A "UNIX" BASED
ELECTRONIC CALENDAR SYSTEM
by
DAVID OWEN JAMES

B. A,, Bethany College, Lindsborg, Kansas, 1981

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree
MASTER OF SCIENCE

Department of Computer Science
KANSAS STATE UNIVERSITY
Manhattan, Kansas

1982

o)l

Hajor(jrofessor

SFC e

coL- Fuaua b522k3
AD ‘

207

RH ACKNOWLEDGMENT

|9¢ 2

3 35 I wish to thank Dr. Richard A. McBride for his guidance
.-

and encouragement throughout the course of this project.

TABLE OF CONTENTS

1. INTRODUCTION . .

1.0 Overview .

1.1 Rationale of Electronic Calendars

1.2 Scope of the Implementation

2. PROBLEM STATEMENT
2.0 Introduction
2.1 Requirements
2.2 Specifications

3. SAMPLE SCENARIO .

3.0 Introduction

3.1 Personal Calendar

3.2 Meeting Requests

4. FUTURE ENHANCEMENTS

REFERENCES . .« .« &

APPENDICIES

User's Quick Reference

Operations

Design / Maintenence Manual

Pascal Source Code

12
12
14
22

28

31

32

35
43

CHAPTER 1

INTRODUCT ION

1.0 Overview

Appointment calendars are time management tools that
allocate specific time segments for activities on a given
day. Electronic calendars are computerized versions of the
more traditional paper counterparts, but with several
advantages, including a wider variety of useful
applications, This report contains a description of an
implementation of such a system in Pascal on the UNIX
operating system currently running on a 32-bit Perkin-Elmer

3220 at the KSU Department of Computer Science.

1.1 Rationale of Electroniec Calendars

The obvious advantages of an automated calendar system
are the same benefits derived from automating other office
processes and transactions: fast access time of computer
stored information, storage space efficiency, and automatic
{(periodic) transaction processing. But many other
advantages of automation of appointment schedules exist.

Studies by Mitzberg (1971), and also Boin (1978) have
shown that managers and other professionals spend 40-70
percent of the working day in meetings. Costly problems
resulting from missed meetings or late arrivals often arise

from the fact that individual appointment schedules fall

2
behind in currency, or that conflicts are inadvertently
scheduled during meeting times. If the appointment
schedules are manually maintained, random appointment
scheduling, such as weekday appointments that don't vary
from week to week, can become error prone. Automation in
this area could solve many of these problems,

Another advantage of electronic calendar systems can be
attributed to appointment scheduling between several
principals or users, "Secretaries find scheduling meetings
one of the most distasteful aspects of their job, involving
many frustrations,® (Bancomb, 1981) An Appointment to be
made involving several people must be in the intersection of
each member's free time schedule, so to speak, but that
intersection is not known all at once, "Typically the
initial scheduling is done in several passes starting with
collection of scheduling constraint information followed by
negotiation and selection of a meeting times." (Greif, 1982)
A particular time slot that is acceptable to, say, the first
three members may not be possible for the fourth. Thus, the
process has to be started over, with another attempted
proposed meeting time, A study by Bacomb (1981) of this
process showed that an average meeting of six people took
60-75 minutes to schedule. In this application, automation
is clearly worthwhile., If principal's schedules were kept
on computer files instead of disjoint pieces of paper, the

"free time intersection™ for any number of participants

3
could easily be calculated. From that information,

appointments could easily be set.

1.2 Scope of Implementation

The advantage of electronic calendars systems as cited
in the previous sections can be immediently applied to
scheduling problems in the KSU Department of Computer
Science. Each faculty member keeps some sort of appointment
calendar (possibly implicit), to record appeintments. Many
appeintments, such as classes being taught or taken, recur
weekly, that is, they are generally the same from week to
week, Since the faculty's schedules are often {purposely)
staggered, it is often particularly difficult to schedule
appointments among them. The automated scheduling
algorithms of an electronic calendar system could be a
valuable assistance to the administration and students of
the department,

This particular implementation of an electronic
calendar is designed for use under the UNIX operating system
at the KSU Computer Science department. The decision for
that choice derives from the fact that UNIX is an industry -
wide de facto standard for operating systems on
minicomputers, and also current availability of computer
resources, There are interactive terminals interfaced to
the UNIX system currently operating in most of the offices

in the department, sc¢ the primary users, the KSU Computer

3
Science faculty, will have convenient access to the
electronic calendar system. A principal, or calendar user,
in this application will be defined as any faculty member or
graduate student who has possession of a valid UNIX account.
Also, a principal could be a non-person, such as a room or
other resource, for which daily appointment schedules can be
automatically maintained.

The implementation tool is Pascal, specifically, UNIX
Berkeley Pascal. (5-7) This choice is, again, primarily
based on availability. But it also is a result of the high
extent of use of the Pascal language in the department, and
the fact that the language and operating system are fairly

standard, for portability concerns.

CHAPTER 2

PROBLEM STATEMENT

2.0 Introduction

An electronic calendar system should be written for
people to use and benmefit from, as a cooperative activity.
(Greif, 1982) A priority is ease and convenience in typical
daily use, A primary requirement is that the electronic
calendar be made available for use interactively 24 hours a
day in a multi-user environment. Since all steps performed
by the electronic calendar are transmitted to and from the
user via interactive CRTs, the level of information
displayed to the user should be user-friendly, but concise
enough to insure speed and effiency in use by more

experienced users.,

2.1 Requirements

Most of'ten, invocation of a calendar program will lead
to executing one or two commands, such as looking at
tomorrow's schedule, or requesting a meeting. Therefore,
the number of steps required for the user to execute the
most common functions be minimal in number, so that the
steps can be executed as quickly and as easily as possible,

The more specific requirements related to actual
features of a running electronic calendar system can be

divided into two major categories., The first is maintenence

6
of a principal's personal calendar. Maintenence includes
insertions and deletions of scheduled appointments. These
functions should be applicable to any particular day desired
within six months of the current day. A related required
feature is that, at the user's option, the insertion or
deletion of an appointment should be allowed to apply
globally to all subsequent weeks, on the same weekday. As an
example, a change for, say, Wednesday, the third of the
month, could either only apply to that particular day, or
else apply to that particular day and all subsequent
Wednesdays, also. In the latter case, the dates affected
would be 3, 10, 17, ete, This will be useful for recurring
weekly appointments that generally don't change from week to
week,

The second category of requirements applies to use of
an electronic calendar system in scheduling meetings between
two or more principals, A mechanism that allows an
appointment request to be sent to all involved principals
should be made available to all users of the calendar
system, The desire is to only assume confirmation of a
requested meeting when all the principals involved have
agreed to the request. Each person to whom a request is
sent should be notified that the outstanding request does
exist, and that an answer is expected. If all requests are
answered in the affirmative, the meeting is considered

confirmed, If any of the principals rejects the requested

7
meeting, the meeting is considered canceled, and the members
notified, so that possibly another attempt can be made to
schedule a meeting,

To both of the previously described categories, some
specific requirements apply. Under no circumstances will
time conflicts be allowed, that is, an electronic calendar
system should always prevent any step executed which would
result in overlapping appointments, such as appointment "A"
at 8:00 AM - 8:30 AM on the same day as appointment "B" at
8:15 AM - 8:45 AM. Provisions for notifying the user
attempting the offending insertion should be made, the
particular action to be taken being dependent on the context
of the state.

The per-day clock shcoculd be one of length 24 hours.
Thus, a 2:00 AM - 3:00 AM appointment would be possible.
However, normal operation of the calendar should assume an
8:00 AM = 5:00 PM work day, with that default possibly being
overridden by the user.

As a final requirement for an electronic calendar
system, some provision for backup and purging of old
calendar information must be made. The information about
past dates does not necessarily need to be directly
accessible to the wuser, but some means for outdated

information retrieval must exist,

2.2 Specifications

8

This section will <contain a refinement of the
previously defined set of requirements for an electronic
calendar system, The refinement is a set of specifications,
which precisely defines the outcome of any specific solution
to the problem. These specifications do not imply design of
the solution, but merely the goals which any answer to the
problem must meet,

The electronic calendar system is menu driven; that is,
it follows a prompt - and - response format. Clear, concilse
prompts that require very short responses of the user will
be implemented, to assure the speed and efficiency of each
execution step at runtime.

In development of the prompts organization and
ordering, the list of all possible desired steps executed
can be observed. In categorizing the steps, one possibility
follows,

1. Observe or edit a particular day's schedule.

2. Observe or edit the events of a typical week-

day's schedule which will apply to all succeeding
weeks,

3. Send a request to any number of users for a meeting

for a particular day.

4, Answer requests made by other users to attend a

meeting for a particular day.
While there are clearly other categorizations of steps in an

electronic calendar system, such as combining steps one and

9
two, and/or combining steps three and four, the point to be
made here is that each category chosen will entail a
different set of prompts, at least to some extent.
Therefore a menu-driven format appears to lend itself to
this application well, The size of each menu and the number
of menus (which are inversely proportional) are determined
such that, again, convenience for the user is maximized,

The description of prompts can be most easily conveyed
in outline form. Each entry in the following outline will
represent a set of one or more prompts required for the
transaction to be carried out.

A, Observe or Edit Personal Calendar.

1. For a Particular Day.
a. Observe.
b. Insert.
¢c. Delete,
2. For a Typical Weekday.
a. Observe.
b. Insert.
c. Delete.
B, Make or Send a Meeting Request,
1. Make a Request.
2. Send a Request.
C. Quit.
Two other requirements also related to prompts are

"user friendliness", and convenience. Some specifications

10
consistent with these requirements can be deduced. The
software must be robust. It should accept a wide variety of
input as valid answers to prompts, A typical example of
this is, as follows: After a prompt for a time of day,
either "8:00 AM", "8:00AM", ®8:00", or "800" will be
accepted. If the program cannot interpret an answer, it
will reprompt with a helpful error message, and, of course,
the program will never crash as a result of invalid input.

In addition to syntatic input checks, all semantic
checks will be performed to be consistent with the "no time
conflicts™ requirement, This applies any time an insertion
attempt is made to any existing schedule.

The electronic calendar system will only make requests
for meetings that are scheduled during the "free time
intersection" of all principals, in order to prevent time
conflicts, However, the option to reject a meeting
(presumably for some other reason) is available to any of
the principals., In the course of making and answering
requests, a more direct communication between users is
required than the ones previously described, Therefore, a
link to the computer system's interactive mail service will
be created to insure currency of users on meeting requests
and responses, This process will fulfill the requirements
of member notification in scheduling meetings.

A4 function to backup and purge computer stored

information about appointments for past dates will be

11
provided, The software for this function will be either
manually or automatically (periodically) invoked. The
details of that process will depend on the current status of

available resources of storage devices.

12
CHAPTER 3

SAMPLE SCENARIO

3.0 Introduction

One way to better understand the implementation of any
software product is to observe the operation and results of
the program(s) in actual use. For a highly interactive
program, such as an electronic calendar, for which prompts -
and - responses make up the bulk of its operation, an
annotated scenario is of value.

This chapter contains such a scenario which applies
specifically to the writer's implementation of an electronic
calendar system at the KSU Department of Computer Science.
The chapter is intended as a general user's manual, for
those users of the UNIX system who desire the facilities
provided by the programs of the electronic calendar.
However, the objectives implied by this scenario can be
applied to electronic calendars in general. It describes a
solution to the problem of meeting the formerly defined
specifications for any electronic calendar system.

In illustration of the prompts, and the possible
responses to those prompts, not all possibliities of input
errors will be included in the scope of the chapter. The
software is written such that a wide variety of answers to
prompts is accepted. This philosophy is consistent with the

"user-friendly"” requirement, As a specific example; upper

13
and lower case letters are generally not differentiated -
when answering a prompt an alphabetic character may be upper
or lower case, The number of Yloop until good data"
constructs has been kept to a minieum, but there are
instances where an escape from a prompt requesting input
does not exist., Error messages are helpful in pinning down
explanations as to why data is bad. If abnormal termination
is desired at any point in the program, a break in the
program execution (through the "break"™ key on most
terminals) will not in any way cause harm to the calendar
data files used by the program,

The description and illustrations of the sample
scenario can be divided into two categories: functions
generally dealing with personal appointments, in which the
user is the primary principal, and meetings, where possibly
several different wusers of the system share a common
calendar entry for a specific date and time., This division
is shown in the main menu., As an example, the display seen
at invocation of the electronic calendar is:

Welcome to Electronic Calendar
Today is Thu, Nov 18.
Main Menu:
1. Update or Observe Perscnal Calendar.
2. Make or Answer Meeting Requests,
3. Exit,
Please enter command number or X, =>
The description of the processes contained in choice (1) is

discussed in section 3.1, and the processes of choice (2)

14

are described in section 3.2.

3.1 Personal Calendar Operations

Choosing the first option from the initial main menu
puts the user in a mode intended for formatted display and
editing of the files contained in that user's account that
make up his/her personal calendar. It is assumed that this
mode would be used fairly routinely, but for short periods
of time at each setting. Therefore the prompts as described
here reflect a logical consistency with the order in which
decisions would have to be made to observe or edit a manual
calendar. The first decision that will have to be made by
the user is the date that he/she wants to look at, and
possibly edit. The prompt is:

<Ret> for todays schedule, enter day or date. =->

The answer to this prompt is of some importance, in that the
scope of the resulting schedule and any edits to that
schedule 1is determined by the user's response, Four
possibilities for answers exist: (1) a null line <return>,
(2) a date (eg. '24'), (3) a month and date (eg. 'Novi8'),
and (4) a weekday (eg. 'Thu'), The scope differences are
these, Choices (1) through (3) yield a specific day, in
which any changes made only apply to that day. Choice (4)
yields a weekday schedule, in which any changes made apply
to all succeeding days in the entire calendar which are of

the same weekday.

15

The differences between choices (1), (2), and (3) are
minor, the differentiation is primarily a matter of
convenience, With the assumption that the most common day
to be observed is the current day, a null line entered; that
is, an enter (return) Lkey depressed with no previous
characters entered, yields the current day's schedule.
Choice (2) is equivalent to choice (3), except that the
month can only by ommitted (as in choice (2)) if the date is
within two weeks of the current day.

An example will help illustrate. Suppose that on
November 18, 1982 a user wants to observe or edit his
personal calendar. Invocation of the electronic calendar
system displays the following:

Welcome to Electronic Calendar.

Today is Thu, Nov 18, 1982.

Main Menu:

1. Update or Observe Personal Calendar.,

2. Send or Receive Meeting Requests.

X. Exit,

<Ret>» for todays schedule, enter day or date., =>
At this point, to observe or edit the current day's schedule
(November 18), the user could enter a null line, '18°,
'"Novi8', or one of several variations of 'Nov18' to yield
exactly the same results. The schedule for November 18 will
be be displayed. If the schedule for, say, Friday, November
19 is to be observed, either '19' or 'Novi9' (or variations)
could be entered, with equivalent results. In this example,

a single date, without the corresponding month, could be

16
entered for dates up to and including Wednesday, December 1,
which is the two week 1limit for assumed month names, For
any desired date past December 1 (up to a year from the
current day), both the month and date must both be given,

To observe a weekday's schedule; that 1is, the
appointments that generally apply to all weeks, the name of
the weekday 1is entered,. A three letter abreviation (eg.
'Thu') is expected, but several variations are accepted.
Any changes performed on a weekday schedule will apply to
all succeeding weeks.

