Campus Buddy

by

Anamika Nupur Choudhary

B. Tech., Jawaharlal Nehru Technological University, India, 2010

A REPORT

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Computer Science
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2017

Approved by:

Major Professor
Daniel Andresen

Copyright

© Anamika Nupur Choudhary 2017.

Abstract

New to K-State??? No worries!!! This app will be your first friend and help you with
everything you may need. Every new incoming student to K-State has to do a set of mandatory
activities before they start their classes. Many times they use a pamphlet or word of mouth by
students or faculty around, on what to do and whom to visit. But, this information may not be
reliable or could have been expired/updated, and students miss on certain crucial things which
delays their work. The same follows with various events organized by the college to welcome new

students.

This app will be a solution for all these problems. It will provide students with all the details
they need before they actually become familiar with the school and even after that. Each student
gets to see the To-Do's which are a set of mandatory activities, he/she has to do before they enroll
for the classes and also, he can know about various events happening around the university.
Students can also suggest new events if they are not already updated in the events list. All these

activities are monitored and controlled by the Admin.

Table of Contents

LIST OF FIQUIES ...ttt sttt e b et e et e e ne et e e ne e be e beenteeneenteeneennes vi
LIS OF TADIES ...ttt e st e e sre e beenbeaneenre s viii
ACKNOWIBAGEMENTS ...ttt e e e s e e te e e e s te e beeaesneesreeneeanes iX
(@8 T o) 1 A 1o oo 11T [o SR 1
1.1 Project DESCIIPTIONccueiiitiiieiteiti ittt bbbttt ab b 1
|V T 1 (V=[] o TSRS 2
IR 01 (=T g0 [T O L SRR PRPR 3
Chapter 2 - Background and Technologies USEdcccvcvveiieiieiieiieie e 4
2.1 ANQUIAIIS. ...ttt bbbt 4
2.2 JQUETY etttk et b bR bR bR bRt Rt R et n bbbt 9
2.3 SPIINDS ..ttt sttt h bbbt h e b R b bRt R Rttt b bt b nneene s 10
24 HTIML ottt s et s et ettt bR R bt ne et e nenre e 13
2.5 CSS ittt et Re R bRt R et R e R bRt bt et e Re bt reare it 14
2.6 IMYSQL ..ottt et et Rt R e Rt et et nn e tenrenreeneenes 14
Chapter 3 - ReIAtEA WOTKouiiiiiiiiicieee et 15
3L EXISHING SYSEIM ...ttt ettt ettt ettt e e e be et e e st e saeenbe e st e s beenbeeneenneenras 15
I o (0] 001 T=T0 B V] (=] 1 RSP URRR 15
Chapter 4 - Requirements ANAIYSISccoiiiiiiieieieseeeee e 17
4.1 ReqQUITEMENT GAINEITNG ... oviiiiitiiti it bbb 17
4.1.1 Functional REQUITEMENTScc.viiiiieieeie ettt te e sre e 17
4.1.2 Non-functional REQUIFEMENTScciieiiiieie et sre e 18

4.2 Requirement Specification to run the application.............ccccoveiiiiiininieice e 18
4.2.1 SOTtWAre REQUITEIMENTScueiuieiieieierie ettt nbe e nre s 18
4.2.2 Hardware REGUITEMENTS.ccuviiiiiiee sttt e sttt sra e beennees 18
Chapter 5 - SYSIEM DESIGN ...veeiiiiiieiie ittt et et e e e s be e e beesneeanbeesseeereeas 19
5.1 ClASS DIAGIAMeiiiiiiiieite sttt ettt bbbt bbbttt b ettt e ene s 19
5.2 USE CASE DIAGIAIM ...ttt bbbttt bbb e b eneas 22
5.2.1 FUNCLIONS OF AGMIN Lottt 23

5.2.2 FUNCLIONS OF STUABNT ...t ettt e e e e e e e et e e e e e e e e e eeeens 24

5.3 ACHIVILY DIGQIAIM ...ttt te e s raenteese e reenneeneesneenras 24
Chapter 6 - IMPIEMENTALION ..ot 26
6.1 BasiC IMPIEMENTATIONooviiiiiiiiieee e 26
6.1.1 StUAENT MOTUIEo.eiiiieieiieeee bbbt 26
6.1.2 AdMIN MOUUIE ...ttt 38
Chapter 7 - Database DESION.c..oiuiiiiiiieiei ettt eneas 44
7.1 Database TabIEScueiieiieiice e ettt nneeen 44
A =L B T T-To] - o [P RT 46
(@8 T Vo) T S T =11 1] T OSSR 48
8.4 Performance TESTINGcc.oiiiiiieieeieiei ettt bbbttt b b b e sreeneas 55
CRAPLET O = SECUIILY ...ttt bbbttt ettt bbbt b eneas 56
9.1 Security issues in web application and their handling methodsc.ccceeeiieiiiieieene. 57
Chapter 10 = CONCIUSIONccuiiiiiie ittt ettt e e e s reesbe e e s reesbeeneesneennas 59
Chapter 11 - FUTUIE WOTKoviiiiiiiieeee ettt 60
BIDHOGIAPNY ...t 61

List of Figures

Figure 2.1 AngularJS architecturel (Vardi, N.d.)c.cccoervereieieeiee e 5
Figure 2.2 AngularJS validation 1% (blog.angular-university.io, N.0.)cccccoeevevvernvieesrenennnne 6
Figure 2.3 AngularJS validation 2B (Bernado, N.0.)ccoovevveereieiiseieeeeeseee s 6
Figure 2.4 MV C ATCHITECTUIEvi ettt ettt e nneenns 8
Figure 2.5 Angular MV C ArChITECIUIEcviiiieieiees e 9
Figure 2.6 Spring Framework[® (www.javatpoint.com, N.d.)ccccccoeeveruriereceerceee e, 10
FIgUre 2.7 SPHING MV C ...ttt e et e e e e e s teeteeneesneenee s 12
Figure 5.1 Class diagram Lc.cciiieiioiieie et ba e te e e ssaesreenesneesaeenee s 20
FIQUre 5.2 ClIasS QIAgIAM 2oviuiiiiiiiiiieiee ettt bbbttt ne e 21
FIgure 5.3 USE CASE TIAGIAIMc.viiiiiitiitiitieiieie ettt sttt nn bbb 23
Figure 5.4 ACHVITY QIAGIAMoiiiiiiiiitiieeee bbb sb e 25
FIQUIE 6.1 HOIME PAJE.c.eiiiieiieeie ettt sttt e et eba et e et e saeesbeeteeneesneenteas 27
Figure 6.2 Registration page when provided Wrong passWord............ccoeeeerieeresieeseesesieeseennens 27
Figure 6.3 Registering With KSU email id.........cccooiiiiiiiiii e 28
Figure 6.4 Registration page shows message “Tegistered”ccovvvririeriieiinireneeie e 28
Figure 6.5 User inactive in registration table.............c.cooooi i 29
Figure 6.6 Trying to login without VErifiCationcccccoieiiiic i 29
Figure 6.7 Verification code sent to KSU email id.............cooviiiiiiiniicee e 30
Figure 6.8 Status updated to “Active” in registration tablecccoovvriiiiiiiinie, 30
Figure 6.9 Message shown after verification of email..............cccccoooiiiiicicci e 31
Figure 6.10 StUdents NOME PAJE.........ciuieiii ettt s re e te e este e 31
Figure 6.11 Student aCCOUNT INTOoiuiiiiiiieieee e 32
Figure 6.12 Student details which are stored in registration table.............c.ccoovieiiiiniineen 32
Figure 6.13 StUAENt TO-D0 PAJE.......uiiiieiieeiee ittt e e e ae e saee s 33
Figure 6.14 Student TO-Do’s N0t COMPIELEd.........ccverviriiiiiiiiiieie e 33
Figure 6.15 Student TO-D0’S detailscueurierierieieieieriesee e 34
FIQUIe 6.16 Map J0CATIONoiiiiieiiii ittt 34
Figure 6.17 To-Do moved to Completed liSt.........coooiiiiiieiece e 35

Vi

Figure 6.18 To-Do page with no option to select completed or not completed after moving to-do

10 the COMPIELE TISt.......ei e sa e 35
FIQUIE 6.19 EVENES TIST ... 36
FIQure 6.20 EVENE AELAIISc.viiiieiiciee e 36
Figure 6.21 Status after student selects interested for an event...........cccccooeveevi i e 37
Figure 6.22 Interested people COUNE INCIEASESccveieeieieeieeiesee e e e et e e e 37
Figure 6.23 Student addS NEW BVENTS..........coiiieiiieieesiesie e 38
Figure 6.24 Event added in SEVENTS tADIE........c.ooiiiiiiii e 38
Figure 6.25 AdMIN NOME PAGE.......iiieirieiieieite ettt st e e ta e teeaesaeesbeenesreesteeeeas 39
FIQUIE 6.26 STUAENTS TIStoveiiicie et e e ee e sae e e 39
Figure 6.27 AAmMIN Side TO-D0 PAJEccueiuiiiieieieie it 40
Figure 6.28 AAmMIN addS NEW TO-DO0ccuiiiiiieieiesee e 41
Figure 6.29 To-Do added in todo table.........cccociuiiiiiieiice e 41
Figure 6.30 AdMIN EVENTS PAJEccveivieieeiestee it sie s s et e s e te e e st steeresbaesteeeesreesteesesreesreeneens 42
Figure 6.31 AdmIN addS NEW BVENTciiiiiieieie ittt 42
Figure 6.32 Admin accept or rejects student event add reqUESEccoovreririeeiene e 43
Figure 7.1 regiStration tabIeccviiiiie e 44
FIQUIE 7.2 BVENES TADIE ...ttt be et e e e teesneeneesaeeee s 45
Figure 7.3 eVENTSINT TADIE ... 45
Figure 7.4 SEVENES TaDIE. ..o 45
FIgUrE 7.5 1000 tADIEc.eeoeee e e 46
Figure 7.6 todoComMP tADIEc.eoiiiee e e 46
FIQUIE 7.7 ER QIAGIAM ...ttt bbbttt 47
FIQUIe 8.1 TeSHING LEVEIS ...t 49

vii

List of Tables

Table 8-1 Testing on Student MOdUIE ..o

Table 8-2 Testing on Admin Module

Table 8-3 Performance Observation .

viii

Acknowledgements

I would like to express my sincere gratitude to my Major Professor, Dr. Daniel Andresen
for allowing me to work on this idea, providing me constant encouragement and trusting my
abilities to complete this project on time.

| take immense pleasure in extending my heartfelt thanks to my committee members Dr.
Mitchell Neilsen and Dr. Torben Amtoft for their encouragement and for taking the time to serve
on my committee.

| also would like to acknowledge the help and constant support provided by the academic
staff of the Department of Computing and Information Sciences, when and where it was required.

