THR COMPAR TIV| MIGENTEILITY SND FEEDING
 Fit Finoth Lutrss

## by

## RUSSELL EMARD JOHN

B. S., University of Missouri, 1954

A THESTS

```
submitted in partlal fulfillment of the
```

```
        cerulremants for the dorsoe
```

            MATTER OF CIENCE
            Department of Animal Ruabandry
        KAN 3 SS STAT COLLDGR
        OF CPICIITUH: AND APPIJKN SCIENCE
    
$\angle D$

$$
2668
$$

$$
T 4
$$

$$
1955
$$

$$
564
$$

$$
\text { c. } 2 \text { TABLE OF ONTENTS }
$$

Documents
1
INTRODUCTION.
REVIBT OF LTTT $A T U R E$. ..... 2
EXPIRTUENTAL PROCEDURE. ..... 4
Feeting Trisi. ..... 4
Vetabolism Studies. ..... 7
RTCHLTM ANH DI SCUSSTON. ..... 10
Feeding Trial ..... 10
Metabolism Tudies. ..... 13
SUINEARY. ..... 15
 ..... 17
LITERATITRE CTTFD. ..... 18
APPENDIX ..... 19

Conmarcial lamb feeders in Thasas and elaewhore have chom an inereased interest in completely poileted sutiums in rocont goars. Erporimental teste st Xrnass State College and other experimontal stations have shown generally that pelleted mations produce greeter gaine than similar but unpelleted motions. The pounds of feed required to produce a pound of gain heve also usually boen leas when the pelioted rations hava buaz fod. In most of the experimentel morik previouely reported, the experimental Inmbere wroup fod With no duplication or replicntion of lote; consequently the efriciency of feod utilization in the foed lot could not bo compared statistically. In order to allow atatietion analyede of feed utilization in this gtudy, 2 nobe were individually fed the disferent rations. The rations were also fed to sroups of lambe so that the performence of individunl and group fed lambe could be compared.

Reavite of desestion trials and balance studies with lanbs fed completeIy pelleted rations and similar but urpelleted rations were not available in the interature. Such eests, included in these studtes thould provido a cloam er understanding of sowe of the basic problems in the utilization of pelleted and umpelletod feeds.

## BEVIKW OF LTTERATMTS

Studies of pelleted and partially pelleted rationa for sheep have recaived an incraseing amount of attention at experimental stations thring the past five years. The most extensive work concerning pelleting was started at New Mexico A and $M$ in 1950. Neale (1953) reported that in the Rio Grande Valley only the garet and fifth outtinge of elfalfa wore of high quallty.

The second, third, and fourth cuttings of alfalfa were coarse, stemny, and possibly rain tamaged and difficult to market. In an attempt to moke these cuttings more palatable and more efficiently utilized, the hay was processed with sorghum grain and molasees into cubes that could be self-fed. The unpelleted and unground rations included only good quality alfalfa hay and sorghum grain. The importance of a high percentage of roughage in the pellet is emphesised in this report and in mome trials seventy percent of the pellet was made up of coarse alfalfa hay. The pellet containing the larger amount of roughage was more efficient than one containing fifty percent roughage and less digestive disturbances were noticed. In these Nem Mexico tests, lambs self-fed pellets gained faster and used less feed per pound of gain than lambs hand-fed unpelleted rations. When the cost of pelleting was considered the economic advantage of the pelleted rations are not so apparent. The light lambs fed the highest concentrated rations did the poorest and the heavy lambs receiving the lower concentrated pellets responded the best. This study was also compliceted by the presence of the molasses in the pelleted rations. Thomas (1953-54) found that lambs fed rations in pelleted form gained faster and more officiently than lamba fed whole grain and long hay, but when the extra cost of palleting was added to the total feed cost, the economic advantage was lost. Lambs fed pellets graded higher and sold for a higher price per hundred pounds, but the increased return did not compensate for the additional cost.

Jordan et al. (1953-54) used a pelleted rathon containing aixty percent concentrate and forty percent roughage. The lambs developed a craving for roughage and began to chew on the feed bunks end fence posts. Because of this condition, one-third pound of long alfalfa hay was provided with the pellets, but no additional gain was obtained from this practice. As in previous reports,
an Incrense in rite of gein and feed efficiency was reported in this trial With the pelleted feede over the same ration hand-fed.

Test it Washincton State College (Schneider ot al., 1953) showed no incrense in roto of gain or efficiency of gain from lanbs hand or self-fed pelleted rations when compared to lambs getting unpelleted rations.

Noble (1952-53) reported that testa at Orlahoma A and it Colloge showed a very slight increase in rate and officiency of gain from lambs given pelleted rations compnred to the gains made by lombs given similar but unpelleted rations. When the feed cost was determined, the pelleted rations ners higher due to the extra cost of pelleting the ration.

Moll (1954) reported that pelleted alfalfa was first used at Kanses State College in 1948. Since then experfments have been designed to use the entire ration in pellet form. In 1953 studies were conducted with feader lambs comparing pelloted and unpelloted alfalfs hay and com. The lambe given the pelleted fation gained more rapidly and used their feed more officiently than the lambs receiving the unpelleted rations. Then pelleting cost of twelve dollars per ton was included in the foed b112, the feed cost of the pelletfed lnmbs becamn higher than thit of the hand-fed grouf. The feed with the Migher roughage ratio (seventy percent hay) proved to be the most efficient and nconomicel. This is in agreement ikith the Nen Moxico studias.

In similar stucles to the Garden City branch station (Bell and Erhort, 1953-54), the ertire ration concieting of fodder, milo zrein, and protein mas pelleted and comnered to a aimiler but unpelleted retion. The group receiving the pelleted retion geined Poster and on lene feed per hunered pounds of gein, but the cost of the procensing and pelleting mede the cont of geins much higher for lumbs on the pelleted ration. The main processing expense Incorporated in making the pellet is the dehydrating of the roughago used.

Necent studies at the Illinois Aericulture Fxperiment Station (1955) wern contuctat to dotermine the effect of self-fed pelleted and self-fed meal rations of veried nunlity on the rote and economy of gain. These trials indientef that relleted alfolfa mpal and corn were of all ght value, hardly enuugh to meipont the enst of molletine. The pelletinf of rations containing timothy mesl grestly incmener economy an well as rate of gain. The lots eating pelInted ratiors in whi ch timethy whin the roughape out gained the onitrol lots raceiving mlfalfa as a ronpinge, indienting that lambs will make satisfactory gains on lom gunltey rouphnees if properly orephred and suoplemented.

## FVPFRTMFMTAT. PROC:BIURE

## Peedine Trial

Saventy siry black faced feeder 3 ambs were ueed in this study. They were raised in Colorado and were purchasen of the Kanses Csty Trock Yards. The lanbs arrived at the Konasa Stote College station in enrly Octoher and were pinced in itry lot on artival. Prairte hay was provided for the first fom days of the preliminnry foeding period and then alfalfa hay wes used for the romafinder of the mxpersment. After the first week small anounts of cracked corn sere provided with the hay and was steadily increased unill they were getting about one pound per day.

The ton eigteen lambs by weight were separated and used for metabolism atudies. This groun mas fet the namm rotions used in the feeding trials. The remaining groun wns reighed, numbered, and lotted randomly into four lots of ten lambs ench and four lots of five lambs each. They were then placed in pens hnvift one end corvered by an open shed facine south. This group of pens hed six Iarge lots, therefore, lotis five and six. were lotted together when
turned out of the individual self-feedine stalls. lots seven and eight were aleo hendled in this manner. This resulted in $1 x$ peng of ten lembe esch.