After successful completion of the date selection
process, the schedule for the date (or weekday) is
displayed. A heading for the display indicates either the
specified day and month, or the general weekday, for which
the following schedule applies. The actual schedule
follows, and then the list of options which apply to that
schedule. A sample schedule for a user named Rich follows:

Schedule for Thu, Nov 18:

8:00 - 9:00 CS420 Operating Systems (teaching)

10:30 = 11:45 CS960 Theory of Database

12:00 = 1:00 Lunch

3:00 -~ 3:30 virg rich beth rod

Confirmed by: virg rich beth
To Discuss Curriculum Changes.
Meet in F112,

4:30 - 5:00 R1 virg rich
to discuss UNIX-0S/32 Networking.

(I)nsert, (D)elete, (L)ist, (N)ewday, or e(X)it-)>

17

Some discussion of the displayed sample schedule is
warranted, The first three appointments are perscnal
appointments that generally only apply to Rich's schedule,
The 3:00 = 3:30 meeting is with four members, including
Rich. Members Virg, Rich, and Beth are confirmed members;
that is, they have all affirmatively answered a request for
the meeting. Rod has not answered the request either way,
from the fact that his name is in the "members" set, but not
in the "confirmed" set. The "confirmed by" field in an
indication that the meeting was originally requested by
Rich, so that he is the owner of that meeting. The
"confirmed by"™ field does not appear for that meeting on the
other member's schedules for that day. 5:00 appointment
shows up as a request, indicated by the "R" field. This
means that Rich still needs to answer the request for that
appointment.

A discussion of making and answering requests is left
to the next section of this chapter. They are briefly
mentioned here, as the entries which contain members are
special cases for the delete routines (to be discussed).

The choices of input can now be dealt with., The first
possibility calls for an insert process to be invoked. This
process logically requires two pieces of information from
the user, the time span of the appointment and a description
of the appointment, Note that all appointments involving

more that one user (refered to as "meetings"™) are not

18
inserted here, but through the seperate request and answer
procedure. After an 'I' is entered as an answer to the last
prompt, the time span for the appointment to be inserted is
asked for:

Enter Beginning and Ending Times. =>

after which the times can be entered. The formats in which
this information is entered can vary. For instance, colons
(":") may be either included or ommitted, as can "AM" or
"PM", In the latter case, certain assumptions are made. In
particular, 1:00 - 6:55 times are assumed "PM", and 7:00 -
12:55 times are assumed "AM". Thus, in order to schedule an
appointment at a time outside of these defaults, the "AM" or
"PM" must be included, such as for T7:30 PM, or 6:00 AM.

The electronic calendar system will not allow
conflicts. If the time entered in any way conflicts with
any previous appointment of that day, the user is informed
of the conflict and returned to the previous prompt. After
a non-conflicting time span is entered, a prompt for the
appointment description is displayed, An example of an
insertion of Rich's schedule follows, as a continuation of
the previously desplayed sequence. The first insert attempt
is a conflict,

(I)nsert, (D)elete, (L)ist, (N)ewday, or e(X)it -> I

Enter Beginning and Ending Times. -> 11:30 12:00

11:30 = 12:00 conflicts with a previous

10:30 = 11:45 appointment.
(I)nsert, (D)elete, (L)ist, (N)ewday, or e(X)it -> I

Enter Beginning and Ending Times. => 11:45 12:00
Enter Description of appointment.

19
At this point a description can be entered. The description
can be up to 80 characters, and is terminated by a carriage
return,

The insert process just deseribed can also be applied
the same way to a general weekday's schedule. The only
difference is that the insertion applies to more than just
the one day's achedule, A general weekday schedule is
indicated by the heading. For each insertion the entered
time span is the compared with to flag conflicts. Upon
completion of entering the description, an attempt is made
to insert the new appointment to all days present in the
calendar system of the same weekday. The results of the
attempt are then displayed.

To illustrate, if the above insertion was made to a
general Thursday schedule instead of the specific Thursday,
November 18 schedule, the response after the appointment
description was entered might have been:

11:45 = 12:00 appointment inserted to Thu, Nov 18.

11:45 - 12:00 appointment inserted to Thu, Nov 25.

Cannot insert to Thu, Dec 1, due to previous

11:30 - 12:00 appointment.
Insertion made to general Thu schedule,
If the appointment is desired for December 1, it would have
to be manually inserted, after a deletion of the conflicting
appointment of the same day. The dates for which the trace
message are displayed are limited to those dates which have

appointments scheduled other than weekly appointments. The

change made implicitly applies to all succeeding Thursdays

20

(December 8, 13, ...).

At this point the insertion process is concluded, and
the higher level prompt is displayed:

(I)nsert, (D)elete, (L)ist, (N)ewday, or e(X)it=>

The next possibility for an answer to this prompt is
delete, which behaves similiarly to insert, but is even
simpler to use, All that is required by the delete process
is to know which appointment to delete, The easiest way to
uniquely identify an appointment is by its beginning times.
The prompt is:

Enter beginning time of appointment to delete, =>

The expected answer to this= prompt should follow the same
format and defaults at the prompt for beginning and ending
times described earlier for the insert process, except, of
course, that only one time need be entered. The case where
the time entered does not exist as the beginning time of an
appointment is indicated by a prompt, such as:

Appointment with beginning time 11:45 not found,
(I)nsert, (D)elete, (L)ist, (N)ewday, or e(X)it ->

and control is then returned to the previous prompt.

From the user's point of view, the one entry for a
beginning time is all that is required. But the effects
resulting from special cases of deletes need to be defined.

If the schedule from which the appointment was deleted
was a weekday schedule, then the delete is also attempted on
all successive dates having the same weekday. Similiar trace

messages are displayed., As an example:

21

11:45 12:00 appointment deleted from Thu, Nov 18.
11:45 12:00 appointment deleted from Thu, Nov 25.
11:45 = 12:00 appointment not found on Thu, Dec 1.

11:45 = 12:00 appointment deleted from Thu schedule.

Another case of delete is when the appointment to be
deleted is a meeting of several users; that is, the
appointment entry contains a list a participants. If such a
meeting is deleted, then one of two events occur. If the
user performing the deletion is the owner of the meeting;
that is, the one that requested the meeting in the first
place, then the meeting is considered cancelled. It is
automatically deleted from all of the member's schedules,
and mail is sent to each member informing him/her of the
cancellation. If, instead, the user performing the deletion
is a member of the meeting, but not the owner, then the
deletion is only made to his/her schedule, but his name is
automatically removed from the list of members on all of the
member's schedules. Also, mail is sent to the owner of the
meeting informing him/her of the ommission of the one member
from the meeting.

Three other possibilities for answers to the second
level prompt exist, other that insert or delete, The "List"
and "Newday" options perform backtracking. The "List"
re=displays the day's schedule and the same prompt, and the
"Newday" option displays the prompt for date selection
(discussed previously), so that a different date/day can be
observed or edited. The "Exit" choice returns control to

the initial main menu, at the next higher level.

22

3.2 Meeting Requests

The second choice available at the main menu level is
the "Make or Answer Requests" selection. The processes
included in this subdivision are so categorized from the
fact that all the calendar entries dealt with by this
division are meetings, all including more than one member
and an "owner" of the meeting. As previously described in
the requirements / specifications, a meeting is first
requested by one user to several members. When the requests
are all answered affirmatively, the meeting in considered
confirmed.

The first prompt after selection of this subdivision
from the main menu is:

(R)equest a meeting, or (A)nswer requests? ->

If an "R" is entered, the request process is invoked. This
process is similiar to the insertion process previously
described, in that a date, time, and description must be
entered by the user, and that the appointment is inserted to
the user's schedule for the particular data. The set of
prompts making up the insertion process is augmented with
additions allowing the insertion to apply to several
members, as requests. The next prompt observed for the
request process is:

With whom would you like an appointment?
Enter names or list. =>

Here the names entered must match the login names known

by the system under which the electronic calendar is

23
implemented. The "list" option is often useful when the
names are not absolutely known; the names of all users
participating in the electronic calendar system (as they
must be entered) will be listed, and the prompt will be re =
displayed. An example with four total users is:

With whom would you like an appointment?

Enter names or list. => list

beth virg rich rod

With whom would you like an appointment?

Enter names or list. => beth virg

For how long? =>
The value entered for the duration of the proposed meeting
must be a multiple of 5 (5, 10, 15, ...). The next prompt
asks for the date or month and date of the proposed meeting:

Enter Preferred date, or month and date. ->
The response to this prompt follows the same guidelines as
the similiar prompt at the beginning of the "Update or
Observe® process; a null line implies the current date, a
single date can be entered for dates up to two weeks from
the current date, and past that date the month name is
required. The only exception is that weekday names are not
allowed. The next prompt is:

Standard 8:00 = 5:00? (Y/N) =>
A TMyes"® answer to this prompt will 1limit meeting
possibilities to the time spans between 8:00 AM and 5:00 PM.
Otherwise, all of the possibilities during the 24 hour day
will be listed.

At the successful completion of a date selection and

the decision of the "Standard?"™ question, the "free time

24
intersection®™ of all the members entered and the user are
calculated and displayed. An example of the display is:

Here are the free times for Thu, Nov18:

9:00 - 10:00 2:00 - 2:30

Do you want one of these? ¥Y/N/e(X)it ->
The time slots listed represent the free time intersection
of all the members (including the owner) for that particular
day. Only the time pairs that represent durations greater
than or equal to the previously entered time span are
displayed.

The associated prompt asks for one of three choices. A
"yes" answer to the prompt means that the user does wish to
proceed with the requesting process, on the date to which
the displayed possibilities apply. In that case the prompt
for beginning and ending times of the requested meeting
appears:

Enter Beginning and Ending Times. -2
The format for the expected input is exactly the same as the
time pairs expected by the insertion process, described in
the previous section. The time pair entered is similiarly
validated by checking against the formerly displayed times
for conflicts, After a conflict -~ free time pair is
entered, a prompt for the meeting description is displayed,
again analogous to the insertion process:

Enter description of meeting. =>

When the description is entered the request process is

25
complete., The meeting will appear on all the member's
schedules with the "R" field present. In addition, mail is
automatically sent to the members, informing each of the
request, with the date included, 80 that their
acknowledgement (answer) can be as prompt as possible.

For the prompt:

Do you want one of these? ¥Y/N/e(X)it ->

there are two alternatives for answers other than "yes". A
"no" response backtracks to the date selection prompt, so
that the request can be attempted on an alternate day. The
"exit" choice returns control to the main menu, without a
request being made, or mail being sent.

To perform the opposite function, of answering requests
made by other members, the second choice to the prompt:

(R)equest a meeting, or (A)nswer requests? ->

is selected. At this point the user has been informed that
another calendar user requests his/her presence at a meeting
via system mail. The mail contained the owner of the
meeting (the sender of the mail), and the month and date of
the proposed meeting.

The first prompt observed, upon invocation of the
"answer® choice, is:

Enter date for which requests are to be answered. =>
The input expected here is the same as that expected in the
previous date selection prompt of the "request" process. A

date without the month name can be entered for dates up to

26
two weeks from the present day, and past that date the month
name is required.

If the date selected does not contain any entries in
which the user has requests, a prompt such as:
No requests exist on Novi8.
appears, and control is returned to the main menu, If,
instead, a request does exist for the date selected, then
the schedule is displayed, in the same format as described
in the "Update or Observe" section of this chapter. Another
example follows, again for a user named Rich:
Schedule for Tue, Nov 16, 1982:
8:00 - 9:00 Unavailable

1:00 = 2:00 R1 virg rich
For spring scheduling possibilities.

2:00 = 3:00 R2 beth rich
to discuss an alternative UNIX
distributed database system.
R1? (A)ccept, (R)equest, or (M)ove-on =>
For each request, the user will be given this prompt. In
this case after the first one is answered, the same prompt
for the second request (the one with Beth) will be
displayed, as:
R2? (A)ccept, (R)equest, or (M)ove-cn =>
For each prompt, the results of the answers are these., If
the user accepts the request, then the "R" field for that
meeting is removed from his schedule for that day, the

meeting is no longer considered a request. Also, mail is

sent to the owner of the meeting informing him/her that the

27
user here has decided to accept the request for a meeting.
If, instead, the user decided to reject the request for a
meeting, his/her name is removed from the "members" field of
all the other members of the meeting, Mail to the owner
informs him/her that the user has rejected the meeting
request. The meeting is then deleted from the |users
schedule,

As a final possibility, the "move-on" choice may be
taken, This choice is designed for use when the decision to
accept or reject a meeting request cannot be made at the
present time. The request remains on the schedule

unaltered, and no mail is sent.

28

CHAPTER 4

FUTURE ENHANCEMENTS

As with any software product, this implementation has
limitations and a finite scope. While the design is
consistent with the stated specifications, future changes in
the demands for the service provided by this electronic
calendar system could necessitate accomodating changes to
software., The enhancements described here are, in the
writer's opinion, the most probable cases. There is, of
course, an unlimited number of possible future demands for
this and any other ongoing software service,

The six month look-zhead limit is a somewhat arbitrary
requirement. The particular application in which this
implementation is to be used, primarily the KSU Computer
Science department, does not require appointments of any
sort to be made past that time interval. However, if
conditions were ever to change, such that this assumption
was no longer true, the software change could easily be
made., The change would require a minimal increase in
computer memory.

There exists a possibility in some applications that a
(possibly varying) inter-appointment time slot would be
implemented, a case where it would not be desirable to allow
any appointment to begin at the same time the previous

appointment ended. This is not implemented. The

29
justification is, again, that the application does not
necessitate such a feature,

Access security is not currently explicitly provided by
the software, but is implicit in the UNIX operating
system. An authorized user is one that has possession of a
valid account on the UNIX system. Account ownership
entitles a user to maintain a personal calendar, and to make
requests for meetings with other users, Other electronic
calendar applications might require a "screening™ process to
assign security rank to each user, with access privilages
dependent on the rank. The changes to software to implement
this feature would be substantial, but conceivable.

"Tickler®™ files, or automatic reminders, could be
integrated in an electronic calendar system. They would, at
the user's option, provide automatic reminders of any
desired appointments at a specified time. This is not
implemented for two reasons. First, it would require a high
degree of operating system interaction, creating a detriment
to portability. The second reason is that such a feature
already exists under the UNIX operating system, for which
this project will apply, that adequately provides this
service,

With an increase in use of the electronic calendar
system and/or expansion of facilities to distributed
systems, a distributed electronic calendar system could

become desirable. Conversion of the present implementation

30
to one that includes inter-system communication is
conceivable, since the source code is written in the fairly
standard persion of the Pascal language. The conversion
would entail a re-compilation (or re-interpretation) for the
new system, and the means for the programs to read and write

to files across network lines.

31

REFERENCES

1. Bair, James H. "Communications in the Office of the
Future: Where the Real Payoff May Be," Proceedings of the
International Computer Communications Conference, Kyoto,
Japan, Sept., 1978, p. 735.