Finally, 1 would also like to thanks parents, siblings and friends to motived me all

throughout this project. I wouldn’t have finished this without their constant support.

Chapter 1 - Introduction

1.1 Project Description

Campus Buddy is a web application which would help K-State students, with everything
they would need before they start their classes. Currently there is no exclusive app (mobile or web)
which would help students to manage their To-Do’s for the first week check-ins. Hence, students
have a hard time trying to figure out what they should do, whom they should see for help and
which department they should visit for the check-ins. These to-dos’ can be anything from
collecting a new id card to verifying your documents at the grad school. Currently students get few
details from student center or by communicating with other fellow batch mates. But the
information they get is not always an updated one. Also, as students are new to the school they
may not know all the routes in the campus and keep roaming around which may delay their work.
Also, in the first week of school, K-State organizes many events to welcome new students. These
events can be anything like introduction session, ice-cream social, coffee hour, campus tour etc.,
For few of these events, they get email invitation from K-State, receive broachers but in most of
cases the end up going by word of mouth from other students. New students may not know the
routes to the location where the event is planned, can always miss the event invite in the huge
clutter of other ones and may lose the broachers, giving a miss to the opportunity which would be
helpful for them in the future. To avoid these problems and help students with managing all these
things this application would be really useful. It is one place where a new student can find all
necessary details. The admin updates all the events and to-dos from time to time to give exact
information to students. This app will have the location details, contact person and a map to each
place which students can use to reach the destination. There are few to-dos’ which can only be

performed once the previous once are completed. For example, student can only enroll for classes

after he completed certificate check. So, this app will also help students to keep track with the
sequence of to-do list. The event list will have the event date and location which can be helpful to
the students. As all these details are stored in one place, there is no chance that the student will
lose any details and miss any event. Apart from this, if a student has any information about new
event he can add it as well. He just has to provide the details of the events and the location of the
event. And once the admin approves his add request the event is added to the events list. This
functionality will be really helpful to admin as he regularly gets update about the events from the
users and this will lessen his work.

Apart from helping new students, the main aim of this project is to help me use and learn
new technologies. For this project, | am using AngularJS, jQuery, HTML, CSS, Springs and
MySQL for the database. | did not have any prior experience working on AngularJS and Springs

previously. This project gave me enough exposure to these technologies.
1.2 Motivation

This app was developed out of my personal experience at K-State. When | first visited the
school, I did not know any routes neither did | have any friends to help me with anything. I did not
have a registered KSU email id as well to receive any important information from the school. 1
had a lot of trouble finding the routes and many times | kept roaming around the campus without
any help. I always thought if I had a friend, who knew every place and had information about every
mandatory check-in required, it would be really helpful. But then nobody would actually know all
the correct details, as to-do list always gets updated every semester and even if somebody knows
all the routes and details, it may not be updated one. Also, we do not always find people with so

much free time to accompany us. Keeping all these situations in consideration, | thought an online

friend would be a best bet. You can always trust this app with any details you may need about the

events or to-dos’. This app will we very useful to the students like me who are new and uninformed.
1.3 Intended Users

College Students: Every K-State student with a registered K-State email id can access this
application. Once the student registers his account, he gets verification email to the registered K-
State email account with domain @ksu.edu. Once his account is verified he can access this app.
He can see the list of to-do’s, events and a functionality to add new events.

Admin: Admin is the sole responsible person to update data in this app. He can add, delete or
update new events and list of to-do’s. He will also have list of users of the system to keep a track
of the system. He can also approve/deny every event add request of the students after careful

consideration, and the ones approved are added automatically to the event list.

Chapter 2 - Background and Technologies used

Apart from helping new students, the main aim of these project was also to learn new
technologies which | am not versed with. So, | used many latest technologies in my
implementation. These technologies are used in various areas according to their necessity and
importance. The technologies | used in my implementation are AngularJS, HTML, CSS, jQuery,
and Springs and MySQL for my database implementation.

All the validations in the project use AngularJS and for the frontend design and
implementation, |1 used HTML, CSS, jQuery and Springs.

2.1 AngularJS

AngularJS is a JavaScript MVC framework useful while developing single page
applications, in short to create dynamic web pages. In Angular data moves inside a single-page
application, dynamically updating the view as the data changes without the help of any specific
listener code. It is used to build complex and dynamic features quickly with simple and declarative
templates using existing components. Angular provides validation at client side rather than server
side validation and it is capable to enhancing the functionality of HTML, CSS and JavaScript.
AngularJS supports the following web model:

Server - Provides the client with a set of initial HTML data, then for future requests, it just returns
JSON data.

Client - Takes in that JSON data, and updates the HTML dynamically.

2.1.1 AngularJs architecture:

[Browser

/Angularjs
DOM

Content

Static DOM

Dynamic

Loaded
Event

Scompile/SrootSco

DOM(view)

-~

pe

ng-app="mymodule”

l

Sinjector

./\

Scompile

SrootScope

Figure 2.1 AngularJS architecture!™ (Vardi, n.d.)

Below is the basic architecture description:

=>» Angular bootstrap is created.

=> A module “mymodule” is created.

=> S$injector is then created and configured to the module “mymodule” and then the object is

then retrieved from the injector by name.

=> When $injector is done retrieving all the objects, we execute the code.

= We run compile() function when all static HTML pages are parsed into DOM and then

the link() function is run.

2.1.2 Validation using AngularJS [(Smith, n.d.)

Validating web pages using AngularJS would be advantageous as it provides better user
experience than a server-side validation, as it uses client-side validation and the user gets instant
feedback on how to correct the error. It monitors the input entered by the user and notifies him

about the current state of the form. Also, it keeps track of all the details such as which fields are

touched or modified in the form.

Few highlights of validation using AngularJS

=> highlights fields in error dynamically as we type.

=>» provide inline messages while the user is typing in a field.

=> disable the submit button until all the needed data is available and the terms and conditions

checkbox is checked.

Username ‘ Usernamae is required
Password e ‘ Password must have minimum 6 characters

Email Address test ‘ Must be a valid email

I've read the terms and conditions

Figure 2.2 AngularJS validation 18! (blog.angular-university.io, n.d.)
The image below shows the form in action, after entering some data and pressing the submit

button.

Joe User

‘ Please fill out this field.
y)

Create Account

Figure 2.3 AngularJS validation 21! (Bernado, n.d.)
In normal JavaScript based validation page, we do not have these features. Many times we click

submit button without entering all the fields and this gives error message. In secure and critical

applications like the one used for banking, if there is an error in the page, all the fields are updated

and we have to redo the whole process from the beginning, wasting crucial time. Also, by
providing inline and dynamic error messages, Angular gives us the scope to update the field as we
continue to the next one without having to come back to the application and redo the whole thing.
But, this has a limitation; there is no way to inform user that password and check password should

be the same. In such cases we create our own custom validation functions using directives.

Few Angular properties:

=> $pristine - No fields have been modified yet
=> $dirty - One or more have been modified
=> Sinvalid - The form content is not valid

=> $valid - The form content is valid

=> $submitted - The form is submitted

=>» ng-untouched - The field has not been touched yet
=>» ng-touched - The field has been touched

2.1.3 Features of AngularJS and its advantages over JavaScript® (Ruebbelke, n.d.)

1) Two-way data binding: It is automatic synchronization of data between your view and model.
Whenever a value in the model is updated, the view replicates it automatically and vice versa.
This feature is not available in JavaScript and hence the development becomes really fast.

2) Single page application: All the user needs are put in one page without the need to move back
and forth between different pages, which is really confusing. Instead, the content is loaded
asynchronously on the same page and just the URL is changed to reflect the selection. This

supports Routing.

3) Better Template: It is just plain HTML page with extra capabilities. A directive in AngularJS
makes HTML do new things, by adding new elements to it which is not possible with plain
HTML syntax.

4) Easy collaboration: Collaboration between developers become really easy as they can work
independently of developing the Ul in HTML and use declarative binding syntax to bind all
the different Ul components developed by various developers in one single data model with
ease. This also promotes modular development.

5) Dependency Injection: Due to this feature in AngularJS testing becomes a cake walk. We can
just ask for the dependencies rather than having to search for them.

2.1.4 MVC architecture

MVC is a software design pattern for developing web applications. It has 3 important parts:

Model — It is responsible for maintaining data.

View — It is responsible for displaying the data to the user.

Controller — It controls the interactions between the Model and View.

=3
! A
=8 - =8

Figure 2.4 MVC Architecture

MVC distinguishes the application logic from the user view. The controller receives all the
requests sent to the application and then works in integration with the model to displays the

generated output to the user requesting the service.

2.1.5 Angular MVC Architecture 61 (www.Pluralsight.com, n.d.)

MVC is angular is implemented in JavaScript and HTML. For the view, we use HTML, and for

the model and controller we use JavaScript.

View

HTML page

Controller (uses
ngController to connect
to view)

Business logic
to handle user

Performs
business logic
(RESTful API)

interaction

Controller

(Anjularls Model

Performs two-
way data Client side
binding

Figure 2.5 Angular MVC Architecture

Model: It contains the data to be displayed, data collected as the input and functions invoked by

the user. Generally, we can directly use $scope as a model.

View: It is a HTML page with reference to AngularJS framework to include bootstrap and

directives to manipulate the DOM.

Controller: For this purpose, we use ng-controller directive. It will be used for the handling and

manipulating all the data behind the UI.

2.2 jQuery

jQuery is a JavaScript Library. It makes coding really simple as many lines of a JavaScript code

can be written into a single line. It also makes Ajax, data manipulation and traversal, animation

etc., really simple. Using jQuery tools, we can communicate to the server without reloading the
whole page. In jQuery we select HTML elements and perform operation on them using action()
function. In jQuery like any other scripting languages $ hold a lot of value. $ sign is used to define
or access jQuery. For selecting HTML elements, we use selectors with the element name.
2.3 Springs

2.3.1 Spring Framework

It is Java platform providing java applications a platform and comprehensive infrastructure for
their development. Spring Framework helping in the development of enterprise applications in

particular using POJOs.

Spring Framework Runtime

Data Access/Integration WEB

(MVC / Remoting)
(e)

[AOP J (Aspects] [Instrumentation}

Spring Core Container

{ Core ’ { Beans } [contm] { E::;s:;n]

Test

Figure 2.6 Spring Framework[® (www.javatpoint.com, n.d.)