It the beginning of the experiment, the four lots to be fed the pelleted rations were started on the pellets with the low concentration. After these lambs rere sccustomed to the pelleted feed, the two lots to recelve the higher concentrated pellots were then chenged to the now retio. Thile starting the lambs on this pelleted mition, a limited amount of long alfalfe hay woe provided for the first few days. The feeding period began Novenber 2 and continued for eighty-six days.

The rations fed to the lots were ss followst
Group I
Lot 1. Pelleted retion - (sixty-five percent dehydreted alfalfa hay and thirty-flive percent corn)

Lot 3. Unpelleted ration - (sixty-five percent chopped alfalfa hay and thirty-five percent cracked corn)

Lot 5. Same 88 lot I - Individunlly self-fed.
Lot 7. Seme as lot 3 - individusliy self-fed.

## Group II

Lot 2. Pelleted ration - (eifty-five percent dehydrated alfalfa hey and forty-five percent corn)

Lot 4. Unpelleted ration - (ifify-five percent chopped alfalfa hay and forty-five percent cracked corn)

Lot 6. Same as lot 2-1ndividusliy relf-pod.
Lot 8. Same as $\operatorname{lot} 4$ - individually self-fed.
The total digestible nutrient velues of the rations nere usied in csleuJating the amount of feed for axch lot luming the experjment. Fach handofed lot received the anme amount of totnl dignstible nutirients until the lotter pert of the peeding period (Jenuary 3) when lot number two nent off feed and hed $t=$ have the amount of feed lowered. At this time lot number one was enting all the pellets they would clean $u^{r}$ so their foed volume was not
changed, hut lot numbers three und four did take more feed when the quantity was increanef. Lot numer two nevar ald etb buck on finlifeed, therefore, the inftial fesign for feef quantity mas not in offect du:ing the ditter part of the experiment.

The alealf: hay used in this test ras harvested from the seme area for the palletal and nonpell tel feeds. Por the pelleted rationa the hay was timken from the pleld as it was cut and then dehylrated. The hay fos the unpelleted ritions was cured in the field, baled, and chopped for ita use in this triat. The com for eich type rebion was takon from the same bulk at the Henhattan mevator.

The individual oelf-fed lanbs were placed in aeparate foeding pens for two hours night and norning. Salll self-feeders were located at one end of these pens for aach lamb, When the lambs were through coting they were tumed out in the regular eize pens. The lambs fed as a group were hand-fed twice daily. Water and salt were evailable at all timss curing the tost.

Indsvidual weighte were taken at the beginning of the exporiment, every two weeks during the test, and et: the close of the test. The lambs were graded individurlly by three colloge staff meabers and the grades were given numerical values which are better adspted to calculations. The value given each grade is as follows:

$$
\begin{array}{rr}
\text { Top choice } 4 & \text { Top good 7 } \\
\text { Uiddie choice } 5 & \text { uiddle good } 8 \\
\text { Low cholce } 6 & \text { Low good } 9
\end{array}
$$

Average daily gain, feed inteke, feed consunied per handred pounds of gain, and financisi resuits were rucorded. A semple nes taken from the com, both pelleted feeds, and alfalfa hay for chemical analysis.

## Metaboliam Studies

The sixteen heavy weight feeder lambs used in the metabollan trials were divided into tho groups of eight lambs each. Both groupe were then placed on an approximate full-feed of sixty-five percent chooped alfalfa hay and thirty-five percent cracked corn. On November 12 group A was brought into the metrbolism room and olsced in crates designed for this type study. Aftor getting accustomed to the crates the lambs rere sterted on experiment Novemher 16 and the first collection was ande the folloulng aft rnoon. Collections were mide at Pour o'clock eech aftemion for seven consecutive days.

After the eirst collection period wes corapleted, group A was taken back to the sheep bom and proup $B$ wes brought to the motabollsm room and laced In the same cretes. Group B was handled in the biame manner as the cirst group. This resulted in sixteen individual tests for this ration. after group i was taken out of the eretes they were pleced on thoir seond ration to be testod. This rotation was the same throughout the oight week collection period.

Digentibility Trial. A twenty-four hour feces sample was collected each afternoon. This sample was weighed and a five percent aliquot was placed in a porceleinized pan thich in turn was placed in the drying oven at sixty-five degrees centierade. Another nllquot was adder exch aftermoon until the seven day collection period wee completed. After the final collection, the oven was turned un to ninty-five degrees cantigrada until the feces were completely dry. The dry feces were weighed, pleced in seeled glave jers, and taken to the chamistry laborntory for analysis.
 and an epproximete five percent aliquot was placed in sealed glase jars. Toluene wns added as a preservetive. The jars ware kept in a cool piace until

## EXPLAMASION OF PLATE I

Fig. 1. Plcture of the individual feeding pens and melf-feeding boxes ured in the feeding triale.

Fig. 2. Pictare of a metabolism crate deaigned for the collection of feces and umine which was used for the metabollsim studies.

PLATE I


Fig. 1.


Fig. 2.
the seven composite samples were collected. Then the urine was taken to the chemistry 2eboratory for a nitrogen annlysie.

## RRSULTS AND DISCUSSION

## Feeding Trial

With one exception, the lambs given pelleted rations of similar concentration and stmilar feeding management made faster and more efficient gains than lambs given the unpelleted ratione. This exception was in lot number two which went off feed several times, reaulting in gains that were statistically lower and less efficient then the gains of groupled lambs on a similar but unpelleted ration.

Pelleted rations mode up of sixty-five percent alfalfa hay and thirtyfive percent corn gave significently better results when either fed individually or in groups, than did pelleted rations continining fifty-five percent alfalfa hay and forty-five percent corn. However, unpelleted rations containing fifty-five percent alfalfa hay and forty-five percent com produced faster and more efficient geins than the unpelleted rations contoining the higher percentige of roughage. These differences, however, were not stetistically significant.

Despite the greeter efficiency of gain obtained by feeding the pelleted ration, the cost of gain was conaiderably higher when the pellets were fed because of the high cost of pelleting. Financisl results, feed intake, feed consumed per hundred pounds of gain, and daily gain are shown in Table 1.

There was only one third of an average grade difference between the highest and lowest erading lots as shown in Table 1.
Table 1. Peeding trials with lambs on polleted and unnelleted retions of varying concentrations.

| Lot number | 1 | $2 \quad 2$ | 3 | $: 4$ | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Retion | pelleted <br> 65\% hay <br> 35\% eorn | pelleted $55 \%$ hay $45 \% \mathrm{com}$ | unpelleted 65\% hay 35\% corn | unpelleted 55\% hey 45\% corn | $\begin{aligned} & \text { same as } \\ & \text { lot } 1 \\ & \text { self-fed } \end{aligned}$ | same as lot 2 self-fed | $\begin{aligned} & \text { same os } \\ & \text { lot } 3 \\ & \text { self-fed } \end{aligned}$ | same as <br> lot 4 self-fed |
| No. Lembs per lot | 9 | 9 | 9 | 8 | 5 | 5 | 4 | 5 |
| Days on feed | 86 | 86 | 86 | 86 | 86 | 86 | 86 | 86 |
| Initial wt. per lamb | 81.6 | 81.8 | 83.9 | 83.4 | 83.0 | 83.0 | 82.5 | 81.6 |
| Finnl nt. per limb | 111.5 | 101.4 | 108.2 | 109.6 | 111.8 | 107.0 | 96.0 | 101.6 |
| Total gain per lamb | 30.3 | 19.6 | 24.3 | 26.2 | 28.8 | 24.0 | 13.5 | 20.0 |
| Daily gain per lamb | . 352 | . 228 | . 283 | . 306 | . 335 | . 279 | . 159 | . 233 |
| Feed per lamb daily pellet cracked corn chopped hay | 2.92 | 2.51 | 1.05 1.97 | 1.32 1.61 | 2.76 | 2.51 | $\begin{array}{r} .88 \\ 1.63 \end{array}$ | 1.24 1.51 |
| Feed per ent. pollet cracked corn chopped hay | 829 | 1100 | $374$ $696$ | $\begin{aligned} & 433 \\ & 530 \end{aligned}$ | 824 | 901 | $\begin{array}{r} 560 \\ 1040 \end{array}$ | $\begin{aligned} & 532 \\ & 650 \end{aligned}$ |
| Feed cost per curt. | 819.14 | \$26.41 | \$17.98 | \$17.71 | \$19.02 | \$21.63 | \$26.89 | \$21.75 |
| Feed cost per lamb | \$5.80 | §5.18 | \$4.30 | \$4.64 | \$5.48 | \$5.19 | \$3.63 | \$4.35 |
| Live market grade * | 5.11 | 6.20 | 5.75 | 6.05 | 5.06 | 5.20 | 5.02 | 5.60 |
| No. lambs cied ** |  |  |  | 1 |  |  | 1 |  |
| No. lambe removed \# | 1 | 1 | 1 | 1 |  |  |  |  |

[^0]1
Table 2. Chemicel analysis of feeds used in this experimont.


