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Abstract

Herbicide efficacy is known to be influenced by temperature, however, underlying mecha-
nism(s) are poorly understood. A marked alteration in mesotrione [a 4-hydroxyphenylpyru-
vate dioxygenase (HPPD) inhibitor] efficacy on Palmer amaranth (Amaranthus palmeri S.
Watson) was observed when grown under low- (LT, 25/15°C, day/night temperatures) and
high (HT, 40/30°C) temperature compared to optimum (OT, 32.5/22.5°C) temperature.
Based on plant height, injury, and mortality, Palmer amaranth was more sensitive to meso-
trione at LT and less sensitive at HT compared to OT (EDs5, for mortality; 18.5, 52.3, and
63.7 gaiha™, respectively). Similar responses were observed for leaf chlorophyll index and
photochemical efficiency of PSII (F,/F,,). Furthermore, mesotrione translocation and metab-
olism, and HPPD expression data strongly supported such variation. Relatively more meso-
trione was translocated to meristematic regions at LT or OT than at HT. Based on T
values (time required to metabolize 50% of the '*C mesotrione), plants at HT metabolized
mesotrione faster than those at LT or OT (Tsp; 13, 21, and 16.5 h, respectively). The relative
HPPD:CPS (carbamoyl phosphate synthetase) or HPPD:-tubulin expression in meso-
trione-treated plants increased over time in all temperature regimes; however, at 48 HAT,
the HPPD:$-tubulin expression was exceedingly higher at HT compared to LT or OT (18.4-,
3.1-, and 3.5-fold relative to untreated plants, respectively). These findings together with an
integrated understanding of other interacting key environmental factors will have important
implications for a predictable approach for effective weed management.

Introduction

Palmer amaranth (Amaranthus palmeri S. Watson) is a C,, summer annual, dioecious broad-
leaved plant and is the most economically damaging and troublesome weed in major crops
grown in the USA [1-5]. Increasing occurrence of herbicide resistance in several biotypes of
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this weed (dinitroanilines [6]; acetolactate synthase (ALS)-inhibitors [7]; glyphosate [8]; tri-
azines and 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibitors [9]) pose serious crop
production challenges in the USA. In addition, Palmer amaranth populations resistant to mul-
tiple herbicide modes of action have been reported [9,10].

More efficient use of herbicides is increasingly important because of the stagnation in the
discovery of new herbicide modes of action in the past decade and an alarming rate of increase
in evolution of herbicide-resistant weeds globally, leaving fewer weed control options. Thus, fu-
ture weed management strategies will deploy different herbicides with different modes of ac-
tion in sequences, mixtures, or rotations [11]. In this scenario of shifting weed management
strategies, HPPD-inhibitors (e.g. mesotrione) are viewed as vital tools for managing weeds in
various situations. [12-14]. In addition, herbicidal potential of HPPD-inhibiting herbicides has
raised interest in developing resistant transgenic crops [15]. For several reasons as stated
above, Palmer amaranth is one of the most troublesome weeds of the US agriculture [5], there-
fore, a better understanding of potential environmental factors, specifically growth tempera-
ture, which can influence the efficacy of mesotrione on its control is crucial.

Mesotrione (2-[4-(methylsulfonyl)-2-nitrobenzoyl]-1,3-cyclohexanedione) is a triketone
herbicide [16] and inhibits the HPPD enzyme, a critical component of the tocopherol biosyn-
thesis pathway that converts tyrosine to plastoquinone (PQ) and o.-tocopherol [17]. PQ is an
essential component of carotenoid biosynthesis [18] and the limited or no availability of PQ af-
fects the downstream synthesis of carotenoids, which are essential for two critical roles during
photosynthesis; light harvesting and protection against photooxidative damage [19]. Tocoph-
erol has antioxidant functions; quenching and scavenging of reactive oxygen species (ROS)
such as 'O, and OH radicals [19-21]. Thus, mesotrione treatment leads to burst of ROS pro-
duction in sensitive species.

A better understanding of how weed species respond to herbicides under changing environ-
mental conditions aids in development of viable weed management strategies. Several studies
have shown that growth temperature greatly affects herbicide efficacy [22-28]. While, studies
have reported greater efficacy of certain herbicides e.g. glyphosate, metriflufen, acifluorfen on
bermudagrass (Cynodon dactylon L. Pers.), johnsongrass (Sorghum halepense L. Pers.) and soy-
beans (Glycine max L. Merr.) under higher temperatures [29-33], few recent studies found op-
posite results with herbicides such as mesotrione [26,34]. Such findings indicate that the effect
of temperature on herbicide efficacy largely depends on the herbicide chemistry and weed spe-
cies in question. Moreover, underlying mechanism(s) of such alerted efficacy of herbicide
under varying temperatures is poorly understood and needs investigation for better manage-
ment of weeds.

