analysis which is done in Sections 2.6 – 2.8. Here we also indicate the “worst cases”

of N,M, T for which our estimates are sharp.

We note that with an optimal large sieve, one would have the estimate

R� NGW−2 +MTGW−2. (1.1)

Although such a large sieve is not available in the literature, this would not improve our

results (it would, however, simplify the case analysis). This is because one of the worst

cases in our analysis remains a worst case when using this estimate. See Section 2.9 for this

discussion.

2.2. Notation and Preliminary Lemmas

We collect here some additional notation and lemmas we will need throughout the proof.

The symbols o,O,�,�,� have their usual meanings. The letter ε denotes a sufficiently

small positive real number, while A,B,C stand for an absolute positive constants, all of

which may be different at each occurrence. For example, we may write

xε log x� xε, (log x)B(log x)B � (log x)B

Any statement in which ε occurs holds for each positive ε, and any implied constant in such

a statement is allowed to depend on ε. The implied constants in any statement involving the

letters A,B,C are also allowed to depend on these variables. We also define the generalized

j divisor function τj(a) on ideals to be the number of ways to write a as the product of j

14



nonzero ideals.

Similar to Λ(a), we define

µ(a) =


(−1)r if a = p1 · · · pr with pi distinct primes,

0 otherwise.

Let arg a be the argument of any one of the generators of a (which is unique mod π/2). For

m ∈ Z, we define the angular Hecke characters

λm(a) = e4im arg a =

(
α

|α|

)4m

,

which are primitive with conductor (1). Note that the character is well-defined since the

particular generator α chosen for the definition above is immaterial. From these we get the

Hecke L-functions, defined for Re s > 1 by

L(s, λm) =
∑
a

λm(a)

(Na)s
.

Here the sum is over all nonzero ideals of Z[i]. These L-functions are absolutely convergent

for Re s > 1, and Hecke showed that, for m 6= 0, they have analytic continuation to all of C

and satisfy a functional equation. We also have

1

L(s, λm)
=
∑
a

λm(a)µ(a)

(Na)s
, −L

′(s, λm)

L(s, λm)
=
∑
a

λm(a)Λ(a)

(Na)s
,

which are also absolutely convergent for Re s > 1. We summarize these facts in the following

Lemma 2.2.1. The function L(s, λm) satisfies the functional equation

L(s, λm) = γ(s, λm)L(1− s, λm), (2.1)
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where

γ(s, λm) = π2s−1 Γ(1− s+ 2 |m|)
Γ(s+ 2 |m|)

.

If m 6= 0, then L(s, λm) is entire, and otherwise it is meromorphic with a simple pole at

s = 1 with residue π
4
. We also have

L(s, λm) = L(s, λ−m). (2.2)

These results are standard. See [13], for instance. We will need several results on the

behavior of these functions in the critical strip. These are given in the following pair of

lemmas.

Lemma 2.2.2. Let V = (4m2 + t2)1/2. Then there exist absolute constants C, δ > 0 such

that

L(σ + it, λm)� V c(1−σ)3/2(log V )2/3,

uniformly for 1 − δ < σ < 1. It follows that there exists an absolute constant C > 0 such

that L(s, λm) has no zeros in the region

σ ≥ 1− C(log V )−2/3(log log V )−1/3. (2.3)

Lemma 2.2.3. For σ in the region (2.3), we have

L′(σ + it, λm)

L(σ + it, λm)
� log V,

1

L(σ + it, λm)
� log V.

Lemma 2.2.2 follows from Theorems 1 and 2 of [3], and the proof of Lemma 2.2.3 follows

closely the proof of Theorem 3.11 of [21]. Next, we need an estimate for the number of lattice

points in a suitably regular sector.

Lemma 2.2.4. Let ϕ ∈ R, x and y be sufficiently large with x1/2 ≤ y ≤ x, and x−1/2 ≤ δ ≤
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π/2. If

N (x, y, ϕ, δ) = #
{
a+ bi ∈ Z[i] : ϕ ≤ arg(a+ bi) ≤ ϕ+ δ, x− y ≤ a2 + b2 ≤ x

}
,

then N (x, y, ϕ, δ)� δy.

Lemma 2.2.5. Let τj(a) be the j-divisor function for Z[i]. We have τj(a)� (Na)ε, and for

y > x1/2 we also have ∑
x−y<Na≤x

τj(a)� y(log x)j−1.

For ϕ ∈ R and x−1/2 < δ ≤ π/2, we also have

∑
x−y<Na≤x
ϕ≤arg a≤ϕ+δ

τj(a)� δyxε.

The implied constants above depend only on ε and j.

The proof of Lemma 2.2.4 is straightforward, and Lemma 2.2.5 follows from Shiu’s work

[20]. Our analysis makes use of an analogue of Heath-Brown’s identity in Z[i] (see [7]). For

technical reasons, it is more convenient to have a smoothed version of this identity. As such,

let W be a smooth function supported on [1
2
, 2] such that

∑
n≥0

W (2nt) = 1 and W j(t)� t−j

for all 0 < t ≤ 1. Then we have the following

Lemma 2.2.6 (Heath-Brown’s Identity). Let X > 1 and J be a positive integer, and let W

17



be as above. Then for any a with Na ≤ XJ , we have

Λ(a) =
J∑
j=1

(
J

j

)
(−1)j−1

∑
a1···a2J=a

log(a1)µ(aJ+1) · · ·µ(a2J)

× ∑
n1,...,nj≥0

nJ+1,...,nJ+j≥0

W

(
Na1

XJ/2n1

)
· · ·W

(
Naj

XJ/2nj

)
W

(
NaJ+1

X/2nJ+1

)
· · ·W

(
NaJ+j

X/2nJ+j

)

×W (Naj+1) · · ·W (NaJ)W (NaJ+j+1) · · ·W (Na2J).

Note that the terms on the last line simply force the ideals aj+1, . . . to have norm 1. The

point of the lemma is that for Na ≤ XJ , the function Λ(a) can be decomposed into a linear

combination of O((logX)2J) smooth sums of the form

∑
a1···a2J=a

log(a1)µ(aJ+1) · · ·µ(a2J)W

(
Na1

N1

)
· · ·W

(
Na2J

N2J

)
,

where Nj = XJ/2n or X/2n for some integer n, depending as j ≤ J .

2.3. Initial Decomposition

To estimate ψ(x, xθ;ϕ, δ), we begin by smoothing the angular region for a. For this, we need

Lemma 2.3.1. Let k ∈ Z with k ≥ 0 and let α, β,∆, L be real numbers satisfying

L > 0, 0 < ∆ <
L

2
, ∆ ≤ β − α ≤ L−∆.

Then there exists an L-periodic function P (x) with

P (t) =
1

L
(β − α) +

∑
m 6=0

cme
4imt
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which satisfies

P (t) = 1 if t ∈ [α, β],

P (t) = 0 if t ∈ [β + ∆, L+ α−∆],

P (t) ∈ [0, 1] for all t,

and where the coefficients cm satisfy

|cm| ≤


1

L
(β − α),

L

|m|

(
kL

∆ |m|

)k
if m 6= 0,

(3.1)

where the factor involving k is taken to equal 1 when k = 0.

This result is classical. See, for example, Lemma A of Chapter 1, Section 2 of [15]. The

special case L = 1 is proved there, but the lemma generalizes easily to arbitrary periods.

Let P be as in the lemma with L = π
2
, α = ϕ, β = ϕ+ δ, and ∆ = δx−ε. Then

ψ(x, xθ;ϕ, δ) =
∑

x−xθ<Na≤x

Λ(a)P (arg a) +O

( ∑
x−xθ<Na≤x
ϕ−∆≤arg a≤ϕ

Λ(a)

)
+O

( ∑
x−xθ<Na≤x

ϕ+δ≤arg a≤ϕ+δ+∆

Λ(a)

)
.

To estimate the error terms we note that the hypotheses of Theorem 2.1.1 imply that xθ �

x7/10+ε and δ � x−3/10+ε. In particular, we have

xθ ≥ x1/2 and ∆ ≥ x−1/2.

Since Λ(a) ≤ log x, we have by Lemma 2.2.4 that

∑
x−xθ<Na≤x
ϕ−∆≤arg a≤ϕ

Λ(a)� (log x)N (x, xθ, ϕ−∆, ϕ)� (log x)xθ∆ = o(δxθ),

19



and similarly for the other error term. We expand P (arg a) using its Fourier series and write

∑
x−xθ<Na≤x

Λ(a)P (arg a) =
∑

x−xθ<Na≤x

Λ(a)
∑
m

cmλ
m(a).

We have ∑
x−xθ<Na≤x

Λ(a) = 2
∑

x−xθ<p≤x
p≡1 (mod 4)

log p+O(x1/2 log x),

(see, for instance, display 7.4 in Chapter 2 of [19] for this computation). Since xθ � x7/12+ε,

the Siegel-Walfisz theorem in short intervals gives

2
∑

x−xθ<p≤x
p≡1 (mod 4)

log p = xθ(1 + o(1)),

and since c0 = 2δπ−1, we obtain

ψ(x, xθ, ϕ, δ) =
2δxθ

π
(1 + o(1)) +

∑
x−xθ<Na≤x

Λ(a)
∑
m6=0

cmλ
m(a).

Using (3.1), we truncate the Fourier series at M1 to obtain

ψ(x, xθ, ϕ, δ) =
2δxθ

π
(1 + o(1)) +

∑
x−xθ<Na≤x

Λ(a)
∑

1≤|m|≤M1

cmλ
m(a) +O

(
xθ log x

(
πkxε

2δM1

)k )

for any k ≥ 1. Choosing M1 = δ−1xε, a sufficiently large choice of k depending only on ε

makes the error term o(δxθ), and so

ψ(x, xθ, ϕ, δ) =
2δxθ

π
(1 + o(1)) +

∑
1≤|m|≤M1

cm
∑

x−xθ<Na≤x

Λ(a)λm(a).
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Next, we smooth the norm-region for a. Let V be a smooth function satisfying

V (t) = 1 if t ∈ [x− xθ, x],

V (t) = 0 if t ∈ Rr [x− xθ − xθ−ε, x+ xθ−ε],

V (t) ∈ [0, 1] for all t.

Then Ṽ satisfies

Ṽ (s)� xθ+σ−1 and Ṽ (s)� xσ+(A−1)(1−θ+ε)

(1 + |t|)A
(3.2)

for any real A ≥ 1, where the implied constant depends only on A and σ. We obtain

ψ(x, xθ, ϕ, δ) =
2δxθ

π
(1 + o(1)) +

∑
1≤|m|≤M1

cm
∑
a

Λ(a)V (Na)λm(a) =
2δxθ

π
(1 + o(1)) + S,

say, where the error in replacing the sharp cutoff with the smoothing function V has been

absorbed into the error term o(δxθ).

We now employ Lemma 2.2.6 with X = (2x)1/J for some integer J ≥ 1 to be chosen.

Then S is a linear combination of O((log x)2J) sums of the form

S =
∑

1≤|m|≤M1

cm
∑

a=a1···a2J

a1(a1) · · · a2J(a2J)W1(Na1) · · ·W2J(Na2J)λm(a)V (Na), (3.3)

where

aj(a) =


logNa if j = 1,

1 if 2 ≤ j ≤ J,

µ(a) if J + 1 ≤ j ≤ 2J,

Wj(k) = W (k/Nj), and Nj = x/2n or X/2n for some integer n ≥ 0 depending as j ≤ J .

It is natural to consider the Dirichlet series associated to the sums S. For each j and m,

21



put

fj,m(s) =
∑
a

aj(a)λm(a)Wj(Na)

(Na)s

and also let

Fm(s) =
2J∏
j=1

fj,m(s) =
∑
a

a(a)λm(a)

(Na)s
,

where the coefficients satisfy

|a(a)| � τ2J(a) log x.

Then Mellin inversion gives

S =
1

2πi

∫
(1/2)

Ṽ (s)
∑

1≤|m|≤M1

cmFm(s) ds.

For Re (s) = 1
2
, we have

Fm(s)� log x
∑
Na≤2x

τ2J(a)

(Na)1/2
� x1/2+ε.

Also |cm| � δ. Truncating the integral at height T1 and using (3.2) then gives

S =
1

2πi

∫ 1/2+iT1

1/2−iT1
Ṽ (s)

∑
1≤|m|≤M1

cmFm(s) ds+O

(
x1/2+εx

1/2+(A−1)(1−θ+ε)

TA−1
1

)

for any A ≥ 1. Choosing T1 = x1−θ+ε and taking A sufficiently large in terms of ε makes the

error term negligible. We have |cm| � δ and |Ṽ
(

1
2

+ it
)
| � xθ−1/2, so

S � δxθ

x1/2

∑
1≤|m|≤M1

∫ T1

−T1

∣∣Fm (1
2

+ it
)∣∣ dt� δxθ

x1/2

∑
1≤m≤M1

∫ T1

0

∣∣Fm (1
2

+ it
)∣∣ dt,

the last inequality following from (2.2). We divide the ranges of m and t into dyadic intervals

[M, 2M ] and [T, 2T ] for M,T ≥ 1 along with the additional interval [0, 1] for t. Theorem

2.1.1 now follows from
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Lemma 2.3.2. We have

∑
M≤m≤2M

∫ 2T

T

∣∣Fm (1
2

+ it
)∣∣ dt� x1/2

(log x)2J+3
,

uniformly for 1 ≤M ≤M1 and 1 ≤ T ≤ T1. The expression with an integral over [0, 1] also

satisfies this bound.

2.4. Reduction to Large Values

In this section, we reduce the proof of Lemma 2.3.2 to the estimation of the number of large

values of a certain Dirichlet polynomials. We begin by letting ∆ be a small parameter to

be chosen and write Fm(s) = Gm(s)Hm(s), where Hm(s) is the product of those factors for

which the lengths Nj satisfy Nj ≤ x∆/J . Since

∣∣f1,m

(
1
2

+ it
)∣∣� N

1/2
1 log x;

∣∣fj,m (1
2

+ it
)∣∣� N

1/2
j , (j ≥ 2),

we have ∣∣Hm

(
1
2

+ it
)∣∣� Z1/2 log x,

where Z is the product of those Nj with Nj ≤ x∆/J . Then

∫ 2T

T

∑
M≤m≤2M

∣∣Fm (1
2

+ it
)∣∣ dt� Z1/2 log x

∫ 2T

T

∑
M≤m≤2M

∣∣Gm

(
1
2

+ it
)∣∣ dt. (4.1)

We now bound the integral on the right (I, say) by a set of O(T ) well-spaced points tn. We

have

I �
∑
n

∑
M≤m≤2M

∣∣Gm

(
1
2

+ itn
)∣∣ ,

where |tl − tn| ≥ 1 for l 6= n. For each triple j,m, n, let

∣∣fj,m (1
2

+ itn
)∣∣ = N

σ(j,m,n)−1/2
j (log x)4.
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We need to show that σ(j,m, n) cannot be too close to 1. We treat the case j > J , for which

fj,m(s) =
∑
a

µ(a)λm(a)Wj(a)

(Na)s
.

The case j ≤ J would be very similar. By Mellin inversion

fj,m
(

1
2

+ it
)

=

∫
(c)

L
(

1
2

+ it+ s, λm
)−1

N s
j W̃j(s)ds,

where c = 1
2

+ (log x)−1. We have trivially that

1

|L(1 + (log x)−1 + it, λm)|
≤ ζK(1 + (log x)−1)� log x,

(here again ζK is the Dedekind zeta function for Z[i]). Truncating the integral at height xε

and using the rapid decay of W̃ gives

fj,m
(

1
2

+ it
)

=

∫ c+ixε

c−ixε
L
(

1
2

+ it+ s, λm
)−1

N s
j W̃j(s)ds

with negligible error. We now use Lemmas 2.2.2 and 2.2.3 to move the line of integration to

the left of Re s = 1
2
. Then in the region

1− η ≤ Re w ≤ 1
2

+ c, |Im w − t| ≤ x,

where

η = C(log x)−2/3(log log x)−1/3,

we have
1

L(w, λm)
� log x

Moving the line of integration to 1/2− η, we thus have

∣∣fj,m (1
2

+ it
)∣∣� (log x)N

1/2−η
j ,
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from which it follows that

σ(j,m, n) ≤ 1− η

for x sufficiently large. We now split the available range for σ(j,m, n) into O(log x) ranges

I0 = (−∞, 1
2
) and

Il =

[
1

2
+
l − 1

L
,
1

2
+
l

L

)
, (1 ≤ l ≤ 1 + L/2, L = blog xc) ,

For each j, l, let

C(j, l) =

{
(m, tn) : max

1≤k≤2J
σ(k,m, n) = σ(j,m, n) and σ(j,m, n) ∈ Il

}
.