2. Barcomb, David., "O0ffice Automation. A Survey of Tools
and Techniques.", 1981, p. 116.

3. Greif, Irene. "Computer Support for Cooperative
Office Activities." MIT-LCS. April, 1982.

4., Mintzberg, Henry. "The Nature of Managerial
Work.",1973, p. 39.

5. Kernighan, Brian W. and Mashey, John R. "The UNIX
Programming Envoronment." Software - Practice & Experience 9

(1979).
----- - "The UNIX Programming Environment,"

Computer, April 1981, pp. 12=22.

6. Lions, J. "Experience with the UNIX Time-Sharing
system," Software - Practice & Experience 9 (1979).

7. Joy, Graham, and Haley. "Berkeley Pascal User's
Manual - Version 2.0 - October 1980. Computer Science
Division, University of California, Berkeley.

32
APPENDIX 1

USER'S QUICK REFERENCE

Contained in this appendix is an outlipne-like
representation of the sequence of prompts and expected user
responses for the writer's implementation of an electronic
calendar system. The intention is that this section be used
as a quick reference or general guide for a user unfamiliar
with the formats of input expected by the software.

The representation of prompts and responses is divided
into two categories. These categories correlate with the
two choices available to the user at invocation of the
electronic calendar. The display is:

Welcome to Electronic Calendar.
Today is Thu, Nov 18, 1982,
Main Menu:
1. Update or Observe Personal Calendar.
2. Make or Answer Meeting Requests.
X, Exit.
Please Enter Command Number or X, =>
{1y 2, %, x}
The choices for input will be represented in set notation.
In this case, the prompts and responses following choice "1%
are described on the following page, choice "2" is described
on the succeeding page. Labels (to which GO TO statements
refer) are shown in asterisks (eg. #%A%%), 6 Text in pointed
brackets (<..»>) is not actually displayed or required, but

describes in english either an instruction, or the actual

data element that will appear or be expected.

33
Update or Observe Personal Calendar
#EARE <ret)> for today's schedule, enter date or day. ->
{<ret>, 18, Nov18, novi8, Wed, wed, ... }
##p## (The schedule for the date entered is displayed>
#E#C#% (I)nsert, (D)elete, (L)ist, (N)ewday, or e(X)it? =->
case

{I, i}: Enter beginning and ending times. =>
{800 900, 8:00 AM - 9:00 AM, ... }

Enter description of appointment.
{80 characters or less}

Insertion Made
GO TO %##CEE)

{D, d}: Enter beginning time to delete.
{800, 8:00, 8:00 AM, ... }

Deletion Made.,
{GO TO &#Ca®)

{L, 1}: <GO TO ##B##)
{N, n}: <GO TO #sp#&)
{X, x}: <exit to main menu)

end case.

#ADE#

34

Make or Answer Meeting Requests

(R)equest a Meeting, or (A)nswer Requests? ->

case

{R, r}:

{A, al:

end case,

With whom would you like an appointment?
Enter names or list. =>
{list, virg, virg beth, ...}

For how long? (minutes) =>
{5' 10’ 15, 20, aee }

Standard 8:00 = 5:00? (Y/N) =>
{Y, vy, N, n}

Enter Preferred date. =>
{18, Nov18, novi8, ... }

Here are the possibilities for

Thu, Nov 18:

<time pairs representing free times.>
Do you want one of these? Y/N/e(X)it ->

case

{Y, y}: Enter beginning
and ending times.
{800 900, ... }
Enter meeting description.
{<80 characters>}
<Exit to Main Menu>

{N, n}: <GO TO %#p##)

{¥, X}: <Exit to Main Menu>
end case,
Enter date for which requests are to
be answered. =>

{18, Nov18, novi8, ... }

<display of schedule, requests
numbered as R1, R2, ... Rn>

R1? (A)ccept, (R)eject, (M)ove-on?->
{a, a, R, r, M, m}

35
APPENDIX 2

DESIGN / MAINTENCE MANUAL

2.0 Intreduction

This appendix contains a brief summary of the design of
the writer's implementation of an electronic calendar
gystem, The design used and discussed here represents one
possible solution to the problem of meeting the
specifications called for in the problem statement of
chapter two in this report.

The rationale for this section is two-fold. A design
document of a specific implementation can often give insight
to a (possibly improved) design solution for this or any
similiar application., A specific solution teo any problem is
the logical nfinal chapter® in a complete problem
description, The second u=se for this appendix is as a
maintenence manual for use by the operator(s) of the UNIX
system, since some understanding of the design is needed by
those who maintain it, Certain "housekeeping" chores
related to file management and access rights must be
initiated by the systems operator in order for the software
to be usable, Also, future changes to existing software
necessitate a basic knowledge of the workings of the
programs, The first section is a general statement of
design with respect to the software's interaction with its
external environment. The facets dealing with lower-level

design issues are omitted, and 1left to internal code

36
documentation. The next section addresses the specific
maintenence problem of adding a new user to the electronic
calendar system, and the 1last section looks at a proposed

archival file system to "backup" schedules of past dates.

2.1 Design

The electronic calendar system relies heavily on the
UNIX operating system for storage and access of external
files, A differentiation between short-term and long-term
dates is noted by the user when he/she specifies a date to
observe, It was stated that a short term date (one less
than 14 days away) could be accessed by entering the date
only. Future dates which are more that 14 days from the
present require the month name and the date. Except for
these details, the user has been hidden from the
distinction, but in implementation the differences are more
acute,

At any point in time, the software requires that the
user has contained in his/her UNIX account a directory
(presently called "caldir®) containing 14 files representing
the 14 short-term days. These files are named by the
character pair conversion of the date which the file
represents. So the filename for date 1 is "Q1", 10 is ®107",
ete,

Also required are seven files that represent the

schedules of the seven weekday that apply globally to all

37
dates. They are named by the capitalized three-letter
abbreviation of the weekdays ("Mon", ... , "Sun"),

Files representing long-term dates (greater than or
equal to 14 days from the present) are also stored in
individual files, They are named by the concatenation of
the month and date (eg. "Novi8", "Dec03"). Since the number
of long-term dates present in a user's directory varies (in
a way to be discussed), a seperate directory file, called
"direct™ contains a 1listing of the long-term files in
existence,

To summarize the required files in a user's directory,
the numbers of each type are: (14) short-term files named by
dates, (7) weekday files named by each weekday, (1)
directory file named "direct", which contains N records of
long-term filenames, (N) long-term files, named by
month/date,

The task of maintaining the above mentioned files in
non-trivial, but fortunately it is handled completely
automatically by two Pascal programs that make up the
electronic calendar system. The first program is invoked at
random by the user, to perform any of the desired tasks
described in chapter three. The second is a program whose
execution is invoked automatically by the operating system.
This invocation is daily at 11:00 PM. The effects of these
programs on the status of the files can now be explained.

As a user is running the main Pascal program, access is

38
provided to any date's schedule up to a year from the
present day. But 365 files are not kept on the file space
of his/her account. As a general rule or convention, the
following statement can be made: "Only long-term dates in
which the schedules on those dates differ from the
corresponding weekday's schedules are kept on file." In
other words, if a long-term date is a duplicate of the
corresponding weekday of that date, then there is no need to
have the file duplicated. The following example which
traces the main program's execution elucidates further,

Suppose a user indicates a desire to observe or edit
the schedule for June 10, 1983, a long-term date, The file
"Jun10® might or might not exist in the user's file space.
To display the schedule for that date, the file "direct" is
searched for the record containing "Jun10", If the record
is found then the file with same name is read, and the
resulting schedule displayed. If instead, "JuniQ" is not
found in the file "direct"™, then a procedure is called to
determine which day of the week June 10, 1983 falls on. The
file corresponding to that weekday is read, and the
resulting schedule is displayed. The heading for the
display is still "Schedule for Fri, Jun 10, 1983:", but,
appropriately, the user doesn't know (or care) if the
information came from the file "JuniO" or "Fri?".

If an edit (insertion or deletion) is then made to the

June 10 schedule and the file did not previously exist, then

39
a new file "Juni0®™ is created and the edited schedule
written to it. Also, a record containing the "JuniQ®
information is added to the directory file, implying the
existence of a new external file.

A somewhat reversed process is performed by the system
- invocated program, Its task is to create a new file whose
name WwWill be included in the following day's set of
short-term dates. Two cases analogous to the ones described
above are handled, After determination of the day, month,
and date of the new date, the directory file is searched for
the corresponding record. If it is found, the file
representing the long-term date is copied to tc short-term
date's file, the record is removed from the directory, and
the long-term file is removed. If instead, the long-term
date is not found in the directory, the corresponding
weekday is copied to the new short-term day's file. Again
an example will help to clarifly.

Suppose that the automatic program is executed on
Monday, November 1, 1982 (at 11:00 PM). The first step is
to determine information about the new short-term day (from
tomorrow's point of view). The results would yield the fact
that Monday, November 15, 1982 will be considered short-term
tomorrow, so the file "15" must be created before then., The
directory is searched for a record containing "Novis", If
it is found, then (1) file "Novi5" is copied to file "157,

(2) the record containing "Novi5" is removed from the

40
directory, and (3) file "Novi5" is removed. If, instead, a
record containing "Novi15" is not found in the directory, the
file "™Mon"™ is copies to file m15H,

Another issue that will be addressed is the design
description is of how the software communicates with the
operating system. With most implementations of a language
the language is augmented with system - specific calls to
the operating system. At the time of writing, no such
facility exists in the interpreted Berkeley Pascal. To
implement an interface to needed system functions, the
programs write to an executable text file with user level
commands. At the termination of the Pascal program's
execution, the text file (named "execute") is submitted to
the "UNIX" system "shell" for execution.

The possibilities for commands contained in "executel
are as follows. In the main user program, execution
commands are written to the executable file, so that mail
will be sent upon program termination. Such mail occurs
when making or answering meeting requests, or when deleting
a meeting from a date's schedule where the deletion affects
other members. In the automatic program, "execute" is

written to commands to copy ("cp"), and possibly remove

("rm®) files, depending on the circumstances.

2.2 Adding a user to the electronic calendar system.

The most commonly performed maintenence task will be

41
the addition of a new user to the electronic calendar
system. The processes involved in doing this entail two
distinetly different tasks; creating the initial calendar
data files, and editing the source code of the main program,
so0 that it will recognize the addition of a user, and can be
called for execution by that user.

The required data files that will reside in each user's
recaldir® directory have been defined in the previous
section. These files must be declared, or allocated for the
calendar system, even though they will be initially empty.
The files include 14 date files, T weekday files, and one
file named "direct®.

The source code of the main Pascal program requires two
changes., The first can be found near the very beginning of
the global declarations. The new user's name should be added
to the list of enumerations making up the type "users". The
first element of that type with a "notused" name can be
replaced by the users' %logon™ name. The second change
occurs at the first procedure, "InitGlobalVars", An
assignment statement assigning an element of the array
"CytName™ (indexed by the wuser's name) the value of the
user's name in string form should be added. Also, the user's
name enumerated is the new "LastMember™., be added. Also,
the enumeration element corresponding to the user's name is
assigned as the new value of "LastMember®. Thus, that

assignment statement should be changed.

L2
1.3 Backups / Archival Files

At the time of writing, no means for an archival file
system is implemented. Past dates are currently
inaccessable by the user. If an archival file systenm
becomes desirable, program changes would reflect the current
availability of computer memory.

One such possibility would involve a change to the
automatic program, so that in addition to creating a new
file representing the new short-term date, the schedule for
the "soon-to-be-lost" date would be appended to an archival
file. The archival file would periodically be dumped to
magnetic tape, and then erased from disk,

If a text file is to be used for archival, then the
"WriteArray" routine should be extracted from the main user
program, and called by "GetNewDay" of the automatic program.
The call will include information (as parameters) about the
current day. Since Pascal doesn't contain facilities to
append text to files, the program will have to soclve the
problem by writing UNIX "rename® and "concatenate" commands

to the external "execute® file,

APPENDIX 3

PASCAL SOURCE CODE

43

Nov 21 20:24 1982 ecal.p Page 1

program ecal (input,output,f,direct,mailer,execute);

const
MaxFileLength = 40; {max # calendar entries per day}
MaxDirLength = 50; {max # longterm (>14 day) dates}
type
FakeBoolean = (yes,no); {for when boolean causes UNIX}
FileLengthRange = 0..MaxFileLength; {stack overflow error}
users = (david,clq,beth,rich, {electronic calendar participants}
virg, notusedi1, notused2,
list);

UserSet = set of users;

AppointmentTypes = (request,weekly,other);

TimeString = packed array [1..8] of char; {eg. "10:00 AM'}
string = packed array [1..80] of char;

rec = record {each calendar entry}
b,e : integer; {beginning and ending times}
t : AppointmentTypes; {request or other}
s : string; {80 character description}
case setexists : boolean of {true if meeting, i.e, members}
true : (owner : users; {requester}
uset : UserSet; {members of meeting}
confirmed : UserSet); {confirmed members}
false : ()
end;
RecFile = file of rec; {calendar files, one per day}

RecArray = array [FileLengthRange] of rec;

pair = packed array [1..2] of char; {assorted strings}
triple = packed array [1..3] of char;
strings = packed array [1..5] of char;
string8 = packed array [1..8] of char;
string30 = packed array [1..30] of char;
DaysOfMonth = 0..31;
DayDescrip = record {info about short-term dates}
datechar : pair;
day,month : triple;
Year : integer
end;
DaysArray = array [DaysOfMonth] of DayDescrip;
DaysSet = set of DaysOfMonth; {will contain 14 shour-term dates}

TimePair = record {used when conflict checking}
BeginTime,
EndTime : integer
end;
TimePairArray = array [FileLengthRange] of TimePair;

DirRec = record {directory of long-term dates}
Day : triple;
MonthDate : strings
end;
DirRecFile = file of DirRec;
DirLengthRange = 0..MaxDirLength;
DirRecArray = array [DirlLengthRange] of DirRec;

Nov

var

21 20:24 1982 ecal.p Page 2

MailRec = record
WrittenTo :
message : text

end;

FakeBooclean;

flocal mail file information}

MailRecArray = array [users] of MailRec;

ThisUser : users;

dset : DaysSet;

dar : DaysArray;

today : DaysOfMonth;

CvtName : array [users] of string8;
FirstMember, LastMember : users;
code : char;

f : RecFile;

direct : DirHRecFile;

mailer : text;

execute : text;

MailAr : MailRecArray;

{pseodo-constant, defined in main prog.}

{set of short-term dates}
{info about short-term dates}

{numeric pseodo-constant, today's date.}

{string array of names}

{pseudo-constants, name enumerations}

{for main menu input command}
{general calendar file}
{external directory file name}
{general letter file for mail}
{external executable file name}
{to store local letter files}

Nov 21 20:24 1982 ecal.p Page 3

{#8#%# Tnjit Global Vars ®E##s}

{
Called by
main program
External
argv : Berkeley Pascal built in. Accepts the program paramater, which
is the user's name.
CvtName : String array to convert enumerated names to strings.
MailAr : Array of local text files to which mail messages are stored.
FirstMember,
LastMember : Pseudo-Constants representing the first and last members
of the enumerated names of users.
}
procedure InitGlobalVars;
var
ThisMember : users;
a : string8;
begin
FirstMember := david;
LastMember := virg;
CvtName [david] := 'david';
CvtName [clq] t= Telq';
CvtName [beth] := '"beth';
CvtName [rich] := 'rich';

CvtName [virg] := 'virg';

for ThisMember := FirstMember to LastMember do

with MailAr [ThisMember] do

begin
WrittenTo := no;
rewrite (message)

end;

argv (1,a);

ThisUser := FirstMember;

while (ThisUser < LastMember) and (CvtName[ThisUser] <> a) do
ThisUser := sucec(ThisUser);

if CvtName[ThisUser] <> a then halt

end;

Nov 21 20:24 1982 ecal.p Page 4

f##8%# Dump Local Mail Files ®&&®#}

{

For each of the local mail files that have been written to during the

course of program execution, the contents of the local file is copied

to an external file, one given the name of the destination of the mail.