In this study we demonstrate the physiological and molecular basis of differential meso-
trione efficacy on Palmer amaranth under varying growth temperatures. Mesotrione dose-re-
sponse, absorption, translocation and metabolism, and HPPD gene expression were studied in
a mesotrione-susceptible Palmer amaranth population from Mississippi, USA grown at three
[low, optimum (normal temperature during summer months in Kansas, USA and neighboring
states), and high] temperature regimes.

Materials and Methods
Plant material and growth conditions

Palmer amaranth population from Mississippi, USA susceptible to mesotrione was used to in-
vestigate the effect of temperature on efficacy of POST-applied mesotrione. Seeds of Palmer
amaranth were germinated in small trays (25 x 15 x 2.5-cm) with commercial potting mixture
(Miracle Gro, Marysville, OH, USA) and individual seedlings (2 to 3 cm tall, two-leaf stage)
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were transplanted into plastic pots (6 x 6 x 6.5-cm) in a greenhouse maintained at 25/20°C,
day/night, 60% relative humidity, and 15/9 h day/night photoperiod, supplemented with

120 umol m™* 5! illumination provided with sodium vapor lamps. After 6 to 7 days of trans-
planting, healthy uniform sized plants (~5 cm tall, four-leaf stage) were transferred to growth
chambers that were maintained at different temperature regimes; low (LT; 25/15°C, day/night),
optimum (OT; 32.5/22.5°C, day/night) and elevated (HT; 40/30°C, day/night). Light in the
growth chamber was provided by incandescent and fluorescent bulbs delivering 550 umol m™
s”' photon flux (15/9 h day/night) at plant canopy level. All the growth chambers were set to
maintain 60% relative humidity throughout the experiment. Plants were watered regularly as
needed and were fertilized one week after transplanting.

Mesotrione dose-response study

Treatments were replicated four times in each experiment and the complete experiment was
conducted two times (repeated over time) except for plant biomass.

Mesotrione treatment. Palmer amaranth plants were treated with different doses of meso-
trione when the plants were 10 to 12 cm tall (8 to 10 leaf stage). Mesotrione (Callisto, Syngenta)
was applied at 0, 3.28, 6.563, 13.125, 26.25, 52.5, 105, and 210 g ai ha™'. All treatments included
crop oil concentrate (COC, Agridex, USA) and ammonium sulphate (AMS, Liquid N-PAK;
Agriliance, USA) at 1% v/v and 0.85% w/v, respectively. Treatments were applied with a
bench-type sprayer (Research Track Sprayer, De Vries Manufacturing, RR 1 Box 184, Hollan-
dale, MN, USA) equipped with a flat-fan nozzle tip (80015LP Tee]et tip, Spraying Systems Co.,
Wheaton, IL, USA) delivering 168 L ha'at222kPaina single pass at 4.8 km hl. Temperature,
relative humidity, and light intensity at the time of mesotrione treatment were 25°C, 60%, and
10 umol m ™ s™', respectively. Following treatment, plants were returned to corresponding
growth chambers (within 30 min after treatment).

Visual injury, plant mortality, and biomass measurement. Injury ratings were based on
composite visual estimations of growth inhibition, bleaching, necrosis, and plant vigor with the
use of a scale of 0 (no effect) to 100 (plant death). For plant mortality count, plants injured 0 to
97% were considered alive and those injured > 97% were considered dead. Plant height, visual
injury, and survival count were taken at 1, 2, and 3 weeks after treatment (WAT). Plants were
clipped off at the base (~1 cm above soil surface), immediately weighed (aboveground fresh
biomass) 4 WAT. Harvested plants were collected in separate paper sacks and were weighed
(dry biomass) following oven drying at 60°C for 72 h.

Chlorophyll index and F,/F,, measurement. Chlorophyll index and F,/F,,, were mea-
sured on the middle of the upper surface of the fourth leaf from the top of the plant avoiding
the midrib. Chlorophyll index was measured using a chlorophyll meter (SPAD 502 Plus Chlo-
rophyll Meter, Spectrum Technologies, Inc., Aurora, IL, USA). A chlorophyll fluorometer
(OS-30p, Opti Sciences Inc., Hudson, NH, USA) was used to measure the photochemical effi-
ciency of PSII (F,/F,,) under light-adapted condition. Both measurements were taken at 1, 2,
and 3 WAT.