Since there are O(log x) classes C(j, l), there must exist some class C for which

I � (log x)
∑

(m,t)∈C

∣∣Gm

(
1
2

+ it
)∣∣ .

For (m, t) ∈ C, we have

∣∣Gm

(
1
2

+ it
)∣∣ =

∏
N
σ(j,m,n)−1/2
j ≤

∏
N
l/L
j = Y l/L,

where Y is the product of the Nj with Nj > x∆/J . To simplify notation, let

σ =
1

2
+
l − 1

L
, fm(s) = fj,m(s), N = Nj, R = #C. (4.2)

If l = 0, then I �MT log x, so (4.1) gives

∫ 2T

T

∑
M≤m≤2M

∣∣Fm (1
2

+ it
)∣∣ dt� Z1/2M1T1(log x)2 � δ−1x1−θ+∆+ε � x1/2

(log x)A
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since we may assume ∆ < 1
5

and xθδ > x7/10. If l ≥ 1, we have

I � (Y σ−1/2)R log x,

and so ∫ 2T

T

∑
M≤m≤2M

∣∣Fm (1
2

+ it
)∣∣ dt� Z1/2Y σ−1/2R(log x)2.

Now since

Z1/2Y σ−1/2 � Z1/2(xZ−1)σ−1/2 � x1/2(Zx−1)1−σ � x1/2+(2∆−1)(1−σ),

we find that

∫ 2T

T

∑
M≤m≤2M

∣∣Fm (1
2

+ it
)∣∣ dt� x1/2(log x)2

(
R

x(1−2∆)(1−σ)

)
. (4.3)

It remains to estimate R. For each (t,m) ∈ C, we have

∣∣fm (1
2

+ it
)∣∣� Nσ−1/2.

Since σ ≤ 1− η/2 we see that Lemma 2.3.2 follows from the bound

R� x(1−3∆)(1−σ)(log x)B (4.4)

for any fixed B > 0, since then the expression on the right of (4.3) is bounded by taking

σ = 1 − η/2, and the definition of η allows us to save arbitrary powers of log x. To deduce

the requisite bound for R, it is sufficient to show that

R� (MT )10(1−σ)/3(log x)B (4.5)

uniformly in M,T, σ, since MT ≤M1T1 = x1−θ+εδ−1 ≤ x3/10−ε.
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2.5. Mean and Large Value Results

To estimate R (see (4.2)), we will need several mean-value results of the form

∑
|m|≤M

∫ T

−T

∣∣∣∣ ∑
Na�N

c(a)λm(a)(Na)−it
∣∣∣∣2dt� D ∑

Na�N

|c(a)|2 (5.1)

for some D = D(N,M, T ), where c(a) are arbitrary complex coefficients defined on the ideals

of Z[i]. First, we have Coleman’s hybrid large sieve (Theorem 6.2 of [4]).

Lemma 2.5.1 (Coleman). The estimate (5.1) holds with

D = M2 + T 2 +N. (5.2)

Additionally, we also have the following trivial estimate.

Lemma 2.5.2. The estimate (5.1) holds with

D = MT +N min(M,T ). (5.3)

Proof. For the case T ≤M , see [19], Theorem C. For the other case, the mean-value theorem

for Dirichlet polynomials gives

∫ T

−T

∣∣∣∣ ∑
Na�N

c(a)λm(a)(Na)−it
∣∣∣∣2dt = (T +O(N))

∑
Na�N

|c(a)|2 .

Summing over m gives the other estimate.

Note that in each of the estimates above, the integral over t can be replaced by a sum

over well-spaced points at the cost of a logarithmic factor, which will not affect our results.

For the problem at hand, the natural quantity to work with is MT , rather than the
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minimum or maximum of M and T . To this end, let

L = L(M,T ) =
|log(M/T )|

logMT

so that

max(M2, T 2) = (MT )1+L and min(M2, T 2) = (MT )1−L.

We will regard L as an arbitrary parameter assuming values in [0, 1]. The estimates (5.2)

and (5.3) become, respectively

(MT )1+L +N and MT +N(MT )(1−L)/2.

We will apply these estimates to suitable powers of the polynomial fm
(

1
2

+ it
)
. For any

integer g ≥ 1, we have

RN g(2σ−1) �
∑

(m,t)∈C

∣∣∣∣∑
a

a(a)W (Na)λm(a)

(Na)1/2+it

∣∣∣∣2g � D(N g,M, T )
∑
Na�N

|b(a)|2

Na
,

say where |b(a)| ≤ τg(a)(log x)g. Using Lemma 2.2.5 and partial summation, we find that

the coefficient sum on the right is O((log x)B) for some B which depends on g. Since g is

bounded in terms of ∆, we find that B and the implied constant depend at most on our

choice of ∆. Thus

RN g(2σ−1) �
(
MT +N g(MT )(1−L)/2

)
(log x)B,

RN g(2σ−1) �
(
(MT )1+L +N g

)
(log x)B.

We will also make use of the following large values result of Coleman (Theorem 7.3 of [4]

with θ = 0) which is proved using Huxley’s subdivision method:

R�
(
N2g(1−σ) + (M2 + T 2)N g(4−6σ)

)
(log x)B �

(
N2g(1−σ) + (MT )1+LN g(4−6σ)

)
(log x)B.
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For any integer g ≥ 1, the estimates above give

R�
(
(MT )1+LN g(1−2σ) +N2g(1−σ)

)
(log x)B, (5.4)

R�
(
MTN g(1−2σ) + (MT )(1−L)/2N2g(1−σ)

)
(log x)B, (5.5)

R�
(
(MT )1+LN g(4−6σ) +N2g(1−σ)

)
(log x)B. (5.6)

The last estimate is useful only when σ ≥ 3/4, and any time it is used, σ will be assumed

to lie in this range. In each of the estimates above, the first summand decreases in g, and

the second increases. Writing N = (MT )β, one would like to choose

g =
1 + L
β

,
1 + L

2β
,

1 + L
2β(2σ − 1)

, (5.7)

respectively, so as to equalize the two summands in each estimate.

Unfortunately, g must be chosen to be an integer, and this adds a fair amount of com-

plication to our analysis. The optimal choices for g in (5.4) – (5.6) are obtained by tak-

ing the floor of the values in (5.7), or 1 plus the floor. Thus, unconditionally, we have

R� (MT )min(α1,...,α6), where

α1(L, β, σ) = 1 + L+ β

⌊
1 + L
β

⌋
(1− 2σ),

α2(L, β, σ) = 2β

⌊
1 + L
β

+ 1

⌋
(1− σ),

α3(L, β, σ) = 1 + β

⌊
1 + L

2β

⌋
(1− 2σ),

α4(L, β, σ) =
1− L

2
+ 2β

⌊
1 + L

2β
+ 1

⌋
(1− σ),

α5(L, β, σ) = 1 + L+ β

⌊
1 + L

2β(2σ − 1)

⌋
(4− 6σ),

α6(L, β, σ) = 2β

⌊
1 + L

2β(2σ − 1)
+ 1

⌋
(1− σ),

(5.8)

where α1, α3, α5 apply only when the expression in the floor brackets is at least 1. We also

define A0 to be the minimum of these six estimates and Ai = min(α2i−1, α2i) for i = 1, 2, 3.
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Our analysis now proceeds by fixing β and σ and understanding the behavior of A0 as L

ranges between 0 and 1. For this, we will need the following propositions which describe the

behavior of Ai for i = 1, 2, 3. The proofs of these propositions are very similar, so we only

prove Proposition 2.5.3. For notational brevity, we also suppress the dependence of αi and

Ai on β and σ.

Proposition 2.5.3. Fix β ∈ (0, 5
6
) and σ ∈ ( 7

10
, 3

4
). For n ∈ Z, define

L(1,d)
n = βn− 1 and L(1,e)

n = L(1,d)
n + 2β(1− σ).

Then on [0, 1] ∩
[
L(1,d)
n ,L(1,d)

n+1

)
, we have

A1(L) =


1 + L+ βn(1− 2σ) if L ≤ L(1,e)

n ,

2β(n+ 1)(1− σ) if L ≥ L(1,e)
n .

In particular, A1(L) is a continuous non-decreasing function of L on [0, 1].

Proposition 2.5.4. Fix β ∈ (0, 5
3
) and σ ∈ ( 7

10
, 1). For n ∈ Z, define

L(2,d)
n = 2βn− 1 and L(2,e)

n = L(2,d)
n + 4β(1− σ).

Then on [0, 1] ∩
[
L(2,d)
n ,L(2,d)

n+1

)
, we have

A2(L) =


1 + βn(1− 2σ) if L ≤ L(2,e)

n ,

1−L
2

+ 2β(n+ 1)(1− σ) if L ≥ L(2,e)
n .

In particular, A2(L) is a continuous non-increasing function of L on [0, 1].

Proposition 2.5.5. Fix β ∈ (0, 5
6
) and σ ∈ (3

4
, 1). For n ∈ Z, define

L(3,d)
n = 2β(2σ − 1)n− 1 and L(3,e)

n = L(3,d)
n + 2β(1− σ).
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Then on [0, 1] ∩
[
L(3,d)
n ,L(3,d)

n+1

)
, we have

A3(L) =


1 + L+ βn(4− 6σ) if L ≤ L(3,e)

n ,

2β(n+ 1)(1− σ) if L ≥ L(3,e)
n .

In particular, A3(L) is a continuous non-decreasing function of L on [0, 1].

As a remark on notation, the superscripts d and e appearing above are no parameters,

but rather indicate that the variables using these superscripts are points of discontinuity or

equality, respectively.

Proof of Proposition 2.5.3. A short computation shows that the solutions to α1(L) = α2(L)

are given by

L(1,e)
m = mβ − 1 + 2β(1− σ), for

1

β
− 2(1− σ) ≤ m ≤ 2

β
− 2(1− σ),

and that the points of discontinuity of A1(L) are given by

L(1,d)
n = nβ − 1,

1

β
≤ n ≤ 2

β
.

Since L(1,e)
m+1 − L

(1,e)
m = L(1,d)

n+1 − L
(1,d)
n = β, and since σ 6= 1, there is a unique point of

intersection, say L(1,e)
mn , between each pair L(1,d)

n , L(1,d)
n+1 of points of discontinuity, and it is

easy to check that mn = n. Moreover, for a fixed value of
⌊

1+L
β

⌋
, i.e. on the interval between

two points of discontinuity, it is clear that α1 increases in L, and α2 is constant. Thus

A1 is non-decreasing on each interval
[
L(1,d)
n ,L(1,d)

n+1

)
. Finally, we note that α2

(
L(1,d)
n−1

)
=

α2

(
L(1,d)
n − ε

)
= α1

(
L(1,d)
n

)
for all ε > 0 sufficiently small. Thus A1 is continuous, proving

the last statement of the proposition.

It is worth noting that the results of these propositions extend to some slightly wider

ranges of β and σ. For clarity of exposition, we have included only the ranges we need for
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our analysis. From these propositions, we can also deduce the following upper bounds, which

have the benefit of being linear in L.

Corollary 2.5.6. For all L ∈ [0, 1], β ∈ (0, 2
3
), and σ ∈

(
7
10
, 1
)
, we have Ai ≤ Bi, where

B1(L, β, σ) = 2(1 + L+ β)(1− σ)− 4β(1− σ)2,

B2(L, β, σ) =
(

1
2
− σ

)
(1 + L − 2β(1− σ)) + 2β(1− σ),

B3(L, β, σ) =

(
1− σ
2σ − 1

)
(1 + L − 2β(1− σ)) + 2β(1− σ).

Proof. The functions Bi are the linear interpolations of the points
(
L(i,e)
m ,Ai

(
L(i,e)
m

))
.

2.6. Short Polynomials

We are now ready to apply the estimates in Section 2.5 to estimate the quantity R. We will

need a subconvexity estimate for Hecke L-functions (Lemma 2.7.1 below) to eliminate certain

ranges of L, β, σ. This will require the coefficients a(a) to be smooth, which is ensured by

N > X. As such, the present section is devoted to the case N ≤ X, where we do not require

subconvexity. We divide into several cases.

Case 1.1: MT ≤ X

Choose g so that

X2 ≤ N g ≤ X3.

Then (MT )1+L ≤ (MT )2 ≤ X2, so by (5.4), we have

R�
(
X2+2(1−2σ) +X6(1−σ)

)
(log x)B � x6(1−σ)/J(log x)B.

This gives (4.4) so long as J > 6 and ∆ is sufficiently small.
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Case 1.2: MT > X, β > 2
3

In this case, we have β < 1. If β > 2
3
, then (MT )1+L ≤ X3. Similar to Case 1, we choose g

so that

X3 ≤ N g ≤ X4

and apply (5.4) to obtain

R� x8(1−σ)/J(log x)B.

We obtain (4.4) so long as J > 8 and ∆ is sufficiently small.

Case 1.3: MT > X, β ≤ 2
3, σ ≤

3
4

Here it suffices to use the estimates B1 and B2. A short computations shows that B1(L) ≤
10
3

(1− σ) so long as

L ≤
(

2

3
− β(2σ − 1)

)
(1− σ) = L∗,

say. Since B2 decreases in L, it suffices to check that B2(L∗) ≤ 10
3

(1 − σ). Another compu-

tation shows that this inequality holds so long as

β ≤ 10σ − 9

12σ2 − 24σ + 9
.

The expression on the right decreases in σ, and substituting σ = 3
4
, we see that B2(L∗) ≤

10
3

(1− σ) so long as β ≤ 2
3
.

Case 1.4: MT > X, β ≤ 2
3, σ >

3
4

The proof of this case is very similar to Case 3, except that we use A3 in place of A1. Note

that Cases 3 and 4 do not use any information about the size of MT compared to X. As

such, Cases 3 and 4 actually cover the entire range L ∈ [0, 1], β ≤ 2/3, σ ∈ ( 7
10
, 1).
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2.7. Long Polynomials: Subconvexity and Simplifications

We now suppose that N > X, in which case we may apply the following subconvexity

estimate for Hecke L-functions.

Lemma 2.7.1 (Ricci). If (4m2 + t2) ≥ 4, then

L
(

1
2

+ it, λm
)
� (m2 + t2)1/6 log3(m2 + t2).

For a proof, see [19], Chapter 2, Theorem 4. Since N > X, the coefficients of fm(1/2+ it)

are smooth and we may write (in the case j > 1)

fm
(

1
2

+ it
)

=
1

2πi

∫
(0)

L
(

1
2

+ it+ s, λm
)
W̃ (s)N sds. (7.1)

We have m ≥ 1 always, so Lemma 2.7.1 yields

fm
(

1
2

+ it
)
�
∫ ∞
−∞

(m2 + t2 + y2)
1/6

log3(m2 + t2 + y2)

(1 + |y|)A
dy

� (M2 + T 2)1/6 log3(M2 + T 2)

� (MT )(1+L)/6 log3(M2 + T 2).

If j = 1, we write

fm
(

1
2

+ it
)

= logN
∑
a

W

(
Na

N

)
λm(a)

(Na)1/2+it
+
∑
a

W

(
Na

N

)
log

(
Na

N

)
λm(a)

(Na)1/2+it
.

