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Abstract

In an observational study, the average treatment effect may only be reliably estimated

for a subset of units under which the covariate space of both treatment and control units

overlap. This is known as the common support assumption. In this report, we develop a

method to find a region of common support. The method is as follows. Given a distance

function to measure dissimilarity between any two units with differing treatment statuses,

we can construct an adjacency list by drawing edges between each pair of treated and control

units that have distance no larger than some pre-specified threshold. Then, all connected

components of the graph are found. Finally, a region of common support is found by obtain-

ing the largest connected components (LCC) (e.g. the connected components with the most

treated units) of this graph. We implement the LCC algorithm by using binary search trees

to find all the connected graphs from sample data and sorting them by size. This algorithm

requires O(n2) runtime and O(n) memory (where n is the number of units in the observa-

tional study. We then create an R package implementing this LCC algorithm. Finally, we

use our R package to compare the performance of LCC to that of other common support

methods on simulated data.



Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Causal Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Covariate Dissimilarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Common Support and Existing Methods . . . . . . . . . . . . . . . . . . . . 6

1.4 Largest connected component for common support . . . . . . . . . . . . . . 8

2 Implementation and Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Index and Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Variable Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Adjacency List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Algorithm For LCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Efficiency and Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Improved Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Comparison and Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

iv



3.1 Current methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Non-convex common support data . . . . . . . . . . . . . . . . . . . . 22

3.2 Non Convex Sample and Heterogeneous Data . . . . . . . . . . . . . . . . . 24

3.3 Efficiency Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Maxbox Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 BART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Optimal Match . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.7 Convex Hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.8 LCC Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A Title for This Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B Title for This Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

v



List of Figures

2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vi



List of Tables

2.1 Variable type correspondence between R and Python . . . . . . . . . . . . . 12

3.1 results of efficiency bounds using true propensity score . . . . . . . . . . . . 25

3.2 results of efficiency bounds using well estimated propensity score . . . . . . . 27

3.3 results of efficiency bounds using badly estimated propensity score . . . . . . 29

3.4 results of maxbox using true propensity score . . . . . . . . . . . . . . . . . 31

3.5 results of maxbox using well estimated propensity score . . . . . . . . . . . . 31

3.6 results of bart for α = 0.1 signifcance level . . . . . . . . . . . . . . . . . . . 34

3.7 results of LCC using true propensity score . . . . . . . . . . . . . . . . . . . 44

3.8 results of LCC using well estimated estimated propensity score . . . . . . . . 44

3.9 results of LCC using general euclidean distance . . . . . . . . . . . . . . . . 44

3.10 results of LCC using mahalanobis distance . . . . . . . . . . . . . . . . . . . 45

3.11 results of LCC using the largest caliper . . . . . . . . . . . . . . . . . . . . . 45

vii



Acknowledgments

Enter the text for your Acknowledgements page in the acknowledge.tex file. The Ac-

knowledgements page is optional. If you wish to remove it, see the comments in the et-

drtemplate.tex file.

viii



Dedication

Enter the text for your Dedication page in the dedication.tex file.123 The Dedication

page is optional. If you wish to remove it, see the comments in the etdrtemplate.tex file.

ix



Chapter 1

Introduction

Consider an observational study with n treated units, each given either treatment or control.

In this type of study, the inference on causal quantities of interest is ideal when the pre-

treatment distributions of covariates are same for the treatment and control groups. A large

difference in covariates between treatment and control groups may lead to a biased estimate

of the average treatment effect when covariates are predictive of response. The solution

to this problem is called statistical matching or modeling.A group of experiment units are

included in the common support, where each unit has its close counterfactual.

Counterfactuals(Imbens and Rubin, 1997) are hypothetical unobserved outcomes. For

example, for a treated unit, the counterfactual for that unit is the outcome if it had received

the control. In causal inference, estimates of treatment effects are often made by using

available outcomes to estimate counterfactuals. If the counterfactual models do not account

for all important covariates, and accurately model the relationship between those covariates

and response, the estimation of treatment effect could be biased. To prevent the above

problem, it may be preferable to focus on estimation in an observational study for a subset

of data under which common support holds. Common support—also known as covariate

overlap—is a subset of the covariate space under which there exists both treatment and

control units. In real world, it would be hard to find perfect counterfactuals, so we will let

the common support to include all close counterfactuals.
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Finding a region common support may be a tricky problem. Because every experiment

unit carries some information, the exclusion of experiment units may lead to estimation bias.

For example, if any treated unit is removed, matching estimators on the corresponding subset

may no longer provide an unbiased estimation for the average treatment effect on the treated

units (ATT). The method to find the common support should be able to efficiently create

the common support with sufficient size to prevent the quantity of interest from changing

substantially. For example, if we have 1000 treated units and 1000 control units, but the

common support contains only 1 treated units and 2 control units, the size of the common

support region may insufficiently small.

In this report, we investigate the Largest Connected Component (LCC) method for

finding common support. The idea is as follows. Given a distance metric that measures

the counterfactual dissimilarity of any two units pre-treatment covariates and a dissimilarity

threshold ω, a graph is formed where each unit is a vertex in the graph and an edge is

drawn bewteen a treatment and control unit if and only if the dissimilarity is no larger

than ω. LCC then forms a region of common support composed of the largest connected

components of units in this graph. LCC offers a unique combination of computational

efficiency, estimation precision, and flexibility of the sample data. For flexibility, LCC can

find out convex or non convex common support regions for both convex and non convex data

regions in O(n2) runtime. As the dissimilarity threshold increases, the quantity of interest on

common support region approaches the quantity of interest on the original data set; however,

this may introduce bias when complex relations exist between covariates, treatment, and

response. In each component, every unit either received treatment or control, is connected

to at least one another unit. The edge between two units indicates their dissimilarity is

within the threshold ω and acceptable. The direct connection within a component is only

between one treated unit and one control unit.

To code LCC efficiently, we perform a depth first binary search (DFS)Cormen et al.

(2004) across the experiment units. This allows for increased computational efficiency for

large thresholds; larger thresholds imply fewer “sparse paths” to compute when forming

connected components. we have to consider fewer edges between units and have more indi-
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rect connections and more experiment units are included.So we need to choose an optimal

threshold. The memory space LCC takes is O(np), where p is the number of covariates for

each unit; when n is significantly larger than p, the memory space is O(n). To facilitate the

use of LLC by practicitioners, we implemented the algorithm into an R package called llc.

You can find it on my URL on github. Additionally, we provide the details to show how the

LCC algorithm is implemented and a sample data simulation.

1.1 Causal Inference

Assume we have n experiment units indexed from 1 to n. Each unit is given either treatment

or control. Let Ti denotes the treatment indicator for the ith unit. Ti = 0 if the ith unit

receives the treatment, and Ti = 0 if the ith unit receives the control. We have n0 units

received control and n1 units received treatment; n = n1 + n2. Suppose each unit has p

observable covariates xi = (xi1, xi2, ..., xip) ∈ Rp. We assume the Neyman-Rubin potential

outcomes(Brady et al., 2008) model for response. Let yi1 be the potential outcome for unit i

if it received treatment and let yi0 be the potential outcome for unit i if it received control.

Then yit is the hypothetical outcome of unit i if that unit had received treatment t, where

t ∈ {0, 1}. In this paper, we assume the potential outcomes not to be random. The observed

response Yi for unit i is can then be written

Yi = yi1Ti + yi0(1− Ti). (1.1)

Inherent in this model is the stable unit treatment value assumption (SUTVA), which means

the treatment status of a unit does not affect the response of any other unit. We further

assume yit is not only affected by random treatment status Ti but also significantly affected by

the non-random covariates xi. The unit-level treatment effect for unit i is τi = yi1−yi0. Here,

τi is not observable, because no unit can receive both treatment and control. The average

treatment effect (ATE = E[Yι1 − Yι0]) measures the average treatment effect on all units

for the whole population. The average treatment effect of treated (ATT = E[Yι1 − Yι0|Tι =
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1]) measures the average treatment effect on the treated units. Here, the expectation is

computed a randomly sampled unit ι from the population. Most often in observational

studies, the quantity of interest is the ATT.

