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This study investigated perceptual disruptions in gaze-contingent multi-resolutional displays (GCMRDs) due to 
delays in updating the center of highest resolution after an eye movement.  GCMRDs can be used to save 
processing resources and transmission bandwidth in many types of single-user display applications such as 
virtual reality, video-telephony, simulators, and remote piloting.  The current study found that image update 
delays as late as 60 ms after an eye movement did not significantly increase the detectability of image blur 
and/or motion transients due to the update.  This is good news for designers of GCMRDs, since 60 ms is ample 
time to update many GCMRDs after an eye movement without disrupting perception.  The study also found that 
longer eye movements led to greater blur and/or transient detection, due to moving the eyes further into the low-
resolution periphery, effectively reducing the image resolution at fixation prior to the update.  In GCMRD 
applications where longer saccades are more likely (e.g., displays with relatively large distances between 
objects), this problem could be overcome by increasing the size of the region of highest resolution. 
 
Categories and Subject Descriptors: H.5.2 [Information Interfaces and Presentation]: User Interfaces – User-
centered Design, Windowing Systems, Screen Design, Evaluation/Methodology; I.3.3  [Picture/Image 
Generation]: Viewing algorithms; I.4.2 [Image Processing and Computer Vision]: Compression (Coding); 
General Terms: Design, Human Factors, Experimentation. 
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foveation, foveated, area of interest, display updates, perceptual compression, 
eyetracking, eye movements, saccades, saccadic suppression, visual perception, contrast 
thresholds, blur detection, peripheral vision, bandwidth 
________________________________________________________________________ 
 
 
1. INTRODUCTION  

Users of virtual reality, simulations, video-telephony, teleoperation, and other single-user 

applications often need large, high-resolution displays exceeding limits on bandwidth 

and/or computation resources.  One way around these limitations is to eliminate detail 

that users cannot resolve in the visual periphery.  Gaze-contingent multi-resolutional 
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displays (GCMRDs) do just that, by dynamically displaying high resolution information 

wherever the user is looking, as indicated by a gaze-tracker, and lower resolution 

elsewhere [for reviews, see: Duchowski and Coltekin 2007, Duchowski, et al. 2004, 

Geisler and Perry 1999, Loschky and McConkie 2000, Parkhurst and Niebur 2002, 

Reingold, et al. 2003].  Human factors research on GCMRDs has primarily focused on 

two key questions: (1) What are the limits of peripheral visual resolution when viewing 

scene images [Geri and Zeevi 1995, Loschky, et al. 2005, Luebke, et al. 2000, Sere, et al. 

2000, Yang, et al. 2001]? and (2) What are the perception and performance costs 

associated with reducing image resolution below those limits [Kortum and Geisler 1996, 

Loschky and McConkie 2002, Loschky and McConkie 2000, Parkhurst, et al. 2000, 

Reingold and Loschky 2002, Shioiri and Ikeda 1989, Watson, et al. 1997]?  However, far 

fewer studies have tried to answer another critical question for designers of GCMRDs: 

How late can you update the center of highest resolution after the user has moved their 

eyes, without disrupting perception or performance?  The current study provides an 

answer to this question.  

The top panel of Figure 1 schematically represents the image update process that must 

occur at the end of each saccade.  In A, an eye indicates the user’s gaze position on the 

screen, the white circle around it represents the region of highest resolution, the 

surrounding gray area represents the lower-resolution over the rest of the image, and the 

arrow indicates an eye movement into that area.  B shows the eye at the new gaze 

location, before the update.  After some delay, the high resolution area is updated to the 

new gaze location, as shown in C.  The question investigated here concerns the effects of 

delays in this updating process.  While ideally one would update the display immediately 

at the end of each saccade (i.e., eye movement), this is impossible in practice because it 

takes time to identify when a saccade has ended and where the eyes are, to render the new 

multi-resolutional image, to transmit it, and to display it.  Rendering the image, alone, 

can take between 25-150 ms [Geisler and Perry 1999, Ohshima, et al. 1996, Thomas and 

Geltmacher 1993]. 

