GAS FLOWS IN TUBES WITH CONSTANT HEAT. FLUX AND WITH
CONSTANT RATIO OF WALL AND STAGNATION TEMPERATURE

by
YI-AN CHEN

B. 5., Taiwan Cheng Kung University, 1965

Yo leo? ¥

A MASTER'S THESIS

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1972

Approved by:

% /mg , \/44//

Major Professor




NOMENCLATURE

INTRODUCTION

METHOD OF ANALYSIS

FUNDAMENTAL EQUATIONS .

ANATYSIS

CASE I CONSTANT HEAT FLUX

e e ve o0

TABLE OF CONTENTS

LR IR

LI RN N B N )

CO I N BN B

% 8 6% 6 8 A E B AN E LD SRS BAS

a0 e v a0

LI B S R R Y B A B

LR N I B R R )

ee P A A Rt e S

¢t e e PO B EN AN

LI I IR R B B B A

LR B IR A O B ]

CASE II CONSTANT RATIO OF WALL TEMPERATURE AND STAGNATION

NUMERICAL EXAMPLES

EXAMPLE I CONSTANT HEAT FLUX cassene

TEMPERATURE  ...icievvccassnnes

c e B8 ee e

LRCEE BN N R R S )

LR N I R RE DR O RO B R B LR BRI L

EXAMPLE II CONSTANT RATIO OF WALL TEMPERATURE AND STAGNATION

DISCUSSION

- CONCLUSIONS

ACKNOWLEDGEMENT

REFERENCES

APPENDICES

APPENDIX A
'APPENDIX B

APPENDIX C (GRAPHS)

e 0w

TEMPERATURE

--------

LR R B B Y Y B R BB I B B R BRI I LY R A ]

IR N I L B B

LI Y

LU BRI S L

B 8 e S8 SN EE L0 ENEDEES RS

s T et e eBERERBEOPEBE SRS se s B e a0

LR SO B R B R B BN B ]

LR BT AU B AN O NN )

® 50 B0 BB BEIRPE BSOS

NI N I B B BB N R B I I ]

CEUEE R S A SRR SRR B T O U B B B ]

(IR I O BN R A A AT I B N R R I

LR A B I B I R O LR

*ra s

LRI I I B

[ A N NN

LRI IR I ]

sseses e et

LR B RN B RO IR B B

SO PP E R EEAER TSNS

L I I B

4B e B e EE s

I1

v

10
14

14

17
19
22
24
25
26
26
28

30



CONSTANT HEAT FLUX

Fig.
Fig.
Fig.
Fig.

Fig.

CONSTANT RATIO OF WALL TEMPERATURE AND STAGNATION TEMPERATURE

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

%
III T°/To - M Diagram

1 T/T"
II  T/T
IV n
v o1,/

*
VI T,/T,

LIST OF FIGURES

- (s - s*)/R Diagram ,.

M

*
VII T,/T,

e * .
VIII TolT0 - plp Diagram ....

IX p/p* - M

M  Diagram

Diagram

- iﬁax .Diagram

LR I I

“ 5 e

.

LI B R R N

L]

"o s aw e

LRI R IR S IR I I B R B U R B IR N B A

iﬁax Diagram (heating) rerecetetetnens
Xax Diagram (heating and cooling) .

Diagram

X T/T* - p/p* Diagram

XI T/T*

*
XIT TO/To - M Diagram

O A I B N B )

(s - s*)/R Diagram .

XIII T/T® - M Diagram

XIV n

M

Diagram

T R B A RN A B A B

LRI I B

TN A B |

ERE N B IR B N A B B I )

LSRR IR SR B )

LU )

.

III

31
32
33
34

35

36
37
38
39
40
41

42

43

44



Iv

NOMENCLATURE

dimensionless parameter, defined by eq. (28)

or dimensionless constant, a = (k-1)/2

dimensionless parameter, defined by eq. (27)

or dimensionless parameter, b = (;w7+ 1)k/(qw - 1)

tube cross-sectional area, ft2

tube wetted area, ft2

constant-pressure specific heat, BTU/slug-R

con;tant—volume specific heat, BTU/slug-R

equivalent hydraulic diameter, D = 4Ax/Aw, ft

expansion efficiency, defined by eq. (A-2)

local friction coefficient, defined by eq. (18), dimensionless
mean value of friction coefficient

mass velocity, slug/sec—ft2

coefficient of convective heat transfer, BTU/sec—ftz-R
mechanical equivalent of heat, 778 ft-1bg/BTU

ratio of specific heats, k = Cp / C,

length of flow passage, ft

maximum length for continuous flow, ft

dimensionless term, defined as m = M2
Mach number

thermodynamic variable for apolytropic process, dp/p + ndv/v=0

static pressure, lbf/ft2 abs.