Tro lambere west dusing the experimant, one from enterotoxemis and the other from an underterudned cavee. These lambs were replaced by extre Lambs on hand, but were not included in the final calculntions. Four lambs wors removed from the test becmuse of aicloness or abnormal porformance, tifich may or may not have been a result of the experimental treatnent.

Matabolian Studies

Dipestion Study. The leabs fed the pelletad rations had elguificantiy higher proteln and ether extract digeetion coerficients than lamber fed the unpelleted rations, but had much lower ilber direstion coofficients. This decreased Piber digestion might poselbly be due to (1) a phygetenl or chendeal change brought about by the dehydration process in the pelleted rations, (2) the finely ground food particles passed through the rumen before the beo terla had timo to propesly digent the fiber, (3) the absense of rumation and sumen movensnt cavaing an wpet in the ldind and number of inderoflore, or (h) making other nutriente more avaliable for the becterta to utilise for their food source.

There were no noticeble differencea in the total direatible nutrient value of the pelleted and unpelleted rattone, but in the fifty=five fortym Plve ration the total digestible nutrient valuon were signiflcantly higher. This value was equallzed by the defforencen in protein and fiber digestion In the pelleted ration counterbalanced by the opport te effect in the unpelm leted rations.

Witromen Bnlance. The average percent nitrogen retained per lamb was much greater in the two pelleted ratione than in the unpelleted rettons. This is in agreement wh the increase in rete of gein by the pellated lots In the foeding trial. A fifteen percent increase in nitrogen retention was

Table 3. Digestion and nitrogen bslence studies with lambs using varying ratios of roughage to concentrate with pelleted and non-pelleted rations.

| Lot number | A | B | C | D |
| :---: | :---: | :---: | :---: | :---: |
| No. lambs | 16 | 16 | 15* | 16 |
| Ration | $65 \%$ alfalfa hay 35\% corn | $\begin{aligned} & \text { 55\% alpalfa } \\ & 45 \% \text { com } \end{aligned}$ | 65\% alfalfa 35\% corn | $\begin{aligned} & 55 \% \text { alfalfa } \\ & 45 \% \text { corn } \end{aligned}$ |
| Preparstion | chopred hay eracked corn | chopped hay cracked corn | pelleted | pelleted |
| Dig. coelf. ** |  |  |  |  |
| protein | 62.03 | 65.84 | 66.37 | 71.76 |
| ether extract | 50.53 | 63.65 | 62.07 | 77.06 |
| Piber | 52.18 | 50.52 | 25.77 | 27.47 |
| N.F.E. | 83.35 | 83.32 | 83.06 | 86.25 |
| \% P.D.N. \#n | 62.12 | 65.75 | 61.52 | 67.54 |
| S Nitrogen *** retnined/2amb | 0.19 | 2.20 | 25.56 | 26.26 |

[^1]obtained fron the high roughage pellot and a twenty-live percent incroase from the lower rovghege pellet over the ame mentions fed ee chopped alfalfa hay and cracked corn. These differences were very highly signifioant. A megative nitrogen balance from some of the lambe in the unpolleted groups gave indioations of a depletion of protein reserve in the body.

The digestion coefficients, percent nitrogen retained, nend the percent tothl etfgestable nutriente are bhom in Table 3 .

## SUMMAR

Sixty black faced fcoder lambs wers used in this feoding study. They were randomiy aeparnted and placed into eight $10 t e$, fortr 10 te hevint ten Inmbe each and four lots with five lumbe each. Two sations mere fed, with each ration comparing pelleted and unpelloted proparations. The Ifret ration, mixty-five percent alfalfa hny and thirtymive percent com, wee used in four lote with the following differencess (1) the mention for lot ono wan pelloted and handerod twice daily, (2) lot thres hed chopped alfalfa hay and cracked com hand-fed twice daily, (3) Iot IVe was the sume se Iot one, Indivicunliy self-fed, and ( 4 ) lot soven was the same as lot three, indtridually self-fed. The second ration, fiftymive percent alfalfa hay and fortymitive percent com, was handled in the sam: marner as the firat mation only on 104 mabere two, four, six, and eight rospectively. Sixteen lambs from the same group wore used for metabolism stuctes and the feces and urine were collectod for digestion and nitrogen balance studies.

There whe a eignificant atiference in weight gain and foed officiency in fevor of the pelleted ration with the oixtymife percent delydrated alfalfa hay and thirtymitye percent com provine the most setiefactory in the pelleted feeds. However, in the umpelleted rations, the firty-flve percent
hay and forty-five percent corn was aore officient than the higher roughage ration bit was not st-bistically aignific rit.

The reculte in the ilgestion stulios :ere very uniform and the efeatest difinrence betwean the polletad nad unpelletei feeds was the loner percent of ilibe digested by lumbs led the pelleted rations. The fibsa digestion coefficients in the pelleted rations mere only half as high as tiey wore in the unpelleted rations. This was offset by the higher protein and ether extract digestion coefficients of the pelleted feeds; therefore, there was no noticeable difference in the total digestible nutrients of the pelleted and unpelleted rations.

The Innbs fod the pelleted rations retained a much higher averago per cent of introgen then the larms on simlier but unpolloted feeds. This could be expected as tho foeding trine showed an increase in rate of gein from the lambs ied the pelleted rations. Also thers was a higher percent of protein digeeted in the pelleted feads which would eive moro nitregen availablo for reteltion.

The writer is grateful to his mejor adviser, Professor T. D. Bell for his assistance and guidence throughout the course of study end for his helpm ful criticisms on this manuscript.

Special thanks and appreciation are due Dr. Draytford Rlechardaon for his valuable suggestions throughout the test. Thanks are also expressed to Tom Dean, college shepherd, for his work in connection with the experiment.

Bell, T. D.
Pelleted rations for fattening lamba: Kansas State College Formula Feed Conference, 1954.

Bell, T. D., Draytford Richardson, J. S. Hughes and D. B. Parrish. The relationahip of physical balance and onergy value in sheep rations: Kansat State College Peeders Day Report, 1953.

Bell, T. D. and A. B. Erhart.
Feedlot fattening experimenta with lambs Kansas State College Feeders Day Report, Cir. 308, 1953-54.

Cate, H. A., J. M. Lewis, R. J. Webb, M. E. Mansfield and U. S. Garrigus: The effect of pelleting rationa of varied quality on feed utilsation by lambs. Sournal of Antmal Science, 1955, 14:137.

Jordan, P. S., H. G. Groom and E. F. Ferrin.
Lamb feeding trials: Minnesota Fxperiment Station, 1953-54, Morris $5-44$.

