

Campus Buddy

by

Anamika Nupur Choudhary

B. Tech., Jawaharlal Nehru Technological University, India, 2010

A REPORT

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2017

Approved by:

Major Professor

Daniel Andresen

Copyright

© Anamika Nupur Choudhary 2017.

Abstract

New to K-State??? No worries!!! This app will be your first friend and help you with

everything you may need. Every new incoming student to K-State has to do a set of mandatory

activities before they start their classes. Many times they use a pamphlet or word of mouth by

students or faculty around, on what to do and whom to visit. But, this information may not be

reliable or could have been expired/updated, and students miss on certain crucial things which

delays their work. The same follows with various events organized by the college to welcome new

students.

This app will be a solution for all these problems. It will provide students with all the details

they need before they actually become familiar with the school and even after that. Each student

gets to see the To-Do's which are a set of mandatory activities, he/she has to do before they enroll

for the classes and also, he can know about various events happening around the university.

Students can also suggest new events if they are not already updated in the events list. All these

activities are monitored and controlled by the Admin.

iv

Table of Contents

List of Figures .. vi

List of Tables ... viii

Acknowledgements .. ix

Chapter 1 - Introduction .. 1

1.1 Project Description ... 1

1.2 Motivation ... 2

1.3 Intended Users .. 3

Chapter 2 - Background and Technologies used .. 4

2.1 AngularJS .. 4

2.2 jQuery ... 9

2.3 Springs .. 10

2.4 HTML ... 13

2.5 CSS ... 14

2.6 MySQL ... 14

Chapter 3 - Related Work ... 15

3.1 Existing System .. 15

3.2 Proposed System ... 15

Chapter 4 - Requirements Analysis .. 17

4.1 Requirement Gathering ... 17

4.1.1 Functional Requirements ... 17

4.1.2 Non-functional Requirements .. 18

4.2 Requirement Specification to run the application ... 18

4.2.1 Software Requirements .. 18

4.2.2 Hardware Requirements ... 18

Chapter 5 - System Design ... 19

5.1 Class Diagram ... 19

5.2 Use case Diagram ... 22

5.2.1 Functions of Admin ... 23

v

5.2.2 Functions of student ... 24

5.3 Activity Diagram .. 24

Chapter 6 - Implementation .. 26

6.1 Basic Implementation ... 26

6.1.1 Student Module .. 26

6.1.2 Admin Module ... 38

Chapter 7 - Database Design... 44

7.1 Database Tables .. 44

7.2 ER Diagram .. 46

Chapter 8 - Testing.. 48

8.4 Performance Testing ... 55

Chapter 9 - Security .. 56

9.1 Security issues in web application and their handling methods ... 57

Chapter 10 - Conclusion ... 59

Chapter 11 - Future Work ... 60

Bibliography ... 61

vi

List of Figures

Figure 2.1 AngularJS architecture[1] (Vardi, n.d.) ... 5

Figure 2.2 AngularJS validation 1[3] (blog.angular-university.io, n.d.) .. 6

Figure 2.3 AngularJS validation 2[4] (Bernado, n.d.) .. 6

Figure 2.4 MVC Architecture ... 8

Figure 2.5 Angular MVC Architecture ... 9

Figure 2.6 Spring Framework[8] (www.javatpoint.com, n.d.) ... 10

Figure 2.7 Spring MVC .. 12

Figure 5.1 Class diagram 1 ... 20

Figure 5.2 Class diagram 2 ... 21

Figure 5.3 Use case diagram ... 23

Figure 5.4 Activity diagram .. 25

Figure 6.1 Home Page... 27

Figure 6.2 Registration page when provided wrong password ... 27

Figure 6.3 Registering with KSU email id.. 28

Figure 6.4 Registration page shows message “registered” ... 28

Figure 6.5 User inactive in registration table .. 29

Figure 6.6 Trying to login without verification .. 29

Figure 6.7 Verification code sent to KSU email id ... 30

Figure 6.8 Status updated to “Active” in registration table .. 30

Figure 6.9 Message shown after verification of email .. 31

Figure 6.10 Students home page ... 31

Figure 6.11 Student account info .. 32

Figure 6.12 Student details which are stored in registration table .. 32

Figure 6.13 Student To-Do page ... 33

Figure 6.14 Student To-Do’s not completed... 33

Figure 6.15 Student To-Do’s details ... 34

Figure 6.16 Map location .. 34

Figure 6.17 To-Do moved to Completed list .. 35

vii

Figure 6.18 To-Do page with no option to select completed or not completed after moving to-do

to the completed list .. 35

Figure 6.19 Events list .. 36

Figure 6.20 Event details .. 36

Figure 6.21 Status after student selects interested for an event .. 37

Figure 6.22 Interested people count increases .. 37

Figure 6.23 Student adds new events .. 38

Figure 6.24 Event added in sevents table.. 38

Figure 6.25 Admin home page.. 39

Figure 6.26 Students list ... 39

Figure 6.27 Admin side To-Do page .. 40

Figure 6.28 Admin adds new To-Do .. 41

Figure 6.29 To-Do added in todo table ... 41

Figure 6.30 Admin events page .. 42

Figure 6.31 Admin adds new event .. 42

Figure 6.32 Admin accept or rejects student event add request ... 43

Figure 7.1 registration table .. 44

Figure 7.2 events table .. 45

Figure 7.3 eventsint table .. 45

Figure 7.4 sevents table... 45

Figure 7.5 todo table ... 46

Figure 7.6 todocomp table .. 46

Figure 7.7 ER diagram .. 47

Figure 8.1 Testing Levels ... 49

viii

List of Tables

Table 8-1 Testing on Student Module .. 52

Table 8-2 Testing on Admin Module.. 55

Table 8-3 Performance Observation ... 56

ix

Acknowledgements

I would like to express my sincere gratitude to my Major Professor, Dr. Daniel Andresen

for allowing me to work on this idea, providing me constant encouragement and trusting my

abilities to complete this project on time.

 I take immense pleasure in extending my heartfelt thanks to my committee members Dr.

Mitchell Neilsen and Dr. Torben Amtoft for their encouragement and for taking the time to serve

on my committee.

I also would like to acknowledge the help and constant support provided by the academic

staff of the Department of Computing and Information Sciences, when and where it was required.

Finally, I would also like to thanks parents, siblings and friends to motived me all

throughout this project. I wouldn’t have finished this without their constant support.