The external file is the 'letter' which will be sent at program termination.

Called by
main program
External
FirstMember,
LastMenber : Endpoints (bounds) for the set of users.
MailAr : Array of local text files.
mailer : General name for external text file containing message.
}
procedure DumpLocalMailFiles;
var
ThisMember : users;
¢ : char;
begin

for ThisMember := FirstMember to LastMember do
with MailAr [ThisMember] do
if WrittenTo = yes then
begin
writeln (execute,'mail ',CvtName[ThisMember],' < ',CvtName[ThisMember]);
rewrite (mailer, CvtName[ThisMember]);
reset (message);
while not eof (message) do
begin
while not eoln (message) do
begin
read (message,c);
write (mailer,c)
end;
readln (message);
writeln (mailer)
end
end
end;

Nov 21 20:24 1982 ecal.p Page 5

{.‘"'l‘ tme' scale "*ll}
{
For easier time calculations and comparisons, the 24 hour clock is mapped onto
a 288 element scale, where each element represents a five minute interval.
Ytme' converts a scaled value to a readable time, and 'scale' converts a
numeric 24 hour time to a scaled value. The mapping is:
1:00 AM = 0, 1:05 AM = 1,...,8:00 AM = 84,...,1:00 PM = 144,....
Called by

All procedures dealing with times and times I/0.

}
function tme (n:integer):TimeString;
var
h,m,h1,h2,m1,m2:integer;
temp:TimeString;
begin
if n >= 144 then
begin
n :=n - 14i4;
temp[T7] := 'P!
end
else

temp[7] = '"A';
temp[8] := 'M';
h := (n div 12) mod 12 + 1;
m :=

(n # 5) mod 60;

h1 := h div 10;

h2 := h mod 10;

ml := m div 10;

m2 := m mod 10;

if h1=1 then temp[1] := "1!
else temp[1] := ' ';
temp[2] := chr(h2 + ord('0'));
temp[3] = ':';

temp[4] := chr(ml + ord('0'));
temp[5] := chr(m2 + ord('0'));

temp[6] 1= * 1;
tme := temp
end;

function scale (n:integer}:integer;
begin

scale := (n mod 100) div 5 + (n div 100 - 1) # 12
end;

Nov 21 20:24 1982 ecal.p Page 6

{##®%% MthNum, Day Of Week, Dates Info #s##&%}
{
To determine which dates of the month are to be considered short-term dates,
these procedures calculate and return the 14 short-term dates. Information
about each day (day-of-week, month, and year) is also stored for easy access
during program execution.,
DatesInfo called by

main program.
MthNum called by

DatesInfo.

CheckExistence : for month=value comparison (eg. 'Jdan' < 'Feb').
DayOfWeek called by

DatesInfo.
External
date : Berkeley Pascal built-in procedure that returns current day info.
Output paramters
dset : the set of 1..31 numeric values representing short-term dates.
dar : array indexed by members of dset, stores information about the

short term dates.
today ¢ numeric pseudo-constant, the numeric value of today's date.

}

function MthNum (month : triple) : integer;

begin
if month = 'Jan' then MthNum := 1
else if month = 'Feb! then MthNum := 2
else if month = "Mar' then MthNum :z 3
else if month = 'Apr' then MthNum := 4
else if month = 'May' then MthNum := §
else if month = 'Jun' then MthNum := 6
else if month = "Jul' then MthNum := 7
else if month = 'Aug' then MthNum := 8
else if month = 'Sep' then MihNum := 9
else if month = 'Oct'! then MthNum := 10
else if month = 'Nov' then MthNum := 11
else if month = 'Dec! then MthNum := 12
else halt

end;

function DayOfWeek (date:DaysOfMonth; month:triple; year:integer):triple;
var

DayNum:0..6;

MonthNum : 1..12;

funct : array {1..12] of integer;
begin {function}

MonthNum := MthNum (month);
funct[1] := 1; funct[2] := ¥4; funct[3] := 4; funct[l] := 0;
funet[5] := 2; funct[6] := 5; funct[T7] := 0; funct[8] := 3;

funct[9] := 6; funct[10] := 8; funct[11] := Y4; funct[12] := 6;
if ((month='Jan') or (month='Feb')) and (year mod 4 = 0) then
DayNum := (funct[MonthNum] + date + year + year div 4 - 1) mod 7
else
DayNum := (funct[MonthNum] + date + year + year div 4) mod T;
case DayNum of
0 : DayOfWeek := 'Sat’;
1 : DayOfWeek := 'Sun';

Nov 21 20:24 1982 ecal.p Page T

2 : DayOfWeek := 'Mon';
3 : DayOfWeek := 'Tue';
4 : DayOfWeek := '"Wed';
5 : DayOfWeek := 'Thu';
6 : DayOfWeek := !'Fri!

end
end; {function}

procedure increment{var this:triple);

begin
if this = 'Sat' then this := 'Sun!
else if this = 'Sun' then this := "Mon'
else if this = 'Mon' then this :=z '"Tue!
else if this = 'Tue' then this := '"Wed"
else if this = '"Wed! then this := '"Thu'
else if this = 'Thu' then this := 'Frit
else if this = 'Fri' then this := 'Sat'
else if this = 'Jan' then this := 'Feb!
else if this = 'Feb' then this := 'Mar?
else if this = "Mar' then this := 'Apr!
else if this = 'Apr' then this := 'May!
€lse if this = 'May' then this := "Junt?
else if this = 'Jun' then this := 'Jul!
else if this = 'Jul' then this := 'Aug'
else if this = 'Aug' then this := 'Sep!
else if this = 'Sep' then this := 'QOct!
else if this = '0Oct! then this := 'Nov!
else if this = 'Nov' then this := 'Dec!
else if this = 'Dec' then this := 'Jan'
else halt
end;

procedure DatesInfo{var dset:DaysSet; var dar:DaysArray; var today:DaysOfMonth);
var
a : alfa;
ThisDay, ThisMonth : triple;
i, ThisYear, temp : integer;
ThisDate, ThisMonthLength : DaysOfMonth;
begin {procedure DateslInfo}
date(a);
if a[1] = ' ' then a[1] := '0';
ThisDate := 0;
for i := 1 to 2 do
ThisDate:= ThisDate®10 + ord(a[il]) = ord('0');
today := ThisDate;
for i := 4§ to 6 do
ThisMonth[i-3] := a[il];
ThisYear := 0;
for i := 8 to 9 do
ThisYear := ThisYear#®#10 + (ord{(ali]) - ord('0')});
ThisDay := DayOfWeek (ThisDate,ThisMonth,ThisYear);
if (ThisMonth = 'Aprt') or (ThisMonth = 'Jun') or
(ThisMonth = 'Sep') or (ThisMonth = 'Nov') then
ThisMonthLength := 30
else if (ThisMonth = 'Feb') and (ThisYear mod 4 = 0) then
ThisMonthLength := 29

Nov 21 20:24 1982 ecal.p Page 8

else if (ThisMonth = 'Feb') then
ThisMonthLength := 28
else
ThisMonthLength := 31;
dset := [1;
for i := 1 to 14 do
begin
dset := dset + [ThisDate];
dar[ThisDate].datechar[1] := chr(ThisDate div 10 + ord('0'));
dar[ThisDate].datechar[2] := chr(ThisDate mod 10 + ord('0'));
dar{ThisDate].day := ThisDay;
dar[ThisDate].month := ThisMonth;
dar[ThisDate].year := ThisYear;
temp := ThisDate;
temp := succ (temp);
increment (ThisDay);
if temp > ThisMonthLength then
begin
increment (ThisMonth);
if ThisMonth = 'Jan' then ThisYear := succ(ThisYear};
temp := 1
end;
ThisDate := temp
end
end;

Nov 21 20:24 1982 ecal.p Page 9

[###88 Read String ®e®es}

{

For standard terminal input of packed character arrays (strings).

Called by
Insert : procedure to add an appointment. Reads appointment description.

Request : procedure to make a meeting request. Reads meeting description.
Output parameter

s : 80 character array, from standard input. Text is delimited by '#!
}
procedure ReadString (var s:string);
var

i : integer;

first : boolean;
begin

first := true;

iz=1;

while (not eoln) and (i< 80) do

begin

read (s[il);
if (not first) or (s[i] <> ' ') then
i := suce(i);
first := false
end;
s[i] := &
end;

Nov 21 20:24 1982 ecal.p Page 10

{eeeas Yrite F String BediE}
{
Write formatted string displays the 'string' field of an appointment or
meeting during terminal display of per-day calendars. The string is
displayed on the right half of the screen, if the string is too long
it is broken in half (between words) and displayed on two lines.
Called by
WriteArray : procedure to display a day's schedule to the terminal.
Input parameters
nl : New line, If nl=true, then the string is displayed on
a new line, and after tabbing. This would be required
if the 'members' set was previously displayed on the
first line of the meeting entry.
8 : The 80 character array to be displayed.
}
procedure WriteFString (nl:boolean; s:string);
var
i : integer;
begin
if nl then write (' ':26);
i=1;
while (s[i]<>'#') and ((i<40) or (s[il<>' ')) do
begin
write (s[i]);
i := suce(i)
end;
if s[i]<>'#' then
begin
i := suce{i);
writeln;
write (' ':26)
end;
while s[i]<>'#' do
begin
write (s[il};
i := suce(i)
end
end;

Nov 21 20:24 1982 ecal.p Page 11

{##28% Read Single Time E##=#}
{
A single time-of-day is read and mapped onto a 24 hour clock. Assumptions
are made in the case of a missing 'AM' or 'PM'.
Called by
delete : As the beginning time of the calendar entry to delete.
Qutput parameter
n : Numeric value of time on a 24 hour clock (eg. 2:00 PM = 1400)
}
procedure ReadSingleTime {var niinteger);
var
digits : set of char;
ok : boolean;
¢ ¢ char;
begin
digits := ['0'..'9"'];
repeat
ok := true;
n:=0;
repeat
read {(c);
if ¢ in digits then n := n#10 + ord(e) - ord{('0")
until (eoln) or (not (¢ in digits + [':',' ']));
while (not eoln) and (¢ = ' ') do read (c¢);
if n mod 5 > 0 then
begin
ok := false;
writeln ('Time should be a multiple of 5.')
end
else if (n div 100 < 1) or (n div 100 > 12) or (n mod 100 > 55) then
begin
ok := false;
writeln ('Time ',n div 100:2,':',n mod 100:2,' is not legal.')
end;
if (e = 'P') or (e = 'p') or ((c <> 'A') and (c <> 'a') and (n < 700))
then n := n + 1200;
if not ok then
begin
readln;
write ('Please reenter time. => ')
end
until ok
end;

Nov 21 20:24 1982 ecal.p Page 12

{#%%88 Read Time Pair #####]
{
Analogous to 'ReadSingleTime' (above), except two values are read in.
Called by
insert : as the beginning and ending times for an appointment insertion.
request : as the beginning and ending times for a meeting request.
}
procedure ReadTimePair (var b,e:integer);
var
digits : set of char;
ok : boolean;
¢ : char;
begin
digits := ['0'..'9'];
repeat
ok := true;
b :1= 0;
repeat
read (c)
until ¢ <> '
while ¢ in digits + [':'] do
begin
if ¢ <> t':' then
b := b¥10 + ord (¢) - ord ('01);

read (e¢)
end;
if b mod 5 > 0 then
begin

ok := false;
writeln ('Beginning time should be a multiple of 5.')
end
else if (b div 100 < 1) or (b div 100 > 12) or (b mod 100 > 55) then
begin
ok := false;
writeln ('Beginning time ',b div 100:2,':',b mod 100:2,
" is not legal.')
end;
while ¢ = ' ' do read(c);
if (e = 'p') or (c = '"P') or ({(c <> 'a') and (¢ <> 'A') and (b < 700))
then b := b + 1200;
while not (¢ in digits) do read (c);
e := ord (c) = ord ('0');
while (not eoln) and (¢ in digits + [':']) do
begin
read (c);
if ¢ in digits then & := e®10 + ord (¢) - ord ('0')
end;
while (not eoln) and (¢ = ' ') do read (¢);
if e mod 5 > 0 then
begin
ok := false;
writeln ('Ending time should be a multiple of 5.'")
end
else if (e div 100 < 1) or (e div 100 > 12) or (e mod 100 > 55) then
begin

Nov 21 20:24 1982 ecal.p Page 13

ok := false;
writeln ('Ending time ', e div 100:2,':',e mod 100:2,' is not legal.')
end;
if (e = "P') or (e = 'p') or ((ec <> "A') and (e <> 'a'} and (e < T00))
then e := e + 1200;
if e < b then
begin
ok := false;
writeln ('Time ',tme(scale(b)),' - ',tme(scale(e)),' is impossible.')
end;
if not ok then
begin
readln;
write ('Please reenter beginning and ending times. =-> 1)
end
until ok
end;

Nov 21 20:24 1982 ecal.p Page 14

{##%#% Read Time Span ®#&E#}]

{
Input of a numeric time span length, The number of minutes desired is input.
Called by

Request : For the value of the minimum meeting length required by the requestor.
Output parameter

n : The minutes. A multiple of 5.
}
procedure ReadTimeSpan (var n : integer};
var
¢ : char;
ok : boolean;
begin
repeat
ok := true;
n := 0;
repeat
read (c);

if ¢ in ['0'..'9'] then
n ;= n®*10 + ord (¢) - ord ('0')

until (not (¢ in ['0'..'9'])) or eoln;
if n = 0 then
begin

ok := false;

writeln (e¢, ' is not a valid time.')
end
else if (n mod 5 <> 0) then
begin

ok := false;

writeln ('Time span must be a multiple of 5.')
end;
if not ok then
begin

readln;

write ('Please reenter time span in minutes, =-> ')
end
else

n:=ndiv 5

until ok
end;

Nov 21 20Q:24 1982 ecal.p Page 15

{EsRE® Yrite Set W#E##R}]

{

For terminal display of members of a meeting, confirmed members of a meeting.
Called by
WriteArray : during display of a particular day's appointments, when a
several member meeting is to be displayed.