Unbiased estimation of the ATE requires the following two assumptions (Mahmood et al.):

Assumption 2.1 (Unconfoundedness):

Ti ⊥ (yi1, yi0) |xi (1.2)

Assumption 2.2(Common Support for ATE): For all xi,

0 < P (Ti = 1|xi) < 1 (1.3)

The assumptions hold over all potential realizations for (yi1, yi0, Ti,Xi) in the population (Mah-

mood et al.). Assumption 2.1 indicates that for given pretreatment covariates, the treatment

indicator for any unit is independent of its potential outcomes. Assumption 2.2 indicates the

probability to receive treatment is between 0 and 1. The common support region is where the

covariates overlap. It ensures that the ATE can be well defined. The unconfoundedness and

overlap assumptions constitute a property called strong ignorability of assignment (Rosen-

baum and Rubin, 1983).

When estimating the ATT, Assumption 2.1 can be restricted to realizations in which

Ti = 1 and Assumption 2.2 can be replaced by Assumption 2.3.

Assumption 2.3(Common Support for ATT ): For all xi:

0 ≤ P (Ti = 1|xi) < 1 (1.4)

The sample ATE and sample ATT have the formulas as following respectively:

SATE =
1

n

n∑
i=1

(yi1 − yi0) (1.5)
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SATT =
1

n1

n1∑
1

(yi1 − yi0) (1.6)

In this paper, we focus on finding the estimation of the sample average treatment effect on

treated (SATT).

1.2 Covariate Dissimilarity

Our method for estimating SATT requires a dissimilarity measure between units that should

be small when two units have similar values of prognostically important covariates. For unit i

with covariate vector xi and unit j with covariate vector xj, where xi,xj ∈ Rp, let wij denote

the dissimilarity between unit i and unit j. Now we need to chose the dissimilarity measure

wij such that wij is small when xi and xj have similar values and wij is large when xi, xj are

very different. There are many different possible choices for the dissimilarity measure. We

now outline a few of these.

Our first choice is the standard euclidean distance. To get the standardized Euclidean

distance, first we have to standardize the covariates. Let X̂ denote the standardized value

for covariate X. Let s denote the standard deviation for covariate X. The standardized value

is

X̂ = (X − X̄)/s (1.7)

Then we will apply General Euclidean distance on the standardized covariates. Let’s denote

the standardized covariates as X. The general euclidean distance between xi and xj is

wij =
√

(xi1 − xj1)2 + (xi2 − xj2)2 + · · ·+ (xip − xjp)2 (1.8)

Besides standardized Euclidean distance, Mahalanobis distance is also popular for measuring

distance between two units. We can also use the propensity scores to measure distances. A

propensity score for unit i is the probability that this unit receives treatment given covariate

xi. It is written as e(xi) = P (Ti = 1|xi). If propensity score e(xi) of unit i is strongly

associated with its covariates xi, then the difference of two propensity scores may represent
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the differences between covariates of two different units.

The choice of dissimilarity measure is flexible and should serve the researchers interest,

but it should always satisfy two conditions. First, for any dissimilarity wij, between unit i

and j, wij > 0. Second, the dissimilarity needs to satisfy the triangle inequality: for any

three units i, j, k, wij+wjk 6 wik. Those two conditions are very important when using LCC

methods. Considering all units to be points and dissimilarity measures to be edges among

directly connected units, the importance of the two conditions can be easily understood

graphically.

1.3 Common Support and Existing Methods

In this paper, several methods to find a common support region are compared. Those

methods will be compared on several aspects. First we will compare their functionality for

large observational studies, especially when the number of experiment units n is large. Some

current common support methods may require prohibitive computation to be applied to

datasets with large n Second we will compare the flexibility of these methods, both in terms

of the size of the region of common support and how these methods can detect non-convex

regions of common support. A too small size of common support region may lose significant

information carried by the experiment sample, insert a bias and potentially increase the

variance of estimation. A too large common support may be lack of the covariate overlap.

We will test these methods on sample data with non-convex regions for covariates. Finally, we

will test the robustness of estimation of treatment effects after finding the common support

methods. We will test whether these methods work on good and bad propensity estimations,

and whether these methods can use distance measures other than propensity scores, such as

standardiex Euclidean, Mahalanobis or largest caliper (Mahmood et al.) distances. This is

important when a good estimate of the propensity score is unavailable.

Crump et al. (2009) identified the study population by finding the optimal subsamples

which minimize the efficiency bound for the variance of average treatment effect. For our

sample data, it describes a simple rule to remove all units from the study population with
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estimated propensity scores outside the range [0.1,0.9]. Rosenbaum (2012) formed an optimal

subset of the sample to identify the common support where one chooses the upper bound

on the maximum number of treated units that can be removed by optimal matching. Each

matchable treatment unit and control unit are paired, and the average distance within pairs

should be minimized. (Fogarty et al., 2016) formed a common support region by constructing

a maxbox for important covariates. The maxbox gives a condition for each experiment

included in the common support. We will use estimated propensity to create the maxbox

area. For maxbox, the experiments units should have propensity score between 0.1 and 0.9.

And we will maximize XU and minimize XL so as well as maximizing the common support

area such that for all units in common support XL � X � XU . It provides a rectangular

regions of the covariate space for common support. (Hill and Su, 2013) identified common

support by employing Bayesian Additive Regression Trees (BART).

We will test these common support methods against our new method for finding common

support—largest connected components—on several aspects. First we will compare their

functionality for large observational studies, especially when the number of experiment units

n is large. Some current common support methods may require prohibitive computation to

be applied to datasets with large n Second we will compare the flexibility of these methods,

both in terms of the size of the region of common support and how these methods can detect

non-convex regions of common support. A too small size of common support region may

lose significant information carried by the experiment sample, insert a bias and potentially

increase the variance of estimation. A too large common support may be lack of the covariate

overlap. We will test these methods on sample data with non-convex regions for covariates.

Finally, we will test the robustness of estimation of treatment effects after finding the common

support methods. We will test whether these methods work on good and bad propensity

estimations, and whether these methods can use distance measures other than propensity

scores, such as standardiex Euclidean, Mahalanobis or largest caliper (Mahmood et al.)

distances. This is important when a good estimate of the propensity score is unavailable.
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1.4 Largest connected component for common support

Largest connected components (LCC) is a recently developed method for finding common

support (Mahmood et al.). The details of LCC method could be find in paper Finding

Common Support through Largest Connected Components(Mahmood et al.). This paper is

mainly focused on the implementation of LCC method and the result of comparison with

other methods. So I will give only a general introduction of LCC methods. For LCC, we view

our data as a bipartite graph G = (V = (V1, V0) , E), where V1 and V0 are sets of vertices

and E is a set of edges. Each unit receiving treatment corresponds to a vertex in V1 and

each unit receiving control corresponds to a vertex in V0. For each pair of vertices i ∈ V1

and j ∈ V0, there is a unique edge eij ∈ E. That is G is a complete bipartitie graph with

|V1| = n1 and |V0| = n0, where n1 is the number of treated units and n0 is the number of

control units. Each edge eij ∈ E has a weight wij > 0 representing the dissimilarity between

units i and j, where wij > 0.

We then construct a bottleneck subgraph G∗ω = (V,Eω) for threshold ω where an edge

ij ∈ Eω if and only if that edge has weight wij ≤ ω. The LCC region of common support

is then comprised of the largest connected components of this bottleneck subgraph. A

connected component is a subgraph in which each observational unit is connected to at least

one other observational unit. The size of our common support region can be adjusted by

changing the value of threshold ω, larger ω correspond to larger regions of common support.