The first sum is handled in the same way as before. If W (y) is replaced by W ∗(y) =

W (y) log y, then W̃ ∗ decays rapidly on vertical lines just as W̃ , and so in this case we obtain

fm
(

1
2

+ it
)
� (MT )(1+L)/6 log3(M2 + T 2) logN.
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Since
∣∣fm (1

2
+ it

)∣∣� (MT )β(σ−1/2)(log x)4, we deduce that

σ ≤ 1

2
+

1 + L
6β

. (7.2)

We can also make a few simplifying assumptions. We may assume

σ >
7

10
,

for otherwise

R ≤MT ≤ (MT )10(1−σ)/3.

In particular, we have σ ≤ 7
10

if β ≥ 5
6
(1 + L). From the remarks in Case 4, we may also

assume β > 2
3
. Thus we may limit our analysis to the situation in which

2

3
< β <

5

6
(1 + L) ≤ 5

3
. (7.3)

2.8. Long Polynomials: Case Checking

Case 2.1: β ≤ 5
6, σ ≤

3
4

Fix σ ∈ ( 7
10
, 3

4
] and β ∈ (2

3
, 5

6
]. We determine the largest value L∗ of L for which A1 is

sufficient. Since A1 is continuous and non-decreasing, we can compute L∗ as follows. We

have

2β(n+ 1)(1− σ) ≤ 10

3
(1− σ)

so long as n ≤ 5
3β
− 1. If β 6= 5

6
, then since

⌊
5

3β

⌋
= 2 in the present case, it follows that L∗

lies in the interval
[
L(1,d)

2 ,L(1,e)
2

)
. The value L∗ is then given by the solution to

1 + L∗ − 2β(2σ − 1) =
10

3
(1− σ).
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If β = 5
6
, then A1(L) = 10

3
(1− σ) for all L ∈

[
L(1,e)

1 ,L(1,d)
2

]
, so we may take L∗ = L(1,d)

2 = 2
3
.

Thus in this case also, L∗ is given by the solution to the equation above.

We have A1(L) ≤ 10
3

(1−σ) so long as L ≤ L∗. Since A2 is continuous and non-increasing,

to estimate the remaining range of L, it suffices to check thatA2(L∗) ≤ 10
3

(1−σ). To evaluate

A2(L∗), we need to determine n∗ such that the interval
[
L(2,d)
n∗ ,L(2,d)

n∗+1

)
contains L∗. A short

computation shows that in the present case, we have

n∗ =

⌊
5

3β
(1− σ) + (2σ − 1)

⌋
= 1.

If L∗ ≤ L(2,e)
1 , then

A2(L∗) = 1 + β(1− 2σ) = 1− β + 2β(1− σ) ≤ 10

3
(1− σ),

where the last inequality follows from 1− β ≤ 1
6
< 5

12
≤ 5

3
(1− σ). Otherwise if L∗ > L(2,e)

1 ,

then again we have

A2(L∗) =
1− L∗

2
+ 4β(1− σ) ≤ 1− L(2,e)

1

2
+ 4β(1− σ) = 1− β + 2β(1− σ) ≤ 10

3
(1− σ).

Case 2.2: β ≤ 5
6, σ >

3
4

Fix σ ∈ (3
4
, 1) and β ∈ (2

3
, 5

6
]. The arguments for this case and the next are very similar to

Case 2.1, so we will be fairly brief. As in Case 2.1, we determine the largest value L∗ of L

for which A3 is sufficient. Arguing as in that case, we find that L∗ is given by the solution

to

1 + L∗ − 2β(6σ − 4) =
10

3
(1− σ).

We now check that A2(L∗) ≤ 10
3

(1 − σ). As before, we have L∗ ∈
[
L(2,d)

1 ,L(2,d)
2

)
. If L∗ ≤

L(2,e)
1 , then

A2(L∗) = 1 + β(1− 2σ) = 1− β + 2β(1− σ) ≤ 10

3
(1− σ)
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so long as σ ≤ 9
10

, where the last inequality follows from 1 − β ≤ 1
6
≤ 5

3
(1 − σ). If σ > 9

10
,

then L∗ > 1, so A3 suffices for all L ∈ [0, 1]. If L∗ > L(2,e)
1 , then just as in Case 2.1 we have

A2(L∗) ≤ 10

3
(1− σ).

Case 2.3: β > 5
6

Fix σ ∈ ( 7
10
, 1) and β ∈ (5

6
, 5

3
). By the subconvexity restriction (7.2), we may assume

L > 3β(2σ − 1)− 1 = L∗, say, and since A2 is non-increasing in L, it suffices to check that

A2(L∗) ≤ 10
3

(1 − σ). The inequalities L(2,e)
0 ≤ L∗ ≤ L(2,d)

1 are easy to verify (the interval[
L(2,e)

0 ,L(2,d)
1

]
may intersect only part of [0, 1], but this is immaterial). It follows that

A2(L∗) =
1− (3β(2σ − 1)− 1)

2
+ 2β(1− σ) = 1 + 3β(1

2
− σ) + 2β(1− σ)

= 1− 3β

2
+ 5β(1− σ) ≤ 10

3
(1− σ)

(
1− 3β

2

)
+ 5β(1− σ) =

10

3
(1− σ).

2.9. Optimality of 10
3

There are two sets of values of L, β, σ which show that the constant 10
3

is optimal in our

analysis. These are

L =
3

5
, β =

4

3
, σ =

7

10
and L = 1, β =

5

6
, σ =

9

10
.

In the cases above where these values occur, one may check that the inequalities used are

sharp, and so 10
3

cannot be improved. The optimal large sieve (1.1) would eliminate the need

for the variable L, but the particular case β = 5
6
, σ = 9

10
remains a worst case when using

this estimate.
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Chapter 3

The Sixth Moment of Automorphic

L-Functions

3.1. Introduction

Moments of L-functions are among the central objects of study in modern analytic number

theory, and there is a vast literature on the subject. In this chapter, we shall be concerned

with a family of L-functions attached to automorphic forms on GL2. Specifically, we consider

the sixth moment of L-functions associated to the family of holomorphic modular forms with

respect to the congruence subgroup Γ1(q) (see [11] for definitions). Our work is motivated by

the work of Djanković [5] and Chandee and Li [2] on this family. For a detailed introduction

to this family of L-functions, see the introductions of the above two papers.

Let Sk(Γ1(q)) denote the space of holomorphic cusp forms on Γ1(q). We assume k ≥ 3 is

an odd integer and q is prime (these assumptions are made mostly to eliminate oldforms).

Then Sk(Γ1(q)) is a Hilbert space with the Petersson’s inner product

〈f, g〉 =

∫
Γ1(q)\H

f(z)g(z)yk−2dx dy,
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and

Sk(Γ1(q)) =
⊕

χ (mod q)

Sk(Γ0(q), χ).

Let Hχ be an orthogonal basis for Sk(Γ0(q), χ) consisting of Hecke cusp forms, normalized

so that the first Fourier coefficient is 1. For each f ∈ Hχ, we let L(f, s) be the L-function

associated to f , defined for Re s > 1 as

L(f, s) =
∑
n≥1

λf (n)

ns
=
∏
p

(
1− λf (p)

ps
+
χ(p)

p2s

)−1

,

where {λf (n)} are the Hecke eigenvalues of f . In general, these satisfy the Hecke relation

λf (m)λf (n) =
∑
d|(m,n)

χ(d)λf

(mn
d2

)
. (1.1)

We define the completed L-function as

Λ
(
f, 1

2
+ s
)

=
( q

4π2

) s
2

Γ

(
s+

k

2

)
L
(
f, 1

2
+ s
)
, (1.2)

which satisfies the functional equation

Λ
(
f, 1

2
+ s
)

= ikηfΛ
(
f, 1

2
− s
)

where |ηf | = 1 when f is a newform. We define the harmonic average over Hχ by

∑h

f∈Hχ

αf =
Γ(k − 1)

(4π)k−1

∑
f∈Hχ

αf

||f ||2
.

We are interested in the sixth moment

M(q) =
2

ϕ(q)

∑
χ (mod q)

χ(−1)=(−1)k

∑h

f∈Hχ

∣∣L (f, 1
2

)∣∣6 .
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The conjectured asymptotic (see [2]) is

M(q) =
2

ϕ(q)

∑
χ (mod q)

χ(−1)=(−1)k

∑h

f∈Hχ

∣∣L (f, 1
2

)∣∣6 ∼ 42C3

(
1− 1

q

)4(
1 +

4

q
+

1

q2

)
C−1
q

(
(log q)9

9!

)
,

where C3, C−1
q are certain explicit constants. Using the asymptotic large sieve for the Fourier

coefficients of cusp forms developed by Iwaniec and Xiaoqing Li [14], Djanković [5] has shown

M(q)� qε

for any ε > 0, whereas Chandee and Xiannan Li [2] have obtained the following asymptotic

formula for the smoothed sixth moment:

2

ϕ(q)

∑
χ (mod q)

χ(−1)=(−1)k

∑h

f∈Hχ

∫ ∞
−∞

∣∣Λ (f, 1
2

+ it
)∣∣6 dt

∼ 42C3

(
1− 1

q

)4(
1 +

4

q
+

1

q2

)
C−1
q

(log q)9

9!

∫ ∞
−∞

∣∣Γ(k
2

+ it)
∣∣6 dt.

Note that that the integral in t is quite short due to the presence of the gamma function.

Building on these results, we prove

Theorem 3.1.1. Let q be prime and k ≥ 3. Then, as q →∞, we have

M(q)� (log q)9.

Our proof of Theorem 3.1.1 adheres closely to the work of Chandee and Li [2] and may

be seen as an application of their ideas that avoids many of the technical details of their

proof. Although we sacrifice an asymptotic, our result has the benefit of having no integral

in t and being of the correct order of magnitude.
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3.1.1. Notation

We retain the notational conventions of Chapter 2, except for the use of the symbol λ,

which we shall use either for Fourier coefficients or as a summation variable, and also put

e(x) = e2πix. We use a bold letter such as a to denote the pair of variables a1, a2 and write

f(a) to indicate that f is a function depending on these variables. However, we use n and

N to indicate the pairs (n,m) and (N,M), respectively. We write n � N to denote the

condition c1N ≤ n ≤ c2N for some suitable constants 0 < c1 < c2. The use of the notation∑* in a sum such as
∑*

x(c) indicates that the is sum over residue classes x which are coprime

to the modulus of the sum, in this case c. In such a sum, we denote by x the inverse of x

mod c. All other notation should be clear from context.

3.2. Outline of the Proof

To help orient the reader, we provide an outline for the proof. First, after applying the

approximate functional equation for L
(
f, 1

2

)3
, the main object we need to understand is

roughly of the form

2

ϕ(q)

∑
χ (mod q)

χ(−1)=(−1)k

∑h

f∈Hχ

∑
m,n�q

3
2

τ3(m)τ3(n)λf (m)λf (n)√
mn

.

We apply the functional equation for L
(
f, 1

2

)3
rather than for L

(
f, 1

2

)6
to avoid unbalanced

sums in m and n (i.e. m,n � q3/2 rather than the weaker condition mn ≤ q3). We note that

the t integral used [2] is included for precisely the same reason. It is also worth noting that

the application of Cauchy’s inequality in (3.2) immediately precludes any hope of obtaining

an asymptotic formula by our method, as we completely ignore the arithmetic of the root

numbers ηf . Applying Peterson’s formula to the average over f ∈ Hχ leads to diagonal terms

m = n and off-diagonal terms. The diagonal terms are evaluated fairly easily in Section 3.4.
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The off-diagonal terms involve sums of the form

∑
m,n�q

3
2

τ3(m)τ3(n)√
mn

2

ϕ(q)

∑
χ (mod q)

χ(−1)=(−1)k

∑
c

Sχ(m,n; cq)Jk−1

(
4π
√
mn

cq

)
,

where Sχ(m,n; cq) is the Kloosterman sum defined in (4.1) and Jk−1 is the usual Bessel

function of order k − 1.

The most important range for c is in the transition region for the Bessel function, i.e.

c � q
1
2 . To focus on this region, we truncate the sum in c using the Weil estimate for

Kloosterman sums. The details of this truncation are given in Section 3.5. The conductor

of the Kloosterman sum is then essentially of size cq � q
3
2 . To understand the correlations

between the Kloosterman sums and the Bessel functions, we apply harmonic analysis in the

form of the Voronoi formula of Ivić [10]. Before doing so, we reduce the conductor in the

Kloosterman sums by taking advantage of the average over χ. The conductor lowering trick

of [2] (see Lemma 3.6.1) produces new Kloosterman sums of the form

e

(
m+ n

cq

)∑*

x(c)

e

(
q(x− 1)m+ q(x− 1)n

c

)
,

where the conductor is now reduced to c � q
1
2 and the exponential in front may be treated

as a smooth function with small derivatives. Applying the Voronoi formula then produces

a single main term and eight error terms. The details of these transformations are given

in Section 3.6. The main term is estimated in Section 3.7, and it is here that we require

a more delicate analysis of the Laurent series coefficients D−i of the third-order Estermann

zeta function E3

(
s, λ

η

)
(see (6.8), (7.1), and (7.2)). This is accomplished via Lemma 3.7.4,

in which we improve the trivial estimate D−i(η)� η−1+ε to

D−i(η)� τ2(η)(log η)3−i

η
.

In order to apply this estimate without losing too much from the triangle inequality,
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we need to suitably transform the sum. This is accomplished by an application of Poisson

summation (in the form of Lemma 3.7.2), along with some identities involving integrals of

Bessel functions. The details of these transformations are given in Subsection 3.7.2.

It turns out that the Laurent coefficients D−i are not multiplicative for i = 1, 2. In order

to extract a residue of ζ(s) at s = 1 after the above transformations, we require a somewhat

delicate analysis of certain complex-valued arithmetic functions (see Proposition 3.7.5), in

contrast to the simple contour shifting argument used in [2]. We then estimate the remaining

sum by elementary means to obtain a final estimate of (log q)9 for the main term. These

computations are given in Subsection 3.7.3.

Finally, the eight error terms (i.e. the dual sums arising from Voronoi summation) are

estimated in Section 3.8. The main aspect of the calculations in this section is that the dual

sums are short. This is precisely the reason for reducing the conductor in the Kloosterman

sums using Lemma 3.6.1. The details of these calculations are standard but technical and

follow closely the arguments of [2].

3.3. Approximate Functional Equation

As is standard in such problems, we begin with an approximation functional equation for

L(f, 1/2)3. The derivation of this is standard. For our purposes, it suffices to cite equation

(2.5) of [5], which is

L(f, 1/2)3 =
∑
a≥1

∑
b≥1

∑
n≥1

µ(a)χ(b)τ3(b)λf (an)τ3(n)

(a3b2n)
1
2

U

(
a3b2n

q
3
2

)

+ (ikηf )
3
∑
a≥1

∑
b≥1

∑
n≥1

µ(a)χ(b)τ3(b)λf (an)τ3(n)

(a3b2n)
1
2

U

(
a3b2n

q
3
2

)
,

where

U(y) =
1

2πi

∫
(2)

y−sγ3(s)
(
es

2
)3 ds

s
, γ(s) = (2π)−s

Γ(k
2

+ s)

Γ(k
2
)

.

43



Here we have chosen the specific function es
2

to ensure that U(y) is real when y is real. This

is mainly for notational simplicity. The function U satisfies

U(y)� (1 + y)−A,

U(y) = 1 +O(yA) as y → 0

(3.1)

for any A > 1. Applying Cauchy’s inequality, we have

M(q)� 2

ϕ(q)

∑
χ(q)

χ(−1)=(−1)k

∑h

f∈Hχ

∣∣∣∣ ∑
a,b,n≥1

µ(a)τ3(b)τ3(n)χ(ab)λf (an)

(a3b2n)
1
2

U

(
a3b2n

q
3
2

) ∣∣∣∣2. (3.2)

Expanding the square and rearranging, we obtain

M(q)�
∑

. . .
∑

a1,b1,n≥1
a2,b2,m≥1

µ(a1)µ(a2)τ3(b1)τ3(n)τ3(b2)τ3(m)

(a3
1b

2
1n)

1
2 (a3

2b
2
2m)

1
2

U

(
a3

1b
2
1n

q
3
2

)
U

(
a3

2b
2
2m

q
3
2

)

×
(

2

ϕ(q)

∑
χ(q)

χ(−1)=(−1)k

χ(a1b1)χ(a2b2)

)(∑h

f∈Hχ

λf (a1n)λf (a2m)

)
.