Absorption and translocation of ['*C] mesotrione

Greenhouse grown seedlings (as described above) of Palmer amaranth were moved to growth
chambers maintained at LT, OT and HT 4 to 5 days before herbicide treatment to allow plants
to acclimate. Ten to 12 cm tall (8 to10 leaf stage) plants were treated with four 2.5-pL droplets
of [phenyl-U-'*C]-mesotrione (3.3 kBq with specific activity of 781 MBq g') on the upper sur-
face of the fourth youngest leaf. Unlabeled mesotrione was added to the radioactive solution to
obtain 105 g ai mesotrione in a carrier volume of 187 L. Crop oil concentrate (COC, Agridex,
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USA) and ammonium sulphate (AMS, Liquid N-PAK; Agriliance, USA) were added at 1% v/v
and 0.85% w/v respectively as adjuvants to enhance droplet-to-leaf surface contact. After 30
min, plants were returned to the growth chambers. Plants were harvested at 8, 24,48 and 72 h
after treatment (HAT) and separated into treated leaf (TL), tissue above the treated leaf (ATL),
or below the treated leaf (BTL). Treated leaves were washed in a 20-mL scintillation vial with 5
mL wash solution (10% methanol and 0.05% polysorbate 20) for 1 min. Radioactivity in the
leaf rinsate was measured by using liquid scintillation spectrometry (LSS). Plant sections were
dried at 60°C for 48 h and total radioactivity absorbed in each plant part was quantified by
combusting with a biological oxidizer (OX-501, R] Harvey Instrument, New York, NY, USA)
and liquid scintillation spectrometry (Tricarb 2100 TR Liquid Scintillation Analyzer; Packard
Instrument Co., Meriden, CT, USA). Herbicide absorption was calculated as; % absorption =
(total radioactivity applied—radioactivity recovered in wash solution) x 100 / total radioactivity
applied. Herbicide translocation was determined as; % translocation = 100 —% radioactivity re-
covered in treated leaf, where % radioactivity recovered in treated leaf = radioactivity recovered
in treated leaf x 100 / radioactivity absorbed. Treatments were replicated four to five times and
the experiment was repeated.

Metabolism of mesotrione in whole plants

Eight 2.5-uL droplets containing a total of 7.2 kBq of ['*C] mesotrione were applied to the
upper surface of the fourth and fifth youngest leaves on each plant (10 to 12 cm tall, 8 to 10 leaf
stage). Unlabeled mesotrione was mixed with [**C] mesotrione to reach the desired concentra-
tion of 105 g ai in 187 L carrier volume as described above for the absorption and translocation
study. [*C] mesotrione and its metabolites were extracted with modification to methods de-
scribed by Ma et al. [35]. At 8, 24, 48 and 72 HAT, the treated leaves were harvested and
washed as described above for the absorption and translocation study. Whole plant tissue and
the washed treated leaves were then frozen in liquid nitrogen and homogenized with a mortar
and pestle. ['*C] mesotrione and its metabolites were extracted with 15 mL of 90% acetone at
4°C for 16 h. Samples were centrifuged at 6500 rpm (5000 g) for 10 min. Supernatant was con-
centrated at 45°C for 2 to 3 h depending on the rate of evaporation until a final volume of

500 pL was reached with a rotary evaporator (Centrivap, Labconco, Kansas City, MO, USA).
About 500 pL of extract was transferred to a 1.5-mL microcentrifuge tube and centrifuged at
high speed (13000 rpm/10000 g) for 10 min. The total radioactivity in each sample was mea-
sured by LSS prior to HPLC analysis and samples were normalized to 120 dpm pL™' (amount
of ['*C] compounds) by diluting the samples with 50:50 (v/v) acetonitrile:water.

Total extractable radioactivity in 50 pL of the samples was resolved into parent mesotrione
and its polar metabolites by reverse-phase High-performance Liquid Chromatography (HPLC)
(System Gold, Beckman Coulter, Pasadena, CA, USA) as described below. Reverse-phase
HPLC was performed with a Zorbax SB-C18 column (4.6 x 250 mm, 5-pm particle size; Agilent
Technologies, Santa Clara, CA, USA) at a flow rate of 1 mL min"! with eluent A (water with
0.1% trifluoroacetic acid, TFA) and eluent B (acetonitrile with 0.1% TFA). The elution profile
was as follows: 0 to 2 min, 0 to 20% (of eluent B) linear gradient; 2 to 10 min, 20 to 40% linear
gradient; 12 to 17 min, 40 to 70% linear gradient; 17 to 19 min, 70 to 90% linear gradient (19
min total) followed by; 19 to 22 min, 90 to 50% linear gradient; 22 to 25 min, 20% isocratic
hold to re-equilibrate the column for the next sample injection (25 min total). The retention
time of the parent compound, ['*C] mesotrione, was determined by injecting 50- uL of 150
dpm uL™" [**C] mesotrione diluted in 1:1 acetonitrile:water. The parent compound displayed a
retention time of 18.3 min. The parent compound and other radiolabeled metabolites were de-
tected with a radioflow detector (EG & G Berthold, LB 509, Bad Wildbad, Germany) and
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Ultima-Flo M cocktail (PerkinElmer, Waltham, MA, USA). The amount of parent herbicide,
['*C] mesotrione, remaining was quantified as a percentage of total extractable radioactivity,
based on peak area determined. Treatments were replicated three times and the experiment for
48 and 72 h harvest times was repeated.