Description:
Spring Core Container: It is basis for the complete Spring framework. It is used in all the other

modules. This module injects dependencies, so that we need not use factory classes and methods.

10

=>» Core: It provides 10C and Dependency Injection features

=>» Beans: It provides BeanFactory for implementing factory pattern.

=>» Context: It supports EJB, JMS and Basic Remote features.

=>» Expression Language: It supports multiple things like named variables, logical and arithmetic
operators and many others.

AOP: It stand for Aspect Oriented Programming. It is implemented in Java based on AOP Alliance

API. This allows integration of existing AOP alliance complaint to the spring or allows migration

of the component implemented using Spring AOP to other AOP.

Data Access/Integration [(htt1):

=>» JDBC: In normal JDBC API we end up writing lot of code, for creating connection, handle
transaction, exception handling. This complex coding is handled using JDBC in Spring API
which will provide JDBC-abstraction layer.

= ORM: Using ORM, we have to write less code for the database connection, It provides
abstraction for object-relational mapping APlIs, including JPA, JDO, Hibernate, and iBatis.

= OXM: This module provides an abstraction layer that supports Object/ XML mapping
implementations for JAXB, Castor, XMLBeans, JiBX and XStream.

=>» The Java Messaging Service JMS has features for creating and using messages.

=>» The Transaction module supports programmatic and declarative transaction management for

classes that implement special interfaces and for all your POJOs.

Web Module:

11

It helps in the development of web application in a simple way. It also supports MVC based

application development.

2.3.2 Advantages of Spring Framework

= It has predefined templates.

= Springs doesn’t require server to run. By using POJOs, we need not use application server
but we can use Tomcat or other such servers.

= Spring framework has a well-designed MV C framework, which serves as great alternative to
web framework available.

= In Springs we do not start everything from scratch, rather it uses the existing technologies
like ORM frameworks, JEE and many others. In short it is versatile.

= Testing becomes a really easy, as Springs use POJOs which in turn uses dependency injection
for injecting test data.

= Springs work in modular fashion, where no module is dependent of each other.

2.3.2 Spring MVC 19 (Rajput, n.d.)

Handler Mapping

Front Controller
(Dispatcher Servlet)

View Resolver

o Controller o
User inputs a

(Actual Controller which
handles request)
Model
(POJO)
o certain request
° View Response to the user
(HTML, JSP or XML
i ©

Figure 2.7 Spring MVC

User

12

Step 1: Used sends the request to the Front Controller (DispatcherServlet).

Step 2: DispatcherServlet dispatches to the HandlerMapping. HandlerMapping selects the
corresponding controller for the request URL given by the user.

Step 3: HandlerMapping sends back the respective controller information and selected Handler to
the DispatcherServlet.

Step 4: The DispatcherServlet then selects the controller to perform business logic.

Step 5: The Controller then performs all the business logic and sets the processed result in Model.
Step 6: Once all the process has finished the Dispatcher Servlet is updated.

Step 7: DispatcherServlet dispatches the task of resolving the View corresponding to the View
name to ViewResolver.

Step 8: ViewResolver provides the View mapped to View name to the DispatcherServlet

Step 9: DispatcherServlet dispatches the provided information of process to the View.
Step 10: View also receives the model data from Model
Step 11: It then provided the response to the user (person requesting the service).
Advantages of Spring MVC:
= More annotation based, i.e., reducing the extensive use of configuration and metadata.
= It supports different views (JSP, XML, PDF etc.,) and MVC frameworks.
= Supports RESTful URLSs.
24 HTML
It stands for Hyper Text Markup Language. It is used to create static web pages. It is one the basic
languages to learn static web designing.
Advantages of HTML.:
= Itis simple to code.

= ltiseasy to learn.

13

Widely used.
Can be used to integrate many languages.
It is very flexible.

It provides various templates which makes designing easy.
2.5 CSS

It stands for Cascading Style Sheets. It is used to beautify the web pages. It allows separating
content of an html document from the style and layout of that document. CSS allows developer to
create stylish websites and make them look attractive. In CSS, just by changing the style, the
elements in the web page is updated automatically. CSS is also much faster than a plain HTML
code.
2.6 MySQL

MySQL is a database management system and is open source relational database. To store all the
information provided by the Admin and Student details are stored in database. All the information
in MySQL database is stored in tables. The front-end of the project is connected to backend
MySQL. When the user requests data from the front-end, it retrieves the data from the MySQL
tables. MySQL is scalable and has better performance than many other relational databases. Using
MySQL, we can add, delete and update information in the tables. Each table in a MySQL database

has a primary key, which is a unique identifier for each record.

14

Chapter 3 - Related Work

3.1 Existing System

In the existing system, K-State uses various applications to help the students to manage their
courses, their financial details, employment notifications and many such. For example, there is
Canvas where students can add and manage course, submit assignments, receive grades, see the
course materials and do many other course related stuff. Then we have KSU CES website, where
student can get all the information related to career fairs, companies visiting the campus for
placements and the company details. Also, we have K-State Online application from where student
can access K-State webmail, manage and pay tuition fee, and receive paycheck if he/she is
employed on campus. These apps are really helpful for the students. But there is no application
which will help students in the initial days of their school. Nobody or no app gives a full proof
information about the mandatory things a student should be doing before they enroll and start their
classes. Few events details are sent through K-State webmail but they do not have location maps
nor do they have other mandatory information like point to contact, their email and contact details

(most of the times). Due to all these issues students face a lot of difficulty in the initial days.
3.2 Proposed System

In the proposed system, we are trying to develop an application which will help students in their
first few weeks at K-State. This app will provide students with the list of to-do’s which will give
them the sequence of the steps which they need to fulfill. The To-Do list will have, all to-dos’Every
step will have a to-do, with the details of the place and the map to the location. It will also inform
student the things they need to carry with them to the location. For example, if the to-do says, they
need to check-in with the grad school, it actually means they will have to submit their previous

transcripts; so in this case the mandatory documents to carry would the transcripts. Also it would

15

provide students with the event list around the campus along with the details of the point of contact.
It will have two different type of users; one is the admin, who will update the information for the
student (who is the user) and the students. To provide security and restrict the app to just K-State
students, every time the user (K-State student) registers to the app, he gets a verification mail to
his K-State account. Also, there are chances that the Admin may not know every new event in the
university. To provide him some help, there is also an option where students can help him by add
the event details, which needs to be re-verified by the Admin. I believe all these capabilities will

help the student immensely in his start of journey at K-State, and hence | named it Campus Buddy.

16

Chapter 4 - Requirements Analysis

4.1 Requirement Gathering

Software development starts by gathering requirements which you may need in your project
implementation. It is one of the crucial steps in the development process. Only if we have all the
correct requirements beforehand, prior to starting our actual implementation, we will have the
excepted output. Else, no matter how detailed and extended our design and code is, we will end up
unexpected results in our final output. After detailed analysis of the requirements, | could segregate
them into functional and non-functional requirements

4.1.1 Functional Requirements

It describes what system should do.

=» Student registration

Admin and Student Login

Admin should be able to add to-do list

Admin should be able to add events

Admin should able to see the students registered

Student should be able to see to-do list added by the admin

Student should be able to see the events added by the admin

Student should able to add events.

L L L L T L

Admin should able say validate the event added by the user, which will add it to the events

list.

L

Student email address should be verified.

17

4.1.2 Non-functional Requirements
It describes the working of the system. The non-functional requirements such as security and
integrity are provided to this system through verification and validation. (i.e., by prompting error

messages if anything goes wrong)

4.2 Requirement Specification to run the application
(Note: These are the requirements | used while developing this application)

4.2.1 Software Requirements

Operating System: Windows 10

IDE: Eclipse Luna

Servers: Apache Tomcat 7.0.27, Wamp 2.0

Frameworks and Web Interface: Spring MVVC, phpMyAdmin
Database: MySQL

Front End: HTML5, CSS3, JavaScript, jQuery

Browser: Any browser should work (preferably Chrome and Firefox)
4.2.2 Hardware Requirements

Processor: Intel core i5

Processor speed: 2.30 GHz

RAM: 8 GB

18

Chapter 5 - System Design

System design gives static and dynamic view of the system. It defines various portions of
the project like modules, components etc., and their functionality. These are actually laid before
development to have a clear idea on the requirements beforehand. System designing is actually
done on two separate system models. Static Models, which gives how the static elements in the
code like class and objects should look like and dynamic models give the behavior of the static
components. Class and object diagram provide the static view of the system where as use case and
activity diagram provide the dynamic aspects of the model.

5.1 Class Diagram

It provides the static view of the system. It shows the classes used in the system, their attributes
and functions. It doesn’t give the functionality or the data flow. It provides information about the
things which doesn’t change in the system. In this project, there are classes in 4 different section.
Controller classes, dao classes, mail class and vo class.

Controller classes: The Controller classes pulls data from the request and passes it to the class
which request the service. In short, they handle web requests. In this project there are multiple
controllers like the StudentListController which controls the student side activities,
AdminDataController which handles Admin data and so on.

VO classes: The data is actually sent to DAO through VO. In this project, the classes in vo are
used only to set values to the to-do, events and user(student).

DAO classes: Classes in this portion interact with the database. They generally contain all the
query code to connect and interact with database.

Mail Classes: Class in mail, has the methods and attributes to send verification email to KSU

email id.