stagnation pressure, 1bf/ft2 abs.,



fal

max

b4

max

(),
O,

heat flow per unit mass, BTU/slug

gas constant, ft-1bg/slug-R

recovery factor, defined as r = (Taw -T) / (To -T
specific entropy, BTU/slug-R

static temperature, R

adisbatic wall temperature, R

stagnation temperature, R

temperature of tube wall, R

dimensionless stagnation temperature, defined as-TO=TO/TO*
stagnation temperature at sonic section, R
dimensionless velocity, defined as U2 = v2 / aRTo*
specific internal energy, BTU/slug

axial velocity, ft/sec

specific volume, ft3/slng

work per unit mass, ft—lbf/slug

rate of mass flow, slug/sec

tube length, ft

dimensionless length, defined as x = 4fx/D

maximum length for continuous flow, ft

dimensionless length, defined as X . = Afxmax/D
Subscripts

signifies property at initial section

signifies property at a section other than the initial
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Superscript
gignifies properties at sonic state
Greet Letters

density, slug/ft3
defined by eq. (A-3)

wall shearing stress, lbf/sq.ft.



INTRODUCTION

Gas flow in tubes is a complicated problem. This subject has been
analyzed by many investigators. Shapiro and Hawthorne (2) first presented a
generalized equation of one-dimensional flow of a compressible fluid within a
tube including the effects of:

1 change in tube area,

ii wall frictionm,

iii  drag of internal bo&ies,

iv  external heat exchange,

v  chemical reactlon,

vi change in phase of the fluid,

vii change in molecular weight and specific heat.
Unfortunately, no exact solution has been found for the general case.

Noyes (3) presented an exact solution of compressible flow in a constant-
.area tube with the combined effects of friction and heat transfer for the case
of constant heat flux.

Analysis of gas flow in tubes for various conditions has been undertaken
in the Department of Mechanical Engineering, Kansas State University, Manhattan,
Kansas under the direction of Professor Wilson Tripp. Chen (6) presented three
cases of subsonic heating for gas flowing in a constant-area duct; constant
heat flux, constant wall temperature and exponential longitudinal fluid tem-
pefature distribution. Chang (7) presented polytropic gas flow in a constant-
area duct under the simultaneous effects of friction and heat transfer.

This thesis presents some aspects of this general analysis. It contains



two exact solutions for the cases of a perfect gas flowing in a constant-area
duct with the effects of heat transfer and friction. One is for constant heat
flux per unit length along the duct. The other is for constant ratio of wall
temperature and stagnation temperature along the duct based on the assumptions
of validity of Reynolds analogy and the recovery factor being unity. The case
of constant heat flux oniy includes heating for both subsonic and supersonic
processes, It is also shown in the text and graphs that fhe Fanno-line
process and Rayleigh-line process are two particular cases in each of the
aforesaid two cases.

Besides the investigation of the usual properties of fluid along the
passages for various flow conditions, the apolytropic variable "n" ( defined
by dp/p + ndv/v = 0 ) and the entropy changes are also surveyed. The develop-
ment of the apolytropic variable "n'" is presented in the Appendix A which is
a part of the analysis under the direction of Dr. Wilson Tripp.

Two numerical examples are presented which show that the changes of
properties along the passages are readily found from the graphs. In additionm,
the solution of the examples demonstrates the technique of using the equations

‘in the thesis to solve practical problems.



METHOD OF ANALYSTS

The thermodynamic characteristics and the properties of the perfect gas

are considered for flow in tubes under the simultanecus effects of fluid-flow

friction and heat transfer. The differential equations which describe the

general case of gas flow in tubes can not be integrated. For some special

cases these differential equations can be integrated. For the two special

cases investigated iIn this thesis ( constant heat flux and constant ratio of

wall and stagnation temperature ) the equations are integrable.

The following assumptions are made:

i

The flow is steady and one-dimensional, i.e. all properties are
uniform over each section,

Changes of stream properties are continuous.