Input paranmter
uset : the set of members (enumerations).
}

procedure WriteSet (uset : UserSet);
var
user:users;
begin
for user := FirstMember to LastMember do
if user in uset then
write (CvtName [user])
end;

Nov 21 20:24 1982 ecal.p Page 16

{##22# Read

{

Set #s##s)

Input of string names, conversions to enumerations, and addition to the set.

Called by
Request

: When prompting for the list of members desired tor the meeting.

Output parameter

S

}

¢ The set of members (enumerated) for the requested meeting.

procedure Read3Set (var s : UserSet);

var

this : string8;
ThisMember : users;
str : string;

i,j : integer;

ok : boolean;

begin
repeat
ok :=

true;

85 .= [];
ReadString(str);

i s=
while
begin

13

str[i] <> '"#' do

while (str[i]<>'#') and (str[il=' ') do i := succ(i);

ir

str[i]<>'#' then

begin

J o= 13
this = ' %
while (strl[il<>'#') and (str[il<>' ') and (j<=8) do
begin
this[j] := str[il;
i := suec(i);
J = suee(])
end;
ThisMember := FirstMember;
while (this<>CvtName[ThisMember]) and (ThisMember < LastMember) do
ThisMember := succ (ThisMember);
if this = CvtName[ThisMember] then
S := s + [ThisMember]
else if (this[1] in ['1','L']) then
:= [list]
else
begin
writeln (this,'is invalid. Please reenter names, or list. ->');
readln;
ok := false
end

end

end
until ok
end;

Nov 21 20:24 1982 ecal.p Page 17

{#8#%#% Read From File #&&&&}

{

Copies an external file to a similiarly typed array for observation, or editing.
Assumes that file 'f' has been previously reset to the desired file.

Called by
UpdateOrObserve : for observation or manipulation.
TemplateInsert : for reading all the files of a certain weekday.
TemplateDelete : for reading all the files of a certain weekday.
Request : for reading a schedule in which a request is to be nmade.
External
f : file.
Output parameters
ar : array of appointments / meetings.
1 ¢ length of array.

}
procedure ReadFromFile (var ar:RecArray; var l:FilelLengthRange);
begin
1 :=0;
while not eof (f) do
begin
1 := suce (1);
read (f, ar[l])
end
end;

{#ER8% Yrite To File #E#us}

{

Opposite of 'ReadFromFile' (above). Updates external file 'f' to the current
value of the appointment / meeting array. Assumes 'f' has been rewritten to
the desired external file.

Called by

UpdateOrObserve : when changes have been made to a scheaule.

Answer ¢ to carry out the changes of an 'accept' or a 'reject'.
External

f : file,
Input parameters

ar : array of appointments / meetings.

d: ¢t length of array.

}
procedure WriteToFile (ar:RecArray; l:FilelLengthRange);
var

i : FilelLengthRange;
begin

for 1 := 1 to 1 do

begin

write(f, ar[i])

end

end;

Nov 21 20:24 1982 ecal.p Page 18

{##E%% Write Dir To File ##E&s)

{

Analogous to 'WriteToFile' (above), except for use when writting a directory
of long term dates back to the external file 'direct!'.

Called by
UpdateOrObserve : when a long-term date's schedule is to be added.
Request : If a request caused a new long-term date.
Input parameters
ar : array of long-term date's information,
1 ¢ length of array.
}

procedure WriteDirToFile (ar:DirRecArray; l:DirLengthRange);
var
i : DirlengthRange;

begin
for 1 := 1 to 1 do
begin
write (direct, ar[i])
end

end;

Nov 21 20:24 1982 e

{#888% WYrite Array #®

{

For terminal display

Called by
UpdateOrObserve ;
Answer H

External
WriteSet -

WriteFString 3

Input parameters

ar :
1 z
weekday :
day 5
month .
date 3

}

procedure WritelArray

var

cal.p Page 19

!Il'}

of a single day's schedule.

at input of a 'list! command by the user,
so the user can see the the requests are that need
to be answered.

procedure to convert enumerated names of a set to
character strings and output to terminal.

procedure to display the 80 character description of
the appointment / meeting formatted on two lines, if
need be,

schedule to be displayed.

length of array.

to adjust heading of display for either a specific day
or a general weekday (that applies to all weeks).

day of the week.

month, used for specific dates.

numeric date, also for specific dates only.

(ar:RecArray; l:FilelLengthRange; weekday:boolean;
day, month:triple; date, year:integer);

i,r : FileLengthRange;

begin
writeln; writeln;
if weekday then

writeln;

writeln ('General Schedule for ',day,':!

else

writeln ('Sche
r = 1;
if 1 = 0 then

dule for ',day,', ',month,date:3,', 19',year:2,'.');

writeln (! (no appointments scheduled)');
for i := 1 to 1 do

with ar[i] do
begin

writeln;

write (tme(b),

' - ',tme(e));

if (t = request) and (owner <> ThisUser) then

RY,r:1," ");

L)

if owner = ThisUser then

Currently confirmed by : ');

begin
write ('
r := succ (r)
end
else
write (!
if setexists then
begin
WriteSet (uset);
writeln;
begin
write (?
WriteSet

(confirmed);

Nov 21 20:24 1982 ecal.p Page 20

writeln
end
end;
WriteFString (setexists,s);
writeln
end;
writeln
end;

Nov 21 20:24 1982 ecal.p Page 21

-['l"l"l'l compress "'l"}

{

Removes blanks from a 30 character string, and left justifies the result in
another 30 character string. Used for validating UNIX system filenames for
file access in other user's accounts.

Called by

GlobalDelete : when a meeting change applies to several members.

Request,

Answer : miscellaneous read and write of other user's calendar files.
}

procedure compress (expanded : string30; var compressed : string30)};
var
i,j : 1..30;
begin
compressed := ' 1;
J o= 1;
for i := 1 to 30 do
begin
if expanded[i] <> ' ' then
begin
compressed [j] := expanded [i];
J := suce (jJ)
end
end;
for i := j to 30 do
compressed [i] := ' !
end;

Nov 21 20:24 1982 ecal.p Page 22

{##888 Check For Schedule Conflicts #8#sa}

{

Before insertions are allowed, the beginning and ending times entered by the
user are checked against the current schedule for conflicts.

Called by
insert : after the times for the desired insertion are entered.

AttemptInsert :

files, when inserting to the general weekday's schedule,

Input parameters

ar ¢ array of time pairs - beginning and ending times for a
particular day's schedule.
ArLength : array length,

ThisTimePair : the beginning and ending times to be inserted.
Output parameters

ok

: true of no conflicts.

InsertLocn : insert location, only if ok. The location in the array

where ThisTimePair should be inserted to retain order.

ConflictWith : only if not ok. The beginning and ending times of the

}

appointment for which there exists a conflict with the
times of ThisTimePair, the times of the insertion attempt.

procedure CheckForScheduleConflicts (ar : TimePairArray;
ArLength : FileLengthRange;
ThisTimePair ¢ TimePair;
var ok : boolean;

var

var InsertLocn : FileLengthRange;
var ConflictWith :; TimePair);

i : FileLengthRange;

begin
ok

:= true;

iz=1;
if ArLength > 0 then
begin

while (i<ArLength) and (ar[i].BeginTime < ThisTimePair.BeginTime) do
i := suce (i);

if ar[i].BeginTime = ThisTimePair,BeginTime then

begin
ok := false;
ConflictWith := ar[i]

end
else if ar[i].BeginTime < ThisTimePair.BeginTime then
begin
if ar[i].EndTime > ThisTimePair.BeginTime then
begin
ok := false;
ConflictWith := ar[i]
end
end
else if ar[i].BeginTime < ThisTimePair.EndTime then
begin

ok := false;
ConflictWith := ar[i]
end
else if i > 1 then

for each date of a particular weekday present on the calendar

Nov 21 20:24 1982 ecal.p Page 23

begin
if ar[i-1].EndTime > ThisTimePair.BeginTime then
begin
ok := false;
ConflictWith := ar[i=1]

end

end

else if i < ArLength then

begin
if ar[i].BeginTime < ThisTimePair.EndTime then
begin

ok := false;
ConflictWith := arf[i]
end
end
end;
if ok then InsertlLocn := i
end;

Nov 21 20:24 1982 ecal.p Page 24

{#2%88 Get FileName ®¥###}

{

General input procedure for dates, month+dates, weekdays. Following

prompts for day/date selection, this procedure reads and interprets the

user's input, and returns information that enables the calling program

to read from the corresponding files. Three input possibilities exist:

(1) date only, only allowable for short-term dates (eg. '18'),

(2) month+date, short-term or long-term dates (eg. 'Novig!'),

(3) weekday, for general weekday schedules;i.e., appointment apply to all
successive weeks on the same weekday (eg 'Wed').

Called by
UpdateOrObserve : to know which file to read, in order to observe or edit.
Request : to know which file on everybody's account to
read, and then send a meeting request to.
External

ReadString : procedure to input a string from the user's console, in
which the information is temporarily stored.
Input parameters

dset : set of short-term days, so the procedure knows which adates
it can allow to be entered without a month name.
today ! pseudo-constant; today's date, the FileName of which is

to be returned if a null line is entered.
Output parameters
AppliesWeekly : true if a weekday is entered (eg. 'Wed').

LongTerm : true if a month and date entered are longer than 14 days
from the present day.
FileName : five character string of the name of the external file

that can be read from.

}

procedure GetFileName (dset : DaysSet;
today ¢ DaysOfMonth;
var AppliesWeekly : boolean;
var LongTerm : boolean;
var DateNum : DaysOfMonth;
var FileName : string5);
var
ok : boolean;
temp,i : integer;
8 : string;
tempmonth:triple;
begin {GetFileName}
AppliesWeekly := false;
LongTerm := false;
repeat
ok := true;
LongTerm := false;
ReadString (s);
readln;
for i := 1 to 3 do FileName[i] := s[i];
FileName[}4] := ' ';
FileName[5] := s
if FileName[1] = "$#' then
begin

DateNum := today;
FileName[1] := chr (today div 10 + ord('0'));

Nov 21 20:24 1982 ecal.p Page 25

FileName[2] := chr (today mod 10 + ord('0'));
FileName[3] := ' !
end
else if FileName[1] in ['0'..'9'] then
begin
temp := ord (FileName[1]) - ord('0");
if FileName[2] in ['0'..'9"'] then
temp := 10%temp + ord(FileName[2]) - ord('0")

else

begin
FileName[2] := FileName[1];
FileName[1] := '0O°

end;

FileName[3] := ' 1;
if temp <= 31 then
begin
DateNum := temp;
if not (DateNum in dset) then
begin
ok := false;
writeln ('A file does not exist for ',DateNum:2,'.');
end
end
else
begin
ok := false;
writeln ('Months have a 31 day max. ')

end
end
else
begin
if (FileName = 'Sun ') or (FilelName = fsun ') or
(FileName = ‘Mon ') or (FileName = 'mon ') or
(FileName = 'Tue ') or (FileName = *tue ') or
(FileName = 'Wed ') or (FileName = 'wed ') or
(FileName = '"Thu ') or (FileName = 'thu ') or
(FileName = 'Fri ') or (FileName = 'fri ') or
(FileName = 'Sat ') or (FileName = 'sat ') then
begin

AppliesWeekly := true;
if ord (FileName[1]) > ord ('Z') then
FileName[1] := chr(ord(FileName[1])

(ord('a') - ord('aA')));

end
else
begin
if (FileName = 'Jan ') or (FileName = 'jan ') or
(FileName = 'Feb ') or (FileName = 'feb ') or
(FileName = 'Mar ') or (FileName = 'mar ') or
(FileName = 'Apr ') or (FileName = ‘apr ') or
(FileName = 'May ') or (FileName = 'may ') or
{(FileName = 'Jun ') or (FileName = 'jun ') or
(FileName = 'Jul ') or (FileName = 'jul ') or
(FileName = 'Aug ') or (FileName = 'aug ') or
(FileName = 'Sep ') or (FileName = 'sep ') or
(FileName = 'Oct ') or (FileName = 'oet ') or
(FileName = 'Nov ') or (FileName = 'nov ') or

Nov 21 20:24 1982 ecal.p Page 26

(FileName = 'Dec ') or (FileName = 'dec ') then
begin
LongTerm := true;
if ord (FileName[1]) > ord ('Z') then
FileName[1] := chr(ord(FileName[1]) - (ord('a') - ord('A')));
i := 4;
while (s[i] <> '#') and (not (s[i] in ['0'..'9'])) do
i := suce (i);
if s[i] = '#' then
begin
ok := false;
writeln ('Date must accompany month.')
end else
begin
temp := 0;
repeat
temp := 10%temp + ord (s[i]) - ord ('0');
i 1= suee (i)
until not (s[i] in ['0'..%'9']);
if (temp > 31) or ((FileName = 'Apr ') or

(FileName = 'Jun ') or (FileName = 'Sep ') or

(FileName = 'Nov ')) and (temp > 30) or

(FileName = 'Feb ') and (temp > 29) then
begin

ok := false;
writeln (FileName, 'does not have',temp:4,' days.!)
end
else
begin
DateNum := temp;
FileName[4] := chr(ord(DateNum div 10} + ord('0'));
FileName[5] := chr{ord(DateNum mod 10) + ord('0')});
if DateNum in dset then
begin
for i := 1 to 3 do tempmonth[i]l := FileName[i];
if dar[DateNum].month = tempmonth then
begin
LongTerm := false;
for i := 1 to 2 do FileName[i] := FileName[i+3];
for 1 := 3 to 5 do FileName[i] := ' !
end
end
end
end
end
else
begin
ok := false;
writeln (FileName,' is not a valid weekday or month.')
end
end
end;
if not ok then write ('Please reenter., => 1)
until ok
end; {GetFileName}

Nov 21 20:24 1982 ecal.p Page 27

{#8%#% Check Existence #####}
{
Before a FileName representing a LongTerm date can be used to reset the
corresponding file, the existence of the external file has to be insured,
to prevent a run-time error. If the FileName exists as a record in the
external directory file, then it is safe to read from the file. If, instead,
the FileName is not found in the directory, the day-of-the-week of the
LongTerm date is determined, and the corresponding weekday file is read
instead, the appearence to the user is as if the LongTerm file does exist,
External
MthNum : function that returns the number of the month. Needed to
deduce the year of the LongTerm date, for the DayOfWeek proc.
DayOfWeek : if a LongTerm file does not exist, then a weekday file is
going to be read from instead. Which weekday file is determined
by invocation of the procedure, a day-of-week algorithm,
Input parameters
FileName : The string for which directory existence is to be checked.