Compared to available methods for finding common support, we show LCC offers great

computational efficiency especially when the number of experiment units n is large. Second

LCC allows flexibility for the shapes permitted for common support, including non-convex

regions. Third, unlike some other methods which are highly dependent on the estimation

quality of propensity scores, the LCC method offers robustness estimation for many different

types of dissimilarity measures.
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Chapter 2

Implementation and Algorithm

2.1 Introduction

As mentioned by Mahmood et al., the LCC algorithm requires a dissimilarity measure wij

and a dissimilarity threshold ω. The general idea of LCC algorithm is simple. Suppose we

have n1 treated units and n2 control units. The LCC algorithm is as follows Mahmood et al.:

Step 1: Consider all the suits as bipartite graph G = (V = (V1, V0), E) where V1 is the set of

all treated units and V0 is the set of all control units.

Step 2: Find the acceptable matches: Find all pairs of units with opposite treatment statuses

that have dissimilarity less than threshold ω.

Step 3: Form a bottleneck graph where edges join acceptable matches.

Step 4: Find the set of connected components in the bottleneck graph.

Step 5: Identify the largest connected components. Ensure that the connected components

have sufficiently many treated and control units to estimate treatment effects within

that connected component with little bias.

Step 6: Select all the units that are in largest connected components to obtain a region of

common support.

9



We will offer algorithms to implement this idea in rest of this chapter.

2.2 Index and Data Storage

Although R is very useful in data handling, it is not very friendly for coding the algorithm.

First, R takes long time, especially when running loops. Second, R takes a large amount of

memory. For any parameter input into a user built R function, a new copy of the parameter

is created. A copy of a large parameter takes large memory space and slows down algorithm.

To mitigate this problem, we use Python to implement the algorithm. This causes another

issue—R indexes vectors differently than other lower level languages like C, C++, Java, or

Python.

Figure 2.1: Data Structure

Suppose we have a data as in Figure 2.1. Let X1,X2,X3 be the three covariates in out

sample data.

For this dataframe in figure 2.1, we have 20 units. Ten of them receive treatment and

10



are indexed from 1 to 10. Ten of them receive control and are indexed form 11 to 20. Then

we can separate the treated and control units into two groups and input them into Python

separately. For a vector, the first element in R is indexed 1, and in Python, it is indexed

0. The last element index in R is the vector length, and in Python, it is the length minus

1. For convenience, we will use the Python index during the algorithm and we will map the

result back to R index after algorithm.

Let’s import covariates of treated units and control units into two groups (a dictionary)

in Python. In Python, treated units are indexed from 0 to n1 − 1, and control units are

indexed from 0 to n2 − 1. We do not need to save either the Python indexes or R indexes

now, because Python and R indexes are automatically created. This saves memory cost.

The input data structure is in Figure 2.2.

Figure 2.2: Inputted data

We now have two vectors in Python of three elements. Each element in each vector

contains a covariate vector, one for each of the three covariates. For our sample data, the

vectors of vector in R is a dataframe and the vectors of vector in Python is a dictionary. In

general, a dataframe from R is a dictionary in Python. For our sample data in Figure 2.1,

the column names in R are the dictionary keys in Python; they are X1,X2 and X3. We now

11



have two dictionaries for treated units and control units in Python. The associated content

for each key is a vector of the corresponding covariate vector. In the treated dictionary,

the vector for key X1 contains x11,x21,...xn11 in R dataframe. In the control dictionary, the

vector for key X1 contains x(n1+1)1,x(n1+2)1,...x(n1+n2)1 in the R dataframe. Now we can map

the corresponding index between R and Python—if a unit is indexed i in the Python treated

dictionary, it is the row i + 1 in the R dataframe, and if a unit is index i in the Python

control dictionary, it is the row i+n1 +1 in R dataframe. These two dictionaries take O(np)

memory space. When n is significantly larger than p, it takes O(n) memory space. Because

we already have treated units in upper rows in our R dataframe.

2.3 Variable Type

In most of the computer languages including R and Python, the variable type is very im-

portant. When a variable is imported from R to Python or vice versa, we can hardly do any

implementation before knowing the variable type. The following table shows corresponding

variable types between R and Python. One important aspect is that, for a dataframe in R,

its corresponding variable type in Python is a dictionary. Our llc package takes dataframes

or matrices as parameters. The column names in the dataframe are the keys in the dictio-

naries. If the input is a matrix, we will assign it column names and still get dictionaries in

Python. Table 2.3 shows the variable type correspondence between R and Python.

R Python
Multi-element vector List
List of multiple types Tuple
Single-element vector Scalar
Named list( such as dataframe) Dictionary
Matrix/Array NumPy ndarray
Function Python function
Raw Python bytearray
NULL, TRUE, FALSE None, True, False

Table 2.1: Variable type correspondence between R and Python
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2.4 Adjacency List

We check the edges between every treated unit and every control unit according to the

distance wij and threshold ω then store them in adjacency lists. We have defined the edge

in a bottleneck subgraph such that, if a distance between a treated unit and a control unit

is no larger than the threshold ω, there is an edge connecting them. The adjacency lists will

be implemented using dictionaries. We use two dictionaries to store all the adjacency lists.

One dictionary is for treated units and the other is for control units. In treated dictionary,

the keys are Python indexes of the treated units. For each key the corresponding content is

a list of indexes for all control units connected to that treated units. For control dictionary,

it is the opposite. These two dictionaries may take O(n2) memory space, but can take much

less if the threshold is sufficiently small.

For example suppose edges are shown as in Figure 2.3. Figure 2.4 is our adjacency list.

Figure 2.3 uses the R index, and the adjacency lists in Figure 2.4 uses the Python index.

We will perform a mapping to get R indexes after the algorithms are finished.
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Figure 2.3: Connected graph
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Figure 2.4: Adjacency list for the connected graph in Figure 2.3
.
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2.5 Algorithm For LCC

We now find the largest connected subgraphs. We use a Depth First Search (DFS) with two

stacks. One stack is for treated units, the other is for control units. There is nothing too

complicated to find the largest connected graphs using DFS as we now have an efficient way

to store data. The only thing unique is that two stacks for both treated and control units

are used in depth first search.

In our data structure, all child nodes for a treated root are controls units and vice versa;

no treated unit can be directly connected to any other treated unit, and no control unit can

be directly connected to any other control unit. For control units, it is vice versa. Thats why

we have two stacks. If we find a unit is connected to a graph, we call this unit encountered

and mark it through two Boolean vectors.

The Boolean vectors take advantage of our well indexed Python data storage. Without

using Boolean vectors, if we put the indexes of detected treated units into a list called “trt-

encountered”, each time we encounter another treated unit, we need to check if it is in the

trt-encountered list. This takes O(n1) runtime, where n1 is the number of treated units in

total. Instead, we use a list of Boolean variables of length n1 and indexed from 0 to n1 − 1

to mark the encountered treated units. We will set the default values of every elements in

these list to be false. If a treated unit with index i is encountered for the first time, we mark

it by setting the element in ith position in the Boolean vector to be true. Then to check if

a treated unit j has been encountered before, we just need to check the jth position in the

Boolean vector. If the value is true, it has been encountered, and if the value is false, it has

not. Each check takes O(c) time instead of O(n1) and O(n0) for treated and control units

respectively. The two Boolean vectors take exactly n bits memory space.

Now we start our DFS. We will start from any undetected treated node and use the

corresponding adjacency list to find all its undetected child control units, mark them as

encountered, and put them into the control stack. Then we pop out the control unit on

top of the control stack, find all its child treated units, mark them as encountered, and put

them on top of the treated stack. Then we pop out the unit on top of the treated stack
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and repeat the algorithm until the treated stack is empty. Then we pick another unmarked

treated units and repeat the algorithm until all treated units are marked. The algorithm is

as follows:

Step 1: Calculate all distances for each pair of treatment node and control node to build the

adjacency lists.

Step 2: Choose any undetected treated unit, mark it as encountered, and put it on top of the

treatment stack.

