
USING RUN TESTS TO ELIMINATE

INITIAL UNSTEADY STATE DURING SIMULATION

by

H.GOPALKRISHNA MENON

B.Sc fMet. Engg.), Sarabalpur University, 1984

A REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

INDUSTRIAL ENGINEERING

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1988

Approved by:

Major Professor

;W A1120A S32016

ACKNOWLEDGEMENT
,?4

IE
The author wishes to express his sincere appreciation and

gratitude to Dr. L.E.Grosh for his valuable guidance and

encouragement throughout this project and his study in this

University. The author also wishes to thank his Major

Professor once again for being of assistance during

extremely trying circumstances faced during the course of

the program.

The author is also indebted to Dr. Doris Grosh for serving

on the graduate committee and has been of assistance as the

head of the department. The author also wishes to thank

Dr. Mark McNulty for serving on the graduate committee.

(i)

Table of Contents

Acknowledgement

Section I

1.1.0 Purpose of Study

1 . 2 . Introduction

1.2.1 The Problem of Initial Transients L

1.2.2 Method I: Exclusion of Initial Data 4

1.2.3 Method II: Setting Initial Conditions *

1.2.4 Method III: Using Long Runs b

1.3.0 Methods of Attack

1.3.1 Description of Methods

1.3.2 Method I: Wald-Wolf owitz Tests 9

1.3.3 Method III Longest Run Test 11

1.3.4 Why Randomness measures steady state 12

1.4.0 What's expected during Transient 1J

1.4.1 Testing the Effectiveness of the Method 17

Section II

2.1.0 Queueing Problem Statement 19

2.1.1 Analysis of Single Server Queue Problem 20

2.2.0 Setup of the problem in GPSS/H 22

2.2.1 Should Instantaneous/Average Queue Lengths be used. 24

2.2.2 Effect of Changing RMULT 2y

2.2.3 Effect of Changing Frequency of Observations 32

2.2.4 Effect of changing Utilization 38

2.2.5 Effect o£ RMULT 42

2.3.1 Effect of Two Queues 48

2.3.2 Applying Theory of Runs 5

2.3.3 Is there a Significant Difference between Blocks... 54

57
2.3.4 Inferences

2.4.0 Implementation into GPSS

60
2.4.1 Conclusion

Section III

62
Appendix 1

65
Appendix 2

68
Appendix 3

71
Appendix 4

74
Appendix 5

7 7
Appendix 6

80
Appendix 7

83
Appendix 8

84
Appendix 9

85
Appendix 10

86
Appendix 11.

References

.

Section IV

88

Section I

Introduction

1.1.0 Purpose of 3tudv

To develop and provide a signal for the end of the Initial

transient state of a simulation so that data collection may

begin.

1.2.0 Introduction

There are three phases in the Investigation by simulation

that take place after the problem has been identified and

the model formulated:

1. Model implementation - description in a language

acceptable to the appropriate computer.

2. Strategic planning - design of an experiment that will

yield the desired information.

3. Tactical planning - determination of how each of the

test runs specified in the experimental design is to

be executed.

These experiments deal with phase three, which is probably

less important than phase 1 or 2, but is nevertheless

significant. Using extremely large sample sizes can

overwelm virtually all the difficult tactical questions, but

this is not a practical or good solution. We must not

forget that computer time is not a free good (.Conway, 1954].

l.Z.l The Problem of Initial Transients

This report specifically deals with a problem which is

E

en

>
en

en

CD

u
O

l

en

a

a

o

.

a
B

n

a

-i—i—

r

a to tT T +

T
9

Ul

r

1

in
1

V"
h

L

A
<

F
HI

(- C <a

U)
c
r
r

t
E

t f»

f «
E
L
C
L

f
gs

1
E
L

(-
1

hz
UJ

(il

*£
r

F
zt- C

< V)
L

t£ m e

V- r

e
3
O
z

»aa30.-d-U|->(joM

present in every simulation. This is the question of

equilibrium: since it generally takes some time for the

simulation model to "warm up", performance measurement

should not begin until after this period. At this stage it

may be necessary to define what we mean by initial transient

and steady state. We define steady state here as:

"Steady state is said to be reached when successive

observations in a simulation experiment are

statistically indistinguishable" [Emshoff/5l3son.

p. 189. 1970].

We take this to imply that the data model is

x = mean + e
i i

where the mean is a constant,

e an error term with a mean of zero,

i

We only require that the central limit theorem apply and

allow us to use the normal inferences for hypothesis

testing. When the experiments are statistically

distinguishable transient phase is said to exist. The

effect of the warm up period is shown in Figure 1-1 which

should not be considered in the data collection period.

Each measurement in a simulation is a chance variable and

the investigator is obligated to execute his experiment In

such a manner that he can estimate the precision of his

results. The existing literature on this method show us

three methods to tackle the problem of initial transient.

1,2, a as&aafl ti auaaaifln g£ rmtim cats

The first method involves the exclusion of some initial data

from consideration. This involves bias to the simulator on

the basis of the preconceived notions of the operator.

Moreover, it does not form an objective criterion to

determine when steady state is attained. The usual method

is to take a few pilot runs with periodic collection of

data. As a rough guide truncate a series until the first of

the series is neither a maximum nor a minimum of the

remaining set. The stabilization period is decided by

examining the stabilization period for a few runs and

thereafter delete the same period from each run afterwards.

The stabilization period must be judged in terms of the

number of elements in the system and the number of events

that take place. Discarding data for a automobile parts

inventory made for a three month period may be adequate.

This may not be true for a missile maintenance system where

the mean time between failures is six months.

1.2.3 Method II; Setting Initial Conditions

The second method involves setting the initial starting

conditions. The most common way of starting a simulation is

what might be described as "empty and idle" condition. For

most problems this may be inadequate except in case ot a

single channel queue and the steady state is reached in a

relatively short period of time. The proponents of this

method argue that by changing conditions and by starting

the simulator under certain initial conditions may result in

an accelerated equilibrium. But this method also involves

the use of a number of pilot runs to determine under what

conditions the simulator acheives equilibrium earlier. The

probability of the bias to the simulator remain as also the

need for long runs. There are also some other problems

raised by the use of this method. One of the problem that

arises is the choices the investigator has when

investigating the problem:

1. Test each system starting "empty and idle" .

I. Test each system using a common set of starting

conditions that is essential lly a compromise between

different sets of reasonable starting conditions.

3. Test each system under its own "reasonable" starting

conditions

.

The second strategy is clearly more efficient than the

first. since any improvement over the empty and idle model

has to be a better choice; the choice between the second and

the third is less obvious. The main advantage obtained by

the third method is that minimum time is lost in attaining

equilibrium. But the problem raised by this method is that

there are no existing ways to perform this method except by

making pilot runs for each of the conditions that we desire

to test. Then, to determine when the equilibrium conditons

would prevail. we have to loo* at the plots of the data

collected versus time to decide when the transient ends.

1.2.4 Method 111= Using Long Runs

The third and last method proposed by most authors is the

use of long runs which may make the bias introduced by the

initial starting conditions insignificant. This obviously

involves the use of long runs and running the simulator for

long periods of time. This is a very inefficient method of

performing the simulation experiment. Considerable computer

time is lost in the use of long runs. Hence this method

should be avoided as far as possible.

1.3.0 Methods of Attack

Numerous simulation problems Involve initial transient. The

new methods of attack proposed for determining when the

initial transient state ends and steady state is reached are

described below:

1.3.1 riescrlptlon of the Hethod3

Before describing the methods it is necessary to define a

run.

"ft run is described as a succession of similar

events preceded and succeeded by different events"

[Conover. 1980].

For our purposes the run would consist of two classes of

events which may be above or below the mean. The events

above the mean could form runs and the events below the mean

could form runs. The number of events in a run is referred

to as the length of the run. The total number of the runs

and the length of the longest run. and various other

statistics can be used to test for randomness of arrangement

against the alternative sequence of dependency. This is

termed the distribution theory of runs.

e

staoojd-uj-MJ°M

8

1.3.2 Method 11 TUB w» Id-Wolfowltz Total Number of Runs

Teats

In an ordered sequence of two kinds o£ observations, the

total number of runs may be used as a measure of the

randomness of the sequence; too many runs indicate that each

observation tends to be followed by an observation of the

other type- while too few runs indicate a tendency for like

observations to follow like observations. In either case

the sequence would indicate that the process generating the

sequence was not random. By a random process- or a random

sequence, we mean a sequence of independent and identically

distributed random variables; that is. a sequence of runs

above and below the mean is random if the probability of an

above is the same as the probability of a below and the

resulting values are independent of each other.

As a test for randomness:

"DATA: The data must consist of a sequence of observations.

taken in order of occurance. The observations are of two

types, or can be reduced to two data types. Let n denote

the number of aboves and m denote the number of belows in

the observed sequence.

ASSUMPTION : The only assumption for the test of randomness

Ls that the observations be recordable as either type

one (above) or type two (below).

HYPOTHESIS: The hypothesis for the test of randomness are:

H : The process which generates the sequence is a random

process

.

H : The random variables in the sequence are either

dependent on other random variables in the sequence. or are

distributed differently from one another.

TEST STATISTIC: The test statistic L equals the length of

the longest run of like elements in the sequence of

observations

.