Jorian, R. M. and Harry E, Weakly.
Lamb feeding triala: South Dakota Bxperiment Station, 1953.
Neale, P. E.
Alfalfa cubes for fattening lambs and wetheras New Mexico Experiment Station, bulletin 375, 1953.

Neale, P. E.
Results of lamb feeding experiments: New Mexico Feeders Day Report, June, 1953.

Noble, R. L., L. S. Pope, Dwight Stephens, and R. W. MacVicar. Fattening test with western feeler lambs: Oklahoma A \& Meedery Day Report, 1952-53.

Schneider, B. H., L. C. Lace, and E. E. Goodinin.
The effects of pes supplements, pelleting, self-feeding, and peavine silage in fattening lambs: State College of Washington, 1953.

Thomas, O. O., J. L. Van Horn, and Tloruf dasheim.
Pelleted rations for fattening lambs: Montana State Progress Report, mimeo circular 80, 1953-54.

APPMEDIX


Table 1. Digeation etudy with lambs.


Toble 1. (cont.)



Teble 1. (cont.)

|  | $\text { Lot } \mathrm{t}$ | Retion |  | Totel gram fod | $\begin{gathered} 8 \\ 8 \\ \text { in } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Grama } \\ \text { arude } \\ \text { protein: } \end{gathered}$ |  | r: | Grama : ether: ex. | $\times 2.25!$ | 8 erude riber: | Orand itude fiber | $\begin{array}{lll} 1 \\ i & \mathbb{X}, \mathbb{P}, \mathbb{E}, ~ \\ i \end{array}$ |  |  | $\text { T.D. } \mathrm{H} \text {. }$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | D | Pallet Feces Ant. D1g. | $d 1$ | $\begin{aligned} & 6902 \\ & 2092.53 \\ & \text { gested } \\ & \text { officiont } \end{aligned}$ | $\begin{aligned} & 15,19 \\ & 14,00 \end{aligned}$ | $\begin{array}{r} 1048.41 \\ 292.95 \\ 755.166 \\ 72.06 \end{array}$ | $\begin{aligned} & 4.07 \\ & 3.39 \end{aligned}$ |  | $\begin{array}{r} 280.91 \\ 70.94 \\ 209.97 \\ 74.75 \end{array}$ | 472.43 | $\begin{aligned} & 12.15 \\ & 31.44 \end{aligned}$ | $\begin{array}{r} 838.59 \\ 657.89 \\ 100.70 \\ 21.55 \end{array}$ | $\begin{aligned} & 53.64 \\ & 27.38 \end{aligned}$ | $\begin{array}{r} 3702.23 \\ 572.93 \\ 3129.30 \\ 84.52 \end{array}$ | $4537$ | 65.75 |
| 2 | D | Pallet Peces Ant. Dig. |  | $\begin{aligned} & 6902 \\ & 1824.40 \\ & \text { gested } \\ & \text { ifficient } \end{aligned}$ | $\begin{aligned} & 15.19 \\ & 17.31 \end{aligned}$ | $\begin{array}{r} 1048.41 \\ 315.80 \\ 732.61 \\ 69.88 \end{array}$ | $\begin{aligned} & 4.07 \\ & 3.70 \end{aligned}$ |  | $\begin{array}{r} 280.91 \\ 67.50 \\ 213.41 \\ 75.97 \end{array}$ | 480.17 | $\begin{aligned} & 12.15 \\ & 35.33 \end{aligned}$ | $\begin{array}{r} 838.59 \\ 644.56 \\ 194.03 \\ 23.14 \end{array}$ | $\begin{aligned} & 53.64 \\ & 29.81 \end{aligned}$ | $\begin{array}{r} 3702.23 \\ 543.85 \\ 3158.38 \\ 35.31 \end{array}$ | $4565$ | $66.24$ |
| 3 | D | Pellet <br> Peces Ant. D1g. |  | $\begin{aligned} & 6902 \\ & 1046.62 \\ & \text { gested } \\ & \text { officient } \end{aligned}$ | $\begin{aligned} & 15.19 \\ & 16.81 \end{aligned}$ | $\begin{array}{r} 1048.41 \\ 310.412 \\ 737.99 \\ 70.39 \end{array}$ | $\begin{aligned} & 4.07 \\ & 3.70 \end{aligned}$ |  | $\begin{array}{r} 280.91 \\ 68.32 \\ 212.59 \\ 75.68 \end{array}$ | 478.33 | $\begin{aligned} & 12.15 \\ & 33.99 \end{aligned}$ | $\begin{array}{r} 838.59 \\ 627.67 \\ 210.92 \\ 25.15 \end{array}$ | $\begin{aligned} & 53.64 \\ & 29.61 \end{aligned}$ | $\begin{array}{r} 3702.23 \\ 546.78 \\ 3155.45 \\ 85.23 \end{array}$ | $4582 .$ | $66.40$ |
| 4 | D | $\begin{aligned} & \text { Pollet } \\ & \text { Poces } \\ & \text { Ant. } \\ & \text { Dig. } \end{aligned}$ | di | $\begin{aligned} & 6902 \\ & 1787.01 \\ & \text { gested } \\ & \text { offlolent } \end{aligned}$ | $\begin{aligned} & 15.19 \\ & 17.44 \end{aligned}$ | $\begin{array}{r} 1048.41 \\ 311.65 \\ 736.76 \\ 70.27 \end{array}$ | $\begin{aligned} & 4.07 \\ & 3.91 \end{aligned}$ |  | $\begin{array}{r} 280.91 \\ 69.87 \\ 211.04 \\ 75.13 \end{array}$ | 474.84 | $\begin{aligned} & 12.15 \\ & 34.80 \end{aligned}$ | $\begin{array}{r} 838.59 \\ 621.88 \\ 216.71 \\ 25.84 \end{array}$ | $\begin{aligned} & 53.64 \\ & 29.37 \end{aligned}$ | $\begin{array}{r} 3702.23 \\ 524.84 \\ 3177.39 \\ 85.82 \end{array}$ | $4605 .$ | $66.73$ |
| 5 | D | Pellet Peces Amt. D1g. |  | $\begin{aligned} & 6902 \\ & 1764.45 \\ & \text { gested } \\ & \text { rricient } \end{aligned}$ | $\begin{aligned} & 15.19 \\ & 15.75 \end{aligned}$ | $\begin{array}{r} 1048.41 \\ 277.90 \\ 770.51 \\ 73.49 \end{array}$ | $\begin{aligned} & 4.07 \\ & 3.67 \end{aligned}$ |  | $\begin{array}{r} 280.91 \\ 64.76 \\ 216.15 \\ 76.95 \end{array}$ | 486.34 | $\begin{aligned} & 12.15 \\ & 37.64 \end{aligned}$ | $\begin{aligned} & 838.59 \\ & 664.14 \\ & 174.45 \\ & 20.80 \end{aligned}$ | $\begin{aligned} & 53.64 \\ & 28.86 \end{aligned}$ | $\begin{array}{r} 3702.23 \\ 509.57 \\ 3192.66 \\ 86.24 \end{array}$ | $4623+$ | $67.00$ |
| 6 | D | Pellet <br> Peces Ant. D1g. | dsg | $\begin{aligned} & 4416 \\ & 1097.59 \end{aligned}$ <br> sted rficient | $\begin{aligned} & 15.19 \\ & 15.81 \end{aligned}$ | $\begin{array}{r} 670.79 \\ 173.53 \\ 497.26 \\ 74.13 \end{array}$ | $\begin{array}{r} 4.07 \\ 3.90 \end{array}$ |  | $\begin{array}{r} 179.73 \\ 42.81 \\ 136.92 \\ 76.19 \end{array}$ | 308.07 | $\begin{aligned} & 12.15 \\ & 37.26 \end{aligned}$ | $\begin{array}{r} 536.54 \\ 409.18 \\ 127.36 \\ 23.74 \end{array}$ | $\begin{aligned} & 53.64 \\ & 28.79 \end{aligned}$ | $\begin{array}{r} 2368.74 \\ 316.00 \\ 2052.74 \\ 36.66 \end{array}$ | $2985 .$ | $67.60$ |
| 7 | D | Pellet Pecee Amt. Dig. |  | $\begin{aligned} & 6902 \\ & 1675.95 \\ & \text { gested } \\ & \text { arrioient } \end{aligned}$ | $\begin{aligned} & 15.19 \\ & 16.50 \end{aligned}$ | $\begin{array}{r} 1048.41 \\ 276.53 \\ 771.88 \\ 73.62 \end{array}$ | $\begin{aligned} & 4.07 \\ & 4.02 \end{aligned}$ |  | $\begin{array}{r} 280.91 \\ 67.37 \\ 213.54 \\ 76.02 \end{array}$ | 480.47 | $\begin{aligned} & 12.15 \\ & 35.70 \end{aligned}$ | $\begin{aligned} & 838.59 \\ & 598.31 \\ & 240.28 \\ & 28.65 \end{aligned}$ | $\begin{aligned} & 53.64 \\ & 28.71 \end{aligned}$ | $\begin{array}{r} 3702.23 \\ 481.17 \\ 3221.06 \\ 87.00 \end{array}$ | $473.6$ | $68.29$ |