Step 3: Pop out out the node on top of the treatment stack, find all its unmarked control child

nodes using adjacency lists, mark them as encountered, and put them on top of the

control stack. Then pop out the node on top of the control stack, find all its unmarked

child treated nodes and put them into the treatment stack.

Step 4: If the control stack is empty, we go back to Step 2. If the treated stack is empty, the

nodes in the previous Step 2 and following Step 3 form a connected graph. Record the

graph.

Step 5: Repeat step 2 and 3 until all treated units are marked.

Step 6: Output a list of list pairs from Python.

Each pair of lists in the output is a connected component units. In each pair, the first

list contains the Python indexes of treated units in the cluster, the second list contains the

Python index of the control units in the cluster. We map the Python indices back into R

indices to obtain connected components, each having at least one treated unit. All control

units not in any connected component do not have a “sufficiently close” treated unit are not

connected directly to any other treated units.
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2.6 Efficiency and Optimization

Suppose our data frame has n nodes, with half units received treatment and half units

received control. DFS takes algorithm time of O(n+m), where n is the number of units and

m is the number of edges. Our LCC algorithm takes O(n2) algorithm time. Calculating all

distances between each treated node and control node to create adjacency lists takes O(n1n2)

algorithm time, which could be slow. For a sample data of 100,000 units with half treated

and half control, we will have to calculate 2.5 billion distances. Second the adjacency lists

may require a lot of memory to store if the threshold is too large—up to O(n2) memory

space. If each treatment unit is connected with each control unit, then for these 100,000

units our adjacency lists have 100 billion total length. A question then becomes, how can

we calculate fewer distances and use a less memory?

There are two improvements we can make. First the entire adjacency lists carries redun-

dant information. For example, if we know nodes A and C are connected, and nodes B and

C are connected, then calculating distance between nodes A and B would be unnecessary;

nodes A and B are connected through C. In other words, we should take advantage of the

indirect connections among the nodes; if nodes A and B have been encountered and have

been determined to belong to the same connected component, it is unnecessary to compute

the distance between A and B. Additionally, if a connected component that has been found

contains node A but does not contain node B, then A and B are not connected in the bot-

tleneck subgraph, and hence, it is unnecessary again to compute the distance between A and

B. Figure 2.5 shows the idea graphically. Second the adjacency list itself is not necessary.

The DFS algorithm in Section 2.5 uses every connection in the adjacency lists only once.

Hence, we can calculate the distance and access the connection while searching the depth

first tree. By making these two improvements, this we can save the O(n1n2) memory space

required for the adjacency lists and calculate fewer distances.

We now observe can see that to build the adjacency list, Calculating distance between

every treated node and control node is unnecessary. Instead we only calculate the distance

between the current root node and every undetected node who received the opposite treat-
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Figure 2.5: Connected graph

ment condition during the DFS. By doing this we can save the O(n1n2) memory space for

adjacency lists and calculate less distances.

2.7 Improved Algorithm

We implement the ideas in Section 2.6 to obtain an improved algorithm:

Step 1: Start from any unmarked treatment node as our root. Mark it as encountered and

push it on top of the treatment stack.

Step 2: Pop out the treatment node on top of the treatment stack and calculate the distance

between it and every unmarked control nodes. If the distance is smaller than the

threshold ω, mark the control node as encountered and put on top of the control

stack. Then, pop out out the node on top of the control stack. Calculate distances

between this node and each unmarked treated nodes. If the distance is smaller than

the threshold ω, we mark the treated node and push it on top of the treated stack.

Step 3: Repeat Steps 2 and 3 until treatment stack or control stack is empty. If treatment
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stack is empty, record all nodes we encountered from previous Step 1 and following

Step 2. These nodes comprise a connected graph. If control stack is empty, go to step

2.

Step 4: Repeat previous steps until there is no unmarked treatment node.

For this algorithm, instead of calculating all distances among all treated units and control

units, we calculate fewer distances. The larger the dissimilarity threshold ω, the more indirect

connections there will be among all nodes, and the fewer distances need to be calculated. In

other words, each unit could be attached to a cluster through only one direct connection.

Also we do not need to use memory to store the adjacency list, we only record one

distance at a time in the algorithm. The memory space to store adjacency list could be as

large as O(n2), while it only takes memory space of O(c) to store a single distance.

To assess the computational gain from the improved algorithm, we apply it to a toy

data example containing 230 treated units and 770 control units, where dissimilarity is

measured using the Euclidean distance. The original algorithm required us to calculate

177100 distances. Using this improved algorithm, when ω = 0.6, we are required to compute

173,375 distances, for ω = 0.6 we compute 144,585 distances, and for ω = 1.2 we compute

96,327 distances. We see a clear tendency that, as the threshold increase, the distances need

to be calculated decreases.

Finally we convert the Python indexes back into R indexes. For example in Figure 2.1,

for the largest graph, we get a treatment list of Python indexes of {0, 3}, and control list

of Python indexes of {0, 2}. Using the mapping in Figure 2.2, we have the R index of

{1, 3, 11, 13} as our largest connected graph. These are the rows of {1, 3, 11, 13} in the

dataframe from R, and they compose the largest connected graph.
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Chapter 3

Comparison and Testing

3.1 Current methods

There are several existing methods to generate common support regions, such as Efficiency

Bounds (Crump et al., 2009), Optimal Match (Rosenbaum, 2012), BART (Hill and Su, 2013),

Maxbox (Fogarty et al., 2016) and Convex hull (King and Zeng, 2006).

These methods may generate common support regions with well balanced propensity

scores or covariates, but can also perform badly for some specific conditions, or consume

too much time for a large data sample size. Generally speaking, Efficiency Bounds (Crump

et al., 2009) is highly dependent on the quality of the estimation on propensity scores.

Optimal Matching (Rosenbaum, 2012) is time consuming; using the Mahalanobis distance,

this algorithm required hours of runtime on my computer for 10000 data points with 3

covariates. BART (Hill and Su, 2013) can work on non-convex datasets and can take ad-

vantage of using observable covariates, but attempts to incorporate additional units outside

of the region of common support to perform estimation may create bias for certain types

of response schedules. The Maxbox method (Fogarty et al., 2016) only gives a rectangular

common support region; it may struggle to generate a sufficiently large common support

region for non-convex data. Additionally, The convex hull method (King and Zeng, 2006)

may struggle to find an acceptable not generate a good common support region when that
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region is non-convex.

3.1.1 Non-convex common support data

We now build a simulated data set with a non-convex region of common support to test the

above methods. Let Z be the treatment indicator. Let z=1 if the unit receives treatment

and z=0 if the unit receives control. A propensity score e(x) is the probability that a unit

is assigned with treatment given the covariates of x, written as e(x) = P (z = 1|x).

We generate a dataset with 10,000 units. Each unit i is composed of three covariates

xi = (xi1, xi2, xi3) where xi is generated by multivariate normal distribution N (µ,Σ), where

µ = (0, 0, 0) , Σ =

∣∣∣∣∣∣∣∣∣∣
2 0 0

0 2 0

0 0 2

∣∣∣∣∣∣∣∣∣∣
The true propensity scores is derived by

e(xi) =



4− x2i1 − x2i2
3.5

, 0 <
4− x2i1 − x2i2

3.5
< 1,

1,
4− x2i1 − x2i2

3.5
> 1,

0,
4− x2i1 − x2i2

3.5
6 0.

(3.1)

We use the true propensity scores to generate our treatment indicator vector z = (z1, z2, · · · , zn)

using Bernoulli distribution, where P (zi = 1) = e(xi).

And our response is Y = (y1, y2, .., yn), where yi = 1
(x2i1+x

2
i2+x

2
i3)

+ 2 ∗ zi. So in our sample

data set, the true treatment effect on every treated unit is 2.

And we also generate a well estimated propensity score using logistic linear model where

logit [ê(xi)] = β1 ∗ (xi1 + xi2 + xi3)
2 + β2x

2
i1 + β3 ∗ x2i2 + β4 ∗ x2i3.