1

Chapter 1 - Introduction

 1.1 Project Description

 Campus Buddy is a web application which would help K-State students, with everything

they would need before they start their classes. Currently there is no exclusive app (mobile or web)

which would help students to manage their To-Do’s for the first week check-ins. Hence, students

have a hard time trying to figure out what they should do, whom they should see for help and

which department they should visit for the check-ins. These to-dos’ can be anything from

collecting a new id card to verifying your documents at the grad school. Currently students get few

details from student center or by communicating with other fellow batch mates. But the

information they get is not always an updated one. Also, as students are new to the school they

may not know all the routes in the campus and keep roaming around which may delay their work.

Also, in the first week of school, K-State organizes many events to welcome new students. These

events can be anything like introduction session, ice-cream social, coffee hour, campus tour etc.,

For few of these events, they get email invitation from K-State, receive broachers but in most of

cases the end up going by word of mouth from other students. New students may not know the

routes to the location where the event is planned, can always miss the event invite in the huge

clutter of other ones and may lose the broachers, giving a miss to the opportunity which would be

helpful for them in the future. To avoid these problems and help students with managing all these

things this application would be really useful. It is one place where a new student can find all

necessary details. The admin updates all the events and to-dos from time to time to give exact

information to students. This app will have the location details, contact person and a map to each

place which students can use to reach the destination. There are few to-dos’ which can only be

performed once the previous once are completed. For example, student can only enroll for classes

2

after he completed certificate check. So, this app will also help students to keep track with the

sequence of to-do list. The event list will have the event date and location which can be helpful to

the students. As all these details are stored in one place, there is no chance that the student will

lose any details and miss any event. Apart from this, if a student has any information about new

event he can add it as well. He just has to provide the details of the events and the location of the

event. And once the admin approves his add request the event is added to the events list. This

functionality will be really helpful to admin as he regularly gets update about the events from the

users and this will lessen his work.

 Apart from helping new students, the main aim of this project is to help me use and learn

new technologies. For this project, I am using AngularJS, jQuery, HTML, CSS, Springs and

MySQL for the database. I did not have any prior experience working on AngularJS and Springs

previously. This project gave me enough exposure to these technologies.

 1.2 Motivation

This app was developed out of my personal experience at K-State. When I first visited the

school, I did not know any routes neither did I have any friends to help me with anything. I did not

have a registered KSU email id as well to receive any important information from the school. I

had a lot of trouble finding the routes and many times I kept roaming around the campus without

any help. I always thought if I had a friend, who knew every place and had information about every

mandatory check-in required, it would be really helpful. But then nobody would actually know all

the correct details, as to-do list always gets updated every semester and even if somebody knows

all the routes and details, it may not be updated one. Also, we do not always find people with so

much free time to accompany us. Keeping all these situations in consideration, I thought an online

3

friend would be a best bet. You can always trust this app with any details you may need about the

events or to-dos’. This app will we very useful to the students like me who are new and uninformed.

 1.3 Intended Users

College Students: Every K-State student with a registered K-State email id can access this

application. Once the student registers his account, he gets verification email to the registered K-

State email account with domain @ksu.edu. Once his account is verified he can access this app.

He can see the list of to-do’s, events and a functionality to add new events.

Admin: Admin is the sole responsible person to update data in this app. He can add, delete or

update new events and list of to-do’s. He will also have list of users of the system to keep a track

of the system. He can also approve/deny every event add request of the students after careful

consideration, and the ones approved are added automatically to the event list.

4

Chapter 2 - Background and Technologies used

Apart from helping new students, the main aim of these project was also to learn new

technologies which I am not versed with. So, I used many latest technologies in my

implementation. These technologies are used in various areas according to their necessity and

importance. The technologies I used in my implementation are AngularJS, HTML, CSS, jQuery,

and Springs and MySQL for my database implementation.

All the validations in the project use AngularJS and for the frontend design and

implementation, I used HTML, CSS, jQuery and Springs.

 2.1 AngularJS

AngularJS is a JavaScript MVC framework useful while developing single page

applications, in short to create dynamic web pages. In Angular data moves inside a single-page

application, dynamically updating the view as the data changes without the help of any specific

listener code. It is used to build complex and dynamic features quickly with simple and declarative

templates using existing components. Angular provides validation at client side rather than server

side validation and it is capable to enhancing the functionality of HTML, CSS and JavaScript.

AngularJS supports the following web model:

Server - Provides the client with a set of initial HTML data, then for future requests, it just returns

JSON data.

Client - Takes in that JSON data, and updates the HTML dynamically.

2.1.1 AngularJS architecture:

5

Figure 2.1 AngularJS architecture[1] (Vardi, n.d.)

Below is the basic architecture description:

 Angular bootstrap is created.

 A module “mymodule” is created.

 $injector is then created and configured to the module “mymodule” and then the object is

then retrieved from the injector by name.

 When $injector is done retrieving all the objects, we execute the code.

 We run compile() function when all static HTML pages are parsed into DOM and then

the link() function is run.

2.1.2 Validation using AngularJS [2] (Smith, n.d.)

Validating web pages using AngularJS would be advantageous as it provides better user

experience than a server-side validation, as it uses client-side validation and the user gets instant

feedback on how to correct the error. It monitors the input entered by the user and notifies him

about the current state of the form. Also, it keeps track of all the details such as which fields are

touched or modified in the form.

6

Few highlights of validation using AngularJS

 highlights fields in error dynamically as we type.

 provide inline messages while the user is typing in a field.

 disable the submit button until all the needed data is available and the terms and conditions

checkbox is checked.

Figure 2.2 AngularJS validation 1[3] (blog.angular-university.io, n.d.)

The image below shows the form in action, after entering some data and pressing the submit

button.

Figure 2.3 AngularJS validation 2[4] (Bernado, n.d.)

In normal JavaScript based validation page, we do not have these features. Many times we click

submit button without entering all the fields and this gives error message. In secure and critical

applications like the one used for banking, if there is an error in the page, all the fields are updated

7

and we have to redo the whole process from the beginning, wasting crucial time. Also, by

providing inline and dynamic error messages, Angular gives us the scope to update the field as we

continue to the next one without having to come back to the application and redo the whole thing.

But, this has a limitation; there is no way to inform user that password and check password should

be the same. In such cases we create our own custom validation functions using directives.