DateNum : the numeric value of the LongTerm date.
Output parameters
buffer : an array containing the contents of the external file 'direct!

with the addition of the new LongTerm member. Only returned

if the FileName is not found in the origional directory. If

any changes are made to the new LongTerm schedule, this array

will be copied over the external file, making a confirmed new

entry to the set of LongTerm dates existing on external files,
DirLength : buffer length.

found : true if the FileName is found in the directory.
ThisDay,
ThisMonth : information derived from the FileName.
}
procedure CheckExistence (FileName : strings;
DateNum : DaysOfMonth;
var buffer : DirRecArray;
var DirLength : DirLengthRange;
var found : boolean;
var ThisDay : triple;
var ThisMonth : triple;
var ThisYear : integer);
var
index : DirlLengthRange;
begin

found := false;
for index := 1 to 3 do ThisMonth [index] := FileName [index];
if (MthNum (dar{today].month) > MthNum (ThisMonth})) or
(MthNum (dar[today].month) = MthNum (ThisMonth)) and
(DateNum < today) then
ThisYear := dar[today].year + 1
else
ThisYear := dar[today].year;
DirLength := 0;
while (not eof(direct)) and (not found) do
begin
DirLength := succ (DirLength);
read (direct, buffer [DirLengthl);
found := buffer [DirLength].MonthDate = FileName

Nov 21 20:24 1982 ecal.p Page 28

end;
if found then
ThisDay := buffer [DirLength].Day
else
begin
ThisDay := DayOfWeek (DateNum, ThisMonth, ThisYear);
DirLength := succ (DirLength);
buffer [DirLength].Day := ThisDay;
buffer [DirLength].MonthDate := FileName;
end
end;

Nov 21 20:24 1982 ecal.p Page 29

{ ERE#%® Successor 'l'll}

{

Finds the following date or day, given the current one.

Called by
UpdateOrObserve : upon 'S!' choice.
Input parameters

AppliesWeekly : indicates the next weekday is desired.
ThisYear : used in leap year calculation.
LongTerm : true if long tern.
DateNum : current date (numeric).
FileName : current filename.
Qutput parameters
Longterm : possibly changed, if current date is last short-term date.
DateNum : next date in line, after the current date.
FileName ¢ new Filename,
¥
procedure Successor (AppliesWeekly : boolean;
ThisYear ¢ integer;
var LongTerm ¢ boolean;
var DateNum : DaysOfMonth;
var FileName : string5);
var
1 1..3;

temp : triple;
ThisMonthNum : 1..12;
ThisMonthLength : DaysOfMonth;
begin
if AppliesWeekly then
begin
for i := 1 to 3 do temp[i] := PileName[il;
increment (temp);
for i := 1 to 3 do FileName[i] := temp[i]
end
else
begin
if LongTerm then
for i := 1 to 3 do temp[il := FileName[i]
else
temp := dar[DateNum].month;
ThisMonthNum := MthNum{temp);
if ThisMonthNum in [4,6,9,11] then
ThisMonthLength := 30
else if (ThisMonthNum = 2) and (ThisYear mod 4 = 0) then
ThisMonthLength := 29
else if ThisMonthNum = 2 then
ThisMonthLength := 28
else
ThisMonthLength := 31;
DateNum := succ (DateNum mod ThisMonthLength);
if DateNum = 1 then increment (temp);
LongTerm := LongTerm or (not (DateNum in dset));
if LongTerm then
begin
for i := 1 to 3 do FileName[i] := temp[i];
FileName[4] := chr(DateNum div 10 + ord('0'));

Nov 21 20:24 1982 ecal.p Page 30

FileName[5]

end

else

begin
FileName[1]
FileName[2]

end

end
end;

chr(DateNum mod 10 + ord('0'))

chr(DateNum div 10 + ord('0'));
chr(DateNum mod 10 + ord('0'))

Nov 21 20:24 1982 ecal.p Page 31

{####% jnsert, Template Insert, Global Insert #&&##}
{
Given a particular day's schedule, these procedures perform insertions of new
appointments, Procedure 'insert' handles insertion to a single schedule, if
an insertion is to apply to several files, i.e., the schedule edited is a
general weekday schedule, then 'Template Insert! is called to apply the ininsert
to all the required schedules,
Insert called by

UpdateOrObserve : upon an 'I' command from the user's terminal.

TemplateInsert called by
Insert : if the schedule for which an insertion is make is a

general weekday schedule.
AttemptInsert called by
TemplateInsert : performs the actual insertion onto the schedule array.
External

ReadFromFile,
WriteToFile : file I1/0 during Template Insert.
CheckForScheduleConflicts : before any insertion is made,
f : general external file of a date's schedule.
Input parameters
ar : the schedule (array) to which the insertion attempt is to
be made.
1 : array length.

AppliesWeekly : true is the schedule is for a general weekday. Implies that
TemplateInsert will be called to attempt the insertion to
several date's schedules.

dset : set of short-term dates, so that Templatelnsert will know
which short-term dates files to read and attempt insert.
dar : info about short-term dates, so that Templatelnsert will
know which of the short-term dates are of a particular
weekday.
ThisDay : The weekday for insertion, only if AppliesWeekly.
Output parameters
ar : the schedule if an insertion was successful.
1 : array length, (incremented if the schedule was inserted to).
ChangesMade : true is an insertion was successful, implies that the new
achedule (array) should be written over the old file.
}
procedure insert (var ar : RecArray;
var 1 : FileLengthRange;
var ChangesMade ¢ boolean;
AppliesWeekly : boolean;
dset ¢ DaysSet;
dar ¢ DaysArray;
LongTerm : boolean;
ThisDay : triple);
var

ok : boolean;
ThisTimePair,ConflictWith : TimePair;
ScheduleTimes : TimePairArray;

i,J : FileLengthRange;

procedure Templatelnsert;
var
ThisDate : DaysOfMonth;

Nov 21 20:24 1982 ecal.p Page 32

ThisMonth : triple;

buffer : DirRec;

Schedule : RecArray;

ScheduleLength, InsertlLocn, index : FileLengthRange;

procedure AttemptInsert (LongTerm : boolean);
begin {attempt Insert}
for index := 1 to ScheduleLength do
begin
ScheduleTimes [index].BeginTime :
ScheduleTimes [index].EndTime g
end;
CheckForScheduleConflicts (ScheduleTimes, Schedulel.ength, ThisTimePair,
ok, InsertLocn, ConflictWith);

chedule [index].b;

= S
= Schedule [index].e

if ok then
begin
ScheduleLength := succ (ScheduleLength);
if ScheduleTimes "ScheduleLength-1].BeginTime >
ThisTimePair.BeginTime then
begin
for index := SchedulelLength downto InsertLocn+1 do
Schedule [index] := Schedule [index-1]
end
else
Insertlocn := SchedulelLength;
Schedule [InsertLoecn] := ar[i];
if LongTerm then
rewrite (f,buffer.MonthDate)
else
rewrite (f,dar[ThisDate].datechar);
WriteToFile (Schedule, ScheduleLength);
with ThisTimePair do
writeln (tme(BeginTime),' - ',tme(EndTime),' appointment ',
'inserted to ',ThisDay,', ',ThisMonth,ThisDate:3,'.")
end
else
begin
with ConflictWith do
writeln ('Cannot insert to ',ThisDay,', ',ThisMonth,ThisDate:3,
'y due to previous !',tme(BeginTime),' - !,
tme(EndTime),' appointment.')
end
end; {Attempt Insert}

begin {Template Insert}

writeln;

for ThisDate := 1 to 31 do

if ThisDate in dset then

if dar[ThisDate].day = ThisDay then

begin
reset (f,dar[ThisDate].datechar);
ThisMonth := dar[ThisDate].month;
ReadFromFile (Schedule, ScheduleLength);
AttemptInsert (false); {not LongTerm}

end; {for}

reset (direct);

Nov 21 20:24 1982 ecal.p Page 33

while not eof (direct) do
begin
read (direct,buffer);
if buffer.Day = ThisDay then
begin
for index := 1 to 3 do ThisMonth[index] := buffer.MonthDatelindex];
ThisDate := (ord (buffer.MonthDate[#]) - ord ('0')) #* 10 +
ord(buffer.MonthDate[5]) - ord('0');
reset (f,buffer.MonthDate);
ReadFromFile (Schedule,Schedulelength);
AttemptInsert (true) {LongTerm}
end {if same weekday}
end {while not eof}
end; {Template Insert}

begin {insert}
for i := 1 to 1 do
begin
ScheduleTimes[i].BeginTime := ar[i].b;
ScheduleTimes[i].EndTime iz ar[i].e
end;
if eoln then
write ('Enter beginning and ending times. =-> ');
ok := true;
ReadTimePair (ThisTimePair.BeginTime, ThisTimePair.EndTime);
ThisTimePair.BeginTime := scale (ThisTimePair.BeginTime);
ThisTimePair.EndTime := scale (ThisTimePair.EndTime);
readln;
CheckForScheduleConflicts (ScheduleTimes, 1, ThisTimePair,
ok, i, ConflictWith);
if not ok then
writeln (tme(ThisTimePair.BeginTime),' - ',tme(ThisTimePair.EndTime),
' conflicts with previous ',tme(ConflictWith.BeginTime),
' = ', tme(ConflictWith.EndTime),' appointment.')
else
begin
ChangesMade := true;
1 := suce (1);
if ar[1-1].b > ThisTimePair.BeginTime then
for j := 1 downto i+1 do ar[j] := ar[j=1]

else

i =13
with ar[i] do
begin

b := ThisTimePair.BeginTime;
e := ThisTimePair.EndTime;
t := other;
setexists := false;
writeln ('Enter description of appointment.');
ReadString (s);
readln;
if AppliesWeekly then Templatelnsert
end;
if AppliesWeekly then
writeln ('Insertion made to general ',ThisDay,' schedule.')
else

Nov 21 20:24 1982 ecal.p Page 34

writeln ('Insertion made.');
writeln
end
end; {insert}

Nov 21 20:24 1982 ecal.p Page 35

{#=#2% Delete, Template Delete, Attempt Delete, Global Delete E#&#&}
{
Procedure for deletion of appointments / meeting on a user's personal calendar.
If the deletion is to a weekday's schedule, then TemplateDelete is called to
apply the deletion to all schedules of the same weekday. If the deletion
affects other members, i.e., the deletion is of a meeting with several members,
then GlobalDelete is called to either delete the meeting from all of the
member's schedules (if the user is the owner of the meeting), or remove the
user's name from the set of members on the other member's schedules (if the
user is not the owner of the meeting).
Delete called by

UpdateOrQObserve : upon a 'D' command entered by the user.
TemplateDelete called by

Delete : if the deletion is to apply to several weeks.
AttemptDelete called by

TemplateDelete : to perform the actual deletion and file I/0.
GlobalDelete called by

Delete : if the entry to delete is a meeting.
External
ReadFromFile,
WriteToFile : general file I/O0.
compress : to format UNIX filenames for validation.
MailAr : array of local text files, to which letters are written

and sent at program termination. When a deletion affects
another member of a meeting, mail is sent informing the
other member.

}
procedure delete (var ar ¢ RecArray;
var 1 : FileLengthRange;
var ChangesMade : boolean;
AppliesWeekly : boclean;
dset : DaysSet;
dar : DaysArray;
LongTerm : boolean;
ThisDay,
ThisMonth : triple;
FileName : stringb;
DateNum : DaysOfMonth);
var

dtime,i,j : integer;

procedure TemplateDelete;
var
ThisDate : DaysOfMonth;
ThisMonth : triple;
buffer : DirRec;
Schedule : RecArray;
ScheduleLength, index, n : FileLengthRange;

procedure AttemptDelete (LongTerm : Boolean);
begin {Attempt Delete}
if Schedulelength = 0 then
with ar[i] do
begin
writeln (tme(b),' - ',tme(e),'appointment not found on ',

Nov 21 20:24 1982 ecal.p Page 36

ThisDay,', ',ThisMonth,ThisDate:3,' .')
end
else
begin
index := 1;
while (index < ScheduleLength) and (Schedule [index].b < dtime) do
index := succ (index);

if (Schedule [index].b = ar[i].Db) and
(Schedule [index].e = ar[i].e) and
{Schedule [index].s = ar[i].s) then
begin
with Schedule [index] do
begin

writeln (tme(b),' - ',tme(e),' appointment deleted from °',
ThisDay,', ',ThisMonth,ThisDate:3,'."');
for n := index to ScheduleLength-1 do
Schedule [n] := Schedule [n+1];
Schedulelength := pred (SchedulelLength);
if LongTerm then
rewrite (f,buffer.MonthDate)
else
rewrite (f,dar[ThisDate].datechar);
WriteToFile (Schedule, ScheduleLength)
end
end
else
begin
with ar[i] do
begin
writeln (tme(b),' - ',tme(e),' appointment not found on ',
ThisDay,', ',ThisMonth,ThisDate:3,!'.1')
end
end
end
end; {Attempt Delete}

begin {Template Delete}
writeln;
for ThisDate := 1 to 31 do
if ThisDate in dset then
if dar [ThisDate].day = ThisDay then
begin
reset (f,dar[ThisDate].datechar);
ThisMonth := dar [ThisDate].month;
ReadFromFile (Schedule, ScheduleLength);
AttemptDelete (false)
end; {for}
reset (direct);
while not eof (direct) do
begin
read (direct,buffer);
if buffer.Day = ThisDay then
begin
for index := 1 to 3 do ThisMonth[index] := buffer.MonthDate[index];
ThisDate := (ord (buffer.MonthDate[4]) - ord ('0')) # 10 +
ord (buffer.MonthDate[5]) - ord ('0');

Nov 21 20:24 1982 ecal.p Page 37

reset (f,buffer.MonthDate);
ReadFromFile (Schedule, SchedulelLength);
AttemptDelete {true)
end {if weekday matches}
end {while not eof}
end; {Delete Template}

procedure GlobalDelete;

var
FName : array [users] of string30;
ThisMember : users;
TempAr : RecArray;
TempArLength, Templ, TI : FileLengthRange;
index : 1..5;

procedure init;

var
ThisMember : users;
iz 1..8;
begin
for ThisMember := FirstMember to LastMember do
begin
FName [ThisMember] := '/usr/ /caldir/';
for 1 := 1 to 8 do
FName [ThisMember][i+5] := CvtName [ThisMember][i];
compress (FName[ThisMember], FName[ThisMember])
end
end;

begin {Glcobal Delete}
init;
for ThisMember := FirstMember to LastMember do
if ThisMember <> ThisUser then
if ThisMember in ar[i].uset then
begin
for index := 1 to 5 do
FName[ThisMember][index+21] := FileName[index];
compress (FName[ThisMember], FName[ThisMember]);
reset (f, FName[ThisMember]);
ReadFromFile (TempAr, TempArLength);
TempI := 1;
while (Templ < TempArLength) and (TempAr[TempI].b < ar[i].b) do
TempIl := succ (TempI);
if (TempAr[TempI]l.b = ar[i].b) and (TempAr[TempI].s = ar[i].s) then
if TempAr[Templ].setexists then
begin
if ThisUser = ar[i].owner then
begin
TempArLength := pred (TempArLength);
for TI := TempI to TempArLength do
TempAr[TI] := TempAr[TI+1];
writeln (MailAr[ThisMember].message,'Meeting of !,
ThisDay,', ',ThisMonth,DateNum:3,' canceled.');
MailAr[ThisMember].WrittenTo := yes
end
else

Nov 21 20:24 1982 ecal.p Page 38

begin
TempAr[TempI].uset := TempAr[TempI].uset - [ThisUser];
TempAr[TempI].confirmed := TempAr[Templ].confirmed = [ThisUser];
if ThisMember = ar[i].owner then
begin
writeln (MailAr[ar[i].owner].message,'Unable to attend !,
ThisDay,', ',ThisMonth,DateNum:3,' meeting.');
MailAr[ar[i].owner].WrittenTo := yes
end
end;
rewrite (f, FName[ThisMember]);
WriteToFile (TempAr, TempArLength)
end
end
end; {Global delete}

begin {delete}
if 1 = 0 then
begin
readln;
writeln (‘'Schedule is empty. Cannot delete.')
end
else
begin
if eoln then
write ('Enter beginning time of appointment to delete., => ');
ReadSingleTime (dtime);
readln;
dtime := scale (dtime);
i:=1;
while (i < 1) and (ar[il.b ¢ dtime) do i := suce(i);
if ar[i].b = dtime then
begin
ChangesMade := true;
if AppliesWeekly then
begin
TemplateDelete;
writeln (tme(ar[i].b),!' - ',tme(ar[il.e),' appointment deleted!,
' from general ',ThisDay,' schedule,?!)
end
else
writeln ('Deletion made.');
if ar[i].setexists then GlobalDelete;
for j := i to 1=1 do ar[j] := ar[j+1];
1 := pred(l);
writeln
end
else
writeln ('Appointment with ',tme(dtime),' beginning time ',
'not found.')
end
end;

Nov 21 20:24 1982 ecal.p Page 39

{#=288 Update Or Observe #&##&}

{
Procedure called by the main program to handle all observation and possibly

editing of, a user's personal calendar files.