19

<<Java Class»»
(©TobDo

com.laf.ve

& toDold: Integer

o toDoName: String

0 toDoDesc: String

o lattude: String

o fangitude: String

o contactPerson: String

© ToDo(nteger String String,String,String, String)
& To0a()

& ToDo(teger String)

@ getToDoki() nteger

@ setToDok(integer).void

@ getToDoName(): String

@ setToDoName(String):void

@ getToDaDesc():String

© 5¢tToDoDesc(String) void

© getlatitude() String

@ setLatitude(String) void

@ getLangitude():String

@ setLangitude(String) void

@ getContactPerson():String

© setContactPerson(String) void

<<Java Class»>
@ StudentEvents

com laf vo

o studenteventid: nteger

o studenteventName: String

o studenteventDesc. String

o studentiatiude: String

o studentlangtude: String

0 studentcontactPerson: String

& StudentEvents (integer, String. String String,String String)
& StudentEvents()

<«Java Class>>
@Events

com laf vo

o eventid integer

o eventName: String

o aventDesc: String

o lattude: String

o langtude: String

0 contactPerson: String

& Events (integer String String,String,String, String)
@ Events()
ocﬁlerlsmew‘s:mg)

© getEventid():integer

@ sotEventid(nteger)vold

@ getEventName() String

@ selEventName(String).void
@ gelEventDesc().String

@ setEventDasc(String).void
@ getLatitude():String

@ setLatitude(String)-void

@ getlangtude():String

@ setlangtude(String) void
@ getContactPers on().String
@ setContactPers on(String) void

<<Java Cass»>
©user

com laf vo

o yserName: String
o emailg String

o passw ord. String
a role: String

@ phoneNo: String

< Java @ss»

(@ RegistrationDao
com la! dao

o idbcTemplate: NamedParameterJdbc Template

&' RegistrationDao()

® settdbcTemplate(NamadParameterJdbe Template) v oid
@ registerUs er(User):int

® saveToDo(ToDo) int

@ vaidateUs er(String String String).long

@ getMails() List<String»

& StudentEvents(integer String)

@ getStudenteventid().integer

@ setStudenteventid(integer).void
© getStudenteventName() String

© setStudenteventName(String).void
@ getStudenteventDasc() String

@ setStudentaventDesc(String).void
@ getStudentiattude(). String

@ setStudentiatitude(String) void

© getStudentiangtude():String

@ setStudentiangitude(String).void
@ getStudentcontactPerson() String

 setStudentcontactParson(String).void

N

@ getUserData(String) List<Us er>

@ getUsersData() List<User>

@ getUs ers TodoData(String) List<ToDo>

@ getTodoDetalls(String) List<ToDo»

@ activateUs er(String):Int

© saveEvents(Events)int

© Change(Sitring String. String) Int

@ saveStudentEvents(StudentEvents) int

@ updatetodo(String, String, String, String, String, String) int
@ updateevent(String String String, String String String) int
@ getstudents eventData() List<StudentBvents»

@ getUs ers TodoCompleteOata(String) List<ToDo»

@ geteventDetads(String) List<Events»

© getEventinterestedCount(String) int

@ getinterestedCount(String String).int

& Us er(String String,String,String)
Fuser()

@ getUs erName(). String

@ setUs erName(String).void
@ getEmaili():String

@ setEmallid(String) vold

© getPassw ord():String

@ setPassw org(String) void
@ getRole() String

@ setRole(String) void

© getPhoneNo(). String

@ setPhoneNo(String):void
© toString() String

Figure 5.1 Class diagram 1

20

<zJava Class=>
(9 ToDoController

com.|af_controller

<zlava Class=»
(9 RegistrationController

com.|af . controller

<zJava Class=>
(5 AdminDataController

com.laf controller

& ToDoControler()

@ openToDos{HipServietRequest ModelMap, RedirectAtfributes):Siring

@ saveToDos{HipServietRequest ModelMap, RedirectAftributes):Siring

@ gefTodoData(HipServieRequest) String

@ gettodoDelete| HipServietRequest): Siring

@ gettodoUpdate(HipServietRequest ModelMap): Siring

@ gettodoDataUpdate(HitpServietRequest ModelMap):String

@ gettodoChecklUpdate(HitpServietRequest ModelMap, HitpSession)-String

@ setRegisirationDao(RegistrationDac)void

@ 5efToDoDao(ToDoDao)-vaid
-tﬂDuDaﬂlU..ﬂ

<uJava Class=»

(9 ToDoDao

com.laf.dao

o jdbcTempiate: NamedParameterJdbcTemplate

& ToDoDao)
@ setldbcTemplate(NamedParameter.Jdbc Template):void
@ gefNames()List<ToDox

@ ge{TODO0Data(String):List<ToDo>

@ toDokdDelete(String):int

@ todoComplete(String,Siring, String):int

-regkirafionDao

1

==Java Classs>
(9 StudentListController

com.laf. contraller

& StudentListContraler()

@ getSludentsList{HipServietRequest):String

@ getStudents TodoList(HipServietRequest): String

@ getStudentTodoCompieteList{HipServietRequest):String
@ getStudents TodoDetails (HitpServietRequest ModelAndView ModelMap):String

@ getStudents TodoCompleteDetais(HipServiefRequest ModelAndView ModelMap): Siririg
@ setRegisirationDao(RegistrationDac):void

-regisirafionD;

0

-registratiﬂnu&
0.1

& AdninDataCortroler()
@ getStudentDetails (HipServietRequest):String
@ setRegisirationDao(RegistrationDac)-void

GCRBgiS[I'aliOHO.]ﬂ[I'GllBI'()

@ registerUser(User RedirectAftributes)-String

@ redirect():Siring

@ acliveUser(User RedirectAfiributes HipServietRequest ModelMap):Siring

@ changePassw ord{User RedirectAftributes, HipServistRequest ModelMap):String

@ changePassw ordProcess(User RedirectAfiributes, HifpServietRequest ModelMap HipSession): String

@ setRegisirationCao(RegistrationDaa):void

-registrationDao | 0.1

«aJava Class=>
(9 RegistrationDao

com.laf.dao

<<lava Class>>

(5 UserAccounntController
com.laf .controller

a jdbeTemplate: NamedParameterJdbcTemplate

-gtistrationCao

Qc RegistrationDaa()

@ setdbcTemplate{NamedParameter dbcTemplate)-void
@ registerUser{User):int

@ saveToDo(TaDa)int

@ validateUser(String,String, String)-lang

@ gethails () List<Siring>

@ getUserData(String) List<User>

@ getUsersDatal)y List<Users

@ getUsersTodoData(Siring) List<ToDo>

@ getTodoDetails(String) List<ToDo>

@ activateUser(String):int

@ saveEvents(Events)int

@ Change{String String String)nt

@ saveStudentEvents(StudentEvents yint

@ updatetodo(Siring, String, String, String, String String)-int
@ updatesvent{String,String, String, String,String String):in
@ getstudentseventData() List=StudentErents>

@ getUsersTodoCompleteData(String) List<ToDo>

@ geteveniDetails{String) List<Events>

@ getBventinterestedCount(String).int

@ getinterestedCount{String, String)-ink

ec UserAccounniConiroller()
® getStudeniDetais{HitpServietRequest)-Siring
@ seiRegistrafionDao(RegistrationDac).void

«aJava Class=»
regeirElionao (®LoginController
0.1 com.Iaf.contraller
-registrationDa LaginContoler)
k""—l—g——) @ validateUser{HitpServietRequest ModelMap):String
o setfegistrafionDao(RegistrationDao) vaid

«Java Class=>
(9 EventsController

-regigtrationCac
com.laf controller

0.

GC EvenisConiraller()

@ geteventOpen{HitpServietRequest ModelMap):String

@ saveEvent(HitpServietRequest ModelMap, RedirectAfiributes): Siring
@ getEventsData(HitpServietRequest):String

@ geteventDelete(HipServietRequest):Siring

@ getStudenteventDelete(HipServietRequest):Siring

@ getStudenteventAccept(HipServielRequest):String

@ geteveniUpdate(HifpServietRequest ModelMap)-String

t

@ geteventDatalpdate(HtpServietRequest ModelMap):Siring

=4Java Class>>
(®LogOutController

com.|af controller

@ geteventDetails(HifpServietRequest):String

@ geteveniChecklUpdate(HtpServietRequest ModelMap HipSession):Siring

4 view: String

@ setRegisirationCao(RegistrationDaa):void

SFLogOutCartroler()
@ LogOutUser(HipServietRequest ModelMap):String

@ seffventsDao{EventsDaa).void

@ getStudenteventDetails(HitpServietRequest Modelandview ModelMap HipSessio.

-evenisDao lﬂ 1

<Java Cass=»
<2Java Classs» PR (EventsDeo
(® StudentEventsCantraller ® StudentEventsDao S
com.l=f.contraller
Erlilei o jdbcTemplate: NamedParameter.dbc Template
& | -sfudenipventsCao _
‘StudentEventsConiroller() o jdbcTempiate: NamedParameterJdbcTemplate FEventsDs 0
i) 0.1
@ sa\reEvEnt(l-hpServ\ElRewasl‘I‘.’b?EII‘.’ép.Red\rectAttrlbulas):Siring QCSIU dentEventsDao() @ sekidbcTerplate(NamedParameter b Tenplate) void
© geffvents Data(HipServiefReques] Siring @ sefJdbcTemplate(NamedParameterJdbe Template):void @ gethames() List<Events>
@ setRegistrafionDao{RegistrationDao):vaid . o gethames) List«StudentEyentss ® eventkDelete(Shing) it
® setStudentEventsDao(StudentEventsDao) void -
@ studenteventidDelete(String)-int
@ geteventData(String) List<Events:
@ studenteventAccepi{StudentBrents)int
@ getStudentEviaentDa(String)List<StudentEvents>
@ savehierestedEvents(String,String,String)-int
Figure 5.2 Class diagram 2

21

The class diagram is divided into 2 parts for simplicity. In class diagram 1, there are all
model classes and they communicate with RegistrationDao class which has database connections
to all important tables. The classes ToDo, Events, StudentEvent and User are used to set the values
to the various variables and objects in the database through RegistartionDao and get the values
from the RegitartionDao, which in turn communicates with the database to provide values to the
model and the model then returns them to the controllers or the view.

In class diagram 2, there are controller classes which communicate with their respective
DAO classes. These controller classes are responsible for the views through which the user
requested any service. For example, from todo.jsp when a request it raised, dispatcher servlet maps
it to ToDoController and this turn communicates with ToDoDao. ToDoDao gets value from the
database that is required by the controller to serve the request. In the figure, there are around 8
controller classes and they communicate with respective Dao. Also, these controllers communicate
with RegistrationDao which has all important connections to the database like getting ToDo for
respective User, extracting the events which a particular user is interested in and so many other
things.

5.2 Use case Diagram

Use-Case diagram shows the dynamic view of the system i.e., the behavior of the system. It doesn’t
focus on system as such but focuses on users of the system. Use cases help to manage large projects

by decomposing it into functions.

22

Student Account

View student ist

Access fo-do list

Student
‘Add/DelsteUpdate

To-Do List

Atdmin

Access events [ist

AddiDelete/Update
Events List

Add new event

ApproveReje
events added by
User

Logout

Figure 5.3 Use case diagram
In this project, there are two users. Admin and student.

5.2.1 Functions of Admin

Login: He can login with his credentials.

Admin Account: This function will provide the admin details.

View students list: Admin can see all the students who are already registered.
Add/Delete/Update To-Do List: Admin can add new to-do’s and, delete and update previous

ones.

23

Add/Delete/Update Events List: Admin can add new events and, delete and update previous
events.

Approve/Reject events added by user: Admin can approve or decline the event added by the
student.

Logout: Admin logs out from his account.

5.2.2 Functions of student

Register: Student registers using his KSU email id.