Few Angular properties:

 $pristine - No fields have been modified yet

 $dirty - One or more have been modified

 $invalid - The form content is not valid

 $valid - The form content is valid

 $submitted - The form is submitted

 ng-untouched - The field has not been touched yet

 ng-touched - The field has been touched

2.1.3 Features of AngularJS and its advantages over JavaScript[5] (Ruebbelke, n.d.)

1) Two-way data binding: It is automatic synchronization of data between your view and model.

Whenever a value in the model is updated, the view replicates it automatically and vice versa.

This feature is not available in JavaScript and hence the development becomes really fast.

2) Single page application: All the user needs are put in one page without the need to move back

and forth between different pages, which is really confusing. Instead, the content is loaded

asynchronously on the same page and just the URL is changed to reflect the selection. This

supports Routing.

8

3) Better Template: It is just plain HTML page with extra capabilities. A directive in AngularJS

makes HTML do new things, by adding new elements to it which is not possible with plain

HTML syntax.

4) Easy collaboration: Collaboration between developers become really easy as they can work

independently of developing the UI in HTML and use declarative binding syntax to bind all

the different UI components developed by various developers in one single data model with

ease. This also promotes modular development.

5) Dependency Injection: Due to this feature in AngularJS testing becomes a cake walk. We can

just ask for the dependencies rather than having to search for them.

2.1.4 MVC architecture

MVC is a software design pattern for developing web applications. It has 3 important parts:

Model − It is responsible for maintaining data.

View – It is responsible for displaying the data to the user.

Controller − It controls the interactions between the Model and View.

Figure 2.4 MVC Architecture

MVC distinguishes the application logic from the user view. The controller receives all the

requests sent to the application and then works in integration with the model to displays the

generated output to the user requesting the service.

9

2.1.5 Angular MVC Architecture [6] (www.Pluralsight.com, n.d.)

MVC is angular is implemented in JavaScript and HTML. For the view, we use HTML, and for

the model and controller we use JavaScript.

Figure 2.5 Angular MVC Architecture

Model: It contains the data to be displayed, data collected as the input and functions invoked by

the user. Generally, we can directly use $scope as a model.

View: It is a HTML page with reference to AngularJS framework to include bootstrap and

directives to manipulate the DOM.

Controller: For this purpose, we use ng-controller directive. It will be used for the handling and

manipulating all the data behind the UI.

 2.2 jQuery

jQuery is a JavaScript Library. It makes coding really simple as many lines of a JavaScript code

can be written into a single line. It also makes Ajax, data manipulation and traversal, animation

10

etc., really simple. Using jQuery tools, we can communicate to the server without reloading the

whole page. In jQuery we select HTML elements and perform operation on them using action()

function. In jQuery like any other scripting languages $ hold a lot of value. $ sign is used to define

or access jQuery. For selecting HTML elements, we use selectors with the element name.

 2.3 Springs

2.3.1 Spring Framework

It is Java platform providing java applications a platform and comprehensive infrastructure for

their development. Spring Framework helping in the development of enterprise applications in

particular using POJOs.

Figure 2.6 Spring Framework[8] (www.javatpoint.com, n.d.)

Description:

Spring Core Container: It is basis for the complete Spring framework. It is used in all the other

modules. This module injects dependencies, so that we need not use factory classes and methods.

11

 Core: It provides IOC and Dependency Injection features

 Beans: It provides BeanFactory for implementing factory pattern.

 Context: It supports EJB, JMS and Basic Remote features.

 Expression Language: It supports multiple things like named variables, logical and arithmetic

operators and many others.

AOP: It stand for Aspect Oriented Programming. It is implemented in Java based on AOP Alliance

API. This allows integration of existing AOP alliance complaint to the spring or allows migration

of the component implemented using Spring AOP to other AOP.

Data Access/Integration [9] (htt1):

 JDBC: In normal JDBC API we end up writing lot of code, for creating connection, handle

transaction, exception handling. This complex coding is handled using JDBC in Spring API

which will provide JDBC-abstraction layer.

 ORM: Using ORM, we have to write less code for the database connection, It provides

abstraction for object-relational mapping APIs, including JPA, JDO, Hibernate, and iBatis.

 OXM: This module provides an abstraction layer that supports Object/XML mapping

implementations for JAXB, Castor, XMLBeans, JiBX and XStream.

 The Java Messaging Service JMS has features for creating and using messages.

 The Transaction module supports programmatic and declarative transaction management for

classes that implement special interfaces and for all your POJOs.

Web Module:

12

It helps in the development of web application in a simple way. It also supports MVC based

application development.

2.3.2 Advantages of Spring Framework

 It has predefined templates.

 Springs doesn’t require server to run. By using POJOs, we need not use application server

but we can use Tomcat or other such servers.

 Spring framework has a well-designed MVC framework, which serves as great alternative to

web framework available.

 In Springs we do not start everything from scratch, rather it uses the existing technologies

like ORM frameworks, JEE and many others. In short it is versatile.

 Testing becomes a really easy, as Springs use POJOs which in turn uses dependency injection

for injecting test data.

 Springs work in modular fashion, where no module is dependent of each other.

2.3.2 Spring MVC [10] (Rajput, n.d.)

Figure 2.7 Spring MVC

13

Step 1: Used sends the request to the Front Controller (DispatcherServlet).

Step 2: DispatcherServlet dispatches to the HandlerMapping. HandlerMapping selects the

corresponding controller for the request URL given by the user.

Step 3: HandlerMapping sends back the respective controller information and selected Handler to

the DispatcherServlet.

Step 4: The DispatcherServlet then selects the controller to perform business logic.

Step 5: The Controller then performs all the business logic and sets the processed result in Model.

Step 6: Once all the process has finished the Dispatcher Servlet is updated.

Step 7: DispatcherServlet dispatches the task of resolving the View corresponding to the View

name to ViewResolver.

Step 8: ViewResolver provides the View mapped to View name to the DispatcherServlet

Step 9: DispatcherServlet dispatches the provided information of process to the View.

Step 10: View also receives the model data from Model

Step 11: It then provided the response to the user (person requesting the service).

Advantages of Spring MVC:

 More annotation based, i.e., reducing the extensive use of configuration and metadata.

 It supports different views (JSP, XML, PDF etc.,) and MVC frameworks.

 Supports RESTful URLs.