Note that by (3.1), the terms with a3
1b

2
1n, a

3
2b

2
2m� q

3
2

+ε give a contribution of q−2022.

3.4. Orthogonality and the Diagonal Contribution

We now apply the orthogonality relations for χ and λf given by the following lemma.

Lemma 3.4.1. The orthogonality relation for Dirichlet characters is

2

ϕ(q)

∑
χ(q)

χ(−1)=(−1)k

χ(m)χ(n) =


1 if m ≡ n(q), (mn, q) = 1,

(−1)k if m ≡ −n(q), (mn, q) = 1,

0 otherwise.
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Petersson’s formula gives

∑h

f∈Hχ

λf (n)λf (m) = δm=n + σχ(m,n),

where

σχ(m,n) = 2πi−k
∞∑
c=1

(cq)−1Sχ(m,n; cq)Jk−1

(
4π

cq

√
mn

)
and Sχ is the Kloosterman sum defined by

Sχ(m,n, cq) =
∑*

a(cq)

χ(a)e

(
am+ an

cq

)
. (4.1)

Here
∑* denotes a sum over residues a with (a, cq) = 1 and a satisfies aa ≡ 1(cq).

Lemma 3.4.1 gives

M(q)� D +OD,

where OD is given by (5.1) and D = D+ +D− with

D+ =
∑

. . .
∑

a1,b1,n,a2,b2,m≥1
a1b1≡a2b2(q)
a1n=a2m

(a1b1a2b2,q)=1

µ(a1)µ(a2)τ3(b1)τ3(n)τ3(b2)τ3(m)

(a3
1b

2
1n)

1
2 (a3

2b
2
2m)

1
2

U

(
a3

1b
2
1n

q
3
2

)
U

(
a3

2b
2
2m

q
3
2

)

and D− is the same sum but multiplied by (−1)k with the condition a1b1 ≡ a2b2 (mod q)

replaced by a1b1 ≡ −a2b2 (mod q). The only relevant case is when a1b1 = a2b2 in D+, since

in the other cases we have a1b1 ≥ q/4 or a2b2 ≥ q/4, which means that a3
1b

2
1n � q2 or

a3
2b

2
2m� q2. Thus

D =
∑

. . .
∑

a1,b1,n,a2,b2,m≥1
a1b1=a2b2
a1n=a2m

(a1b1a2b2,q)=1

µ(a1)µ(a2)τ3(b1)τ3(n)τ3(b2)τ3(m)

(a3
1b

2
1n)

1
2 (a3

2b
2
2m)

1
2

U

(
a3

1b
2
1n

q
3
2

)
U

(
a3

2b
2
2m

q
3
2

)
+O(q−2022).

(4.2)
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Neglecting the error term, we open the factors of U and write

D =
1

(2πi)2

∫
(2)

∫
(2)

q
3
2

(s1+s2)D(1 + s1 + s2)γ3(s1)γ3(s2)e3(s21+s22)ds1

s1

ds2

s2

. (4.3)

where

D(s) =
∑

a1,b1,n≥1
(a1b1,q)=1

µ(a1)τ3(b1)τ3(n)

(a3
1b

2
1n)s

∑
a2,b2,m
a2b2=a1b1
a2m=a1n
(a2b2,q)=1

µ(a2)τ3(b2)τ3(m).

We write D(s) as the Euler product

D(s) =
∏
p

Dp(s),

where

Dp(s) =
∑

. . .
∑

a1,b1,n,a2,b2,m≥0
a1+b1=a2+b2
a1+n=a2+m

µ(pa1)µ(pa2)τ3(pb1)τ3(pn)τ3(pb2)τ3(pm)

ps(3a1+2b1+n)
= 1 +

9

ps
+ · · ·

for p 6= q and

Dq(s) =
∑
n≥0

τ3(qn)2

qsn
= 1 +

9

qs
+ · · · .

Thus

D(s) = ζ9(s)H(s)

for some H(s) that is analytic for Re s > 1/2. After the change of variables u = s1 + s2,

s = s2, we have

D =
1

(2πi)2

∫
(2)

∫
(4)

q
3
2
uζ9(1 + u)H(1 + u)γ3(u− s)γ3(s)e3(u2−2us) du

u− s
ds

s
.

The rapid decay of γ(s) and e3u2 on vertical lines allows us to move the line of integration

in s to Re s = −1 and the integration in u to Re u = −1
2

+ ε. In doing so, we pass a simple
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pole at s = 0 and poles of orders 9 and 10 at u = 0. Thus

D = R1 +R2 + E1 + E2,

where

R1 = Res
u=0

[
q

3
2
uζ9(1 + u)H(1 + u)γ3(u)e3u2u−1

]
,

R2 =
1

2πi

∫
(−1)

γ3(s)Res
u=0

[
q

3
2
uζ9(1 + u)H(1 + u)γ3(u− s)e3u2−2us 1

u− s

]
ds

s
,

E1 =
1

2πi

∫
(− 1

2
+ε)

q
3
2
uζ9(1 + u)H(1 + u)γ3(u)e3u2 du

u
,

E2 =
1

(2πi)2

∫
(−1)

∫
(− 1

2
+ε)

q
3
2
uζ9(1 + u)H(1 + u)γ3(u− s)γ3(s)e3(u2−2us) du

u− s
ds

s
.

Using Stirling’s formula and the rapid decay of e3u2 , we see that

E1, E2 � q−3/4+ε.

A straightforward calculation shows that

R1 � (log q)9.

In R2, the leading order term of the residue (in terms of q) is of the form

C(log q)8

2πi

∫
(−1)

γ3(s)γ3(−s)ds
s2
� (log q)8.

We deduce that R2 � (log q)8, from which it follows that

D � (log q)9.
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We proceed now to our treatment of the off-diagonal terms, which constitutes the re-

mainder of the proof

3.5. Truncation of the The Off-Diagonal Terms

The off-diagonal contribution is

OD =
∑

. . .
∑

a1,b1,n≥1
a2,b2,m≥1

µ(a1)µ(a2)τ3(b1)τ3(n)τ3(b2)τ3(m)

(a3
1b

2
1n)

1
2 (a3

2b
2
2m)

1
2

U

(
a3

1b
2
1n

q
3
2

)
U

(
a3

2b
2
2m

q
3
2

)

×
(

2

ϕ(q)

∑
χ(q)

χ(−1)=(−1)k

χ(a1b1)χ(a2b2)

)(
2πi−k

∑
c≥1

(cq)−1
∑

aa≡1(cq)

χ(a)e

(
aa2m+ aa1n

cq

))

=
1

q

∑
. . .
∑

a1,b1,n≥1
a2,b2,m≥1

µ(a1)µ(a2)τ3(b1)τ3(n)τ3(b2)τ3(m)

(a3
1b

2
1n)

1
2 (a3

2b
2
2m)

1
2

U

(
a3

1b
2
1n

q
3
2

)
U

(
a3

2b
2
2m

q
3
2

)

× 2πi−k
∑
c≥1

1

c

∑
aa≡1(cq)

e

(
aa2m+ aa1n

cq

)(
2

ϕ(q)

∑
χ(q)

χ(−1)=(−1)k

χ(aa1b1)χ(a2b2)

)
.

As in [2], we introduce the operator Kg = i−kg + ikg for notational convenience. Let f be a

smooth function supported on [1
2
, 3] such that

∑
j∈Z

f

(
t

2j

)
= 1

for all t ≥ 0. Inserting two of these dyadic partitions of unity into the sums over n,m and

using the orthogonality relations for χ, we find that the off-diagonal contribution is

2π

q

∑∑∑∑
a1,b1,a2,b2≥1

(a1a2b1b2,q)=1

µ(a1)µ(a2)τ3(b1)τ3(b2)

(a3
1b

2
1a

3
2b

2
2)

1
2

∑D

N

∑D

M

∑∑
n,m≥1

τ3(n)τ3(m)

(nm)
1
2

×
∑
c≥1

1

c
G(a, b,n,N , c)K

∑*

a(cq)

a≡a1b1a2b2(q)

e

(
aa2m+ aa1n

c

)
,

(5.1)
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where

G(a, b,n,N , c) = U

(
a3

1b
2
1n

q
3
2

)
U

(
a3

2b
2
2m

q
3
2

)
f
( n
N

)
f
(m
M

)
Jk−1

(
4π

cq

√
a1na2m

)
.

Here
∑D

N denotes a dyadic sum over N = 2j.

We now truncate the sum in c. Letting C = q−
2
3

√
a1a2NM , we write

OD = M + K1 + K2,

where

Ki =
2π

q

∑∑∑∑
a1,b1,a2,b2≥1

(a1a2b1b2,q)=1

µ(a1)µ(a2)τ3(b1)τ3(b2)

(a3
1b

2
1a

3
2b

2
2)

1
2

∑D

N,M

Si(a, b,N ) (5.2)

with

S1(a, b,N ) =
∑
c≥1
q|c

1

c

∑
n,m≥1

τ3(n)τ3(m)

(nm)
1
2

F(a, b,n,N , c),

S2(a, b,N ) =
∑
c>C

(c,q)=1

1

c

∑
n,m≥1

τ3(n)τ3(m)

(nm)
1
2

F(a, b,n,N , c),

and

F(a, b,n,N , c) = G(a, b,n,N , c)K
∑*

a(cq)

a≡a1b1a2b2(q)

e

(
aa2m+ aa1n

cq

)
.

The quantity M is defined like K2, except with the condition c ≤ C replaced by c > C. We

now prove the following proposition.

Proposition 3.5.1. For C = q−
2
3

√
a1a2NM , we have

K1 + K2 � q−
5
12

+ε.

For the proof of this proposition and for our arguments in Section 3.8, we will need several

properties of the J-Bessel functions. These are summarized in the following lemma. These

results are standard and can all be found in [22].
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Lemma 3.5.2. We have

Jk−1(2πx) =
1

π
√
x

(
W (2πx)e

(
x− k

4
+

1

8

)
+W (2πx)e

(
−x+

k

4
− 1

8

))
, (5.3)

where W (j)(x)�j,k x
−j. Moreover,

Jk−1(2πx) =
∞∑
`=0

(−1)`
x2`+k+1

`!(`+ k − 1)!
, (5.4)

and

Jk−1(x)� min(x−
1
2 , xk−1). (5.5)

Proof of Proposition 3.5.1. To treat K1, we begin by writing

S1(a, b,N ) =
∞∑
r=1

1

qr

∑
c≥1

(c,q)=1

1

c

∑
n,m≥1

τ3(n)τ3(m)

(nm)
1
2

F(a, b,n,N , cqr).

For a fixed r, we use the Chinese Remainder Theorem and the Weil bound to see that the

modulus of the Kloosterman sum in F is∣∣∣∣ ∑*

a(cqr+1)

a≡a1b1a2b2(q)

e

(
aa2m+ aa1n

cqr+1

) ∣∣∣∣ =

∣∣∣∣ ∑*

x (mod qr)

e

(
xa2m+ xa1n

qr

) ∣∣∣∣∣∣∣∣ ∑*

y (mod c)

e

(
ya2m+ ya1n

c

) ∣∣∣∣
� (cqr)

1
2

+ε
√

(a1n, a2m, c)(n,m, qr).

From (5.5), we have

Jk−1

(
4π

cqr+1

√
a1na2m

)
�
(√

a1a2NM

cqr+1

)2

,
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and so

S1(a, b,N )� a1a2(NM)
1
2

∞∑
r=1

1

q
5r
2

+2−ε

∑
c≥1

(c,q)=1

1

c
5
2
−ε

∑
n�N
m�M

τ3(n)τ3(m)
√

(a1n, a2m, c)(n,m, qr)

� a1a2(NM)
1
2

∞∑
r=2

1

q2r−ε

∑
c≥1

1

c2−ε

∑
n�N
m�M

τ3(n)τ3(m)

� a1a2(NM)
3
2

q4−ε .

Here we have bounded the gcds by c and qr, respectively. Returning to (5.2), we conclude

that

K1 �
1

q5−ε

∑∑∑∑
a1,b1,a2,b2≥1

∑D

N,M

a31b
2
1N,a

3
2b

2
2M�q

3
2+ε

τ3(b1)τ3(b2)

a1b1a2b2

(NM)
3
2 � q−

1
2

+ε.

We now turn to K2. Again by the Chinese Remainder Theorem and the Weil bound, the

modulus of the Kloosterman sum in F is

∣∣∣∣ ∑*

a(cq)

a≡a1b1a2b2(q)

e

(
aa2m+ aa1n

cq

) ∣∣∣∣ =

∣∣∣∣ ∑*

y (mod c)

e

(
ya2m+ ya1n

c

) ∣∣∣∣� c
1
2

+ε
√

(a1n, a2m, c).
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Using (5.5) once more, we see that

S2(a, b,N )� qε(NM)
k
2
−1
∑
c>C

cε−
1
2

(√
a1a2

cq

)k−1 ∑
n�N
m�M

√
(a1n, a2m, c)

� qε(NM)
k
2
−1
∑
c>C

cε−
1
2

(√
a1a2

cq

)k−1∑
d|c

√
d

∑
n�N
m�M

(a1n,a2m,c)=d

1

� qε(NM)
k
2
−1
∑
c>C

cε−
1
2

(√
a1a2

cq

)k−1∑
d|c

√
d
∑
n�N
d|a1n

∑
m�M
d|a2m

1

� qε(NM)
k
2

∑
c>C

cε−
1
2

(√
a1a2

cq

)k−1∑
d|c

(d, a1)(d, a2)

d
3
2

� qε
(a1a2NM)

k
2

qk−1
C

3
2
−k+ε � qε

(a1a2NM)
3
4

q
5
3

,

so long as k ≥ 5. On the fifth line above we have used the estimate (d, ai) ≤
√
dai. Once

again returning to (5.2), we conclude that

K2 �
1

q
8
3
−ε

∑∑∑∑
a1,b1,a2,b2≥1

∑D

N,M

a31b
2
1N,a

3
2b

2
2M�q

3
2+ε

τ3(b1)τ3(b2)

(a1a2)
3
4 b1b2

(NM)
3
4 � q−

5
12

+ε.

3.6. Voronoi Summation

It remains to estimate

2π

q

∑∑∑∑
a1,b1,a2,b2≥1

(a1a2b1b2,q)=1

µ(a1)µ(a2)τ3(b1)τ3(b2)

(a3
1b

2
1a

3
2b

2
2)

1
2

∑D

N,M

∑
n,m≥1

τ3(n)τ3(m)

(nm)
1
2

U1

(
a3

1b
2
1n, a

3
2b

2
2m
)

× f
( n
N

)
f
(m
M

)∑
c≤C

1

c
Jk−1

(
4π

cq

√
a1na2m

)
K

∑*

a(cq)

a≡a1b1a2b2(q)

e

(
aa2m+ aa1n

cq

)
.

(6.1)
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Before applying Voronoi summation, we reduce the conductor in the Kloosterman sum using

Lemma 5.3 of [2], which we cite in the following form.

Lemma 3.6.1. Let c, q,m, n be positive integers with (cmn, q) = 1, and let

Y (u, v) =
∑*

a(cq)
a≡mn(q)

e

(
au+ av

cq

)
.

Then

Y (u, v) = e

(
n2u+m2v

cqmn

)∑*

x(c)

e

(
q(mx− n)u

mc

)
e

(
q(nx−m)v

nc

)
.