Such updating delays could cause perceptual difficulties in two ways.  First, when a 

new fixation begins, prior to the update the fixated region still has reduced image 

resolution, which may hinder perception.  Second, when the update occurs, the change in 

image resolution may be perceived as a motion transient, which may disrupt perception  



 
 

Figure 1.  Top: Schematic of a GCMRD over time.  Bottom: Same for a dual delayed 

occasional GCMRD. 
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[Reingold and Stampe 2000].  However, saccadic suppression raises perceptual 

thresholds for low spatial frequencies and motion signals just before, during, and for ~20-

80 ms after each saccade [Burr, et al. 1994, October 6, Ross, et al. 2001, Shioiri 1993, 

Volkmann, et al. 1978], which may help reduce sensitivity to image blur and motion 

transients.  

Simulator studies have shown that image update delays in excess of the apparent 

limits of post-saccadic suppression impair both perception and task performance 

[Grunwald and Kohn 1994, Turner 1984] and can cause simulator sickness [c.f., Draper, 

et al. 2001, Frank, et al. 1988].  Turner and colleagues varied delays between 130 to 280 

ms, and found that path following and target identification performance decreased as 

update delays increased.  Given such extreme update delays, the Turner, et al. results are 

unsurprising.  However, a more recent study of the detection of post-saccadic image 

resolution changes indicated that delays greater than only 5 ms after a saccade are 

detectable, with asymptotic detection reached at delays as short as 30 ms post-saccade 

[McConkie and Loschky 2002].  While these results might suggest that only extremely 

short update delays can go undetected, it is unclear how relevant that study is to 

answering the key question here, because it did not involve a GCMRD; instead the study 

made switches from normal images to completely low-pass filtered images, and then 

back again.  Thus, studies are needed that use GCMRDs and measure the perception and 

performance effects of update delays within the post-saccadic suppression period.  One 

such study [Loschky and McConkie 2000, Experiment 6], used a GCMRD with update 

delays of 5, 15 and 45 ms, and found that a 45 ms delay did not affect search performance 

but did increase fixation durations.  Such effects of update delays on fixation durations 

may reflect increased processing difficulty, or they might reflect saccadic inhibition 

[Reingold and Stampe 2000], that is the inhibition of the impulse to move the eyes, which 

has been shown to occur in response to visual transients during a fixation, such as those 

produced by update delays in gaze-contingent displays [Hodgson, et al. 1993, van Diepen 

and Wampers 1998]. 

2. THE CURRENT STUDY 

Based on the previous results reviewed above, it is difficult to say how late one can 

update a GCMRD without disrupting perception.  Our own previous results [Loschky and 

McConkie 2000, Experiment 6] suggest that GCMRD update delays should be less than 

45 ms to avoid disrupting perceptual processes, as reflected by increased fixation 

durations.  However, if the effects of update delays on fixation durations are caused by 
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saccadic inhibition, it would make the applied consequences less clear.  In contrast, the 

detection task is generally considered to be the simplest, most sensitive psychophysical 

measure of conscious perception.  From an applied perspective, if the update delays of a 

GCMRD are undetectable, the system has been maximized for perceptual quality on that 

dimension.  That said, it is technically non-trivial to measure update delay detection.  

Indeed, the current study is, to our knowledge, the first ever to have done so. 

Detection of GCMRD update delays should interact with detection of image 

degradation (obviously, updating a normal image with an identical copy of itself should 

be imperceptible regardless of the update delay—it is the presence of detectable image 

blur at the new gaze position, or the change in image resolution caused by the update, that 

makes the update delay potentially detectable).  The current study carefully controls for 

the image degradation factor by using established GCMRD blur detection thresholds, 

with image filtering levels derived from a model of eccentricity-dependent contrast 

sensitivity [Loschky, et al. 2005].  By using a range of image filtering levels that bracket 

the blur detection threshold, it is possible for the first time to determine whether update 

delays can push otherwise undetectable image blur above the detection threshold. 