The fluid is a perfect gas, i.e; the perfect gas eﬁgations are
applicable, specific heats are constant.,

Body forces are negligible.

The flow passage Is a constant-area tube.

Heat transfer is instantaneous and complete in the radial

direction with no heat transfer along the tube axis,

FUNDAMENTAL EQUATIONS

The fundamental principles used are expressed in the following list:

i

i1

iid

equation of state for a perfect gas,
law of conservation of mass,

law of conservation of energy,



iv Newton's second law of motion.
ANALYSIS

The state equation for a perfect gas is
p =f’ RT or pv = RT : (1)
and its logarithmic differential form is
Idp/p = df/f + dT/T
or dp/p + dv/v = dT/T . (2)
The equation of conservation of mass is
G = w/A ={fV = constant ‘ - (3)
or in logarithmic differential form is
af/f + av/v = 0
or -dv/v + dV/V = 0 . (4)

The Mach number is

or in logarithmic differential form is

a? / M2 = av? / v2 - ar/T . . (6)

The energy' equation for an adiabatic process is

V2 + ZCPT = constant . ' T . (7

The definition of stagnation temperature is

W2
To-—V/ZCp+T. | (8)

Combining equations (5) and (8), one obtains

k-1
T =T (1+ —— M2) (9)
° 2



and its logarithmic differential form is

k-1

B )
T T PR )
° 1+—3 . (10)

The thermodynamic variable, n, for the apolytropic process is given by

48, 4 ST o 0 or S n ~%§1 = B

P v P . (11)
Combining (11) and {2) , one obtains
_ n dT dp
n-1 T+ P o, (12)

Eliminating the terms of V and from equations (1), (3) and (5), one

2
obtains do 1 dT dnf

s T TR (13)

Combining equations (12) and (13), we obtain

2
dT n-1 dM
T n+1l M2 .

(14}

The control surface for the flow with friction and heat transfer is shown

da /— control surface

p+dp, T+
‘ V+ av

) in Figure. I.

P,T,V

f+ af, M + M

|

gt --
)

M

(M

!
]
|
|
|
1
i
dx l

Fig. I Control surface for analysis of diabatic, frictional and

constant-area flow.



The energy equation is

o2
v
dQ = C T + ) =
Substituting CP = —E_E—I_ R and equation (5), one obtains
dT dT k-1 2
o — 2 dV
= + M 2
T T 2 v (16)
The momentum equation is
fAVAV + Adp +T,dA =0 an
The definition of the friction coefficient is
f:...._’tv_g..___._
1 2
—— V L]
7 f (18)
The definition of hydraulic diameter for a circular pipe is
D= 4A
= dAW/dx (19)

.

2 2
Combining equations (16), (17), (18) and the relation of £V = kpM, one

O'I-D tains 2 ' 9 2
dp kM dx kM dv
2

L

p Ll S | -(20)

Combining equations (2), (4), (6), (9), (16) and (20), we obtain

a’ (1+ kMz)(l'l‘ L;——-l- M2) dr kMz(1+ 1—‘-%—1—Mz) dx
M 1-M T, 1-M

D «

(21)

Equation (21) will be applied in the following two cases.



CASE 1 CONSTANT HEAT FLUX

Constant heat flux means that the rate of heat transfer per unit length
of the tube is constant, i.e., the change of stagnation temperature along the
flow passage has a linear relation with its length. This case can be realized

by wrapping resistance wire uniformly around the tube.

Let
- % _ 4 _ =
To - To/To 1 axmax (22)
and _ _
dx = - dXp., = 4fdx/D (23)
Let
dT,, dT 1 4T
a= - —— = — = — 2 (24)
i S dx To dx 1
|
and 2k
b=——— (25)
a(k + 1) .
Substituting equation (2) into equation (16), one obtains
av? + 2R(@dT + Td€/F) - VEEK . =0 . (26)
In a manner similar to the development used by Noyes (3), let
v? = bv2/kRrT* (27)
(when M = 1, V% = kRT* i.e. U*2 =1), and let
v2
vl = ” (28)
aRT



Combining equation (9) with equation (27), one obtains
T, = T+ (k - 1)U%T*/2b, (29)
Introducing TQ* = (k + l)T*/2 into equation (29), one obtains

k-1 U2 x+1

%
T/T = (T, ~ —_ ) (30)
k+1 b 2
or in logarithmic differential form
« k+1l k -1
dr/1* = ———dT, - ——— dav? . (31)
2 2b

Combining equations (26), (27) and (31), and simplifying, one obtains

= 2 2
max Xmax U® -b (32)
qu2 w22 + 2) abUu2(u? + 2)

Equation (32) is a typical linear differential equation of first order of

the form
dy/dx + py = Q : (33)

where p and Q are functions of x only.
jbdx '

The solution of equation (33) is
fpdx jpdx
ye = Qe dx + ¢ .