DECISION RULE: In the test for randomness use a two-tailed

critical region. and reject H at the level alpha if L >

w or if L < w " tConover. p. 349, 1980].

1-cf/Z 0^2

The distribution function for 20 or more data points is

w = 2mn + 1 + x
J

?mnf2mn - m - nj

P Pa.
(m + n) N (m + n) (m + n - 1)

where X is the p quantile of a standard normal variable,

obtained
1"

from Table 1 tConover. p. 416. 1980]. For smaller

number of data points we use the table provided in Conover's

Non-Parametric Statistics.

10

1.3.3 Method II: Lenath of the longest run as a teat for

randomness

In a sequence of two kinds of observations, the length of

the longest run may be used as a measure of the randomness

of the sequence; a long run indicates that a particular type

of observation tend to be followed by another ot the same

kind. The sequence would indicate that the process

generating the sequence was not random. By a random

process, or a random sequence, we mean a sequence of

independent and identically distributed random variables;

that is, a sequence of above and belows is random it the

probability Of an above is tha same as the probability of a

below and the resulting values are independent of each

other

.

As a test for randomness:

"DATA: The data must consist of a sequence of observations,

taken in order of occurance. The observations are of two

types, or can be reduced to two data types. Let n denote

the number of aboves and m denote the number of belows in

the observed sequence.

ASSUMPTION: The only assumption for the test of randomness

is that the observations be recordable as either type one

(above) or type two (below).

HYPOTHESIS: The hypothesis for the test of randomness are:

11

H : The process which generates the sequence is a random

process

.

H : The random variables in the sequence are either

dependent on other random variables in the sequence, or are

distributed differently from one another.

TEST STATISTIC: The test statistic L equals the length o£

the longest run of like elements in the sequence of

observations

.

DECISION RULE: In the test for randomness use a one- tailed

test critical region, and reject H at the level alpha if L

< w " [Conover, p. 363, 1980].

l-e(/2

1.3.4 Why '3 a measure of randomness a measure of steady

state?

When the process is in transition state, one often observes

a trend in the data as the queue length changes from the

starting value toward the steady state mean. Once the

process has reached steady state, observations will be

sufficiently far apart to be nearly independent. This

suggests that a test for steady state be conducted by

testing for the independence of successive observations. In

order to apply this system with the important parameters

(utilization ratio and time between observations set at

values so that the process exhibits a trend (the transition

state) followed by independent values (the steady state,.

12

1.4.0 What -3 exBgcted during transient state and steady

state?

Consider an assembly line of 15 workers in the assembly line

processing one part at a time and the time to acheive steady

state for the work-in-process is considered. The buffer

capacity is kept at a constant value of 4. Also assume that

the each of the workers perform with the same ability. The

table below gives the task time in seconds followed by the

number of people that completed the task:

35-0 60 - 240 85 -110 110 - 50 135 - 5

40-5 6b - 210 90 - 90 115 - 40 140 - 2

45 - 70 70 - 180 95 - 80 120 - 30 145 - 1

50 - 186 75 - 160 100 - 70 125 - 20 150 - 1

55 - 250 75 - 130 105 - 60 130 - 10 155 -

The Assembly line problem can be explained by using the

following figure.

Source—W -B --W - —W —B ~W -Sink
! 1 2 14 14 15

i

i i

System Boundry I

Figure 1-3 Showing the Assembly line system.

The workers in the assembly line have three states:

1. Starved - waiting for a part to enter the previous

buffer

.

13

2. Working - they have a part to work on.

3. Blocked - the workers are unable to pass the completed

part to the next buffer.

The question that arises is that for a stated uniform buffer

capacity how many parts would one expect to be in the system

i.e.. how many parts would constitute the work in process.

The purpose of the buffer in this problem is to decouple the

state of worker W fro. « and W . For measuring the

i i-1 i+1

contents of the work-in-process the following rules are

followed

.

1. When the worker W is idle, a part is obtained from

the source. Thus a part enters work-in-process

inventory -

l. When worker W completes a part, the part is passed

to the sink/Thus a part leaves the work-in-process

inventory.

The time trace of the work-in-process is shown in Figure 1-3

^^S^ r

Begin End

Figure 1-4 Showing change in work-in-proces

L4

~r~i

?$52!S2«3

»«O3Ojd_UJ_),J0M
15

sssojd—u;_)fjo^

16

We may measure the average work-in-process by:

1. Averaging the instantaneous values of the Work-in-

process observed either at random or fixed time

intervals

.

2. We may compute the area under the curve for a fixed

time interval and divide by the interval length to

obtain the average curve height. Then we average

these values over the run length.

As the time interval becomes longer, the data takes on the

appearance of independent observations. Figures 1-1- 1-5

and 1-6 represent data taken from such a system of

instantaneous observations. From the figures shown it may

be clearly seen that the total number or runs is less than 4

for the first 10 hours while the length of the run is

greater than 4. When examining the total number of runs for

hours 40 to 49 we find the length of the longest run to be

less than 4 while the total number of runs is greater than

4.

1.4.1 Tegtlnq the Fffgntiveiiegs of the methods

To test the effectiveness of these methods we may set up a

simulation problem for which a mathematical solution exists

and then try to verify the effectiveness of the method. If

the results of this method conform to the other conventional

methods then the method could be implemented into the GPS5/H

1 7

programming language and the method can be used by future

users of GPSS/H for determining when steady state begins in

other problems. For this the conventional queueing theory

problem with a single server with a utilization ratio of 95%

was chosen. The various problems that arose out of trying

to get a queue with a steady queue length are described in

Section II along with the problems of implementation. The

use of a single queue with a single server and a 95%

utilization rate did not result in a steady state queue

length and the various other changes made are described in

Section II. The problems faced in implementing into GPSS/H

and how they were tackled are also described in Section II.

13

Section II

Queuing Problem and Applying Theory of runs

2.1.0 Problem Statement :

1. To obtain data for our study, we decided to use an M/M/l

queueing process because theoretical answers are

available. We assumed that for a suitably large

utilization ratio there would be a transient state

building up from zero to the expected queue length with

moderate variability.

2. Observations:

a) Should they be made frequently or far apart. State

the observation intervals in terms of the average

service time.

b) Should the observations be:

i) instantaneous (current content of a storage),

ii) weighted (average content of a storage during the

observation interval).

c) Should the observations be made:

i) on a fixed time interval, or

it) on a random time interval (Occurance sampling).

3. How does changing the RMULT value affect the experiments.

(RMULT is the random number generator seed.)

4. Run test to consider:

a) Maximum run length in a fixed number of observations.

b) Distribution of run length in a fixed number

of observations.

19

2.1.1 Analysis of. Single Server Queue Problem

There are two types of simulations with regard to analysis

of a single system - a terminating simulation or a non

terminating simulation. A terminating simulation is one for

which the desired measure of system performance are defined

relative to the interval of simulated time [0,T] where T
E t-

is the instant in the simulation when a specified event

occurs. The event E is specified before the simulation

begins. A steady state simulation has been defined as one

foe which the measures of performance are as limits as the

simulation goes to infinity. The length of the simulation

is made large enough to get good estimates of the quantities

of interest [Law/Kelton p. 282, 1984].

In this study we try to measure the performance for steady

state simulations by means of the example problem stated

below:

"Consider the output process of the H/H/1 queue

where the length of the queue Is to be measured

when steady state is attained. This is a single

server queue system with the IID exponential

lnterarrival times with the mean 1 / X. IID

exponential service times with the mean 1 / H and

customers are served in a FIFO manner. Assume a

x / t j The object of the non-terminating

20

simulation of the M/M/l queue might be to estimate

the steady state average length o£ the queue given

some initial condition such as at time the queue

length is tkav/TCelton. pZ84, 1984]".

The steady state length of the queue is calculated by

queuelng theory where the calculations can be made by the

following relationships:

2

Expected queue length - (M
/igu - M

L Cooper, p. 71, 1977]

The calculated queue length is calculated for a 95%

utilization rate to be of the order of 18 persons waiting in

the queue, while the expected queue length is of the order

of 8 persons waiting in the queue for a 90% utilization

rate. The queue length decreases as the utilization rate

decreases

.

21

2.2.0 Setup of the problem In GPSS/H

The single server queue was setup so that the customer

enters the queue and is serviced by the server in FIFO

manner. This is shown by the following flow diagram.

Figure 2-1 I Flow Diagram of the Implementation into

GPSS/H

The customers are generated in an exponential fashion and we

use a random number seed to generate the customers. The

instantaneous queue length of the system is collected at

time intervals desired by the operator. The collection of

average hourly queue length involves colecting the current

queue length(Xl), current clock time(Cl) and the time at

which the queue length was different from the current queue

length(X2). This Ls shown in Figure 2.1. The sum of the

areas under the curve is computed for every time interval

22

and divided by the total time in the time interval

considered. The other variables that can be changed in this

simulation besides the data collection interval are the

RMULTfRandom number generator seed) and the interarrival

service time ratio.

Seconds

Figure 2-2 Area under the curve shows cumulative

Queue Length. IE the clock is reset

every hour then- dividing cumulative

Queue Length by 3600 seconds gives the

hourly average queue length.

23

2.2.1 Should instantaneous ox average queue lenqths be

used :

Based on these calculations a simulation experiment was

setup so that we could get an initial transient followed by

a steady state. Two experiments were setup to determine

whether the observations should be instantaneous or the

experiments should consider the average hourly queue length.