Login: Student can login to his account, using the username and password provided.

Student Account: It will provide account details of student.

Access to-do list: Student can see the to-do list. Here each to-do can be expanded and can be
checked as completed or not completed. Once the to-do is completed, it moves to to-do completed
list.

Access events list: Student can see the events list. Each event be expanded and can be checked as
interested or not interested. Once the to-do is completed, it moves to to-do completed list. This
updates the people interested count for this event.

Add new event: Student can add new event with all the necessary details.

Logout: Student can logout from his account.
5.3 Activity Diagram
Activity gives the work flow of execution in the project. We use forks and joins in activity
diagram to show how activities flow inside a system. From the picture 5.3, it can easily be
inferred that there are two different flows. Admin and student. Student has to register and then

login. Once the student is inside the student homepage, he can view his account, To-Do list,

24

event list and can also add new event. But the admin just can log in directly. Once he is in his

homepage, he can add/delete/modify To-Do’s, events and can approve students add request.

l v v ¥ Y v Y
: ' J_
.‘ x

Figure 5.4 Activity diagram

25

Chapter 6 - Implementation

| have implemented this project in 2 modules. User module and Admin module. The main purpose
of this app is to provide students the details of the things they need to do in the first week of their
school (list of to-do’s) and the list of events around university.

Explanation of the Modules:

Admin Module:

Admin has a special username and password. He can enter to-do list, event list, approve events
added by student, see the student list.

User/Student Module:

Students can see the to-do and events list added by the Admin and they can also add new events

which needs to be approved.
6.1 Basic Implementation

This project has been implemented in 3 main portions. There is a controller, which are the .java
files which handles all the requests, which it receives from the .jsp files. We have DAO’s
controllers which are again .java files. They have all the queries which are required to interact with
the database. The DAO classes send back model classes to the Controller class in order to be sent
to the view layer. Then we have .jsp pages, which send requests to perform certain functionalities.
They also contain the HTML code, to provide application view to the user.

6.1.1 Student Module

Below is the first screen which is displayed on running the application. This is a basic HTML

page and is displayed for just few seconds before it is redirected to registration page.

26

Figure 6.1 Home Page
Registration page in the page from where the actual project flows. Admin can directly login

from here using predefined username and password and role as ADMIN. Students who are
new should register before being able to use this app. As this application is restricted to the
K-State students, if student provides any other email id, except with @ksu.edu extension, it

will show error. In the picture 6.2, | tried entering a Gmail id and gives an error.

localhost:308

WAiﬁamika

f nupur.anamik564@gmail.cor.

7857706101

REGISTER

Figure 6.2 Registration page when provided wrong password

27

Once we enter a valid K-State email id, as in figure 6.3 it allows student to register and gives a

message “you have been registered”, as in figure 6.4.

Sign Up Log In

Sign Up for Free

Anamika \ 2 v

anamika@ksu.edu|

7857706101 |

REGISTER

Figure 6.3 Registering with KSU email id

IS A ITNSAS ST AT

wv» NE) A" 4 = | = < e —— g

e

Sign Up Log In

Sign Up for Free

Figure 6.4 Registration page shows message “registered”
At this point the student has just registered but has not verified his email and if he tries to login,

it will throw an error as in Figure 6.6. Only after the student confirms that he indeed is a K-

28

State student, he is allowed to access the app. Figure 6.5 is the snapshot of the database below

verifying the email id. It shows user “Anamika” is still inactive.

userName emailid password role phanena status
admin admin@gmail com XHGwEBkrTal SpOlgfUlg== ADMIN 5655665552 Active
Anamika anamika@ksu edu SHLwWDwINGY A= STUDENT 7857706101 Inactive
Shravan shravandgiks u. edu qras6UDe|Rs= STUDENT 2485642345 Active
Prathap prathapd3gi@gmail com bAWE4BXVE|jD= STUDENT T30682757T8 Active

Figure 6.5 User inactive in registration table

[Apache Tomcat/7.027 -« X ' b, localhost / localhost /fai X ' 4l localhost / localhost/lat X)/ [} CampusBuddy x \ [Mail - anamika@ksu.edu X i

& C | ® localhost:308

Sign Up

Figure 6.6 Trying to login without verification

As, the next process we send a mail to the student KSU email id, from a random email id which
| created just for this purpose which some special conditions. The email is generally in the junk
folder in the KSU email as university email has certain filters for external mails. The mail

looks something like below, with a link. Once the link is clicked, the user is activated.

29

i Office 365

Se

earch Mail and People ,O

© Folders
A Favorites
Inbox 365
Clutter
Sent Itemns
Drafts 1

~ Anamika Nupur Choudha

Inbox 365
Clutter

Drafts 1
Sent ltems
Deleted [tems 8

Outlook

@ New|v [Delete

Junk Email Filter v

Next: No events for the next two m Agenda

techfortdummy@g...
Email From US 212AM

http://localhost:8085/CampusBuddy/activ...
VYesterday

K-State Athletics

Daon't Miss Qut - Less Than 1 Tue 817 AM
Use this link to view this message in a we..
Monday

K-State Athletics

Your Weekly K-State Ticket { Mon 3:06 PM
Use this link to view this message in a we...

& Archive Notjunk|v Block

KaANSAS STATE

UNIVERSITY.

Move to v

Email From US

techfortdummy@gmail.com
Today, 212 AM

Anamika Nupur Choudhary ¥

Categories v

This message was identified as spam. We'll delete it after 30 days. It's not spam

This item will expire in 30 days. To keep this item longer, apply a different label.

Label: Junk Email (1 month) Expires: 5/5/2017 2:17 ALt

Figure 6.7 Verification code sent to KSU email id

w9 Replyall |v

//localhost:8085/CampusBuddy/activeUser.do?UserName=Anamika >

At this point, the user is activated and the database will look something like figure 6.8 and it

will give a message on the registration page as the user is activated, as in figure 6.9.

userMame emailid
admin admin@gmail. com
Anamika anamik a@ksuw. edu
Shravan shravandgi@kzu edu
Prathap

password

X+1GWEBkiTa)JSpQIgfUlg==
SHLWDWINGYA=
Qr956UDejRs=

prathap93gi@gmall.com bAWE4bLXVE|D=

role
ADMIN

STUDENT
STUDENT
STUDENT

phonenc
BBho6R5052

7857706101
2486642345
7306827578

Figure 6.8 Status updated to “Active” in registration table

30

status
Active

Active
Active
Active

Sign Up Log In

Sign Up for Free

Figure 6.9 Message shown after verification of email
Once the student logins with his login and password, the gets access to the application home

[Apache Tomeat/7.027 - X (i, localhost /localhost /1= X | i localhost /localhost /1= % / [3 University X\ [Mail - shravandg@ksu.e X - X
& C | ® localhost:308 f% O

WS A T NSNS AS S E A" 5

| & NE B 7 = = = |

)
oD ® UserAccount
To-Do List
Events List

e
H Add New Events

Logout o

1:01 AM
4/5/2017

A~z o) B

Figure 6.10 Students home page

31

The first tab UserAccount, gives the account details of the user/student. It is all the data of the

student which stored in database are reflected.

[} Apache Tomeat/7.027 - | X ' /i localhost/ localhost / lat X ' i localhost / localhost/ 1 X /' [University x B Mail - shravandg@ksu.er X - X

&« C | ® localhost:8085/CampusBuddy/validateUser.do TH|O i

WS A TS5 S AT B

ww I~ u " 4 == — E —— u

~N
&b o] UserAccount

.(JME Events List e Anamika

-

Email ID anamika@ksu.edu

E:é Add New Events Role STUDENT
Phone No# 7857706101
P Seard do

Figure 6.11 Student account info

userName emailid password role phoneno status

J X admin admin@gmail.com X+HGWEBKrTaJJSpQISfUJg== ADMIN 5655665552 Active
2 X Anamika anamika@ksu edu GYnzcjdBwxlsxBJEPSpTBg== STUDENT 7857706101 Active
& X sravan shravandg@ksuedu b4WE4AbXVB|0= STUDENT 7306827578 Active
X Prathap prathap93g@gmail com b4WE4bXVBJ0= STUDENT 73068275768 Active

Figure 6.12 Student details which are stored in registration table

The second tab To-Do List will give the user the list of to-do’s the should finish. It will in turn
have the 2 separate blocks. Completed and To-Do’s list. In the first tab there will be all the To-
Do’s student has already finished and the To-Do’s tab will have to-do which they still have to

finish.

32

[Apache Tomcat/7.027 - - X {4, localhost/ localhost /lai X '{ 4 localhost / localhost / la X/ [} University %\ [Mail - shravandg@ksuc: X - X

& @ | @ localhost:8085/CampusBuddy/validateUser.do PO

N/
IS A TTSS AS S A »
| N = — = | | . o (

Completed List
UserAccount

To-Do List

Figure 6.13 Student To-Do page
Once the student selects the To-Do’s tab, all the to-do’s added by the Admin are displayed. Each

to-do is in a sequential order when selected displays all the details associated with it. It will only
display the to-do which are not already completed by the student. When student selects To-Do tab
all the other tabs are blocked, so that even if they are selected they do not perform any specific

functionality.

WS AT~ A= B S m - AA"m Em—

ww ~a | " = — L —— | |

Completed List

~N
s> UserAccount

Collect ID card

Open Commerce Bank Account

Check-In at grad scheol

PONIG I - Events List
N

. -

H Add New Events

Figure 6.14 Student To-Do’s not completed

33

In the above picture if we select any of the to-do, it will display the all the details and the map

location as in figure. It will also have two checkboxes where we select completed or not completed.