Following the above procedure, equation (32) in integrated to (detail of

The integration factor is e

integration shown in Appendix B)

{1+ 2/b 1 b(1+ 1/b+/1+ 2/b)
+ In
v 1+ 2/02 b1+ 22 v+ 1w+ 1+ 202y,

(34)

Lol =

Combining equations (22) and (34), one obtains



_ 1+ 1/b BL+1/b+ 1+ 2/b)
T =

(35)
o
YT I Fy U2(1+1/U2+,/1+2/U2) :
The integration limits are from the sonic section to any arbitrary
2 k2 2 _ .2 e T =%
section, i.e, U" =U “ =D to U U® and Xmax =0 to Xmax Xmax

Combining equations (27) and (9), we obtain

M = (36)
k+1.— k-1 2 .
7 b, - —5— U

Substituting equations (22), (23) and (24) into equation (21), we obtain

k-1 ) k-1
5 (1+w2) (1+ ——u%) Q1+ M
dM S 2 To| dT
= - - + — | —
M2 1 - M2 1 - M? a T, .
(37)
Substituting equation (10) into equation (37), one obtains
2 a(l - M2) + a (1 + ) + KT M2
= - (38)
n+1 k-1 5
a+ M%) [a(l + kM2) + KT M°] .
. 2 -
For a =20
— *
then Ty = Tefly, = I,
which is the case for the Fanno line; equation (38) will reduce to
n=1+ (k-1M . (39)
For
a —i= 0

then
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which is the case for the Rayleigh line; equation (38) will reduce to

n=kM" . (40)
CASE 1II CONSTANT RATTIO OF WALL TEMPERATURE AND STAGNATION TEMPERATURE

In this case the ratio of local wall temperature of the tube and the
local stagnation temperature inside the tube is a constant everywhere along
the flow passage. Heat exchangers, such as an air preheater in the furnace
of a steam power plant, arranged so that the air and stack gases are in counter
flow are examples of this case,

Referring to Figure I, the energy equation can be written as
- D
wdQ = z D fVdeTo

=nhDdx(T, - T_) . (41)

aw

The definition of the recovery factor is
¥ = (Taw =BTy =1

Assume that r = 1

then Tow > T, »

dT 4h dx
- (42)
Te =T, f’vc? D . .
From Reynolds analogy (p. 243 of Reference (1)), one obtains
h/{ve, = £l : (43)

Substituting equation (43) into equation (42), one obtains



Defining

ty = T/,

equation (44) can be rewritten as

2 dTo

ty -1 T

4fdx/D =

Substituting equation (46) into equation (21), one obtains

1 - M2 G

1+ (k - DMY2 M2

Defining
m = M2
a=(k~-1)/2
b = (tw + 1)k/(tW - 1)

= [1+ kM2(1 +

11

(44)

(45)

(46)

(47)

(48)

(49)

(50)

and substituting equations (48), (49) and (50) into equation (47), we obtain

l1-m dm
= (1 + bm) dT /T
1+ am m oo
Integrating, one obtains *
i T
(1 - m)dm dr,
m(l + am) (1 + bm) To
m To

where the integration limits are from an arbitrary section to the sonic

section.
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By the above integration, the following equation is obtained

l+a
¢ 1+ a a-b
To - m 1l + am )
T * = 1+ b
1+ bm (51)
Substituting equation (9) into equation (51), we obtain
l+ 2a - b
14+ a a-b>b
* - m( 14 am)
T* 1+b
(Ltb, Ta-b .
1+ bm (52)

Combining equations (1), (3) and (5), the following equation is obtained:

1
#_ 1 T
pip B == (e
M T

Substituting equation (52) into the above relatiorn, one obtains

l1+2a-b
1+ a 2(a - b)
P - (l-l-am)
* T 1+b
P 1+a)2(a-b) .
T5om (53)