The simulation experiments programs are shown in Appendix 1

and 2. After running the experiments the results of the

experiments were plotted and the results are shown in in

figure 2-4 and 2-5. The results show that the such a

simulation does not result in transient phase followed by a

level phase. The process did not exhibit the properties

necessary to make the runs tests for steady state valid.

Based on the results obtained it may reasonably be concluded

that the instantaneous queue lengths may be discarded

because the analysis of a single server queue shows the

average queue length to reach a steady state of 18 at 9b%

utilization. The tests for instantaneous queue lengths were

conducted only to determine if instantaneous queue lengths

had the possibility of showing properties necessary to make

run tests valid.

The effect of not resetting the time integral is shown in

Figure 2-6. When the time integral is not reset, we get

2 4

if
3*

u

asi
a

25

26

(flOwr 3nan 9OaiOMf ABo|nujn3
27

the cumulative average queue length by dividing by the total

number o£ hours. By this we mean that the average queue

length goes on adding up and we get the cumulative average

queue length by adding average queue length every hour and

dividing by the total number of hours. The cumulative sum

of the average is shown as the time Increases. The other

important observation is that the use of random observations

are not necessary in view of the fact that the observations

do not exhibit the properties necessary to make runs tests

for steady state valid.

.'.8

2.2.2 Effect of changing RHUL.T

To further examine the length of the steady state queue

lengths, it was decided to vary the RMULT values of the

program. The resulting queue lengths are shown in Figures

2-6 and 2-7. The results show us that queue lengths are

considerably different for for different RMULT values, but

does not result in a situation where there is an initial

transient followed by steady state. The effect of using

different combinations gives the instantaneous queue length

and average queue lengths as shown and does not indicate

initial transient followed by steady state. The

instantaneous queue length is measured at the end of every

hour while the average queue length is measured on an hourly

basis

.

29

ajaujo^ano-. iQ -on

30

Kjatuo^ana JO "°N

31

2.2.3 Et£ggt of changing the frequency of observations

The effect of varying the frequency of the observations from

1/2 hour to 1 hour to 2 hours to 10 hours was tried but the

results do not indicate any possibility of initial transient

followed by steady state as can be seen from changing the

figures 2-8, 2-9. 2-10, 2-11 and 2-12. Changing the

frequency of data collection did not result in any kind o£

steady state and as a result of the considerable variance

Theory of Runs could not be applied to determine when the

steady state began in the system. This instantaneous queue

lengths and the average queue lengths are shown in Figures

2-8, 2-9, 2-10, 2-11 and 2-12. As can be seen clearly there

is no indication that steady state would be achieved even

though the simulator was run for 200 hours. It may also be

observed here that the average queue length lags behind the

instantaneous queue length.

32

onanh

33

o
X

35

2
3
Ox

36

o

3
a

37

2.2.4 Effect of changing utilization

Based on this it was decided to test the queue lengths when

the utilization rate was lowered. The lowering of

utilization rate did not result in situation where we got an

initial transient followed by steady state. The results ot

the these simulation runs are shown in figures 2-13. 2-14

and 2-15. The process does not appear to exhibit the

properties necessary to make the runs tests for steady state

valid

.

3H

afiauo<u> ononb

39

V-

n o O
(N

3fei...

sAojoao ananb

40

afiojaAS ananb

41

2.2.5 Effect of RMULT

This raised the possiblity that the Random number generators

were not creating customers in an exponential fashion and

the only alternative was to verify the RMULTS
.

This was

done by using the program as shown in Appendix 5. The

results show that the random number generators were not

infact generating an exponential distribution. This is

shown in figures 2-16 and 2-17.

To test further the interarrival and service distributions

and of GPSS/H Version 1.9 were generating an exponential

distribution it was found that the new version of GPSS/H

called GPSS/H Version 1.9 was infact generating an

exponential distribution time and this is shown in figures

2-18 and 2-19. The Chi-Squared goodness of fit test shows a

Chi - squared value of 184 for GPSS/H version 1.0 which is

greater than the critical value while Version 1.9 gives a

Chi-Square value of 14.9 which is less than the critical

value. The test had 34 degrees of freedom and the critical

value is 18.4. This confirms our suspicion that the

distribution is not infact exponential for GPSS/H Version

1.0. However, the use of this method may not be feasible in

view of non availablity of literature on the use of Help

Blocks in the new version of GPSS/H. The documentation

necessary for this has not been made available by the

42

>
L.

<
L,

c c

<i) B
c
o T

X so

Ld OL.

7

u
D

Li_

E>

:•

c-

:•

c.

c-

Z'

d
z>

Q.

n -

n -

a
a
a
a
a

a
a

UPPEH

UMIT

a
a

a

a

c

a

a
o

a
o o

o a
a oo a

-ON3n03HJ

43

n
<D

c-

'.§
'S

c-

<D C
U |

:•

'> n-
L.

c
<D

GO

.2 2
a '

n•5 Z
c I a

i-

CD 2 a 2
c > a 3
° £ a . 5
Q.M- n

a.
a.

X £ a
a

3

/\ a
r- a

J n

IN a
a

<u n
s_ •

3 a
.

Q> n .

U_ a
a

•

3
I

n
.

1 r

S 9

i

oo
m

I
i i

—

9 o o
? g 9T n m

A0N3fl03aj

i r
g

O

44

-ON3/-103HJ

45

2
3

Q.
0.

,ON3no3Md
46

Wolverine Software Company. It may be pointed out here that

the main difference between GPSS/H Version 1.0 and GPSS/H

Version 1.9 is the clock used. Version 1.0 uses an integer

clock while the Version 1.9 uses a double precision real

clock. This also confirms many tests by Dr. Fishman and Dr.

Moore [1986] have proved I.ehmer's algorithm for random

number generation to be superior to the Taushworthe

algorithm used in for random number generation.

47

Z.3.1 Effect of Two gueuea

Based on the results of the above experiments it was decided

to modify the simulation experiment to have two queues and

the queue length of the first queue measured. As the

customer is generated he enters the first queue and after he

is serviced by the service unit one enters a second queue

with the same exponential service time. This was done by

using the program as shown in the Appendix 4. The sequence

of events is shown in the figure below.

[Exit System]

Figure Z-20: Showing the two queue system flow diagran

en
c

•v

D

Si
01
u.

Ll. «

V

O
L.

OJ
a

> 1<

CN

CM

(D
L.

L

o
a
- 2

*"
r

C B.

o
CO

a o
~r
o

T"
o

49

urSus-i anariQ afisjaAy

50

This results in an average queue length of the first queue

shown by the Figure 2-21. It may be noted here that the

utilization rate is only 62.5% and the expected average

queue length is 2. It appears that the observed average

queue length is much higher than the calculated value

because sequence of use of the use of the random number seed

gets affected by the use of the second queue. The average

queue length is used to calculate the moving average and the

total number of runs and the length of each run using the

program shown in Appendix 5. The use of instantaneous queue

lengths has been discarded due to excess variability. This

is not suited to our experiment as the process does not

exhibit the properties necessary to make the runs tests for

steady state valid.

„e may note from Figure 2-21 that the process does not

exhibit the properties necessary to make the runs tests for

steady state valid. So it was proposed to modify the

problem by changing the RMULT values used to the same

constant number. The result of the change of the Random

Number generator is plotted in figure 2-22. The average

queue length of the first queue shows that steady state is

attained after running the simulator for 28 hours. It

should be noted here that the only difference between the

one queue simulation and the two queue simulation and the

two queue simulation is the sequence in which the random

51

numbers are used.

2.3.2 Applying Theory of Runs

The methods viz., Hald-Wolf owitz total number of runs method

and the length of the longest run method can now be applied

to the average queue length of the first queue. it may be

pointed out here once again that the data is completely

random if the data exhibits 4 runs or more and we can

conclude steady state to be reached according to the Wald-

wolf owitz theory of longest number of runs. The other

method using the length of the longest run requires the

longest run to be equal to or shorter than 4. Appendix 10

shows the tables used to determine the total number of runs

and the length of longest run for any given number of data

points. Using the hourly queue lengths obtained as a result

of the experiments can be seen in Table 1 below. Only a

part of the data depicting how the system approaches steady

state is reproduced. From Table 1 it is clearly seen that

the steady state is reached by the 28th hours, since the

total number of runs is 4. Subsequent to that the total

number of runs is either equal or greater than 4. Similarly

using the length of the longest run method we find that the

longest run is 4 or less after the 28th hour.

HOURS MEAN WO OF RUNS INDIVIDUAL RUN LENGTHS

16 25 37.099990 2 6 4

17 26 37.500000 3 5 4 1

18 27 38.199990 3 6 2 2

19 28 39.799980 4 4 4 11
20 29 38.799980 4 3 4 12
21 30 38.799980 4 2 4 3 1

Table 1= The number of people In the queue is found to reach

steady state after 28 hours. The mean of the last

10 readings is 46.3 and the standard deviation is

found to be 3.2. This conforms the steady state by

the blocking method to be after 28 hours.