We will use the above sample to get the the common support region using different methods

and our LCC method. In each method we will plot the common support region graph for

x1 vs x2 to compare common support and original sample data set. The blue point in the
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graph indicates a unit received control and a red point on the graph indicates a unit received

treatment. We will also give the the back to back histogram and boxplot to check the balance

of propensity scores.

Homogeneous treatment effect data model

Now let’s build the homogeneous testing data set with a non-convex region of covariates

and test the above methods. Let Z be the treatment indicator. Let z=1 if the unit receives

treatment and z=0 if the unit receives control. A propensity score e(x) is the probability that

a unit is assigned with treatment given the covariates of x, written as e(x) = P (z = 1|x).

Suppose we have a data set composed of 10000 units. Each unit is composed of three

covariates x1,x2 and x3. So we have vectors such that xi = (xi1, xi2, xi3) where xi is generated

by multinormal distribution (µ, σ), where µ = (0, 0, 0) and σ =

∣∣∣∣∣∣∣∣∣∣
2 0 2

0 2 0

0 0 2

∣∣∣∣∣∣∣∣∣∣
Our true propensity scores is derived by

e(xi) =
4−3∗x2i1−x2i2

3.5
if 0 <

4−x2i1−x2i2
3.5

< 1

e(xi) = 0 if
4−x2i1−x2i2

3.5
6 0

e(xi) = 1 if
4−x2i1−x2i2)

3.5
> 1

We use the ture propensity scores to generate our treatment indicator vector z = (z1, z2, · · · , zn)

using binary distribution, where P (zi = 1) = e(xi). And our response is Y = (y1, y2, .., yn),

where yi = 1
(x2i1+x

2
i2+x

2
i3)

+ 2 ∗ zi. So in our sample data set, the true treatment effect on every

treated unit is 2.

And we also generate a well estimated propensity score using logistic linear model where

logit [ê(xi)] = β1 ∗ (xi1 + xi2 + xi3)
2 + β2x

2
i1 + β3 ∗ x2i2 + β4 ∗ x2i3.

We will use the above sample to get the the common support region using different methods

and our LCC method. In each method we will plot the common support region graph for

x1 vs x2 to compare common support and original sample data set. The blue point in the

graph indicates a unit received control and a red point on the graph indicates a unit received

treatment. We will also give the the back to back histogram and boxplot to check the balance
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of propensity scores.

3.2 Non Convex Sample and Heterogeneous Data

Now let’s also create a heterogeneous Data sample. Let’s use the same covariates of the ho-

mogeneous model. So In this heterogeneous model xi = (xi1, xi2, xi3) where xi is generated

by multinormal distribution (µ, σ), where µ = (0, 0, 0) and σ =

∣∣∣∣∣∣∣∣∣∣
2 0 2

0 2 0

0 0 2

∣∣∣∣∣∣∣∣∣∣
Let’s also use the same true propensity scores in the homogeneous model.

e(xi) =
4−3∗x2i1−x2i2

3.5
if 0 <

4−x2i1−x2i2
3.5

< 1

e(xi) = 0 if
4−x2i1−x2i2

3.5
6 0

e(xi) = 1 if
4−x2i1−x2i2)

3.5
> 1

Let’s use the same well estimated propensity scores in the homogeneous model, such that

logit [ê(xi)] = β1 ∗ (xi1 + xi2 + xi3)
2 + β2x

2
i1 + β3 ∗ x2i2 + β4 ∗ x2i3.

The only difference between the homogeneous model and heterogeneous model is that,

in the heterogeneous model the response denoted as ŷ, for each i ŷi = 1
x2i1+x

2
i2+x

2
i3

+ 2xi1zi +

3xi2zi + 2zi, where zi is the treatment indicator. In the heterogeneous model, let’s calculate

the true treatment effect on the treated(ATT) for each common support generated from

different methods. The true treatment effect is the average of potential outcome for units

given treatment minus the average of potential outcome for units given control. For different

common supports, the common support graphs are same for both homogeneous model and

heterogeneous model because they are achieved from either same covariates or propensity

scores except for the BART. However, unlike using the homogeneous model during which

all the true ATTs are 2, using the heterogeneous model the true ATTs are different for each

different common support. The true ATT for the entire model is 1.945225. For heterogeneous

model, if the true ATT of common support is far away from the true ATT of the data sample,

then the common support fails to represent the the sample data. We will compare these ATTs
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with the estimated ATTS using different matching methods.

3.3 Efficiency Bounds

Efficiency bounds Crump et al. (2009) generates common support regions highly dependent

on propensity scores. From Dealing with limited overlap in estimation of average treatment

effects Crump et al. (2009), it is a good start to use range [0.1,0.9] as the boundary for

the propensity scores. Any unit with a propensity score smaller than 0.1 or larger than 0.9

will be excluded from the common support region. This causes another problem, when the

propensity scores are distributed not dispersed enough, the [0.1,0.9] can not be applicable.

To solve this, the propensity scores could be cut according to the percentiles. We can cut

the highest 10% propensity scores and lowest 10% propensity scores. During our test, we

will first use the the real propensity scores then estimated propensity scores with boundaries

to achieve the common support region. Now let’s first cut on true propensity socres. Figure

3.1 is the graph of the common support compared with the original data set for x1 versus x2

cutting on real propensity scores, where each blue point is a treated unit and each red point

is a control unit. This figure is for both heterogeneous model and homogeneous model. The

common support consists of 4029 experiment units with 2188 units received treatment.

From Figure 3.1 we know that Efficiency Bounds Crump et al. (2009) methods works on

the non-convex sample data set and generate a non-convex common support region.

Efficiency Bounds(True Propensity Score)
Common Support

Running Time Common Support Size # Treated Units
Instant 4029 2188

Estimated ATT
GenMatch Propensity Match

Estimated ATT 2.0032 2.0038
AI-SE 0.0028003 0.0096942
P-Value <2.22e-16 <2.22e-16

Table 3.1: results of efficiency bounds using true propensity score

For the homogeneous model, the estimated ATT is 2.0032 using genMatch and 2.0038
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Figure 3.1: Common support region Of Efficiency Bounds on Real Propensity Score

using propensity match. The estimations are very close to the true treatment effect of 2

for homogeneous model. For the heterogeneous model, the estimated ATT is 1.91 using

genMatch and 1.9078 using propensity match. The estimations are very close to the true

treatment effect of 1.906682 for heterogeneous model. And the true ATT of common support

is close to the true ATT of sample data of 1.945225. Because we can hardly know propensity

scores in real world, we will next test this method using the well estimated propensity scores

of

logit [ê(xi)] = β1(xi1 + xi2 + xi3)
2 + β2x

2
i1 + β3x

2
i2 + β4x

2
i3. We will also cut the experiment

units using [10%,90%] boundaries. Figure 3.2 is the graph of x1 versus x2 of common support

region and the original data set.

Figure 3.2 is the graph for both homogeneous model and heterogeneous model. From

Figure 3.2, we see that, for this example, Efficiency Bounds Crump et al. (2009) gives a good

common support when estimation of propensity scores is good. Using the well estimated

propensity scores, for homogeneous model we get the estimated ATTs of 1.998 by genMatch
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Figure 3.2: Common support region Efficiency Bounds on Estimated Propensity Score

Efficiency Bounds(Estimated Propensity Score)
Common Support

Running Time Common Support Size # Treated Units
Instant 3771 2040

Estimated ATT
GenMatch Propensity Match

Estimated ATT 1.998 1.9964
AI-SE 0.0025599 0.0086073
P-Value <2.22e-16 <2.22e-16

Table 3.2: results of efficiency bounds using well estimated propensity score

and 1.9964 by one to one propensity match. They are very close to true treatment effect of 2.