From the thermodynamic relation

* T P
s -5 = C, 1n - R In
i
. T* P (54)

and substituting equations (52) and (53) into equation (54) , we obtain

2a + 1 {1+ a)(1 + 2a - b)
* 2a 1+ a, 2a(a - b)
8~ _ n (l+am)
R = In (1 +a)(1+ b)
(b'l“l)Za(a—b)
1+ bm * (55)
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Substituting equation (14) into equation (47), obtains

20 (1-¥D) - [1+ (- DML + ke 4 2/ (e - 1))
- — (56)
n-1 (1 - M2) - [(k - DMZ/2][1 + M2 + 2%/ (e, - 1)]

For the case of tW 1

we get the Fanno-line process; equation (56) becomes

n=1+ (k-1 ., | (57)

For the case of tWr —

we have the Rayleigh?line process in which the effect of heat transfer is
large and the effect of friction can be neglected.

Equation (56) reduces to

n = kM2, (58)
Equations (57) and (58) are the same as equations (39) and (40),

respectively.
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NUMERICAL EXAMPLES
EXAMPLE 1  CONSTANT HEAT FLUX

Air is flowing steadily in a constant-area smooth pipe, diabatically and
frictionally, under the effect of constant heat flux. The inside diameter of
the pipe is one inch and the friction factor 4f = 0.015. The specific heat
ratio k = 1.4. At one section of the pipe air is at My = 0.2, Tol = 500 R and
P1 = 20 psia. Ten feet from this section T02 = 700 R. The problem is to de-
termine all the physical properties at the‘choking section (H = 1) and at the
section where M = 0.5,

Solution:

From equations (27) and (28), we obtain

2k

b=
alk - 1)
and
1 dT0
a= —
Tg dx

Combining the above two equations we cbtain

*
. 2k To Tol B 2k Tol 1
k+1 Tol dToldx k+ 1 dTo/dx Tol
Define
2k Tol
c=

k+ 1 dT /dx

then b =¢f To1
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Equation (35) can be written as
/ 2 1+, 12
. 1 + B 1 i b( B + J1 + 5
To1= - In 1 T
1+ — b 1+ = U (l+ 5+ [l + —5
2 2 14 3 "
By 1 1 I
Substituting b = c/Tol into the above, one. .obtains
& ,1 tE2—tmu A+ ’1+—ﬁ-—§)
1 1 1
= / 2 4Inb (g +-L ’ 2.
bfl+—s—+ (f1‘+b+l+b). (11)

a% = 4F —— = 0.015 1}32 = 18

dar T 700-500 |
2 = —° = = 111.111
dx 4% 1.8 '
a = 1 dTo
¥ 4%

ar *=111.111
_ k-1 2 _
T, = Toy /(1 - S5-F 1)) = 496 R

V. = Ml kRTl = 218.45 ft/sec

1
2 MART M2KT
S N e M i A
17 arr*  aRT,*  111.1IR
o
T
ek ol _ =525

CTR+1ar/aE

Substituting the known values Ul and ¢ into equation (ii), one obtainms

e 2 1, 72 =1s.
b 1+-—-b—-{-1nb(l+.-.5—-f- 1+ b) 16.44



Solving the above equation by trial and error we cobtain
b = 12,2

and

THP. -
a= g = 0.09556

With the heat parameter "a'" obtained, the other values may be readily

found from Figures I-Vof Appendix C

At M1= 0.2
T
ol = .43 ST, = 1162.7 R
o B
T
1 - o.512 . T = 968,09 R
&
T -
p1 &
== 3.5775 ,. p = 5.59 psia
P
8 - S*
1 -
0 = -3.618
— . - T
4L /D = 5.964433 Ly =33.13
: ‘ %
ny = 0.1627 n = 1.4
From Figures I-V of Appendix C
= 0.5
At M2
T s . R
92 - 0.921 . T, =1070.85 R
T * LI o2
o]
T, V
- 1.0528 S, T, = 1020 R
T * 2
1
P2
+—= 2.052 S P T 11.47 psia
P
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(52 - s*)/R = - 0.538

= =i ¥
4f LmaleD = 0,824 Lmaxz = 4,58

n, = 0,812
(sy ~ sl)/R = 3,08

Xg = % = Lmaxl - Lmaxz = 5,14D/4f = 5.14/(12 x 0.015) = 28.55'

EXAMPLE IT CONSTANT RATIO OF WALL-STAGNATION TEMPERATURE

Ailr is flowing steadily in a constant-area tube with friction and heat
transfer for the case of constant ratio Ef wall temperature and stagnation
temperature. The inside diameter of the pipe is one inch. At one section of
the pipe air is at Ml = 0.2, To1 = 500 R, ?Wl = 750 R and Py = 20 psia. The
problem is to determine all the physical properties at M2 =0,5, and M = 1
where the flow is choked,

Solution:

Asgume that Reynolds analogy is valid and the recovery factor is unity.