The results as verified by running the simulation experiment

for 160 hours calculating the mean and the standard

deviation and going backwards to determine when steady state

begins results in the beginning of steady state at the end

of 20 hours. This method is called as the blocking method

and is developed by Emshoff and Sisson [1970] and is fairly

accurate in determining the end of steady state. The major

problem with the use ot this method is the need for long

runs until we are reasonably sure that the steady state is

reached before this method can be applied and more often

then not we may have to plot the graph to determine whether

steady state is reached. Besides using long pilot runs the

53

other drawback is that the method works backwards and does

not determine when transient state ends but when steady

state begins. Examining the results obtained by the FORTRAN

subroutine shown in Appendix 5 gives us the following

results

:

1. Steady state begins at the end of 28 hours if we

consider using the Wald-Woltowitz theory of total

number of runs.

2. Steady state begins at the end of 28 hours if the

length of the longest run is used.

3. The calculations using mean ± 2 standard deviations

indicates that the steady state begins after 28 hours.

2.3.3 13 there a significant difference between the blocks?

For the purpose of testing for a significant differnce

between the blocks of ten, an Analysis of Variance was

conducted between the various blocks and the results

obtained are shown in Table 2. The results indicate a

statistically significant difference between the blocks.

54

DF Sum of Mean F Value PR>F

Squares Squares

Source 15 12900.8 860.05 76.39 0.0001

Model 144 1621.2 11.25

Total 159 14522.0

Table 2: Showing Analysis of Variance Results between blocks

This F-test shows that there is a statistically significant

difference between the blocks. To further determine which

blocks are different we have to perform the Fisher's LSD

test.

bh

Based on the results obtained It was decided to run a test

for significant differences between the means of the blocks

and by using the Fisher's LSD we get the following results:

Grouping

A

A
A

A
A
A
A
A
A
A
A
A

A
A

A
A

A

A
A

A

A
A
A
A

A B
8

B

C

D

Mean

45.3

45.3

45.3

45.

Z

45.2

45. 1

44.8

44.7

44.5

44.2

43.8

42.4

40.4

38.8

33.7

8.7

N Observations

10 151 - 160

14 1 - 150

131 - 140

121 - 130

111 - 120

101 - 110

91 - 100

10

10

lo

10

10

10

10

1()

lO

10

10

10

lo

10

10

81 - 'JO

71 - 80

61 - 70

51 - 60

41 - bO

31 - 40

21 - 30

11 - 20

1 - 10

Table 3: Results of the Fischer's LSD Te3t

The blocks are significantly different if the letter group

to which it belongs is different. From Table 3 it may be

56

clearly seen that the first 10 hours with a mean of 8.7

persons in the queue is significantly different from the

rest of the groups and is represented by the letter F. The

second hour the mean is significantly different from the

other groups and is represented by the letter E. Hours 20

to 30 with a mean of 38.8 is not significantly different

from the mean queue length for hours 30 to 40 but is

different from all other groups. These results justify our

««rli»c mmeliMiofl t«i« **hw fch#»*y »f r*** ^"^ **#*»*

state is reached after Z8 hours. The LSD shows that steady

state lies somewhere between hours 20 an 40.

2.3.4 Inferences

This implies that the results of the theory of runs method

agrees with the blocking method and can be used as a basis

for determining when steady state begins. From these

calculations it may be concluded that the Theory of runs

using the Wald-Wolf owitz total number of runs test and the

length of the longest run is a fairly good measure for

determining when steady state begins in the system. The

application of the methods to the non-terminating steady

state problem results in a close measure of when steady

state begins. We can now implement the methods into GPSS/H

using HELP blocks.

we should note here that the theory of runs tests are really

57

tests of independence. We have assumed that the data are

independent. Using blocks eliminates some of the effects of

autocorrelation. A further extension of this work would be

to investigate the test for autocorrelation of the observed

data under various experimental conditions. Another

possible line of investigation is to increase the total

number of data points in the test sample to eliminate

autocorrelation completely.

2.4.0 Implementation into GPSS/H

On the basis of the results obtained implementation of the

FORTRAN subroutine into the (3PSS/H programming Ixtmuuqe hut*

been carried out. The Implementation of the program into

GPSS/H depends on the use of the HELP block. The program as

implemented into GPSS/H is shown in Appendix 6, 7, 8, 9. The

program FTINIT has to be called the first time the a FORTRAN

subroutine is called into the GPSS/H program. A fairly

accurate documentation of the use of a help block is

described in the next section in view of the fact that the

description on the use of the Help block is almost

inaccurate in the GPSS/H manual. The Program gives us the

total number of runs in the problem and the length of the

runs. The program goes back to the GPSS/H program as soon

as the steady state is reached, i.e., when the total number

of runs are greater than or equal to 4 and the length of the

58

longest run is less than or equal to 4. The use of the Help

block is described in Appendix 12.

59

2.4.1 Conclusion

The results of using a single server queue results in the

average queue length and the instantaneous queue length

showing considerable variablity. Based on this it was

decided to vary the RMULT values. The process did not

exhibit the properties necessary to make the runs tests tor

steady state valid. The data collection periods were next

varied and the instantaneous queue lengths and the average

queue lengths were collected over intervals of 1/2 hour, 1

hour. 2 hours, 3 hours and 10 hours. Plotting the collected

instantaneous and the average queue lengths show that the

process did not exhibit the properties necessary to make the

runs tests for steady state valid. The next step was to

change utilization from 95% to lower values such as 90%, 85%

and 75%, and the average queue lengths do not show

properties necessary to make runs tests for steady state

valid. At this stage it was necessary to examine whether

the random number generators were generating transations in

an exponential fashion. The suspicion that the random

number generators were not generating transations in an

exponential fashion was confirmed. Testing GPSS/H Version

1.9 showed an exponential distribution. At this stage It

was decided to introduce a second queue with service times

of 135 and return to GPSS/H version 1.0 because the HELP

6

block is not documented adequately. The average hourly

queue lengths of the first queue was measured. The average

queue lengths ot the first queue using the same random

number finally resulted in a queue tending toward steady

state preceded by an initial transient. This was tested

using the Wa Id-Wolfowitz total number of runs test and the

length of the longest run teshnique . The results obtained

show that the two method give us a fairly close indication

of when steady state begins. This is confirmed by the use

of blocking method of Emshoft and Sisson [19 70]. We then

use Statistical Tests such as ANOVA and Fisher's LSD to show

that the steady state begins somewhere between 20th and 40th

hours. Based on the results obtained. the method was

implemented into GPSS/H version 1.0. The programs necessary

for implementation are given in the Appendices. It appears

that the use of GPSS/H Version 1.0 random number generator

must be validated for randomness for the RMULT values to be

used. This is highlighted by the experiments to test the

exponenetial interarrival time and the exponential service

times. We must investigate the change in results obtained

by using the new version of GPSS/H which appears to be far

more promising.

61

Section III

Appendices

Appendix 1

****************************,*„,,
* INSTANTANEOUS QUEUE LENGTH *

*
* SINGLE SERVER QUEUEING SYSTEM IID EXPONENTIAL SERVICE TIMES *
* AND EXPONENTIAL INTERARRIVAL TIMES AND CUSTOMERS SERVED IN *
* FIFO MANNER. THE QUEUE LENGTH STATISTICS ARE COLLECTED TO *
* DETERMINE WHEN THE STEADY STATE BEGINS. THIS PROGRAM IS *

* USED TO DETERMINE INSTANTANEOUS QUEUE LENGTHS TO DETERMINE *

* IF STEADY STATE IS ATTAINED FOR INSTANTANEOUS QUEUE LENGTHS *

SIMULATE

* INCREASE MEMORY SPACE
REALLOCATE COM, 40000

* TWO RANDOM NUMBER GENERATORS USED FOR FUNCTION 1 EXP1
* AND EXP2. THESE NUMBERS CAN BE CHANGED TO GET DIFFERENT
* RANDOM NUMBER STREAMS.

RMULT 43127,23891

OPERCOL 25

1 MATRIX MX -200,1 DEFINES MATRIX SAVEVALUE
* DIMENSIONS

* EXPONENTIAL INTER-ARRIVAL TIME '

EXP1 FUNCTION RN1.C24

0,0/. 1, . 104/. 2,. 222/. 3,. 355/. 4,. 50 9/. 5, . 6 9

0.6,. 9 15/. 7, 1.2/. 75, 1.38/. 8, 1.6/. 84, 1.8 3/. 88, 2. 12

0.9, 2. 3/. 92, 2. 52/. 94, 2. 81/. 95, 2. 9 9/. 96, 3. 2/. 97, 3.

5

0.98, 3. 9/. 99, 4. 6/. 995, 5. 3/. 998, 6. 2/. 999, 7/. 9997,

8

(..'.

Appendix 1 (contd.)

***************** *********
* EXPONENTIAL SERVICE TIME ***************************
EXP2 FUNCTION RN2.C24

0,0/. 1, .104/. 2, .222/. 3, .35 5/. 4,. 50 9/. 5,. 69

0.6, .9 15/. 7, 1.2/. 75, 1.38/. 8, 1.6/. 84, 1.8 3/. 88, 2. 12

0.9, 2. 3/. 92, 2. 52/. 94, 2. 81/. 95, 2. 99/. 96, 3. 2/. 97, 3.