Applying Lemma 3.6.1 with m = a1a2, n = a2b2, the expression in (6.1) is

2π

q

∑∑∑∑
a1,b1,a2,b2≥1

(a1a2b1b2,q)=1

µ(a1)µ(a2)τ3(b1)τ3(b2)

(a3
1b

2
1a

3
2b

2
2)

1
2

∑D

N,M

∑
n,m≥1

τ3(n)τ3(m)

(nm)
1
2

U1

(
a3

1b
2
1n, a

3
2b

2
2m
)

× f
( n
N

)
f
(m
M

) ∑
c≤C

(c,q)=1

1

c
Jk−1

(
4π

cq

√
a1na2m

)
Ke
(

(a1b1)2a1n+ (a2b2)2a2m

cqa1b1a2b2

)

×
∑*

x(c)

e

(
q(a2b2x− a1b1)a1n

a2b2c

)
e

(
q(a1b1x− a2b2)a2m

a1b1c

)
=

2π

q

∑∑∑∑
a1,b1,a2,b2≥1

(a1a2b1b2,q)=1

µ(a1)µ(a2)τ3(b1)τ3(b2)

(a3
1b

2
1a

3
2b

2
2)

1
2

∑D

N,M

∑
c≤C

1

c

∑*

x(c)

K S(c, x),

where

S(c, x) = S(c, x;a, b,N )

=
∑
n≥1

τ3(n)e

(
q(a2b2x− a1b1)a1n

a2b2c

)∑
m≥1

τ3(m)e

(
q(a1b1x− a2b2)a2m

a1b1c

)
× F1(n)F2(m)Jk−1

(
4π

cq

√
a1na2m

)
,
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and

F1(y) = y−
1
2f
( y
N

)
e

(
a2

1b1y

cqa2b2

)
U

(
a3

1b
2
1y

q
3
2

)
,

F2(y) = y−
1
2f
( y
M

)
e

(
a2

2b2y

cqa1b1

)
U

(
a3

2b
2
2y

q
3
2

)
.

We write
λ1

η1

=
q(a2b2x− a1b1)a1

a2b2c
,

λ2

η2

=
q(a1b1x− a2b2)a2

a1b1c
,

(6.2)

where (λ1, η1) = (λ2, η2) = 1, and define

U(c;y) = F1(y1)F2(y2)

=
i−k

(y1y2)
1
2

f
(y1

N

)
f
( y2

M

)
e

(
a2

1b1y1

cqa2b2

+
a2

2b2y2

cqa1b1

)
U

(
a3

1b
2
1y1

q
3
2

)
U

(
a3

2b
2
2y2

q
3
2

)
.

Thus

S(c, x) =
∑
n≥1

F1(n)τ3(n)e

(
λ1n

η1

)∑
m≥1

F2(m)τ3(m)e

(
λ2m

η2

)
Jk−1

(
4π

cq

√
a1na2m

)
.

We now apply Theorem 2 of [10] with the same notations used there, except with A−3 in

place of Ivic’s B3, first to the sum over m, and then to the sum over n, to obtain

S(c, x) =
9∑
j=1

Tj(c, x),

where

T1(c, x) = Res
s1=1

Res
s2=1

[
E3

(
s1,

λ1

η1

)
E3

(
s2,

λ2

η2

)
×
∫ ∞

0

∫ ∞
0

U(c; y1, y2)Jk−1

(
4π

cq

√
a1a2y1y2

)
ys1−1

1 ys2−1
2 dy1 dy2

]
,

(6.3)
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T2(c, x) =
π

3
2

η3
2

Res
s1=1

E3

(
s1,

λ1

η1

)∫ ∞
0

F1(y1)ys1−1
1

∑
m≥1

A+
3

(
m,

λ2

η2

)∫ ∞
0

F2(y2)U3

(
π3my2

η3
2

)
× Jk−1

(
4π

cq

√
a1a2y1y2

)
dy1 dy2,

(6.4)

T3(c, x) =
iπ

3
2

η3
2

Res
s1=1

E3

(
s1,

λ1

η1

)∫ ∞
0

F1(y1)ys1−1
∑
m≥1

A−3

(
m,

λ2

η2

)∫ ∞
0

F2(y2)V3

(
π3my2

η3
2

)
× Jk−1

(
4π

cq

√
a1a2y1y2

)
dy1 dy2,

(6.5)

T4 and T5 are defined as T2 and T3, but one swaps all subscripts of 1 and 2,

T6(c, x) =
π3

η3
1η

3
2

∑
n≥1

∑
m≥1

A+
3

(
n,
λ1

η1

)
A+

3

(
m,

λ2

η2

)∫ ∞
0

∫ ∞
0

F1(y1)F2(y2)

× U3

(
π3ny1

η3
1

)
U3

(
π3my2

η3
2

)
Jk−1

(
4π

cq

√
a1y1a2y2

)
dy1 dy2,

(6.6)

T7 is defined similar to T6 except we replace the leading coefficient by its negative, A+ with

A−, and U3 with V3,

T8(c, x) =
iπ3

η3
1η

3
2

∑
n≥1

∑
m≥1

A+
3

(
n,
λ1

η1

)
A−3

(
m,

λ2

η2

)∫ ∞
0

∫ ∞
0

F1(y1)F2(y2)

× U3

(
π3ny1

η3
1

)
V3

(
π3my2

η3
2

)
Jk−1

(
4π

cq

√
a1y1a2y2

)
dy1 dy2,

(6.7)

and T9 is defined as T8, but one swaps all the subscripts of 1 and 2. Here and throughout,

E3 denotes the third-order Estermann zeta function:

E

(
s,
λ

η

)
=
∞∑
n=1

τ3(n)e
(
nλ
η

)
ns

. (6.8)

Theorem 3.1.1 now follows from the following two propositions which we prove in Sections

3.7 and 3.8, respectively.
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Proposition 3.6.2. Let

R(q) =
2π

q

∑∑∑∑
a1,b1,a2,b2≥1

(a1a2b1b2,q)=1

µ(a1)µ(a2)τ3(b1)τ3(b2)

(a3
1b

2
1a

3
2b

2
2)

1
2

∑D

N,M

∑
c≤C

1

c

∑*

x(c)

KT1(c, x).

Then

R(q)� (log q)9.

Proposition 3.6.3. For j = 2, . . . , 9, let

Ej(q) =
2π

q

∑∑∑∑
a1,b1,a2,b2≥1

(a1a2b1b2,q)=1

µ(a1)µ(a2)τ3(b1)τ3(b2)

(a3
1b

2
1a

3
2b

2
2)

1
2

∑D

N,M

∑
c≤C

1

c

∑*

x(c)

KTj(c, x).

Then

Ej(q)� q−
1
8

+ε

3.7. Proof of Proposition 3.6.2

Recall that

T1(c, x) = Res
s1=1

Res
s2=1

[
E3

(
s1,

λ1

η1

)
E3

(
s2,

λ2

η2

)
×
∫ ∞

0

∫ ∞
0

U(c; y1, y2)Jk−1

(
4π

cq

√
a1a2y1y2

)
ys1−1

1 ys2−1
2 dy1 dy2

]
.

To estimate the contribution from T1, we first compute the residues via the Laurent series

for E3. For j1, j2 ≥ 0, let

I1(c; j1, j2) =
1

j1!j2!

∫ ∞
0

∫ ∞
0

U(c; y1, y2)(log y1)j1(log y2)j2Jk−1

(
4π

cq

√
a1a2y1y2

)
dy1 dy2
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so that ∫ ∞
0

∫ ∞
0

U(c; y1, y2)Jk−1

(
4π

cq

√
a1a2y1y2

)
ys1−1

1 ys2−1
2 dy1 dy2

=
∞∑
j1=0

∞∑
j2=0

I1(c; j1, j2)(s1 − 1)j1(s2 − 1)j2 .

For (λ, η) = 1, we have (see (2.13) of [5])

E3

(
s,
λ

η

)
=

D−3(η)

(s− 1)3
+
D−2(η)

(s− 1)2
+
D−1(η)

s− 1
+D0 + · · · , (7.1)

where

D−3(η) =
1

η2

η∑
α1=1

η∑
α2=1

1(η|α1α2),

D−2(η) =
1

η2

η∑
α1=1

η∑
α2=1

1(η|α1α2)

(
3γ0

(
α1

η

)
− 3 log η

)
,

D−1(η) =
1

η2

η∑
α1=1

η∑
α2=1

1(η|α1α2)

(
9

2
(log η)2 − 9γ0

(
α1

η

)
log η

+ 3γ0

(
α1

η

)
γ0

(
α2

η

)
+ 3γ1

(
α1

η

))
.

(7.2)

Here 1(η|α1α2) is 1 if η divides α1α2 and 0 otherwise, and γ0, γ1 are generalized Stieltjes

constants defined by

ζ(s, r) =
1

s− 1
+
∞∑
n=0

γn(r)(s− 1)n, (7.3)

where ζ(s, r) is the Hurwitz zeta function. Thus

T1(x, c) =
∑

1≤l1,l2≤3
0≤j1,j2≤2
ji−li=−1

D−l1(η1)D−l2(η2)I1(c; j1, j2),
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and so

R(q) =
2π

q

∑∑∑∑
a1,b1,a2,b2≥1

(a1a2b1b2,q)=1

µ(a1)µ(a2)τ3(b1)τ3(b2)

(a3
1b

2
1a

3
2b

2
2)

1
2

×K
∑
c≤C

1

c

∑*

x(c)

∑
1≤l1,l2≤3
0≤j1,j2≤2
ji−li=−1

D−l1(η1)D−l2(η2)
∑D

N,M

I1(c; j1, j2).
(7.4)

As discussed in Section 3.2, we would like to estimate the factors of D−li using Lemma

3.7.4 below. However, we will lose too much in our upper bound if we ignore the oscilla-

tions present in the integrals I1(c; j1, j2). To take advantage of these oscillations, we apply

several Fourier-analytic manipulations to suitably transform the sum over c in (7.4). This

requires several technical lemmas which we collect in the following subsection. The manipu-

lations themselves are then performed in Subsection 3.7.2. Finally, we conclude the proof of

Proposition 3.6.2 in Subsection 3.7.3 by applying Lemma 3.7.4 and estimating the remaining

Dirichlet series via elementary means.

3.7.1. Preliminary Lemmas

The first three of these are Lemmas 7.1–7.3 of [2].

Lemma 3.7.1. Let (a, `) = 1. We have

∑*

x(c`)
x≡a(`)

1 = c
∏
p|c
p-`

(
1− 1

p

)
,

where the sum is over x coprime to c`.

Lemma 3.7.2. Let α, β, y1, y2 be nonnegative real numbers satisfying αy1, βy2 � q2 and

define

T (y1, y2, α, β) =
∞∑
δ=1

1

δ
Jk−1

(
4π

δ

√
αβy1y2

)
Ke
(
αy1

δ
+
βy2

δ

)
.

Further, let L = q100 and w be a smooth function on R≥0 with w(x) = 1 if 0 ≤ x ≤ 1 and
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w(x) = 0 if x > 2. Then for any A > 0, we have

T = 2π
∞∑
`=1

w

(
`

L

)
Jk−1

(
4π
√
αy1`

)
Jk−1

(
4π
√
βy2`

)
− 2π

∫ ∞
0

w

(
`

L

)
Jk−1

(
4π
√
αy1`

)
Jk−1

(
4π
√
βy2`

)
d`+O(q−2022).

Lemma 3.7.3. Let w and L be as in Lemma 3.7.2 and let u be a complex number with

|Re u| � 1
log q

. Then

∞∑
`=1

w

(
`

L

)
1

`1+u
−
∫ ∞

0

w

(
`

L

)
1

`1+u
d` = ζ(1 + u) +O(q−20).

It can be seen from the proof of this last lemma that the error term is holomorphic in u,

and thus we can differentiate in u to see that

∞∑
`=1

w

(
`

L

)
(log `)j

`1+u
−
∫ ∞

0

w

(
`

L

)
(log `)j

`1+u
d` = (−1)jζ(j)(1 + u) +O(q−20). (7.5)

The last lemma we need is an improvement on the bound D−i(η) � η−1+ε used by

Djanković.

Lemma 3.7.4. For i = 1, 2, 3, we have

D−i(η)� τ2(η)(log η)3−i

η
.

Proof. Note that D−3(η) is multiplicative, so

D−3(η) =
∏
pr||η

D−3(pr).
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At a prime power, we have

D−3(pr) =
1

p2r

r∑
j=0

pr∑
α1=1
pj ||α1

pr∑
α2=1

1(pr | α1α2) =
1

p2r

r∑
j=0

pr−j∑
α1=1
p-α1

pr∑
α2=1

1(pr−j | α2)

=
1

p2r

r∑
j=0

ϕ(pr−j)pj =
1

pr

(
1 + r

(
1− 1

p

))
=
r + 1

pr

(
1− r

p(r + 1)

)
,

and so

D−3(η) =
τ2(η)

η

∏
pr||η

(
1− r

p(r + 1)

)
� τ(η)

η
.

To estimate D−2 and D−1, we need the following result of Berndt (see [1], Theorem 2) for

the generalized Stieltjes constants (7.3): for x ∈ (0, 1] and n ≥ 1, we have

γn(x)�n
(log x)n

x
.

Combining this with our estimate for D−3, we see that

D−2(η)� 1

η

η∑
α1=1

η∑
α2=1

1(η|α1α2)

α1

+
τ(η) log η

η
.

We then have

η∑
α1=1

η∑
α2=1

1(η|α1α2)

α1

=
∑
d|η

η∑
α1=1

(α1,η)= η
d

η∑
α2=1

1(η|α1α2)

α1

=
∑
d|η

d

η

d∑
α1=1

(α1,d)=1

1

α1

η∑
α2=1

1(d|α2) =
∑
d|η

d∑
α1=1

(α1,d)=1

1

α1

� τ(η) log η,
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which gives the claimed estimate for D−2. Finally, for D−1, our arguments above give

D−1(η)�
η∑

α1=1

η∑
α2=1

1(η|α1α2)

(
(log η)2 +

η log η

α1

+
η2

α1α1

+
η

α1

log

(
η

α1

))

� τ(η)(log η)2

η
+

η∑
α1=1

η∑
α2=1

1(η|α1α2)

α1α2

.

Following our treatment of D−2, we have

η∑
α1=1

η∑
α2=1

1(η|α1α2)

α1α2

=
∑
d|η

η∑
α1=1

(α1,η)= η
d

η∑
α2=1

1(η|α1α2)

α1α2

=
∑
d|η

d

η

d∑
α1=1

(α1,d)=1

1

α1

η∑
α2=1

1(d|α2)

α2

=
1

η

∑
d|η

d∑
α1=1

(α1,d)=1

1

α1

η/d∑
a=1

1

a
� τ(η)(log η)2

η
,

which gives the claimed estimate for D−3.

3.7.2. Fourier-Analytic Manipulations

Returning to (7.4), we first transform the sums over N,M, c, x. This will allow us to deter-

mine the main term (in terms of log q) of the double residue R(q), which we then estimate

by purely arithmetic means in Subsection 3.7.3.