The ratio of wall temperature and stagnation temperature is

ty = T,y/T,, = 750/500 = 1.5
At
M, = 0.2
k-1,
Ty =Ty, / (14 M) = 496 R

2
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From the working charts (Figures VI to XIV) the following data are obtained:

T
—oL = 0.335 roT)=1492.5 R
TO
T, x
Pl . %
—3— = 3.1575 . J.p = 6.33 psia
P
*
n1= 0.152 n = 1.4
s - S*-
1 =~ 4.3674
R
L 1 '
4 —RBEL = 4,375 L = 24.30'
D maxl
At M, = 0.5
To2
0% = 0.8576 ST . = 1280 R
iy e o2
(o]
T2 . e %
~—=0.98 J.T. = 1219 R
2 +
T
Pa
+ ~ 1.9801 B = 12.534 psia
P
& s
s - 8 s -
2 - x 2 1 .
= — -0.7533 = Z3.6141
. = 20.89"
o I‘1—?. - Lmaxl - L'max2 - '
n, = 0.65

2
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DISCUSSION
CASE T  CONSTANT HEAT FLUX

In this case the sonic section is used as a reference. Figures I to V
show a family of curves for various values of the heat parameter "a"., If a
problem is given, such as example I in this thesis, the friction coefficient
and the rate of heat transfer are known, the heat parameter "a'" will be fixed,
and all of the properties can be found from the plotted curves.

Noyes (3) preseﬁted an exact solution for constant heat flux in 1961,
He selectéd an arbitrary numerical valug of the initial Mach ﬁumber, Ml’ as a
reference and from this selection calculated the properties at other sectioms.
He defined T; = T /T,y = 1 + mx, where "m" is Noyes' heat-flux parameter and
T,1 is the value of T  at the arbitrarily selected initial Mach Number, My. By
this method he constructed a chart of local Mach Number, M, ver;us the
friction-distance parameter, 4?&/D, in which there were two families of curves
for the heat flux parameter, m; one family of curves for k = 1.4 and the other
for k = 1.3 . If My is chosen to have a different numerical value, the
numerical value of the heat parameter, m, will change and another chart must
be constructed for this new value of Mj. The heat parameter "a" presented in
this thesis is a fimction of friction coefficient and rate of heaﬁ transfer,
In this thesis Figure V is (similar to Noyes' chart) a plot of the local Mach
Number, M, as a function of the friction-distance parameter 4fLmax/D, except
Noyes' uses 4fx/D and this thesis uses Afiﬁaxln . However, a Noyes' chart is

good for only one value of the initial Mach Number, M, while Figure V in
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this thesis applies for all values of M;. It may be considered that the exact
solution for the case of constant heat flux in this thesis is an improvement

over Noyes' method.
CASE IT  CONSTANT RATIO OF WALL TEMPERATURE AND STAGNATION TEMPERATURE

Assumptions of unity of the recovery factor and validity of Reymolds
analogy were made for this case. The unity of recovery factor gives
simplification to this problem. The Reynolds analogy gives the relation between
the convective heat transfer coefficient "h" and the friction factor, "f".
With these assumptions equation (21) is simplified to equation (47), which is
then integrated to form equation (51).

All the properties of the fiuid along the flow passages are shown in
Figures I to XIV. From the figures it will be seen that the heating process
for constant heat flux, for both subsonic and supersonic regions, has the same
chﬁracteristics as the case of constant ratio of wall temperature and
stagnation temperature. In both cases the processes are the combination of
Fanno and Rayleigh processes. Fanno and Rayleigh processes are two particular
"processes in this thesis. When the value of the heat parameter "a" is zero,
the process is a Fanno-line process. As the value of the parameter increases,
the effect of heat transfer will increase. When the heat transfer effect
approaches infinity, the friction still exists but fecomes negligible and
ﬁhe process may be treated solely as a heat transfer process without friction;
i.e. Rayleigh-line process. When the value of t, of case IL is unity, the
process will be affected entirely by friction. The process then will be a
Fanno-line process. When the value of t, is larger than unity, there is a

heating process. When t, is smaller than unity, it is a cooling process.
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When t, is infinite, the process will be a Rayleigh~line process because the

friction, by comparison, will be negligible.
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CONCLUSIONS