| 8 | D | Pellet <br> Peces Amt. D1g. |  | $\begin{aligned} & 6902 \\ & 1746,39 \\ & \text { gated } \\ & \text { ifficient } \end{aligned}$ | $\begin{aligned} & 15.19 \\ & 16.75 \end{aligned}$ | $\begin{array}{r} 1048.41 \\ 292.82 \\ 755.89 \\ 72.10 \end{array}$ | $\begin{aligned} & 4.07 \\ & 3.08 \end{aligned}$ |  | $\begin{array}{r} 280.91 \\ 53.79 \\ 227.12 \\ 80.85 \end{array}$ | 511.02 | $\begin{aligned} & 12.15 \\ & 36.52 \end{aligned}$ | $\begin{array}{r} 838.59 \\ 637.78 \\ 200.81 \\ 23.95 \end{array}$ | $\begin{aligned} & 53.64 \\ & 29.29 \end{aligned}$ | $\begin{array}{r} 3702.23 \\ 511.52 \\ 3190.71 \\ 86.18 \end{array}$ | $4658.4$ | $7.49$ |
| 9 | D | Pellet <br> Fece Ant. Dig. |  | $\begin{aligned} & 7630 \\ & 2005.40 \end{aligned}$ <br> gested fficiont | $\begin{aligned} & 15.19 \\ & 19.13 \end{aligned}$ | $\begin{array}{r} 1159.00 \\ 363.58 \\ 795.42 \\ 65.63 \end{array}$ | $\begin{aligned} & 4.07 \\ & 3.55 \end{aligned}$ |  | $\begin{array}{r} 310.54 \\ 77.19 \\ 239.35 \\ 77.06 \end{array}$ | 538.54 | $\begin{aligned} & 12.15 \\ & 33.75 \end{aligned}$ | $\begin{array}{r} 927.05 \\ 676.82 \\ 250.23 \\ 26.99 \end{array}$ | $\begin{aligned} & 53.64 \\ & 29.21 \end{aligned}$ | $\begin{gathered} 4092.73 \\ 585.78 \\ 3506.95 \\ 85.69 \end{gathered}$ | $5091.14$ | $66.73$ |
| 10 | D | Pellet <br> Pecee Ant. D1g. |  | $\begin{aligned} & 7670 \\ & 1815.47 \end{aligned}$ <br> ested fficiont | $\begin{aligned} & 15.19 \\ & 16.75 \end{aligned}$ | $\begin{array}{r} 1159.00 \\ 304.59 \\ 854 . .11 \\ 73.72 \end{array}$ | $\begin{aligned} & 4.07 \\ & 3.81 \end{aligned}$ |  | $\begin{array}{r} 110.54 \\ 69.28 \\ 211.26 \\ 77.69 \end{array}$ | 542.84 | $\begin{aligned} & 12.15 \\ & 34.83 \end{aligned}$ | $\begin{array}{r} 927.05 \\ 633.37 \\ 293.68 \\ 31.68 \end{array}$ | $\begin{aligned} & 53.64 \\ & 30.22 \end{aligned}$ | $\begin{array}{r} 4092.73 \\ 551.36 \\ 3541.375 \\ 86.53 \end{array}$ | $5232.30$ | $8.58$ |
| 11 | D | Pollet <br> Peces Amt. DIE. |  | $\begin{aligned} & 4271 \\ & 760,90 \end{aligned}$ <br> ested fricient | $\begin{aligned} & 15.19 \\ & 16.56 \end{aligned}$ | $\begin{array}{r} 648.76 \\ 126.01 \\ 522.75 \\ 80.58 \end{array}$ | $\begin{aligned} & 4.07 \\ & 3.56 \end{aligned}$ |  | $\begin{array}{r} 73.83 \\ 27.09 \\ 46.74 \\ 84.42 \end{array}$ | 330.17 | $\begin{aligned} & 12.15 \\ & 36.14 \end{aligned}$ | $\begin{aligned} & 518.93 \\ & 274.99 \\ & 243.94 \\ & 47.01 \end{aligned}$ | $\begin{aligned} & 53.64 \\ & 29.35 \end{aligned}$ | $\begin{gathered} 2290.96 \\ 223.32 \\ 2067.64 \\ 90.25 \end{gathered}$ | $3164.50$ | $4.09$ |
| 12 | D | Pellet <br> Feces Ant, did D18. |  | 7630 <br> 2002. 72 <br> ested <br> fricient | $\begin{aligned} & 15.19 \\ & 16.88 \end{aligned}$ | $\begin{array}{r} 1159.00 \\ 338.06 \\ 820.94 \\ 70.83 \end{array}$ | $\begin{array}{r} 4.07 \\ 3.64 \end{array}$ |  | $\begin{aligned} & 110.54 \\ & 72.90 \\ & 37.64 \\ & 76.52 \end{aligned}$ | 534.69 | $\begin{aligned} & 12.15 \\ & 35.05 \end{aligned}$ | $\begin{array}{r} 927.05 \\ 701.95 \\ 225.10 \\ 24.28 \end{array}$ | $\begin{aligned} & 53.64 \\ & 30.23 \end{aligned}$ | $\begin{gathered} 4092.73 \\ 605.42 \\ 3487.31 \\ 85.21 \end{gathered}$ | $5068.04$ | $6.42$ |
| 13 | D | Pellet Fecen Amt. d D1g. |  | $\begin{aligned} & 7630 \\ & \text { 1P04, } 26 \\ & \text { ested } \\ & \text { iffelent } \end{aligned}$ | $\begin{aligned} & 15.19 \\ & 15.31 \end{aligned}$ | $\begin{array}{r} 1159.00 \\ 330.36 \\ 826.64 \\ 71.50 \end{array}$ | $\begin{aligned} & 4.07 \\ & 3.15 \end{aligned}$ |  | $\begin{aligned} & 10.54 \\ & 56.83 \\ & 3.71 \\ & 81.70 \end{aligned}$ | 570.85 | $\begin{aligned} & 12.15 \\ & 34+31 \end{aligned}$ | $\begin{array}{r} 927.05 \\ 619.04 \\ 308.01 \\ 33.22 \end{array}$ | $\begin{aligned} & 53.64 \\ & 29.50 \end{aligned}$ | $\begin{array}{r} 4092.73 \\ 532.26 \\ 3560.47 \\ 86.99 \end{array}$ | $267.97$ | $9.04$ |
| 14 | D | Pellet Peces Ant. dic |  | $\begin{aligned} & 7560 \\ & 1853.98 \\ & \text { ested } \end{aligned}$ rrieient | $\begin{aligned} & 15.19 \\ & 15.63 \end{aligned}$ | $\begin{array}{r} 1148.36 \\ 330.36 \\ 819.00 \\ 71.23 \end{array}$ | $\begin{aligned} & 4.07 \\ & 3.50 \end{aligned}$ |  | $\begin{aligned} & 64.60 \\ & 63.15 \\ & 01.45 \\ & 76.13 \end{aligned}$ | 453.26 | $\begin{aligned} & 12.15 \\ & 34.85 \end{aligned}$ | $\begin{array}{r} 918.54 \\ 628.78 \\ 289.76 \\ 31.55 \end{array}$ | $\begin{aligned} & 53.64 \\ & 29.21 \end{aligned}$ | $\begin{gathered} 4055.18 \\ 527.02 \\ 3528.1650 \\ 87.00 \end{gathered}$ | $089.18$ | $7.32$ |
| 15 | D | Pollet <br> Peces Ant, d Dig. c |  | $\begin{aligned} & 7630 \\ & 1946.69 \\ & \text { osted } \\ & \text { fricient } \end{aligned}$ | $\begin{aligned} & 15.19 \\ & 17.69 \end{aligned}$ | $\begin{array}{r} 1159.00 \\ 344.37 \\ 814.63 \\ 70.29 \end{array}$ | $\begin{aligned} & 4.07 \\ & 3.59 \end{aligned}$ |  | $\begin{aligned} & 10.54 \\ & 69.87 \\ & 40.67 \\ & 77.50 \end{aligned}$ | 542.51 | $\begin{aligned} & 12.15 \\ & 34.47 \end{aligned}$ | $\begin{array}{r} 927.05 \\ 67.02 \\ 256.03 \\ 27.62 \end{array}$ | $\begin{aligned} & 53.64 \\ & 29.72 \end{aligned}$ | $\begin{aligned} & 4092.73 \\ & 578.56 \\ & 3514.1751 \\ & 85.86 \end{aligned}$ | $5126.34$ | $7.19$ |
| 16 | D | $\begin{aligned} & \text { Pellet } \\ & \text { Peces } \\ & \text { Amt. ds } \\ & \text { Dig. ec } \end{aligned}$ |  | $\begin{aligned} & 7630 \\ & 1859.13 \\ & \text { sted } \\ & \text { rifientent } \end{aligned}$ | $\begin{aligned} & 15.19 \\ & 18.56 \end{aligned}$ | $\begin{array}{r} 1159.00 \\ 345.05 \\ 813.95 \\ 70.23 \end{array}$ | $\begin{array}{r} 4.07 \\ 3.27 \end{array}$ |  | $\begin{aligned} & 10.54 \\ & 60.79 \\ & 49.75 \\ & 80.12 \end{aligned}$ | 561.94 | $\begin{aligned} & 12.15 \\ & 35.30 \end{aligned}$ | $\begin{array}{r} 927.05 \\ 656.27 \\ 270.78 \\ 29.21 \end{array}$ | $\begin{array}{ll} 53.64 & 4 \\ 28.48 \end{array}$ | $\begin{gathered} 4092.73 \\ 529.48 \\ 3563.2552 \\ 87.06 \end{gathered}$ | $209.92$ | $8.28$ |
| Totel 1 <br> Totel <br> DIg. 0 | red dipeot ooffic | ened 11 | 10. | $341$ |  | $\begin{array}{r} 760.78 \\ .027 .10 \\ 71.76 \\ \hline \end{array}$ |  | 447 3451 77 | $\begin{aligned} & 7.77 \\ & 1.31 \\ & 77.60 \end{aligned}$ | 765.45 |  | $\begin{array}{r} 406.44 \\ 682.79 \\ 27.47 \end{array}$ |  | $\begin{aligned} & , 186.07 \\ & , 047.01 \\ & 86.25 \end{aligned}$ | $.522 .4$ | 7.54 |