 2.4 HTML

It stands for Hyper Text Markup Language. It is used to create static web pages. It is one the basic

languages to learn static web designing.

Advantages of HTML:

 It is simple to code.

 It is easy to learn.

14

 Widely used.

 Can be used to integrate many languages.

 It is very flexible.

 It provides various templates which makes designing easy.

 2.5 CSS

It stands for Cascading Style Sheets. It is used to beautify the web pages. It allows separating

content of an html document from the style and layout of that document. CSS allows developer to

create stylish websites and make them look attractive. In CSS, just by changing the style, the

elements in the web page is updated automatically. CSS is also much faster than a plain HTML

code.

 2.6 MySQL

MySQL is a database management system and is open source relational database. To store all the

information provided by the Admin and Student details are stored in database. All the information

in MySQL database is stored in tables. The front-end of the project is connected to backend

MySQL. When the user requests data from the front-end, it retrieves the data from the MySQL

tables. MySQL is scalable and has better performance than many other relational databases. Using

MySQL, we can add, delete and update information in the tables. Each table in a MySQL database

has a primary key, which is a unique identifier for each record.

15

Chapter 3 - Related Work

 3.1 Existing System

In the existing system, K-State uses various applications to help the students to manage their

courses, their financial details, employment notifications and many such. For example, there is

Canvas where students can add and manage course, submit assignments, receive grades, see the

course materials and do many other course related stuff. Then we have KSU CES website, where

student can get all the information related to career fairs, companies visiting the campus for

placements and the company details. Also, we have K-State Online application from where student

can access K-State webmail, manage and pay tuition fee, and receive paycheck if he/she is

employed on campus. These apps are really helpful for the students. But there is no application

which will help students in the initial days of their school. Nobody or no app gives a full proof

information about the mandatory things a student should be doing before they enroll and start their

classes. Few events details are sent through K-State webmail but they do not have location maps

nor do they have other mandatory information like point to contact, their email and contact details

(most of the times). Due to all these issues students face a lot of difficulty in the initial days.

 3.2 Proposed System

In the proposed system, we are trying to develop an application which will help students in their

first few weeks at K-State. This app will provide students with the list of to-do’s which will give

them the sequence of the steps which they need to fulfill. The To-Do list will have, all to-dos’Every

step will have a to-do, with the details of the place and the map to the location. It will also inform

student the things they need to carry with them to the location. For example, if the to-do says, they

need to check-in with the grad school, it actually means they will have to submit their previous

transcripts; so in this case the mandatory documents to carry would the transcripts. Also it would

16

provide students with the event list around the campus along with the details of the point of contact.

It will have two different type of users; one is the admin, who will update the information for the

student (who is the user) and the students. To provide security and restrict the app to just K-State

students, every time the user (K-State student) registers to the app, he gets a verification mail to

his K-State account. Also, there are chances that the Admin may not know every new event in the

university. To provide him some help, there is also an option where students can help him by add

the event details, which needs to be re-verified by the Admin. I believe all these capabilities will

help the student immensely in his start of journey at K-State, and hence I named it Campus Buddy.

17

Chapter 4 - Requirements Analysis

 4.1 Requirement Gathering

Software development starts by gathering requirements which you may need in your project

implementation. It is one of the crucial steps in the development process. Only if we have all the

correct requirements beforehand, prior to starting our actual implementation, we will have the

excepted output. Else, no matter how detailed and extended our design and code is, we will end up

unexpected results in our final output. After detailed analysis of the requirements, I could segregate

them into functional and non-functional requirements

4.1.1 Functional Requirements

It describes what system should do.

 Student registration

 Admin and Student Login

 Admin should be able to add to-do list

 Admin should be able to add events

 Admin should able to see the students registered

 Student should be able to see to-do list added by the admin

 Student should be able to see the events added by the admin

 Student should able to add events.

 Admin should able say validate the event added by the user, which will add it to the events

list.

 Student email address should be verified.

18

4.1.2 Non-functional Requirements

It describes the working of the system. The non-functional requirements such as security and

integrity are provided to this system through verification and validation. (i.e., by prompting error

messages if anything goes wrong)

 4.2 Requirement Specification to run the application
(Note: These are the requirements I used while developing this application)

4.2.1 Software Requirements

Operating System: Windows 10

IDE: Eclipse Luna

Servers: Apache Tomcat 7.0.27, Wamp 2.0

Frameworks and Web Interface: Spring MVC, phpMyAdmin

Database: MySQL

Front End: HTML5, CSS3, JavaScript, jQuery

Browser: Any browser should work (preferably Chrome and Firefox)

4.2.2 Hardware Requirements

Processor: Intel core i5

Processor speed: 2.30 GHz

RAM: 8 GB

19

Chapter 5 - System Design

 System design gives static and dynamic view of the system. It defines various portions of

the project like modules, components etc., and their functionality. These are actually laid before

development to have a clear idea on the requirements beforehand. System designing is actually

done on two separate system models. Static Models, which gives how the static elements in the

code like class and objects should look like and dynamic models give the behavior of the static

components. Class and object diagram provide the static view of the system where as use case and

activity diagram provide the dynamic aspects of the model.

 5.1 Class Diagram

It provides the static view of the system. It shows the classes used in the system, their attributes

and functions. It doesn’t give the functionality or the data flow. It provides information about the

things which doesn’t change in the system. In this project, there are classes in 4 different section.

Controller classes, dao classes, mail class and vo class.

Controller classes: The Controller classes pulls data from the request and passes it to the class

which request the service. In short, they handle web requests. In this project there are multiple

controllers like the StudentListController which controls the student side activities,

AdminDataController which handles Admin data and so on.

VO classes: The data is actually sent to DAO through VO. In this project, the classes in vo are

used only to set values to the to-do, events and user(student).

DAO classes: Classes in this portion interact with the database. They generally contain all the

query code to connect and interact with database.

Mail Classes: Class in mail, has the methods and attributes to send verification email to KSU

email id.

20

Figure 5.1 Class diagram 1

21

Figure 5.2 Class diagram 2

22

 The class diagram is divided into 2 parts for simplicity. In class diagram 1, there are all

model classes and they communicate with RegistrationDao class which has database connections

to all important tables. The classes ToDo, Events, StudentEvent and User are used to set the values

to the various variables and objects in the database through RegistartionDao and get the values

from the RegitartionDao, which in turn communicates with the database to provide values to the

model and the model then returns them to the controllers or the view.