In order to study GCMRD update delay detection thresholds, one must use a display 

system optimized to minimize update delays, so that at least some delays are below 

threshold.  The current study uses a display system proven capable of producing large 

display changes that are undetectable because they occur so quickly after a saccade 

[McConkie and Loschky 2002].  Furthermore, in order to bracket the update delay 

detection threshold, the current study uses a wide range of delays (5-80 ms) spanning the 

known post-saccadic suppression period. 

In sum, the current study directly measures image update delay effects on conscious 

perception of image degradation, by having viewers detect image blur or motion 

transients in a GCMRD, while factorially varying delay and image filtering levels.  The 

study uses a relatively wide range of update delays and a range of image filtering levels 

that bracket the blur detection threshold, in order to determine the relationship between 

update-delay and blur-detection thresholds. 

 

2.1 Method 

2.2.1 Participants. Twelve paid undergraduate and graduate students participated.  All 

had 20/30 or better uncorrected vision. 
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2.2.2 Stimuli. Stimuli were 24 monochrome photographic scene images (18º x 12º, 

768 x 512 pixels), with varied subject matter (from street scenes, to building interiors) 

and much visual detail (see example in Figure 2).  In order to achieve the goal of 

producing a large corpus of eye movement data, only scenes meeting the subjective 

criterion of having numerous, different, small- to medium-sized objects were chosen, 

because such images would require subjects to make many eye fixations in order to 

encode all their details. 

Images were filtered using an algorithm developed at Eastman Kodak Company, 

described in detail elsewhere [Loschky, et al. 2005], which is a modified version of 

Geisler and Perry’s [1998] foveated multi-resolution pyramid.  The current study used 

three levels of image filtering to bracket the updating detection threshold. We varied 

filtering using a parameter corresponding to E2 for grating resolution (the retinal 

eccentricity at which visual resolution drops to half maximum).  The filtering E2 values 

were 6.22º, 3.11º, and 1.55º (Figure 2).  Previous research [Loschky, et al. 2005] using a 

5 ms update initiation deadline, found that image filtering at the predicted blur detection 

threshold, E2 = 3.11º, was almost never detected, while one octave greater filtering, E2 = 

1.55º, was often detected (60%), and filtering one octave below the predicted threshold, 

E2 = 6.22º, was never detected.  Filtering condition was a within-subjects’ variable that 

was counterbalanced across images and participants. 

2.2.3 Apparatus. As in several of our previous GCMRD studies [Loschky and 

McConkie 2002, Loschky, et al. 2005, McConkie and Loschky 2002], the current study 

used an eye-tracker with high spatial accuracy (Dual Purkinje Image Generation 5), and a 

system designed to minimize image-update delays.  Eye position was sampled at 1000 

Hz, providing high temporal resolution for identifying the ends of saccades.  We avoided 

on-line image generation time by pre-computing 330 versions of each image (in a 22 x 15 

imaginary grid over the image) and storing them in a 2 GB randomly accessible image 

memory and display controller.  Thus, wherever viewers’ eyes were directed on critical 

fixations when a modified image was present, there was an image version whose center 

of high-resolution was within 0.41º of gaze position. The 60 Hz monitor could be updated 

at any point during the refresh cycle, so updates were completed within 17 ms of 

initiation. 



 
Figure 2. A set of 3 example images for filtering levels E2 = 6.22, 3.11, and 1.55 

degrees.   

 

2.2.4 Procedures. In order to examine conscious perception of the visual artifacts 

produced by update delays in a GCMRD, we combined elements of the delayed window 

paradigm used in our previous study of the effects of image update delays [Loschky and 

McConkie 2000, Experiment 6] and the occasional window detection paradigm used in 

Loschky, et al. [2005], which we call the “dual delayed occasional window” paradigm.  