Toble 2. Nitrogen balance atudy with lambs.

| Lamb: | Lot: | Grams : consumed: | $\begin{aligned} & \text { Crnms: } \\ & \text { Cry : } \\ & \text { feces: } \end{aligned}$ | Crams: N in : feces: | $\begin{array}{r} \% \mathrm{~N}: \\ \text { in : } \\ \text { feces: } \end{array}$ | Total: nl. : urine: | Grams H per mi. urin | : Grams: : N in: : urine: | $\begin{array}{r} \% \mathbb{N}: \\ \text { in : } \\ \text { urine: } \end{array}$ | Total N: in feces: and urine: | \%N in feces and urine: | $\begin{aligned} & \text { \% N } \\ & \text { retained } \\ & \text { by lamb } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | A | 178.12 | 5256 | 72.25 | 40.56 | 4705 | .01977 | 93.02 | 52.22 | 165.27 | 92.79 | 7.21 |
| 2 | $A$ | 178.12 | 6191 | 69.70 | 39.13 | 12840 | .00700 | 89.88 | 50.46 | 159.58 | 89.59 | 10.41 |
| 3 | A | 178.12 | 5417 | 69.81 | 39.19 | 30085 | . 00965 | 97.32 | 54.64 | 167.13 | 93.83 | 6.17 |
| 4 | A | 178.12 | 4.209 | 61.36 | 34.45 | 5900 | . 01900 | 112.10 | 62.94 | 173.46 | 97.38 | 2.62 |
| 5 | 1 | 178.12 | 4521 | 70.40 | 39.52 | 3690 | .02756 | 101.70 | 57.10 | 172.10 | 96.62 | 3.38 |
| 6 | A | 127.23 | 3312 | 40.18 | 31.58 | 5300 | .01413 | 74.89 | 58.86 | 115.07 | 90.44 | 9.56 |
| 7 | A | 178.12 | 6058 | 70.41 | 39.53 | 21875 | .00511 | 111.78 | 62.76 | 182.19 | 102.28 | -2.28 |
| 8 | A | 178.12 | 5527 | 70.24 | 39.43 | 23490 | .00699 | 94.30 | 52.94 | 164.54 | 92.38 | 7.62 |
| 9 | A | 200.76 | 2238 | 37.27 | 36.99 | 4895 | .01677 | 82.09 | 81.47 | 119.36 | 118.46 | $-18.46$ |
| 10 | A | 127.61 | 3386 | 43.02 | 33.71 | 20410 | .00941 | 97.96 | 76.77 | 14,0.98 | 110.48 | -10.48 |
| 12 | A | 104.28 | 21429 | 39.49 | 37.87 | 3390 | . 22577 | 87.36 | 83.77 | 126.85 | 121.64 | -21.64 |
| 12 | A | 125.14 | 3613 | 47.04 | 37.59 | 5805 | .01434 | 83.24 | 66.52 | 130.28 | 104.0.21 | $-4.11$ |
| 13 | A | 127.61 | 4211 | 49.42 | 38.73 | 4700 | .01805 | 84.84 | 66.48 | 134.26 | 105.21 | -5.21 |
| 14 | A | 127.61 | 6054 | 53.13 | 42.63 | 3640 | .02161 | 78.66 | 61.64 | 131.79 | 103.28 | $-3.28$ |
| 15 | 1 | 127.61 | 3380 | 47.77 | 37.43 | 3835 | .02095 | 80.34 | 62.96 | 128.11 | 100.39 | -. 39 |
| 16 | A | 127.61 | 3975 | 47.97 | 37.59 | 4265 | . 01849 | 78.86 | 61.80 | 126.83 | 99.39 | .61 |
| Total <br> Averag |  | 2342.30 |  | 889.46 | 37.97 |  |  | 1448.34 | 61.83 | 2337.80 | 99.81 | . 19 |