 In class diagram 2, there are controller classes which communicate with their respective

DAO classes. These controller classes are responsible for the views through which the user

requested any service. For example, from todo.jsp when a request it raised, dispatcher servlet maps

it to ToDoController and this turn communicates with ToDoDao. ToDoDao gets value from the

database that is required by the controller to serve the request. In the figure, there are around 8

controller classes and they communicate with respective Dao. Also, these controllers communicate

with RegistrationDao which has all important connections to the database like getting ToDo for

respective User, extracting the events which a particular user is interested in and so many other

things.

 5.2 Use case Diagram

Use-Case diagram shows the dynamic view of the system i.e., the behavior of the system. It doesn’t

focus on system as such but focuses on users of the system. Use cases help to manage large projects

by decomposing it into functions.

23

Figure 5.3 Use case diagram

In this project, there are two users. Admin and student.

5.2.1 Functions of Admin

Login: He can login with his credentials.

Admin Account: This function will provide the admin details.

View students list: Admin can see all the students who are already registered.

Add/Delete/Update To-Do List: Admin can add new to-do’s and, delete and update previous

ones.

24

Add/Delete/Update Events List: Admin can add new events and, delete and update previous

events.

Approve/Reject events added by user: Admin can approve or decline the event added by the

student.

Logout: Admin logs out from his account.

5.2.2 Functions of student

Register: Student registers using his KSU email id.

Login: Student can login to his account, using the username and password provided.

Student Account: It will provide account details of student.

Access to-do list: Student can see the to-do list. Here each to-do can be expanded and can be

checked as completed or not completed. Once the to-do is completed, it moves to to-do completed

list.

Access events list: Student can see the events list. Each event be expanded and can be checked as

interested or not interested. Once the to-do is completed, it moves to to-do completed list. This

updates the people interested count for this event.

Add new event: Student can add new event with all the necessary details.

Logout: Student can logout from his account.

 5.3 Activity Diagram

Activity gives the work flow of execution in the project. We use forks and joins in activity

diagram to show how activities flow inside a system. From the picture 5.3, it can easily be

inferred that there are two different flows. Admin and student. Student has to register and then

login. Once the student is inside the student homepage, he can view his account, To-Do list,

25

event list and can also add new event. But the admin just can log in directly. Once he is in his

homepage, he can add/delete/modify To-Do’s, events and can approve students add request.

Figure 5.4 Activity diagram

26

Chapter 6 - Implementation

I have implemented this project in 2 modules. User module and Admin module. The main purpose

of this app is to provide students the details of the things they need to do in the first week of their

school (list of to-do’s) and the list of events around university.

Explanation of the Modules:

Admin Module:

Admin has a special username and password. He can enter to-do list, event list, approve events

added by student, see the student list.

User/Student Module:

Students can see the to-do and events list added by the Admin and they can also add new events

which needs to be approved.

 6.1 Basic Implementation

This project has been implemented in 3 main portions. There is a controller, which are the .java

files which handles all the requests, which it receives from the .jsp files. We have DAO’s

controllers which are again .java files. They have all the queries which are required to interact with

the database. The DAO classes send back model classes to the Controller class in order to be sent

to the view layer. Then we have .jsp pages, which send requests to perform certain functionalities.

They also contain the HTML code, to provide application view to the user.

6.1.1 Student Module

Below is the first screen which is displayed on running the application. This is a basic HTML

page and is displayed for just few seconds before it is redirected to registration page.

27

Figure 6.1 Home Page

Registration page in the page from where the actual project flows. Admin can directly login

from here using predefined username and password and role as ADMIN. Students who are

new should register before being able to use this app. As this application is restricted to the

K-State students, if student provides any other email id, except with @ksu.edu extension, it

will show error. In the picture 6.2, I tried entering a Gmail id and gives an error.

Figure 6.2 Registration page when provided wrong password

28

Once we enter a valid K-State email id, as in figure 6.3 it allows student to register and gives a

message “you have been registered”, as in figure 6.4.

Figure 6.3 Registering with KSU email id

Figure 6.4 Registration page shows message “registered”

At this point the student has just registered but has not verified his email and if he tries to login,

it will throw an error as in Figure 6.6. Only after the student confirms that he indeed is a K-

29

State student, he is allowed to access the app. Figure 6.5 is the snapshot of the database below

verifying the email id. It shows user “Anamika” is still inactive.

Figure 6.5 User inactive in registration table

Figure 6.6 Trying to login without verification

As, the next process we send a mail to the student KSU email id, from a random email id which

I created just for this purpose which some special conditions. The email is generally in the junk

folder in the KSU email as university email has certain filters for external mails. The mail

looks something like below, with a link. Once the link is clicked, the user is activated.

30

Figure 6.7 Verification code sent to KSU email id

At this point, the user is activated and the database will look something like figure 6.8 and it

will give a message on the registration page as the user is activated, as in figure 6.9.

Figure 6.8 Status updated to “Active” in registration table

31

Figure 6.9 Message shown after verification of email

Once the student logins with his login and password, the gets access to the application home

page.

Figure 6.10 Students home page

32

The first tab UserAccount, gives the account details of the user/student. It is all the data of the

student which stored in database are reflected.

Figure 6.11 Student account info

Figure 6.12 Student details which are stored in registration table

The second tab To-Do List will give the user the list of to-do’s the should finish. It will in turn

have the 2 separate blocks. Completed and To-Do’s list. In the first tab there will be all the To-

Do’s student has already finished and the To-Do’s tab will have to-do which they still have to

finish.

33

Figure 6.13 Student To-Do page

Once the student selects the To-Do’s tab, all the to-do’s added by the Admin are displayed. Each

to-do is in a sequential order when selected displays all the details associated with it. It will only

display the to-do which are not already completed by the student. When student selects To-Do tab

all the other tabs are blocked, so that even if they are selected they do not perform any specific

functionality.

Figure 6.14 Student To-Do’s not completed

34

In the above picture if we select any of the to-do, it will display the all the details and the map

location as in figure. It will also have two checkboxes where we select completed or not completed.

Figure 6.15 Student To-Do’s details

The map location when selected open the google map location

Figure 6.16 Map location

35

Once the student checks the completed tab, it moves to completed list and even the database is

updated as completed as shown in 6.17.

Figure 6.17 To-Do moved to Completed list

Once the to-do is moved to completed list we can no longer see the checkboxes. It is just

there for reference.