Two theoretical exact solutions were investigated for one-dimensional
compressible fluid flow in a constant-area duct under the effects of friction
and heat transfer. One is the constant heat flux process of heating, the other
is constant ratio of wall temperature and stagnation temperature. The formulas
derived for the case of constant heat flux are applicable to heating process
for both subsonic and supersonic flows. The formulas derived for the case of
constant ratio of wall temperature and staénation temperature are good for both
heating and cooling as well as for subsonic and supersonic flows, Two
éssumptions are made: the wvalidity of Reynolds analogy and the unity of the
recovery factor.

The heating procesé for constant heat flux has the same characteristics

|
as the process for constant ratio of wall temperature and stagnation temperature.
The Rayleigh and Fanno lines are two typical processes of constant heat flux
_and constant ratio of wall temperature and stagnation temperature,

Figures I and XI are T/T* versus (s - s*)/R diagrams. It can be seen
that, for both cases, the entropy increases for both subsonic and supersonic
flow to the limit of sonic section when the fluid is heated. The entropy may
increase or decrease when the fluid flow is cooling, for both subsonic and
supersonic flow, for the case of constant ratio of wall temperature and stag-
nation temperature, When there is frictiﬁp and no heat flow the entropy
increases. When there is no friction and there is cooling the entropy decreases.
If the increase of entropy owing to the existance of friction is compensated by

the decrease of entropy owing to cooling (heat out), the process is called an



23

irreversible isentropic process.

Figures IV and X1V are n versus M diagrams. It is found from the figures
that at M = 0, n = 0, except for the Fanno line where M = 0, n = 1. When M =1,
n is always 1l.4. As to heating regions (i.e. t > 1, a »0) for the two cases,
when the flow is subsonic, the values of n always increase from zero to k = 1.4
and M always increases from zero to unity (except for the Fanno-line process,
where n increases from unity to k). When the flow is supersonic, the values of
n always decrease to the value of k and M always decreases.

As regards the cooling process, for the case of constant ratio of wall
temperature and stagnation temperature, for subsonic flow, and when M decreases,
the values of n always increase from - goto zero. For subsonic flow, and when
M increases, the value of n changes from oo to k in the manner shown on Figure
XIV. In the supersonic region, M always decreases, and the values of n change
from ¢ to k in the manner shown on Figure XiV.

Figure XII represents the TO/TD* versus (s - s*j/R diagra@, on which
constént Mach-number lines, constant friction-distance parameter, Eﬁax , lines
and constant pressure lines were plotted. Figure XI is the TOITO* - M diagram
" on which constant iﬁax and constant pressure lines were plotted. These two
figures show the fluid-property changes and detalls of the process for the
combinations of friction and heat transfer that can exist for the case of
constant ratio of wall temperature and stagnation temperature.

The cooling process for the case of constant heat flux has been partially
investigated by the writer of this thesis. It is recommended that the above

case be analyzed further by those who are interested in this subject.
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APPENDIX A

Derivation of the Thermodynamic Apolytropic Process
The first law of thermodynamics for quasistatic process is

dQ = du + dW . (A - 1)
If this process is an irreversible, diabatic process for a perfect gas,

equation (A - 1) becomes

dQ = C_dT + eepdv/J . (A -2)
Defining
e, pdv/J :
§ o2t -
dQ
e, pdv/J
i.e. d = m——— (A - 4)

¢ -i
and substituting equation (A - 4) into equation (A - 2), we obtain
eepdv/J R e, pdv

= dr +

(A - 5)
¢ k-1 J )

Substituting the equation of state, RAT = pdv + vdp into equation (A - 5),
the following equation 1Is obtained
e, pdv pdv + vdp

= + e,pdv . (A - 6)
¢ k-1

Equation (A - 6) may be written as
1+ eg(k =1) (1 -1/¢) pdv+vdp =0 . (A -7

Let
n=1+e(k-1Q-1/¢),

then equation (A - 7) becomes dp/p + ndv/v =0 . (A - 8)
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If n is constant then equation (A - 8) may be integrated as
pvil = constant
which is the polytropic process, and is shown on the graphs below for the case

of a perfect gas.

n=k
" n=%@ T =+ 0
P n=1 1 (v =¢)
(T = ¢e) n=20
n=20 n=1
(p =0

=k

(s =c¢)
v s

Fig. IT p - v and T - s diagrams for polytropic processes.