Table 2. (cont.).

|  | Lot: | Grams : V consumed: | Grams: ùry : feces: | Grams: <br> N in : <br> foces: | $\begin{array}{r} \text { of } \mathrm{Nz} \\ \text { in } \\ \text { feces: } \end{array}$ | $\begin{gathered} \text { Total: } \\ \text { ml. : } \\ \text { urine: } \end{gathered}$ | Grams : N per ml. uri: e: | : Grama: : $N$ In: : urine: | $\begin{array}{r} \text { \%N : } \\ \text { in : } \\ \text { urine: } \end{array}$ | Total N : <br> in Peces: end urine: | XN infeces <br> and urine: |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | B | 127.56 | 4390 | 50.29 | 39.42 | 2197 | .026314 | 59.19 | 46.40 | 109.43 | 85.83 | $1{ }_{4} .17$ |
| 2 | B | 127.56 | 3865 | 46.76 | 36.66 | 7480 | . 00927 | 69.34 | 54.36 | 126.10 | 91.02 | 8.98 |
| 3 | B | 127.56 | 3101 | 47.94 | 37.58 | 7905 | . 01003 | 79.29 | 62.16 | 127.23 | 99.74 | . 26 |
| 4 | B | $12 \% .56$ | 1,288 | 54.64 | 42.83 | 7210 | . 01047 | 75.49 | $5 \% .18$ | 130.13 | 102.01 | -2.01 |
| 5 | B | 127.56 | 2913 | 40.04 | 31.39 | 4265 | . 22073 | 88.41 | 69.31 | 128.45 | 100.70 | -. 70 |
| 6 | $B$ | 89.13 | 2642 | 22.98 | 28.68 | 5960 | . 00879 | 52.39 | 65.38 | 75.37 | 94.06 | 5.94 |
| 7 | B | 12\%.56 | 3532 | 45.85 | 35.94 | 23782 | -.20431 | 102.50 | 80.35 | 148.35 | 116.30 | -16.30 |
| 8 | 8 | 127.56 | 3301 | 1,6.00 | 36. 36 | 22935 | . 00669 | 86.54 | 67.84 | 132.54 | 103.90 | -3.90 |
| 9 | B | 122.26 | 2694 | 37.30 | 30.51 | 4430 | . 01740 | 77.08 | 63.05 | 114.38 | 93.55 | 6.45 |
| 10 | B | 122.26 | 2729 | 35.77 | 29.26 | 7935 | . 00917 | 72.76 | 59.51 | 108.53 | 88.77 | 11.23 |
| 11 | B | 90.88 | 2065 | 29.98 | 32.99 | 3000 | . 02385 | 71.55 | 78.73 | 101.53 | 111.72 | -12.72 |
| 12 | B | 122.26 | 2882 | 38.03 | 31.11 | 6880 | . 01136 | 78.16 | 63.93 | 116.19 | 95. $\mathrm{CH}_{4}$ | 4.96 |
| 13 | B | 122.26 | 352.4 | 39.55 | 32.35 | 3700 | . 02125 | 78.63 | 64.31 | 118.18 | 96.66 | 3.34 |
| 14 | B | 122.26 | 3848 | 38.66 | 31.62 | 5005 | . 21407 | 70.42 | 57.60 | 209.08 | 89.22 | 10.78 |
| 15 | B | 122.26 | 2934 | 38.42 | 31.42 | 4635 | . 01721 | 79.77 | 65.25 | 118.19 | 96.67 | 3.33 |
| 16 | $B$ | 122.26 | 3065 | 43.63 | 35.69 | 5970 | . 01342 | 80.12 | 65.53 | 123.75 | 101.22 | -1.22 |
| Total <br> Avera |  | 1919.75 |  | 655.84 | 34.16 |  |  | 1221.64 | 63.64 | 1877.48 | 97.80 | 2.20 |

Table 2. (cont.).

|  | Lot: | $\qquad$ | Grams: dry feces | Grams: <br> N in: <br> fecos: | $\begin{gathered} \text { fN: } \\ \text { in : } \\ \text { fecest } \end{gathered}$ | $\begin{aligned} & \text { Totsl: } \\ & \text { na. } \\ & \text { urine: } \end{aligned}$ | Grams: N per : ml. urine: | $\begin{aligned} & \text { : Crams: } \\ & \text { : } \mathbb{E} \text { in: } \\ & \text { e: urine: } \end{aligned}$ | Q N : in : urine: | Total N : in feces: and urine: | \$ 1 in : feces end urine: | $\% \pi$ retained by lamb |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | C | 178.75 | 4577 | 65.55 | 36.73 | 3035 | . 02625 | 79.67 | $4 L_{\text {l }} 57$ | 145.32 | 81.30 | 18.70 |
| 2 | c | 178.75 | 3949 | 60.97 | 34.11 | 1124,0 | . 00721 | 55.37 | 47.75 | 246.34 | 81.87 | 18.13 |
| 3 | c | 178.75 | 4363 | 63.99 | 35.80 | 14815 | . 00560 | 82.96 | 46.41 | 246.95 | 82.21 | 17.79 |
| 4 | c | 178.75 | 4536 | 67.37 | 37.69 | 9090 | . 20886 | 80.54 | 45.06 | 247.91 | 82.75 | 17.25 |
| 5 | c | 178.75 | 3662 | 56.50 | 32.65 | 4375 | . 02238 | 97.91 | 54.77 | 154.51 | 86.44 | 13.56 |
| * |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 | c | 178.75 | 4310 | 61.51 | 34.41 | 22465 | - 20474 | 106.48 | 59.57 | 167.99 | 93.98 | 6.02 |
| 6 | C | 178.75 | 3912 | 56.49 | 31.60 | 23405 | . 00706 | 94.64 | 52.95 | 152.13 | 84.55 | 15.45 |
| 9 | c | 178.75 | 3938 | 69.68 | 33.95 | 9890 | . 00975 | 96.43 | 53.95 | 157.11 | 87.89 | 12.11 |
| 10 | c | 176.75 | 4042 | 54.23 | 30.34 | 12700 | . 00807 | 202.47 | 57.34 | 256.72 | 87.68 | 12.32 |
| 11 | c | 120.62 | 2616 | 39.86 | 33.05 | 3295 | . 01853 | 61.06 | 50.62 | 150.92 | 83.67 | 16.33 |
| 12 | c | 178.75 | 4767 | 56.49 | 31.60 | 10190 | . 00929 | 94.67 | 52.96 | 151.16 | 84.57 | 15.43 |
| 13 | c | 178.75 | 6662 | 55.40 | 30.99 | 54.40 | . 01553 | 81.48 | 47.26 | 239.88 | 78.25 | 21.75 |
| 14 | c | 178.75 | 6329 | 63.26 | 33.71 | 6545 | . 01285 | 87.96 | 49.21 | 148.22 | 82.92 | 17.08 |
| 15 | C | 178.75 | 4285 | 62.39 | 34.90 | 6120 | . 01390 | 85.07 | 47.59 | 147.46 | 82.50 | 17.50 |
| 16 | C | 178.75 | 4049 | 60.29 | 33.73 | 8330 | . 01117 | 93.05 | 52.06 | 153.34 | 85.78 | 14.22 |
| Totol Averape |  | 2623.12 |  | 882.18 |  |  |  | 2332.78 |  | 2214.96 |  |  |
|  |  |  |  |  | 33.63 |  |  |  | 50.81 |  | B4.44 | 15.56 |

[^2]Toble 2. (eonel.).