5

0.98, 3. 9/. 99, 4. 6/. 995, 5. 3/. 998, 6. 2/. 999, 7/. 99 97,

8

* CREATE CUSTOMERS WITH EXPONENTIAL INTER-ARRIVAL *
» ARRIVAL TIME EXPONENTIAL SERVICE TIME AND THEY *
* WAIT IN A QUEUES. AFTER THIS THEY GET THE SERV- *
* ICE THEY HAVE COME IN FOR. ***************************

GENERATE 200 ,FNSEXP1 CREATE A CUSTOMER WITH
* EXPONENTIAL INTERARRIVAL TIME

QUEUE 1 ENTER QUEUE 1

SEIZE 1 GET HOLD OF THE STOREKEEPER

DEPART 1 LEAVE QUEUE 1

ADVANCE 195,FNSEXP2 EXPONENTIAL SERVICE TIME
* TAKEN TO SERVICE TIME

RELEASE 1 RELEASE SHOPKEEPER

TERMINATE

* DATA COLLECTION *
* .

* THE QUEUE STATISTICS OF THE FIRST QUEUE ARE COLLECTED *

* FOR THE INSTANTEONEOUS QUEUE LENGTHS FOR THE QUEUE AND *
* THESE VALUES ARE SAVED IN THE MATRIX SAVEVALUE ******************* ************

GENERATE 3600 CREATE 3600 SECONDS
* WHEN 3600 IS CHANGED TO 1800, THEN STATISTICS IS COLLECTED
* HALF HOURLY. VARYING A PARAMETER OF THE GENERATE BLOCK IS
* USED TO DETERMINE 1/2 HOURLY, HOURLY- TWO HOURLY INSTANTA-
* NEOUS QUEUE LENGTHS.

63

Appendix 1 (contd.)

MSAVEVALUE 1 - (201-TG1) , 1 ,Q1 ,MX SAVE THE INSTANTENEOUS
QUEUE LENGTHS

TERMINATE 1

START 200 RUN FOR 200 HOURS

END

6 4

Appendix 2

*************.*.****,,,*»,,„*„*„,,
* AVERAGE QUEUE LENGTH *

* *
* SINGLE SERVER QUEUEING SYSTEM IID EXPONENTIAL SERVICE TIMES *

* AND EXPONENTIAL INTERARRIVAL TIMES AND CUSTOMERS SERVED IN *
* FIFO MANNER. THE AVERAGE QUEUE LENGTH IS COLLECTED TO *

* DETERMINE WHEN THE STEADY STATE BEGINS. *ik**************************,,*^,,,,
SIMULATE

* INCREASE MEMORY SPACE AVAILABLE.
REALLOCATE COM, 40000

* TWO RANDOM NUMBER GENERATORS USED FOR FUNCTION EXP1
* AND EXP2. BY CHANGING THE RMULT VALUES DIFFERENT RANDOM
* NUMBER STREAMS CAN BE GENERATED.

RMULT 43127,23891
*

OPERCOL 25

* EXPONENTIAL INTER-ARRIVAL TIME ***************************
EXP1 FUNCTION RN1,C24

0,0/. 1,. 104/. 2,. 222/. 3,. 355/. 4,. 50 9/. 5, . 6 9

0.6, .9 15/. 7, 1.2/. 75, 1.38/. 8, 1.6/. 84, 1.8 3/. 88, 2. 12

0.9, 2. 3/. 92, 2. 5 2/. 94, 2. 81/. 95, 2. 9 9/. 96, 3. 2/. 97, 3.

5

0.98, 3. 9/. 99, 4. 6/. 995, 5. 3/. 9 98, 6. 2/. 999, 7/. 9997,

8

********************»*, ***
* EXPONENTIAL SERVICE TIME ***************************
EXP2 FUNCTION RN2.C24

0,0/.l,.104/.2, .222/. 3, . 355/ . 4 , . 509/ . 5 , . 69

0.6, .9 15/. 7, 1.2/. 75, 1.38/. 8, 1.6/. 84, 1.8 3/. 88, 2. 12

0.9, 2. 3/. 92, 2. 52/. 94, 2. 81/. 95, 2. 9 9/. 96, 3. 2/. 97, 3.

5

0.98, 3. 9/. 99, 4. 6/. 995, 5. 3/. 9 98, 6. 2/. 999, 7/. 9997,

8

65

Appendix 2 (contd.)

i*******************,,*,,,,**
* CREATE CUSTOMERS WITH EXPONENTIAL INTER-ARRIVAL *
* ARRIVAL TIME EXPONENTIAL SERVICE TIME AND THEY *
* WAIT IN A QUEUE TO BE SERVICED. *

GENERATE 200,FNSEXP1 CREATE A CUSTOMER WITH
* EXPONENTIAL INTERARRIVAL TIME

SAVEVALUE 3+,Xl*(Cl-X2) ,XF PUT CURRENT QUEUE LENGTH
* MULTIPLIED BY THE TIME THE QUEUE LENGTH REMAINS THAT VALUE

SAVEVALUE 2,C1,XF SAVE CURRENT CLOCK TIME

SAVEVALUE 1+,1,XF INCREASE QUEUE LENGTH BY 1

SEIZE 1 GET HOLD OF THE STOREKEEPER

SAVEVALUE 3+,Xl*(Cl-X2) ,XF AS SOON AS THE STORE
* KEEPER IS SEIZED THE QUEUE LENGTH CHANGES

SAVEVALUE 2,C1,XF SAVE CURRENT CLOCK TIME.

SAVEVALUE 1-,1,XF DECREASE QUEUE LENGTH BY 1

ADVANCE 195,FN$EXP2 EXPONENTIAL SERVICE TIME
* TAKEN TO SERVICE TIME

RELEASE 1 RELEASE SHOPKEEPER

TERMINATE

* DATA COLLECTION *
* THE QUEUE STATISTICS OF THE FIRST QUEUE ARE COLLECTED *

* AND THE AVERAGE QUEUE LENGTHS FOR EACH HOUR ARE COMPU- *

* TED AND THIS IS USED TO GET THE AVERAGE QUEUE LENGTH *******************************
GENERATE 3600 CREATE 3600 SECONDS

* BY CHANGING THE TIME INTERVAL CREATED THE AVERAGE NUMBER
* OF CUSTOMERS CAN BE VARIED AND THIS CAN BE USED TO CHANGE
* DATA COLLECTION PERIOD.

SAVEVALUE 4 ,XF3/3600 ,XF STORE AVERAGE QUEUE LENGTH

PRINT 1,4.XF PRINT THE HOURLY AVERAGE QUEUE LENGTH

66

Appendix 2 (contd.)

SAVEVALUE 3,0,XF SET QUEUE LENGTH TO

TERMINATE 1

START 200 RUN FOR 200 HOURS

END

67

Appendix 3

* IS THE INTERARRIVAL TIME AND SERVICE TIME EXPONENTIAL' *
* *

* SINGLE SERVER QUEUEING SYSTEM I ID EXPONENTIAL SERVICE TIMES *

* AND EXPONENTIAL INTERARRIVAL TIMES AND CUSTOMERS SERVED IN *

* FIFO MANNER. THE QUEUE LENGTH STATISTICS ARE COLLECTED TO *
* DETERMINE WHEN THE STEADY STATE BEGINS. *********************************

SIMULATE

* REALLOCATE MORE MEMORY SPACE
REALLOCATE COM, 40000

* TWO RANDOM NUMBER GENERATORS USED FOR FUNCTION 1 EXP1 AND EXP2
43127,23891

25

MX, 200,1 DEFINES MATRIX DIMENSIONS

IA, 0,40, 35 IA = INTERARRIVAL

MPIPF.0,40,35 SERVICE TIME

********************* *****
* EXPONENTIAL INTER-ARRIVAL TIME ***************************
EXP1 FUNCTION RN1,C24

0,0/. 1, .104/. 2, .222/. 3, .35 5/. 4, .50 9/. 5, .69

0.6,. 915/. 7, 1.2/. 75, 1.38/. 8, 1.6/. 84, 1.8 3/. 88, 2. 12

0.9, 2. 3/. 92, 2. 52/. 94, 2. 81/. 95, 2. 99/. 96, 3. 2/. 97, 3.

5

0.98, 3. 9/. 99, 4. 6/. 995, 5. 3/. 9 98, 6. 2/. 999, 7/. 9997,

8

*
RMULT

OPERCOL

1 MATRIX

1 TABLE

2 TABLE

68

Appendix 3 (contd.)

* EXPONENTIAL SERVICE TIME ***************************
EXP2 FUNCTION RN2.C24

0,0/. 1,. 104/. 2,. 222/. 3,. 355/. 4, . 50 9/. 5,. 6 9

0.6,. 91 5/. 7, 1.2/. 75, 1.38/. 8, 1.6/. 84, 1.8 3/. 88, 2. 12

0.9, 2. 3/. 92, 2. 52/. 94, 2. 81/. 95, 2. 9 9/. 9 6, 3. 2/. 9 7, 3.