The current paradigm is shown schematically in the bottom panel of Figure 1.  On most 

fixations, viewers saw an all high-resolution image, represented schematically by white 

space (Figure 1, bottom panel, A).  However, at the onset of occasional critical saccades, 

ranging from the 9th to the 11th, the high-resolution image was replaced with a multi-

resolutional image, whose center of highest resolution was put at the preceding gaze 

location (fixation n-1).  Thus, when the eyes landed at the new gaze location, they would 

likely be in a lower-resolution region (B), as in a normal GCMRD before updating of the 

area of interest (c.f., top panel, B).  Then, after a delay of 5, 20, 40, 60, or 80 ms, the 

center of highest-resolution was put at the new center of gaze (bottom panel, C; c.f., top 

panel, C).  Finally, as soon as the next saccade was initiated, the constant high-resolution 

image was returned (D). Thus, the viewer’s task was to detect the blur or update-related 
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motion transient (panels B and C) that occurred for only a single critical fixation.  This 

pattern continued for the duration of each 30 second trial. (Subjects were not told about 

these contingencies.)  As a control condition to measure subjects’ false alarm rates, we 

included “no-change” display changes in which the high-resolution image was replaced 

by an identical copy of itself after the same update delays and filtering conditions as the 

real changes.  Image update delay was a within-subjects variable, with the particular 

update delay for each critical fixation chosen randomly. 

To motivate participants to carefully look at the images, thus producing many eye 

movements, and therefore many potentially detectable display changes, we asked them to 

do several tasks.  There were 24 trials each in four different tasks (4 x 24 = 96 total trials 

per subject), with each of the 24 scene images shown a total of four times, once in each 

task for each subject: “short-term learning” (scrutinize the pictures in preparation for a 

test after seeing a subset of 6 scene images), “short-term test” (scrutinize the pictures and 

then decide if they are the same or different from the subset you just studied), “long-term 

learning” (scrutinize each of the entire set of 24 pictures again, after which you will be 

tested on your memory for all of them), and “blur/transient detection only” (scrutinize 

each of the 24 images to see if you can detect occasional blur or motion transients, as an 

indirect measure of memory).  Our chief interest was only in subjects’ blur and/or 

transient detection. 

 

2.3 Results 

Our primary analyses examined the effects of image filtering levels and image updating 

delays on the detection of image blur and/or motion transients in GCMRDs.  Further 

analyses examined the effects of saccade length on detection rates.  In addition, a 

preliminary analysis examined whether task affected detection rates.  

2.3.1 Precursors. Before carrying out our main analyses, we first cleaned the data by 

excluding blinks, extreme outlying reaction times (top and bottom 1%), extremely short 

fixation durations and saccade lengths (bottom 1%), and errors in positioning the center 

of highest resolution ≥2º on either fixation n or fixation n-1.  After all exclusions (15% of 

the original total), 4,494 critical fixations remained, and in the majority of cases the 

center of highest resolution was quite accurately placed (placement error for fixation n-1: 

M = 0.32º, Mdn = 0.33º, Mode = 0.38º; placement error for fixation n: M = 0.52º, Mdn = 

0.47º, Mode = 0.42º). 
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2.3.2 Perceptibility of Image Degradation as a Function of Task. Each of the filtering 

levels occurred equally often in each task (χ2 (6, N = 3152) = 1.47, p =.96, n.s.).  An 

analysis of detection rates as a function of task, excluding subject 5 who was missing data 

in one task, showed that task had a neglibible effect (F (3, 30) = 2.02, p = .133, n.s.).  

Therefore, in all further analyses, detection data were combined across tasks. 

2.3.3 Perceptibility of Image Degradation as a Function of Filtering Level. As 

expected based on the results of Loschky, et al. [2005], we found a significant effect of 

filtering level on detection, F (1.66, 18.26, Geisser-Greenhouse adjusted) = 138.21, p < 

.001.  As shown in Figure 3, the false alarm rate was essentially zero, and subjects almost 

never detected filtering level E2 = 6.22º, rarely detected filtering level E2 = 3.11º, but 

frequently detected filtering level E2 = 1.55º.   