By the decay of the Bessel function, we may extend the sum over c ≤ C to all c ≥ 1 in

a similar way as our truncation in Section 3.5. Note that after extending the sum, the only

parts of R(q) that depend on N,M are the factors of f . Because of the absolute convergence

of the integrals I1(c; j1, j2), we may execute the dyadic sums over N,M to see that

∑D

N,M

I1(c; j1, j2) =

∫ ∞
0

∫ ∞
0

(log y1)j1(log y2)j2

(y1y2)
1
2

U1

(
a3

1b
2
1y1, a

3
2b

2
2y2

)
× e

(
a2

1b1y1

cqa2b2

+
a2

2b2y2

cqa1b1

)
Jk−1

(
4π

cq

√
a1a2y1y2

)
dy1 dy2.
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Thus R(q) is

2π

q

∑∑∑∑
a1,b1,a2,b2≥1

(a1a2b1b2,q)=1

a3i b
2
i�q3/2+ε

µ(a1)µ(a2)τ3(b1)τ3(b2)

(a3
1b

2
1a

3
2b

2
2)

1
2

∑
1≤l1,l2≤3
0≤j1,j2≤2
ji−li=−1

I2(l1, l2, j1, j2)
(7.6)

where

I2(l1, l2, j1, j2) =

∫ ∞
0

∫ ∞
0

(log y1)j1(log y2)j2

(y1y2)
1
2

U1

(
a3

1b
2
1y1, a

3
2b

2
2y2

)
C(l1, l2; y1, y2)dy1 dy2,

and

C(l1, l2; y1, y2) = K
∑
c≥1

1

c
Jk−1

(
4π
√
a1a2y1y2

cq

)
e

(
a2

1b1y1

cqa2b2

+
a2

2b2y2

cqa1b1

)∑*

x(c)

D−l1(η1)D−l2(η2)

= K
∑
c≥1

F(c)

c

∑*

x(c)

D−l1(η1)D−l2(η2),

say, where η1, η2 are as in (6.2). We write

(a1b1, a2b2) = λ, a1b1 = u1λ, a2b2 = u2λ, (u1x−u2, c) = (u2x−u1, c) = δ, (7.7)

where (u1, u2) = 1, and so

η1 =
u2c/δ

(a1, u2c/δ)
, η2 =

u1c/δ

(a2, u1c/δ)
. (7.8)

We now focus on estimating the integrals I2 in (7.6). To do so, we first transform the cums

C. We proceed by fixing the value of δ in the sum over x and writing

C(l1, l2; y1, y2) = K
∑
c≥1

∑
δ|c

F(c)

c

∑*

x(c)
(u2x−u1,c)=δ

D−l1

(
u2c/δ

(a1, u2c/δ)

)
D−l2

(
u1c/δ

(a2, u1c/δ)

)

= K
∑
δ≥1

1

δ

∑
c≥1

F(cδ)

c
D−l1

(
u2c

(a1, u2c)

)
D−l2

(
u1c

(a2, u1c)

) ∑*

x(cδ)

(
u2x−u1

δ
,c)=1

1.
(7.9)
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Möbius inversion in the sum over x gives

∑*

x(cδ)

(
u2x−u1

δ
,c)=1

1 =
∑
b|c

µ(b)
∑*

x(cδ)
u2x≡u1(bδ)

1.

Note that since (x, bδ) = (u1, u2) = 1, the congruence u2x ≡ u1(bδ) has a solution in x if and

only if (u1u2, bδ) = 1. Applying Lemma 3.7.1, the last line of (7.9) can be written

∑
c≥1

c
∑
b≥1

(u1u2,b)=1

µ(b)

b
D−l1

(
u2cb

(a1, u2cb)

)
D−l2

(
u1cb

(a2, u1cb)

)
K

∑
δ≥1

(u1u2,δ)=1

F(cbδ)

δ

∏
p|c
p-bδ

(
1− 1

p

)
.

Several more applications of Möbius inversion give

∑
δ≥1

(u1u2,δ)=1

F(cbδ)

δ

∏
p|(c,bδh)

(
1− 1

p

)
=
∑
h|u1u2

µ(h)

h

∑
γ|c

1

γ

∑
g| c
γ

µ(g)

g

∏
p|c
p-bγh

(
1− 1

p

)∑
δ≥1

F(cbhgγδ)

δ
,

and thus

C(l1, l2; y1, y2) =
∑
h|u1u2

µ(h)

h

∑
b≥1

(u1u2,b)=1

µ(b)

b

∑
c≥1

D−l1

(
u2cb

(a1, u2cb)

)
D−l2

(
u1cb

(a2, u1cb)

)

×
∑
γ|c

1

γ

∑
g| c
γ

µ(g)

g

∏
p|c
p-bγh

(
1− 1

p

)
K
∑
δ≥1

F(cbhgγδ)

δ
.

We now apply Lemma 3.7.2 with

α =
a2

1b1

a2b2cbhgγδq
, β =

a2
2b2

a1b1cbhgγδq
.
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Note that αy1, βy2 � q
3
2

+ε by the decay of U . Thus with negligible error, we have

K
∑
δ≥1

F(cbhgγδ)

δ

= 2π

(∑
`≥1

w

(
`

L

)
−
∫ ∞

0

w

(
`

L

)
d`

)
Jk−1

4π

√
a2

1b1y1`

a2b2cbhgγq

 Jk−1

4π

√
a2

2b2y2`

a1b1cbhgγq

 .

For brevity, we set

A1 = 4π

√
a2

1b1

a2b2cbhgγq
, A2 = 4π

√
a2

2b2

a1b1cbhgγq
.

Returning to the definition of I2, the above analysis and change of variables yi → y2
i give

I2(l1, l2, j1, j2) = Q
∑
h|u1u2

µ(h)

h

∑
b≥1

(u1u2,b)=1

µ(b)

b

∑
c≥1

cD−l1

(
u2cb

(a1, u2cb)

)
D−l2

(
u1cb

(a2, u1cb)

)

×
∑
γ|c

1

γ

∑
g| c
γ

µ(g)

g

∏
p|c
p-bγh

(
1− 1

p

)(∑
`≥1

w

(
`

L

)
−
∫ ∞

0

w

(
`

L

)
d`

)

×
∫ ∞

0

(log y1)j1U

(
a3

1b
2
1y1

q
3
2

)
Jk−1

(
A1y1

√
`
)
dy1

×
∫ ∞

0

(log y2)j2U

(
a3

2b
2
2y2

q
3
2

)
Jk−1

(
A2y2

√
`
)
dy2.

(7.10)

Let I3(`,A1,A2) denote the product of integrals on the last line. Here and throughout this

section, we let Q denote a positive constant, not necessarily the same at each occurrence,

depending at most on j1, j2. Opening the factor of U , the integral in y1 is

Q

2πi

∫
(α1)

γ(s1)3G3(s1)

(
q

3
2

a3
1b

2
1

)s1 ∫ ∞
0

(log y1)j1y−2s1
1 Jk−1

(
A1y1

√
`
)
dy1

ds1

s1

, (7.11)

where α1 > 0, and a similar expression holds for the integral in y2. The inner integrals are
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Hankel transforms which can be evaluated explicitly using equation 6.561.14 of [6], which is

∫ ∞
0

xµJν(ax)dx = 2µa−µ−1 Γ(1
2

+ 1
2
ν + 1

2
µ)

Γ(1
2

+ 1
2
ν − 1

2
µ)
, (−Re ν − 1 < Re µ < 1

2
, a > 0).

Differentiating this with respect to µ, we obtain

∫ ∞
0

xµ(log x)jJν(ax)dx = (−1)j2µa−µ−1 Γ(1
2

+ 1
2
ν + 1

2
µ)

Γ(1
2

+ 1
2
ν − 1

2
µ)
Pj(log a, µ, ν), (7.12)

for j ≥ 0, where Pj(w, µ, ν) is a monic polynomial of degree j in w with coefficients involving

polygamma functions and the parameters µ, ν. For instance,

P1(w) = w − log 2− 1

2

Γ′(1
2

+ 1
2
ν − 1

2
µ)

Γ(1
2

+ 1
2
ν − 1

2
µ)
− 1

2

Γ′(1
2

+ 1
2
ν + 1

2
µ)

Γ(1
2

+ 1
2
ν + 1

2
µ)
.

In the present case, specifying ν = k − 1 and µ = −2si, the coefficients will be holomorphic

and of rapid decay on vertical lines so long as αi > −k/2 + ε, say. Applying (7.12), we see

that (7.11) is

(−1)j1Q

2πi

∫
(α1)

γ(s1)3G3(s1)

(
4π2q

3
2

a3
1b

2
1

)s1
√ a2

1b1`

a2b2cbhgγq

2s1−1

Γ(k
2
− s1)

Γ(k
2

+ s1)
Pj
(

log
(
A1

√
`
)
, s1

) ds1

s1

.

Here we have suppressed the dependence of Pj on k. A similar expression holds for the

integral in y2, and thus I3(`,A1,A2) is

(−1)j1+j2Q
cbhgγq

`
√
a1a2

(
1

2πi

)2 ∫
(α1)

∫
(α2)

γ(s1)3G3(s1)γ(s2)3G3(s2)
Γ(k

2
− s1)

Γ(k
2

+ s1)

Γ(k
2
− s2)

Γ(k
2

+ s2)

×

(
4π2q

1
2 `

a1b1a2b2cbhgγ

)s1+s2

Pj1
(

log
(
A1

√
`
)
, s1

)
Pj2
(

log
(
A2

√
`
)
, s2

) ds2

s2

ds1

s1

.

Let Pji(n, si) denote the coefficient of wn in Pji(w, si). We view the product of Pj1 and Pj2
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as a polynomial P in log ` of degree j1 + j2, where the coefficient of (log `)n is given by

P (n, s1, s2) =
1

2n

∑
n=k1+k2

j1∑
n1=k1

j2∑
n2=k2

(
n1

k1

)(
n2

k2

)
Pj1(n1, s1)Pj2(n2, s2)(logA1)n1−k1(logA2)n2−k2 .

Applying (7.5), we see that

∑
`≥1

w

(
`

L

)
P(log `)

`1−s1−s2
−
∫ ∞

0

w

(
`

L

)
P(log `)

`1−s1−s2
d` =

j1+j2∑
n=0

P (n, s1, s2)ζ(n)(1− s1 − s2) +O(q−20).

Let P∗(logA1, logA2, s1, s2) denote the sum on the right. Then

(∑
`≥1

w

(
`

L

)
−
∫ ∞

0

w

(
`

L

)
d`

)
I3(`,A1,A2)

= Q
cbhgγq
√
a1a2

(
1

2πi

)2 ∫
(α1)

∫
(α2)

γ(s1)3G3(s1)γ(s2)3G3(s2)
Γ(k

2
− s1)

Γ(k
2

+ s1)

Γ(k
2
− s2)

Γ(k
2

+ s2)

×

(
4π2q

1
2

a1b1a2b2cbhgγ

)s1+s2

P∗(logA1, logA2, s1, s2)
ds2

s2

ds1

s1

.

say. Note that in P∗, the coefficient of (logA1)j1(logA2)j2 is ζ(1 − s1 − s2). We deal only

with the contribution of this term, as it will be clear from our analysis that the other terms

of P∗ can be treated similarly. Returning to (7.10), we see that the representative term of

I2(l1, l2, j1, j2) is

Q
q

√
a1a2

∑
h|u1u2

µ(h)
∑
b≥1

(u1u2,b)=1

µ(b)
∑
c≥1

cD−l1

(
u2cb

(a1, u2cb)

)
D−l2

(
u1cb

(a2, u1cb)

)

×
∑
γ|c

∑
g| c
γ

µ(g)
∏
p|c
p-bγh

(
1− 1

p

)
(logA1)j1(logA2)j2Y(cbhgγ),

(7.13)
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where

Y(w) =

(
1

2πi

)2 ∫
(1)

∫
(1)

γ(s1)3G3(s1)γ(s2)3G3(s2)
Γ(k

2
− s1)

Γ(k
2

+ s1)

Γ(k
2
− s2)

Γ(k
2

+ s2)

(
4π2q

1
2

a1b1a2b2w

)s1+s2

× ζ(1− s1 − s2)
ds2

s2

ds1

s1

=

(
1

2πi

)2 ∫
(1)

∫
(1)

G(s1, s2)

(
4π2q

1
2

a1b1a2b2w

)s1+s2

ζ(1− s1 − s2)
ds2

s2

ds1

s1

,

say, and we have taken the lines of integration to 1. Here G is holomorphic and decays

rapidly on vertical lines so long as Re s1,Re s1 <
k
2
. Changing variables, we obtain

Y(w) =

(
1

2πi

)2 ∫
(1)

∫
(2)

G(s, z − s)

(
4π2q

1
2

a1b1a2b2w

)z

ζ(1− z)
du

z − s
ds

s
. (7.14)

We deal first with the case cbhgγ > q. For w > q, we take the line of integration in z to

Re u = 9
2
. Applying the functional equation for ζ and Stirling’s formula, we see that in this

case

Y(w)� q
9
4

1

(a1b1a2b2w)
9
2

.

Recalling the definition of A1,A2 and noting the ranges of summations for the variables in

the expression I2, we have

logA1, logA2 � log(bcq)� (cbq)ε.

Using the trivial bound D−i(η)� 1, we find that

∑
c>q

cD−l1

(
u2cb

(a1, u2cb)

)
D−l2

(
u1cb

(a2, u1cb)

)∑
γ|c

∑
g| c
γ

µ(g)
∏
p|c
p-bγh

(
1− 1

p

)
Y(j1, j2, cbhgγ)

� q
9
4

+εbε

(a1b1a2b2bh)
9
2

∑
c>q

c−
7
2

+ε � q−
1
4

+ε bε

(a1b1a2b2bh)
9
2

.
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Using (7.6) and (7.10), we see that the contribution to R(q) from those terms with c > q is

O(q−
1
4

+ε) (the error term can be improved here, but this suffices for our purposes).

3.7.3. The Remaining Dirichlet Series

Let H(c) denote the product of c and the factors of D−li . We consider the sum over c,

∑
c≤q

H(c)
∑
γ|c

∑
g| c
γ

µ(g)
∏
p|c
p-γbh

(
1− 1

p

)
(logA1)j1(logA2)j2Y(cbhgγ).

Since b and h are squarefree, we may rewrite this as

∑
d|bh

∑
λcd≥1

(λ,bh)=1
p|cd ⇐⇒ p|d

H(λcd)
∑
γ|λcd

∏
p|λcd
p-γbh

(
1− 1

p

) ∑
g|λcd

γ

µ(g)(logA1)j1(logA2)j2Y(λcdbhgγ),

and the variable c has been modified in the definitions of A1,A2. For fixed d | bh and γ | λcd,

we write γ = γ1γ2, where γ1 | λ and γ2 | cd so that

∏
p|λcd
p-γbh

(
1− 1

p

)
=
ϕ(λcd)

λcd

∏
p|(λcd,γbh)

(
1− 1

p

)−1

=
ϕ(λcd)

λcd

∏
p|γ1

(
1− 1

p

)−1∏
p|cd

(
1− 1

p

)−1

=
γ1ϕ(λ)

λϕ(γ1)
.

The sum over γ becomes

ϕ(λ)

λ

∑
γ1|λ

γ1

ϕ(γ1)

∑
g1| λγ1

µ(g)
∑
γ2|cd

∑
g2|

cd
γ2

µ(g2)(logA1)j1(logA2)j2Y(λcdbhg1g2γ1γ2),

where again, the variables in the definitions of A1,A2 have been appropriately modified.

Moving the sums over γ1, γ2 inside the integral, we are led to consider the functions

C1(n) = C1(n, z; j1, j2) =
ϕ(n)

n

∑
γ|n

γ

ϕ(γ)

(log γ)j1

γz

∑
g|n
γ

µ(g)(log g)j2

gz
,

C2(n) = C2(n, z; j1, j2) =
∑
γ|n

(log γ)j1

γz

∑
g|n
γ

µ(g)(log g)j2

gz
,

(7.15)
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where now the j1, j2 are arbitrary nonnegative integers.

Proposition 3.7.5. For all integers n ≥ 2, j1, j2 ≥ 0, and z with Re z ≥ 0, we have

C1(n),C2(n) ≤ (log n)j1+j2 .

Proof. Let v(n) be either 1 or ϕ(n)
n

and consider the function

C (n, z, s) = v(n)
∑
γ|n

1

v(γ)γz

∑
g|n
γ

µ(g)

gs
.

We will show that [
∂j1

∂zj1
∂j2

∂sj2
C (n, z, s)

]
s=u

≤ (log n)j1+j2

for all n ≥ 2 and z with Re z ≥ 0. We have

C (n, z, s) =
v(n)

nu

∏
pr||n

(
1

v(pr)
+

(
1− 1

ps

)(
pz

v(pr−1)
+ · · ·+ p(r−1)z

v(p)
+ pru

))

=
∏
pr||n

(
1

prz
+

(
1− 1

ps

)(
v(p) +

1

prz

(
prz − pz

pz − 1

)))
=
∏
pr||n

Cp(z, s).

say, since v(pr) = v(p) for all p and r ≥ 1. For s = z, we have

C (n, z, z) =
∏
pr||n

(
v(p) +

v(p)− 1

pz

)
,

and specifying v(p) = 1 and v(p) = 1− 1
p
, it follows that |C (n, z, z)| ≤ 1. This gives the case

j1 = j2 = 0.