5

0.98, 3. 9/. 99, 4. 6/. 995, 5. 3/. 998, 6. 2/. 999, 7/. 9997,

8

* CREATE CUSTOMERS WITH EXPONENTIAL INTER-ARRIVAL *
* ARRIVAL TIME EXPONENTIAL SERVICE TIME AND THEY *
* WAIT IN A QUEUE. WE KEEP TRACK OF THE NUMBER OF *

* CUSTOMER ENTERING QUEUE AND THE SERVICE TIMES ***************************
GENERATE 200 ,FNSEXP1 , , , , 1PF CREATE A CUSTOMER WITH

* EXPONENTIAL INTERARRIVAL TIME

TABULATE 1 TABULATE INTERARRIVAL TIMES

QUEUE 1 ENTER QUEUE 1

SEIZE 1 GET HOLD OF THE STOREKEEPER

DEPART 1 LEAVE QUEUE 1

MARK 1PF MARK TRANSACTION ENTERS ADVANCE BLOCK

ADVANCE 195,FNSEXP2 EXPONENTIAL SERVICE TIME
* TAKEN TO SERVICE TIME

RELEASE 1 RELEASE STOREKEEPER

TABULATE 2 TABULATE SERVICE TIME

TERMINATE

Appendix 3 (contd.)

* DATA COLLECTION *
*

* THE QUEUE STATISTICS OF THE FIRST QUEUE ARE COLLECTED *
* FOR THE INSTANTEONEOUS QUEUE LENGTHS FOR THE QUEUE AND *
* THESE VALUES ARE SAVED IN THE MATRIX SAVEVALUE **************** ***********„ AytA

GENERATE 3600 CREATE 3600 SECONDS

MSAVEVALUE 1 , (201-TG1) , 1 ,Q1 ,MX SAVE THE INSTANTENEOUS
QUEUE LENGTHS

TERMINATE 1

START ZOO RUN FOR 200 HOURS

END

70

Appendix 4

************ ********************
* USING TWO QUEUES *
* *

* SINGLE SERVER QUEUEING SYSTEM IID EXPONENTIAL SERVICE TIMES *
* AND EXPONENTIAL INTERARRIVAL TIMES AND CUSTOMERS SERVED IN *
* FIFO MANNER. THE QUEUE LENGTH STATISTICS ARE COLLECTED TO *

* DETERMINE WHEN THE STEADY STATE BEGINS. SINCE STEADY STATE *
* COULD NOT BE ACHIEVED BY USING ONE QUEUE THE CUSTOMER IS *
* REQUIRED TO GO THROUGH TWO QUEUES TO GET STEADY STATE. ************************,**»»***,,

SIMULATE

* REALLOCATE MORE MEMORY SPACE
REALLOCATE COM, 40000

* TWO RANDOM NUMBER GENERATORS USED FOR FUNCTION 1 EXP1
* AND EXP2. THE RMULT NUMBERS CAN BE CHANGED TO GET
* A DIFFERENT RANDOM NUMBER STREAM.

RMULT 43127,23891
*

OPERCOL 25

* EXPONENTIAL INTER-ARRIVAL TIME ************** *************
EXP1 FUNCTION RN1,C24

0,0/. 1, .104/. 2, .222/. 3, . 355/ . 4 , . 50 9/ . 5 , . 6

9

0.6, .9 15/. 7, 1.2/. 75, 1.38/. 8, 1.6/. 84, 1.8 3/. 88, 2. 12

0.9, 2. 3/. 92, 2. 52/. 94, 2. 81/. 95, 2. 99/. 96, 3. 2/. 97, 3.

5

0.98, 3. 9/. 99, 4. 6/. 995, 5. 3/. 998, 6. 2/. 999, 7/. 9997, 8

* EXPONENTIAL SERVICE TIME ***************************
EXP2 FUNCTION RN2.C24

0-0/. 1, .104/. 2, .222/. 3, .355/. 4- .509/. 5, .69

0.6, .915/. 7, 1.2/. 75, 1.38/. 8, 1.6/. 84, 1.83/. 88 -2. 12

0.9, 2. 3/. 92, 2. 52/. 94, 2. 81/. 95, 2. 99/. 96, 3. 2/. 97, 3.

5

0.98, 3. 9/. 99, 4. 6/. 995, 5. 3/. 998, 6. 2/. 999, 7/. 9997 78
71

Appendix 4 (Contd.)

* CREATE CUSTOMERS WITH EXPONENTIAL INTER-ARRIVAL *

* ARRIVAL TIME EXPONENTIAL SERVICE TIME AND THEY *

* GET TWO SERVICES FOR EACH OF WHICH THE HAVE TO *

* WAIT IN TWO QUEUES. THIS DONE TO GET THE QUEUE *

* TO ATTAIN STEADY STATE AFTER A FEW HOURS ********************* ******
GENERATE 200,FN$EXP1 CREATE A CUSTOMER WITH

EXPONENTIAL INTERARRIVAL TIME

SAVEVALUE 3+ ,X1* (C1-X2) ,XF PUT CURRENT QUEUE LENGTH
* MULTIPLIED BY THE TIME THE QUEUE LENGTH REMAINS THAT VALUE

SAVEVALUE 2,C1,XF SAVE CURRENT CLOCK TIME

SAVEVALUE 1+,1,XF INCREASE QUEUE LENGTH BY 1

SEIZE 1 GET HOLD OF THE STOREKEEPER

SAVEVALUE 3+ ,X1*(C1-X2) ,XF AS SOON AS THE STORE
* KEEPER IS SEIZED THE QUEUE LENGTH CHANGES

SAVEVALUE 2,C1,XF SAVE CURRENT CLOCK TIME.

SAVEVALUE 1-,1,XF DECREASE QUEUE LENGTH BY 1

ADVANCE

RELEASE

QUEUE

SEIZE

DEPART

ADVANCE

RELEASE

TERMINATE

135,FN$EXP2 EXPONENTIAL SERVICE TIME
TAKEN TO SERVICE TIME

1 RELEASE SHOPKEEPER

2 ENTER THE 2ND QUEUE

2 GET SHOPKEEPER2 WHEN HE'S FREE

2 LEAVE THE SECOND QUEUE

135,FNSEXP2 EXPONENTIAL PROCESSING TIME

2 RELEASE SHOPKEEPER2

72

Appendix 4 (contd.)

* * * * ********
DATA COLLECTION

* THE QUEUE STATISTICS OF THE FIRST QUEUE ARE COLLECTED *

* AND PASSED INTO THE FORTRAN SUBROUTINE FOR CALCULATING *
* THE RUN LENGTHS ABOUT THE MEAN AND THE TOTAL NUMBER OF *

* RUNS. THIS IS USED TO DETERMINE WHEN STEADY STATE BEGINS***************************»**,,
GENERATE 3600 CREATE 3600 SECONDS

SAVEVALUE 4 ,XF3/3 600 ,XF STORE AVERAGE QUEUE LENGTH

PRINT 1.4.XF PRINT THE HOURLY AVERAGE QUEUE LENGTH

SAVEVALUE 3,0,XF SET QUEUE LENGTH TO

TERMINATE 1

START

END

200 RUN FOR 200 HOURS

73

Appendix 5

C* THIS IS THE FORTRAN PROGRAM USED TO CALCULATE THE TOTAL *
C* NUMBER OF RUNS ABOVE AND BELOW THE MEAN. THE LENGTH OF *
C* EACH RUN IS ALSO CALCULATED. THESE RESULTS ARE USED TO *
C* VERIFY OUR HYOTHESIS THE WHEN THE DISTRIBUTION IS COMPL-*
C* RANDOM, I.E., WHEN THE TOTAL NUMBER OF RUNS EXCEED 4 OR *
C* WHEN THE LENGTH OF THE LONGEST RUN IS 4 OR LESS. *
C**,,,,,*,,
$ JOB

C$OPTIONS PAGES=50,LINES=60

REAL A(300), MEAN (300)

INTEGER PTCT(IO) ,RUNCT(300) ,H,G

1 = 1

C* READ ALL THE AVERAGE QUEUE LENGTH VALUES OBTAINED AND
C* STORE IT IN AN ARRAY.

READ(5,*) A(I)

C* A NEGATIVE STOPPING CRITERIA HAS BEEN INSERTED AT THE
C* BOTTOM WHEN THE END OF FILE IS REACHED.

WHILE (A(I).GE.O) DO

1 = 1+1

READ(5,*) A(I)

ENDWHILE

N = I-1

G =N-9

DO 10 l*l,Q,l

SUM =

H = I + 9

DO 20 J =I,H,1

C* ADDING 10 ELEMENTS INTO THE ARRAY
SUM = SUM + A(J)

20 CONTINUE

Appendix 5 (contd.)

C* CALCULATING THE MOVING AVERAGE
MEAN(I) SUM/10

10 CONTINUE

WRITE C 6,*) 'HOURS MEAN TOTAL RUNS
INDIVIDUAL RUN LENGTH

'

DO 30 I = 1,G,1

K = 1

KSUM = K

PTCT(K) = 1

RUNCT(I) = 1

H = I + 8

DO 40 J = I,H,1

C* COMPARING THE VARIOUS VALUES IN THE ARRAY TO DETERMINE
C* THE TOTAL NUMBER OF THE ABOVE RUNS AND BELOW THE MEAN
C* AND THE RUN LENGTHS OF THE RUNS ABOUT THE MEAN

IF (((A (J) . GT . MEAN (I)) . AND . (A (J + 1) . GT . MEAN (I))) . OR

.

*
(t A C J) . LT . MEAN (I)) . AND . (A (J + 1) . LT . MEAN (I))) . OR

.