2.3.4 Perceptibility of Image Degradation as a Function of Delay. Viewers never 

detected a change from the first multi-resolutional image to an all high-resolution image 

after a delay of 5 ms, replicating McConkie and Loschky [2002] in a GCMRD, and 

confirming that the 5 ms delay can serve as a no-delay baseline.  Figure 3 shows that 

update delays significantly increased detection, F (4, 44) = 5.68, p = .001, and interacted 

with filtering level, F (12, 132) =1.83, p = .048.  This interaction is because updates have 

no effect when image blur is completely undetectable (filtering level E2 = 6.22).  

Nevertheless, while blur in level E2 = 3.11 was very rarely detected, an 80 ms update 

delay significantly increased detection relative to the 5 ms baseline (F (1, 11) = 6.67, p = 

.025), though no other delays did so.  The same was true for the more detectable filtering 

level E2 = 1.55 (80 ms vs. 5 ms, F (1, 11) = 4.94, p = .048, all other comparisons n.s.). 

2.3.5 Perceptibility of Image Degradation as a Function of Saccade Length. A further 

analysis investigated the effect of saccade length on detection of blur.  In subdividing the 

data by saccade length for this further analysis, the number of observations in each cell 

was reduced, resulting in empty cells for some subjects.  Thus, only 8 subjects’ data was 

included in the analyses.  Saccades were divided into three equal-frequency trintiles: 

saccades < 1.43º, 1.43º ≥ saccades ≤ 3.32º, and saccades > 3.32º.  As shown in Figure 4, 

longer saccades led to higher detection rates (F (2, 14) = 24.79, p < .001), though only in 

the detectable filtering conditions (F (1.59, 11.16, Geisser-Greenhouse adjusted) = 4.17, p 

= .052).  The increased detectability of image blur following longer saccades did not 

differ as a function of update delay (F (8, 56) = 1.35, p = .240, n.s.), nor was there a 3-

way interaction between saccade length, filtering level and delay (F (16, 112) = 1.12, p = 

.345, n.s.).  These non-effects are likely due to the small numbers of observations in each  
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Figure 3. Proportion detection of occasionally presented gaze-contingent multi-

resolutional images as a function of filtering level (control, E2 = 6.22, 3.11, and 1.55 

degrees) and update delay (5, 20, 40, 60, and 80 ms). 
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Figure 4. Proportion detection of occasionally presented gaze-contingent multi-resolutional images as a function 

of filtering level (control, E2 = 6.22, 3.11, and 1.55 degrees) and preceding saccade length trintile (lower, 

middle, upper).  Saccade lengths in degrees for the three trintiles were: lower trintile < 1.43º, 1.43º ≥ middle 

trintile ≤ 3.32º, and upper trintile > 3.32º. 
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cell.  Nevertheless, there was a strong visual trend in the data suggesting that, in the E2 = 

3.11 filtering level, in which blur was very rarely detected, the strongest effect of delay 

was found following the longest saccades. 

2.3.5 Perceptibility of Image Degradation as a Function of Saccade Length. A further 

analysis investigated the effect of saccade length on detection of blur.  In subdividing the 

data by saccade length for this further analysis, the number of observations in each cell 

was reduced, resulting in empty cells for some subjects.  Thus, only 8 subjects’ data was 

included in the analyses.  Saccades were divided into three equal-frequency trintiles: 

saccades < 1.43º, 1.43º ≥ saccades ≤ 3.32º, and saccades > 3.32º.  As shown in Figure 4, 

longer saccades led to higher detection rates (F (2, 14) = 24.79, p < .001), though only in 

the detectable filtering conditions (F (1.59, 11.16, Geisser-Greenhouse adjusted) = 4.17, p 

= .052).  The increased detectability of image blur following longer saccades did not 

differ as a function of update delay (F (8, 56) = 1.35, p = .240, n.s.), nor was there a 3-

way interaction between saccade length, filtering level and delay (F (16, 112) = 1.12, p = 

.345, n.s.).  These non-effects are likely due to the small numbers of observations in each 

cell.  Nevertheless, there was a strong visual trend in the data suggesting that, in the E2 = 

3.11 filtering level, in which blur was very rarely detected, the strongest effect of delay 

was found following the longest saccades. 