To produce the logarithmic factors, we differentiate in z and s. Writing n = pr11 · · · p
rω(n)
ω(n) ,

we have

∂j

∂sj
C (n, z, s) =

∑
j1+···+jω(n)=j

(
j

j1, . . . , jω(n)

) ω(n)∏
i=1

∂ji

∂sji
Cp(z, s),
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where
(

j
j1,...,jω(n)

)
denotes the multinomial coefficient. A similar expression holds for the jth

partial derivative with respect to z. For j ≥ 1, we have

∂j

∂sj
Cp(z, s) = (−1)j−1

(
(log p)j

ps

)(
v(p) +

1

prz

(
prz − pz

pz − 1

))
,

∂j

∂zj
Cp(z, s) = (− log p)j

(
rj

prz
+

(
1− 1

ps

)(
1

pz
+

2j

p2z
+ · · ·+ (r − 1)j

p(r−1)z

))
.

Since v(p) ≤ 1, we have ∣∣∣∣v(p) +
1

prz

(
prz − pz

pz − 1

)∣∣∣∣ ≤ r,

and thus ∣∣∣∣ ∂j∂sjCp(z, s)

∣∣∣∣ ≤ r(log p)j

for Re z,Re s ≥ 0. Likewise, if we set s = z, then

[
∂j

∂zj
Cp(z, s)

]
s=u

= (− log p)j
(

1

prz
+

2j − 1

p2z
+ · · · r

j − (r − 1)j

prz

)
,

and thus

∣∣∣∣[ ∂j∂zjCp(u, s)

]
s=u

∣∣∣∣ ≤ (log p)j(1 + (2j − 1) + · · ·+ (rj − (r − 1)j)) = (r log p)j

so long as Re z ≥ 0. Since we have already shown that |Cp(z, s)| ≤ 1, we deduce that

∣∣∣∣[ ∂j∂sjC (n, z, s)

]
s=z

∣∣∣∣ ≤ ∑
j1+···+jω(n)=j

(
j

j1, . . . , jω(n)

) ω(n)∏
i=1
ji>0

ri(log pi)
ji ≤ (log n)j,

and the same estimate holds for the jth partial with respect to u evaluated when s = u. It

remains to deal with the case when both j1, j2 are nonzero. In this case, we have

∂j1

∂uj1
∂j2

∂sj2
Cp(z, s) =

−(− log p)j1+j2

ps

(
1

pz
+

2j1

p2z
+ · · ·+ (r − 1)j1

p(r−1)z

)
,
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and as before, we find that

∣∣∣∣[ ∂j1∂zj1
C (n, z, s)

]
s=z

∣∣∣∣ =

∣∣∣∣ ∑
k1+···+kω(n)=j1
l1+···+lω(n)=j2

(
j1

k1, . . . , kω(n)

)(
j2

l1, . . . , lω(n)

) ω(n)∏
i=1

∂ki

∂zki
∂li

∂sli
Cp(z, s)

∣∣∣∣
≤

∑
k1+···+kω(n)=j1
l1+···+lω(n)=j2

(
j1

k1, . . . , kω(n)

)(
j2

l1, . . . , lω(n)

) ω(n)∏
i=1

(ki,li)6=(0,0)

(ri log pi)
ki+li

≤ (log n)j1+j2 .

Returning to our analysis, we now study the sum over c ≤ q with the additional assump-

tion that cbhgγ ≤ q, so logA1, logA2 � log q. We decompose the sum over c as in the

beginning of this subsection, move the sums over g, γ inside the integral, take the line of in-

tegration in Y to Re z = 1
log q

, and apply Proposition 3.7.5. The factor (logA1)j1(logA2)j2 in

(7.13) produces products of logarithms of various combinations of the summation variables,

but no matter how they are arranged, their boundedness by log q combined with Proposi-

tion 3.7.5 shows that we obtain a power of (log q)j1+j2 that may be factored through the

entire sum after applying the triangle inequality. From (7.6) and (7.13), we deduce that the

representative term of R(q) is bounded by

∑∑∑∑
a1,b1,a2,b2≥1

(a1a2b1b2,q)=1

a3i b
2
i�q3/2+ε

τ3(b1)τ3(b2)τ2(u1u2)

a2
1b1a2

2b2

∑
1≤l1,l2≤3
0≤j1,j2≤2
ji−li=−1

(log q)j1+j2+1

×
∑
b≥1

∑
c≤q

c

∣∣∣∣D−l1 ( u2cb

(a1, u2cb)

)
D−l2

(
u1cb

(a2, u1cb)

)∣∣∣∣ ,
where the extra log q comes from the factor of ζ in Y and we have ignored the contribution

from c > q. Each variable in the summation is bounded a power of q, and thus so are the

arguments of D−li . We note at this point that if one considers a term other than the leading

term in P∗, one obtains a higher power of log q from the zeta factor (which will have been

differentiated some additional number of times), but the total powers of logarithms of the
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other variables are smaller, and so we still obtain the same estimate as above. Thus after

applying Lemma 3.7.4, we obtain

R(q)� (log q)5
∑∑∑∑

a1,b1,a2,b2≥1
(a1a2b1b2,q)=1

a3i b
2
i�q3/2+ε

τ3(b1)τ3(b2)τ2(u1u2)

a2
1b1a2

2b2

×
∑
b≥1

1

b2

∑
c≤q

(a1, u2cb)(a2, u1cb)

c
τ

(
u2cb

(a1, u2cb)

)
τ

(
u1cb

(a2, u1cb)

)
.

Using the bounds

τj(ab) ≤ τj(a)τj(b), τj

(a
d

)
≤ τj(a) if d | a, τj(a)� aε, (a, bc) ≤ (a, b)(a, c),

and neglecting several summation conditions, we find that

R(q)� (log q)5
∑∑∑∑

a1,b1,a2,b2≥1

(a1b1a2b2)ε(a1b1, a2b2)2(a1, u2)(a2, u1)

(a1a2)3(b1b2)2

×
(∑

b≥1

(a1a2, b)τ2(b)2

b2

)(∑
c≤q

(a1, c)(a2, c)τ2(c)2

c

)
.

The sum over b is

∑
d|a1a2

1

d

∑
b≥1

(
a1a2
d

,b)=1

τ2(bd)2

b2
≤
∑
d|a1a2

τ2(d)2

d

∑
b≥1

τ2(b)2

b2
� τ2(a1a2)� (a1a2)ε,

so we are left to consider

(log q)5
∑∑∑∑

a1,b1,a2,b2≥1

(a1b1a2b2)ε(a1b1, a2b2)2(a1, u2)(a2, u1)

(a1a2)3(b1b2)2

∑
c≤q

(a1, c)(a2, c)τ2(c)2

c
.
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Let δ = (a1, a2) and write a1 = δλ1, a2 = δλ2 with (λ1, λ2) = 1. Then the sum over c is

∑
d|δ

∑
c≤q

(c,δ)=d

(δλ1, c)(δλ2, c)τ2(c)2

c
≤
∑
d|δ

τ(d)2d
∑
c≤q/d

(c, δ
d

)=1

(λ1λ2, c)τ2(c)2

c

≤
∑
d|δ

τ(d)2d
∑
c≤q

(λ1λ2, c)τ2(c)2

c
≤
∑
d|δ

τ(d)2d
∑
g|λ1λ2

∑
c≤q

τ2(cg)2

c

≤
∑
d|δ

τ(d)2d
∑
g|λ1λ2

τ2(g)2
∑
c≤q

τ2(c)2

c
.

The inner sum over c on the right is bounded by (log q)4, the sum over g by (a1a2)ε, and the

sum over d by (a1a2)ε(a1, a2). Thus

R(q)� (log q)9
∑∑∑∑

a1,b1,a2,b2≥1

(a1b1a2b2)ε(a1b1, a2b2)2(a1, u2)(a2, u1)(a1, a2)

(a1a2)3(b1b2)2
.

Let D denote the sum on the right. To see that D converges, we take ε ≤ 1
4

and express D

as an Euler product D =
∏

p Dp with

Dp =
∑∑∑∑

a1,b1,a2,b2≥0

py(a1,b1,a2,b2),

and

y(a1, b1, a2, b2) = ε(a1 + b1 + a2 + b2) + 2 min(a1 + b1, a2 + b2) + min(a1, u2) + min(a2, u1)

+ min(a1, a2)− 3(a1 + a2)− 2(b1 + b2).

Here we have written ui = ai + bi −min(a1 + b1, a2 + b2). It suffices to show that for ai, bi

not all 0, we have y(a1, b1, a2, b2) ≤ −3
2
, say. We have trivially that

y(a1, b1, a2, b2) ≤ 1
4
(a1 + b1 + a2 + b2) + (a1 + b1 + a2 + b2) + a1 + a2

+ 1
2
(a1 + a2)− 3(a1 + a2)− 2(b1 + b2)

= −1
4
(a1 + a2)− 3

4
(b1 + b2).
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Thus we may assume that a1 +a2 ≤ 5 and b1 + b2 ≤ 1. This leaves only a few cases to check,

and one may verify by direct computation that we indeed have y(a1, b1, a2, b2) ≤ −3
2

unless

all the ai, bi are 0. Therefore the sum converges, and we have

R(q)� (log q)9.

3.8. Proof of Proposition 3.6.3

The analysis of the other 8 terms coming from Voronoi summation adheres closely to the

analysis in Section 8 of [2]. Recall that by the decay of U , we may assume a3
i b

2
iNi � q3/2+ε.

For j = 2, . . . , 8, let

Ej(a, b,N ) =
∑
c≤C

1

c

∑*

x(c)

Tj(c, x).

Changing variables in the sum over c as in (7.7) – (7.9), we have

Ej(a, b,N ) =
∑
δ≤C

1

δ

∑
c≤C/δ

1

c

∑*

x(cδ)
(u2x−u1,cδ)=δ

Tj(cδ, x),

where u1, u2 are as in (7.7).

3.8.1. The Sums T2, . . . , T5

Since each of these sums has the same form and behavior, we treat only T2. The residue in

the definition of T2 gives

∑*

x(cδ)
(u2x−u1,cδ)=δ

Tj(cδ, x)

=
π

3
2

η3
2

∑
m≥1

A+
3

(
m,

λ2

η2

)∫ ∞
0

F1(y1)
(
D−1(η1) +D−2(η1) log y1 + 1

2
D−3(η1)(log y1)2

)
×
∫ ∞

0

F2(y2)U3

(
π3my2

η3
2

)
Jk−1

(
4π

cδq

√
a1a2y1y2

)
dy2 dy1

∑*

x(cδ)
(u2x−u1,cδ)=δ

1
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where as before,

F1(y) = y−
1
2f
( y
N

)
e

(
a2

1b1y

cδqa2b2

)
U

(
a3

1b
2
1y

q
3
2

)
,

F2(y) = y−
1
2f
( y
M

)
e

(
a2

2b2y

cδqa1b1

)
U

(
a3

2b
2
2y

q
3
2

)
.

By Lemma 3.7.4, we have D−i(η1)� qεη−1
1 , and from (8.9) of [10], we have

A±3

(
m,

λ

η

)
� (ηm)εη

3
2m

1
4 . (8.1)

We analyze the term coming from D−1, as the analysis of the other two terms is nearly

identitcal. Thus

E2(a, b,N )� qε
∑
δ≤C

∑
c≤C/δ

1

η1η
3
2
2

∑
m≥1

m
1
4

+ε |I(m)| ,

where

I(m) =

∫ ∞
0

F1(y1)

∫ ∞
0

F2(y2)U3

(
π3my2

η3
2

)
Jk−1

(
4π

cδq

√
a1a2y1y2

)
dy2 dy1,

=

∫ ∞
0

F1(y1)I1(m, y1)dy1,

say, and we have bounded the sum over x trivially by cδ. To estimate E2, we write

E2(a, b,N ) = H1 +H2,

where H1 is the contribution to E2 from m ≤ qεη3
2/M , and H2 is the rest.

The Contribution of H1

For brevity, put C1 = q−1
√
a1a2NM . Using (3.17) of [10], which is

U3(x)� xε, (8.2)
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and (5.5), we have

I(m)� qε(NM)
1
2 min

((
C1

cδ

)k−1

,

(
C1

cδ

)− 1
2

)
,

and so

H1 � qε
∑
δ≤C

∑
c≤C/δ

1

η1η
3
2
2

∑
m≤η32qε/M

m
1
4 (NM)

1
2 min

((
C1

cδ

)k−1

,

(
C1

cδ

)− 1
2

)

� qε
N

1
2

M
3
4

∑
δ≤C

∑
c≤C/δ

η
9
4
2

η1

min

((
C1

cδ

)k−1

,

(
C1

cδ

)− 1
2

)

� qε
N

1
2a1u

9
4
1

M
3
4u2

∑
δ≤C

∑
c≤C/δ

c
5
4 min

((
C1

cδ

)k−1

,

(
C1

cδ

)− 1
2

)

� qε
N

1
2a1u

9
4
1

M
3
4u2

C
9
4
1

� (a3
1b

2
1N)

13
8 (a3

2b
2
2M)

3
8 q−

9
4

+ε

= q
3
4

+ε.

Here we have used the estimates

η2 ≤ u1c, η1 ≥
u2c

a1

.

Summing the above estimate over a, b,N gives the desired result. All of the estimates that

follow will be sufficient when summed over these variables, so we omit this sort of remark in

what follows.
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The Contribution of H2

To handle H2, we use the following identity for U3, given by (3.12) of [10]. For some suitable

constants cj, dj, we have

U3(π3x) =
K∑
j=1

1

x
j
3

(
cje
(

3x
1
3

)
+ dje

(
−3x

1
3

))
+O

(
1

x(K+1)/3

)
. (8.3)

In the present case, we have π3my2
η31
� qε. Thus

I1(m, y1) =
K∑
j=1

(
η2

M
1
3m

1
3

)j ∫ ∞
0

F2(y2)

(
M

y2

) j
3

(
cje

(
3m

1
3y

1
3
2

η2

)
+ dje

(
−3m

1
3y

1
3
2

η2

))

× Jk−1

(
4π

cδq

√
a1a2y1y2

)
dy2 +O

(
q−2022

)
,

(8.4)

for K sufficiently large in terms of ε. This also gives the trivial bound

I(m)� η2

m
1
3

N
1
2M

1
6 � qε(NM)

1
2 . (8.5)

Let C2 = 8π(qδ)−1
√
a1a2NM . We divide into two cases depending as c ≤ C2 and c > C2.

Case 1: c > C2. Using (5.4), we can write I1 as

I1(m, y1) =
K∑
j=1

(
η2

M
1
3m

1
3

)j ∞∑
`=0

(−1)`

`!(`+ k − 1)!

×
∫ ∞

0

Fj(y1, y2, `)

(
cje

(
3m

1
3y

1
3
2

η2

)
+ dje

(
−3m

1
3y

1
3
2

η2

))
e

(
a2

2b2y2

cδqa1b1

)
dy2,

where

Fj(y1, y2, `) = y
− 1

2
2

( y2

M

)− j
3
f
( y2

M

)( 2

cδq

√
a1a2y1y2

)2`+k−1

U

(
a3

2b
2
2y2

q
3
2

)
.
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We now analyze the integrals

∫ ∞
0

Fj(y1, y2, `)e(ω±(m, y2))dy2,

where

ω±(m, y2) = ±3m
1
3

η2

y
1
3
2 +By2, B =

a2
2b2

cδqa1b1

.