HPPD gene expression

Fresh leaf tissue after mesotrione treatment at 105 g ai ha™' as previously described was collect-
ed at different time points 0, 4, 8, 24, and 48 HAT from Palmer amaranth plants growing at
LT, OT, and HT and flash frozen in liquid nitrogen (-196°C). The collected tissue was stored at
-80°C for RNA isolation. The frozen tissue was homogenized in liquid nitrogen using a pre-
chilled mortar and pestle to prevent thawing. The powdered tissue was transferred to a 1.5 mL
microcentrifuge tube and total RNA was isolated using RNeasy Plant Mini Kit (Qiagen Inc.,
Valencia, CA, USA). RNA was treated with DNase 1 enzyme (Thermo Scientific, Waltham,
MA, USA) to remove genomic DNA contamination. The isolated RNA was stored at -80°C.
The quantity and quality of total RNA was determined using a spectrophotometer (NanoDrop
1000, Thermo Scientific) and agarose gel (1%) electrophoresis.

cDNA was synthesized from 1 pg of total RNA using RevertAid First Strand cDNA Synthesis
Kit (Thermo Scientific). The synthesized DNA was diluted in 1:5 ratio and used in quantitative
PCR (qPCR) reaction. The qPCR reaction mix consisted of 8 pL of SYBR Green mastermix
(BioRad Inc., Hercules, CA, USA), 2 pL each of forward and reverse primers (5 pmoles), and
2 uL of the diluted cDNA to make the total reaction volume of 14 pL. HPPD gene expression was
normalized using either CPS (carbamoyl phosphate synthetase) or S-tubulin as a reference gene.
PCR conditions were 50°C for 2 min, 95°C for 10 min, and 40 cycles of 95°C for 30 s and 60°C
for 1 min [35]. A meltcurve profile was included following the thermal cycling protocol to deter-
mine the specificity (no primer dimers, no genomic DNA contamination, and no non-specific
product) of the qPCR reaction. Primer sequences used were: HPPDF 5’ ~CTGTCGAAGTAGAA
GACGCAG-3' and HPPDR 5 —~TACATACCGAAGCACAACATCC-3’ [35]; CPSF 5/ ~ATTGA
TGCTGCCGAGGATAG-3" and CPSR 5’ — GATGCCTCCCTTAGGTTGTTC-3" [35]; S-tubulinF
5'-ATGTGGGATGCCAAGAACATGATGTG-3" and B-tubulinR 5' -TCCACTCCACAAAGTAG
GAAGAGTTCT-3". The B-tubulin gene sequences of Sesamum indicum (LOC105162689), Po-
pulus euphratica (LOC105136926), Elaeis guineensis (LOC105045457), and Tarenaya hassleri-
ana (LOC104800466) obtained from GenBank were used to design conserved gene specific
primers. The HPPD, CPS, and B-tubulin primers showed efficiency within 100+10% (tested with
four 5-fold serial dilutions) and both the reference genes were stably expressed (<1 fold magni-
tude of differences in CT values) under the specific experimental conditions (0, 4, 8 and 24 HAT
for CPS and 0 and 48 HAT for B-tubulin) used in this study. The qPCR was performed using
CFX96 Touch Real-Time PCR Detection System (BioRad Inc.). The HPPD:CPS or HPPD:$3-
tubulin expression was determined using the 2°“T method, where CT is threshold cycle and ACT
is CTReference gene (CPS or p-tubulin)—C T Target gene (PPD)- GeNe expression was studied on two to
three biological and three technical replicates.

Statistical analysis

In the whole-plant dose response study, the treatments were arranged in a complete factorial
combination of three levels of growth temperatures (LT, OT, and HT) and eight levels of meso-
trione rates (see materials and methods section). Plant height, visual injury, chlorophyll index,
and F,/F,, data were subjected to non-linear regression analysis in order to estimate EDs val-
ues as described by [36]. Specifically, three parameter log-logistic model for plant height, inju-
ry, and mortality, and Weibull model for chlorophyll index and F,/F,, data were used (lack of
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LT (25/15°C day/night)
UNTREATED

fit test P > 0.05). There was no interaction between the experimental runs and the treatments,
hence, the data of the two dose-response studies (each with 4 replications) were pooled prior to
analysis. The magnitude of differences in responses of plants grown under different tempera-
ture regimes was measured as the sensitivity index (SI) (OT/HT or OT/LT ratio) of estimated
EDsg, EDgg, or EDg5 values using the SI function in the drc package in R v.3.1.0 [36].

For experiments involving mesotrione absorption and translocation, metabolism, and
HPPD expression, the treatments were arranged in complete factorial combination of three lev-
els of growth temperatures (LT, OT and HT), as main factors, and 4 to 5 levels of measurement
time points, as simple factors. There was no interaction between the experimental runs and the
treatments, hence, the data from each independent experiment were combined before subject-
ing to statistical analysis. Data for these experiments were analyzed by two-way ANOVA
(P < 0.05). Data for all the experiments were significant for the main effects (growth tempera-
tures), hence, post-hoc Tukey-HSD pairwise comparisons were used to test which simple ef-
fects were significantly different (P < 0.05).