[Apache X { 4 localho: % ' 4k localho: X /' [Univers x '\ ¥ 39115 x { [Mail-= x ([} Campu: X { M Todos,« X { [Campu x { ¥ Fiedler % @) Latitud: x - X

< C | @ localhost:8085/CampusBuddy/studentTodoDetails.do?toDold=9 O

ToDo Id 9
UserAccount

ToDo Name Collect ID card

Description Description: Collect your ID card from the Student Union. You should pay $20 for take your ID card. Address: K-State ID center, Union ground

To-Do List floor, Student Union, 318 N 17th S, Manhattan, KS 66506. Documents to Carry- Passport, 120 and $20

Location nhitp:/maps.google.com/?q=39.188215,-96.582538

Events List Contact Person to Contact: Rhonda McCabe, Email ID: wildcatcard@k-state edu, Contact: 785-532-6399

Completed Not Completed

Add New Events

Figure 6.15 Student To-Do’s details
The map location when selected open the google map location

[Apach X (4 localh X . localh X ([} Unive x / B®39°17 x \ ¥ 3911 x ([P Mail- x ([} Camp X (M Todos X { [} Camp X x 5= =] X

C | & Secure | https://www.google.com/ma 7.6"N+96°34'57. 7.172/data=13m114b114m5!3m4!1s0x0:0x0!8m2!3c¢ *%| O
Rathbone Hall
= 39.188215,96.582538 « o e
(=) (D Hale Library ©
O College of Engineering Einstein Bros. Bagels () Justin Hall
Seaton Hall
Lovers Ln
'
=
39°11'17.6"N 96°34'57.1"W 2).
39.188215,-06.582538 2 -
KSStalElCrossElt Bosco Student Plaza) 2
; Anderson Hall &)
* ® o < s,
SAVE NEARBY SEND TO YOUR SHARE
PHONE q |
Q. 4dda missing place = 5
™ Addalabel @ East Memorial =
Stadium
The Purple © McCain Alditorium
Masque Theatre K-state L
Alumni
hesoclaticl ;‘ Nichols Hall Marianna Kistler
= = Beach Museum of Art ®
Stlsidore Catholic gy x 2
nt Center T

Figure 6.16 Map location

34

Once the student checks the completed tab, it moves to completed list and even the database is

updated as completed as shown in 6.17.

~N Completed List
s> UserAccount

Checkin to International student

- center
& To-Do List
Q Collect ID card

=
.(‘JM ¥ Events List

N

Open Commerce Bank Account

E:é Check-In at grad school
Add New Events

L Logout
D

Figure 6.17 To-Do moved to Completed list
Once the to-do is moved to completed list we can no longer see the checkboxes. It is just

there for reference.

OAx (glex {(hlex/ Aux\B3x (B3x (AN X (DX (MEX{ACX{BFX{(@LXY{GhX Jix s X X {®ax - X
&« C | © localhost:8085/CampusBuddy/studentTodoCompleteDetails.do?toDold=9 w0

_/
TS A TS S AS ST AT B »
I~ | | "V 4 = | = E—— | | w ST (

ToDo Id 9
UserAccount

ToDo Name Collect ID card

Description Description: Collect your ID card from the Student Union. You should pay $20 for take your ID card. Address: K-State ID center, Union ground

g T2po U floor, Student Union, 918 N 17th S, Manhattan, KS 66506. Documents to Carry: Passport, 120 and $20
N,
o

Location hitp:#/maps.google.com/?q=39.188215.-96.582538

Events List Contact Person to Contact: Rhonda McCabe, Email ID: wildcatcard@k-state.edu. Contact: 785-532-6399

Figure 6.18 To-Do page with no option to select completed or not completed after moving
to-do to the completed list

35

The event list when selected shows the events which are added by the admin. It is similar to the

to-do list.

O Ax (ahlex (ahlex /AUx (B3 x (B3x (Bvx ({OCx (MTx(OCx (BFx{(@Lx{Ghx ji x s x jix (2 x - X

€ S5 C | ® localhost:8085/CampusBuddy/validateUser.do w 0O

WS A TS AS S m A" B

v ~a u g | —= | = 4 E — 4

e UserAccount Ice cream social

Cyber Security Workshop

<<7§t To-Do List

(PG E Events List
N

U]

H Add New Events

Figure 6.19 Events list
Each event when opened, will have 2 checked boxes which takes input from the student on if

they are interested or not. Also, it will give the number of students interested in the event which

will help the students take decision if they going for the event and they are not alone.

WS AT IS AS ESm A"m " u
| B~ | | Y 4 | — | =4 b —— | |

Event Id 15
UserAccount

Event Name Ice cream social

g Description Grad an icecream

Q To-Do List

Location hitp://maps.google.com/?q=-96.580716,39.187808

:‘?ﬁ} Events List Contact Anamika, 7857706101, anamika@ksu.edu

Nt

Interested People Count 0

e .
H Add New Events Interested Not Interested

Figure 6.20 Event details

36

Now if the student selects interested, the interested people count will increase and the

database Eventsint is updated.

id eventid userName status
g X 1 16 Anamika Interested

Figure 6.21 Status after student selects interested for an event

TS A ITNSAS ST AT 3=

wvpr L | | A" 4 | =3 | =< ——— Jul o T .

L) Event Id 15
“‘3) UserAccount
Event Name Ice cream social
‘g . Description Grad an icecream
Q To-Do List
Location hitp://maps.google.com/?g=-96.580716,39.187808
Contact Anamika, 7857706101, anamika@ksu.edu

Events List

Interested People Count >

—
H Add New Events
" Logout

Figure 6.22 Interested people count increases
Students can also new events which they know of. They just have to enter all the details like

latitude and longitude location of the place where the event is scheduled and save it. The

event added by student is added in sevents table.

37

[Apache Tomeat/T.C X ' i localhost /localhe: % {44, localhest /localho X)/ [University x '\ [P Mail - shravandge x | €™ Cyber Security We: X { [1 WiliamH.Hsu % - X

<« C | ® localhost:8085/CampusBuddy/todocheck.do?todoid=28&checkedvalue=Completed w0

WS A TS S S m A" mE=—

L B~ u a4 | —= — E —— m - T

UserAccount
Cyber Security Workshop

Join us for a two-day seminar July 13 and 14 on

this critically important topic. This workshop is
To-Do List =

Events List

‘William Hsu,Professor, Department of Computer Scien

Save Clear

Add New Events

»
_ 1:08 AM
N~ OB g

Figure 6.23 Student adds new events

studenteventld studenteventName studenteventdesc studentlangitude studentlatitude studentcontactPerson

18 lcecreamsocial Grad anicecream 39.187808 96580716 Anamika, 7857706101, anamika@ksu edu

Figure 6.24 Event added in sevents table
6.1.2 Admin Module

The first index page is the same for both student and Admin. Then the admin logins into his

account. There is not registration required for him. The first page of the admin is as below.

38

[} ApacheTor X (/i locathost/! X (i locathost/| X \ [CampusBuc X { [H Mail-shrav X / [3 University X \ M Email From X

& C | ® localhost:80

[CampusBuc X | ¥ Fiedler Hall X s X

WS AT T S AS S AT =5
| — | = 4 —— | | w S, ey

Welcome Wildcats! New to K-State? No worries! Here is your "Campus Buddy", your first buddy at K- State. | will help you with everything you

need to begin with your semester. | will be with you for the rest of your stay at K-State assisting you with various events happening around the

»»»»»»» Mawiil lnare An an Aand ranintar da nat ctaddad Unuin A nrantvnar aé I/ Cintal WAk hard nlav hardl ON CATCIE v
»

1:39AM

E 4/5/2017

Figure 6.25 Admin home page
The admin and see the student list. It will show all the students who have registered, with all

their details which they gave while registration.

OAax (X (shlex/ Dux (B3x (BI3x (ANX(DCXx(Mix (Ocx (BFx{(@Lx{Ghx

< C | ® localhost:8085/CampusBuddy/validateUser.do

L - ~a | 5

UserName Role Emailld Phone
Account Info No#
‘ Anamika STUDENT ‘ anamika@ksu.edu ‘ 7857706101 |
> ‘ Shravan STUDENT ‘ shravandg@ksu.edu ‘ 2486642345
P 4 Students List
L] - ‘ Prathap ‘ STUDENT ‘ prathap93g@gmail.com ‘ 7306827578 |

To-Do List

PLINIG E Events List

By —

Add Requests.

Figure 6.26 Students list

39

When the Admin selects To-Do List, he can see all the to-do’s already added by him like in

figure 6.26. He can also add a new to-do, update previous to-do list or delete them.

Prvx (Bex (MiXx(Ox (BFX(@Lx{Ghx jo X s X X (2 x - X

WS AT IS AS EBSwmAa -

L I~ u " & = — —— u L ™™

g:i“ ToDold| ToDoName| Description Longitude Latitude Contact Person
Checkin to “fou should check-in at the International Student Center(ISC). 1SC will provide you any detais you § y . .
8 International may need. Address: Infernational Student & Scholar Services, 104 Infernational Student Center, -96.584725 | 39.197444 s:;e’éi:l‘e‘g EI:::EL ;?3:25”
student center| Manhattan, KS 66506, Documents to Carry: Passport, 120, 194
Description: Collect your 1D card from the Student Union. You should pay $20 for take your ID card. Person to Contact: Rhonda
9 Collect ID card| Address: K-State ID center, Union ground floor, Student Union, 918 N 17th 5, Manhattan, KS 66506. -96.582538 | 39.188215 |McCabe, Email ID: wildc atcard@k-|
Documents to Carry: Passport, 120 and $20 state.edu, Contact: 785-532-6399

Person to Contact: Carrie Rowe,
Open Description: Open commerce bank account. You wil pay your pay or receive credit using commerce Email 1D

10 Commerce bank checking account. Address: Commerce Bank, Union ground fioor, 818 N 17th S1, Kansas State | -96.582538 | 39188215 | 0w oo apank com
Bank Account Student Union Manhattan, KS 68506. Documents to Carry: Passport, 120, Student D, 1-94 G T T T

Description: Submit all your certficates, including Undergrad transcripts and final degree cartificate.
Cheek-In at They will take your cerficates and take printouts and mail you back to collect them. Please make 39187508 | .96 sa0715| PErson 1o Contact: Annie (anyone
grad school sure you collect them back once you receive your certificates. Address: 103 Fairchid Hal avaiabie)

Manhattan, KS 66506. Documents to Carry: Passport, 120, Student ID, -84, Allranscripts

TR 0000

Google Chrom, v

Figure 6.27 Admin side To-Do page
When the Admin selects New, he can enter new to-do as shown in picture 6.27 and save it.

While adding the Admin can add as much description as possible, with the location’s latitude
and longitude. He can also provide the contact information of the person responsible for

handling the to-do. It is updated in todo table.

40

B Ax {alox (ailex /MUx (B¥3x (B¥3x ((AMX(BCx (Mix(DCx (BPFx(@Lx{Ghx jo X s X X (2 x - X

& C | ® localhost:8085/CampusBuddy/todoCpen.do Q¥ O

Figure 6.28 Admin adds new To-Do

todoid foname description langitude latitude contact
8 Checkinto Intenational student ~ You should check-in at the Intemational Student 96584725 39.197444 Stacey Bailey, Contact: 785-532-6448, Emall ID:
center C... ...

9 Collect ID card Description: Collect your ID card from the -96.562538 39188215 Person fo Contact: Rhonda McCabe, Email ID:
Student... widca...

10° Open Commerce Bank Account Description: Open commerce bank account. You -96.582538 39.188215 Person to Contact: Carie Rowe, Email ID:
wll . carerr..