If n is a variable then equation (A - 8) can not be integrated as shown

above and the process is an apolytropic process.
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- APPENDIX B
Equation (32) on p. 8 is
= m 2
X, % 2 - b
2 T 22 - 2 &~
du v2(u? + 2) abu? (U + 2) .

It is a linear differential equation and its integration factor is

du? J du? du2
o feemee—mens [ - ]
v22 + 2) -2(U2 + 2) 2u2

e = e

[In 1/@W2 + 2) - 1n 1/U%]

w B 1+ 2/u2 .

Equation (B - 1) is integrated as

_ ' w2 - b) 1+ 2/0% qu?
X }1+2/u2 = : # @ (8 - 2)
max

abUZ(U2 + 2)

W2 -1b) 1+ 2/ av?

where 2
abU2(U* + 2)
1 24y 1 2du’
- = oo ® - 3)
ab (U + 2)1/2 a vr@? + /2

From equation (200,10), p. 50 of Reference (12), we obtain
1 2du? 1

: = — 21n[U0 + (U + 2)
ab (U% + )1/2 ab

1
= — m2v?@ + 102 + } 1+ 2/u%) . (B - &)
ab

1/2 1
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From equation (222.01), p. 55 of Reference (12), one obtains

1 au?

B :
2 2
= - — [(U* + ) /U
vZ? + 2)1/? a;/

1
= - — [142/U% ., (B - 5)
a &

Substituting equations (B - 4) and (B - 5) into equation (B - 3), then

substituting this combination into equation (B - 2), we get

= 2 L o, g 2 1 2
xmax’1+2/u . — 1n2U(1+1/U2+/1+2/U)+—-—1+2/U +c
ab a

(B - 6)

In equation (B - 6) the constant of integration, c, is obtained by letting

U2 = U*2 =b when X =0,
. max

When this is done equation (B - 6) becomes

|
_ fl + 2/b 1/b b(1+ 1/b + /1 +2/b)
1-ax = + 1n 5
max ﬂ 1+ 2/u? }1 + 2/u2 v+ 1702 + [1+ 2/v%)

B-7
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APPENDIX C
GRAPHS

All curves plotted are based on air, i.e. k = 1.4, R = 53.35 ft-1b./1b R,

gravitational acceleration = 32.174 ft/secz.
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CONSTANT HEAT FLUX LINES
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ABSTRACT

No general solution can be found for one-dimensional steady flow of a
compressible fluid flowing in a constant area duct with the simultaneous
effects of friction and heat transfer. This thesis presents two exact
solutions for two particular cases of fluid flow; one is constant heat flux
for heating, for both subsonic and supersonic flow. The other is constant
ratio of local wall temperature and local stagnation temperaturé.of the fluid
along the flow passage. The validity of Reynolds analogy and the unity of
recovery factor are assumed for the case of constant ratio of wall temperature
and stagnation temperature. This thesis is an extension of Chen's (5) and
Chang's (6) research, as well as a part of the research of the Department of
Mechanical Engineering, Kansas State Univeésity,-Manhattan, Kansas under the
direction of Dr. Wilson Tripp.

The investigation of the two exact solutions were expressed in detail in
‘the thesis. In addition, all the properties of the fluid along the flow passage
were plotted. The ratio of the wall temperature and stagnation temperature,
"t,', and the heat parameter "a" ( which is proportional to the rate of stég—
nation temperature increase with tube length.) for the case of constant heat
flux are functions of friction and the rate of heat transfer.

If a gas problem is given and can be classified to either one of
constant heat flux or constant ratio of wall temperature and stagnation
temperature, then "a" or "t," may be evaluated. All the properties along the
flow passage were plotted in the thesis.

Two numerical examples were presented for the purpose of showing the



application of the derived equations. Besides the usual properties of the
fluid, the thermodynamic characteristics of the apolytropic variable, n,

( defined by dp/p + ndv/v = 0 ) along the flowing passage have been investigated

and plotted.