Results
Plant height, visual injury, and plant mortality

Four weeks after treatment (WAT), Palmer amaranth plants showed decreasing sensitivity to
mesotrione as temperature increased from LT to HT (Fig 1). With an increase in growth tem-
perature from LT to HT, a shift towards less sensitivity of Palmer amaranth to mesotrione was
evident as indicated by plant height (Fig 2a) and visual injury (Fig 2b) 3 WAT and mortality 4
WAT (S1 Fig). Based on plant height, visual injury, and mortality response, Palmer amaranth
plants were two- to five-times more sensitive to mesotrione when grown under LT compared
to OT condition (S1, S2 and S3 Tables). Mesotrione rates that caused 50% height reduction
(EDsg) were 4.9, 25.3, and 25.4 g ai ha™ under LT, OT, and HT, respectively (S1 Table). EDs
for injury were two- and one and half-times less for OT and HT, respectively (S2 Table). Plant

(b) oT (32.5/122.5°C day/night) HT (40/30°C day/night)

UNTREATED UNTREATED

I, 13.125

g aiha

\

Fig 1. Photographs of mesotrione-treated Palmer amaranth plants grown under (a) LT (25/15°C, day/night), (b) OT (32.5/22.5°C, day/night), and (c)
HT (40/30°C, day/night) conditions (15/9 h day/night). Plant to plant variability was observed within the growth temperature and mesotrione rate. These
are the representative plants for each dose and temperature. The photographs were taken 4 weeks after treatment and all photographs were taken under the

same magnification.

doi:10.1371/journal.pone.0126731.g001
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Fig 2. Whole-plant mesotrione dose-response of Palmer amaranth at different temperatures (low temperature, LT, 25/15°C; optimum temperature,
OT, 32.5/22.5°C; and high temperature, HT, 40/30°C; 15/9 h day/night) as measured by (a) plant height 3 weeks after treatment (WAT), (b) visual
injury 3 WAT, (c) leaf chlorophyll index 2 WAT, and (d) photochemical efficiency of PSII (F,/F,,) 2 WAT. Palmer amaranth plants (10 to12 cm tall, 8 to
10 leaf stage) were treated with 0, 3.28, 6.563, 13.125, 26.25, 52.5, 105, and 210 g ai ha™" mesotrione with 1% v/v crop oil concentrate (COC) and 0.85% w/v
ammonium sulphate (AMS). Curves for height and visual injury, and chlorophyll index and F,/F,, data were fitted using three parameter log-logistic and

Weibull model, respectively, as described by Knezevic et al. (2007).

doi:10.1371/journal.pone.0126731.9g002

survival results were in accordance with the visual injury results (S1 Fig; S3 Table). Although
EDs, values for plant height were similar for OT and HT conditions, the EDg5 values for HT
was higher compared to the EDgs values under OT (S1 Table). Similar results were also ob-
served for plant survival at 4 WAT (S1 Fig; S3 Table).

Leaf chlorophyll index and photochemical efficiency of PSI|

Application of mesotrione causes characteristic bleaching [16,37] and reduces photosynthetic
efficiency of plants [38]. The chlorophyll index in plants grown under LT sharply decreased
with the lowest doses of mesotrione reaching zero at 26.25 g ai ha™ 2 WAT (Fig 2c), however,
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mesotrione rates < 6.56 and < 13.125 g ai ha™" had no effect on chlorophyll index at OT and
HT, respectively. The EDs5, values (mesotrione rates that caused 50% chlorophyll reduction)
were 6.3, 26.6 and 73.4 g ai ha'at LT, OT, and HT, respectively (54 Table). At OT and HT,
plants treated with the low mesotrione rates also showed some level of bleaching at 1 WAT,
however, they recovered to normal within 2 WAT (Fig 2c¢).

The F,/F,, values of the plants grown under LT also declined exponentially with increasing
mesotrione rate reaching zero at 26.25 g ai ha™' 2 WAT (Fig 2d). In contrast, mesotrione
rates < 26.25 g ai ha™' had no effect on F,/F,, values at HT. Plants at OT had an intermediate
response of LT and HT. Mesotrione rates that caused 50% reduction in F,/F,, (EDs,) were
12.8,58.2and 115 g ai ha at LT, OT, and HT, respectively (S5 Table).