Figure 6.18 To-Do page with no option to select completed or not completed after moving

to-do to the completed list

36

The event list when selected shows the events which are added by the admin. It is similar to the

to-do list.

Figure 6.19 Events list

Each event when opened, will have 2 checked boxes which takes input from the student on if

they are interested or not. Also, it will give the number of students interested in the event which

will help the students take decision if they going for the event and they are not alone.

Figure 6.20 Event details

37

Now if the student selects interested, the interested people count will increase and the

database Eventsint is updated.

Figure 6.21 Status after student selects interested for an event

Figure 6.22 Interested people count increases

Students can also new events which they know of. They just have to enter all the details like

latitude and longitude location of the place where the event is scheduled and save it. The

event added by student is added in sevents table.

38

Figure 6.23 Student adds new events

Figure 6.24 Event added in sevents table

6.1.2 Admin Module

The first index page is the same for both student and Admin. Then the admin logins into his

account. There is not registration required for him. The first page of the admin is as below.

39

Figure 6.25 Admin home page

The admin and see the student list. It will show all the students who have registered, with all

their details which they gave while registration.

Figure 6.26 Students list

40

When the Admin selects To-Do List, he can see all the to-do’s already added by him like in

figure 6.26. He can also add a new to-do, update previous to-do list or delete them.

Figure 6.27 Admin side To-Do page

When the Admin selects New, he can enter new to-do as shown in picture 6.27 and save it.

While adding the Admin can add as much description as possible, with the location’s latitude

and longitude. He can also provide the contact information of the person responsible for

handling the to-do. It is updated in todo table.

41

Figure 6.28 Admin adds new To-Do

Figure 6.29 To-Do added in todo table

After selecting the Events List, Admin can see previous events he added, update and delete

them. He can add new events as well. It will give the Admin a new space to add them as in

picture 6.30.

42

Figure 6.30 Admin events page

Figure 6.31 Admin adds new event

43

When a student adds an event, it is not directly added to the main events page, it is rather added

to sevents page. Only after admin accepts it, the event is added to the events page. When the

admin clicks Add Requests, he can see all the events student added and he can accept and

reject it.

Figure 6.32 Admin accept or rejects student event add request

The logout just logs out the Admin from this page and redirects him to registration page.

44

Chapter 7 - Database Design

Designing a well laid database is as important as designing the frontend. A good database design

is helpful in many ways. The main concept of designing a database is to arrange the required

information into tables and these tables are then normalized.

Few advantages of having a good database design is

 Eliminating redundant data. E.g., we cannot have same user multiple times in the database.

It also saves space.

 Database access becomes really as data is well arranged.

 Increased performance.

 Maintains data accuracy and integrity.

 More secure.

 7.1 Database Tables

In this project, I have used 6 tables to store various details.

1) registration table: This tables stores the details of user and admin which they insert while

registration.

Figure 7.1 registration table

The password in this field in stored in an encrypted format. The main purpose of encryption here

is to make sure that even if some external resource gets access of the database, he cannot see the

actual password of the user. Also as any number of students can use this application, there can be

45

multiple student account. Also the verification link is sent to the mail id the student provided

while registration. The data for the login page is also extracted from this page and matched.

2) events table: This table stores all the event details the admin enters for his end. It provides

eventname, description and the location using latitude and longitude.

Figure 7.2 events table

3) eventsint table: This is the events interested table. It stores details of the students who are

interested in a particular event. This table is joined to the events tables with the id. It gives

information if the student is interested in any particular event or not.

Figure 7.3 eventsint table

4) sevents table: This is the student’s events table. All the events student inserts from his home

page are added to this table. Once the admin approves this request the event is added to the

main events table.

Figure 7.4 sevents table

5) todo table: This table has the to-do list stored with the description, longitude, latitude and

contact information. This basically has all the to-do’s which are and which are not completed

by the students.

46

Figure 7.5 todo table

6) todocomp table: This table is joined to todo table by the todo id and username from

registration table. It has information about which student has finished which to-do. All the to-

do’s completed and the to-do pending are shown as two separate tables to the user.

Figure 7.6 todocomp table

 7.2 ER Diagram

Entity Relation diagram, gives the relation between various entities, in short relationship between

various tables in the database. Is shows that how every tables in maintained in the database and

how are related to each other.

In this project, registration, events and todo tables are independent. But eventsint table has eventid

as well as student name associated with the status to the event he added (i.e., whether it is interested

or not). Todocomp table has student name from registration table and todo id from todo table

associated with it along with status (i.e., whether it is completed or not). sevents table has the

details of the events provided by the students.

47

Figure 7.7 ER diagram

48

Chapter 8 - Testing

Code is written and developed by a human. Anything which is man-made is prone to errors. Not

all errors are harmful for your application, but, few are. So we should make sure that the application

has no scope for errors. To make sure the app is clean, we need to test our code while and after

development. Testing makes sure that the application is clean. There are many testing levels

available at different levels.

8.1 Testing Levels

Unit Testing: It is testing individual units of the code. This testing is usually done at developer

end and it done while developing the code. At this stage, testing is done at individual code level,

in isolation to other parts of the program. In this project at each level unit testing is performed to

make sure they work as expected.

Integration Testing: After unit testing, we perform integration testing where we try integrate

individual units together. There are situations when individual units may work as expected but

when we combine these units they may fail. Hence, we should make sure integrated units works

fine and produce the desired result.

System Testing: After all the integration testing is done, we check if the whole integrated system

meets all the requirements.

Regression Testing: Regression testing helps developer to find the problems which he encounters

after he fixes certain bugs, or by changing the environment. Hence every time we change anything

in the code, we should make sure we check the whole system again.

Acceptance Testing: This testing is conducted to check if the output/result obtained from the code

is as excepted and match the business requirements. In short, if it should be accepted.

49

Load Testing: Load testing is the process in which we make the system work to its maximum

capacity and check if it can handle the load. It helps us full capacity of our code.

Performance Testing: Performance testing is the process where we check the performance of the

system under a particular workload and check for the performance of the system.

Figure 8.1 Testing Levels

8.2 Tests performed on student/user module

MODULE TEST CASE EXPECTED RESULT TEST

RESULT

User/Student

Provide any other email id except

K-State email id with @ksu.edu

domain

Throws error and registration not

successful

PASS

50

User/Student

Provide valid KSU email id with

@ksu.edu domain

User successfully registered

message and is stored in

registration table but with status

inactive .