For heterogeneous model we get the estimated ATTs of 1.9367 by genMatch and 1.9356 by

propensity match. They are very close to the true ATT of heterogeneous common support

of 1.939173. And the true ATT of common support is close to the true ATT of sample data

of 1.945225. Efficiency Bounds Crump et al. (2009) works well if we have a good estimation

of propensity scores. The question is do we always have a good estimation of propensity
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scores or what would happen if we don’t have well estimated propensity scores. Now suppose

we know nothing about the true propensity scores and we estimate propensity scores with

logistic linear model:

logit (ê(x)) = β1x1 + β2x2 + β3x3

let us also cut on range [10%, 90%] for these badly estimated propensity scores to get a

common support. Figure 3.3 is the graph of x1 versus x2 comparing common support region

with sample data set for both homogeneous model and heterogeneous model.

Figure 3.3: Common support region Efficiency Bounds on Badly Estimated Propesnisty
Score

From figure 3.3, we see the common support is obviously biased. This common support

region favors the experiment units with covariate x1 close to covariate x2. The distribution

of propensity scores is still very dispersed. For homogeneous model, the result of estimated

ATTs from the common support region are 4.8336 using genMatch and 5.0322 using one

to one propensity match. They are twice larger than the true treatment effect of 2 for

homogeneous model. Table 3.3 shows the time to generate common support and result
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for homogeneous model. For heterogeneous model, the result of estimated ATTs from the

Efficiency Bounds(Badly Estimated Propensity Score)
Common Support

Running Time Common Support Size # Treated Units
Instant 6000 3550

Estimated ATT
GenMatch Propensity Match

Estimated ATT 4.8336 5.0322
AI-SE 5.0287 3.2
P-Value 0.33645 0.11582

Table 3.3: results of efficiency bounds using badly estimated propensity score

common support region are 4.7838 using genMatch and 4.5084 using one to one propensity

match. They are very different from the true heterogeneous model ATT of common support

of 1.966739.

In summary, Efficiency Bounds Crump et al. (2009) is highly restricted and its perfor-

mance depends solely on the how well the propensity scores are estimated.

3.4 Maxbox Method

Discrete Optimization for Interpretable Study Populations and Randomization Inference in

an Observational Study of Severe Sepsis Mortality (Fogarty et al., 2016) gives the Maxbox

method. A maxbox functions is also provided by the author (Fogarty et al., 2016). A maxbox

can be written as XL << Xi << XU . It cuts all the experiment units with Xi << XL

or Xi >> XU while includes as many experiment units as possible. Let Xi be the vector

of covariates for experiment unit i, and Xi = (xi1, xi2, xi3). The maxbox boundaries are

Xl = (Xl1, Xl2, Xl3) for lower bounds and XU = (XU1, XU2, XU3) for upper bounds.

For each experiment unit i in the common support region, it satisfies that Xlj < Xij and

Xij < XUj for j=1,2,3. The maxbox always generates a convex rectangular region. Now

lets check the performance of Maxbox Fogarty et al. (2016). Suppose we should exclude all

units with propensity scores either smaller than 0.1 or larger than 0.9. Then let’s use the

built in maxbox function Fogarty et al. (2016) to get the common support. My computer
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has a processor of 1.6 GHz Intel Core i5 and a memory of 8 GB 1600 MHz DDR3.

First lets use the true propensity scores to find the common support. Figure 3.4 is the

common support of x1 versus x2 for both homogeneous model and heterogeneous model.

Figure 3.4: Common support region Maxbox on True Propensity

Figure 3.4 is the common support for both homogeneous model and heterogeneous model.

From Figure 3.4 we see that the common support region generated by Maxbox (Fogarty et al.,

2016) is very small, because it is a convex region cut out from a non-convex region. From total

10000 experiment units, we have only 803 experiment units including 441 treated units in the

common support. Less than 10% of the experiment units survived the maxbox algorithm. It

is not a very efficient way to use experiment units. Further when the common support region

is too small, the variance of the estimated ATT tends to be large and the danger of having a

large bias will be significant. The algorithm time for Maxbox (Fogarty et al., 2016) is more

than 40 seconds on my computer. It takes too much time using propensity scores compared

with LCC method. Table 3.4 contains the time to generate time for both homogeneous

model and heterogeneous model and the result for homogeneous model. For the homogeneous
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Maxbox(True Propensity Score)
Common Support

Running Time Common Support Size # Treated Units
43.03392 secs 803 441

Estimated ATT
GenMatch Propensity Match

Estimated ATT 2.0005 2.0084
AI-SE 0.0049227 0.018291
P-Value <2.22e-16 <2.22e-16

Table 3.4: results of maxbox using true propensity score

model, although the estimated ATTs are not too bad, the standard errors of estimated ATTs

using genMatch and one to one propensity match are 0.0049227 and 0.018291. Compare them

with those from efficiency bounds (Crump et al., 2009), the standard errors of estimated ATT

using Maxbox Fogarty et al. (2016) are larger. For the heterogeneous model, the true ATT

for the common support is 5.588091 which is very different from the true ATT of data sample

of 1.945225. The estimated ATT using genMatch is 5.5701 and it is 5.5745 using propensity

match. They are close to the true ATT of the common support.

Figure 3.5 is the result using well estimated propensity scores for both homogeneous

model and heterogeneous model, and the results are similar to those using true propensity

scores. The time to generate common support and the results of estimated ATT using

genMatch and one to one propensity match for homogeneous model is in table 3.5

Maxbox(Estimated Propensity Score)
Common Support

Running Time Common Support Size # Treated Units
42.15375 secs 677 392

Estimated ATT
GenMatch Propensity Match

Estimated ATT 1.986 1.9874
AI-SE 0.0059696 0.018989
P-Value <2.22e-16 <2.22e-16

Table 3.5: results of maxbox using well estimated propensity score

For heterogeneous model, the true ATT of the common support is -1.851055 which is

very different from the true ATT of sample data of 1.945225. The estimated ATT using
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Figure 3.5: Common Support Maxbox on Estimated Propensity

GenMatch is -1.8654 using genMatch and -1.8637 using propensity match.

Generally speaking, Maxbox Fogarty et al. (2016) only generates convex common support

region. It can hardly generate a common support region with sufficient size for a non-convex

sample data set. This makes Maxbox Fogarty et al. (2016) a very inefficient way to use

experiment units. For the well estimated propensity scores we have only 677 experiment units

in common support. The consequence is that the variance of the estimated ATT becomes

larger. Second Maxbox Fogarty et al. (2016) takes long algorithm time. In our experiment,

for both true propensity score and well estimated propensity scores, the algorithm time

exceeds 40 seconds. Further, for heterogeneous model, the true ATT of common support is

very different from the true ATT of sample data, which means the common support does

not represent the sample well.

3.5 BART

The idea of BART (Hill and Su, 2013) is very straight forward. Let Y = f(z, x) + ε, where

ε ∼ N(0, σ2) and f(z, x) = g(z, x;T1,M1) + g(z, x;T2,M2) + · · ·+ g(z, x;Tm,Mm). Let each

(Tj,Mj) denote a single subtree model. Then each iteration of the BART Markov Chain
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generates a new draw of f from the posterior distribution. Let f r denote the rth draw of

f. Then compute dri = f r(1,xi) f r(0,xi), for i=1,2,...n. Let sf0i and sf1i be the standard

deviations of the draws of f(0, xi) and f(1, xi) respectively for the ith observation.

Figure 3.6: Common support Bart Homogeneous Model

Then for zi = a, where a=0 or 1, we cut off the units such that s
f1−a

i /sfai > 2.706 for

α = 0.1 significance level. Bart directly matches the data and gives the ATT. Figure 3.6

is the graph of x1 versus x2 comparing common support region and sample data set for

homogeneous model. Figure 3.7 is the graph of x1 versus x2 comparing common support

region and sample data set for heterogeneous model. For homogeneous model, the results of

estimation on ATT are in table 3.6. The BART gives the estimated ATT of 2.795, which is

not very precise. Working on the common support, the estimated ATT using GenMatch is

2.4866 and is 2.3645 using one to one propensity match. For heterogeneous model, the true

ATT of common support is 1.945225. The Bart gives the estimation of ATT of 3.585, which

is not very precise.