 

3. DISCUSSION 

The current study has provided, to our knowledge, the first test of the effect of update 

delays on the detectability of image blur and/or motion transients in GCMRDs.  Update 

delays had a relatively small but significant impact on conscious perception of image 

degradation.  As predicted, long update delays (80 ms) significantly increased detection 

of image blur that was otherwise almost never detected.  However, for update delays ≤ 80 

ms, and filtering levels bracketing the blur detection threshold, the effect of update delay 

was much less than that of filtering level, and, as would be expected, for filtering well 

below the blur detection threshold, delays had no impact.  Interestingly, the current study 

did not find significantly increased detection relative to the 5 ms delay baseline for 

update delays ≤ 60 ms, though our previous research found increased fixation durations 

for 45 ms delays [Loschky and McConkie 2000, Experiment 6].  This difference may 

have been due to using more detectable image blur in the previous study, or to differences 

between factors affecting eye movements and conscious detection processes.  Of 

particular interest to designers of GCMRDs is the fact that delays as long as 60 ms did 
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not significantly increase blur detection, which is good news because it provides ample 

time for many GCMRDs [e.g., Geisler and Perry 1999, Ohshima, et al. 1996] to update 

their displays without causing visible artifacts.   

The analysis of the effects of saccade length indicated that following longer eye 

movements, image blur was more detectable.  Longer saccades take the eyes farther from 

the center of highest resolution located at the preceding gaze location (fixation n-1), thus 

the eyes will land in a region of lower image resolution.  Thus, longer saccades 

effectively reduce the image resolution available at fixation, resulting in greater blur 

detection.  The results also showed that as the update delay increased, image blur 

becomes increasingly noticeable.  It would therefore seem to follow that the strongest 

effects of delay should be found after the longest saccades.  (Conversely, a tiny saccade, 

of say 0.2º, would not even necessarily trigger a change in the location of the point of 

highest resolution, thus eliminating the update altogether.)  However, the data did not 

show such an interaction.  In fact, the data somewhat supported this explanation, but 

primarily in the relatively undetectable condition (E2 = 3.11º)—in the more detectable 

filtering condition (E2 = 1.55º) the trend was somewhat less clear, and of course it was 

absent in the undetectable filtering condition (E2 = 6.22º).  This also suggests a 3-way 

interaction between filtering level, saccade length, and update delay, but again the 

statistical analyses did not support it.  As noted above, the current study lacked a 

sufficiently large pool of data to effectively test these fine-grained hypotheses.  Thus, 

although 12 subjects’ data was sufficient to show clear effects of update delays on 

detection of blur, particularly in the rarely detectable blur condition (E2 = 3.11º), further 

research with a larger number of subjects may be necessary to clarify the possible 3-way 

interaction between saccade length, filtering level, and update delays on blur detection.   

Nevertheless, if the above analysis is correct, it suggests that detectible visual artifacts 

caused by long update delays would be most likely to occur in situations in which 

viewers tend to make large eye movements (e.g., with large displays, such as VR, having 

relatively large distances between objects).  In such cases, if faster updates are not 

possible, a simple solution would be to increase the size of the region of highest 

resolution, or equivalently, to use a somewhat shallower image resolution drop-off 

function [for a more sophisticated version of this idea, see Komogortsev and Khan 2004].  

This would reduce the detectability of image blur and delay-based motion transients, 

though at the cost of somewhat reducing the processing and bandwidth savings. 
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