External
Insert : procedure to insert an appointment into a schedule.
Delete : procedure to delete an appointment/meeting from a schedule,.

GetFileName : procedure to get a date or weekday from the user's terminal.
CheckExistenceOf : procedure to determine how to read a LongTerm date's

schedule. If it doesn't already exist, the corresponding

weekday's schedule is read instead.
ReadFromFile,
WriteToFile : general file I/O0.
WriteDirToFile : directory file output.

f : general external file for a particular date's schedule.

direct : external file containing a directory of LongTerm dates,
Input parameters (all used by GetFileName)

dset : set of short term dates.

dar ¢ information about the 14 short-term dates.

today : numeric pseudo-constant. Today's date.

}
procedure UpdateOrObserve (dset:DaysSet; dar:DaysArray; today:DaysQfMonth};
label
3,4,5;
var
FileName : string5;
ThisDay, ThisMonth : triple;
ThisYear : integer;
DateNum : DaysOfMonth;
ar : RecArray;
1l : FileLengthRange;
AppliesWeekly, LongTerm, FileExists, ChangesMade : boolean;
Directory : DirRecArray;
DirlLength : DirLengthRange;
code : char;
index : 1..3;
begin {Update Or Observe}
3: write ('<ret> for todays schedule, enter date or day.-> ');
4: GetFileName (dset, today, AppliesWeekly, LongTerm, DateNum, FileName);
5: ChangesMade := false;
FileExists := true;
if LongTerm then
begin
reset (direct);
CheckExistence (FileName, DateNum, Directory, DirLength, FileExists,
ThisDay, ThisMonth, ThisYear);
end
else if AppliesWeekly then
for index := 1 to 3 do ThisDay [index] := FileName [index]
else
begin
ThisDay := dar [DateNum].day;
ThisMonth := dar [DateNum].month;
ThisYear := dar [DateNum].year
end;

Nov 21 20:24 1982 ecal.p Page 40

if FileExists then
reset(f,FileName)
else
reset(f,ThisDay);
ReadFromFile(ar,1);
if AppliesWeekly then
begin
for index := 1 to 3 do ThisDay [index] := FileName [index];
WriteArray (ar, 1, true, ThisDay, ThisDay, 0, 0)
end
else
WriteArray (ar, 1, false, ThisDay, ThisMonth, DateNum, ThisYear);
repeat
write ('(I)nsert, (D)elete, (S)uccessor, (L)ist, (N)ewday, or e(X)}it? => !
read (code);
if code in ['I',*it,'D','d",*'S?, st 'L, "1, 'Nt,'n",'X",'x"] then
case code of
'1',1i% : insert (ar, 1, ChangesMade, AppliesWeekly,
dset, dar, LongTerm, ThisDay);
delete (ar, 1, ChangesMade, AppliesWeekly, dset, dar,
LongTerm, ThisDay, ThisMonth, FileName, DateNum);

1pr, 1de

'L1,'1' : begin
readln;
if AppliesWeekly then
WriteArray (ar, 1, true, ThisDay, ThisDay, 0, 0)
else
WriteArray (ar, 1, false, ThisDay, ThisMonth,
DateNum, ThisYear)

end;
TNY,'n','St, s, X", 'x"
begin
if ChangesMade then
begin
rewrite (f,FileName);
WriteToFile (ar,1);
if LongTerm and (not FileExists) then
begin
rewrite (direct);
WriteDirToFile (Directory,DirLength);
writeln (execute, 'chmod a+rw ',FileName)
end
end;
if code in ['N','n'] then
begin
if eoln then
begin
readln;
goto 3
end
else
goto §
end
else if code in ['S','s'] then
begin
readln;

Successor (AppliesWeekly, ThisYear, LongTerm,

Nov 21 20:24 1982 ecal.p Page M1

DateNum, FileName);
goto 5
end
end

end

else begin writeln ('Invalid code'); readln end
until code in ['X','x'];
readln;

end; {Update Or Observe}

Nov 21 20:24 1982 ecal.p Page 42

{E&%e® Make Or Answer Requests #E##&#}
{
A procedure logically divided into two nested procedures: 'Request' & 'Answer!',
Other procedures included are 'Init', 'BlackOutConflicts', 'DisplayPossibilities!
and function fConflict?’,
Input parameters

dset : set of short-term dates, used by 'GetFileName'.

dar : information about the short-term dates.

today : today's date.
}
procedure MakeOrAnswerRequest (dset:DaysSet; dar:DaysArray; today:DaysOfMonth);
type

InfoRec = record finformation about each user's }

FileExistsT : FakeBoolean; {--external files -- in terms of}
FName : string30; {——this user. All FileNames are }
Weekday : string30; f{--of length 30 to accommidate }
DirName : string30; {==Unix directory and file naming}

Directory : DirRecArray; {--conventions}
DirLength : DirLengthRange

end;
InfoArray = array [users] of InfoRec;
BArray = array [0..287] of boolean; ftrue if the time is a possibilityl
{for a meeting, false otherwise. }
var

members : UserSet;
ThisMember : users;

TimeSpan : integer;
Available : BArray;

info : Infolrray;

Ar : RecArray;

ArLength : FileLengthRange;
AppliesWeekly, LongTerm, Standard, FileExists : boolean;
FileName : stringt;

ThisDay, ThisMonth : triple;
ThisYear : integer;

¢, code : char;

ok : boolean;

DateNum : DaysOfMonth;

index : integer;

Times : TimePairlrray;
ThisTimePair : TimePair;

st : string;

Nov 21 20:24 1982 ecal.p Page 43

{#% init #e}
{
Re-assigns the values of the information array to external filename stubs.
The string values are left justified, the right 'halves' are assigned in
the calling programs, and the strings are compressed. The resulting strings
are UNIX system filenames, on other user's accounts.
External
info : information array (of records).
}
procedure init;
var
ThisMember : users;
i ¥ 1B
begin
for ThisMember := FirstMember to LastMember do
with info [ThisMember] do

begin
FName := '/usr/ /caldir/';
DirName := '/usr/ /caldir/direct!';
for i := 1 to 8 do
begin

FName [i+5] := CvtName [ThisMember][il;
DirName[i+5] := CvtName[ThisMember][i]
end;
compress (DirName, DirName)
end
end;

}" Black Out Conflicts ##}

The booclean array 'Available', initially set to true, is sent to this
procedure with an array of time pairs. The time pairs represent unavailable
times, thus the elements of 'Available' which correspond to those times are
set to false. After this procedure has been called with every member's
schedule times, the true valued elements of 'Available' represent free times.

Called by
Request.
Input parameters
Times : array of time pairs representing the unavailable times for
a particular member.
length : array length,
Available : the boolean array before 'blacking out' from the member,

Output parameter
Available : the boolean array after 'blacking out! from the member,

}
procedure BlackOutConflicts (Times:TimePairArray; Length:FileLengthRange;
var Available:BArray);

var

index : FileLengthRange;

NotHere : 0..287;
begin

for index := 1 to Length do

for NotHere := Times [index].BeginTime to Times [index].EndTime-1 do
Available [NotHere] := false

end;

Nov 21 20:24 1982 ecal.p Page Ui

{#% Display Possibilities ##}
{
When the boolean array 'Available' has been 'blacked out'! with all the
member's schedules, the times-slots available that are equal to or greater
than the required time-span (entered by the user) are displayed and stored
in an array of time pairs,
Called by

Request
Input parameters

Available : the boolean array.

TimeSpan : minimum time span required, in minutes.

DateNum,

ThisDay,

ThisMonth : used for a display heading.
Output parameters

Times : array of time pairs, representing meeting possibilities.
length : array length.
}
procedure DisplayPossibilities (Available : BArray;
TimeSpan ¢ integer;
DateNum : DaysOfMonth;
ThisDay,
ThisMonth : triple;
var Times : TimePairArray;
var Length : FilelLengthRange);
var
index : 0..287;
begin

Length := 0;

index := 0;

while index < 287 do
begin

while (not Available[index]) and (index < 287) do index := succ(index);

Times [Length+1].BeginTime := index;
while (Available [index]) and (index < 287) do index := succ (index);
Times [Length+1].EndTime := index;
with Times [Length+1] do
if (EndTime - BeginTime) »>= TimeSpan then Length := succ (Length)
end;
writeln ('Here are the possible free times for ',ThisDay,', ',
ThisMonth,DateNum:3,":');
writeln;
for index := 1 to Length do
with Times [index] do
begin
write (' ':8,tme(BeginTime),' - ',tme(EndTime),' ':8);
if (index mod 2) = 0 then writeln
end;
if (index mod 2) <> O then writeln
end;

Nov 21 20:24 1982 ecal.p Page U5

{#% Conflict ®#}

{
Function 'Conflict' checks an array of time pairs and a single time pair

and returns true if an insertion of the single time pair can be made,
false otherwise.

Called by
Request.
Input parameters
Times : array of time pairs,
length : array length.
ThisTimepair : the time pair for which an insertion is desired.
}
function Conflict (Times : TimePairArray;
Length : FileLengthRange;
ThisTimePair : TimePair) : boolean;

var
index : FileLengthRange;
temp : boolean;
begin
temp := true;
for index := 1 to Length do
begin
if (Times [index].BeginTime <= ThisTimePair.BeginTime) and
(Times [index].EndTime >= ThisTimePair.EndTime) then
temp := false;
end;
if temp then
begin
with ThisTimePair do
writeln (tme (BeginTime),'! - ',tme (EndTime),' not available.f,
' Here are the available times again:');
writeln;
for index := 1 to Length do
with Times [index] do
begin
write (' ':8, tme(BeginTime),' - ',tme(EndTime),' 7:8);
if (index mod 2) = 0 then writeln
end;
writeln;
if (index mod 2) <> 0 then writeln
end;
Confliet := temp
end;

Nov 21 20:24 1982 ecal.p Page U6

{*ll"' Request """}

{

With the 'request' choice taken by the user, this procedure performs the
processes necessary to make a meeting request to any number of other users.
The user is prompted for a list of members, a date, a time-span, if the
meeting is to take place during standard (8:00-5:00) hours, and then finally,
the meeting times. At successful completion, the request is made, and mail
sent to each member informing him/her of the request,

External
Init, BlackOutConflicts, DisplayPossibilities, Conflict : described above.
ReadSet : To input the set enumerated set of members from the user's

terminal,
GetFileName : To input the date or month+s+date from the user's terminal.
CheckExistence : if the date is longterm, to determine where to read the
file from; the date's file or a weekday file,

ReadFromFile ; file input of a date's schedule to an array.
ReadTimePair : for meeting beginning and ending times.
ReadString : for meeting description,

WriteDirToFile : if a new LongTerm date is created, the newly augmented
directory must be written over the previous one.

compress 1 to format UNIX system filenames.
WriteToFile : file output from an updated array.
MailAr : array of local text files -~ letters to be mailed.

}

procedure Request;
begin {Make Request}
init;
repeat
writeln ('With whom would you like an appointment?');
write ('Enter names or list., => 1);
ReadSet (members);
members := members + [ThisUser];
readln;
if list in members then
begin
for ThisMember := FirstMember to LastMember do
write (CvtName [ThisMember]);
writeln
end
until not (list in members);
repeat
write ('For how long? (enter minutes) => ');
ReadTimeSpan (TimeSpan);
readln;
if TimeSpan > 720 then
writeln ('720 minute limit for meetings.!')
until TimeSpan <= T720;
repeat
init;
repeat
write ('Enter preferred date, or month and date. => ')
GetFileName (dset, today, AppliesWeekly, LongTerm, DateNum, FileName);
until not AppliesWeekly;
write ('Standard 8:00 - 5:00 ? (I/N) => ');

Nov 21 20:24 1982 ecal.p Page U7

readln (c);
Standard := (e<>'N') and (c<>'n');
if Standard then
begin
for index := 0 to 287 do Available[index] := false;
for index := 84 to 191 do Available[index] := true
end
else
for index := 0 to 287 do Available[index] := true;
for ThisMember := FirstMember to LastMember do
if ThisMember in members then
with info [ThisMember] do
begin
FileExists := true;
if LongTerm then
begin
reset (direct, DirName);
CheckExistence (FileName, DateNum, Directory, DirLength,
FileExists, ThisDay, ThisMonth, ThisYear)
end
else
begin
ThisDay := dar [DateNum].day;
ThisMonth := dar [DateNum].month
end;
if FileExists then FileExistsT := yes else FileExistsT := no;
if not FileExists then
begin
for index := 1 to 3 do FName [index+21] := ThisDay[index];
compress (FName,Weekday);
reset (f, Weekday);
ReadFromFile (Ar,ArLength);
end;
for index := 1 to 5 do FName [index+21] := FileName [index];
compress (FName,FName);
if FileExists then
begin
reset (f, FName);
ReadFromFile (Ar,ArLength)
end;
for index := 1 to ArLength do
begin
Times [index].BeginTime :
Times [index].EndTime H
end;
BlackOutConflicts (Times,ArLength,Available)
end;
DisplayPossibilities (Available, TimeSpan, DateNum, ThisDay,
ThisMonth, Times, ArLength);

= Ar [index].b;
:= Ar [index].e

if ArlLength = 0 then
begin
write ('No free times exist. Do you want to try another day? =->'):
readln (c);
if (e <> 'Y') and (¢ <> 'y') then ¢ := 'x'
else ¢ := 'n!
end

Nov 21 20:24 1982 ecal.p Page 48

else
begin
writeln;
write ('Do you want one of these? I/N/e(X)it => ');
readln (c)
end;
ok := (c<>'N') and (e<>'n')
until ok;
if (e<>'X') and (c<>'x'") then
begin
repeat

write ('Enter beginning and ending times, => '};
with ThisTimePair do
begin
ReadTimePair (BeginTime, EndTime);
BeginTime := scale (BeginTime);
EndTime := scale (EndTime)
end;
readln;
until not Conflict (Times, ArLength, ThisTimePair);
writeln ('Enter description of appointment. ');
ReadString (st);
readln;
for ThisMember := FirstMember to LastMember do
if ThisMember in members then
with info [ThisMember] do
begin
if FileExistsT = yes then
reset (f,FName)
else
reset (f,Weekday);
ReadFromFile (Ar, ArLength);
index :=z succ (ArLength);
if index > 1 then
while (Ar [pred(index)].b >= ThisTimePair.EndTime) and (index > 1) do
begin
Ar [index] := Ar [pred(index)];
index := pred(index)
end;
ArLength := succ (ArLength);
with Ar [index], ThisTimePair do
begin
b := BeginTime;
e := EndTime;
t := request;
setexists := true;
owner := ThisUser;
confirmed := [ThisUser];
uset := members;
s := st
end;
rewrite (f, FName);
WriteToFile (Ar, ArLength);
if FileExistsT = no then
begin
writeln (execute, 'chmod a+rw ',FName);

Nov 21 20:24 1982 ecal.p Page 49

rewrite (direct, DirName);
WriteDirToFile (Directory, DirLength)

end;

if ThisMember <> ThisUser then

begin
MailAr[ThisMember].WrittenTo := yes;
writeln (MailAr[ThisMember].message,'Requesting an appointment ',

'for ',ThisDay,', ',ThisMonth,DateNum:3,'.');
end
end {for}
end {if not exit}
end; {Make Request}

Nov 21 20:24 1982 ecal.p Page 50

{ll'l. Answer 'l..l}

{

When the 'answer! choice is taken, this procedure prompts for and then
displays a day containing meeting requests. One=by-one the requests are
given in a prompt with an accept, reject, or move-on choice given to the
user. If a request is accepted, the user is added to the confirmed field

of the other members. If, instead, the user rejects the request, then his/her
name is removed from the other member's 'members! field in that particular
meeting. Either way, mail is sent to the owner of the meeting informing
him/her of the decision.