For BART (Hill and Su, 2013), instead of using propensity scores, we can use observable

covariates X1,X2, X3. This is very useful, especially when there is no good estimation of

the propensity scores. The algorithm takes about 25 seconds which is good. However,

BART (Hill and Su, 2013) gets only 589 treated units for homogeneous model. This may
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Figure 3.7: Common support Bart Heterogeneous Model

Bart(alpha=0.10)
Common Support

Running Time Common Support Size # Treated Units
25.66926 secs 6477 589

Estimated ATT
GenMatch Propensity Match

Estimated ATT 2.4866 2.3645
AI-SE 0.24938 0.89732
P-Value <2.22e-16 0.008412

Table 3.6: results of bart for α = 0.1 signifcance level

leads to some bias for estimation of ATT and also may increases the variance of the estimated

ATT. For homogeneous model, using genMatch and propensity match, the estimated ATT

are 2.4866 and 2.3645 respectively, which are close to the true treatment effect but not

very precise. The standard errors of ATTs from propensity match is 0.008412, which are

significantly larger than those using efficiency bounds and maxbox. Bart also takes 4.017369

minutes algorithm time which is not very fast. For our sample data, BART (Hill and Su,

2013) might not be a very good solution to get common support.
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3.6 Optimal Match

The idea of Optimal Match (Rosenbaum, 2012) is simple. In Optimal Match, each experi-

ment unit received treatment is paired with an experiment unit received control. The treated

units which can not be paired are removed. The data should be paired such that the average

distance within each pair is minimized. The type of distance could be chosen for researcher’s

interest. It could be general euclidean, mahalanobis or the difference between propensity

scores. The good part of Optimal Match (Rosenbaum, 2012) is that we can use both the

observable variables and the propensity scores to find the common support region.

An r package called rcbalance (Rosenbaum, 2012) is developed for optimal match. It

creates the mahalanobis distance between every control unit and every treated unit. The

return value is a matrix of two columns. The first column is the index of the treated units,

and the second column is the index of control units paired with the corresponding treated

units. A good and unique part for rcbalance is that, the results are already paired. We don’t

need to do genMatch or 1 to 1 propensity match. We can directly calculated the ATT on

those paired units.
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Figure 3.8: Common support Optimal Match

Figure 3.8 is the common support compared with the sample data set for both homo-
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geneous model and heterogeneous model. This graph is diamond shaped. We don’t need

to worry too much about the shape of common support and propensity balance, because

the units are already paired. Now let’s calculate the ATT using the matched pairs. For

homogeneous model, if we take the average of the treatment effects of all pairs, then the

ATT is 4.629711, which is not precise. Now let’s take the median of the treatment effects

of all pairs, then ATT is 2.237223, which is close to true treatment effect of 2. If we cut

the matched pairs with smallest 500 treatment effects and largest 500 treatment effect, then

ATT is 2.174696, which is close but still not close enough. For heterogeneous model, the

true ATT of common support is 1.945225. Similarly, let us first calculate the difference of

responses for each pair for heterogeneous model. Using the differences of all pairs from com-

mon support, the estimated ATT is 4.574936, which is far from the true ATT of common

support. If we cut the lowest 500 differences, and highest 500 differences, the estimated ATT

is 2.542459. If we use the median of the differences, the estimated ATT is 2.53921, which is

better but still far from the true ATT of common support. The run time for optimal match

is 10.6284 hours.

Generally speaking, optimal match can take advantages of observable covariates and can

offer a somehow close estimation. It also gives the paired matches, which is good. However,

optimal match takes huge amount of time and comparable to LCC, the result is still worse.

3.7 Convex Hull

The idea of Convex Hull (King and Zeng, 2006) is to first get a convex region for the treated

unit, and include all the control unit in this convex region in the common support. Then

get a convex region for the control unit and include all the control unit in this convex region

in the common support. (King and Zeng, 2006) offers the whatif functions. This functions

offers two distance types, the gower distance and the euclidean distance. The gower distance

is defined as Gij = 1
k

∑k
i=1

|xik−xjk|
rk

, where rk = max(X.k)−min(X.k) King and Zeng (2006).

Let’s first use gower distance and euclidean distance on covariates to generate the common

support. For our sample data, using gower distance and euclidean distance on covariates will
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Figure 3.9: Common support Convex Hull on Covariates

give same results. Figure 3.9 is the result of X1 vs X2 using covariates comparing common

support and data sample for both homogeneous model and heterogeneous model. Because

the treated units are gathered at the center, only a few of the control units were included in

the convex hull of the treated units. Another thing is that, the algorithm ignores the hole in

the control units, and only used its outer bound to create the convex hull. We have totally

5091 units including 4109 treated units in the common support. For homogeneous model, the

result for estimated ATT using GenMatch is 1.0122 and using one to one propensity match is

1.0307. It is a bad estimation. For heterogeneous model, the true ATT for common support is

1.945135. The estimated ATT is 4.3045 using genMatch and 4.129 using propensity match.

The estimation of ATT for heterogeneous model is bad. The algorithm time is 1.32166

minutes gower distance and 1.18139 minutes for euclidean distance.

One solution is to decrease the dimension. In extreme case, a convex hull for one dimen-

sion is always available. Now let’s use the well estimated propensity scores as one dimension

measure for distance. Figure 3.10, we see the graph of the common support is not convex.

Because, we use the convex hull on estimated propensity scores, and convexity of the propen-

sity score is not the convexity of covariates. The common support has treated and control

units fairly closely distributed. This algorithm takes 42.11525 seconds using euclidean dis-
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Figure 3.10: Common support Convex Hull on Estimated Propensity

tance and 49.25104 seconds for gower distance. For homogeneous model, the estimated ATT

is 2.0162 using genMatch and 1.9971 using propensity match, which are very close to the

true ATT of 2. For heterogeneous model, the estimated ATT is 1.9435 using genMatch and

1.927574 using propensity match. They are close to the true ATT of common support of

1.927574 and true ATT of sample data of 1.945225.

Generally speaking, Convex Hull (King and Zeng, 2006) has its limitation. It highly

requires the shape of your data, or otherwise you must have a good estimation of propensity

scores.

3.8 LCC Methods

Now let’s use LCC methods to get the common support. Compared to the above methods,

LCC has the following advantages. First it offers great flexibility. It can use either observable

covariates or propensity scores to generate the common support. The distance could be

mahalanobis, euclidean and largest caliper. Second LCC works on both convex and non-

convex regions and can generate both convex and non-convex common support regions.

Third the algorithm time of LCC is faster than any of the previous methods. The algorithm
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time is O(n2) and memory space used is O(n). The R package llc provides the algorithm for

LCC methods. It could be founded in my URL.

For our sample data choosing threshold that cuts off 40% units would be a good start.

We will keep this. First let’s run LCC on true propensity scores. Figure 3.11 is the graph of

X1 vs X2 with true propensity scores for both homogeneous model and heterogeneous model.

From Figure 3.11, after LCC the distribution of the the data points are getting closer, and

there is a hole in the common support. The absence of treated units in the center has be

taken care by LCC, so there are no treated units in the center of common support, because

we have no close counter factual control units for treated units at center. For homogeneous

model, the estimated ATT on common support using GenMatch is 2.0074 and using one to

one propensity match is 2.0095. It is a good estimation. For heterogeneous model, the true

ATT of common suppport is 1.897989. The estimated ATT is 1.9061 using genMatch and

1.9026 using propensity match. They are close to the true ATT of sample data of 1.945225.

The running time is 10.44532 seconds, which is short for 10000 data points.