Mesotrione uptake and translocation

In susceptible plant species, mesotrione is rapidly absorbed by plants and translocates both
acropetally and basipetally [16]. In Palmer amaranth, growth temperature influenced both ab-
sorption and translocation of ['*C] mesotrione (Fig 3). More than 70% of mesotrione was ab-
sorbed (% of total applied) within the initial 8 HAT in plants grown under HT, whereas, only
43 and 50% mesotrione was absorbed at LT and OT, respectively (Fig 3a). No further meso-
trione absorption occurred at HT, however, absorption continued to increase slowly at LT and
OT reaching 68 and 64%, respectively at 72 HAT. Greater absorption of mesotrione did not
lead to increased sensitivity of Palmer amaranth grown under HT, thus, the greater absorption
is likely due to higher rates of metabolism of absorbed mesotrione within underlying leaf tis-
sues resulting in greater driving force for more mesotrione absorption [39,40]. Translocation
of [**C] mesotrione and/or its metabolites (% of absorbed) was highest under OT which was
40% 8 HAT and increased to 61% by 72 HAT (Fig 3b). In general, about two-fold less absorbed
[**C] mesotrione and/or its metabolites were translocated from the treated-leaf to other parts
of the plants grown under LT and HT compared to OT. Overall, total radioactivity recovered
from the aboveground part (% of applied) was highest in plants grown under LT (> 90%), in-
termediate under HT (83 to 89%) and lowest under OT (< 80%) (Fig 3¢). Fairly similar levels
of radioactivity were recovered from plants grown under LT and HT across the time points,
however, the lowest recovery always occurred in plants grown under OT, with a distinctive
sharp decline from 79% at 48 HAT to 61% at 72 HAT. These results indicate more transloca-
tion of radioactivity to below ground part in plants grown at OT compared to those at LT and
HT.

In plants grown under HT, the majority of absorbed radioactivity (77 to 83%) remained in
the treated-leaf, with < 2% translocated to parts above treated-leaf (Fig 3d and 3e). A similar
amount of radioactivity was recovered in the treated-leaf portion of plants grown under LT,
however, greater than three-fold more radioactivity was translocated upward by 72 HAT com-
pared to plants grown under HT. Only 32% radioactivity was recovered in the treated-leaf of
plants at OT 72 HAT, and the upward translocation was similar to those at LT. On average,
about 5, 2.5, and 1% of the absorbed radioactivity was recovered from plant parts below the
treated-leaf at LT, OT, and HT, respectively (Fig 3f).

Mesotrione metabolism in whole plants

Rate of mesotrione metabolism differs among plant species and the ability of some crops (e.g.
Zea mays L., maize) to rapidly metabolize mesotrione offers acceptable selectivity against
weeds [17]. Parent mesotrione (18.3 min retention time) was clearly resolved from several
polar metabolites by reverse phase HPLC (Fig 4). The peak area of parent mesotrione in LT
samples was higher than those from OT or HT at 48 HAT (Fig 4a, 4b and 4c). In OT and HT
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Fig 3. ['*C] mesotrione absorption (a), translocation (b), total recovery (c), and translocation to treated-leaf (d), above treated-leaf (e) and below
treated-leaf (f) at three different temperatures (low temperature, LT, 25/15°C; optimum temperature, OT, 32.5/22.5°C; and high temperature, HT, 40/
30°C; 15/9 h day/night). The upper surface of fourth youngest leaf of Palmer amaranth plants (10 to 12 cm tall, 8 to 10 leaf stage) were treated with 4- x 2.5-
uL droplets (1.6548 mM mesotrione, 0.85% w/v AMS, and 1% COC) containing 3.3 kBgq of ['“C] mesotrione. Significant differences (within harvest time)
between the OT and LT (blue asterisks) or HT (red asterisks) plants are indicated with asterisks (*, P < 0.05; **, P < 0.01). Error bars represent SE.

doi:10.1371/journal.pone.0126731.9g003

samples, the peak area of the parent mesotrione was comparable, but a peak at 10.8 min reten-
tion time was more prominent in HT than in LT and OT samples. This peak is possibly a hy-
droxylated form of mesotrione found in maize and waterhemp (4-hydroxy-mesotrione)
[35,41] and its accumulation is likely due to enhanced cytochrome P450 (CYP) monooxy-
genases (P450) activity. P450s are membrane bound enzymes and are well known for playing a
major role in metabolism of xenobiotics including mesotrione.

Metabolism of mesotrione in Palmer amaranth did not differ among growth temperature
conditions 8 HAT, and only 15 to 25% of the parent compound was metabolized (Fig 5a). At
24 HAT, the parent compound in HT samples was less (15.4%) compared to the parent com-
pound found in OT (35.1%, P = 0.003) and LT samples (40%, P = 0.014) (Fig 5b). Plants grown
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mesotrione on the upper surface of fourth and fifth youngest leaves. Numbers above the peaks represent
retention time (min).

doi:10.1371/journal.pone.0126731.g004

under LT did not further metabolize mesotrione at 24 h through 48 h (30.5%, P = 0.2) (Fig 5c¢).
However, approximately 3-times less parent compound remained in plants grown under OT
(8.8%, P =0.002) and HT (10%, P = 0.001) 48 HAT compared to the parent compound in LT.
By 72 HAT, plants grown under all temperatures metabolized more than 90% of the parent

PLOS ONE | DOI:10.1371/journal.pone.0126731 May 19, 2015 10/17



el e
@ ' PLOS ‘ ONE Mesotrione Efficacy Is Reduced under High Plant Growth Temperature