11 Check-n at grad school Description: Submit all your certificates, includi.. ~ 39.187808 -96.580716 Person fo Contact: Annie (anyone available)

Figure 6.29 To-Do added in todo table
After selecting the Events List, Admin can see previous events he added, update and delete

them. He can add new events as well. It will give the Admin a new space to add them as in

picture 6.30.

41

[} Apach X { 4k localh X ' 4 localh X / [Unive x \ 2 39711 x | B¥ 3911

x BB Mail- x

[Camp % ' M Todos

[Camp x

B® Fiedle X

Latitue X -

& C | @ localhost:8085/CampusBuddy/eventAccept.do?eventld=18

WS AT NS AS S A1 5=

wvpw I~ | " 4 | — | = 4 L ——

- Tw

Check Box Eventid EventName Description Longitude Latitude Contact Person
Account Info
15 Ice cream social Grad an icecream 39.187808 | -96.580716 | Anamika, 7857706101, anamika@ksu.edu
Students List
Update Delete

To-Do List

Events List

Add Requests

Figure 6.30 Admin events page

[Apache Tomeat/7.C X { 4 localhiost/ localhe: X {4 localhost/ legalhe: X /' [University

&« C | ® localhost:8085/CampusBuddy/todocheck.do?todoid=2&checkedvalue=Completed

UserAccount

To-Do List

Events List

Add New Events

x { [J7 Mail - shravandg

x

€ Cyber Security We

% [4 WiliamH.Hsu X -

Join us for a two-day seminar July 13 and 14 on
this critically important topic. This workshop is

William Hsu,Professor, Depariment of Computer Scien

Clear

Figure 6.31 Admin adds new event

42

When a student adds an event, it is not directly added to the main events page, it is rather added
to sevents page. Only after admin accepts it, the event is added to the events page. When the
admin clicks Add Requests, he can see all the events student added and he can accept and

reject it.

[y Apach X { b localh X ' 4 localh X / [Unive x 2¥ 39711 x (B¥39°11 x BH Mail- x { [} Camp X { M Todos X { [} Camp X { PF Fiedle X { @ Latitue X - X

dateUser.do FXO

& C | ® localhost:8085/CampusBuddyy

Check Box Seventld SeventName Description Longitude Latitude Contact Person

)
& (B Account Info

18 Ice cream social Grad an icecream -96.580716 39.187808 Anamika, 7857706101, anamika@ksu.edu

:"? Students List
- A

To-Do List

&
<7
Events List
N

Figure 6.32 Admin accept or rejects student event add request
The logout just logs out the Admin from this page and redirects him to registration page.

43

Chapter 7 - Database Design

Designing a well laid database is as important as designing the frontend. A good database design
is helpful in many ways. The main concept of designing a database is to arrange the required
information into tables and these tables are then normalized.

Few advantages of having a good database design is

=» Eliminating redundant data. E.g., we cannot have same user multiple times in the database.
It also saves space.

Database access becomes really as data is well arranged.

Increased performance.

Maintains data accuracy and integrity.

L I I

More secure.
7.1 Database Tables
In this project, | have used 6 tables to store various details.

1) registration table: This tables stores the details of user and admin which they insert while

registration.

userName emailid password role phoneno status
S X admin admin@gmail.com X+HGwEBkr7alJ5pQISfUJg== ADMIN 5655665552 Active
S X Pnamika anamika@ksu.edu GInzcjdBwxlsxBJEPBpTBg== STUDENT 7657706101 Active
g X snavan shravandg@ksu.edu b4WE4bXVB|0= STUDENT 7306827578 Active
S X Prathap prathap93g@gmail.com b4WE4bXVB]0= STUDENT 7306827578 Active

Figure 7.1 registration table
The password in this field in stored in an encrypted format. The main purpose of encryption here

is to make sure that even if some external resource gets access of the database, he cannot see the

actual password of the user. Also as any number of students can use this application, there can be

44

multiple student account. Also the verification link is sent to the mail id the student provided
while registration. The data for the login page is also extracted from this page and matched.
2) events table: This table stores all the event details the admin enters for his end. It provides

eventname, description and the location using latitude and longitude.

eventid ~ eventname (escription langitude ~ latitude contact
15 lce cream social (Grad an icecream 36580716 39167606 Anamika, 7857706101, anamika@ksu edu

16 Cyber Securty Warkshop This warkshop provides an opportuny to share ide... -36.581025 39188651 Amy Jackson, 81234321, amy@ksu edu

Figure 7.2 events table
3) eventsint table: This is the events interested table. It stores details of the students who are

interested in a particular event. This table is joined to the events tables with the id. It gives
information if the student is interested in any particular event or not.

id eventid userName status
Fg X 1 16 Anamika Interested

Figure 7.3 eventsint table
4) sevents table: This is the student’s events table. All the events student inserts from his home

page are added to this table. Once the admin approves this request the event is added to the

main events table.

studenteventld studenteventName studenteventdesc studentlangifude - studentlatitude studentcontactPerson
16 lcecream social Grad an icecream 39187608 90580716 Anamika, 7857706101, anamika(@ksu.edu

Figure 7.4 sevents table
5) todo table: This table has the to-do list stored with the description, longitude, latitude and

contact information. This basically has all the to-do’s which are and which are not completed

by the students.

45

todoid toname description langitude latitude contact
§ Checkinto Intemational student ~ You should check-in at the Infemational Student 96584725 39.197444 Stacey Balley, Contact: 785-532-5448, Emall ID:

center C... .
9 Collect ID card Description: Collect your 1D card from the 96582538 39.188215 Person to Contact: Rhonda McCabe, Email D:
Student.. widca...
10" Open Commerce Bank Account Description: Open commerce bank account. You ~ -96.582538 39.188215 Person to Contact: Carie Rowe, Email I0:
wl.. carie...
11 Check-n at grad school Description: Submit all your certificates, includi.. ~ 39.187808 -96.580716 Person to Contact: Annie (anyone available)

Figure 7.5 todo table
6) todocomp table: This table is joined to todo table by the todo id and username from

registration table. It has information about which student has finished which to-do. All the to-

do’s completed and the to-do pending are shown as two separate tables to the user.

userName todoid status
& ¥ Prathap 2 Not Completed
& ¥ Anamika 2 Completed
G ¥ Anamika 8 Completed

Figure 7.6 todocomp table
7.2 ER Diagram

Entity Relation diagram, gives the relation between various entities, in short relationship between
various tables in the database. Is shows that how every tables in maintained in the database and
how are related to each other.

In this project, registration, events and todo tables are independent. But eventsint table has eventid
as well as student name associated with the status to the event he added (i.e., whether it is interested
or not). Todocomp table has student name from registration table and todo id from todo table
associated with it along with status (i.e., whether it is completed or not). sevents table has the

details of the events provided by the students.

46

password

0

registration

o

phoneno

ey

description
gveniname

gvents

+

o

todo

longitude

terestedevents

O

eventsint

©
(>

isaddedto

Figure 7.7 ER diagram

47

complete

description

sevents

studentlatitide

studentlongitude

fodocomp

Chapter 8 - Testing

Code is written and developed by a human. Anything which is man-made is prone to errors. Not
all errors are harmful for your application, but, few are. So we should make sure that the application
has no scope for errors. To make sure the app is clean, we need to test our code while and after
development. Testing makes sure that the application is clean. There are many testing levels

available at different levels.
8.1 Testing Levels

Unit Testing: It is testing individual units of the code. This testing is usually done at developer
end and it done while developing the code. At this stage, testing is done at individual code level,
in isolation to other parts of the program. In this project at each level unit testing is performed to
make sure they work as expected.

Integration Testing: After unit testing, we perform integration testing where we try integrate
individual units together. There are situations when individual units may work as expected but
when we combine these units they may fail. Hence, we should make sure integrated units works
fine and produce the desired result.

System Testing: After all the integration testing is done, we check if the whole integrated system
meets all the requirements.

Regression Testing: Regression testing helps developer to find the problems which he encounters
after he fixes certain bugs, or by changing the environment. Hence every time we change anything
in the code, we should make sure we check the whole system again.

Acceptance Testing: This testing is conducted to check if the output/result obtained from the code

is as excepted and match the business requirements. In short, if it should be accepted.

48

Load Testing: Load testing is the process in which we make the system work to its maximum

capacity and check if it can handle the load. It helps us full capacity of our code.

Performance Testing: Performance testing is the process where we check the performance of the

system under a particular workload and check for the performance of the system.

UNIT TESTING

INTEGRATION

TESTING

SYSTEM TESTING

ACCEPTANCE

TESTING

Figure 8.1 Testing Levels
8.2 Tests performed on student/user module

K-State email id with @ksu.edu
domain

successful

MODULE TEST CASE EXPECTED RESULT TEST
RESULT
User/Student | Provide any other email id except | Throws error and registration not | PASS

49

User/Student | Provide valid KSU email id with | User successfully registered PASS
@ksu.edu domain message and is stored in
registration table but with status
inactive .
User/Student User tries to login before Throws error and is not allowed | PASS
activating or verifying the email. to login
User/Student After registration student gets Email received to student KSU PASS
mail for verifying his account email id
User/Student Student clicks the link provided It will activate user and on the PASS
for verification registration page, it shows
student activated.

PASS

User/Student Student login after account Student is allowed to login after
verification. he verifies his account

PASS

User/Student Student enters wrong username User login unsuccessful
and password

PASS

User/Student Student enters correct username User login unsuccessful
and password but enters the role
as Admin

PASS

User/Student Student redirected to student User can view his home page
homepage after login

PASS

User/Student Student clicks on UserAccount | User can see all the details

button

he/she entered while registration.

50

PASS

User/Student | New student clicks on Completed It should be empty.
List
PASS
User/Student Student clicks on To-Do button | User can see two tabs Completed
List and To-Do’s.
PASS
User/Student New student clicks on To-Do’s | Student is able to see the To-Do
button list
PASS
User/Student Student clicks on one of the To- Displays all the information
Do’s related to the To-Do
PASS
User/Student Student clicks the map link Takes the user to google maps
provided for the To-Do. page.
PASS
User/Student | Every To-Do in the To-Do’s tab Displays the completed or not
is provided completed or not completed checkbox along with
completed checkbox To-Do description.
PASS
User/Student Students selects completed To-Do moved to completed list
checkbox. and also updated in the database
PASS
User/Student Returning student clicks on Displays the To-Do marked as
Completed List button completed by the user
previously.
PASS
User/Student Student clicks on Events List Displays all events in DB.

button

51

Displays the details related to the PASS
User/Student Student clicks on any event. event along with interested and
not interested checkbox.
PASS
User/Student | Student selects on interested/not Updates database accordingly.
interested checkbox.
PASS
User/Student | Student clicks Add Events button | Provides user a form to enter all
the events details along with
latitude and longitude.
PASS
User/Student | Student clicks Add Events button | Provides user a form to enter all
the events details along with
latitude and longitude.
PASS
User/Student | Student clicks clear button before | Event not saved in the sevents
saving on the vents page. database
PASS
User/Student Students hits save after entering Student event saved in sevents
events details. table, but not updated in main
events table.
PASS
User/Student Student clicks Logout User is logged out of the app.