Figure 3.11: Common support LCC on True Propensity

Second let’s run LCC on our estimated propensity scores. Figure 3.12 is the data distri-

bution for X1 vs X2 comparing common support and the sample data. The lack of counter

factual for treated units at the center has been take care by LCC, so the common support has
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no points at the center. For homogeneous model, using this common support, the estimated

ATT is 2.0166 using GenMatch and 1.9857 using one to one propensity match. They are

good estimations and close to the true effect of 2. For heterogeneous model, the true ATT is

1.947691. The estimated ATT is 1.9716 using genMatch and 1.9334 using propensity match.

They are close to the true ATT of sample data of 1.945225. The running time is 9.966149

seconds, which is excellent.

Figure 3.12: Common support LCC on Estimated Propensity

Now let’s suppose we don’t have a good estimation of propensity scores, and let’s use the

observable covariates. First Let’s try general euclidean. Figure 3.13 is the data distribution

for X1 vs X2 comparing common support with sample data for both homogeneous model

and heterogeneous model. The lack of counter factual for treated units at the center has

been taken care by LCC. For homogeneous model, with this common support, the estimated

ATT using GenMatch is 2.1041 and using one to one propensity match is 2.0507, which are

close to the true effect of2. For heterogeneous model, the true ATT of common support is

1.928466. The estimated ATT is 2.0128 using genMatch and 1.9495 using propensity match.

They are close to the true ATT of sample data of 1.945225. The algorithm time is 33.53909

seconds. Using general euclidean on covariates for our sample data, LCC works well.

Now let’s try mahalanobis distance. Figure Figure 3.14 is the data distribution for X1
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Figure 3.13: Common support LCC General Euclidean

vs X2 for both homogeneous model and heterogeneous model. The lack of counter factual

for treated units at the center has been taken care by LCC, and the common support has

no points at the center. For homogeneous model with this common support, the estimated

ATT is 2.1848 using GenMatch and it is 2.1056 using one to one propensity match. They

are a little bit worse than those using general euclidean distance but still good enough. For

heterogeneous model, the true ATT of common support is 1.937921. The estimated ATT

is 2.1232 using genMatch and 2.0137 using propensity match. They are close to the true

ATT of sample data of 1.945225. The algorithm time is 7.012911 minutes, which is longer

than that using general euclidean distance. This is because mahalanobis distance is more

complicated than general euclidean distance. For now LCC is the still the fastest algorithm

using mahalanobis distance and its common support still gives the most accurate estimation

for ATT using mahalanobis distance.

Now let’s use the Largest Caliper distance next. Figure 3.15 is the data distribution

for X1 vs X2 for both homogeneous model and heterogeneous model. The lack of counter

factual for treated units at the center has been taken care by LCC and the common support

has no points at the center. For homogeneous model with common support after LCC using

Largest Caliper, the estimated ATT is 2.0359 using GenMatch and it is 2.0354 using one
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Figure 3.14: Common support LCC Mahalanobis Distance

to one propensity scores match. The estimation is very close to the true effect of 2. For

heterogeneous model, the true ATT of common support is 1.94954. The estimated ATT is

1.9847 using genMatch and 1.9569 using propensity match. They are close to the true ATT

of sample data of 1.945225. The algorithm time is 59.08531 seconds, which is good. So LCC

gives a good common support for our sample data using largest caliper.

Now we have shown that, LCC can generate a good common support using propensity

scores and using observable covariates with different distance measures for both homogeneous

model and heterogeneous model. Another thing to notice to notice is that. In original

data, we have 4112 treated units and 5882 control units. The common support using true

propensity scores has 2541 treated units and 2080 control units. Using estimated propensity

scores, there are 2927 treated units and 2369 control units. Using general euclidean distance

on covariates, there are 3378 treated units and 2844 control units. Using Mahalanobis

distance, there are 3724 treated units and 3261 control units. Using Largest Caliper, there

are 2867 treated units and 2309 control units. With all measures used by LCC to generate

common support, the number of treated units and control units is well balanced.

Let’s compare the LCC with other methods. Using propensity scores, compared with

Maxbox (Fogarty et al., 2016), LCC offers a larger and less biased common support region
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Figure 3.15: Common support LCC Largest Caliper

and takes approximately one fourth algorithm time used by Maxbox (Fogarty et al., 2016).

Also the common support of Maxbox fails to represent the sample data because the true

ATT of common support is very different to the true ATT of sample data. Compared with

Efficiency Bounds (Crump et al., 2009), LCC offers more flexibility. Both Maxbox (Fogarty

et al., 2016) and Efficiency Bounds (Crump et al., 2009) are highly relied on estimation of

propensity scores, while LCC can work on other distance measures and taking advantages of

the observable variables. Compared with Optimal Match (Rosenbaum, 2012), LCC takes a

much shorter algorithm time and more precise results. Using general euclidean and largest

caliper, LCC algorithm times are less than 1 minutes. With Mahalanobis distance the

algorithm time is 7 min. Using estimated Propensity scores, the algorithm time is 9.996

seconds. Using true propensity score, the algorithm time is 10.4453 seconds. Comparing

with BART (Hill and Su, 2013), the common support of LCC has more data points and offers

a more precise estimation. BART only works on observable covariates, and its estimated

ATT is around 2.4 is not very precise for both homogeneous model and heterogeneous model.
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LCC(True Propensity Score)
Common Support

Running Time Common Support Size # Treated Units
10.44532 secs 4626 2541

Estimated ATT
GenMatch Propensity Match

Estimated ATT 2.0074 2.0095
AI-SE 0.0040435 0.012223
P-Value <2.22e-16 <2.22e-16

Table 3.7: results of LCC using true propensity score

LCC(Estimated Propensity Score)
Common Support

Running Time Common Support Size # Treated Units
9.966149 secs 5296 2927

Estimated ATT
GenMatch Propensity Match

Estimated ATT 2.0166 1.9857
AI-SE 0.0074541 0.022081
P-Value <2.22e-16 <2.22e-16

Table 3.8: results of LCC using well estimated estimated propensity score

LCC(General Euclidean)
Common Support

Running Time Common Support Size # Treated Units
33.53909 secs 6222 3378

Estimated ATT
GenMatch Propensity Match

Estimated ATT 2.1041 2.0507
AI-SE 0.034776 0.072227
P-Value <2.22e-16 <2.22e-16

Table 3.9: results of LCC using general euclidean distance
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LCC(Mahalanobis)
Common Support

Running Time Common Support Size # Treated Units
7.012911 mins 6985 3724

Estimated ATT
GenMatch Propensity Match

Estimated ATT 2.1848 2.1056
AI-SE 0.042975 0.14635
P-Value <2.22e-16 <2.22e-16

Table 3.10: results of LCC using mahalanobis distance

LCC(Largest Caliper)
Common Support

Running Time Common Support Size # Treated Units
59.08531 secs 5176 2867

Estimated ATT
GenMatch Propensity Match

Estimated ATT 2.0359 2.0354
AI-SE 0.015386 0.034242
P-Value <2.22e-16 <2.22e-16

Table 3.11: results of LCC using the largest caliper
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3.9 Discussion

In the future research. There are still many thing can be studied. First, how to select the

threshold could be still studied. For now I set the threshold such that approximately 40%

of the experiment units will be excluded from the common support. There could be some

better selection for the threshold. Second there could be more measures on distances. For

our sample, the running time using general euclidean is 33 seconds. It is 7 minutes using

mahalanobis distance. The latter is is approximately 14 times of the previous. Also the

estimated ATT using common support by LCC with mahalanobis distance is less precise.

We can not say that Mahalanobis distance is worse than general euclidean, but certainly it

fits worse for our sample data. A more fitted distance can save a a lot of algorithm time and

gives better results.
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Appendix A

Title for This Appendix

Enter the content for Appendix A in the appendixA.tex file. If you do not have an Appendix

A, see comments in the etdrtemplate.tex file for instructions on how to remove this page.
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Title for This Appendix

Enter the content for Appendix B in the appendixB.tex file. If you do not have an Appendix
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