—
Q
~
—
O
~
—
D
~

. 50 [ 77
€ 1007 c %07 @+ LT (25/15°C day/night)
o T B o :
50904 - 50 40 mmam B OT (32.5/22.5°C day/night)
Q_.E 3 O—‘E | H 0 f
) B — © o - ¢- HT (40/30°C day/night)
5 3 80 = 6 3 307 100
= ®© | E © -
=370 50 20- o
S . - i
E S E o .5
60 =9 g _
pl — balll? e [0} o
= 50 I | | 0 | | | = o
LT OT HT LT OT HT e a
Temperature Temperature © g 60 —
S o
—
(c) (d) ~g 0
= 50— = B4 aE>:_40‘
2.1 7 el =2 NN .
28407 w 287107 ¢ o 2\& \@
- 25 =20 o n_ o
5 8 30 §5 87 T \ ™~
0 20 29 6~ —_ N
(O - ) :_ . H e——
ISIS) _ _ £ 0 - P |
o 10 o= 4] | T —
=, L £, 8 24 48 72
0 ' ' ‘ 27 I l l Time (h) after treatment
LT OT HT LT OT HT
Temperature Temperature

Fig 5. Parent ['*C] mesotrione remaining in Palmer amaranth (whole aboveground part) plants under three different temperatures (low
temperature, LT, 25/15°C; OT, optimum temperature, OT, 32.5/22.5°C; and high temperature, HT, 40/30°C; 15/9 h day/night). (a) 8, (b) 24, (c) 48, (d)
72 h after treatment as determined by reverse-phase HPLC, and (e) time course of mesotrione metabolism. All Palmer amaranth plants (10 to 12 cm tall, 8 to
10 leaf stage) were treated with 8- x 2.5-pL droplets (1.6548 mM mesotrione, 0.85% w/v AMS, and 1% COC) containing 7.2 kBq of ['“C] mesotrione on the
upper surface of fourth and fifth youngest leaves. Data represent means of three to five biological samples. Significant differences in mean values between
OT and HT or LT are indicated with dark color asterisks, and between HT and LT with light color asterisks (*, P < 0.05; **, P < 0.005). Error bars represent
SE. Curves for ['*C] parent compound (mesotrione) data were fitted using a three parameter log-logistic model.

doi:10.1371/journal.pone.0126731.g005

compound (Fig 5d). The mean parent compound remaining was least in plants grown under
HT (4%) which was similar to OT plants (7.56%, P = 0.154), but two-times less compared to

LT (8.9%, P = 0.023). These results indicate that mesotrione metabolism in Palmer amaranth
was enhanced at HT compared to OT, and it was reduced at LT.

To estimate the rate of ['*C] mesotrione metabolism at LT, OT and HT growth conditions,
we analyzed the metabolism data using a log-logistic regression (Fig 5¢). The T5, (the estimat-
ed time point for 50% [**C] mesotrione metabolism) values were 21 and 13 h for LT and HT,
respectively, and were not different from OT (16.5h) (P =0.14, LT; P = 0.2, HT) (S6 Table).
The estimated T, for mesotrione metabolism in this Palmer amaranth population when
grown under HT is similar to that of mesotrione-resistant waterhemp (A. tuberculatus) in
which enhanced metabolism of mesotrione was attributed for the resistance [35]. There were
differences in time taken for 80% metabolism (Tg,) among the growth temperatures. The Tg,
value was lowest for HT plants (23.9 h), followed by OT (34.4 h) and LT (53.9 h) (S6 Table).
The significantly longer Tg, values for LT and shorter values for HT plants relative to OT
plants are in conformity with the whole-plant dose-response results (Fig 2 and S1, S2, S3, S4
and S5 Tables).
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Target-Site Gene (HPPD) Expression

No experiments have been conducted to study the expression of HPPD gene in mesotrione-
treated plants. In arabidopsis, HPPD was up-regulated under a high-light stress condition
[42]. When exposed to excessive light, plants inactivate photosynthetic functions and produce
ROS. Even in normal light conditions, plants treated with HPPD-inhibitors experience light-
stress as HPPD inhibition results in decreased carotenoid and tocopherol content in plants.
We hypothesized (1) HPPD is up-regulated in plants when treated with mesotrione and (2)
HPPD expression is greater in the mesotrione treated-plants grown at high temperatures,
thereby, contributing to decreased sensitivity of plants to mesotrione. To test these hypothe-
ses, we extracted total RNA from mesotrione-treated (105 g ai ha') plants grown at LT, OT,
and HT, and quantified the HPPD expression levels using qPCR.