We have

ω′±(m, y2) = ± m
1
3

y
2
3
2 η2

+B

If m > 64(Bη2)3M2 or m < 1
64

(Bη2)3M2, we have ω′±(m, y2) � m
1
3

y
2
3
2 η2

� qε

M
. Thus the

contribution of these terms is negligible by integrating by parts many times. Thus we need

only consider those m for which m � (Bη2)3M2. But since

(Bη2)3M2 � qε

δ3
,

there are no terms of this form unless M � q
3
2

(a22b2)
3
2

and δ � qε. Using the trivial bound

(8.5) we see that the contribution to H2 of these terms is bounded by

qεN
1
2M

1
6

∑
δ�qε

∑
c>C2

1

η1η
1
2
2

∑
m�qε

m−
1
12

+ε � qεN
1
2M

1
6a

5
4
1 b

1
4
1 a

1
4
2 b
− 1

4
2

∑
δ�qε

∑
c>C2

c−
3
2

� qεN
1
2M

1
6a

5
4
1 b

1
4
1 a

1
4
2 b
− 1

4
2

(
q√

NMa1a2

) 1
2

� q
1
2

+εa1b
1
4
1N

1
4 b
− 1

4
2 M− 1

12

� q
1
2

+εb
1
4
1N

1
4 b
− 1

4
2

(
(a2

2b2)
3
2

q
3
2

) 1
12

� q
3
8

+ε(a1a2)
1
4

(
a3

1b
2
1N
) 1

4

� (a1a2)
1
4 q

3
4

+ε.
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Here we have used the estimate

η1η
1
2
2 ≥

u2c

a1

(
u1c

a2

) 1
2

= c
3
2

b
1
2
1 a

1
2
2 b2

a
1
2
1 (a1b1, a2b2)

3
2

≥ c
3
2

b
1
2
1 a

1
2
2 b2

a
1
2
1 (a1b1a2b2)

3
4

= c
3
2a
− 5

4
1 b

− 1
4

1 a
− 1

4
2 b

1
4
2 .

Case 2: c ≤ C2. We return to (8.4), but instead use (5.3) in place of (5.4) to write I1 as

I1(m, y1) =
K∑
j=1

(
η2

M
1
3m

1
3

)j ∫ ∞
0

F2(y2)

(
M

y2

) j
3

(
cje

(
3m

1
3y

1
3
2

η2

)
+ dje

(
−3m

1
3y

1
3
2

η2

))

×
(

cδq

2
√
a1a2y1y2

) 1
2
(

2Re W

(
4π

cδq

√
a1a2y1y2

)
e

(
2

cδq

√
a1a2y1y2 −

k

4
+

1

8

))
dy2

+O
(
q−2022

)
.

Note that this gives the trivial bound

I(m)� η2

m
1
3

(
cδq
√
a1a2

) 1
2

N
1
4M− 1

12 . (8.6)

Define

Hj(y1, y2) = y
− 1

4
1 y

− 3
4

2

(
M

y2

) j
3

f
( y2

M

)
W1

(
4π

cδq

√
a1a2y1y2

)
U

(
a3

2b
2
2y2

q
3
2

)
,

where W1 is either W or W . For some absolute constants bj, we find that I1 is (up to a

negligible error term) a sum of expressions of the form

I1(m, y1) =

( √
cδq

(a1a2)
1
4

)
K∑
j=1

bj

(
η2

M
1
3m

1
3

)j ∫ ∞
0

Hj(y1, y2)e(ω(y1, y2)) dy2,

where

ω(y1, y2) = ±3m
1
3

η2

y
1
3
2 ± 2Ay

1
2
2 +By2, A =

(a1a2y1)
1
2

cδq
, B =

a2
2b2

cδqa1b1

.
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Differentiating with respect to y2 gives

ω′(y1, y2) = ±m
1
3

η2

y
− 2

3
2 ± Ay−

1
2

2 +By2.

We divide into several cases.

Case 1.1: a
3
2
1 b1N

1
2 ≥ 4a

3
2
2 b2M

1
2 . Then it is easily checked that

1

2

A

y
1
2
2

≤
∣∣∣±Ay− 1

2
2 +By2

∣∣∣ ≤ 2
A

y
1
2
2

.

If m ≥ 64(Aη2)3M
1
2 or m ≤ 1

64
(Aη2)3M

1
2 , then |ω′(y1, y2)| � m

1
3

y
2
3
2 η2

� qε

M
, since n � η32q

ε

M
.

Thus we may integrate by parts many times to see that the contribution of these terms is

negligible. For the terms with 1
64

(Aη2)3M
1
2 ≤ m ≤ 64(Aη2)3M

1
2 , note that

(Aη2)3M
1
2 � (a3

1b
2
1N)

3
2 (a3

2M)
1
2

q3δ3
� qε

δ3
.

Moreover, the left side is only � 1 if M � q
3
2/a3

2 and δ � qε. By (8.6), the contribution

from these terms is bounded by

q
1
2

+ε (NM)
1
4

M
1
3 (a1a2)

1
4

∑
δ≤qε

δ
1
2

∑
c≤C2

c
1
2

η1η
1
2
2

∑
m�qε

m−
1
12

+ε

� q
1
2

+ε (NM)
1
4

M
1
3 (a1a2)

1
4

a1a
1
2
2

= a
1
2
2 q

1
2

+ε(a3
1N)

1
4 (a3

2M)
1
4 (a3

2M)−
1
3

� a
1
2
2 q

3
4

+ε,

where we have used the trivial bound ηi ≥ c
ai

.

Case 1.2: a
3
2
2 b2M

1
2 ≥ 4a

3
2
1 b1N

1
2 . Then as before, one checks that 1

2
B ≤

∣∣∣±Ay− 1
2

2 +B
∣∣∣ ≤ 3

2
B.

By the same arguments as in the previous case, the range of m that should be considered is
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of size (Bη2)3M , and the contribution to H2 of this range is bounded by a
1
2
2 q

3
4

+ε.

Case 1.3: 1
4
a

3
2
2 b2M

1
2 < a

3
2
1 b1N

1
2 < 4a

3
2
2 b2M

1
2 . In this case Ay

− 1
2

2 � B, and so the range of

m that should be considered is of size (Aη2)3M
1
2 by the same arguments above, and the

contribution from this range is also bounded by a
1
2
2 q

3
4

+ε.

3.8.2. The Sums T6, . . . , T9

Each of the four sums T6, . . . , T9 has essentially the same form and behavior, so we deal

only with T6. The treatment these sums is very similar to that of T2, . . . , T5, so we shall be

somewhat brief. Recall that

E6(a, b,N ) =
∑
δ≤C

1

δ

∑
c≤C/δ

1

c

∑*

x(cδ)
(u2x−u1,cδ)=δ

π3

η3
1η

3
2

∑
n≥1

∑
m≥1

A+
3

(
n,
λ1

η1

)
A+

3

(
m,

λ2

η2

)

×
∫ ∞

0

∫ ∞
0

F1(y1)F2(y2)U3

(
π3ny1

η3
1

)
U3

(
π3my2

η3
2

)
Jk−1

(
4π

cδq

√
a1y1a2y2

)
dy1 dy2,

where

η1 =
u2c

(a1, u2c)
, η2 =

u1c

(a2, u1c)
.

As before, we use (8.1) and estimate the sum over x trivially by cδ to see that

E6(a, b,N )�
∑
δ≤C

∑
c≤C/δ

1

(η1η2)
3
2

∑
n≥1

∑
m≥1

(nm)
1
4

+ε |I(n,m)| ,

where

I(n,m) =

∫ ∞
0

∫ ∞
0

F1(y1)F2(y2)U3

(
π3ny1

η3
1

)
U3

(
π3my2

η3
2

)
Jk−1

(
4π

cδq

√
a1y1a2y2

)
dy1 dy2.

Recall that it suffices to show that E6 � (a1a2)
1
2 q

3
4

+ε. Following our previous analysis, we

write

E6 =
4∑
i=1

E6,i,
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where E6,i is the contribution to E6 from case i below.

(1) n� η31q
ε

N
and m� η32q

ε

M
;

(2) n� η31q
ε

N
and m� η32q

ε

M
;

(3) n� η31q
ε

N
and m� η32q

ε

M
;

(4) n� η31q
ε

N
and m� η32q

ε

M
.

By symmetry, the treatment of cases (2) and (3) is the same, so we treat only the second

case.

The Contribution of E6,1

For this case, we use the estimate

U3

(
π3niyi
η3
i

)
� qε

along with (5.5) to see that

I(n,m)� qε(NM)
1
2 min

((√
a1a2NM

cδq

)− 1
2

,

(√
a1a2NM

cδq

)k−1
)
,
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and so

E6,1(a, b,N )� qε(NM)
1
2

∑
δ≤C

∑
c≤C/δ

1

(η1η2)
3
2

min

((√
a1a2NM

cδq

)− 1
2

,

(√
a1a2NM

cδq

)k−1
)

×
∑

n�
η31q

ε

N

∑
m�

η32q
ε

M

(nm)
1
4

+ε

� qε
(u1u2)

9
4

(NM)−
3
4

∑
δ≤C

(√
a1a2NM

δq

) 13
4

� q−
13
4

+ε(a1a2)
31
8 (b1b2)

9
4 (NM)

7
8

� q−
13
4

+ε(a1a2)
1
2 (a3

1b
2
1N)

9
8 (a3

2b
2
2M)

9
8

� (a1a2)
1
2 q

1
8

+ε.

The Contribution of E6,2

We write

I(n,m) =

∫ ∞
0

F2(y2)U3

(
π3my2

η3
2

)
I1(n, y2)dy1 dy2.

The integration in y2 can be bounded trivially and the sum over m can be treated as in the

previous subsection. The integral I1(n, y2) can be handled in the same way as cases 1 and 2

in the Section 3.8.1, and we obtain E6,2 � a
1
2
1 q

1
2

+ε.

The Contribution of E6,4

As in Section 3.8.1, we let C2 = 8π(qδ)−1
√
a1a2NM and divide into two cases depending as

c ≤ C2 and c > C2.

Case 1: c > C2. We again use (5.4) and (8.3) and consider integrals of the form

∫ ∞
0

∫ ∞
0

H(y1, y2)e

(
a2

1b1y1

cδqa2b2

+
a2

2b2y2

cδqa1b1

± 3n
1
3y

1
3
1

η1

± 3m
1
3y

1
3
2

η2

)
dy1 dy2,
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where ∂j∂kH(y1,y2)

∂yj1∂y
k
2

H(y1, y2) � N−jM−k, H(y1, y2) � 1, and is supported on [N, 2N ] ×

[M, 2M ]. Thus the range of integration is O(NM).

By the same arguments as in Case 1 of Section 3.8.1, it suffices to consider the case when

c1(B1η1)3N2 � n � c2(B1η1)3N2 and c1(B2η2)3M2 � m � c2(B2η2)3M2, where c1, c2 are

some constants,

B1 =
a2

1b1

cδqa2b2

and B2 =
a2

2b2

cδqa1b1

.

The terms outside these ranges give negligible contribution from integration by parts many

times. As before, we have

(B1η1)3N2 � (a2
1b1)3N2

δ3q3
� qε

δ3
, (B2η2)3M2 � (a2

2b2)3M2

δ3q3
� qε

δ3
.

There are no terms of this form unless

N � q
3
2

(a2
1b1)

3
2

, M � q
3
2

(a2
2b2)

3
2

, δ � qε.

The contribution to E6,4 of the terms with c > C2 is bounded by

qε(NM)
1
2

(u1u2)
3
2

∑
δ�qε

∑
c>C2

((a1, u2c)(a2, u1c))
3
2

c3
. (8.7)

To estimate the sum over c, let

g1 = (a1, u2), a1 = λ1g1, u2 = γ1g1,

g2 = (a2, u1), a2 = λ2g2, u1 = γ2g2,

and

d = (λ1, λ2), λ1 = α1d, λ2 = α2d,
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where (λ1, γ1) = (λ2, γ2) = (α1, α2) = 1. Then the sum over c is

(g1g2)
3
2

∑
c>C2

((λ1, c)(λ2, c))
3
2

c3
= (g1g2)

3
2

∑
`|d

∑
c>C2

(c,d)=`

((α1d, c)(α2d, c))
3
2

c3

= (g1g2)
3
2

∑
`|d

∑
c>

C2
`

(c, d
`
)=1

(α1α2, c)
3
2

c3
= (g1g2)

3
2

∑
`|d

∑
k|α1α2

k
3
2

∑
c>

C2
`

(c, d
`
)=1

(α1α2,c)=k

1

c3

= (g1g2)
3
2

∑
`|d

∑
k|α1α2

k−
3
2

∑
c>

C2
`k

(c, d
`
)=1

(
α1α2
k

,c)=1

1

c3
� (g1g2)

3
2

C2
2

∑
`|d

`2
∑
k|α1α2

k
1
2

� δ2q2+ε (g1g2)
3
2

a1a2NM
d2(α1α2)

1
2 � δ2q2+ε (a1, u2)(a2, u1)(a1, a2)

NM(a1a2)
1
2

.

Thus the total contribution is bounded by

q2+ε (a1, u2)(a2, u1)(a1, a2)

(u1u2)
3
2 (a1a2)

1
2 (NM)

1
2

� q
1
2

+ε (a1, u2)(a2, u1)(a1, a2)

(u1u2)
3
2 (a1a2)

1
2

(
a

3
2
1 b

3
4
1 a

3
2
2 b

3
4
2

)
� q

1
2

+ε (a1, a2)

(u1u2a1a2)
1
2

(
a

3
2
1 b

3
4
1 a

3
2
2 b

3
4
2

)
= q

1
2

+ε(a1, a2)(a1b1, a2b2)(b1b2)
1
4

� q
7
8

+ε(a1, a2)(a1b1, a2b2).

Summing this over a1, a2, b1, b2 produces several factors of log q, and thus the contribution

from these terms is sufficiently small.

Case 2: c ≤ C2. We proceed as in the last case, except that we use (5.3) in place of (5.4).

The integrals we consider have the form

∫ ∞
0

∫ ∞
0

G(y1, y2)e (ϕ(m,n, y1, y2)) dy1 dy2,

where

ϕ(m,n, y1, y2) =
a2

1b1y1

cδqa2b2

+
a2

2b2y2

cδqa1b1

± 3n
1
3y

1
3
1

η1

± 3m
1
3y

1
3
2

η2

±
2
√
a1a2y1y2

cδq
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∂j∂kG(y1,y2)

∂yj1∂y
k
2

G(y1, y2) � N−jM−k, G(y1, y2) � 1. As before, the range of integration is

O(NM). Then

∂ϕ(m,n, y1, y2)

∂y1

= B1 ±
n

1
3

y
2
3
1 η1

± A1

y
1
2
1

,

∂ϕ(m,n, y1, y2)

∂y2

= B2 ±
m

1
3

y
2
3
1 η2

± A2

y
1
2
2

,

where B1, B2 are as above and A1 =
√
a1a2y2
cδq

and A2 =
√
a1a2y1
cδq

. We now follow closely the

analysis for Case 2 of Section 3.8.1, dividing into several subcases.

Case 2.1 : a
3
2
2 b2M

1
2 ≥ 4a

3
2
1 b1N

1
2 . For this case, we have

∣∣∣∣A1

y
1
2
1

±B1

∣∣∣∣ � A1

y1
and

∣∣∣∣A2

y
1
2
2

±B2

∣∣∣∣ � B2.

By similar arguments to Case 2 of Section 3.8.1, we consider the ranges n � (A1η1)3N
1
2 and

m � (B2η2)3M2 and note that

(A1η1)3N
1
2 �

(√
a1

δq
1
2

)3

N
1
2 � qε

δ3
, (B2η2)3M2 �

(
(a2

2b2)3M2

δ3q3

)
� qε

δ3
,

and thus there are no terms of this form unless N � q
3
2

a31
, M � q

3
2

(a22b2)
3
2

and δ � qε. The

contribution from these terms to E6,4 is O(a
1
2
1 a

1
2
2 q

1
2

+ε).

Case 2.2: a
3
2
1 b1N

1
2 ≥ 4a

3
2
2 b2N

2. The calculation as in Case 2.1 gives and error ofO(a
1
2
1 a

1
2
2 q

1
2

+ε).

Case 2.3: 1
4
a

3
2
1 b1N

1
2 < a

3
2
2 b2M

1
2 < 4a

3
2
1 b1N

1
2 . For this case, we have A1

y
1
2
1

� B1 and A

y
1
2
2

� B2.

By similar arguments to Cases 1.2 and 1.3, we need only consider the ranges n � (A1η1)3N
1
2

and m � (A1η1)3N
1
2 . The contribution from these terms is also O

(
a

1
2
1 a

1
2
2 q

1
2

+ε
)

.
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