PASS

User/Student

User tries to login before

activating or verifying the email.

Throws error and is not allowed

to login

PASS

User/Student

After registration student gets

mail for verifying his account

Email received to student KSU

email id

PASS

User/Student

Student clicks the link provided

for verification

It will activate user and on the

registration page, it shows

student activated.

PASS

User/Student

Student login after account

verification.

Student is allowed to login after

he verifies his account

PASS

User/Student

Student enters wrong username

and password

User login unsuccessful

PASS

User/Student

Student enters correct username

and password but enters the role

as Admin

User login unsuccessful

PASS

User/Student

Student redirected to student

homepage after login

User can view his home page

PASS

User/Student

Student clicks on UserAccount

button

User can see all the details

he/she entered while registration.

PASS

51

User/Student

New student clicks on Completed

List

It should be empty.

PASS

User/Student

Student clicks on To-Do button

User can see two tabs Completed

List and To-Do’s.

PASS

User/Student

New student clicks on To-Do’s

button

Student is able to see the To-Do

list

PASS

User/Student

Student clicks on one of the To-

Do’s

Displays all the information

related to the To-Do

PASS

User/Student

Student clicks the map link

provided for the To-Do.

Takes the user to google maps

page.

PASS

User/Student

Every To-Do in the To-Do’s tab

is provided completed or not

completed checkbox

Displays the completed or not

completed checkbox along with

To-Do description.

PASS

User/Student

Students selects completed

checkbox.

To-Do moved to completed list

and also updated in the database

PASS

User/Student

Returning student clicks on

Completed List button

Displays the To-Do marked as

completed by the user

previously.

PASS

User/Student

Student clicks on Events List

button

Displays all events in DB.

PASS

52

User/Student

Student clicks on any event.

Displays the details related to the

event along with interested and

not interested checkbox.

PASS

User/Student

Student selects on interested/not

interested checkbox.

Updates database accordingly.

PASS

User/Student

Student clicks Add Events button

Provides user a form to enter all

the events details along with

latitude and longitude.

PASS

User/Student

Student clicks Add Events button

Provides user a form to enter all

the events details along with

latitude and longitude.

PASS

User/Student

Student clicks clear button before

saving on the vents page.

Event not saved in the sevents

database

PASS

User/Student

Students hits save after entering

events details.

Student event saved in sevents

table, but not updated in main

events table.

PASS

User/Student

Student clicks Logout

User is logged out of the app.

PASS

Table 8-1 Testing on Student Module

53

8.3 Tests performed on Admin module

MODULE TEST CASE EXPECTED RESULT TEST

RESULT

Admin

Admin provides wrong username

and password for login

Admin login unsuccessful and

throws an error message

PASS

Admin

Admin enters correct username

and password but enters the role

as Student

Admin login unsuccessful

PASS

Admin

Admin enters correct username

and password

Admin login successful

PASS

Admin

Admin redirected to admin

homepage after login

Admin can view his home page

PASS

Admin

Admin clicks on AccountDeatils

button

Admin can see all his details.

PASS

Admin

Admin clicks on StudentsList

button

Displayed students list

PASS

Admin

Admin clicks on To-Do List

button

Admin is redirected to To-Do

page and displays all the To-Do

previously added(in any)

PASS

 PASS

54

Admin Admin clicks on Add button in

the To-Do page

Open a new To-Do form for

Admin to add details

Admin

Admin clicks save button on the

form

To-Do is added to todo table

PASS

Admin

Admin selects previous added To-

Do check box and click update

Admin can edit details of the To-

Do selected.

PASS

Admin

Admin selects previous added To-

Do check box and click delete

To-Do is deleted.

PASS

Admin

Admin clicks on Event List

button

Admin is redirected to Event

page and displays all the events

previously added(in any)

PASS

Admin

Admin clicks on Add button in

the event page

Open a new form to enter event

details

PASS

Admin

Admin clicks save button on the

form

Event is added to events table

PASS

Admin

Admin selects previous events

check box on the events page and

click update

Admin can edit details of the

Event selected.

PASS

Admin

Admin selects previous events

check box on the events page and

click delete

Event is deleted.

PASS

Admin

Admin clicks Add Events Button

Displays all events added by the

students

PASS

55

Admin

Admin selects any particular

event and clicks Accept

Event is added to events table

PASS

Admin

Admin selects any particular

event and clicks Reject

Event is rejected.

PASS

Admin

Admin clicks Logout

Admin is logged out of the app.

PASS

Table 8-2 Testing on Admin Module

 8.4 Performance Testing

Performance testing is performed to determine the speed or effectiveness of an application.

It involves many quantitative tests for calculating response time or number of millions of

instructions per second at which the system functions. This testing is useful because when we

deliver the final product, we should make sure the app if available to any number of users and does

not just stop working when there is heavy load. Hence, we need to make sure it does function for

different sets of users. To perform this testing, I used JMeter, which is one of the tools available

to check the performance of web applications. As, this application is running on local host and can

just see the performance of database and how it is able to handle multiple users. The table 8.3

shows the throughput and average response time for a set of users and loop count.

 Number of

Users(Threads)

Ramp-Up

Period

Loop

Count

Avg Response

Time

Throughput

Observation 1 500 10 1000 2.47 sec 2918 res/min

Observation 2 1000 10 1000 2.40 sec 5736 res/min

56

Observation 3 1500 10 1000 2.25 sec 8314 res/min

Table 8-3 Performance Observation

Chapter 9 - Security

Security is the process of securing app from all the threats. Security is really important for any

application, but most importantly in web applications as they run on external networks. If the data

is not secure, it can pose serious security threats to your application. With so any options available

online, hacking into any application is really simple, and can expose all your private information

to the hacker. He can use your confidential information and play around with the database. For a

secure application, we need follow 4 important principles. Confidentiality, Integrity, Availability

and Nonrepudiation. In this app (Campus Buddy), hacker can get Admin details and update the to-

do and event location to some fake location and confuse other students. To make sure these things

never happen, I have provided basic security features to my app.

Below are some basic validation applied to this code.

Password encryption in the database (Confidentiality)

All the passwords in the database are encrypted. We use DES algorithm for encryption. It main

purpose of password encryption is that people who have access to the database cannot see user

password and misuse it. So it is always advised to encrypt the password in the database.