* C(A(J) .EQ. MEAN (I)) .AND. (A(J+l) . EQ.MEAN (I)))

)

C* INCREASE THE LENGTH OF THE CURRENT RUN BY 1

THEN PTCT(K) = PTCT(K) + 1

ELSE

C* INCREASE THE TOTAL NUMBER OF RUNS BY 1

RUNCT(I) = RUNCT(I) + 1

K = K + 1

KSUM = K

PTCT(K) = 1

ENDIF

40 CONTINUE

Appendix 5 (contd.)

C* WRITE THE MOVING AVERAGE, TOTAL NUMBER OF RUNS AND
C* LENGTH OF EACH RUN

WRITE(6,21) I, I + 9, MEAN(I), RUNCT(I),
(PTCT(M),M=1,KSUM)

21 FORMAT (I3,I3,F12.6,I3,2X,9(I3,1X))

30 CONTINUE

STOP

END

C* DATA ENTRY AFTER THIS
SENTRY
4

6

7

8

11
10
12
14
16
18
-1

Appendix 6

* IMPLEMENTATION INTO GPSS USING HELP BLOCK *

* *

* TWO SINGLE SERVER QUEUES ARE USED. THE LENGTH OF THE FIRST *

* QUEUE IS USED FOR OUR CALCULATIONS. THE GPSS PROGRAM DETER *

* -MINES WHEN STEADY STATE BEGINS AND THE FORTRAN ROUTINE *
* IS CALLED USING THE HELP BLOCK. *********************************

SIMULATE

* LOAD STATEMENT USED SINCE THE SUBROUTINE IS CALLED
* 200 TIMES SO AS TO REDUCE COST OF EXECUTION

LOAD RUN2

* REALLOCATE MORE MEMORY SPACE
REALLOCATE COM, 40000

* TWO RANDOM NUMBER GENERATORS USED FOR FUNCTION 1 EXP1 AND EXP2
RMULT 43127,23891

*

OPERCOL 25

* EXPONENTIAL INTER-ARRIVAL TIME ***************************
EXP1 FUNCTION RN1,C24

0,0/. 1, .104/. 2, .222/. 3, .355/. 4,. 50 9/. 5,. 69

0.6, .9 15/. 7, 1.2/. 75, 1.38/. 8, 1.6/. 84, 1.8 3/. 88, 2. 12

0.9, 2. 3/. 92, 2. 52/. 94, 2. 81/. 95, 2. 9 9/. 96, 3. 2/. 97, 3.

5

0.98, 3. 9/. 99, 4. 6/. 995, 5. 3/. 9 98, 6. 2/. 999, 7/. 9997,

8

************** ************
* EXPONENTIAL SERVICE TIME ***************** **********
EXP2 FUNCTION RN2,C24

0-0/. 1, .104/. 2,. 222/. 3, .355/. 4,. 50 9/. 5,. 69

0.6, .9 15/. 7, 1.2/. 75, 1.38/. 8, 1.6/. 84, 1.83/. 88, 2. 12

0.9, 2. 3/. 92, 2. 52/. 94, 2. 81/. 95, 2. 99/. 96, 3. 2/. 97, 3.

5

0.98, 3. 9/. 99, 4. 6/. 995, 5. 3/. 998, 6. 2/. 999, 7/. 9997,

8

7 7

Appendix 6 (contd.)

* CREATE CUSTOMERS WITH EXPONENTIAL INTER-ARRIVAL *

* ARRIVAL TIME EXPONENTIAL SERVICE TIME AND THEY *
* GET TWO SERVICES FOR EACH OF WHICH THE HAVE TO *

* WAIT IN TWO QUEUES. THIS DONE TO GET THE QUEUE *

* TO ATTAIN STEADY STATE AFTER A FEW HOURS ***************************
GENERATE 200,FN9EXP1 CREATE A CUSTOMER WITH

* EXPONENTIAL INTERARRIVAL TIME

SAVEVALUE 3+ ,X1* (C1-X2) ,XF PUT CURRENT QUEUE LENGTH
* MULTIPLIED BY THE TIME THE QUEUE LENGTH REMAINS THAT VALUE

SAVEVALUE 2,C1,XF SAVE CURRENT CLOCK TIME

SAVEVALUE 1+,1,XF INCREASE QUEUE LENGTH BY 1

SEIZE 1 GET HOLD OF THE STOREKEEPER

SAVEVALUE 3+,Xl*(Cl-X2) ,XF AS SOON AS THE STORE
* KEEPER IS SEIZED THE QUEUE LENGTH CHANGES

SAVEVALUE 2,C1,XF SAVE CURRENT CLOCK TIME.

SAVEVALUE l-.l.XF DECREASE QUEUE LENGTH BY 1

ADVANCE 135,FN9EXP2 EXPONENTIAL SERVICE TIME
* TAKEN TO SERVICE TIME

RELEASE 1 RELEASE SHOPKEEPER

QUEUE 2 ENTER THE 2ND QUEUE

SEIZE 2 GET SHOPKEEPER2 WHEN HE'S FREE

DEPART 2 LEAVE THE SECOND QUEUE

ADVANCE 135,FN$EXP2 EXPONENTIAL PROCESSING TIME

RELEASE 2 RELEASE SHOPKEEPER2

TERMINATE

*************** ***************
* DATA COLLECTION *
* THE QUEUE STATISTICS OF THE FIRST QUEUE ARE COLLECTED *

* AND PASSED INTO THE FORTRAN SUBROUTINE FOR CALCULATING *
* THE RUN LENGTHS ABOUT THE MEAN AND THE TOTAL NUMBER OF *
* RUNS. THIS IS USED TO DETERMINE WHEN STEADY STATE BEGINS*******************************

78

Appendix 6 (contd.)

GENERATE 3 600 CREATE 3600 SECONDS

SAVEVALUE 4 ,XF3/3600 ,XF STORE AVERAGE QUEUE LENGTH

PRINT 1,4,XF PRINT THE HOURLY AVERAGE QUEUE LENGTH

HELPB RUN2,4 CALL FORTRAN SUBROUTINE TO CALCULATE
* THE MOVING AVERAGE OF THE QUEUE LENGTH, TOTAL NUMBER OF RUNS
* AND THE LENGTH OF EACH RUN

SAVEVALUE 3,0,XF SET QUEUE LENGTH TO

TERMINATE 1

*

*

START 200 RUN FOR 200 HOURS

END

79

Appendix 7

C* A********************, *****
C* SUBROUTINE TO CALCULATE THE TOTAL NUMBER OF RUNS *

C* AND LENGTH OF EACH RUN ABOUT THE MEAN. IF THE *

C* TOTAL NUMBER OF RUNS IS 4 OR MORE THEN THE SYSTEM *

C* IS SAID TO BE IN UNSTEADY STATE. THE LENGTH OF *

C* THE LONGEST RUN IF GREATER THAN 4 IS ALSO USED *

C* USED AS A CRITERIA FOR THE UNSTEADY STATE. »

C* THIS SUBROUTINE IS CALLED 200 TIMES BY GPS3 *

C* ***************************
SUBROUTINE RUN2(IX)

C* PARAMETER PASSED IS SAVEVALUE XF4 FROM THE MAIN PROGRAM

REAL MEAN (200)

INTEGER A(200) ,PTCT(10) ,RUNCT(200) ,H,G

C* INTEGER I INITIALIZED TO 1

INTEGER 1/1/

C* THIS SUBROUTINE IN ASSEMBLY LANGUAGE HAS TO BE THE
C* THE FIRST EXECUTABLE STATEMENT IN ANY FORTRAN CODE
C* THIS CODE IS IN THE FILE FTINIT ASSEMBLE A AND THE
C* COMPILED VERSION IS IN THE FILE FTINIT TEXT A
C* FTINIT IS CALLED ONLY THE FIRST TIMETHOUGH THE
C* SUBROUTINE IS CALLED 200 TIMES BY THE GPSS PROGRAM

CALL FTINIT

C* THE SAVEVALUES PASSED INTO THE SUBROUTINE IS STORED
C* IN THE ARRAY A(I)

A(I)=IX

1 = 1 + 1

C* IF THE VALUE OF I IS LESS THEN 200 THEN RETURN
C* TO THE MAIN PROGRAM

IF (I.LT.200) RETURN

C* THESE STATEMENTS WILL BE EXECUTED ONLY IF 200 VALUES
C* ARE IN THE ARRAY

N = 199

G = N - 9

DO 10 1*1,0*1

SUM =

H = I + 9

Appendix 7 (contd.)

DO 20 J = I,H,1

C* ADDING 10 ELEMENTS IN THE ARRAY

SUM = SUM + A(J)

20 CONTINUE

C* CALCULATING THE MOVING AVERAGE
MEANCI) = SUM/10

10 CONTINUE

DO 30 I = l.G.l

K = 1

KSUM K

PTCT(K) = 1

RUNCT(I) = 1

H = I + 8

DO 40 J = I.H.I

C* COMPARING THE VARIOUS VALUES IN THE ARRAY TO DETERMINE
C* TOTAL NUMBER OF RUNS ABOVE AND BELOW THE MEAN AND THE
C* RUN LENGTHS OF THE VARIOUS RUNS ABOUT THE MEAN

IF C((A(J).GT.MEANCI)).AND.(A(J+l).GT.MEAN(I)n.OR.

* ((A(J) .LT.MEAN(I)).AND. (A(J+l) . LT . MEAN(I))) .OR.