|  | $\begin{array}{r} \text { L冫t: } \\ \text { : } \\ \hline \end{array}$ | Grams: $\mathrm{N}:$ consured: | Grans: dry : feces: | Grame: I in : fuces: |  | $\begin{aligned} & \text { Yot:2: } \\ & \text { cT. } \\ & \text { urine: } \end{aligned}$ | Grame : N per mi. urjine: | : Crane: <br> - 1n: <br> e: urine: | K K : in: urine: | Totel N : in fenes: and urine: | KN in: foces : and urine: | $\begin{gathered} \text { on } \\ \text { ratisined } \\ \text { by } 1 \text { amb } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | D | 167.75 | 3521 | 46.37 | 27.74 | 2735 | . 22957 | 79.78 | 47.65 | 126.86 | 75.62 | 21.38 |
| 2 | D | 167.75 | 3248 | $5 . .53$ | 3.2? | 3. 54,0 | . 00723 | 75.15 | 4.82 | 125.68 | 74.72 | 25.08 |
| 3 | 0 | 167.75 | 3352 | 47.57 | 29.51 | 2.515 | . 20519 | 77.47 | 46.28 | 127.14 | 75.79 | 24.21 |
| 4 | D | 167.75 | 3493 | 42.36 | 29.72 | 11:365 | . 20595 | 70.60 | 42.09 | 120.46 | 71.01 | 28.19 |
| 5 | 0 | 167.75 | 3148 | 44.26 | 26.511 | 5390 | . ${ }^{1} 1533$ | 82.63 | 49.26 | 127.09 | 75.76 | 24.24 |
| 6 | 0 | 107.33 | 1332 | 27.76 | 25.35 | 6925 | . 20867 | 60.04 | 55.2/4 | 87.33 | 81.50 | 18.20 |
| 7 | D | 167.75 | 3452 | 44.24 | 26.37 | 27410 | - 20383 | 78.27 | 4.6.60 | 122.41 | 72.97 | 27.03 |
| 8 | D | 167.75 | 3352 | 46.30 | 27.30 | 17580 | . 00595 | 80.35 | 48.17 | 127.6c | 76.07 | 23.93 |
| 9 | D | 185.44 | 4352 | 59.17 | 32.37 | 6395 | . 02093 | 69.90 | 37.67 | 128.07 | 69.06 | 30.94 |
| 10 | D | 185.14 | 34.7 | 43.73 | 26.28 | 12135 | . 00903 | 89.42 | $4 \varepsilon .22$ | 138.14 | 74.49 | 25.51 |
| 11 | D | 103.35 | 154,2 | 20.16 | 39.42 | 2500 | . 22456 | 61.40 | 59.15 | 81.56 | 78.57 | 21.43 |
| 12 | D | 285.44 | 3965 | 54.99 | 29.17 | 10240 | .05799 | 81.82 | 4.4.12 | 135.91 | 73.25 | 26.71 |
| 13 | D | 185.44 | 6897 | 52.96 | 28.51 | 3780 | . 01993 | 75.34 | 40.63 | 128.20 | 69.13 | 30.87 |
| 14 | D | 183.74 | 4,4,46 | 52.86 | 28.77 | 6001 | . 01297 | 77.82 | 42.35 | 130.68 | 71.12 | 28.85 |
| 15 | D | 185.44 | 4355 | 55.10 | 29.7 | 6180 | . 01372 | 84.79 | 45.72 | 139.89 | 75.4.4 | $24_{4} .56$ |
| 16 | D | 185.44 | 4018 | 55.21 | 29.77 | 56.85 | . 01318 | 74.93 | 40.41 | 130.14 | 73.18 | 29.82 |
| Total <br> Averap |  | 2681.76 |  | 757.37 | 28.24 |  |  | 1220.26 | 45.50 | 1977.63 | 73.74 | 26.26 |

THE COUPARETIVE DIG OTIBILITY AND FEEDING FPPICIENCY OP PIILETFD AND NONPELLETED RATICNS Par Prindi. LA"3S

## RUSSELL EDFARD JOHN

## B. S., Unáversity of Missours, 1.954

AN AB TRACT OF A THESIS
submited in partial fulfiliment of the
zequiremunt: for the dernse

MAMTER OF SCIENCE

Department of Animal Husbandry

KAN is State COITMGE
OF AGRICULTURE AND APPLIFD SCIFNCE

Prectical and economical methods of prepering fattening lamb rations heve received a great deal of attention froll experinent stations throughout the midmest. Varioue ratios of roughage to concentrate have been used and the feeds processed in several ways. Pelleting the entire ration has become increasing2y popular with commercial lamb feeders in the last few years and many belleve that there is enough additional weight gain and labor saved to more than balance the expenses of pelleting the feeds.

This and other stations have shown en increase in rate of gain and feed efficiency in pelleting the entire ration and it has been shown that more roughage can be utilized when it is fed in the form of pellets. Lower quallty roughage prepared in cube or pellet form will give comperable results to a high qunlity rouphage fed in its natural form. This could have high economcal value especially in areas where it is difficult to propare high cuallty roughages.

This project was designed to deteruine the difference between pelleted and unpelleted rstions of different concentrations and to find the digestibility and nitrogen balance of rations corresponding to those fed in the feeding trials.

Seventy-six black faced feeder lambs mere used in this study. Sixteen of the top lambs by weight were used for metabolism studies and the raminder were separated into eight lots, four lots having ten lamber each and four lots with five lembs ench. Two rations were used, with each ration comparing pelleted and unpelleted preparations. The first ration, sixtymfive percent alfalfa hay and thirty-five percent com, was used in four lots with the following variations: (1) in lot one the ration was pelleted and hand-fed twice
daily, (2) lot three was given chopped alfalfa hay and cracked com twice dally, (3) lot five was the same as lot one, Individually self-fed and (4) lot seven was the same as lot three, individually self-fed. The second ration, fiftymife percent alfalfa hay and forty-five percent corn, was varied In the aame manner and fed in lota two, four, six, and eight respectively.

The only variation between the 1ngredients of the pelleted and unpelleted feeds was the hay, which was dehydrated before it was pelleted, and in the umpelleted form it was sun-oured, beled, and chopped before using in this test.

The first ration $(65-35)$ in the pelleted form was the most efficient and gove better rates of gain than in sindlar but unpelleted rations. With the second ration (55-45) the unpelleted proparation was the most satisfactory in rate of gain and feed efficiency. These differences were statistieally significant. The final cost per hundred pounds of gain was increased In the pelleted rations due to the extra cost of preparation.

In the digestion atudy there was a aignificant increase in the protein, nitrogen free extract, and ether extract digestion coefficients (pelleted ration) but the fiber digestion coefficients vere aignificantly lower.

The mation with fifty-five percent hay and forty-five percent corn was more completely utilized than the higher roughoge ration. The Atgestion coefficients of all nutrients tested ( $55-45$ ration) were significantly higher with the exception of fiber.

There was no statistical difference in the total digestible nutrients value between pelleted and unpelleted feeds, but the higher concentrate ration was aignipicantly higher when comparing the two concentrations.

In the nitrogen belance studies, lambs receiving the pelleted rations had a highly significant increase in the amount of nitrogen retained above
that retained by lambs receiving the unpelleted rations, and in the pelleted rations the fifty-five forty-five ratio was significantly higher. In the unpelleted rations there was no difference between the two concentrations.



[^0]:    * Grades were baned on numerical values. (lower values indicate better lambs)
    ** One lanb was lost from enterotoxemia and the other from an undetermined cause.
    \# Removed because of abnormal results which mey or may not hove boen a result of this test.

[^1]:    * Feilure to eat caused the removal of one lamb in this lot.
    ** Individual resuits are shown in appendix table 1.
    满莦 Individual results are ahown in appendix table 2 .

[^2]:    * Failure to ent caused the removal of this lamb.