Expression of HPPD relative to CPS or -tubulin did not differ among untreated plants
grown under different temperatures (P = 1) (Fig 6). Relative HPPD:CPS expression was similar
among LT, OT and HT at 4 and 8 HAT (P > 0.99), and was not different from the level of ex-
pression in untreated plants (P > 0.9) (Fig 6a). Overall, the relative HPPD expression increased
at 24 HAT compared to previous time points regardless of the growth temperatures (P < 0.01).
At 24 HAT, the relative HPPD expression in plants grown under HT (1.63) was significantly
higher than under OT (0.38) (P = 0) which is 15-fold higher compared to untreated plants
(P =0;0.11 for untreated plants). At 48 HAT, relative HPPD:f3-tubulin expression was 0.84
and 0.99 in LT and OT plants, respectively, whereas in plants grown under HT, the expression
was 4-fold greater compared to LT and OT (P < 0.01), which is 18-fold higher compared to
untreated plants (Fig 6b).

Discussion

Our results showed a pronounced effect of growth temperature on mesotrione efficacy in
Palmer amaranth. Consistent with previous findings in other weeds [26,34], Palmer amaranth’s
sensitivity to mesotrione drastically increased when temperature decreased from 32.5/22.5
(OT) to 25/15°C day/night (LT) (Figs 1 and 2, S1 Fig; S1, S2 and S3 Tables). Documentation of
the effect of elevated temperature (> 35°C) on efficacy of herbicides including mesotrione is
lacking. In our study, Palmer amaranth was less sensitive to mesotrione when grown under HT
(40/30°C day/night) compared to OT and LT.

Mesotrione absorption, translocation, and metabolism in Palmer amaranth were affected by
growth temperatures. In tolerant crops, maize and sorghum (Sorghum bicolor L. Moench),
rapid metabolism within the leaf limits translocation of mesotrione to other parts of the plant
[43,44] which may explain greater absorption and metabolism of mesotrione at HT compared
to LT and OT (Figs 3, 4 and 5). In addition, greater translocation of radioactive mesotrione,
presumably comprising parent mesotrione, towards growing point at LT and OT compared to
HT may contribute to increased sensitivity of Palmer amaranth at those temperatures. The
translocated amount of mesotrione to the above-treated part was substantially lower compared
to the amount absorbed. However, considering mesotrione’s potency to inhibit HPPD (K,; 15
pM) [41], a small amount of intact (non-metabolized) mesotrione may have a large effect
on phytotoxicity.

It is well known that ROS-triggered signaling activates antioxidant systems and influence
expression of many nuclear-encoded genes including those that encode for ROS scavengers
and CYPs [45-50]. In this study, two stress factors, temperature (low and high) and meso-
trione treatment, were imposed on Palmer amaranth plants. However, this study was limited
to only the measurement of the expression of the target site gene of mesotrione. The expres-
sion of HPPD relative to -tubulin was higher in the mesotrione-treated plants at HT,
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Fig 6. Time course of HPPD expression levels (a) relative to CPS and (b) B-tubulin in mesotrione-
treated (105 g ai ha™, 0.85% w/v AMS, and 1% v/v COC) Palmer amaranth leaves under three different
temperatures (low temperature, LT, 25/15°C; optimum temperature, OT, 32.5/22.5°C; and high
temperature, HT, 40/30°C; 15/9 h day/night). Total RNA was extracted from a bulked sample of Palmer
amaranth leaves. Data represent means of two to three biological samples. Error bars represent SE.

doi:10.1371/journal.pone.0126731.g006

particularly at 48 HAT, which possibly contribute, to some extent, to minimize mesotrione
toxicity; directly by reducing ROS production and/or indirectly by helping to quench excess
ROS. On the contrary, the HPPD expression was similar at LT and OT, suggesting no role of
the target site gene expression in the altered sensitivity to mesotrione. Although, the expres-
sion of HPPD was not influenced by the temperatures alone (within the range of temperatures
used in this study), it is expected that many other temperature stress-response genes may
have differentially expressed under different growth temperatures. Thus, apart from the rapid
detoxification of the mesotrione and up-regulation of HPPD, high temperature-induced in
vivo levels of antioxidant enzymes [49,51] may also have contributed to detoxify mesotrione-
induced ROS in Palmer amaranth. Such cross-adaptation to subsequent or simultaneous
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stressors have been shown in plant species [52-54]. However, these results raise the question
of how plants would respond when they were exposed simultaneously or in a shorter interval
to high temperature and mesotrione.

In field, a wide array of other abiotic conditions, which vary in duration and extent, may
exist leading to multiple stress conditions. During summer crop growing seasons, the high tem-
perature conditions are often associated drought stress [55]. It would be of great interest to
know whether the combined effect of drought and high temperature stress would provoke even
stronger cross-adaptation to mesotrione application. Future studies should focus on deeper un-
derstanding of the outcome of interactions of multiple stresses on control of key agricultural
weeds with mesotrione and other herbicides. Such information will open new possibilities for a
predictable approach for effective weed management. Effective weed control is also crucial for
sustained utility of currently available herbicides as reduced efficacy of herbicides facilitate re-
sistance evolution [56-61].
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