External
GetFileName : for the date to lock at requests.
CheckExistence : for status of a LongTerm date.
ReadFromFile,
WriteToFile : file I/0 of particular date's schedules.,
WriteArray : terminal display of a date's schedule containing requests,
compress : formats filenames for UNIX.
MailAr : array of local text files - letters to be mailed.

}

procedure Answer;
var
i, index, TempArLength : FileLengthRange;
TempAr : RecArray;
dummyi : DirRecArray;
dummy? : DirLengthRange;
RNum : FileLengthRange;
RequestExists : boolean;
begin
repeat
write ('Enter date for which requests are to be answered. -> ');
GetFileName (dset, today, AppliesWeekly, LongTerm, DateNum, FileName)
until not AppliesWeekly;
FileExists := true;
reset (direct);
if LongTerm then
CheckExistence (FileName, DateNum, dummyl, dummy2,
FileExists, ThisDay, ThisMonth, ThisYear)
else
begin
ThisDay := dar[DateNum].day;
ThisMonth := dar[DateNum].month;
ThisYear := dar[DateNum].year
end;
if FileExists then
begin
reset (f,FileName);
ReadFromFile (Ar, ArLength);
RequestExists := false;
for index := 1 to ArLength do
if (Ar[index].t = request) and (ThisUser <> Ar[index].owner) then
RequestExists := true
end;
if (not FileExists) or (not RequestExists) then
writeln ('No Requests exist on ',FileName)
else

Nov 21 20:24 1982 ecal.p Page 51

begin
WriteArray (Ar, ArLength, false, ThisDay, ThisMonth, DateNum, ThisYear);
index := 1;
RNum := 1;
while index <= ArLength do
begin
while ((Ar{index].t <> request) or (Ar[index].owner = ThisUser))
and (index < Arlength) do index := succ (index);
if (Ar[index].t = request) and (Ar[index].owner <> ThisUser) then
begin
writeln ('R',RNum:1,'? (A)ccept, (R)eject, or (M)ove=on => 17);
RNum := succ (RNum);
readln (c);
if ¢ in ['A',%a','R','r'] then
begin
write (MailAr[Ar[index].owner].message, 'Appointment for !,
ThisDay,', ',ThisMonth,DateNum:3);
MailAr[Ar[index].owner].WrittenTo := yes;
if ¢ in ['A',%a'] then
writeln (MailAr{Ar{index].owner].message,' accepted.')
else
writeln (MailAr[Ar[index].owner].message,' rejected.');
for ThisMember := FirstMember to LastMember do
if ThisMember in Ar[index].uset then
with info[ThisMember] do
begin
init;
for 1 := 1 to 5 do FName[i+21] := FileName[i];
compress (FName, FNeame);
reset (f,FName);
ReadFromFile (TempAr, TempArLength);
iz=1;
while (TempAr[i].b <> Ar[index].b) and (i < TempArLength)
do i := succ(i);
if TempAr[i].s = Ar[index].s then
with TempAr[i] do
begin
if ¢ in ['A','a'] then
begin
confirmed := confirmed + [ThisUser];
rewrite (f, FName);
WriteToFile (TempAr, TempArlLength)
end
else if ¢ in ['R','r'] then
begin
uset := uset - [ThisUser];
rewrite (f, FName);
WriteToFile (TempAr, TempArLength)
end
end
end;
if ¢ in ['A','a'] then
Ar[index].t :=z other
else if ¢ in [*R','r'] then
begin
ArLength := pred (ArLength);

Nov 21 20:24 1982 ecal.p Page 52

for i := index to ArLength do

Ar[i] := Ar[i+1]
end;
rewrite (f,FileName);
WriteToFile (Ar, ArLength)
end
end;
index := sucec (index)
end
end
end;

begin {Make or Answer Requests}
write ('(R)equest a meeting, or (A)nswer a request? -> 1');

readln (code);
if code in ['R*,'r','A','a'] then
case code of

'R','r' : Request;

YA' ,'a' : Answer

end
else writeln ('Invalid code. Returning to main menu., ')

end;

Nov 21 20:24 1982 ecal.p Page 53

{FERNERERRAFSEHRERESRENE ELECTRONIC CALENDAR ##SSSEEESERSRNsREausns]

(REEREERRERIIRDERBRRURESR MAIN PROGRAM SENEENERE RN RN EEREERE)
{
External
InitGlobalVars : initialize global variables.
DatesInfo : get information about today's date, and the 14
short-term dates.
UpdateOrQObserve : Update Or Observe personal calendar.
MakeOrAnswerRequests : Make or Answer Meeting Requests.
DumpLocalMailFiles : to external files, so the mail can be sent,
}
begin
rewrite (execute);
InitGlobalVars;
writeln; writeln ('Welcome to Electronic Calendar.');
DatesInfo (dset,dar,today);
writeln:
with dar[today] do
writeln ('Today is !,day,', ',month,today:3,', 19',year:2,'.');
repeat
writeln; writeln ('Main Menu:');
write ('1, Update or Observe Personal Calendar,');
writeln (! 2. Send or Answer Meeting Requests.t');
write ('X. Exit.');
writeln; write ('Please Enter Command Number or X. => ');
readln (code);
if code in [*1','2','X','x'] then
case code of
11" : UpdateOrObserve (dset,dar,today);
'21 ; MakeOrAnswerRequest (dset,dar,today);
Ix?,'X' : begin
writeln;
writeln ('Electronic Calendar Over,'};
writeln
end
end
else writeln ('Invalid code')
until code in ['X*%,'x"];
DumpLocalMailFiles

end.

Nov 21 20:29 1982 NewDay.p Page 1

program NewDay (output,direct);
const
MaxDirLength = 50;
type
pair = packed array [1..2] of char;
triple = packed array [1..3] of char;
strings = packed array [1..5] of char;
DaysOfMonth = 1..31;
DirRec = record
Day : triple;
MonthDate : stringbs
end;
DirLengthRange = 0..MaxDirLength;
DirFileType = file of DirRec;

var
NewDate : pair;
NewDay, NewMonth : triple;
FileName : string5;
direct : DirFileType;
index : 1..5;
Exists : boolean;

Nov 21 20:29 1982 NewDay.p Page 2

{"‘lll‘ Find New "'.’"}
{
Procedure to calculate and return information about the new day, i.e., the
one which will be considered short-term tomorrow. The information returned
describes the date exactly two weeks from the current date, which, tomorrow
will be the last date considered short-term.
Called by

NewDay's main program,
External

date : Berkeley Pascal built-in that returns current date info.
Qutput parameters

NewDay,

NewMonth,

NewDate : information about new date.
}
procedure FindNew (var NewDay, NewMonth :triple; var NewDate:pair);
var

a : alfa;

month : triple;

i,year,datenum: integer;

ThisMonthLength : DaysOfMonth;

function DayOfWeek (date:DaysOfMonth; month:triple; year:integer):triple;
var

DayNum:0..6;

MonthNum : 1..12;

funct : array [1..12] of integer;
begin (# function #)

if month = 'Jan' then MonthNum := 1

else if month = 'Feb' then MonthNum := 2

else if month = "Mar' then MonthNum := 3

else if month = 'Apr' then MonthNum := 4

else if month = "May' then MonthNum := 5§

else if month = 'Jun' then MonthNum := 6

else if month = 'Jul'! then MonthNum := 7

else if month = 'Aug' then MonthNum := 8

else if month = 'Sep' then MonthNum := 9

else if month = '0Oct' then MonthNum := 10
else if month = 'Nov' then MonthNum := 11
else if month = 'Dec¢' then MonthNum := 12
else halt;

funet[1] :

1; funct[2] := 4; funet[3] := U4; funct[4] := 0;
funet[5] := 2; funct[6] := 5; funct[7] := 0; funct[8] :=
funct[9] := 6; funct[10] := 8; funect[11] := &4; funct[12] := 6;
if ((month='Jan') or (month='Feb'}} and (year mod 4 = 0) then
DayNum := (funct[MonthNum] + date + year + year div 4 - 1) mod 7
else
DayNum := (funct[MonthNum] + date + year + year div U4) mod T;
case DayNum of

0 : DayOfWeek := 'Sat';
1 : DayOfWeek := 'Sun'j;
2 : DayOfWeek := 'Mon';
3 : DayOfWeek := 'Tue!';
4 ; DayOfwWeek := 'Wed';
5 : DayOfwWeek := 'Thu';

Nov 21 20:29 1982 NewDay.p Page 3

6 : DayOfWeek := 'Fri?
end
end; (#* function #)

procedure increment(var this:triple);

begin
if this = 'Jan' then this := 'Feb!
else if this = 'Feb' then this := 'Mar!'
else if this = 'Mar' then this := 'Apr!
else if this = 'Apr' then this := 'May!
else if this = 'May' then this := 'Jun!
else if this = 'Jun' then this := "Jul!
else if this = 'Jul' then this := 'Aug!'
else if this = 'Sep' then this := 'Cect!
else if this = '"Oct' then this := 'Nov'
else if this = 'Nov' then this := 'Dec’
else if this = 'Dec' then this := 'Jan!
€lse halt

end;

begin (# procedure FindNew #)
date (a);
if a[1] = ' ' then a[1] := '0';
datenum := 0;
for 1 ;=1 to 2 do

datenum:= datenum®10 + ord(al[i]) - ord('0');
for i := § to 6 do
month[i=3] := a[il;

year := 0;

for 1 := 8 to 9 do
year := year#®#10 + (ord(a[i]) - ord('0'));
NewDay := DayOfWeek (datenum,month,year);
if (month = 'Apr') or (month = 'Jun') or
(month = 'Sep') or (month = 'Nov') then
ThisMonthLength := 30
else if (month = 'Feb') and (year mod 4 = (0) then
ThisMonthLength := 29
else if (month = 'Feb') then
ThisMonthLength := 28
else
ThisMonthLength := 31;
for 1 := 1 to 14 do
begin
datenum := succ(datenum);
if datenum > ThisMonthLength then
begin
increment (month);
datenum := 1
end;

end;

NewMonth := month;

NewDate[1] := chr (datenum div 10 + ord ('0'));

NewDate[2] := chr (datenum mod 10 + ord ('0'))
end;

Nov 21 20:29 1982 NewDay.p Page U

{#2#88 Check Existence ###£8}

{

The directory file is searched for the new month and date to see if a long-term
file exists, If it does, then (1) the external long=-term file will be copies
into the short-term file, (2) the corresponding record in the directory will

be removed, and {(3) the long-term file removed, If, instead, the matching
record is not found in the directory, then the correponding weekday is copied
into the new short=term file.

Called by
NewDay main program.
External
direct : external file name of directory.

Output parameters
FileName : the filename from which to read. Might be a long-term date
(eg. 'Nov18') or a weekday ('Thu ').
Exists : true if the long-term date is found in the directory.
}
procedure CheckExistence (FileName:stringb; var Exists:boolean);
var
DirLength, FoundLocn, index : DirLengthRange;
buffer : array [DirlLengthRange] of DirRec;
begin
DirLength := 0}
reset (direct);
Exists := false;
while not eof (direct) do
begin
DirLength := suce (DirLength);
read (direct, buffer [DirLengthl]);
if buffer [DirLength].MonthDate = FileName then
begin
Exists := true;
FoundLocn := DirLength
end
end; (®* while not eof #)
if Exists then
begin
DirLength := pred (DirLength);
for index := FoundLocn to DirLength do
buffer [index] := buffer [index+1];
rewrite (direct);
for index := 1 to DirLength do
write (direct, buffer [index])
end
end;

Nov 21 20:29 1982 NewDay.p Page 5

{EEREEEEEERERESERRERERENES NEY DAY SHSSREREERNNNREERRERRNNS]
{EEREERERERRERUESNBRNEEE MATN PROGRAM #HSRSSRSSRcEasNsnasuass)

{
Called by
UNIX system via 'at'! command.
External
FindNew procedure to get information about new short-term date.

}

CheckExistence : procedure to see if the new short-term date already
exists as a long=-term date,

begin {main}

FindNew (NewDay,NewMonth,NewDate);
for index := 1 to 3 do FileName [index] := NewMonth [index];
for index := 4 to 5 do FileName [index] := NewDate [index-3];
CheckExistence (FileName, Exists);
if not Exists then
begin
for index := 1
for index := 4
end;
writeln ('cp ',FileName,' ',NewDate);
writeln ('chmod a+wr ',NewDate);
if Exists then
writeln ('rm ',FileName)

to 3 do FileName [index] := NewDay [index];
to 5 do FileName [index] := ' ';

end.

A "UNIX"™ BASED
ELECTRONIC CALENDAR SYSTEM
by
DAVID OWEN JAMES

B. A., Bethany College, Lindsborg, Kansas, 1981

AN ABSTRACT FOR A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1982

ABSTRACT

Appointment calendars are time management tools that
allocate'specific time segments for activities on a given
day. Electronic calendars are computerized versions of the
more traditional paper counterparts, but with several
advantages. The major advantage can be seen when scheduling
meetings between several principals or users., Typically the
required process involves checking each principal's schedule
against the proposed meeting time until a conflict-free
meeting time for all the principals involved is found. An
automated version of this process can schedule such a
meeting time almost immediately, for any number of
principals, An implementation of such an electronic
calendar system currently running on a 32-bit Perkin-Elmer
3220 computer at the KSU Department of Computer Science is

described.