* ((A(J).EQ.MEAN(I)) . AND. (A(J + l) . EQ. MEAN(I)))) THEN

C* INCREASE THE LENGTH OF THE CURRENT RUN BY 1

PTCT(K) = PTCT(K) + 1

ELSE

C* INCREASE THE TOTAL NUMBER OF RUNS BY 1

RUNCT(I) = RUNCT(I) + 1

K = K + 1

KSUM = K

PTCT(K) = 1

81

Appendix 7 (contd.)

ENDIF

40 CONTINUE

IF (PTCT(K).LT.4) .AND. (RUNCT (I) .GE. 4)

WRITE(6,21) I+g

21 FORMAT (IX, "STEADY STATE BEGINS AFTER' , 15 , 'HOURS
'

)

RETURN

ELSE

WRITE(6,*)'NO STEADY STATE EXISTS IN THE PROBLEM'

30 CONTINUE

C* RETURN TO THE GPSS PROGRAM
RETURN

END

HZ

Appendix 8

(This is the assembly language code called FTINIT ASSEMBLE A

that has to be complied and CALL FTINIT must be the first

executable statement in the FORTRAN subroutine. The file

called FTINIT TEXT A is created when the program called

FTINIT ASSEMBLE A is compiled.)

FTINIT CSECT

USING FTINIT, 15

CLI NOTFIRST,0

BNER 14

MVI NOTFIRST,l

STM 13,14,SAVE1314

L 13,4(0,13)

L 15,=V(VSCOM#)

BAL 14,64(0,15)

USING *,14

LM 13,14,SAVE1314

BR 14

SAVE1314 DS 2A

NOTFIRST DC X'00'

END

8.1

Appendix 9

(This is the JCL necessary foe running the GPSS program with

a HELP block calling an external FORTRAN subroutine. The

GPSS/H program is called H2 GPSS A and the FORTRAN

subroutine is called RUN2 FORTRAN A. You may change the

GPSS/H program name and the FORTRAN subroutine name

depending on the names used by you. They would have to

accordingly changed in the JCL.)

//*++ PRINT VMMSG SERVICE * TIME 0,10 EXPAND

// EXEC FORTVCL

//SYSIN DD *

//*$$ INCLUDE RUN2 FORTRAN

//LKED.SYSLMOD DD DSN=&&TEMPLIB(RUN2) ,DISP= (NEW, PASS)

,

// SPACE=(CYL,(1,1,1)),UNIT=SYSDA

// EXEC GPSSH

//STEPLIB DD

" DD DSN=SYSl.VFORTLIB,DISP=SHR

//HELPLIB DD DSN=&&TEMPLIB,DISP=(OLD,KEEP

)

//SYSIN DD *

//*SS INCLUDE H2 GPSS

H4

Appendix 10

Quantiles of the Wald-Wolfowitz Total Number of Runs

and Length of Longest run for 10 data points

This is the part of the table taken from Practical

Nonparametric Statistics and total number of runs required

and the maximum length of the longest run permitted for a

completely random distribution is calculated according to

the formula:

W 2mn + 1 + x / 2mnl'2mn-m-n ,

i

m+n P* (m+n)"" (m+n+1)

The formula is used to fill out points combinations not

covered by the table, and the value of x is the standard p
p

quantile of a standard normal random variable. The m's and

the n's represent the aboves and the be lows about the mean

respectively.

m

2

n

8

Total Number
of runs(w)

.05
4

Length of
longest run(w)

.05
4

3

4

5

7

6

5

4

4

4

4

4

4

[Conover, p. 414, 1980]

as

Appendix 11

On Using the Help block

The use of the help block in GPSS is a fairly complicated

procedure and the attempt here is to describe the use as

simply as possible. There are basically three types of Help

blocks used in Fortran. They are HELPA, HELPB and HELPC

.

The key factors to remember in using any Fortran subroutine

is that:

1. The fortran subroutine name should be the same as the

file name.

2. The first excutable statement in the Fortran subroutine

should be CALL FTINIT.

3. A program called FTINIT ASSEMBLE should exist in the

memory along with a compiled version called FTINIT

TEXT. This is shown in Appendix 9.

4. The Fortran subroutine need not be compiled as

indicated in the manual if the JCL shown in

Appendix 9 is used but must be compiled for running the

program in CMS. It is recommended that using CMS

should be the preferred alternative when using

external Help routines. In the program shown it may be

necessary to type in the command

filedef 6 disk fn ft

86

Appendix 11 (contd.)

where the filename and the file type are different from

the output of GPSS. Otherwise the output is produced

on the screen. Care should be taken to not name the

filename and filetype the same as the output file of

the GPSS program as this may cause problems. It must

also be remembered that the JCL must be contained in a

seperate file and to run the GPSS file the JCL file

must be run. It may also be noted that the JCL file

we include RUN2 FORTRAN the H2 GPSS which are my file-

names. These may be replaced by the filenames used

by the person running the GPSS program with a FORTRAN

include file.

5. It is not possible to pass values from one Fortran

subroutine to the other by using C0MM0N/BLK1. It may

be necessary to call a subroutine as many times as

necessary. The cost of calling a program in terms of

computer time can be reduced by having a LOAD statement

immediately subsequent to the SIMULATE statement.

6. Any errors in the FORTRAN subroutine complicates the

process of running the GPSS program and extreme care

must be taken to ensure that the FORTRAN program to be

included is running as required independently.

87

Section IV

References

References

Bobblier, P.A.,Kahan, B.C., and Probst, A.R., (1976),

Simulation with GPSS and GPSS V, New Jersey: Prentice

Hall.

Conover, W.J., 1980, Practical Non-Parametric Statistics,

New York: Johm Wiley & Sons, pp. 340 - 371.

Conway, R.W. , 1963, Some Tactical Problems in Digital

Simulation, Vol. 10, No. 1, pp. 47 - 61.

Conway, R.W., Johnson, B.M. , Maxwell, W.L., 1959, Some

Problems of Digital System Simulation, 5th

International Convention of Institute of Management

Sciences, pp. 92 - 110.

Cooper, Robert B., 1977, Introduction to Queueing theory.

New York: North Holland, pp. 71 - 89.

Emshoff, James R. and Sisson, Roger L., 1970, Design and use

of Computer Simulation Models, London: MacMillan

Company, pp. 18 9 - 196.

Fishman, G.S., 1973, Statistical Analysis of Queueing

Simulation, Management Science, Vol. 20, pp. 363 - 369.

Greenberg, S., 1972, GPSS Primer, New York: Wiley

InterScience

.

88

Henriksen, J.O., and Crain, R.C., 1984, GPGS/H User's

Manual, Wolverine Software Company.

Kleijnen, Jack P.C., 1975, Statistical Techniques in

Simulation, Part I, pp. 85 - 200.

Kleijnen, Jack P.C., 1975, Statistical Techniques in

Simulation, Part II, pp. 451 - 510.

Kleijnen, Jack P.C., 1988, Analysing Simulation

Experiments with common random numbers. Management

Science, Vol. 34, No. 1, pp. 65 - 74.

Law, Averill M., and Kelton, W. David, 1932, Simulation

Modelling and Analysis, New York: McGraw Hill.

Ma3sey, W.A., 1984, Open Networks of Queues: Their Algebraic

Structure and Estimating their transient behavior.

Advanced Appled Probability, Vol. 16, 176 - 201.

Pidd, M., 1984, Computer Simulation in Management Science,

Chichester: John Wiley & Sons.

Schmidt, J.W., and Taylor, R.E., 1970, Simulation and

Analysis of Industrial Management Systems, Ilomewood,

Illinois: Richard D. Irwin, Inc., pp. 59 - 91.

Sharma, S.N., 1965, Theory of Runs, Kansas State University,

pp. 1 - 20.

89

Thran, M.K., Cumulative Rank Sum Teat: Theory and

Applications, Kansas State University, pp. 1 - 13A.

Wadsworth, Harrison M., Stephens, Kenneth S., Godfrey,

Blanton A., 1984, Modern Methods for Quality Control,

New York: John Wiley & Sons.

90

USING RUN TESTS TO ELIMINATE

INITIAL UNSTEADY STATE DURING SIMULATION

by

H.GOPALKRISHNA MENON

B.Sc (Met. Engg.), Sambalpur University, 1984

AN ABSTRACT OF A REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

INDUSTRIAL ENGINEERING

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1988

There are three aspects to digital simulation of a problem

once it has been identified and the model formulated, which

include the model implementation, strategic planning and

tactical planning to determine how the test runs specified

in the experimental design are to be implemented. One of

the tactical planning problems is starting the experiment

avoiding the artificial bias introduced by the starting

conditions

.

The literature currently available on the subject suggests

three techniques to overcome the initial transient:

1. Exclude data from some initial period from consideration.

2. Initial conditions to make transient as short as possible.

3. Long runs to make the starting conditions insignificant.

These result in bias to the results or we may have to use

long runs to eliminate the effects of initial transient.

For this, after simulating a problem with initial transient

state starting conditions, runs tests will be U3ed to

determine when steady state is reached. The problem of

single server queue problem with 95% utilization rate waa

used. Considerable difficulties were faced and the problem

had to be modified to get an average queue length reaching

steady state after a few hours. The methods used are

maximum run length technique and the distribution of run

lengths. We then verify using CUSUM charts to determine

the accuracy of the methods. Finally, if the methods are

found acceptable then it may be incorporated into GPSS to

automatically eliminate the initial transient.