Apart from these there can be other security features which are useful for any web application

Email verification

To make sure we do not receive any malicious data from random users, this app is restricted to K-

State students with valid K-State email id (@ksu.edu). Also, student should verify his email

through the verification link which is sent to his KSU email id.

A separate user and Admin (Integrity)

57

To make sure no data is modified, we just have one admin who is capable of access, deleting,

adding and updating information. This makes sure data is not changed by any other user.

Providing secure password for each user (Availability and Nonrepudiation)

To provide independent access to each student, every student should have a unique username and

password, which he can use for while logging into this app. It makes the app available for a genuine

user.

Apart from these security features there are other security threats which you should make sure is

handled by your system.

 9.1 Security issues in web application and their handling methods

SQL Injection

It allows a hacker to get crucial data from the server’s database. SQL Injection can get the intruder

to the application page without the need of actual id and password. He just inserts a query which

is always true in place of actual username and password fields and it gives him access to admin

home page, where he can modify data.

Example query: "SELECT * FROM tablename WHERE username = ' ' or '1=1'";

The above query is always true.

Countermeasures for the above problem:

 By making sure, user has not been provided all the privileges and has only limited

permissions.

 By using PreparedStatement in the database connection. It will prevent injection attacks.

Username Enumeration

58

This kind of attack happens, when the entered input is wrong and the intruder keeps guessing the

input unless he gets the actual one. It happens when admin or the user use basic, simple and

common username and password like admin/admin or repetitive numbers like 123456 as password.

Countermeasures for the above problem:

 Creating strong password.

 Not allowing same username and password.

 Not allowing user name as password.

 Not allowing continuous numbers like 123 or repetitive numbers like 222 in the password.

Redirecting to fishy page and tampering parameters

In this attack the intruder changes the url link internally and redirect the user to a fishy page where

user enters the information and it provides the whole information of the user to the intruder.

Countermeasures for the above problem:

 Making sure that the page is secured. (https)

 Using firewall.

59

Chapter 10 - Conclusion

In conclusion, I want to mention that, though K-State has various applications available to

help students with every day needs, this system would be immensely helpful for any student who

is new to K-State. The student will have all the details in one place, without having to collect the

pamphlets or to keep track of the emails. They will never be misguided by anyone and will never

miss any event or a deadline. As they are new to the place, they will also get the location map to

the events and places where they need to go to finish their mandatory to-do.

This project also avoids malicious updates by notorious students by giving all the update

permissions to the admin. Even if the student provides new event details, it should be accepted by

the admin before being added to the event list. This application also restricted to K-State students,

with a valid K-State mail id, with extension “@ksu.edu” to provide security from external

intruders.

Also, all thanks to this project, I have a very strong understanding of web applications. I

developed the whole app end-to-end, using AngularJS (used for verification and validation),

HTML, CSS, JQuery (for the front-end), Spring Framework for all the development and MySQL

as the back-end database, and all these technologies are highly preferred for web development.

This project also provided me enough scope to research about the current trends in IT development,

boosting my confidence and providing enough understandability of leading trends in web

development.

60

Chapter 11 - Future Work

In this project there is lot of scope for future enhancement. The main purpose of this project

was to help students during their initial days in the school. This app probably provides all the

functionalities a student will need to complete the mandatory set of requirements before they enroll

and start their classes, but there are several ways we can enhance this application. We can

implement this project as a hybrid app, which will run on any kind of platform, just not the web.

My intention to make this app run specifically on web was to learn web technologies (Springs

framework in particular).

As part of my implement project I had similar setup using Android. We can use web

services and integrate both Android and Web app. This integration will replicate everything we do

on Android app of the web app and vice versa. We can add and view details from both Android

and web platform.

 Currently, this app is restricted to only events and to-dos’ list for the students. But there

are multiple other ways this app can help them. We can add details about workshops, Club with

their locations and POC. We can integrate student syllabus, class timings, exam dates, final project

submission dates all into this app. The UI can we further enhanced to make it look more user

friendly. We can add comments section to the student’s module, which will make this app more

dynamic. Like students can update the details of the events, if the location provided is wrong,

contact information is improper and many others. This would help other students and the admin to

get the updated information about the app.

61

 Likewise, the project can be improved in various ways to provide quality information to the

students.

Bibliography

[1] Vardi, E. (n.d.). SlideShare. Retrieved on 04/03/2017 from LinkedIn:

https://www.slideshare.net/EyalV/angularjs-architecture

[2] Smith, J. (n.d.). Retrieved on 04/03/2017from http://www.informit.com:

http://www.informit.com/articles/article.aspx?p=2252414

[3] (n.d.). Retrieved on 04/03/2017 from blog.angular-university.io: http://blog.angular-

university.io/introduction-to-angularjs-form-validation/

[4] Bernado. (n.d.). wijmo.com. Retrieved on 04/03/2017 from http://wijmo.com/blog/easy-form-

validation-in-angularjs/

[5] Ruebbelke, L. (n.d.). Retrieved on 04/03/2017 from Envato.com:

https://code.tutsplus.com/tutorials/5-awesome-angularjs-features--net-25651

[6] (n.d.). Retrieved on 04/03/2017 from www.Pluralsight.com:

https://www.pluralsight.com/blog/software-development/tutorial-angularjs-mvc-

implementation

[7] (n.d.). Retrieved on 04/03/2017 from

http://stackoverflow.com/questions/13067607/angularjs-client-mvc-pattern

[8] (n.d.). Retrieved on 04/04/2017 from www.javatpoint.com:

http://www.javatpoint.com/spring-modules

[9] (n.d.). Retrieved on 04/04/2017 from https://docs.spring.io/spring/docs/current/spring-

framework-reference/htmlsingle/#overview-getting-started-with-spring

[10] Rajput, D. (n.d.). Retrieved on on 04/04/2017 from www.dineshonjava.com:

http://www.dineshonjava.com/2012/12/spring-web-mvc-framework-chapter-38.html

https://www.slideshare.net/EyalV/angularjs-architecture
http://wijmo.com/blog/easy-form-validation-in-angularjs/
http://wijmo.com/blog/easy-form-validation-in-angularjs/
https://www.pluralsight.com/blog/software-development/tutorial-angularjs-mvc-implementation
https://www.pluralsight.com/blog/software-development/tutorial-angularjs-mvc-implementation