Table 8-1 Testing on Student Module

52

8.3 Tests performed on Admin module

MODULE TEST CASE EXPECTED RESULT TEST
RESULT
Admin Admin provides wrong username | Admin login unsuccessful and | PASS
and password for login throws an error message
Admin Admin enters correct username Admin login unsuccessful PASS
and password but enters the role
as Student
Admin Admin enters correct username Admin login successful PASS
and password
Admin Admin redirected to admin Admin can view his home page PASS
homepage after login
PASS
Admin Admin clicks on AccountDeatils Admin can see all his details.
button
PASS
Admin Admin clicks on StudentsL.ist Displayed students list
button
PASS
Admin Admin clicks on To-Do List Admin is redirected to To-Do
button page and displays all the To-Do
previously added(in any)
PASS

53

Admin

Admin clicks on Add button in
the To-Do page

Open a new To-Do form for
Admin to add details

Admin Admin clicks save button on the To-Do is added to todo table PASS
form
Admin Admin selects previous added To- | Admin can edit details of the To- PASS
Do check box and click update Do selected.
Admin Admin selects previous added To- To-Do is deleted. PASS
Do check box and click delete
PASS
Admin Admin clicks on Event List Admin is redirected to Event
button page and displays all the events
previously added(in any)
Admin Admin clicks on Add button in Open a new form to enter event PASS
the event page details

Admin clicks save button on the
Admin form Event is added to events table PASS
Admin Admin selects previous events Admin can edit details of the PASS

check box on the events page and Event selected.

click update

Admin Admin selects previous events Event is deleted. PASS

check box on the events page and

click delete
PASS

Admin Admin clicks Add Events Button | Displays all events added by the

students

54

PASS
Admin Admin selects any particular Event is added to events table
event and clicks Accept
Admin Admin selects any particular Event is rejected. PASS
event and clicks Reject
PASS
Admin Admin clicks Logout Admin is logged out of the app.

Table 8-2 Testing on Admin Module

8.4 Performance Testing

Performance testing is performed to determine the speed or effectiveness of an application.

It involves many quantitative tests for calculating response time or number of millions of

instructions per second at which the system functions. This testing is useful because when we

deliver the final product, we should make sure the app if available to any number of users and does

not just stop working when there is heavy load. Hence, we need to make sure it does function for

different sets of users. To perform this testing, | used JMeter, which is one of the tools available

to check the performance of web applications. As, this application is running on local host and can

just see the performance of database and how it is able to handle multiple users. The table 8.3

shows the throughput and average response time for a set of users and loop count.

Number of Ramp-Up | Loop Avg Response | Throughput
Users(Threads) Period Count | Time
Observation1 | 500 10 1000 2.47 sec 2918 res/min
Observation 2 | 1000 10 1000 2.40 sec 5736 res/min

55

Observation 3 | 1500 10 1000 2.25 sec 8314 res/min

Table 8-3 Performance Observation
Chapter 9 - Security

Security is the process of securing app from all the threats. Security is really important for any
application, but most importantly in web applications as they run on external networks. If the data
IS not secure, it can pose serious security threats to your application. With so any options available
online, hacking into any application is really simple, and can expose all your private information
to the hacker. He can use your confidential information and play around with the database. For a
secure application, we need follow 4 important principles. Confidentiality, Integrity, Availability
and Nonrepudiation. In this app (Campus Buddy), hacker can get Admin details and update the to-
do and event location to some fake location and confuse other students. To make sure these things
never happen, | have provided basic security features to my app.
Below are some basic validation applied to this code.
Password encryption in the database (Confidentiality)
All the passwords in the database are encrypted. We use DES algorithm for encryption. It main
purpose of password encryption is that people who have access to the database cannot see user
password and misuse it. So it is always advised to encrypt the password in the database.
Apart from these there can be other security features which are useful for any web application
Email verification
To make sure we do not receive any malicious data from random users, this app is restricted to K-
State students with valid K-State email id (@ksu.edu). Also, student should verify his email
through the verification link which is sent to his KSU email id.

A separate user and Admin (Integrity)

56

To make sure no data is modified, we just have one admin who is capable of access, deleting,
adding and updating information. This makes sure data is not changed by any other user.
Providing secure password for each user (Availability and Nonrepudiation)
To provide independent access to each student, every student should have a unique username and
password, which he can use for while logging into this app. It makes the app available for a genuine
user.
Apart from these security features there are other security threats which you should make sure is
handled by your system.
9.1 Security issues in web application and their handling methods

SQL Injection
It allows a hacker to get crucial data from the server’s database. SQL Injection can get the intruder
to the application page without the need of actual id and password. He just inserts a query which
is always true in place of actual username and password fields and it gives him access to admin
home page, where he can modify data.
Example query: "SELECT * FROM tablename WHERE username ="' or '1=1";
The above query is always true.
Countermeasures for the above problem:
= By making sure, user has not been provided all the privileges and has only limited

permissions.
= By using PreparedStatement in the database connection. It will prevent injection attacks.

Username Enumeration

57

This kind of attack happens, when the entered input is wrong and the intruder keeps guessing the

input unless he gets the actual one. It happens when admin or the user use basic, simple and

common username and password like admin/admin or repetitive numbers like 123456 as password.

Countermeasures for the above problem:

>

>

>

>

Creating strong password.
Not allowing same username and password.
Not allowing user name as password.

Not allowing continuous numbers like 123 or repetitive numbers like 222 in the password.

Redirecting to fishy page and tampering parameters

In this attack the intruder changes the url link internally and redirect the user to a fishy page where

user enters the information and it provides the whole information of the user to the intruder.

Countermeasures for the above problem:

>

>

Making sure that the page is secured. (https)

Using firewall.

58

Chapter 10 - Conclusion

In conclusion, | want to mention that, though K-State has various applications available to
help students with every day needs, this system would be immensely helpful for any student who
is new to K-State. The student will have all the details in one place, without having to collect the
pamphlets or to keep track of the emails. They will never be misguided by anyone and will never
miss any event or a deadline. As they are new to the place, they will also get the location map to
the events and places where they need to go to finish their mandatory to-do.

This project also avoids malicious updates by notorious students by giving all the update
permissions to the admin. Even if the student provides new event details, it should be accepted by
the admin before being added to the event list. This application also restricted to K-State students,
with a valid K-State mail id, with extension “@ksu.edu” to provide security from external
intruders.

Also, all thanks to this project, | have a very strong understanding of web applications. |
developed the whole app end-to-end, using AngularJS (used for verification and validation),
HTML, CSS, JQuery (for the front-end), Spring Framework for all the development and MySQL
as the back-end database, and all these technologies are highly preferred for web development.
This project also provided me enough scope to research about the current trends in IT development,
boosting my confidence and providing enough understandability of leading trends in web

development.

59

Chapter 11 - Future Work

In this project there is lot of scope for future enhancement. The main purpose of this project
was to help students during their initial days in the school. This app probably provides all the
functionalities a student will need to complete the mandatory set of requirements before they enroll
and start their classes, but there are several ways we can enhance this application. We can
implement this project as a hybrid app, which will run on any kind of platform, just not the web.
My intention to make this app run specifically on web was to learn web technologies (Springs
framework in particular).

As part of my implement project | had similar setup using Android. We can use web
services and integrate both Android and Web app. This integration will replicate everything we do
on Android app of the web app and vice versa. We can add and view details from both Android
and web platform.

Currently, this app is restricted to only events and to-dos’ list for the students. But there
are multiple other ways this app can help them. We can add details about workshops, Club with
their locations and POC. We can integrate student syllabus, class timings, exam dates, final project
submission dates all into this app. The Ul can we further enhanced to make it look more user
friendly. We can add comments section to the student’s module, which will make this app more
dynamic. Like students can update the details of the events, if the location provided is wrong,
contact information is improper and many others. This would help other students and the admin to

get the updated information about the app.

60

Likewise, the project can be improved in various ways to provide quality information to the

students.
Bibliography

[1] Vardi, E. (n.d.). SlideShare. Retrieved on 04/03/2017 from LinkedIn:
https://www.slideshare.net/EyalV/angularjs-architecture

[2] Smith, J. (n.d.). Retrieved on 04/03/2017from http://www.informit.com:
http://www.informit.com/articles/article.aspx?p=2252414

[3] (n.d.). Retrieved on 04/03/2017 from blog.angular-university.io: http://blog.angular-
university.io/introduction-to-anqularjs-form-validation/

[4] Bernado. (n.d.). wijmo.com. Retrieved on 04/03/2017 from http://wijmo.com/blog/easy-form-
validation-in-angularjs/

[5] Ruebbelke, L. (n.d.). Retrieved on 04/03/2017 from Envato.com:
https://code.tutsplus.com/tutorials/5-awesome-angularjs-features--net-25651

[6] (n.d.). Retrieved on 04/03/2017 from www.Pluralsight.com:
https://www.pluralsight.com/blog/software-development/tutorial-angularjs-mvc-
implementation

[7] (n.d.). Retrieved on 04/03/2017 from
http://stackoverflow.com/questions/13067607/angularjs-client-mvc-pattern

[8] (n.d.). Retrieved on 04/04/2017 from www.javatpoint.com:
http://www.javatpoint.com/spring-modules

[9] (n.d.). Retrieved on 04/04/2017 from https://docs.spring.io/spring/docs/current/spring-
framework-reference/htmlsingle/#overview-getting-started-with-spring

[10] Rajput, D. (n.d.). Retrieved on on 04/04/2017 from www.dineshonjava.com:
http://www.dineshonjava.com/2012/12/spring-web-mvc-framework-chapter-38.html

61

https://www.slideshare.net/EyalV/angularjs-architecture
http://wijmo.com/blog/easy-form-validation-in-angularjs/
http://wijmo.com/blog/easy-form-validation-in-angularjs/
https://www.pluralsight.com/blog/software-development/tutorial-angularjs-mvc-implementation
https://www.pluralsight.com/blog/software-development/tutorial-angularjs-mvc-implementation

